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Abstract A calculation model to simulate nonsymmetric

ship collisions, implying an arbitrary impact location and

collision angle, is described in the paper. The model that is

introduced is based on the time integration of twelve

equations of motion, six for each ship. The motions of the

ships are linked together by a mutual contact force. The

contact force is evaluated as an integral over the surface

tractions at the contact interface. The calculation model

provides full time histories of the ship motions and the

acting forces. Physical understanding of the underlying

phenomena was obtained by a series of model-scale

experiments in which a striking ship collided with an ini-

tially motionless struck ship. In this paper, numerical

simulations of four nonsymmetric collisions are presented

and the calculations are validated with the results of the

experiments.

Keywords Collision dynamics � Nonsymmetric ship

collisions � Model-scale collision experiments �
Time domain simulation model

1 Introduction

Ship collisions continue to occur despite the development

of numerous preventive measures. Human error, technical

failures, and other unpredictable events can never be

completely avoided. Eliopoulou and Papanikolaou [1]

studied the statistics of tanker accidents and revealed that

the total number of accidents and the number of accidents

causing pollution has decreased significantly in recent

decades. However, the accidents causing pollution have not

decreased to the same extent as the overall number of

accidents. It has become obvious that the measures applied

to reduce the consequences of collisions should be

improved, together with the preventive ones. To reduce the

consequences, one has to understand the nature and the

character of the underlying phenomena. A statistical study

by Tuovinen [2] analysed more than 500 collision acci-

dents, the data on which were gathered from published

investigation reports, the IMO, database and damage cards.

The statistical data presented the current trends, as the

majority of the accidents studied (388) were registered

during or after the year 1997, and only 115 accidents were

registered before that. The study revealed that, with respect

to the collision angle, only about every fourth collision can

be considered symmetric, i.e. the striking ship collides with

the amidships of the struck ship at right angles. In the

studied cases, about 25% of the collisions occurred at

a right angle or in its vicinity (±10�). All of the other

accidents were in one way or another considered to be

nonsymmetric. This fact emphasises the importance of

understanding the nature of nonsymmetric collisions. Thus,

this paper is focused on the physical phenomena of non-

symmetric ship collisions, and a calculation model is pro-

posed to predict the ship motions and the structural damage

in such a collision.

Several calculation models for simulating the dynamics

of ship collisions exist. The calculation models can be

classified as closed form expressions or as time domain

simulations. Closed form models are based on the conser-

vation of momentum and allow a fast estimation of struc-

tural deformation energy without providing the time

histories of ship motions, which leaves the exact penetration
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path of the colliding bodies unknown. In closed form

models, there is no coupling between the external dynamics

and the inner mechanics, and therefore no coupling effects

are included. One of the first closed form models for ship

collisions for a single degree of freedom (dof) was proposed

by Minorsky [3]. This model has been modified and

extended by many authors to consider up to three dof in the

horizontal plane [4, 5].

In time domain simulation models, the system of equa-

tions of ship motion is solved using a numerical integration

procedure. A precise description of the whole collision

process, together with the full time histories of the motions

and forces involved, is achieved. Motion-dependent forces,

such as the radiation forces arising from the interaction with

the surrounding water, can be included in the analysis. As a

result of the complexity involved in solving the equations,

these simulation models are often reduced to include the

motions in the horizontal plane only [6, 7].

The proposed calculation model is based on a time

domain simulation that takes into account six dof for each

ship and is thus capable of handling arbitrary collision

angles and locations. The inner mechanics and the external

dynamics are coupled, preserving the interaction between

the colliding ships, which makes it possible to estimate the

time history of the common contact force. This force is

evaluated by considering the geometry of the colliding

ships and calculating the surface tractions at the contact

interface. The striking ship is assumed to be rigid, and all

of the structural deformations are limited to the struck ship.

The calculation model that is developed aims to predict the

ship motions until the contact between the ships is lost.

This requires precise modelling of the effects of the sur-

rounding water, and the popular approach of using constant

added mass as a representative of the radiation force does

not suffice; thus, in addition, the retardation functions [8, 9]

are used to include the time dependency of the radiation

force. The model adopts a linear approach to the restoring

force, limiting the angular displacements from the equi-

librium position to small angles, i.e. below 10�. More

accurate methods, such as the precise integration of

hydrostatic pressure over the ship’s hull, allow larger dis-

placements and angles, but the integration process is very

time-consuming and therefore is not considered here.

Frictional water resistance and hydrodynamic drag are

assumed to be proportional to the square of the ship’s

velocity. Effects arising from the wave pattern around the

colliding ships and from the immediate consequences of

the collision, such as flooding and loss of stability, are not

included in the calculation model.

The physical phenomena are studied and the calcula-

tions are validated with non-symmetric model-scale colli-

sion experiments. The test setup for the experiments was

designed and validated with large-scale collision tests [10].

The emphasis in the model tests was placed on the external

dynamics, and thus the side structure of the struck ship was

modelled using polyurethane foam. The scaling of the

contact force was based on the results of the large-scale

experiments. During the collision, the motions of both

ships in all six dof were measured, as was the contact force

in the longitudinal and the transverse directions with

respect to the striking ship. Several collision scenarios,

with different collision angles and locations, were tested in

order to obtain not only large translational motions but also

relatively large angular motions. The tests were limited to

those cases where the striking ship approaches an initially

motionless struck ship. This was mainly due to the test

setup of the model tests, where the focus was on the

physical phenomena. In all of the tests, the contact point on

the struck ship was above the waterline and was located in

the parallel middle body.

2 Calculation model

The calculation model assumes a situation in which the rigid

striking ship approaches, at a certain angle, a specific loca-

tion on the struck ship. As soon as the ships are brought into

contact, the contact force starts to play a major role in the

collision dynamics. When the contact is lost, the force

decreases to zero and the hydromechanical forces will gov-

ern the collision process. The equilibrium between the forces

acting on the ship and the resultant ship motions is described

through a system of six equations of motion. These Newto-

nian equations are expressed in a local coordinate system of

the ship, allowing convenient description of the hydrome-

chanical forces. The numerical time integration of these

equations yields the ship motions in the local coordinate

system. Though the motions are conveniently presented in

the local frames, the position and orientation of the ships can

only be specified by reference to an inertial coordinate sys-

tem that is fixed with respect to the Earth.

2.1 Motion kinematics

The convenient description of the mutual motions and the

kinematic connection of the colliding bodies requires five

different coordinate systems, which are presented in Fig. 1.

Hereafter, the superscript characters A and B denote the

striking and the struck ship, respectively. If the superscript

is omitted or replaced by i, it means that the description is

common to both ships. Superscript 0 indicates the inertial

frame. The origins Oi of two sets of local axes are fixed to

the mass centre of gravity of the ship. Positioning the

coordinate systems at the centre of gravity simplifies the

analysis, as the acceleration components resulting from

mass eccentricity disappear. For ship position, reference is
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made to the inertial coordinate system O0x0y0z0 with a

position vector Ri, but when describing the ship motions it

is common to refer in the local coordinate system to surge,

sway, heave, roll, pitch, and yaw. The first three are

translations along the axes and the last are rotational

motions. The instantaneous translational velocity ui of the

ship’s centre of gravity is given as a time derivative of the

position vector Ri

ui ¼ _R
i ¼ _x0i0 þ _y0j0 þ _z0k0 ¼ uiii þ viji þ wiki ð1Þ

where _x0; _y0 and _z0 are the velocities of the ship’s centre of

gravity in the inertial frame and u, v and w are their pro-

jections onto the local coordinate system Oixiyizi.

The second set of local axes, referred to as the horizontal

body axes Oinigifi, are used for a more convenient pre-

sentation of the orientation of the ships. At the onset of the

contact process, the directions of the OAnAgAfA system

coincide with those of the inertial frame O0x0y0z0, while

OBnBgBfB is rotated with respect to O0x0y0z0 to obtain the

collision angle b. The collision angle b is defined as the

angle between i0 and the direction of nB. The positions of

OAnAgAfA and OBnBgBfB at the onset of the contact are

considered to be the reference positions of the ships. Both

sets of local axes, Oinigifi and Oixiyizi, are coincident at the

beginning of the contact. During the calculation, these

horizontal body axes are only subjected to translational

motions, and the body fixed coordinate system Oixiyizi is

reoriented with respect to Oinigifi.

The orientation of the ship is defined using the method

of modified Euler angles [11]. In this method, the rotations

must be handled in a certain order: first a ‘‘swing’’ w to the

actual azimuth, then a ‘‘tilt’’ h to the actual elevation, and

finally a ‘‘heel’’ / to the actual orientation. The relation

between the velocities in the inertial coordinate system and

their projections onto the local axis is given [11] by an

orthogonal matrix of transformation [T]:

_x0

_y0

_z0

8
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>>:
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7
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7
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7
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Matrices are denoted by [] and vectors by {} in

equations where both types of objects are present. In

equations consisting only of vectors, or when the actual

type is obvious, the above notation in omitted for the sake

of brevity. Position and force vectors can be transformed in

a similar manner as the velocities in Eq. 2. The angular

velocity Xi is defined in the local coordinate system as

Xi ¼ piii þ qiji þ riki ð3Þ

where pi, qi, and ri are the angular rates of roll, pitch, and

yaw in the local coordinate system. The derivatives of the

Euler angles depend on the angular rates as [11]
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>>:
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¼
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0 cos / � sin /
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8
><

>:

9
>=

>;
ð4Þ

It should be noted that even though the angular rates _/,
_h, and _w are vector quantities, the Euler angles cannot be

presented as a vector. For the sake of simplicity, they are

still collectively referred to via a column matrix

½u� ¼ ½/ h w �T.

The translational velocity ui
P of a point P positioned by

the vector rP
i in the local coordinate system is evaluated as

ui
P ¼ ui þXi � ri

P ð5Þ

The relative position between the ships is described by a

penetration vector d that is defined in the inertial frame as

d0 ¼ RA þ rA
P � RB þ rB

P

� �
ð6Þ

It is also useful to express this penetration in the body

fixed coordinate systems to account for the orientation of

the ships:

dA ¼ d0 � iA þ d0 � jA þ d0 � kA ð7Þ

dB ¼ d0 � iB þ d0 � jB þ d0 � kB ð8Þ

Fig. 1 Definition of coordinate systems and position vectors
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2.2 Fluid forces and gravity

Hydromechanical forces and moments acting on a surface

ship consist of water resistance, hydrostatic restoring for-

ces, and radiation forces expressed in terms of hydrody-

namic damping and added mass. A ship moving in water

encounters frictional and residual resistance. Residual

resistance is not included in the study because it is con-

sidered to be small compared to other phenomena. The

frictional water resistance is considered only for surge and

sway. The friction force FF,x for surge is approximated with

the ITTC-57 friction line formula. For sway, the hydro-

dynamic drag force FF,y is calculated as [12]

FF;y ¼
1

2
qv2CyAL ð9Þ

where q is the water density, v is the sway velocity, Cy is a

drag coefficient that depends on the shape of the hull and

on the angle between the ship’s longitudinal axis and its

velocity vector, and AL is the lateral underwater area of the

ship. In the model tests reported by Gale [12], it is shown

that the drag coefficient Cy varies between 0.5 and 1.2, and

Cy = 1 is used in the subsequent calculations.

Buoyancy loading FB is split into the buoyancy qgrk0 at

the equilibrium position and the hydrostatic restoring force FR:

FB ¼ �qgrk0 þ FR ¼ �qgrk0 þ ½K� fxg½u� ð10Þ

where g is the gravitational acceleration,r is the volumetric

displacement of the ship, [K] is a matrix of linear restoring

terms, {x} presents a vector of translational displacements

from the equilibrium position, and [u] are the Euler angles

already described in the previous section. The terms of the

matrix [K] are presented in Appendix 1. As these restoring

terms are based on small angular displacements, the same

linear restoring terms can be applied both in the local and the

inertial coordinate systems. Gravity loading FG opposes the

buoyancy in the equilibrium position:

FG ¼ qgrk0 ð11Þ

It is common practice to model the radiation forces by

frequency-dependent added mass a(x) and damping b(x)

coefficients. To represent the radiation forces in the time

domain, it is useful to split them into a part Fl proportional

to the acceleration and into a velocity-dependent damping

part FK: [8]

FlðtÞþFKðtÞ¼�½a1�
_uðtÞ
_XðtÞ

� �

�
Z t

0

½KbðsÞ�
uðt� sÞ
Xðt� sÞ

� �

ds

ð12Þ

where t denotes time, s is a dummy variable, [a?] is the

matrix of added masses a(x = ?) at infinite frequency,

and [Kb(s)] is a matrix of retardation functions, which

account for the memory effect:

½KbðsÞ� ¼
2

p

Z1

0

½bðxÞ� cosðxsÞ dx ð13Þ

where [b(x)] is a matrix comprising of added damping

terms. The retardation functions Kb(s) are evaluated by fast

Fourier transformation [13].

2.3 Contact process between ships

During a collision, the ships interact through the contact

force arising from the deformations of their structures. The

interaction model presented in this chapter considers a

homogeneous side structure whose stiffness is significantly

lower than that of the striking ship. Thus, it is reasonable to

assume that all of the deformations are limited to the struck

ship and that the striking ship can be treated as rigid. The

deformed shape of the side structure of the struck ship is

restricted to following the shape of the penetrating bow.

Throughout the derivation of the contact model it is

assumed that the stress state in the deformed structures can

be obtained easily, and so the derivation of the contact

force concentrates on the contact kinematics.

When two nonconforming bodies are brought into con-

tact, they initially touch each other at a single point or line.

As the contact proceeds and the bow penetrates further into

the struck ship, the contact interface expands. To predict

the shape of the contact interface––see Fig. 2––the geom-

etries of the colliding bodies are defined in the local

coordinate system of the striking ship. Therefore, the sur-

face S of the axisymmetric bulbous bow of the striking

ship is defined as

Fig. 2 Contact geometry with kinematics and surface tractions
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xA ¼ f A a; b; c; yA; zA
� �

ð14Þ

where a, b, and c are the shape parameters. It is assumed

that Eq. 14 has first-order partial derivatives inside the

contact interface. The geometry, position, and orientation

of the struck ship B are transferred to OAxAyAzA and are

approximated as a plane P by

xA ¼ f B A;B;C; yA; zA
� �

ð15Þ

where A, B, and C are the parameters defining the plane.

Subtracting Eq. 15 from Eq. 14 yields the curve C of

intersection that bounds the contact interface S� in the yAzA

plane; see Fig. 2. The area bounded by curve C is denoted

as area A. Contact between the ships exists when curve C
exists and thus area A has a real positive value.

The magnitude and the direction of the contact force FC

depend on the structural geometry and on the relative

motions of the colliding ships. As the bow penetrates into

the side structure, surface tractions are formed on the

contact interface. The normal traction—referred to as

pressure—is denoted by p and the tangential traction

caused by friction by q in Fig. 2.

The resultant contact force FC is resolved into a com-

pressive part Fp and a frictional part Fq. It is assumed that

this resultant force acts at point P, which is the centre of

area A. At the exact centre of the contact, the resultant

moment of surface tractions is zero. Even though this

condition is not always satisfied at point P, it is still used as

the centre. The moment lever that is caused is considered

small compared to the dimensions of the ship, and thus the

additional moment is neglected.

2.3.1 Compressive and friction force

Inside the contact interface S�, every infinitesimal area dS*

described by its central point Q in the right-hand picture in

Fig. 2 is subjected to normal compressive traction p and to

tangential traction q. The force resulting from the normal

traction is evaluated by integrating over the interface S�

FA
p ¼

ZZ

S�

pnA
Q dS� ð16Þ

where nQ
A is an unit normal at Q pointing outside the bulb,

and is defined as

nA
Q ¼

i� of A

oyAj� of A

ozAk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ of A

oyA

� �2

þ of A

ozA

� �2
r ð17Þ

The surface integral over S� can be expressed as a more

convenient integral over area A:

ZZ

S�

dS� ¼
ZZ

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ of A

oyA

� 	2

þ of A

ozA

� 	2
s

dyA dzA ð18Þ

The bulb geometry and the distribution of p in the

contact interface define the direction of Fp
A. The frictional

force component Fq acts on a tangent plane T at point Q;

see Fig. 2. The direction of this force is denoted by the

vector kQ
A and it depends on the contact kinematics. The

discussion about the exact value of kQ
A is presented in the

next section. Assuming that the tangential traction is

proportional to the pressure, the frictional force can be

evaluated as

FA
q ¼

ZZ

S�

qkA
Q dS� ¼

ZZ

S�

lqpkA
Q dS� ð19Þ

where lq is the coefficient of friction. The resultant contact

force acting on point P is

FA
C ¼ �FB

C ¼ FA
p þ FA

q ð20Þ

Within the loaded interface at any point Q, there is

equilibrium between the normal traction and the stresses in

the deformed material at the contact interface:

p ¼ �rn ð21Þ

where rn indicates the normal stresses in the direction of

the surface normal.

2.3.2 Contact phases

The contact process is divided into three distinct phases.

The contact starts with the loading phase, during which the

penetration increases. The loading is followed by a short

stiction phase, during which the penetration remains

roughly the same. The contact process ends with the

unloading phase, during which the penetration decreases as

a result of the separation of the ships. All three phases

differ with respect to contact kinematics, which is defined

by the relative velocity between the ships at the integration

point Q

uAB
Q ¼ uA

Q � uB
Q ð22Þ

and additionally by the relative acceleration _uAB
Q . An inte-

gration element dS�, presented in Fig. 2, is assumed to

undergo the loading phase when the following three con-

ditions are fulfilled:

1. The angle between uQ
AB and nQ

A is less than 90�
2. The magnitude juAB

Q j is larger than the threshold

velocity uAB
0

3. The penetration with respect to the transverse direction

of the struck ship is increasing, i.e. uAB
Q � jB [ 0.
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In the loading phase, the direction of kQ
A opposes the

projection of the relative velocity uQ
AB to the tangent plane

T of the indenter, and is defined as

kA
Q ¼ �projT

uAB
Q

uAB
Q















ð23Þ

where projT u indicates the projection of a vector u onto the

plane T , and can be written as

projT u ¼ n� u� nð Þ ð24Þ

where n is the unit normal vector of the plane.

During the transition phase from the loading to the

unloading, the angle between uQ
AB and nQ

A increases and

becomes larger than 90�. If during this transition the magni-

tude juAB
Q j falls below the threshold velocity u0

AB, the integra-

tion element dS� undergoes the stiction phase. Figure 3a

presents a situation in which a surface element close to the

boundary of the contact interface is in the stiction phase.

The time instant when the first surface element enters either

the stiction or the unloading phase is denoted as t = te1.

In the stiction phase, uQ
AB approaches zero and possibly

changes its sign. Therefore, evaluating the direction of kQ
A

by the relative velocity uQ
AB may yield the singularity

problem in Eq. 23. Despite the small relative velocity, the

friction or (more properly) the stiction force does not dis-

appear, as the bodies—even though they are not sliding—

still undergo small reversible elastic deformations that

result in an interaction force [14]. In order to avoid using

complicated theoretical models for stiction, the proportional

friction is still used, but the direction is based on the relative

acceleration _uAB
Q at Q, as suggested by several authors [14,

15], and thus the direction of kQ
A is defined as

kA
Q ¼ �projT

_uAB
Q

_uAB
Q















ð25Þ

In the unloading phase, either (1) or (3) or both

conditions are not satisfied. When the penetration starts

to decrease, the contact is not immediately lost as a result

of the elasticity of the structures. The deformation of the

structure recovers to some extent in order to restore its

initial undeformed shape. This elastically recovered region

is simply referred to as the recovered region. It is assumed

that the structure recovers along the shortest possible path,

i.e. along -jB. The final shape of the recovered region

follows the surface geometry of the penetrating bow. The

amount of restoration is controlled by the relative thickness

of the recovered region e and by the transverse penetration

d0 � jB in the struck ship. The shape of the elastic region is

given in a general form as

xA ¼ f eða; b; c; e; d0 � jB; yA; zAÞ ð26Þ

In Sect. 3.2, the functions f A; f B; f e given by Eqs. 14,

15, and 26, the parameters a, b, c, A, B, and C, and the

material properties rn, lq, and e are presented for the

contact configurations used in the model-scale experiments.

In the unloading phase, the direction of kQ
A has to take into

account the velocity of elastic recovery. As the recovering

structure maintains the contact with the indenter, and as the

Fig. 3 Reversal of the velocity

vector during the transition from

the loading to the unloading

phase and the storing of the

elastic regions. a Stiction phase

starts at t = te1. b Maximum

penetration is reached at

t = te2 [ te1. c Two recovered

regions at t = tj [ te2 [ te1

92 J Mar Sci Technol (2010) 15:87–101

123



recovery is along -jB, the velocity of the elastic recovery is

uAB
Q � jB

� �
jB, and thus the relative velocity between the de-

penetrating bow and the recovering structure is

uA
Q � uB

Q þ uAB
Q � jB

� �
jB

� �
¼ uAB

Q � uAB
Q � jB

� �
jB ð27Þ

and the direction kQ
A of the friction force is evaluated as

kA
Q ¼ �projT

uAB
Q � uAB

Q � jB
� �

jB

uAB
Q � uAB

Q � jB
� �

jB














2

6
4

3

7
5 ð28Þ

The recovered region is evaluated at two time instants,

as indicated in Fig. 3: first at t = te1, when the stiction or

the unloading phase occurs for the first time in some

integration element, and for the second time at t = te2 when

the transverse penetration d0 � jB in the struck ship reaches

its maximum value. The first region is always updated

when the bow penetrates further. During later stages, when

t = tj [ te2, at each integration point Q the recovered

region is determined by the larger penetration value.

2.4 Equation of motion

A ship with its mass described in a mass matrix [M] and

moments of inertia in an inertia matrix [I] is subjected to

the external force

F ¼ FFþFlþFKþFC þ FB þ FG ð29Þ

and to the moment G of the external force about the centre

of gravity of the ship. All of the forces are described or

transferred by the matrix [T] to the local coordinate system

Oixiyizi, where the general equation of translational motions

is written according to Newton’s law as [11]

M½ �du

dt
þ M½ �X� u ¼ F ð30Þ

and correspondingly for rotational motions as

I½ �dX
dt
þX� I½ �X ¼ G ð31Þ

The time integration of these equations is based on an

explicit fifth-order Dormand–Prince integration scheme

[16], which is a member of the Runge–Kutta family of

solvers, where the calculation advances from tj to

tj?1 = tj ? dt with seven subincrements. For time-efficient

integration, the forces on the right-hand side of the equations

are kept constant during time step dt, while the motions on

the left-hand side are updated in every subincrement. Thus,

the preciseness of the integration can be increased by moving

some force components from the right-hand side to the left.

This is done with the forces that do not require history values

from former time steps and are linear with respect to

motions. Therefore, the hydrostatic restoring force FR

proportional to the displacements and the radiation force

component Fl are moved to the left. The latter results in a

full added mass matrix containing several terms, which

couple the translational and rotational motions. This fully

coupled added mass matrix and the coupling term X� u in

Eq. 30 require the simultaneous solution of translational

and rotational motions. In their general form, the two

equations of motion are combined to give

M½ � 0

0 I½ �

� �
_u
_X

� �

þ M½ �X� u
X� I½ �X

� �

� FR � Fl

¼ F
G

� �

� FR � Fl ð32Þ

and the component form of this equation that is suitable for

numerical integration is presented in Appendix 1. The

solution of Eq. 32 provides kinematically admissible

motions at the end of the integration increment at t = tj?1,

and the external forces on the right-hand side are updated

accordingly. There, the new position of the ship with

respect to the inertial frame is evaluated by integrating with

respect to time over the velocities in the local coordinate

system and transforming the translational displacement

increments that are obtained to the inertial frame by the

matrix [T]. These increments are added to the position

vector Ri. The orientation is updated by simply adding the

angular increments to the Euler angles. Given the positions

and the orientations, the penetrations are calculated from

Eqs. 6 to 8. The equations of motion, Eq. 32, are estab-

lished for each ship. These equations are treated separately

in the integration during the time increment dt, and after

each step the mutual contact force FA
C ¼ �FB

C is updated for

both ships in order to maintain the kinematic connection.

3 Model-scale experiments of ship collisions

The full-scale experiments [17] provided validation data

for symmetric collisions in which the ship motions are

limited to only a few components. In order to gain a deeper

insight into the dynamics of nonsymmetric collisions, a

series of model-scale experiments was performed at the

Helsinki University of Technology. The model tests were

designed to be physically similar to the large-scale exper-

iments. The design, scaling, and validation of the test setup

for the model-scale experiments are explained in detail by

Tabri et al. [10] and Määttänen [18].

3.1 Test setup and measuring systems

The general arrangement of the test setup is presented in

Fig. 4. The models were geometrically similar to the ships

participating in the full-scale experiments. Considering the

level of structural resistance of the ship models and the
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dimensions of the test basin, the feasible scaling factor k
for the Froude scaling law was determined to be k = 35.

This resulted in models of length L = 2.29 m, depth

D = 0.12 m, and breadth B = 0.234 m for the striking

ship and B = 0.271 m for the struck ship.

Table 1 presents draughts, masses, the vertical height of

the centre of gravity KG, and the radii of inertia kii for

different loading conditions in the ship models. The lon-

gitudinal centre of gravity of the ships is always located at

the amidships. The table also presents the values for the

added masses. The nondimensional added mass coeffi-

cients l are calculated as

lj ¼ lim
x!1

ajðxÞ
qr ; with j ¼ x; y; z ð33Þ

for translational motions such as sway and heave and

ljj ¼ lim
x!1

ajjðxÞ
qrk2

jj

; with j ¼ x; y; z ð34Þ

for rotational motions such as roll, pitch, and yaw. The

frequency-dependent added mass a(x) was evaluated with

strip theory [19]. The coefficients were first evaluated in a

coordinate system with its origin located in the water plane.

As the equations of motion are established in the Oixiyizi

system, the origin of which is fixed to the mass centre of

gravity, the added mass and the damping coefficients were

transferred to Oixiyizi considering the distance between the

water plane and the centre of gravity. The surge added

mass for both models is taken to be 5% of the total mass of

the model.

The striking model, equipped with a rigid bulb, hit the

struck model at a location where a block of soft foam was

installed. The structural response in these model-scale

experiments was scaled so as to be similar to that in the large-

scale ones. The scaling is described in the next section.

Two separate measuring systems were used in the exper-

iments, one to record the ship motions and the other to

measure the contact forces in the longitudinal and the trans-

verse directions with respect to the striking ship. The motions

were measured with the Rodym DMM noncontact mea-

surement system with a sampling rate of 125 Hz. This system

provided the position and the orientation of the models with

respect to the inertial frame O0x0y0z0. Taking the time

derivatives of the position and the orientation signals yielded

velocities in the inertial coordinate system, and the values in

the local frames were obtained using Euler’s angles, as given

by Eqs. 2 and 4. It was estimated that the positions of the

models were measured with a precision of ±0.05 mm and

their orientations with a precision of ±0.5�.

Two contact force components were measured in the

striking ship: the longitudinal force FC,x
A and the transverse

force FC,y
A . The vertical contact force was not measured

because of the limitations of the measuring instrumenta-

tion. However, with the contact point being close to the

waterline, only small vertical forces were expected. The

sampling rate was 1250 Hz and the precision of the mea-

sured forces was estimated to be ±0.01 N. The synchro-

nisation of the force and the motion measurements in the

time domain is described in Tabri et al. [10].

3.2 Force response

The model-scale experiments concentrated on the external

dynamics, and the precise deformation mechanics of the

side structures were beyond their scope. However, in order

Table 1 Physical parameters of the models

Model Draft (cm) Mass (kg) KG (cm) kXX (cm) kYY (cm) kZZ
a (cm) lsway (%) lheave (%) lroll (%) lpitch (%) lyaw (%)

Striking 4 20.5 7.4 19 70 70 17 300 12 220 14

Striking 6 28.5 6.4 15 67 67 23 210 11 170 20

Striking 8 40.5 5.1 9 65 65 28 170 23 146 27

Struck 4 20.5 7.4 19 77 77 16 376 20 231 10

Struck 6 30.5 7.3 17 69 69 21 238 14 184 17

Struck 8 44.5 5.1 9 65 65 27 190 36 164 25

a It is assumed that kZZ = kYY

Fig. 4 General arrangements of the model tests
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to maintain dynamic similarity, the structural resistance has

to be similar to that of the full-scale ship structures. As the

properties of the polyurethane foam used as the side

structure of the struck model are constant, the level of the

contact force can only be modified by changing the shape

of the impact bulb. In a preliminary material study, a

number of penetration tests were carried out in order to

study the crushing mechanisms of the foam [20]. The

crushing strength of the foam is assumed to be equal to the

stress rn at the contact interface and it was determined to

be rn = 0.121 MPa. The friction coefficient between the

foam and the painted surface of the bulb was lq = 0.15-

0.2 [20]. Three different axisymmetric bulb shapes pre-

sented in Fig. 5 were evaluated [20]. The shapes of the

bulbs were defined as an elliptical paraboloid

xA ¼ f Aða; b; c; yA; zAÞ ¼ � ðyAÞ2

a2
þ ðz

AÞ2

b2
þ c

 !

ð35Þ

with the semi-axes a and b having the following values:

a = b = 0.129
ffiffiffiffi
m
p
½ � for bulb 1;

a = b = 0.258
ffiffiffiffi
m
p
½ � for bulb 2;

a = b = 0.169
ffiffiffiffi
m
p
½ � for bulb 3.

Parameter c describes the coordinate value in OAxAyAzA,

where the surface of the bulb intersects with the xA axis and

c = -LA/2 as the centre of gravity of the ship was at the

amidships.

The force–penetration curve of bulb 1 corresponds well

to the X-core large-scale experiment, as seen in Fig. 6. The

thick line presents the large-scale measurement [10, 21],

which is scaled down with a scaling factor of k = 35. The

thin line is measured from the model-scale test with bulb 1,

and the dashed line is obtained using the approach pre-

sented in Sect. 2.3. The other two bulbs provided signifi-

cantly higher resistance compared to that of the large-scale

experiment. It should however be noted that such a

presentation of structural resistance is very general, and only

presents realistic structural behaviour to a certain extent. With

extensive deformations, the actual force–penetration curve

could be different from the monotonously increasing curve of

the current setup. However, the approach is still valuable due

to its simplicity and is sufficient to maintain the physical

similarity with respect to the external dynamics.

In the time simulations of the collision experiments, the

recovered shape of the deformed foam was evaluated on

the basis of the shape of the impacting bulb, the relative

thickness of the recovered region e, and the maximum

translational penetration d0 � jB in the struck ship. With the

point of contact located in the parallel middle body, the

struck ship can be presented as a plane in OAxAyAzA :

xA ¼ � AyA þ BzA þ C
� �

ð36Þ

The parameters A, B, and C depend on the current position

and on the orientation of the struck ship. Given definitions for

the geometries of the ships (Eqs. 35 and 36), the penetration

depthd0 can be evaluated, and thus, based on Eq. 26, the shape

of the recovered region in OAxAyAzA is written as

xA ¼ f e a; b; c; e; d0 � jB; yA; zA
� �

¼ � yAð Þ2

1� eð Þa½ �2
þ zAð Þ2

1� eð Þb½ �2
þ c� e d0 � jB

� �
 !

ð37Þ

Upon comparing the experimentally measured force–

penetration curves to those evaluated with the approach

presented in Sect. 2.3, the relative thickness of the

recovered region e was determined to be around e = 0.03.

3.3 Test matrix

The model-scale experiments were divided into three dif-

ferent sets on the basis of the type of collision scenario.

Fig. 5 Geometries of the axisymmetric impact bulbs used in the

model-scale experiments

Fig. 6 Force–penetration curves obtained in the large- and the

model-scale experiments and by calculations. Large-scale measure-

ments are scaled to the model scale with k = 35
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The first set concentrated on symmetric collisions and is

not discussed here. The second and the third sets consisted

of nonsymmetric collision experiments. In the second set,

the location of the contact point was changed, ranging from

an eccentricity of 0.13LB (30 cm) to 0.36LB (83 cm) from

the amidships towards the bow, but the collision angle b
was still 90�. The motions of the striking ship were mainly

translational, while the struck ship was subject to yaw

motions in addition to translations. In the third set, the

collision angles varied from 30� to 120� and the eccen-

tricity was around *0.18LB (*40 cm). The yaw motions

of both ships were significant, yielding diverse motion

dynamics. The complete test matrix containing the exper-

iments in the second and third sets is presented in

Appendix 2.

4 Validation

The model-scale experiments provided a vast amount of

data for the validation. Here, this amount is limited to a set

sufficient to provide qualitative and quantitative validation.

Four experiments presenting distinctively different colli-

sion scenarios were chosen for thorough analysis: test 202

from the second set, and tests 301, 309, and 313 from the

third set. Test 202 was a collision at right angles with an

eccentricity of 0.36LB (83 cm). In tests 301, 309, and 313,

the eccentricity was about 0.16LB - 0.19LB (37–44 cm)

and the collision angles were 120�, 145�, and 60�,

respectively. More detailed information about the selected

experiments is presented in Appendix 2.

The time histories of the calculated and the measured

longitudinal contact force FC,x
A and the transverse contact

force FC,y
A as experienced by the striking ship are presented

in Fig. 7. In addition to the measured forces, the calculated

time history of the vertical contact force FC,z
A is also given

in the figure. In test 202, the longitudinal force is clearly

dominant and only a minor transverse force arises as a

result of the yawing of the struck ship. The transverse force

increases significantly when the collision angle is other

than 90�. In tests 301 and 313, the transverse force changes

its direction as the bow gets stuck in the foam. With the

large collision angle in test 309, the bow slides along the

struck ship and the transverse force remains positive

throughout the contact. The calculations predict the loading

phase well; the deviation from the measurements increases

in the unloading phase. This consists of more complicated

mechanisms, which cannot be precisely predicted with

robust calculation models. In the calculations, the stiction

phase appears as a somewhat unrealistic drop in the force

values. The stiction phase can clearly be seen in test 202 at

t = *55 ms. When the stiction is not considered in the

Fig. 7 Calculated and

measured components of the

contact force FC
A as experienced

by the striking ship (superscript

A and subscript C are omitted

for brevity)
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calculations, the drop in the force value is more significant

and has a longer duration, as shown in Fig. 8, which pre-

sents two calculations of FC,x
A in test 202, one with stiction

included and the other without.

The calculated vertical contact force is clearly lower

than the other force components. Even though minor roll-

ing of the struck ship occurs in the calculations, the

distribution of the contact pressure in the vertical direction

is rather symmetric, and thus the resultant force becomes

low.

The motions of the ships are presented in Fig. 9 as the

position of the origin Oi in the inertial frame. Their posi-

tions are scaled to start from zero. A circular marker is

drawn every 20 ms to include the time scale. Displacement

along the x0 axis is an order of magnitude larger compared

to the y0 displacement. This is to be expected, as the initial

velocity of the striking ship was along the x0 axis. Dis-

placement along the x0 axis is predicted well in terms of

both distance and time. In the transverse direction the

relative differences are larger, but are acceptable, consid-

ering their small magnitude.

The yaw angle of the struck ship is presented in Fig. 10.

The magnitude of the angle at the end of the contact is

about 1�, but it is still very important for evaluating the

penetration history. The yaw is the largest in test 202, as a

result of the high eccentricity. The calculation model tends

to somewhat underestimate the angular motions.

Considering the position and the orientation of the

models, the bulb’s penetration paths can be evaluated.

Figure 11 presents the path of the tip of the penetrating

bulb inside the side structure of the struck ship. In test 202

the penetration has almost only the transverse component.

During the short transient contact phase, the angular

motions of the ships are still too small to extend the

Fig. 9 Position of Oi in the

inertial frame (marker spacing

20 ms). Note the different scales

of the y0 axis

Fig. 8 Calculated contact force FC,x
A with and without stiction phase

included (test 202)
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Fig. 10 Yaw angle of the

struck ship

Fig. 11 Penetration paths of the

bulb in the struck ship
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penetration in other directions. Test 309 presents an

opposite scenario, in which the striking ship slides along

the side of the struck ship, causing shallow but long pen-

etration. The penetrations in tests 301 and 313 extend

almost equally in both directions. While in the other tests

the calculation model predicted the penetration paths well,

in test 313 the penetration in the longitudinal direction is

underestimated.

The above analysis focused on the motions in the plane

of the water surface. When looking at the other motion

components, such as the rolling of the struck ship and the

pitching of the striking ship, the calculation model misses

the effects arising from the waves generated by the moving

ships. This situation is analysed by looking at the results of

test 309, where these effects were clearly present. The

calculation model considers only the roll and the pitch

caused by the vertical and the horizontal eccentricity

between the contact point and the centre of gravity.

However, the measured angular motions clearly exceed

these values, as shown in Fig. 12. As a consequence, the

penetration in a vertical direction is also underestimated in

the calculations; see Fig. 13. Some conclusions can be

drawn on the basis of the visual analysis of the videos of

the model-scale experiments. In these, the pitching of the

striking ship is due to the wave trough left behind by the

accelerating struck ship, and (through the contact between

the ships) this also increases the rolling of the struck ship.

5 Conclusions

The developed calculation model predicts the motions and

the forces in the plane of the water surface rather accu-

rately. The character of the contact forces is highly

dependent on the collision scenario, i.e. on the exact angle

and location of the collision. In an eccentric collision at

right angles, the contact force, and thus also the penetra-

tion, is transverse to the struck ship and has only a minor

longitudinal component. In collisions at small or large

angles, the extent of the damage to the side of the struck

ship is long and shallow. In all of the calculated scenarios

the forces are predicted well in the loading stage, while

during the unloading some deviations from the measure-

ments occur. This, as well as a somewhat unrealistic and

rapid drop in the force values in the stiction phase, indi-

cates that the interaction model cannot fully describe these

complex phenomena. However, these effects are small

when looking at the penetrations.

The longitudinal and the transverse penetration inside

the struck ship are properly predicted with the calculation

model, while they are slightly underestimated in the ver-

tical direction. This is due to the pitching of the striking

ship, as induced by complex wave patterns during the

collision. The effect of this is not considered in the cal-

culation model. This hydrodynamic interaction as well as

the effect of the forward speed of the struck ship is left for

future studies.

The model for evaluating the contact force could be

extended to consider ship-like side structures whose

deformation mechanisms are extremely complex in com-

parison to that of the side structure used in the model-scale

experiments. This, together with motion simulations, would

Fig. 12 Pitch of the striking

ship (a) and roll of the struck

ship (b)

Fig. 13 Penetration in the vertical direction in test 309. Note the

scaled zB axis
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improve the accuracy of collision analyses and thus allow

the crashworthinesses of different structural arrangements

to be enhanced.

Appendix 1: Scalar form of equations of motion

For numerical integration, the equation of motion

M½ � 0

0 I½ �

� �
_u
_X

� �

þ M½ �X� u
X� I½ �X

� �

� FR � Fl

¼ F
G

� �

� FR � Fl ð38Þ

is rearranged to obtain a more convenient form:

Ml


 � _u
_X

� �

þ MX
l

h i u

X

� �

� T½ �T K½ �
Rf g
u½ �
þ K½ �

dxf g
du½ �

� 	

¼
F

G

� �

� FR � Fl ð39Þ

where the matrices have the following component form:

½Ml� ¼

mþ ax 0 0 0 0 0

0 mþ ay 0 ayx 0 ayz

0 0 mþ az 0 azy 0

0 axy 0 Ix þ axx 0 �Ixz

0 0 ayz 0 Iy þ ayy 0

0 azy 0 �Ixz 0 Ix þ azz

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

;

ð40Þ

MX
l

h i
¼

0 �ðmþ axÞr ðmþ axÞq 0 0 0

ðmþ ayÞr 0 �ðmþ ayÞp 0 0 0

�ðmþ azÞq ðmþ azÞp 0 0 0 0

0 0 0 0 I45 �I46

0 0 0 �I45 0 I56

0 0 0 I46 �I56 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð41Þ

with

I45 ¼ ðIzz þ azzÞr � ðIzx þ azxÞp� Izyq;

I46 ¼ ðIyy þ ayyÞq� Iyzr � Iyxp;

I56 ¼ Ixx þ axxp� Ixyq� Ixz þ axzr

and

½K� ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 �qgAW 0 qgAW xF 0

0 0 0 �GMTgm 0 0

0 0 qgAW xF 0 �GMLgm 0

0 0 0 0 0 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

where m is the structural mass, ai and aii are the transla-

tional and rotational added masses, AW is the waterplane

area, xF is the longitudinal centre of flotation, q is the water

density, g is the gravitational acceleration, GMT is the

transverse metacentric height, and GML is the longitudinal

metacentric height. The subscript characters in the mass

and inertia terms follow the common notation; a single

character refers to a value involved with translational

motions, and two characters refer to rotational motion or to

a coupling between two motion components.

The restoring force is divided into a constant part FRjtj
evaluated at the beginning of the time increment at t = tj, and

into the change dFRjtjþ1
in the force during the increment:

FRjtjþdFRjtjþ1
¼ ½T�T ½K� fRg½u� þ ½K�

fdxg
½du� ð42Þ

This split is necessary, as the restoring force depends on

the ship’s position with respect to the inertial coordinate

system given by the position vector R and Euler’s angles.

The increase in the force during the time increment is still

evaluated via the displacements in the local coordinate

system, but because of small angular displacements the

error will be negligible.

During the time increment, the matrices and vectors on the

left-hand side of Eq. 39 are updated several times within the

increment, while the right-hand side is kept constant.

Appendix 2: Test matrix for second and third sets

Test b
(deg)

Bulb LC

(m)

mA

(kg)

mB

(kg)

u0

(m/s)

FC,x
A

(N)

FC,y
A

(N)

ED,P

(J)

201 90 1 0.82 28.5 30.5 0.87 226 25 3.91

202 90 1 0.83 28.5 30.5 0.71 179 17 2.36

203 90 1 0.83 28.5 30.5 0.38 91 13 0.75

204 90 1 0.45 28.5 30.5 0.91 300 36 6.30

205 90 1 0.48 28.5 30.5 0.38 115 6 0.95

206 90 1 0.38 28.5 30.5 0.71 221 13 3.43

207 90 1 0.80 28.5 20.5 0.90 200 27 4.2

208 90 1 0.41 28.5 20.5 0.89 229 33 4.92

301 120 1 0.37 28.5 20.5 0.87 172 47 4.20

302 120 1 0.32 28.5 20.5 0.30 59 14 0.51

303 120 1 0.3 28.5 44.5 0.84 204 52 6.50

304 120 1 0.38 28.5 44.5 0.37 89 21 1.01

305 (sliding) 145 1 0.32 28.5 20.5 0.34 44 29 0.54

306 (sliding) 145 1 0.44 28.5 20.5 0.87 115 65 3.91

307 (sliding) 145 1 0.38 28.5 44.5 0.84 118 67 5.47

308 145 1 0.34 28.5 44.5 0.28 45 27 0.52

309 (sliding) 145 3 0.46 28.5 20.5 0.87 120 86 3.19

310 (sliding) 145 2 0.44 28.5 20.5 0.88 142 94 3.19

311 120 3 0.42 28.5 20.5 0.88 217 69 4.25

312 120 2 0.41 28.5 20.5 0.86 313 104 4.64

313 60 1 0.29 28.5 20.5 0.76 177 41 3.14

314 60 1 0.32 28.5 20.5 0.36 80 16 0.81

315 60 1 0.38 28.5 44.5 0.75 202 52 4.35

316 60 1 0.4 28.5 44.5 0.43 104 24 1.17

Absolute maximum values are presented for FC,x
A and FC,y

A

m, ship mass; u0, contact velocity; ED,P, plastic deformation energy
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