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Abstract—The random linear fountain (RLF) is an efficient
form of fountain coding with an expected overhead of only
1.6 packets. Because of increasing computational complexity,
however, it cannot be directly used for large message sizes. In
this paper, we study the performance penalty of dividing the
data into k parts which are coded using the RLF. To ease
the performance problem, we propose the use of macropackets
which are generated by using LT-coding over the different parts
of divided RLF. We calculate the decoding probabilities for
k = 2 and 3 and compare the results to the overhead obtained
using the combination of divided RLF and data carousel. The
results indicate that while the use of macropackets improves the
performance over the divided RLF, still better performance is
obtained by data carousel in the case of low channel loss rate.

I. INTRODUCTION

Fountain coding is an interesting coding paradigm for

efficient transmission of data over an erasure channel without

the need to acknowledge all the packets separately [1]. The

symbol generation in fountain codes is rateless, requiring a

virtually infinite supply of possible packets. This rules out

some traditional codes such as the Reed-Solomon codes [2],

though these can be used to provide fountain code-like erasure

coding [3]. The main feature of these schemes is that the

only task of recipient is to collect packets and eventually,

when enough packets are collected, to construct the original

message, thus no feedback is required for successful operation.

Some types of the different fountain codes, their applications

and other considerations are presented in [4].

We study random linear fountain (RLF) coding [5] and

extensions to it. In addition to computational complexity of

the coding and decoding algorithms, the performance of a

fountain code is determined by the number of overhead packets

required in order to decode the message. It turns out that the

random linear fountain requires only 1.6 overhead packets in

average for decoding of files with practically speaking any

number of file blocks. This is a clear advantage compared

to, for example, LT codes [6], where the overhead is higher.

Although the LT codes are asymptotically optimal, for shorter

files with number of blocks in a few hundreds the overhead

is significant. However, the decoding process of the random

linear fountain is computationally more complex than with LT

codes, as it corresponds to solving a dense linear system of

equations.

We suggest a divide-and-conquer algorithm in which the file

is divided into parts of equal sizes each to be transferred with

the RLF. In ideal situation, this would mean average overhead

of 1.6 times the number of the parts. However, the results

indicate that division of the original problem is not without

some performance degradation. Especially if the sender does

not know which parts are already solved, the performance is

notably worse with multiple parts compared to a single one.

This degradation happens because the encoder sends redundant

packets to the already solved parts.

To utilize the possibility to attain low overhead of ran-

dom linear fountain, we further propose a method where we

combine the random linear fountain with macropackets. The

macropackets are generated by performing LT-coding over the

different parts. This way we try lower the overhead resulting

from the sent redundant packets as the macropackets can be

used in the decoding process in situations where some of the

problems have already been solved. The divided RLF with

macropackets could be used with files where the number of

blocks is in few hundreds, a regime where some of the more

advanced fountain codes operate with higher overheads.

We also study the use of data carousel, where packets

are sent from each of the subproblems cyclically in order.

In contrast to the other methods, the encoded packets here

are no longer i.i.d. and the performance is therefore channel

dependent, i.e. it cannot be expressed solely in terms of the

number of received packets without reference to which packets

were lost. We show that for channels with low losses the

performance of the data carousel is good but in the case of

very heavy losses it gains nothing in comparison with the basic

divided RLF.

This paper is organized as follows. First in Section II the

idea of the random linear fountain is reviewed. After this, in

Section III the division of the RLF into several subproblems is

considered and the performance of the system analyzed. Then,

in order to eliminate some of the extra overhead, we suggest

the use of macropackets and analyze the achieved performance

gain in Section IV. In Section V, we introduce and analyze

still another mechanism, the data carousel, where the encoded

packets are sent cyclically from different subproblems. Nu-

merical comparisons are presented in Section VI and, finally,

we conclude in Section VII.
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II. RANDOM LINEAR FOUNTAIN

We consider a file which consist of n blocks denoted m =
(m1, m2, . . . , mn), where m is the whole file (message) and

mi ith block. Note that block sizes are arbitrary.

The encoding process generates random linear combinations

of the blocks over modulo-2 addition. A packet ci is generated

by selecting each of the blocks to be included uniformly with

probability 1/2. The recipient collects these equations forming

a linear system of equations and the goal is to obtain a system

of full rank in order to reconstruct the original message.

From statistical point of view all of the generated packets

are stochastically independent, thus no one packet is more

important than another. This meant that the channel properties

are irrelevant from the point of view of the process and its

properties. The only assumption is that we use an erasure

channel [7], i.e., the receiver can be assumed to receive packets

intact as erroneous packets are removed by the channel.

A. Decoding Probability

Next we will calculate the decoding probability of RLF with

a given number of received packets. If the file consists of n
blocks, the number of possible different encoded packets is

2n − 1 excluding the all-zero packets, each representing an

equation. When the recipient has m linearly independent vec-

tors, the probability for the next one to be linearly dependent,

i.e. the probability of failure, is Pm = (2m−1)/(2n−1),where

the numerator gives the size of the subspace of all linear

combinations of m linearly independent vectors, and the

denominator is the size of the whole space, in both cases

excluding the zero vector.

Let Tm be the random variable representing the number of

extra trials needed for a new linearly independent equation

when the recipient already has m independent equations. Tm

obeys the geometric distribution,

P{Tm = i} = Pi
m(1− Pm), i = 0, 1, 2, . . .

The total number of extra packets, T (n), needed for successful

decoding of n source blocks is the sum of independent random

variables T (n) =
∑n−1

m=1 Tm. Only a few last terms in the

sum have an appreciable probability for being different form

zero. Moreover, when n is large, say n > 10, we have

Pn−j ≈ 2−j and the distributions of Tn−1, Tn−2,. . . tend

to given fixed forms. Correspondingly, their sum tends in

distribution to the random variable T which is the sum of

geometrically distributed random variables (starting from zero)

with parameters 1/2, 1/4, 1/8,. . . . Its distribution function,

F̃ (t) = P{T ≤ t}, can easily be computed by convolution.

The expected overhead is small, T =
∑∞

i=1 1/(2i−1) ≈ 1.61,

regardless of the size of the problem. In the sequel we denote

by

Fn(t) = F̃ (t− n)

the distribution function of the number of packets needed for

successful decoding of n blocks. Next we will study how the

situation changes when the file is divided into parts and RLF

is applied to each of these parts.

III. DIVIDING THE RANDOM LINEAR FOUNTAIN INTO

MULTIPLE SUBPROBLEMS

The problem with the scheme presented in the previous

Section is that the decoding is computationally very expensive

for large n, as solving the system of linear equations has

computational complexity of O(n3) with standard Gaussian

elimination. The Strassen algorithm [8] could be used to obtain

complexity O(nlog
2
7), but this has a higher constant term and

is a better algorithm only for n high enough. In any case, a

lower bound for the complexity is at least Ω(n2), which still

grows too fast with n.

We suggest a divide-and-conquer algorithm where the

original problem (file) is divided into multiple subproblems

(parts) and each of these parts if solved using the RLF. The

subproblem is chosen uniformly at random and a packet is

generated from the corresponding part of file. Note that the

encoded packets are still i.i.d. retaining the rateless character

of the coding scheme. The minimum expected overhead grows

linearly with k as k · T . Ideally, one wants to keep the

overhead as close as possible to this value, see Fig. 1(b).

However, in the spirit of the fountain coding paradigm one

wants to limit the use of the backward channel. Thus, we

assume that different subproblems are not acknowledged sep-

arately. Scenarios where this would be preferable include for

example massive parallel downloading and multicasting [4].

This strategy, however, has a performance penalty since the

encoder keeps sending packets to subproblems which are

already solved until all of them are solved, see Fig. 1(c).

A. Performance of Random Linear Fountain

The data consisiting of N = k · n source blocks are

partitioned into k equally sized subproblems, each of which

contains n source blocks. In the encoding algorithm, one of the

n

1 2 3 … k

(a) Ideal situation, n
packets for each of the
subproblems

n

1 2 3 … k

(b) Separate acknowl-
edgements for each sub-
problem

n

1 2 3 … k

(c) Packets sent to ran-
domly chosen subprob-
lems

n

1 2 3 … k

(d) Data carousel with
low channel loss rate

Figure 1. Illustration of the process during different packet encoding
strategies for subproblems. The shaded areas indicate the total number of
packets received and lines the number of needed packets.
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Table I
MEAN NUMBER OF PACKETS REQUIRED FOR DECODING AND

CORRESPONDING OVERHEAD PERCENTAGES

N k n E[T ] overhead %

128

2 64 141 10
4 32 160 25
8 16 196 53
16 8 268 109

200 2 100 215 7.5

300
2 150 317 5.7
3 100 331 10

400 2 200 419 4.8

450 3 150 487 7.6

600 3 200 641 6.8

subproblems is first chosen uniformly at random in order to

preserve the stochastic independence of the generated packets.

Then RLF is applied to the selected part and the encoded

packet is sent to the channel.

As discussed, dividing the whole problem into k subprob-

lems that are not separately acknowledged leads to perfor-

mance degradation, as one yet unsolved problem delays the

complete solution of the whole problem while the encoder is

spraying packets to all of them. Next we analyze the decoding

decoding performance of this scheme.

Let ν be the total number of received packets. This further

divides into categories of the number of received packets νκ

for each of the k subproblems. We denote ν = (ν1, ν2, . . . , νk)
and |ν| =

∑

κ νκ. The probability for a generated packet

belonging to subproblem κ is 1/k for all κ. Thus ν obeys

the multinomial distribution:

Q(ν) =
ν!

ν1!ν2! · · · νk!

(

1

k

)ν

= ν!

k
∏

κ=1

(

1
k

)νκ

νκ!
.

Given the composition ν, the probability of successful decod-

ing of all the subproblems is Fn(ν1)Fn(ν2) · · ·Fn(νk). By

deconditioning, the probability for successful decoding with

at most ν received packets is

Rk(ν) = ν!
∑

|ν|=ν

k
∏

κ=1

(

1
k

)νκ

νκ!
Fn(νκ) = ν!

∑

|ν|=ν

k
∏

κ=1

G(νκ)

where G(ν) = (1/k)ν

ν! Fn(ν). Now, the sum is recognized to

be of the type that can be calculated by convolution:

Rk(ν) = ν!

k
⊗

κ=1

G[ν],

where G = (G(0), G(1), . . . , G(ν)).

Table I shows some examples of the mean overhead in this

scheme. The results clearly indicate that increasing the number

of subproblems k rapidly deteriorates the performance. This is

due to the fact that the actual numbers of packets received by

the subproblems are not equal (even though their expectations

are); the expectation of the minimum of a set of i.i.d. random

variables is less than the mean, the more so the larger k is.

IV. MACROPACKETS

A typical scenario occurring in the decoding process is that

most of the subproblems are solved but some of them are

still missing a few packets for getting a full set of linearly

independent equations. This problem of missing last pieces

could be helped by the use of macropackets. A macropacket

comprises of information from multiple different subprob-

lems, i.e. RLF encoded packets from a few subproblems are

combined by the XOR operation. If all but one of these

subproblems have already been solved, the macropacket can be

reduced to include the encoded packet of only the subproblem

in question, thus is effect, making the number of received

packets in different subproblems more even. As before, we

assume that individual problems are not acknowledged when

they are ready.

The macropackets are generated similarly as encoding sym-

bols are generated with LT codes [6]. To this end, we define

degree distribution ρ(d) over the subproblems, the degree d
here referring to the number of subproblems involved in the

construction of the macropacket, d = 1, . . . , k. Note that

degree one corresponds to sending an RLF packet from a

single subproblem. To be more precise, the following steps

are performed:

1) Choose degree d from ρ(d).
2) Choose uniformly at random d subproblems and gen-

erate a packet pi, i = 1, . . . , d in each of the chosen

subproblems by RLF.

3) Combine packets from the chosen d subproblems by

XOR, i.e., m = p1 ⊕ p2 ⊕ . . .⊕ pd.

4) Send macropacket m.

The information of which subproblems are included in a

macropacket has to be somehow made available to the decoder.

This could be, for example, done by a header with bitmap

expressing the composition or using pseudo-random number

generators with same seed at both sender and receiver parts [6].

The decoding is a combination of LT decoding and RLF

decoding. All received macropackets are stored. Once the

number of degree-1 packets received in some of the subprob-

lems is large enough, the number of linearly independent ones

equalling n, that subproblem is solved (all blocks known) and

blocks belonging to that subproblem can be subtracted (by

XOR’ing) form the stored macropackets. In this process, a

macropacket may eventually be reduced to a degree-1 packet,

thus increasing the number of received RLF encoded packets

in one of the yet unresolved subproblems.

A. Analysis of the Performance with Macropackets

We proceed by analyzing the decoding probabilities ob-

tained by using macropackets. The type of a macropacket is

defined by the subproblems that are involved in its construc-

tion. There are 2k−1 different types of mackropackets (exclud-

ing an empty one). For instance, if there are two subproblems

A and B, then the types of macropackets can be designated as

A, B and AB. Let ν now denote the 2k−1-vector specifying

the numbers of received mackropackets of each kind. In the
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encoding process, the probability that a macropacket of a given

type i with degree d is generated is p(i) = ρ(d)/
(

k
d

)

as there

are
(

k
d

)

different types of macropackets of degree d, each of

them of equal probability once the degree d has been chosen.

After having received ν macropackets, the probability

Qk(ν) (emphasizing the division into k subproblems) of a

given vector ν, with |ν| = ν, is given by the multinomial dis-

tribution with the above probabilities p(i), i = 1, . . . , 2k − 1.

Then, the decoding probability can be written as

Rk(ν) =
∑

|ν|=ν

Qk(ν)Pk(ν), (1)

where Pk(ν) is the probability of decoding with the number

of macropackets of different types as specified by ν. In the

sequel, we will derive explicit expressions for Pk(ν) for the

cases k = 2 and k = 3.

Performing the 2k−1-fold summation in (1) is directly

feasible only for k = 2. Therefore, Monte Carlo summation

is used for obtaining the results in Section VI,

Rk(ν) ≈
1

S

S
∑

s=1

Pk(νs), (2)

where the samples νs are drawn from the multinomial distri-

bution Qk and S is the sample size.

Sampling from multinomial can be done sequentially using

the marginal distributions, i.e., binomial distribution, by first

sampling the number of type-1 packets ν1 from Bin(ν, p(1)),
and for the rest always subtracting the already generated

packets from ν and using conditional probabilities,

νi ∼ Bin
(

ν −
∑i−1

j=1 νj ,
p(i)

∑

k

j=i
p(j)

)

, i = 2, 3 . . .

1) Case k = 2: The two subproblems are denoted by A
and B. There are three types of macropackets, A, B and AB,

with the corresponding numbers of received packets, νA, νB

and νAB . Let A[ν] and B[ν] denote the events that problem

A or B is resolved when there are ν macropackets of type

A or B available, respectively, let them be original degree-1

packets or packets obtained by reduction from macropackets of

higher degree. By the result in Section II-A we have P[A[ν]] =
Fn(ν).

The decoding probability (1) can now be written as

R2(ν) =
∑

νA+νB+νAB=ν

ν!

νA!νB !νAB !

(ρ1

2

)νA+νB

ρ2
νABP2(ν),

where P2(ν) is the probability that the problem is solved with

received packet composition ν = (νA, νB , νAB).
To derive a formula for P2(ν) we first identify the different

ways how the problem can be solved. We have four mutually

exclusive events (i) A[νA] ∩ B[νB], (ii) A[νA] ∩ B[νB], (iii)

A[νA] ∩ B[νB ], (iv) A[νA]B[νB ]. In the first case the whole

problem is surely solved and in the last one surely not. In

the second case, the problem is not directly solved with the

original degree-1 packets but it is solved in the event B[νB +
νAB ] that problem B is solved taking into account the reduced

type AB macropackets; the same holds for the third case with

A and B interchanged. The contribution of the first case to

the total success probability is

P (A[νA] ∩B[νB]) = Fn(νA)Fn(νB).

The contribution of the second case is

P
(

A[νA] ∩B[νB ] ∩B[νB + νAB ]
)

=

Fn(νA)(Fn(νB + νAB)− Fn(νB)),

and similarly for the third case. Collecting these together we

have

P2(νA, νB , νAB) = Fn(νA)Fn(νB + νAB)+

Fn(νB)Fn(νA + νAB)− Fn(νA)Fn(νB). (3)

2) Case k = 3: The analysis of the decoding probability

is similar to the case k = 2. Now we have 7 different types

of macropackets: A, B, C, AB, BC, AC and ABC. We

also have 8 mutually exclusive events according to which

subproblems are directly solved with the degree-1 macropack-

ets. Taking symmetry into account the cases where decoding

is possible can be divided into three classes (i) either all of

the problems are solved directly, (ii) two of the problems are

solved directly and one with the help of the macropackets, and

(iii) one problem solved directly and the two others with the

help of macropackets. The contributions from the first one is

P(A[νA] ∩B[νB] ∩ C[νC ]) = Fn(νA)Fn(νB)Fn(νC)

and from the second one (to show just one permutation of the

indices)

P(A[νA]∩B[νB ]∩C[νC ]∩C[νC +νAC +νBC +νABC ]) =

Fn(νA)Fn(νB)(Fn(νC + νAC + νBC + νABC)−Fn(νC)).

Class (iii) is a little bit trickier and needs further division

into subcases. Because of lack of space, we omit the details

and only give the final result where all the terms have been

collected. Denoting ν = (νA, νB , νC , νAB , νAC , νBC , νABC),
it can most compactly be written in terms of P2 of (3) as

P3(ν) = Fn(νA)Fn(νB)Fn(νC) +

P2(νA, νB , νAB)Fn(νC + νAC + νBC + νABC) + perms

− Fn(νA + νAC)Fn(νB + νBC)Fn(νC)− perms,

where perms stands for two other structurally identical terms

obtained by cyclic permutations of the indices.

V. DATA CAROUSEL

The major problem with the division of the problem into

subproblems and selecting the encoded packet from one of the

subproblems at random is that the number of packets generated

into different subproblems are not equal but fluctuate around

their expectations. An obvious question then is, why not try

to make the numbers as equal as possible by selecting the

subproblem cyclically in a data carousel fashion.
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The main argument against this kind of scheme is that it

means abandoning one of the basic principles of fountain cod-

ing, namely that the encoded packets should be independent

and stochastically identical. With the data carousel, the packets

are of course correlated. The coding scheme is no longer

rateless and the performance cannot be expressed solely in

terms of the number of received packets (no matter what has

been lost) but depends also on the channel properties.

It is, anyhow, of interest to study how the data carousel

performs under some channel model. Before doing this, we

discuss some simple limits. If there are no channel losses,

the data carousel works as ideally designed, delivering equal

amounts of packets into all subproblems, see Fig. 1d. When

ν is a multiple of k, the decoding probability is

Rk(ν) = Fn(ν/k)k. (4)

as each of the k subproblems has to be solved with ν/k
packets. At the other extreme, with heavy channel losses the

packets get through only on rare occasions and the situation

from the receiver’s end looks similar as in the basic decoding

scheme, i.e. the subproblem a received packet belongs to is

random (unless the loss process has very long correlations).

A. Independent loss model

As shown above the performance of the data carousel can

be inferred easily for the cases of no losses and very heavy

losses. In the intermediated cases the performance depends

on the exact loss characteristics of the channel Here we

study the most obvious simplistic channel model, i.e., that of

independent losses, where each packet is lost independent of

others with a given probability p.

The decoding probability can again be expressed in the form

(1) and estimated by Monte Carlo summation as in (2). In

the present case ν is the k-vector ν = (ν1, . . . , νk) and the

decoding probability Pk(ν) with a given vector ν is Pk(ν) =
Fn(ν1) · · ·Fn(νk). In order to be able to apply (2) we still need

a method to generate samples of ν with given total number ν
of received packets, |ν| = ν. This is easily done, as with the

assumed model the sending-sequence-number difference U of

two consecutive received packets is geometrically distributed,

P(U = u) = (1− p)pu−1, u = 1, 2, . . . .

Thus from a given realization of independent random vari-

ables U1, U2, . . . , Uν , we get the sequence number, and ul-

timately the subproblem number, of the ith received packet

as (
∑i

j=1 Uj) mod k. Counting the number of packets, out

of the total ν, belonging to each subproblem κ we get the

components νκ of the sample vector ν.

In Fig. 2 we see how the performance degrades with the

growing loss probability, in accordance with the previous

discussion, starting from that of a lossless channel and tending

to the performance of a system where for each sent (and the

received, as well) packet the subproblem is chosen at random.
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Figure 2. The decoding success probability in a system with data carousel
and k = 3, n = 32 as a function of the number of received packets ν for
the independent losses channel model with different loss probabilities.

VI. NUMERICAL RESULTS

In Fig. 3 and Table II we compare the performance of the

discussed variants of the coding scheme for the case of k = 3
subproblems each containing either n = 32 or n = 100 blocks

(in Table II also n = 64 blocks). As a reference we use the

scheme where each subproblem is acknowledged separately,

with the mean overhead of 1.6 · k packets, represented by the

leftmost curve. We compare the basic scheme with subproblem

division, the use of macropackets and the data carousel, here

shown for the optimistic case of no packet losses.

The results for the case of macropackets depend on the

degree distribution ρ. It was here numerically optimized to

obtain the best results (studies on the optimization of the

degree distribution of LT-codes are presented in [9], [10]). The

optimized distributions are shown in Table II. For the cases

of macropackets and data carousel the results were obtained

using Monte Carlo summation with 105 sample points.

We note that the use of macropackets gives average perfor-

mance roughly in the middle between the basic method and the

optimal case (separate acks, cf. Fig. 1b). In a lossless channel

the data carousel gives better performance than macropackets

and is rather near to the ideal scenario. As the size of

the problem grows the relative overheads become smaller.

Comparing to Fig. 2 we see that the decoding probabilities

with macropackets in scenario k = 3, n = 32 are nearly

the same as with data carousel when channel loss probability

p = 0.2. Thus, with lower channel loss probabilities and

independent losses the performance of data carousel is better

than with developed divided RLF method with macropackets.

The relative performance of the compared schemes can be

studied by examining Fig. 1. Ideally, there is no overhead

at all as all k subproblems are finished with just n packets.

With separate acknowledgements for individual subproblems,

plotted in Fig. 3, the required number of packets needed

for decoding is random for each subproblem. However, the

acknowledgement sent after completion stops the encoder from

producing packets for a specific subproblem. Worst perfor-

mance is obtained in scenario 1c where both the overhead

and the number of required packets for decoding are random.

Performance of data carousel falls in between the last two

scenarios depending on the channel loss properties, such as

the channel loss probability.
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Figure 3. Basic encoding compared to the use of macropackets, data carousel
and separate acknowledgements in the case k = 3

Table II
MEAN OVERHEADS FOR CASE k = 3

Mean overhead

n ρ(d) Separate acks Macropackets No macro

32 {0.89, 0.10, 0.01} 4.82 (5.0%) 12.5 (13.1%) 20.3 (21.1%)
64 {0.911, 0.08, 0.01} 4.82 (2.5%) 15.6 (8.1%) 26.0 (13.5%)
100 {0.936, 0.05, 0.014} 4.82 (1.6%) 18.2 (6.1%) 31.0 (10.3%)

VII. CONCLUSIONS

We have studied the random linear fountain with a divide-

and-conquer strategy to lower the computational complexity.

Also, to retain the properties of fountain codes we chose

not to allow separate acknowledgements for the resulting

subproblems. This avoids the need for a backward channel

save the possibility to send an acknowledgement when the

whole file has been received completely.

First we presented a basic encoding scheme where the ran-

dom linear fountain is divided into multiple subproblems and

each of these problems is solved separately. The probability

of decoding with a specified number of received packets was

calculated. The results in Section III clearly show that the

further we divide the original file, the worse performance we

get in terms of the overhead. While this is natural, the results

indicate that the performance is much worse than the optimal

one of 1.6 · k overhead packets, which would be acceptable

in most scenarios. However, as the file size in terms of blocks

grows, the relative overhead can supposedly be made arbitrary

small.

To improve the performance we proposed the use of

macropackets. Macropackets are generated by utilizing LT-

coding over the packets generated from multiple subproblems.

Explicit results for the decoding probabilities with macropack-

ets were obtained for cases k = 2 and k = 3 (it remains a

problem for further research to find similar formulae for larger

k). For k = 3, Monte Carlo summation was used to calculate

the numerical results. The results in Section VI show that the

macropackets improve the performance by approximately 4−6
percentage points for tested scenarios, where the performance

gain seems to be smaller for higher values of n. Thus, the

addition of macropackets provides the best performance gain

for small file sizes, which are problematic for example when

using LT codes.

Further, the developed strategies were compared with the

data carousel. The results show that for a channel with low

losses the performance of the data carousel is almost the same

as with ideal strategy of separately acknowledging each of the

subproblems. The data carousel, however, is not a genuine

fountain coding strategy and the performance depends on the

channel properties. It exhibits poor performance, equal to that

of the basic divided RLF, for scenarios with a very high

loss rate. Performance for intermediate losses was studied for

independent loss model for the data channel.

To conclude, dividing the RLF into separate subproblems

lessens the computational burden but this does not come

without performance penalty, unless each of the subproblems

is acknowledged separately. The performance degradation can

be mitigated by the use of macropackets but it still remains a

problem. The same performace as with macropackets can be

obtained with the data carousel in a channel with independent

losses and loss probability less than 20 %. This suggests that

the data carousel, even though violating the pure fountain

coding principle, might be an idea worth considering in many

practical scenarios. An interesting question for further research

is to go a step further and develop an optimal (non-stationary)

sending strategy for a given channel model.
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