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ABSTRACT
The effect of the choice of features on unsupervised clustering in audio surveillance is investigated. The
importance of individual features in a larger feature set is first analyzed by examining the component loadings
in principal component analysis (PCA). The individual sound events are then assigned into clusters using
the self-tuning spectral clustering and the classical K-means algorithms. A weighted version of the original
set is used, where the weights have been optimized by a genetic algorithm (GA) for maximally error-free
clustering. The weighted feature set expectedly outperforms the original feature set and its PCA-reduced
version. Insight into the importance of individual features is also gained.

1. INTRODUCTION

Audio surveillance refers to techniques for monitoring
the environment based on sound. Audio surveillance is
based on a signal model which assumes that the observed
microphone signal contains more or less stationary back-
ground noise and additive short-duration audio events.
Typically, the sound stream is segmented online and in-
teresting events are stored to the disk. The analysis of au-
dio events can take place either online or offline at a later
time, depending on the application. Audio surveillance
has applications in, e.g., security [1] [2] and telemedicine
[3].

The analysis of the sound events collected in audio
surveillance is conducted by pattern recognition tech-
niques. Depending on the application, supervised or un-
supervised recognition is carried out. The former is suit-
able when the concern is on detecting particular sound
classes, such as speech, screaming or gunshots, from the
sound stream. A set of representative sounds of each
class is needed for training the system. In this study, the
unsupervised approach is adopted, i.e., there are not pre-
defined classes and the goal is to group similar sounds to-
gether into clusters. However, in the current study speech
sounds are not included, since they are assumed to be de-
tected separately by voice activity detection (VAD) tech-
niques. Ruling out speech sounds was necessary due to
the diversity they exhibit, which turned out to be prob-
lematic in automatic clustering.

The goal of this study is to investigate the effect of the
chosen features on clustering of sound events. Similar
studies on environmental sound recognition (ESR) exist
[4] [5], but in that application area, the analyzed signals
are longer recordings of, e.g., crowd or traffic noise, and
discrete sound events are not analyzed separately. Also,
the classification is usually done in a supervised man-
ner into discrete sound categories, which is the case also
in [4] and [5]. In previous studies on unsupervised au-
dio surveillance, MFCC features [1] and FFT features
[2] have been used. The selection of features in unsuper-
vised audio surveillance is briefly addressed in [6], where
a set of ten parameters is chosen from a larger candidate
set by analysis of covariances. The performance of the
K-means clustering algorithm compared to manual clus-
tering is evaluated by cluster compactness and the dis-
criminative performance of single features is assessed.

The system described in this paper consists of a sound
event detection and storing stage, in which a continu-
ously recorded sound signal is analyzed online (using
an algorithm described in [6]) and the sound events the
spectrum of which deviates from the background sound
are stored to the hard disk. The individual sound events
are later analyzed offline and clustered together using the
basic K-means algorithm [7] and the self-tuning spec-
tral clustering algorithm [8], the latter of which, to the
knowledge of the author, has not been used in audio
surveillance previously. PCA-based factor loading anal-
ysis with Varimax rotation [9] is conducted to investi-
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gate the mutual correlation between features, as well as
the amount of data variance they explain. Performance
of the clustering is investigated using a manually labeled
data set collected in an office (see Sec. 5). Finally, the ef-
fect of features on unsupervised clustering performance
is measured with different feature sets. Evaluation of the
performance is based on a manual labeling of the classes.
An evolutionary algorithm is used to compute optimal
weights for the largest feature set that result in best clus-
tering (with K-means) in terms of the labeling.

2. DETECTION OF AUDIO EVENTS

The first stage in audio surveillance is to segment the dis-
crete sound events from a continuous stream of audio.
It is usually assumed that the sound environment is rel-
atively sparse, i.e., consisting of discrete sound events
that do not significantly overlap in time. By following
an idea from video surveillance, the sound environment
can be divided into background and foreground [10], the
former of which consists of a relatively stationary sound,
such as air conditioning or hum of traffic, while the latter
consists of discrete sound events.

In order to be able to detect the individual sound events,
a model for the background sound is needed, as well as a
criterion by which significant deviations from the back-
ground can be detected. Again, following the ideas of
video surveillance [10], the background can be modeled
using a time-adaptive mixture of Gaussians [11] [2]. By
using more than one Gaussian, multimodal distributions
can be modeled and the background model is able to cap-
ture recurring deviations in the background.

In this work, a simplified background model [6] is
used. The spectrum of the background is approximated
by time-averaging the power spectrum and considering
large enough deviations from the background as sound
events. Härmä et al. [6] present two different detec-
tors based on an estimate of the background noise power
spectrum1

〈S(n,t)〉 = (1− γ)|S(n,t)|2 + γ〈S(n,t−1)〉
∀n= 0, . . . ,N−1 (1)

where 〈·〉 denotes smoothing over time, realized by a first
order IIR2 in this case, S(n,t) is the complex spectrum at

1The Eqs. (1), (2) and (3) are based on [6], but modifi ed by the
author.

2Also known as the “leaky integrator”.

discrete frequency n and frame index t and γ ∈ [0,1] is a
forgetting factor that determines the amount of smooth-
ing.

The first detector is designed to detect transients and loud
onsets. It is realized as the full-band difference to noise
[6]

T1dB = 20log10
∑N−1
n=0 |D(n,t)|

∑N−1
n=0 〈S(n,t)〉

= 20log10
∑N−1
n=0

∣∣|S(n,t)|2 −〈S(n,t)〉∣∣
∑N−1
n=0 〈S(n,t)〉

(2)

where D(n,t) = |S(n,t)|2 − 〈S(n,t)〉 is the difference
spectrum between the background and short-time spec-
tra. The background noise spectrum 〈S(n,t)〉 is not up-
dated during a sound event. The threshold was set to 35
dB in [6].

The second detector is used for detecting narrow-band
sound events. This detector compares the maximum dif-
ference spectrum peak to its average [6]

T2dB = 20log10

[
max(D(n,t))−

√
1
N

N−1

∑
n=0
D(n,t)2

]

(3)

A threshold of 35 dB was also used for this detector in
[6]. In this work, a threshold of 20 dB was found to be
suitable for both detectors.

Detecting and storing of sound events was implemented
using Mustajuuri [12], a real-time audio processing sys-
tem. In order to avoid excessive use of mass storage,
a sampling rate of 16 kHz was used. Some heuristics
are needed to get well-segmented sound events. The two
detection functions of Eqs. (2) and (3) typically fluctu-
ate below and above the thresholds, so a mechanism is
needed that avoids gaps in the sound events. This ac-
complished by saving a few extra frames after the value
of the detection function has dropped below the respec-
tive threshold. It is also necessary to always append at
least one extra frame preceding the event, because other-
wise the starts of transients are likely to be missed [6].

3. THE FEATURES
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The next part of the audio surveillance system is the fea-
ture extraction stage, in which descriptive features will
be calculated from each sound event. There exists a
plenty of features that have been used in audio classi-
fication problems (see, e.g., [13], [14]). An important
part of designing a system for (audio) classification is to
decide, which features will be used. In the case of super-
vised classification, the performance of the classification
system can be easily evaluated, since the true class labels
for each sample are known. In unsupervised classifica-
tion, the situation becomes more complicated, since true
class labels are not necessarily available. In that case,
some numerical measures for clustering performance are
needed. If class labels exist, one can construct error mea-
sures based on how the different classes are spread into
the clusters.

The features considered in this study are listed in Table
1. Most of the features are frequency-domain features,
describing different aspects of the frequency distribution
of the signal. The pitch describes the fundamental fre-
quency f0 of the signal and is calculated using the YIN
algorithm [15]. Coherence, a byproduct of pitch calcu-
lation, describes how strong the fundamental frequency
is. The last three features (described in more detail in
[16]) are calculated in the time domain and describe the
characteristics of the signal waveform. More detailed de-
scriptions of the features listed in Table 1 can be found
from the references listed in the third column.

All of the features are calculated from the segmented
sound events in overlapping frames. Since the segmen-
tation by the online detection algorithm is rather coarse,
a finer segmentation based on short-time energy is per-
formed. If multiple events are found in the fine seg-
mentation, the one with highest energy is chosen, since
that event has most likely caused the detection in the
first place. The purpose of the fine segmentation is to
avoid the background sound and unimportant low-energy
sound events from affecting the calculated features.

In the case of the MFCCs, the mean of each coefficient
calculated from individual frames of the fine-segmented
event is used in the final feature vector, as well as
the mean of the first order differences between frames,
termed the ΔMFCCs. With all other frequency-domain
features and the ZCR, the mean and variance of the fea-
ture sequence calculated from frames is used. For the
pitch and coherence, the median is used instead of the
mean in order to avoid sudden erroneous pitch jumps
from affecting the feature. The last three time domain

features (LoHAS, LoLAS and AHA) are calculated ex-
actly as described in the appendix of [16]. Each feature
is normalized by subtracting the mean and dividing by
standard deviation.

4. CLUSTERING

The final step in this audio surveillance system is clus-
tering. Two different clustering methods were com-
pared: self-tuning spectral clustering and classical K-
means clustering. Spectral clustering algorithms are
methods which attempt to cluster similar data points to-
gether using eigenvectors of matrices derived from the
data [19]. Typically, the affinity matrix between data
points is used. An algorithm described by Ng et al. [19],
Ng-Jordan-Weiss (NJW) algorithm, is a basic version of
a spectral clustering algorithm. The self-tuning spec-
tral clustering algorithm [8], also known as the Zelnik-
Perona (ZP) algorithm, is an extension to the NJW al-
gorithm, which can handle multi-scale data and choose
the scaling parameter and the optimal number of clusters
automatically. The classic K-means clustering algorithm
[7] recovers maximally compact clusters by minimizing
a cost function of sums of distances of data vectors from
closest cluster centers.

5. EVALUATION

The system was evaluated using a set of 226 sound events
recorded during a weekend in April 2006 (from Friday
evening to Monday morning) in the office room of the
author. There are no speech events in the data set. We
assume here that speech events are treated separately in
audio surveillance, by detecting speech activity and ana-
lyzing speech content by appropriate methods.

Table 2 lists the 24 different feature classes and the corre-
sponding number of events, as derived in manual cluster-
ing (labeling). Close attention has been paid to whether
or not the sound source was in the same room as the
microphone. Outside events are indicated by “(far)” in
Table 2. It is seen that most of the events are transient
like sounds (doors, “thumps” and “clonks”) and sounds
of cars passing by the nearby road. Most of the transient
sounds are most likely caused by guards on shift and peo-
ple leaving/entering the work place. The total number of
events is very low, which is quite consistent with the fact
that the office is empty during weekends. There are also
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Name Abbreviation Reference(s)
Mel-frequency cepstral coefficients MFCC [17] [13]

Delta mel-frequency cepstral coefficients ΔMFCC [13]
Spectral centroid SC [13]

Bandwidth BW [13]
Spectral roll-of frequency SRF [13]

Spectral flatness SF [18]
Delta spectral magnitude DSM [13]
Root-mean square value RMS

Zero-crossing rate ZCR [13]
Pitch - [13]

Coherence -
Length of high amplitude sequence LoHAS [16]
Length of low amplitude sequence LoLAS [16]

Area of high amplitude AHA [16]

Table 1: The features used in this study.

many clear outlier event classes that occur less than 10
times.

5.1. Analysis of factor loadings

To gain an insight into the mutual dependencies between
features, the PCA factor loading matrix with Varimax ro-
tation [9] is calculated using the entire feature set of 48
features. The elements of the loading matrix indicate cor-
relation between features and the principal components
(PCs) [4] [5]. The principal components (columns of the
matrix) are ordered in the order of explained variances,
so that the first components explain most of the variance
in the data. If a feature has a high loading value on an
important PC, the feature explains larger amount of data
compared to a feature loading a less important PC. Also,
if two features load the same component, the features are
mutually correlated.

The absolute values of the loadings are shown in Fig.
1, with loadings smaller than 0.4 set to zero (white) for
clarity. The mutual correlation between MFCC 1, SC,
BW, SRF, SF and ZCR is evident, since all features load
the first PC. The first five of the aforementioned features
are correlated because they all describe the coarse shape
of the spectrum. Even though a time-domain feature, the
zero-crossing rate is also correlated with the spectral cen-
troid and thus loads the first PC as well.

The 2nd PC is loaded by the RMS and AHA features.
Both describing the energy content of the signal, they

clearly carry significantly orthogonal information com-
pared to the first PC, which was related to spectral shape.
The amplitude descriptors (LoHAS and LoLAS) seem to
load the 3rd principal component, again providing infor-
mation not found in the other features.

The variances of the spectral features SC and BW, and
SRF and SF, load the 4th and 5th PCs, respectively. The
reason for the correlation of the variances of SC and BW
is likely the fact that the BW feature tells how much the
spectrum is spread around its centroid, which is the SC
feature. The correlation between the variances of SRF
and SF is harder to explain intuitively. Nevertheless,
these features seems to carry information not found in
the other considered features.

The coherence seems to account for more variance in this
data set, compared to the pitch. This is most likely due
to the fact that most sounds in the data set are transient-
like impact sound (see Table 2), and do not have a clear
fundamental frequency.

It should be kept in mind that one can not directly pre-
dict the performance of different features in clustering
from the PCA loading matrix, since the loadings only tell
about which features are mutually correlated and which
features account for most of the variance in the data. Ac-
counting for a large amount of variance does not neces-
sarily imply that the feature performs well in classifica-
tion.
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Fig. 1: Factor loading matrix for all considered features.

5.2. Evaluated feature sets

Since the choice of features is crucial for the perfor-
mance of a pattern recognition system, one would like to
have the optimal set of features for the problem in hand.
The performance of different feature sets derived from
the features listed in Table 1 is therefore investigated.
Four cases are considered:

• Entire feature set
All 48 features (using the statistics calculated from
features listed in Table 1, as described in Sec. 3).

• Static MFCC features only
The 12 MFCC features.

• PCA-transform of entire feature set
A 22-dimensional feature set (explaining 90% of
the variance) derived from the principal component
analysis (PCA).

5.3. Quantitative evaluation

The different combinations of the four feature sets and
two clustering methods were evaluated quantitatively.
The number of clusters C was chosen to be equal to the
number of classesM in all cases, i.e.,C =M = 24. Thus
in ideal case, each cluster would contain members of one
class only.

The performance of the clustering in terms of the man-
ually derived labels (Table 2) is evaluated by calculating
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Index Class description Number of events
in class

1 door (far) 35
2 thump (far) 25
3 car (far) 22
4 clonk (far) 21
5 damped thump (far) 21
6 unidentifiable (far) 20
7 door 14
8 clonk 10
9 double thump (far) 10

10 general LF (far) 10
11 keyboard 7
12 sweep 7
13 screech (far) 5
14 general click 3
15 thump and keyboard 3
16 chair 2
17 thump 2
18 thump HF 2
19 zipper 2
20 click 1
21 coughing 1
22 general click (far) 1
23 impulsive 1
24 thump HF (far) 1

Table 2: The manual class labels used in this study. The
total number of events was 226. ’LF’ stands for low-
frequency, ’HF’ for high-frequency, and ’(far)’ indicates
that sounds from that class do not originate from the
room of recording.

two statistics. The first of these is the clustering error,
which is defined as the average fraction of event assigned
to other but dominant class in a cluster

Error =
1
C

C

∑
i=1

Ni,tot −Ni,max
Ni,tot

(4)

whereC is the number of clusters, Ni,tot is the total num-
ber of events in cluster i, and Ni,max is the largest number
of events in cluster i with mutually identical class labels.
In the ideal case, when each cluster contains members of
one class only, the error will be zero.

The second statistic measures how much events labeled
to a single class are spread across clusters. This is ac-
complished by

Clustering method Feature set Error Spread
Self-tuning All features .52 .19

spectral clustering MFCC .56 .23
PCA .55 .20

K-means clustering All features .38 .16
MFCC .45 .16
PCA .40 .16

Table 3: The performance of different clustering meth-
ods and different feature sets, when the number of clus-
ters is 24.

Spread =
1
M

M

∑
i=1

Ci
C

(5)

whereM is the number of manually derived classes, C is
the number of clusters and Ci is the number of clusters
with at least one event having label i.

5.4. Results
Table 3 shows the performance of the two clustering al-
gorithms (self-tuning spectral clustering and K-means)
with the three different feature sets (see Sec. 5.2). It
is clear that in this application, K-means clustering per-
forms better than self-tuning spectral clustering. It seems
that one does not need a complicated clustering algo-
rithm for this kind of data. It is evident that using the
original feature set or its PCA-reduced version gives
equally low Error and Spread values with both clus-
tering algorithms. Discarding features other than the
static MFCCs slightly degrades the clustering perfor-
mance with both algorithms, as information on the spec-
tral envelope only is utilized.

6. OPTIMIZING FEATURE WEIGHTS

Since the feature sets presented in Sec. 5.2 are were cho-
sen in a heuristic manner, it would be interesting to know,
which features are really useful for the clustering. There-
fore, an optimal feature set was derived by finding feature
weights (in the range of [0,1]) that maximize the clus-
tering performance in terms of the manual class labels.
Features with low weights could be discarded without
affecting the clustering performance.

The feature weights were optimized using a genetic
algorithm (GA), due to their effectiveness in high-
dimensional search spaces [20]. An approach similar
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to that of [21] was used, where the simple genetic al-
gorithm (SGA) is used for the optimization. All of the
calculations are performed using the Genetic Algorithm
Toolbox ver. 1.2 (see Sec. 8 for web address), with the
default settings of the sample SGA script (sga.m), ex-
cept that the population size was set to 10 times the di-
mension of the feature vector, i.e., 480. The algorithm
was run for 150 iterations, at which point the optimiza-
tion had reasonably converged and the weights did not
change significantly anymore.

The first considered objective function that was mini-
mized is the sum of the clustering error and the spread,
as defined in Eqs. (4) and (5), plus a penalty term

Ob j1 = Error+Spread+Penalty (6)

where the penalty term is otherwise equal to Eq. (4), but
classes which have a clustering error of zero, i.e., only
one class, are not included. The penalty term avoids the
creation of large clusters with too many classes.

An alternative objective function is the sum of the num-
ber of classes in each cluster

Ob j2 =
C

∑
j=1

M

∑
i=1
Ii, j (7)

where C is the number of clusters, M is the number of
classes and Ii, j is 1 when there is at least one event of
class i in cluster j.

6.1. Results
Table 4 shows the feature weights, derived by the GA us-
ing one of the two objective functions (Ob j1 and Ob j2).
Weights over 0.5 are shown in bold. One can see that the
MFCCs seem to be important for classification in both
cases. However, all of the MFCCs are not weighted as
much as others and the weights differ between the objec-
tive functions. Most notably, in the case of Ob j2, almost
all of the ΔMFCCs are given weights over 0.5. This is
most likely due to the fact that with Ob j2, the optimiza-
tion tries to more aggressively force the events with the
same class label into an own cluster, which promotes the
use of temporal information as well. The importance of
temporal features has been observed before in the context
of audio and music classification [14].

The variances of RMS and Pitch seem to be important
with both objective functions. These features contain in-
formation that is not found in the spectral features and

it might be that they are important because of that. It
is interesting to note that the variances of these features
are more informative than the means. This phenomenon,
that second order statistics convey more information than
the features themselves, has been observed before in the
context of speech and music discrimination [22]. Similar
phenomenon can be found among the amplitude descrip-
tors (LoHAS, LoLAS and AHA), where the variance of
AHA seems to be the most important.

Interestingly, the means of BW and SRF seem to be
more important with the second, more aggressive objec-
tive function. It is hard to deduce an intuitive explanation
for this. It might also be that those features, being corre-
lated with the first MFCC, can have either low or high
weights, without affecting the clustering performance.
The same might be true with the mean of ZCR, which
is given much lower weight with Ob j2.

Figs. 2 and 3 how the different classes are distributed
across clusters, when using an optimized (Ob j2) and
non-weighted version of the 48-dimensional set of all
considered features. In the original matrix, each element
(i, j) contains the number of sound events with manual
class label i present in cluster j. For plotting Figs. 2
and 3, the rows of the matrix are normalized to have sum
equal to one, so the distribution of a certain event class
across clusters can be seen. The rows and columns of
the matrix are ordered by the sizes of the classes and the
clusters, respectively.

Figs. 2 and 3 show that with the optimized feature set, the
events are not spread into as many classes as is the case
with the non-weighted feature set. However, this comes
with the expense of the classes also being much larger.
It might be, though, that with the current set of features,
regardless of their weighting, it is not possible to dif-
ferentiate between the largest transient classes, such as
the “thump” and “clonk” classes from outside the room.
These two classes could also possibly have been merged,
due to their similarity. The car sounds have been quite
nicely separated into two classes by the weighted fea-
ture set. Some sounds that occur only once, such as the
mouse click, have been put into a large cluster with other
sounds when the weighted feature set is used.

Table 5 shows the clustering results with the optimized
weights. By comparing the results with Table 3 it can be
observed that both of the weighted feature sets give lower
values of Error and Spread, compared to the feature sets
of Sec. 5.2. Again, the K-means clustering is superior to
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Page 7 of 10



Vesa The Effect of Features on Clustering in Audio Surveillance

the self-tuning spectral clustering algorithm. The better
performance of features optimized with Ob j2 compared
to those optimized with Ob j1 is also evident when using
K-means clustering.

Table 6 shows the results when features having weights
less than 0.5 are completely discarded. This results in
feature vectors of dimensions 19 and 25, for the ob-
jective functions Ob j1 and Ob j2, respectively. When
K-means clustering is used, the performance is slightly
worse than with the weighted feature sets (see Table 5).
In the case of self-tuning spectral clustering, the perfor-
mance is slightly better.

Number of events in cluster
49 43 38 33 12 10  9  4  3  3  3  3  2  2  2  2  1  1  1  1  1  1  1  1
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zipper
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1

Fig. 2: Distribution of manually labeled classes across
clusters (K-means a feature set of dimension 48 opti-
mized by GA with Ob j2, number of clustersC = 24).

7. CONCLUSIONS

This work had a goal of assessing the effect of chosen
feature set on the performance of unsupervised clustering
in an audio surveillance application. Basically, the goal
was to evaluate the importance of features, when the goal
is classify the sound events in a similar way as humans
do. A high-dimensional feature set was compared with a
PCA-reduced version, as well as with the full feature set
with feature weight optimization.

It was found that in order to force the sound events into
different clusters by perceptually derived class label, fea-
tures that contain temporal information are important and
have to be given more weight than for many of the static

Feature Weight (Ob j1) Weight (Ob j2)
MFCC 1 0.96 0.88

2 0.99 0.20
3 0.65 0.11
4 0.87 0.72
5 0.45 0.53
6 0.17 0.41
7 0.42 0.12
8 0.06 0.26
9 0.67 0.11

10 0.54 0.66
11 0.53 0.74
12 0.07 0.28

ΔMFCC 1 0.95 0.49
2 0.83 0.90
3 0.14 0.97
4 0.38 0.74
5 0.28 0.51
6 0.91 0.84
7 0.21 0.51
8 0.06 0.94
9 0.91 0.96

10 0.99 0.91
11 0.82 0.81
12 0.01 0.98

SC (mean) 0.23 0.43
SC (var) 0.01 0.27

BW (mean) 0.34 0.99
BW (var) 0.09 0.18

SRF (mean) 0.06 0.91
SRF (var) 0.17 0.48

SF (mean) 0.63 0.56
SF (var) 0.33 0.12

DSM (mean) 0.02 0.02
DSM (var) 0.61 0.79

RMS (mean) 0.24 0.25
RMS (var) 0.73 0.87

ZCR (mean) 0.73 0.24
ZCR (var) 0.31 0.94

Pitch (median) 0.47 0.30
Pitch (var) 0.96 0.87

Coh. (median) 0.01 0.77
Coh. (var) 0.24 0.01

LoHAS (mean) 0.10 0.15
LoHAS (var) 0.20 0.02

LoLAS (mean) 0.17 0.08
LoLAS (var) 0.03 0.11
AHA (mean) 0.33 0.11

AHA (var) 0.77 0.83

Table 4: The optimal weights for each feature.
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Fig. 3: Distribution of manually labeled classes across
clusters (K-means with non-weighted feature set, num-
ber of clustersC = 24).

Clustering method Objective Error Spread
function

Self-tuning Ob j1 .50 .20
spectral clustering Ob j2 .48 .21
K-means clustering Ob j1 .31 .14

Ob j2 .24 .12

Table 5: The performance of different clustering meth-
ods for the feature set with optimized feature weighting.

Clustering method Objective Error Spread
function

Self-tuning Ob j1 .47 .20
spectral clustering Ob j2 .45 .20
K-means clustering Ob j1 .33 .15

Ob j2 .32 .15

Table 6: The performance of different clustering meth-
ods for the feature set with features having weights < 0.5
discarded.

and spectral features. However, the coarse shape of the
spectral envelope also plays an important role.

It was also found that the K-means clustering algorithm
performs better than the ZP algorithm in all cases. It
might be that the ZP algorithm, which is originally in-
tended for computer vision applications, is not suitable

for audio — at least in this particular study. Most likely
the differences in topologies of the feature (data) spaces
cause different clustering algorithms to be effective in
different applications.

Future work on this subject includes finding better cri-
teria for assessing the clustering performance. New fea-
tures could also be developed which in particular could
be used to differentiate between different transients. It is
evident that this can not be accomplished by using static
or averaged spectral features alone. A larger data set
should also be used in the analysis to get clearer clusters.
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