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ABSTRACT
A novel analysis method for binaural room impulse responses

(BRIRs) is presented. It is based on the analysis of ear canal sig-
nals with continuous wavelet transform (CWT). Then, the cross-
wavelet transform (XWT) is used for detection of the direct sound
and individual reflections from a BRIR. The new method seems
to time-localize the reflections quite accurately. In addition, the
proposed analysis method enables detailed study of the frequency
content of the early reflections. The algorithm is tested with both
measured and modeled impulse responses. A comparison with an
FFT-based cross-spectrogram is made. The results show that XWT
has potential in audio signal analysis.

1. INTRODUCTION

In many cases detailed time scale analysis of binaural impulse res-
ponses is needed. For example, a dense pattern of early reflections
is usually associated with good concert hall acoustics and it would
be great to be able to study these reflections individually from mea-
sured responses. One practical application—in which details of
early reflections is needed—is the auralization in slow motion us-
ing measured binaural impulse responses [1]. When using simu-
lated (binaural) impulse responses the auralization in slow motion
is simple: the speed of sound is slowed down by a certain factor in
the auralization. This allows perception of the time and direction
of arrival of individual reflections. If measured binaural responses
are to be slowed down, the situation becomes more complicated,
since individual reflections should be very accurately localized in
time in order to isolate them from the original response. This calls
for a method that can time-localize the individual reflections as
accurately as possible.

The problem studied in this paper is time-localization of early
reflections from a binaural impulse response. It is assumed that if a
reflection occurs there is correlation in short time window between
left and right ear canal signals. Auditorily motivated approaches
typically employ filter banks and calculation of cross-correlation
between channels. Here, a more signal processing oriented ap-
proach is taken. An obvious method would be the frame-wise cal-
culation of Fourier cross-spectrum between the left and right chan-
nels. A wavelet-based approach was hypothesized to be a better
alternative, because of better time resolution compared to frame-
based approaches. Therefore, both frame-based and wavelet-based
approaches are evaluated in the study.

An introductory paper on wavelet analysis with applications
to time series analysis [2] provided inspiration for using wavelet
methods for localizing the reflections. Wavelet analysis, in the
form of filter bank decomposition, has been used for approxima-
ting room impulse responses in simulations [3]. The continuous

wavelet transform (CWT) has also been applied to audio signal
processing previously for noise reduction and signal compression
[4], intermodulation effects analysis [5], sound synthesis [6] and
sound signal modeling [7]. The CWT has also been used for de-
composition of room and loudspeaker impulse responses [8]. In
the current work, the continuous, non-orthogonal and complex
cross-wavelet transform (XWT) is used, because the interest is in
the correlation between two time series, i.e., the left and right ear
canal signals of a binaural impulse response. As far as we know,
the cross-wavelet transform seems not to be applied to audio signal
processing previously.

2. THE CONTINUOUS WAVELET TRANSFORM AND
THE CROSS-WAVELET TRANSFORM

The CWT is a method that can be used for time series analysis. It
gives a highly redundant time-frequency representation of a time
series, being very different from the discrete wavelet transform
(DWT), which gives a compact representation of the signal and is
thus better suited for signal processing [2]. For time series analy-
sis, the CWT is much more suitable. The DWT also has the dis-
advantage of an aperiodic shift in the time series giving a different
wavelet spectrum [2].

The continuous wavelet transform for a signal x(t) is defined
as [9, 2, 8]:

Wx(t, s) =
1√
s

Z ∞

−∞
x(t′)ψ∗

„
t′ − t

s

«
dt′ (1)

where the asterisk (∗) indicates complex conjugation, t is time
(translation), s is scale (dilation) and ψ(t) is the wavelet function.

For a discrete sequence, the continuous wavelet transform is
defined as a convolution sum [2]:

Wx(n, s) =
1√
s

N−1X
n′=0

x(n′
)ψ∗

„
n′ − n

s

«
(2)

For more efficient computation, the Fourier transform of Eq.
(2) is used. Two complex wavelets are used in this study, the first
one being the Morlet wavelet, defined as [2]:

ψ(t) = π−1/4ejω0te−t2/2 (3)

where t is a dimensionless time parameter and ω0 is a non-
dimensional frequency. Since the CWT can also be seen as a filter
bank, ω0 is also called the center or oscillating frequency of the
wavelet. A wavelet with a better time resolution and poorer fre-
quency resolution, compared to the Morlet wavelet, is the Paul
wavelet [2]:
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ψ(t) =
2

mjmm!p
π(2m)!

(1 − jt)−(m+1) (4)

where m is the order of the Paul wavelet.
Because the interest in audio signal analysis is on frequency,

the scale s (non-dimensional) should be converted into frequency
f (in Hz), using the following equation [8]:

f =
fsf0

s
(5)

where fs is the sampling frequency (in Hz) and f0 =
ω0

2π
is the

non-dimensional wavelet center frequency. It should be noted that
Eq. (5) only holds for the Morlet wavelet. When generalizing to
all possible analyzing wavelets, f0 can be seen as a proportionality
constant which depends on the particular choice of wavelet base
and order/center frequency. The relationships between scale and
frequency for different wavelets can be found in [2].

The CWT enables also to study similarities of two signals in
the same way as FFT-based cross-spectrum. The equivalent CWT-
based tool is the cross-wavelet transform (XWT) [10], also known
as cross-wavelet spectrum:

Wxy(t, s) = Wx(t, s)W ∗
y (t, s) (6)

Because the interest in this paper is on time-localizing reflec-
tions, we are only concentrated on the power of the XWT, which
is used for all plots. The phase of the XWT could possible be used
for calculating the azimuth angles of each individual reflection, but
such a study is left for future work.

3. CROSS-WAVELET ANALYSIS OF BRIRS

The cross-wavelet transform gives information on the dependence
between two signals as a function of time, similar to cross-correlo-
gram (or the cross-spectrogram, i.e., the short-time cross-spectrum
presented as a function of time). In our case these two signals
are the left and right ear canal signals of a binaural impulse res-
ponse. Therefore, the XWT should be useful in localizing indivi-
dual reflections of a binaural room impulse response, which ma-
nifest themselves as correlation between left and right ear signals,
the time lag of the correlation maximum being proportional to the
azimuth angle of the reflection.

Fig. 1 compares the Fourier cross-spectrogram and cross-
wavelet transforms calculated from a BRIR, measured in a small
room (the listening room of the Laboratory of Acoustics and Au-
dio Signal Processing at TKK, see Fig. 2). The Fourier spectro-
gram was calculated using a time-domain window length of 64
samples and a very small hop size of 2 samples. The time-domain
windows were zero-padded to yield a 512-point FFT per frame.
The cross-wavelet transforms were calculated using the Morlet and
Paul wavelets, the scales ranging logarithmically (base 2) from 2
to 512 with 24 scales per octave, resulting in the total number of
scales being 193. The frequency ranges covered were 83.4-21300
Hz for the Morlet wavelet and 61.7-15800 Hz for the Paul wavelet.

As can be seen in Fig. 1, the smaller details are given more
emphasis in the cross-wavelet spectrograms. The difference in
time and frequency resolutions of the Morlet and the Paul wavelets
is also very evident. The logarithmic frequency resolution of the
wavelet transforms is also clear in the figures. It is also clear how
the time resolution of the wavelet transforms is much worse at low
than high frequencies.
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Figure 1: Comparison between the Fourier cross-spectrogram (top
panel) and the cross-wavelet spectrogram calculated using the
Morlet (middle panel) and the Paul (bottom panel) wavelets.

4. FINE-SCALE TIME-LOCALIZATION OF
REFLECTIONS

Our hypothesis is that each reflection manifests itself as local ma-
xima in the XWT on different scales at the time of the reflection,
resulting in vertical stripes in the XWT plots (see Fig. 1). In order
to use the XWT for time-localizing room reflections, we need to
extract information on the time locations of the stripes from the
XWT. An obvious way to do this is to “integrate out” the scale
axis, i.e., to sum along the scales in the discrete case, yielding a
one-dimensional signal, which is a function of time. Locations of
the local maxima of this signal should correspond to the individual
reflections. The sum across scale j1 to j2 is calculated from the
cross-wavelet transform Wxy(n, s) as:

Wsum(n) =

j2X
j=j1

|Wxy(n, sj)|2 (7)

As an alternative, the maximum across scale could be used:

Wmax(n) = max
j∈[j1, j2]

˘|Wxy(n, sj)|2
¯

(8)

Since it is expected that sum and/or maximum across scale
could have some minor local maxima that do not correspond to
reflections, Savitzky-Golay smoothing [11] was applied to them
(using the function sgolayfilt in MATLAB). The filter order
was 15 and the frame length was 23 samples. It turned out, that
the maximum across scales was smooth enough as such and thus
smoothing was only used for the sum across scale.

4.1. Choosing the set of scales

In contrast to orthogonal wavelet analysis, in non-orthogonal ana-
lysis the set of used scales can be chosen arbitrarily. The scales
can be specified as fractional powers of two [2]:

si = s02
iδi , i = 0, 1, . . . , I (9)
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Figure 2: Position of the binaural manikin in the room where the
BRIRs were measured. The room height is 3.0 m and the listener
and the source height was 1.5 m. The binaural room impulse res-
ponses were measured at source-to-receiver distances of 0.5, 1, 2,
3 and 4 meters.

where s0 is the smallest scale, I is the number of scales and δi

controls the scale resolution (D = 1/δi gives the number of scales
per octave).

5. EXPERIMENTS

As an example of the XWT analysis, both measured and mode-
led binaural impulse responses are analyzed and studied. First,
the XWT is calculated for the entire measured binaural impulse
response. This yields a matrix sized the length of the signal (in
samples) times the number of scales the XWT was calculated at.
The scale configuration is as described in Section 3. Since the
largest scales convey little information about the time locations of
the reflections, the XWTs were truncated in scales to the range
s ∈ [2, 64], which is 494-15800 Hz for the Paul wavelet and
667-21300 Hz for the Morlet wavelet. The range was chosen by
hand so that the sum and maximum across scale seem to give a
reasonable amount of detail, i.e., reasonable amount of local ma-
xima. Including the frequencies below ∼500 Hz results in the sum
and maximum across scale being overly smooth, and thus some
reflections will not be detected.

For comparison, a standard FFT-based cross-spectrogram (cal-
culated as described in Section 3) is analyzed in the 500-16000
Hz band, which is close to the band covered by the Paul wavelet.
After calculating the XWT or FFT-based cross-spectrogram, the
sum and maximum across scale/frequency is evaluated using Eqs.
(7) and (8). The curve representing the sum across scale is then
smoothed as described previously. Finally, all of the local maxima
of the resulting curves are located in time.

For a quantitative validation of the time-localization method,
the exact locations of the room reflections should be known. For
modeled responses, the exact delays for each reflection are known
precisely. The situation is more complicated with measured res-
ponses, when there is no exact information on the timing of the
reflections. However, since the room dimensions are known in this
case (see Fig. 2), the image-source method can be used to calcu-
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Figure 3: Top panel: the XWT of a binaural impulse response mea-
sured in a standard listening room (source-to-receiver distance 0.5
m, azimuth angle 0°). The Paul wavelet was used in the analysis.
Upper middle panel: maximum of the XWT across scale, versus
time (dashed line) and sum of the XWT across scale, versus time
(solid line), presented on a logarithmic scale (base 2). Lower mid-
dle panel: the binaural impulse response, with the localized re-
flections marked by dotted vertical lines (time-localization based
on local maxima of the maximum across scale) and the first and
second order reflections calculated from a shoebox model marked
by solid vertical lines. Bottom panel: same as the lower middle
panel, but with time-localization based on local maxima of the sum
across scale.

late the early reflections approximately. In this work, only the first
and second order reflections were calculated.

5.1. Qualitative evaluation

Figs. 3 and 4 present the XWT of the first 30 ms of a binaural
impulse response measured in the standard listening room (refer
to Section 3) with T60 ≈ 0.3 s, its maximum and sum across
scale, and the localized reflections based on both the maximum and
sum across scales. In Fig. 3, the Paul wavelet was the analyzing
wavelet, while in Fig. 4, the Morlet wavelet was used. A localized
reflection is set to each local maximum of the maximum or sum
across scale, and is indicated by dotted vertical lines. The first and
second order reflections given by the image-source model [12] are
shown by solid vertical lines.

The better time resolution of the Paul wavelet (Fig. 3) is ev-
ident when compared to the Morlet wavelet (Fig. 4). The FFT-
based analysis of a measured response (Fig. 5) seems to have a
time-localization accuracy comparable to the Paul wavelet. By vi-
sual inspection it is hard to tell which peaks in the time-domain
impulse response are true reflections, but using the Paul wavelet or
the FFT cross-spectrogram seems to locate many details from the
response. Many of these details are likely caused by reflections.
Some of the reflections given by the image-source model also seem
to coincide with the localized reflections. The room model agrees
well with visual inspection of the time-domain responses in the
case of the almost simultaneous floor and ceiling reflections (at
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Method Avg. abs. error [ms]
back wall front wall left wall right wall floor ceiling 1st ord. 1st & 2nd ord.

XWT, Paul wavelet (max) 0.24 0.51 0.29 0.23 0.063 0.21 0.26 0.33
XWT, Paul wavelet (sum) 0.30 0.39 0.36 0.27 0.076 0.29 0.28 0.32
XWT, Morlet wavelet (max) 0.39 0.52 0.67 0.20 0.12 0.27 0.36 0.63
XWT, Morlet wavelet (sum) 0.43 0.39 0.33 0.29 0.048 0.24 0.29 0.47
Fourier cross-spectrogram (max) 0.21 0.32 0.19 0.37 0.13 0.19 0.24 0.25
Fourier cross-spectrogram (sum) 0.37 0.43 0.32 0.44 0.087 0.16 0.30 0.32

Table 1: Average absolute errors for the detected reflections using sum and maximum across scale (measured responses).

Method Average absolute error [ms]
XWT, Paul wavelet (max) 0.10
XWT, Paul wavelet (sum) 0.19
XWT, Morlet wavelet (max) 0.28
XWT, Morlet wavelet (sum) 0.33
Fourier cross-spectrogram (max) 0.29
Fourier cross-spectrogram (sum) 0.35

Table 2: Average absolute errors of reflections up to 30 ms using sum and maximum across scale (artificial response).
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Figure 4: Same as Fig. 3, but the Morlet wavelet was used in the
analysis.

7.2 and 7.5 ms, respectively, according to the model). The ana-
lysis methods fuse the two reflections together, except with the
combination of the FFT cross-spectrogram the maximum across
frequency. The back wall reflection (at 4.2 ms) is correctly local-
ized by both visual inspection and the analysis methods. However,
room model may be slightly inaccurate, and therefore the three
later reflections coming from the sides and the front wall may be
inaccurate. By inspecting the two bottom panels of Fig. 3, it is
very hard to tell, which of the “bumps” in the responses are actu-
ally due to the three later reflections. Besides the first and second
order reflections from the walls, higher-order reflections and re-
flections from objects in the room appear in the response.

Fig. 6 presents the XWT analysis for an artificial modeled
BRIR, using the Paul wavelet. The response is computed with
the DIVA software [13] from a shoebox-shaped room. The reflec-
tions are modeled up to fifth order and each reflection is processed
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Figure 5: Same as Fig. 3, but a standard FFT-based cross-
spectrogram (with a hop size of one sample) was used.

with the appropriate head-related transfer functions to get a bin-
aural response. As can be seen in Fig. 6, the reflections contain
energy over the whole frequency region and no background noise
exists. Such facts make the artificial response easier for the pro-
posed algorithm and the algorithm has localized most of the peaks
correctly. This is also verified by comparing the localized reflec-
tions to the ground truth (solid vertical lines) in the two bottom
panels of Fig. 6.

By looking at the top panels of Figs. 3, 4 and 6 it is seen that
the XWT can also be used to analyze the frequency content of the
early reflections1. As an example, the measured response (topmost
panels of Figs. 3 and 4) contains a clear reflection (a darker area)
right before the 5 ms time stamp. This reflection contains energy

1Because of its linear frequency resolution, the FFT cross-spectrogram
(Fig. 5) is not so well suited for detailed visual analysis of the frequency
content, at least at the low frequencies.
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Figure 6: Same as Fig. 3, but a modeled BRIR was analyzed. The
vertical solid lines in the two bottom panels indicate the ground
truth locations for the reflections.

only at middle frequencies while next reflections a little bit later
contain only low frequencies. From the artificial response analysis
(Fig. 6) it can be seen that modeled reflections are all wideband
reflections. Such analysis might be useful, e.g., in optimizing the
loudspeaker placement in the home theaters, where some clear re-
flections typically occur.

5.2. Quantitative evaluation

Quantitative analysis of the accuracy of the time-localization is
presented in Tables 1 and 2, where the average absolute errors of
the time difference between the true reflection location and the
nearest localized reflection are presented. This was done sepa-
rately for the first and second order reflections in the case of the
real responses, and for all of the reflections falling in the 30 ms
time window following the direct sound in the case of the arti-
ficial response. For the measured responses (Table 1), the ave-
rage error is taken as the arithmetic mean over the analysis results
of set of binaural room impulse responses measured at source-to-
receiver distances of 0.5, 1, 2, 3 and 4 meters (see Fig. 2). The
average errors are presented for each of the six first order reflec-
tions separately. A total average for each analysis method is also
given for the first order reflections and all calculated reflections,
i.e., both first and second order reflections. Only the reflections
falling within 30 ms of the direct sound are considered. A sin-
gle artificial response was analyzed and the averages in Table 2
present the total average errors over all the reflections in the 30 ms
time window following the direct sound, as calculated for each of
the analysis methods.

By looking at Table 1 it seems that on average, the Paul wavelet
and the FFT method perform equally well, while the Morlet wavelet
performs slightly worse, on a real measured signal. The average
absolute errors are always less than 1 ms. On average, the floor
reflections are clearly located more accurately than the other re-
flections. Besides the floor reflection being a very strong one (it
is actually superimposed with the ceiling reflection in this case),
the theoretically calculated reflection is close to the true reflection.

With the other first order reflections listed in Table 1, as well as the
second order reflections, the theoretical time locations might not
hold exactly due to inaccuracies in the measured distances (Fig.
2) used to calculate the theoretical locations. Because of this, the
results presented in Table 1 give only an approximate sense of how
the methods perform in real spaces, and compared to each other.
The methods also differ in terms of the density of localized reflec-
tions. Some of the localized reflections might not actually corre-
spond to a real reflection, but are just statistical fluctuations. This
also affects the results of Table 1 so that a low absolute error may
also be due to a localized reflection being close to the theoretical
location just by chance.

Table 2 indicates that for the artificial response, the Paul
wavelet performs significantly better than the Morlet wavelet or
the FFT method. The average error of the Paul wavelet is almost
half that of the Morlet wavelet or the FFT. The performance of the
wavelet methods is also significantly better than that of with mea-
sured responses. With the artificial response, reflections up to fifth
order are considered, not just the first and second order reflections.
The FFT method seems to be unable to localize each of these re-
flections individually. However, with the real response (Fig. 5) it
seems that the FFT method gives more detected reflections than
the wavelet methods. Conclusions from the superiority of the any
of the methods can not be therefore drawn based on this.

The maximum across scale/frequency seems to be superior to
the sum across scale/frequency for each method listed in Tables
1 and 2. The only exception is with the Morlet wavelet for the
measured responses. The superiority of the maximum might be
explained so that when a reflection is present in the signal at a
certain time point, there is typically a clear peak in the XWT/cross-
spectrogram at some frequency at that point. When the maximum
across scale/frequency is evaluated as a function of time, a peak in
the curve results at the very same time point, and thus the reflection
is localized accurately. The sum across scale/frequency averages
this peak so that the time accuracy of localization is worse and
some narrow-band reflections are easily missed completely. On
the contrary, the maximum across scales also gives rise to many
more localizations, many of which may be just due to statistical
fluctuations. From Figs. 3, 4 and 6 it is evident that there are more
localized reflections when using the maximum across scales.

6. CONCLUSIONS

The cross-wavelet transform is applied for time-localizing reflec-
tions from binaural room impulse responses. The method performs
accurately for artificial responses and finds almost all early reflec-
tions. Locations of the first and second order reflections were cal-
culated for the room and a comparison to the reflections found by
the proposed method was made. At least the strongest of the six
first order reflections were localized quite accurately. However,
the performance with real measured responses is hard to evaluate,
since the exact locations of all of the reflections are not known.
The proposed XWT with Morlet and Paul wavelets was also com-
pared to the conventional FFT cross-spectrum. The Paul wavelet
has the best time resolution, and thus seems to be the most accu-
rate one of the tested methods, at least in the case of the artificially
generated room response. For the measured response, the FFT
cross-spectrogram method gave equally good results.

Future work should concentrate on improving the accuracy of
the method. The algorithm should be made robust so that no re-
flections are missed and no false detections are made either. The
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spectral content of the reflections should also be taken into ac-
count – there might be need to differentiate between low and high
frequency reflections, as well as narrowband and wideband re-
flections. More advanced algorithms for detecting the reflections
could be developed. Worth of investigation is also how the di-
rection, i.e., azimuth angle, of the individual reflections could be
calculated. One possibility is the use of the phase of the XWT for
azimuth localization.
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