

Heikinheimo, H. (2010): Extending data mining techniques for frequent
pattern discovery: trees, low-entropy sets, and crossmining. Doctoral
thesis, Aalto University School of Science and Technology, TKK Dissertations in
Information and Computer Science, TKK-ICS-D15, Espoo, Finland.

Keywords: data analysis, frequent patterns, trees, entropy, minimum descrip-
tion length, pattern selection, clustering, mining mixed data types

Abstract

The idea of frequent pattern discovery is to find frequently occurring events in
large databases. Such data mining techniques can be useful in various domains.
For instance, in recommendation and e-commerce systems frequently occurring
product purchase combinations are essential in user preference modeling. In the
ecological domain, patterns of frequently occurring groups of species can be used
to reveal insight into species interaction dynamics.

Over the past few years, most frequent pattern mining research has concen-
trated on efficiency (speed) of mining algorithms. However, it has been argued
within the community that while efficiency of the mining task is no longer a
bottleneck, there is still an urgent need for methods that derive compact, yet
high quality results with good application properties. The aim of this thesis is
to address this need.

The first part of the thesis discusses a new type of tree pattern class for
expressing hierarchies of general and more specific attributes in unstructured
binary data. The new pattern class is shown to have advantageous properties,
and to discover relationships in data that cannot be expressed alone with the
more traditional frequent itemset or association rule patterns.

The second and third parts of the thesis discuss the use of entropy as a score
measure for frequent pattern mining. A new pattern class is defined, low-entropy
sets, which allow to express more general types of occurrence structure than with
frequent itemsets. The concept can also be easily applied to tree types of pattern.
Furthermore, by applying minimum description length in pattern selection for
low-entropy sets it is shown experimentally that in most cases the collections of
selected patterns are much smaller than by using frequent itemsets.

The fourth part of the thesis examines the idea of crossmining itemsets, that
is, relating itemsets to numerical variables in a database of mixed data types.
The problem is formally defined and turns out to be NP-hard, although it is
approximately solvable within a constant-factor of the optimum solution. Exper-
iments show that the algorithm finds itemsets that convey structure in both the
binary and the numerical part of the data.

i

Heikinheimo, H. (2010): Extending data mining techniques for frequent
pattern discovery: trees, low-entropy sets, and crossmining. Doctoral
thesis, Aalto University School of Science and Technology, TKK Dissertations in
Information and Computer Science, TKK-ICS-D15, Espoo, Finland.

Keywords: data analysis, frequent patterns, trees, entropy, minimum descrip-
tion length, pattern selection, clustering, mining mixed data types

Abstract

The idea of frequent pattern discovery is to find frequently occurring events in
large databases. Such data mining techniques can be useful in various domains.
For instance, in recommendation and e-commerce systems frequently occurring
product purchase combinations are essential in user preference modeling. In the
ecological domain, patterns of frequently occurring groups of species can be used
to reveal insight into species interaction dynamics.

Over the past few years, most frequent pattern mining research has concen-
trated on efficiency (speed) of mining algorithms. However, it has been argued
within the community that while efficiency of the mining task is no longer a
bottleneck, there is still an urgent need for methods that derive compact, yet
high quality results with good application properties. The aim of this thesis is
to address this need.

The first part of the thesis discusses a new type of tree pattern class for
expressing hierarchies of general and more specific attributes in unstructured
binary data. The new pattern class is shown to have advantageous properties,
and to discover relationships in data that cannot be expressed alone with the
more traditional frequent itemset or association rule patterns.

The second and third parts of the thesis discuss the use of entropy as a score
measure for frequent pattern mining. A new pattern class is defined, low-entropy
sets, which allow to express more general types of occurrence structure than with
frequent itemsets. The concept can also be easily applied to tree types of pattern.
Furthermore, by applying minimum description length in pattern selection for
low-entropy sets it is shown experimentally that in most cases the collections of
selected patterns are much smaller than by using frequent itemsets.

The fourth part of the thesis examines the idea of crossmining itemsets, that
is, relating itemsets to numerical variables in a database of mixed data types.
The problem is formally defined and turns out to be NP-hard, although it is
approximately solvable within a constant-factor of the optimum solution. Exper-
iments show that the algorithm finds itemsets that convey structure in both the
binary and the numerical part of the data.

i

ii ii

Tiivistelmä

Usein toistuvien hahmojen etsintä on tiedonlouhinnan osa-alue, jolla on mo-
nenlaisia sovellusalueita. Esimerkkinä tästä ovat mm. sähköiset verkkokauppa-
ja ostosuositusjärjestelmät, joissa usein ostettuja tuotekombinaatioita voidaan
käyttää asiakkaiden mieltymysten mallintamiseen. Ekologiassa taas usein tois-
tuvat lajien esiintymiskombinaatiot saattavat paljastaa tietoa lajien interaktion
dynamiikasta.

Menneinä vuosina usein toistuvien hahmojen etsintä on tieteenä lähinnä kes-
kittynyt tehokkaiden (nopeiden) louhinta-algoritmien suunnitteluun. Vaikka lou-
hinnan tehokkuus ei enää muodostakaan menetelmien pullonkaulaa, tiedonlou-
hinnan yhteisön sisällä on esitetty, että monilla sovellusalueilla olisi edelleen tar-
vetta uusille menetelmille, jotka kykenisivät paremmin tuottamaan pieniä mutta
ominaisuuksiltaan korkealaatuisia hahmojoukkoja. Tämän väitöskirjatyön tar-
koituksena on suunnata huomio tähän tarpeeseen.

Työn ensimmäisessä osassa esitellään uudenlainen puutyyppinen hahmoluok-
ka, jolla on mahdollista esittää attribuuttien hierarkioita binääriaineistossa niiden
yleisyyden perusteella. Työssä osoitetaan, että tällä hahmoluokalla on hyödyllisiä
ominaisuuksia. Sillä pystytään ilmaisemaan attribuuttien interaktiota tavalla, jo-
ka ei ole mahdollista kattavien joukkojen tai assosiaatiosääntöjen avulla.

Työn toisessa ja kolmannessa osassa keskustellaan entropian käytöstä mal-
linarvostusfunktiona usein toistuvien hahmojen etsinnässä. Tähän liittyen työ
määrittelee uuden hahmoluokan, matalan entropian joukot, joilla on mahdollista
ilmaista yleisempiä interaktiota kuin tavallisilla kattavilla joukoilla. Entropiaa on
myös helppo soveltaa puutyyppisissä hahmoissa. Lisäksi työssä näytetään kokeel-
lisesti, että MDL-periaatteen mukaisen hahmonvalinnan soveltaminen matalan
entropian joukkoihin johtaa usein paljon pienempiin hahmojen loppujoukkoihin
kuin mitä kattavilla joukoilla.

Työn neljännessä osassa tutkitaan kattavien joukkojen louhintaa hyödyntäen
aineiston numeerisia attribuutteja. Ongelmalle muotoillaan formaali määritelmä
ja todetaan, että sen optimaalinen ratkaiseminen on kompleksisuudeltaan NP-
kova ongelma. Sille on kuitenkin olemassa vakiokertoiminen approksimaatioalgo-
ritmi. Kokeet oikealla aineistolla osoittavat, että menetelmä löytää rakennetta
sekä aineiston binäärisestä että numeerisesta osiosta.

iii

Tiivistelmä

Usein toistuvien hahmojen etsintä on tiedonlouhinnan osa-alue, jolla on mo-
nenlaisia sovellusalueita. Esimerkkinä tästä ovat mm. sähköiset verkkokauppa-
ja ostosuositusjärjestelmät, joissa usein ostettuja tuotekombinaatioita voidaan
käyttää asiakkaiden mieltymysten mallintamiseen. Ekologiassa taas usein tois-
tuvat lajien esiintymiskombinaatiot saattavat paljastaa tietoa lajien interaktion
dynamiikasta.

Menneinä vuosina usein toistuvien hahmojen etsintä on tieteenä lähinnä kes-
kittynyt tehokkaiden (nopeiden) louhinta-algoritmien suunnitteluun. Vaikka lou-
hinnan tehokkuus ei enää muodostakaan menetelmien pullonkaulaa, tiedonlou-
hinnan yhteisön sisällä on esitetty, että monilla sovellusalueilla olisi edelleen tar-
vetta uusille menetelmille, jotka kykenisivät paremmin tuottamaan pieniä mutta
ominaisuuksiltaan korkealaatuisia hahmojoukkoja. Tämän väitöskirjatyön tar-
koituksena on suunnata huomio tähän tarpeeseen.

Työn ensimmäisessä osassa esitellään uudenlainen puutyyppinen hahmoluok-
ka, jolla on mahdollista esittää attribuuttien hierarkioita binääriaineistossa niiden
yleisyyden perusteella. Työssä osoitetaan, että tällä hahmoluokalla on hyödyllisiä
ominaisuuksia. Sillä pystytään ilmaisemaan attribuuttien interaktiota tavalla, jo-
ka ei ole mahdollista kattavien joukkojen tai assosiaatiosääntöjen avulla.

Työn toisessa ja kolmannessa osassa keskustellaan entropian käytöstä mal-
linarvostusfunktiona usein toistuvien hahmojen etsinnässä. Tähän liittyen työ
määrittelee uuden hahmoluokan, matalan entropian joukot, joilla on mahdollista
ilmaista yleisempiä interaktiota kuin tavallisilla kattavilla joukoilla. Entropiaa on
myös helppo soveltaa puutyyppisissä hahmoissa. Lisäksi työssä näytetään kokeel-
lisesti, että MDL-periaatteen mukaisen hahmonvalinnan soveltaminen matalan
entropian joukkoihin johtaa usein paljon pienempiin hahmojen loppujoukkoihin
kuin mitä kattavilla joukoilla.

Työn neljännessä osassa tutkitaan kattavien joukkojen louhintaa hyödyntäen
aineiston numeerisia attribuutteja. Ongelmalle muotoillaan formaali määritelmä
ja todetaan, että sen optimaalinen ratkaiseminen on kompleksisuudeltaan NP-
kova ongelma. Sille on kuitenkin olemassa vakiokertoiminen approksimaatioalgo-
ritmi. Kokeet oikealla aineistolla osoittavat, että menetelmä löytää rakennetta
sekä aineiston binäärisestä että numeerisesta osiosta.

iii

iv iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline of the thesis . 3
1.3 Author’s contribution and relation to other publications 3

2 Preliminaries 5
2.1 Basic definitions and notation . 5
2.2 Frequent itemset mining . 5
2.3 Clustering . 10
2.4 Pattern validation via swap randomization 11
2.5 Datasets . 13

3 Mining trees from unstructured binary data 15
3.1 Introduction . 15
3.2 Problem definition . 17
3.3 Problem properties . 19
3.4 Algorithms . 23
3.5 Experiments . 24
3.6 Related work . 33
3.7 Conclusions . 34

4 Low-entropy sets and trees 35
4.1 Introduction . 35
4.2 Problem definitions . 36
4.3 Problem properties . 39
4.4 Algorithms . 42
4.5 Experiments . 43
4.6 Related work . 52
4.7 Conclusions . 54

5 Pattern selection for low-entropy sets 55
5.1 Introduction . 55
5.2 Problem definition . 56

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline of the thesis . 3
1.3 Author’s contribution and relation to other publications 3

2 Preliminaries 5
2.1 Basic definitions and notation . 5
2.2 Frequent itemset mining . 5
2.3 Clustering . 10
2.4 Pattern validation via swap randomization 11
2.5 Datasets . 13

3 Mining trees from unstructured binary data 15
3.1 Introduction . 15
3.2 Problem definition . 17
3.3 Problem properties . 19
3.4 Algorithms . 23
3.5 Experiments . 24
3.6 Related work . 33
3.7 Conclusions . 34

4 Low-entropy sets and trees 35
4.1 Introduction . 35
4.2 Problem definitions . 36
4.3 Problem properties . 39
4.4 Algorithms . 42
4.5 Experiments . 43
4.6 Related work . 52
4.7 Conclusions . 54

5 Pattern selection for low-entropy sets 55
5.1 Introduction . 55
5.2 Problem definition . 56

v

5.3 Algorithms . 60
5.4 Experiments . 66
5.5 Related work . 72
5.6 Conclusions . 73

6 Crossmining binary and numerical data 75
6.1 Introduction . 75
6.2 Problem definition . 77
6.3 Problem properties . 78
6.4 Algorithms . 82
6.5 Experiments . 83
6.6 Related work . 91
6.7 Conclusions . 92

7 Conclusions and discussion 93

vi

5.3 Algorithms . 60
5.4 Experiments . 66
5.5 Related work . 72
5.6 Conclusions . 73

6 Crossmining binary and numerical data 75
6.1 Introduction . 75
6.2 Problem definition . 77
6.3 Problem properties . 78
6.4 Algorithms . 82
6.5 Experiments . 83
6.6 Related work . 91
6.7 Conclusions . 92

7 Conclusions and discussion 93

vi

Acknowledgements

During the last four years I have been a researcher at the Helsinki Institute
for Information Technology (HIIT) as well as the Department of Information and
Computer Science at Helsinki University of Technology (TKK). I have also been
a doctoral student both at TKK and at the Graduate School in Computational
Biology, Bioinformatics, and Biometry (Combi). I thank these organizations and
their staff for providing the necessary facilities and resources to allow me to
concentrate on what I considered to be essential.

This work would not have been possible without the support of my advisor,
professor Heikki Mannila. I am very grateful for the kind and insightful way that
he has mentored me during this time, as well as for the valuable time that he has
given me in the form of discussions and advice. I regard it as a great privilege to
have been a part of his research group.

I am also very grateful to professor Mikael Fortelius. His enthusiasm and in-
telligence have been truly inspiring. Working with him has been a great pleasure.

Furthermore, I would like to thank all my other co-authors and colleagues:
Antti Ukkonen, Sami Hanhijärvi, Jouni Seppänen, Kai Puolamäki, Gemma Gar-
riga, Jilles Vreeken, Arno Siebes, Jussi Eronen, Taneli Mielikäinen, and Nikolaj
Tatti, as well as the whole data mining group at TKK, including Jaakko Hollmén,
Ella Bingham, Panos Papapetrou, Mikko Korpela, Janne Toivola, Jefrey Lijffijt,
Markus Ojala, Niko Vuokko and Ville Pettersson. I am truly fortunate to have
worked among such gifted and good-hearted people.

A special word of thanks goes to Antti Ukkonen for his support and for our
discussions together on topics ranging from data mining to algorithmic trading
and to movie scripts and beyond. The Finnish-Dutch collaboration with Jilles
Vreeken and professor Arno Siebes is something that I want to mention separately.
It has been a truly enjoyable experience.

I also thank the pre-examiners of this thesis: Professor Jian Pei of the Si-
mon Fraser University and Professor Carson Kai-Sang Leung of the University
of Manitoba.

Special thanks go to Juha Kettunen for helping me with the cover and other
illustrations of the thesis.

I am grateful for the student grants that I have received from the Nokia
Foundation and the Foundation for Technology Promotion (TES).

Finally, I want to express my profound gratitude to my dearest companion
throughout this journey, Katri, for her support and love. I am also grateful to my
mother, my father, my sister and my grandparents for all that they have given
me and done for me.

Hannes Heikinheimo, Otaniemi, December 2009

vii

Acknowledgements

During the last four years I have been a researcher at the Helsinki Institute
for Information Technology (HIIT) as well as the Department of Information and
Computer Science at Helsinki University of Technology (TKK). I have also been
a doctoral student both at TKK and at the Graduate School in Computational
Biology, Bioinformatics, and Biometry (Combi). I thank these organizations and
their staff for providing the necessary facilities and resources to allow me to
concentrate on what I considered to be essential.

This work would not have been possible without the support of my advisor,
professor Heikki Mannila. I am very grateful for the kind and insightful way that
he has mentored me during this time, as well as for the valuable time that he has
given me in the form of discussions and advice. I regard it as a great privilege to
have been a part of his research group.

I am also very grateful to professor Mikael Fortelius. His enthusiasm and in-
telligence have been truly inspiring. Working with him has been a great pleasure.

Furthermore, I would like to thank all my other co-authors and colleagues:
Antti Ukkonen, Sami Hanhijärvi, Jouni Seppänen, Kai Puolamäki, Gemma Gar-
riga, Jilles Vreeken, Arno Siebes, Jussi Eronen, Taneli Mielikäinen, and Nikolaj
Tatti, as well as the whole data mining group at TKK, including Jaakko Hollmén,
Ella Bingham, Panos Papapetrou, Mikko Korpela, Janne Toivola, Jefrey Lijffijt,
Markus Ojala, Niko Vuokko and Ville Pettersson. I am truly fortunate to have
worked among such gifted and good-hearted people.

A special word of thanks goes to Antti Ukkonen for his support and for our
discussions together on topics ranging from data mining to algorithmic trading
and to movie scripts and beyond. The Finnish-Dutch collaboration with Jilles
Vreeken and professor Arno Siebes is something that I want to mention separately.
It has been a truly enjoyable experience.

I also thank the pre-examiners of this thesis: Professor Jian Pei of the Si-
mon Fraser University and Professor Carson Kai-Sang Leung of the University
of Manitoba.

Special thanks go to Juha Kettunen for helping me with the cover and other
illustrations of the thesis.

I am grateful for the student grants that I have received from the Nokia
Foundation and the Foundation for Technology Promotion (TES).

Finally, I want to express my profound gratitude to my dearest companion
throughout this journey, Katri, for her support and love. I am also grateful to my
mother, my father, my sister and my grandparents for all that they have given
me and done for me.

Hannes Heikinheimo, Otaniemi, December 2009

vii

viii viii

Chapter 1

Introduction

1.1 Motivation

Large amounts of data are being gathered in various situations in which we
interact with society. For instance, on a daily trip to the grocery store the set of
products we buy is stored in a database owned by the supermarket chain. When
we use a credit card, the transaction is recorded in the database of the credit card
company. Furthermore, during the trip, information about our location, phone
calls, messages and mobile Internet traffic is stored in the databases of a cell
phone service provider. When we use public transportation, the trip is recorded
in the database of the bus or train company when our (electronic) fare ticket is
stamped. The list goes on and on.

This thesis is about methods and algorithms that can be used to create value
from this stream of data. The idea is to seek for something called knowledge,
which means regularities, rules and structure hidden in the data. This activity
is a subfield of computer science called knowledge discovery or sometimes data
mining. This knowledge will help in making decisions and conclusions that lead
to value creation for both the user and the owner of the data. For instance, the
purchase information collected by a supermarket chain may help the supermarket
to adjust product offering and availability to better suit the needs of its customers.
A credit card company familiar with the purchase history of its customers can
detect when a credit card has been stolen and used to buy goods or services
that the customer would be unlikely to buy himself. Using location tracking
technologies, a cell phone service provider can offer map-based services such as
navigation or search of nearby restaurants. Moreover, bus and train companies
can use recorded passenger data to help plan bus services to run more often where
needed.

This thesis focuses on a specific topic of data mining called frequent pattern
mining, first studied in 1993 by Agrawal et al. [2]. The application of the paper
by Agrawal et al. was related to finding popular product combinations from a

1

Chapter 1

Introduction

1.1 Motivation

Large amounts of data are being gathered in various situations in which we
interact with society. For instance, on a daily trip to the grocery store the set of
products we buy is stored in a database owned by the supermarket chain. When
we use a credit card, the transaction is recorded in the database of the credit card
company. Furthermore, during the trip, information about our location, phone
calls, messages and mobile Internet traffic is stored in the databases of a cell
phone service provider. When we use public transportation, the trip is recorded
in the database of the bus or train company when our (electronic) fare ticket is
stamped. The list goes on and on.

This thesis is about methods and algorithms that can be used to create value
from this stream of data. The idea is to seek for something called knowledge,
which means regularities, rules and structure hidden in the data. This activity
is a subfield of computer science called knowledge discovery or sometimes data
mining. This knowledge will help in making decisions and conclusions that lead
to value creation for both the user and the owner of the data. For instance, the
purchase information collected by a supermarket chain may help the supermarket
to adjust product offering and availability to better suit the needs of its customers.
A credit card company familiar with the purchase history of its customers can
detect when a credit card has been stolen and used to buy goods or services
that the customer would be unlikely to buy himself. Using location tracking
technologies, a cell phone service provider can offer map-based services such as
navigation or search of nearby restaurants. Moreover, bus and train companies
can use recorded passenger data to help plan bus services to run more often where
needed.

This thesis focuses on a specific topic of data mining called frequent pattern
mining, first studied in 1993 by Agrawal et al. [2]. The application of the paper
by Agrawal et al. was related to finding popular product combinations from a

1

1 Introduction

supermarket transaction database. An example of such a product combination
could be, say,

{milk, cheese, bread}.

The idea is that a database user defines a frequency condition, such as all product
combinations that occur in more than 25 percent of customer transactions, based
on which an algorithm then enumerates all cases in concordance with this con-
dition. From such product combinations it is then further possible to compute
rules such as

{milk, bread} → {cheese},

that have sufficient accuracy, again defined by the database user. The example
rule means that if a person buys milk and cheese, he or she is most likely to buy
bread as well. Such rules are called association rules, while combinations of items
having a frequency over a certain threshold are called frequent itemsets. Both
association rules and frequent itemsets are examples of patterns.

Since Agrawal et al., the frequent pattern mining problem has been stud-
ied extensively with alternative problem formulations, as well as new variants of
existing algorithms together with new applicational settings such as telecommuni-
cations, bioinformatics, web mining, text mining, and many more. In retrospect,
however, the efficiency (run time) of enumerating the complete set of frequent
patterns has attracted most research in the subject.

In this thesis we turn our attention from run time efficiency to address issues
related to the interpretation and practicality of frequent pattern mining results.
Although run time efficiency is also an important aspect of practicality, in real
life application settings, coming up with a few high quality patterns is likely to
be more valuable than simply enumerating a massive number of patterns in a
very short time. Indeed, in a recent survey on frequent pattern mining by Han
et al. [31] it was argued that while efficiency of the mining task is no longer a
bottleneck, there is still an urgent need for methods that derive compact, yet
high quality results with good application properties.

This work concentrates on developing expressive new frequent pattern min-
ing methods for gaining more compact and interpretable data mining results.
More precisely, the expressiveness of a data mining method is its ability to ex-
press relationships between attributes in the data, such as hierarchical relation-
ships or relationships based on types of dependency structure other than simple
co-occurrence. Compactness refers to the method’s ability to convey the most
relevant and important interactions of attributes in the data in a concise and
non-redundant manner. Expressiveness and compactness are intertwined: for
good compact data mining results we need expressive mining methods.

2

1 Introduction

supermarket transaction database. An example of such a product combination
could be, say,

{milk, cheese, bread}.

The idea is that a database user defines a frequency condition, such as all product
combinations that occur in more than 25 percent of customer transactions, based
on which an algorithm then enumerates all cases in concordance with this con-
dition. From such product combinations it is then further possible to compute
rules such as

{milk, bread} → {cheese},

that have sufficient accuracy, again defined by the database user. The example
rule means that if a person buys milk and cheese, he or she is most likely to buy
bread as well. Such rules are called association rules, while combinations of items
having a frequency over a certain threshold are called frequent itemsets. Both
association rules and frequent itemsets are examples of patterns.

Since Agrawal et al., the frequent pattern mining problem has been stud-
ied extensively with alternative problem formulations, as well as new variants of
existing algorithms together with new applicational settings such as telecommuni-
cations, bioinformatics, web mining, text mining, and many more. In retrospect,
however, the efficiency (run time) of enumerating the complete set of frequent
patterns has attracted most research in the subject.

In this thesis we turn our attention from run time efficiency to address issues
related to the interpretation and practicality of frequent pattern mining results.
Although run time efficiency is also an important aspect of practicality, in real
life application settings, coming up with a few high quality patterns is likely to
be more valuable than simply enumerating a massive number of patterns in a
very short time. Indeed, in a recent survey on frequent pattern mining by Han
et al. [31] it was argued that while efficiency of the mining task is no longer a
bottleneck, there is still an urgent need for methods that derive compact, yet
high quality results with good application properties.

This work concentrates on developing expressive new frequent pattern min-
ing methods for gaining more compact and interpretable data mining results.
More precisely, the expressiveness of a data mining method is its ability to ex-
press relationships between attributes in the data, such as hierarchical relation-
ships or relationships based on types of dependency structure other than simple
co-occurrence. Compactness refers to the method’s ability to convey the most
relevant and important interactions of attributes in the data in a concise and
non-redundant manner. Expressiveness and compactness are intertwined: for
good compact data mining results we need expressive mining methods.

2

1.2 Outline of the thesis

The outline of the rest of the thesis is as follows:

• Chapter 2 presents some basic definitions and notation. A short introduc-
tion to frequent itemset mining is given, and the basic k-means clustering
algorithm is briefly discussed. An overview of the data sets used in the
experiments sections of the thesis is also given.

• In Chapter 3, a new type of tree pattern class for unstructured binary data
is defined. There is a theoretical discussion of some of its properties, such
as behavior in random data, and monotonicity, enabling a simple level-wise
algorithm to be devised. In the experimental section examples of patterns
discovered using the method are given. Experiments with random data are
also provided.

• In Chapter 4, a new score, entropy, is proposed for frequent pattern mining.
It is shown that entropy can be easily applied to both set and tree types
of pattern, and that as a monotonic concept it allows the use of the level-
wise approach. In the experimental section the behavior of the approach is
tested empirically with real life data sets, as well as swap randomized data.

• Chapter 5 presents the idea of using low entropy-based patterns and mini-
mum description length (MDL) for compact data description. It is shown
that each row in the data can be encoded using the maximum likelihood
principle, which is in relation to minimizing data encoding length. In the
experiments section, we study the collections of low-entropy patterns re-
sulting from the approach, and compare them with results using frequent
itemsets.

• Chapter 6 introduces the idea of relating itemsets to numerical variables
in a database of mixed data types. This can be considered either as a
pattern selection approach or as a constraint clustering problem. Theo-
retical discussion includes proof of NP-completeness and a simple greedy
constant-factor approximation algorithm. In the experiments section we
test the algorithm’s ability to convey structure, in both the numerical and
the binary part of the data.

1.3 Author’s contribution and relation to other

publications

This thesis is based on papers [27, 39, 40, 41]. More precisely, Chapter 3 is
based on the work presented in [40], while Chapters 4 and 5 are based on the
work in [39] and [41]. Chapter 6 discusses ideas published in [27]. Notation and
terminology have been made consistent within this thesis. Missing details, such

3

1.2 Outline of the thesis

The outline of the rest of the thesis is as follows:

• Chapter 2 presents some basic definitions and notation. A short introduc-
tion to frequent itemset mining is given, and the basic k-means clustering
algorithm is briefly discussed. An overview of the data sets used in the
experiments sections of the thesis is also given.

• In Chapter 3, a new type of tree pattern class for unstructured binary data
is defined. There is a theoretical discussion of some of its properties, such
as behavior in random data, and monotonicity, enabling a simple level-wise
algorithm to be devised. In the experimental section examples of patterns
discovered using the method are given. Experiments with random data are
also provided.

• In Chapter 4, a new score, entropy, is proposed for frequent pattern mining.
It is shown that entropy can be easily applied to both set and tree types
of pattern, and that as a monotonic concept it allows the use of the level-
wise approach. In the experimental section the behavior of the approach is
tested empirically with real life data sets, as well as swap randomized data.

• Chapter 5 presents the idea of using low entropy-based patterns and mini-
mum description length (MDL) for compact data description. It is shown
that each row in the data can be encoded using the maximum likelihood
principle, which is in relation to minimizing data encoding length. In the
experiments section, we study the collections of low-entropy patterns re-
sulting from the approach, and compare them with results using frequent
itemsets.

• Chapter 6 introduces the idea of relating itemsets to numerical variables
in a database of mixed data types. This can be considered either as a
pattern selection approach or as a constraint clustering problem. Theo-
retical discussion includes proof of NP-completeness and a simple greedy
constant-factor approximation algorithm. In the experiments section we
test the algorithm’s ability to convey structure, in both the numerical and
the binary part of the data.

1.3 Author’s contribution and relation to other

publications

This thesis is based on papers [27, 39, 40, 41]. More precisely, Chapter 3 is
based on the work presented in [40], while Chapters 4 and 5 are based on the
work in [39] and [41]. Chapter 6 discusses ideas published in [27]. Notation and
terminology have been made consistent within this thesis. Missing details, such

3

1 Introduction

as proofs of the most important theorems and propositions have been supplied,
while a few minor topics discussed in the original papers have been omitted.

The specific contributions of the author are the following:

• The theoretical ideas of Chapter 3 were jointly developed with the co-
authors of [40], however with major contributions to the design of the main
concept by the author, as with the theoretical property discussed in Sec-
tion 3.3.3. Implementation of the concept and the experiments, using real
data, was performed by the author.

• The main ideas presented in Chapter 4 were jointly developed with the
co-authors of [39]. All experiments and some of the implementions were
carried out by the author.

• The most important theoretical contributions by the author in Chapter 5
include the ideas presented in Section 5.3.2, as well as Algorithm 4, Propo-
sition 5.1 and candidate ordering in Section 5.3.3. Other main ideas were
developed together with the co-authors of [41]. The author also performed a
significant part of the implementation and experimentation tasks presented
in the chapter.

• The results of Chapter 6 were due to a joint effort with the co-authors of [27].
The most significant contributions by the author are related to the design
of the main concept and the proof of Theorem 6.1. The implementation
task, as well as most experiments, were also performed by the author.

4

1 Introduction

as proofs of the most important theorems and propositions have been supplied,
while a few minor topics discussed in the original papers have been omitted.

The specific contributions of the author are the following:

• The theoretical ideas of Chapter 3 were jointly developed with the co-
authors of [40], however with major contributions to the design of the main
concept by the author, as with the theoretical property discussed in Sec-
tion 3.3.3. Implementation of the concept and the experiments, using real
data, was performed by the author.

• The main ideas presented in Chapter 4 were jointly developed with the
co-authors of [39]. All experiments and some of the implementions were
carried out by the author.

• The most important theoretical contributions by the author in Chapter 5
include the ideas presented in Section 5.3.2, as well as Algorithm 4, Propo-
sition 5.1 and candidate ordering in Section 5.3.3. Other main ideas were
developed together with the co-authors of [41]. The author also performed a
significant part of the implementation and experimentation tasks presented
in the chapter.

• The results of Chapter 6 were due to a joint effort with the co-authors of [27].
The most significant contributions by the author are related to the design
of the main concept and the proof of Theorem 6.1. The implementation
task, as well as most experiments, were also performed by the author.

4

Chapter 2

Preliminaries

2.1 Basic definitions and notation

A dataset is a set D of observations made over a set of attributes A. More
specifically, each observation in D is a vector of (measured) values observed si-
multaneously for the set of attributes A. As a whole, D can be viewed as a matrix
of n rows of observation vectors and m columns with attributes as headers. An
observation can also be referred to as a data point.

We denote a single attribute by a capital letter from the beginning of the
alphabet, that is, by A,B,C . . ., and so on. An observation is denoted by the
row vector t. Given an attribute A and a row t, we denote the value of attribute
A on row t by t(A). Depending on the type of attribute A, the value of t(A) may
be either binary, that is t(A) ∈ {0, 1}, or numerical, that is, t(A) ∈ R.

Binary valued attributes are often called items. Items are attributes that can
be either present or absent at the moment of observation. The entire set of items
is denoted by I. For datasets consisting of only binary attributes we have I = A,
and by convention, a row t may be expressed as a subset of the universe of all
attributes, i.e., t ⊆ I, containing those binary attributes with value 1 in row t.
Observations of binary attributes are often called transactions, hence the symbol
t. Subsets of I are called itemsets, and denoted with a capital letter from the
end of the alphabet, that is, by . . . , X, Y, Z. We omit the braces around singleton
sets, e.g. we write A instead of {A }. We call an itemset X of size k a k-itemset.

2.2 Frequent itemset mining

Section 1.1 briefly discussed frequent itemsets and association rules. A more
precise introduction to these basic pattern types is given in this section.

5

Chapter 2

Preliminaries

2.1 Basic definitions and notation

A dataset is a set D of observations made over a set of attributes A. More
specifically, each observation in D is a vector of (measured) values observed si-
multaneously for the set of attributes A. As a whole, D can be viewed as a matrix
of n rows of observation vectors and m columns with attributes as headers. An
observation can also be referred to as a data point.

We denote a single attribute by a capital letter from the beginning of the
alphabet, that is, by A,B,C . . ., and so on. An observation is denoted by the
row vector t. Given an attribute A and a row t, we denote the value of attribute
A on row t by t(A). Depending on the type of attribute A, the value of t(A) may
be either binary, that is t(A) ∈ {0, 1}, or numerical, that is, t(A) ∈ R.

Binary valued attributes are often called items. Items are attributes that can
be either present or absent at the moment of observation. The entire set of items
is denoted by I. For datasets consisting of only binary attributes we have I = A,
and by convention, a row t may be expressed as a subset of the universe of all
attributes, i.e., t ⊆ I, containing those binary attributes with value 1 in row t.
Observations of binary attributes are often called transactions, hence the symbol
t. Subsets of I are called itemsets, and denoted with a capital letter from the
end of the alphabet, that is, by . . . , X, Y, Z. We omit the braces around singleton
sets, e.g. we write A instead of {A }. We call an itemset X of size k a k-itemset.

2.2 Frequent itemset mining

Section 1.1 briefly discussed frequent itemsets and association rules. A more
precise introduction to these basic pattern types is given in this section.

5

2 Preliminaries

2.2.1 Frequent itemsets

Given a dataset D and an itemset X, the frequency f(D, X) of X in D is defined
as

f(D, X) = |{t|X ⊆ t and t ∈ D}|,

that is, the number of rows t where the items of X occur together. We say that
an itemset X covers all such rows t ∈ D where X ⊆ t. We denote f(X) when D
is clear from the context. We call an itemset frequent when its frequency exceeds
a certain threshold:

Definition 2.1 Given some predefined threshold σ ∈ [0, 1], a frequent itemset X
is an itemset that has a frequency higher than σ in D, that is, f(D, X) ≥ nσ,
where n is the number of rows in D.

Given D and σ, we denote the collection of all frequent itemsets by P(D, σ). The
frequent itemset mining problem is then the following:

Problem 2.1 Given D and σ, compute P(D, σ).

2.2.2 The level-wise algorithm

The trivial way of computing P(D, σ) would be to exhaustively go through all
possible itemsets, and then check from the data which sets satisfy the frequency
condition. However, as the number of itemsets is exponential with respect to the
entire set of attributes I, this is not feasible.

In 1994, studies by Mannila et al. [63] and Agrawal et al. [4] led independently
of each other to an alternative method that is based on a simple observation: for
all pairs of itemsets Y and X, such that X is a subset of Y , the frequency of
superset Y can only be equal to or smaller than the frequency of X, in other
words f(X) ≥ f(Y), when X ⊆ Y . This is referred to as the monotonicity
property of frequent itemsets. Hence, in order for the itemset Y to be frequent,
all its subsets have to be frequent as well. Respectively, if we know that a subset
X of Y is not frequent, we know without referring to the data that Y cannot be
frequent.

The observation naturally gives rise to the following strategy. First look for
the single attributes (frequent 1-itemsets) that fulfill the frequency condition. We
call this level 1. Once the frequent 1-itemsets are known, we can proceed to level
2, that is, to look for all frequent 2-itemsets, and so on for levels 3, 4, etc., until the
complete set of frequent itemsets has been found. At each level the monotonicity
property can be used to efficiently prune the search. Namely, for any frequent
k-itemset we know that all its (k−1) subsets must also be frequent. That is, any
frequent 2-itemset can only be derived from items that were confirmed frequent at
level 1. Hence, before advancing to level k we can build a collection of candidate
itemsets from the frequent (k-1)-itemsets, and check the frequency only for these
candidates at level k, while pruning all the rest.

6

2 Preliminaries

2.2.1 Frequent itemsets

Given a dataset D and an itemset X, the frequency f(D, X) of X in D is defined
as

f(D, X) = |{t|X ⊆ t and t ∈ D}|,

that is, the number of rows t where the items of X occur together. We say that
an itemset X covers all such rows t ∈ D where X ⊆ t. We denote f(X) when D
is clear from the context. We call an itemset frequent when its frequency exceeds
a certain threshold:

Definition 2.1 Given some predefined threshold σ ∈ [0, 1], a frequent itemset X
is an itemset that has a frequency higher than σ in D, that is, f(D, X) ≥ nσ,
where n is the number of rows in D.

Given D and σ, we denote the collection of all frequent itemsets by P(D, σ). The
frequent itemset mining problem is then the following:

Problem 2.1 Given D and σ, compute P(D, σ).

2.2.2 The level-wise algorithm

The trivial way of computing P(D, σ) would be to exhaustively go through all
possible itemsets, and then check from the data which sets satisfy the frequency
condition. However, as the number of itemsets is exponential with respect to the
entire set of attributes I, this is not feasible.

In 1994, studies by Mannila et al. [63] and Agrawal et al. [4] led independently
of each other to an alternative method that is based on a simple observation: for
all pairs of itemsets Y and X, such that X is a subset of Y , the frequency of
superset Y can only be equal to or smaller than the frequency of X, in other
words f(X) ≥ f(Y), when X ⊆ Y . This is referred to as the monotonicity
property of frequent itemsets. Hence, in order for the itemset Y to be frequent,
all its subsets have to be frequent as well. Respectively, if we know that a subset
X of Y is not frequent, we know without referring to the data that Y cannot be
frequent.

The observation naturally gives rise to the following strategy. First look for
the single attributes (frequent 1-itemsets) that fulfill the frequency condition. We
call this level 1. Once the frequent 1-itemsets are known, we can proceed to level
2, that is, to look for all frequent 2-itemsets, and so on for levels 3, 4, etc., until the
complete set of frequent itemsets has been found. At each level the monotonicity
property can be used to efficiently prune the search. Namely, for any frequent
k-itemset we know that all its (k−1) subsets must also be frequent. That is, any
frequent 2-itemset can only be derived from items that were confirmed frequent at
level 1. Hence, before advancing to level k we can build a collection of candidate
itemsets from the frequent (k-1)-itemsets, and check the frequency only for these
candidates at level k, while pruning all the rest.

6

Frequent itemset mining

The algorithm is called the level-wise algorithm based on the breadth-first
manner in which the collection of frequent itemsets is generated. Algorithm 1
gives a pseudo-code presentation of the level-wise algorithm.

The level-wise algorithm is efficient in situations where the data does not
fit in main memory. At each level, only one database pass is needed: for each
candidate a counter can be created and then incremented at each row containing
the candidate. Efficient methods for situations where the data can be stored
entirely in main memory include the depth-first search-based Eclat algorithm
[95], which uses set intersection operations between attribute columns. Another
often cited frequent itemset mining method is the FP-growth (frequent pattern
growth) [32] algorithm. It avoids the process of candidate generation and testing
by using an extended prefix-tree (FP-tree) structure to store the database in
a compressed form, from which the collection of frequent itemsets can then be
queried very efficiently.

2.2.3 Association rules

An association rule is an implication between two itemsets, that is

X → Y

for the itemsets X and Y , such that X ∩Y = ∅. Like a single itemset, each asso-
ciation rule has a frequency f , defined as f(X → Y) = f(X ∪ Y). Additionally,
an association rule has the quantity accuracy, which is the frequency with which
the implication holds true, that is, the relative number of times that the itemset
Y occurs on a row t, given that the itemset X occurs on t. More formally

accur(X → Y,D) =
f(D, X ∪ Y)

f(D, Y)
.

We denote accur(X → Y) when D is clear from the context. We call the rule
X → Y accurate, if accur(X → Y) exceeds a certain threshold γ.

Definition 2.2 Given two predefined thresholds σ and γ, such that σ, γ ∈ [0, 1],
the association rule X → Y is frequent and accurate if f(X → Y) ≥ nσ and
accur(X → Y) ≥ γ, where n is the number of rows in D.

Given D, σ and γ we denote the collection of all frequent and accurate association
rules by R(D, σ, γ). The association rule mining problem is then the following:

Problem 2.2 Given D, σ and γ, compute R(D, σ, γ).

Problem 2.2 can be considered as a general case of the frequent itemset mining
Problem 2.1. For a single itemset X, the trivial rule X → {} has the same fre-
quency f(X) as that of itemset X and accur(X) = 1. Respectively, the frequency
of the rule {} → X is equal to 1, while the accuracy is equal to the frequency
of X. It also turns out that there is a monotonicity property that holds for the
accuracy of an association rule with respect to extending the right-hand side of
the rule.

7

Frequent itemset mining

The algorithm is called the level-wise algorithm based on the breadth-first
manner in which the collection of frequent itemsets is generated. Algorithm 1
gives a pseudo-code presentation of the level-wise algorithm.

The level-wise algorithm is efficient in situations where the data does not
fit in main memory. At each level, only one database pass is needed: for each
candidate a counter can be created and then incremented at each row containing
the candidate. Efficient methods for situations where the data can be stored
entirely in main memory include the depth-first search-based Eclat algorithm
[95], which uses set intersection operations between attribute columns. Another
often cited frequent itemset mining method is the FP-growth (frequent pattern
growth) [32] algorithm. It avoids the process of candidate generation and testing
by using an extended prefix-tree (FP-tree) structure to store the database in
a compressed form, from which the collection of frequent itemsets can then be
queried very efficiently.

2.2.3 Association rules

An association rule is an implication between two itemsets, that is

X → Y

for the itemsets X and Y , such that X ∩Y = ∅. Like a single itemset, each asso-
ciation rule has a frequency f , defined as f(X → Y) = f(X ∪ Y). Additionally,
an association rule has the quantity accuracy, which is the frequency with which
the implication holds true, that is, the relative number of times that the itemset
Y occurs on a row t, given that the itemset X occurs on t. More formally

accur(X → Y,D) =
f(D, X ∪ Y)

f(D, Y)
.

We denote accur(X → Y) when D is clear from the context. We call the rule
X → Y accurate, if accur(X → Y) exceeds a certain threshold γ.

Definition 2.2 Given two predefined thresholds σ and γ, such that σ, γ ∈ [0, 1],
the association rule X → Y is frequent and accurate if f(X → Y) ≥ nσ and
accur(X → Y) ≥ γ, where n is the number of rows in D.

Given D, σ and γ we denote the collection of all frequent and accurate association
rules by R(D, σ, γ). The association rule mining problem is then the following:

Problem 2.2 Given D, σ and γ, compute R(D, σ, γ).

Problem 2.2 can be considered as a general case of the frequent itemset mining
Problem 2.1. For a single itemset X, the trivial rule X → {} has the same fre-
quency f(X) as that of itemset X and accur(X) = 1. Respectively, the frequency
of the rule {} → X is equal to 1, while the accuracy is equal to the frequency
of X. It also turns out that there is a monotonicity property that holds for the
accuracy of an association rule with respect to extending the right-hand side of
the rule.

7

2 Preliminaries

Algorithm 1 The level-wise algorithm

Input: Dataset D and frequency threshold σ.
Output: Collection of frequent itemsets P(D, σ).
1: i = 1
2: candidate set Ci = {{A}| A is an attribute}
3: while Ci is not empty do
4: set of size i patterns Pi = {}
5: // Frequency checking
6: for each X in Ci do
7: if f(D, X) ≥ σ then
8: add X to Pi

9: end if
10: end for
11: // Candidate generation
12: for each X,Y in Pi do
13: candidate Z = X ∪ Y
14: if |Z| = i + 1 and (Z \ A) ∈ Pi for all A ∈ Z then
15: add Z to Ci+1

16: end if
17: end for
18: add Pi to P(D, σ)
19: i = i + 1
20: end while
21: return P(D, σ)

Proposition 2.1 Let X,Y, Z be three itemsets, such that X ∩ Y = {}. Then

accur(X \ Z → Y ∪ Z) ≤ accur(X → Y)

Proof Since X ∪ Y ⊆ X ∪ Y ∪ Z, and X \ Z ⊆ X,

f(X ∪ Y ∪ Z)

f(X \ Z)
≤

f(X ∪ Y)

f(X)
.

2

Proposition 2.1 leads naturally to a level-wise type of approach for finding the set
R(D, σ, γ). First compute P(D, σ). Note that for each itemset X ∈ P(D, σ), we
have the rule X → {} in R(D, σ, γ). Now, for each X → {} ∈ R(D, σ, γ), start
extending the rule right-hand side with subsets Z of X in a level-wise manner,
while removing Z from X on the left-hand side. If some itemset Y , such that
X ∩ Y = ∅, on the right-hand side of the rule, causes the accuracy to drop below
γ, we know, according to Proposition 2.1, that no rule with a superset of Y on
the right-hand side will be accurate. Hence, further extension of this rule can be
stopped.

8

2 Preliminaries

Algorithm 1 The level-wise algorithm

Input: Dataset D and frequency threshold σ.
Output: Collection of frequent itemsets P(D, σ).
1: i = 1
2: candidate set Ci = {{A}| A is an attribute}
3: while Ci is not empty do
4: set of size i patterns Pi = {}
5: // Frequency checking
6: for each X in Ci do
7: if f(D, X) ≥ σ then
8: add X to Pi

9: end if
10: end for
11: // Candidate generation
12: for each X,Y in Pi do
13: candidate Z = X ∪ Y
14: if |Z| = i + 1 and (Z \ A) ∈ Pi for all A ∈ Z then
15: add Z to Ci+1

16: end if
17: end for
18: add Pi to P(D, σ)
19: i = i + 1
20: end while
21: return P(D, σ)

Proposition 2.1 Let X,Y, Z be three itemsets, such that X ∩ Y = {}. Then

accur(X \ Z → Y ∪ Z) ≤ accur(X → Y)

Proof Since X ∪ Y ⊆ X ∪ Y ∪ Z, and X \ Z ⊆ X,

f(X ∪ Y ∪ Z)

f(X \ Z)
≤

f(X ∪ Y)

f(X)
.

2

Proposition 2.1 leads naturally to a level-wise type of approach for finding the set
R(D, σ, γ). First compute P(D, σ). Note that for each itemset X ∈ P(D, σ), we
have the rule X → {} in R(D, σ, γ). Now, for each X → {} ∈ R(D, σ, γ), start
extending the rule right-hand side with subsets Z of X in a level-wise manner,
while removing Z from X on the left-hand side. If some itemset Y , such that
X ∩ Y = ∅, on the right-hand side of the rule, causes the accuracy to drop below
γ, we know, according to Proposition 2.1, that no rule with a superset of Y on
the right-hand side will be accurate. Hence, further extension of this rule can be
stopped.

8

Frequent itemset mining

From the above it is evident, given P(D, σ), that the set of association rules
R(D, σ, γ) can be computed without referring to the data at all. Hence, from
the point of view of knowledge discovery the set of frequent itemsets is more
interesting. Consequently, many frequent pattern mining related studies have
mostly been concerned with issues related to frequent itemset mining.

2.2.4 Closed and maximal frequent itemsets

An often mentioned problem in frequent itemset mining is that in practice the
number of returned patterns in P(D, σ) may become very large even with rel-
atively small values of σ. This is referred to as the pattern explosion problem.
Closed frequent itemsets [74, 77] and maximal frequent itemsets [7, 10] are among
the earliest and best known methods to tackle this problem.

Closed frequent itemsets

The idea behind closed frequent itemsets can be motivated by the following ex-
ample borrowed from [77]. Consider a dataset with only two data rows t1 =
{A1, ..., A100} and t2 = {A1, ..., A50}. Setting the frequency threshold to σ = 0.5
results in the set of all possible 2100 − 1 ≈ 1030 frequent itemsets. Clearly,
{A1, ..., A100} and {A1, ..., A50} are the only effective patterns in the data. Any
other subpattern of the two itemsets has the same frequency as one or the other,
and hence conveys only redundant information to the user. The set of closed fre-
quent itemsets is the set of frequent itemsets from which such subpatterns have
been removed.

Definition 2.3 A frequent itemset X is a closed frequent itemset if there exists
no frequent itemset Y , such that X ⊆ Y and f(X) = f(Y). Given data D
and a frequency threshold σ, we denote the set of all closed frequent itemsets by
Pclosed(D, σ).

Several efficient algorithms applying various search strategies have been proposed
for mining closed frequent itemsets [74, 77, 97]. For a performance study on closed
frequent itemset mining, see [91].

Maximal frequent itemsets

The reduction from all frequent itemsets to closed frequent itemsets is lossless
in the sense that all sets and their frequencies in P(D, σ) can be easily derived
from Pclosed(D, σ). Maximal frequent itemsets can be considered a lossy and less
conservative variant of the closed frequent itemsets.

Definition 2.4 A frequent itemset X is a maximal frequent itemset if there
exists no frequent itemset Y , such that X ⊆ Y . Given data D and a frequency
threshold σ, we denote the set of all maximal frequent itemsets by Pmax(D, σ).

9

Frequent itemset mining

From the above it is evident, given P(D, σ), that the set of association rules
R(D, σ, γ) can be computed without referring to the data at all. Hence, from
the point of view of knowledge discovery the set of frequent itemsets is more
interesting. Consequently, many frequent pattern mining related studies have
mostly been concerned with issues related to frequent itemset mining.

2.2.4 Closed and maximal frequent itemsets

An often mentioned problem in frequent itemset mining is that in practice the
number of returned patterns in P(D, σ) may become very large even with rel-
atively small values of σ. This is referred to as the pattern explosion problem.
Closed frequent itemsets [74, 77] and maximal frequent itemsets [7, 10] are among
the earliest and best known methods to tackle this problem.

Closed frequent itemsets

The idea behind closed frequent itemsets can be motivated by the following ex-
ample borrowed from [77]. Consider a dataset with only two data rows t1 =
{A1, ..., A100} and t2 = {A1, ..., A50}. Setting the frequency threshold to σ = 0.5
results in the set of all possible 2100 − 1 ≈ 1030 frequent itemsets. Clearly,
{A1, ..., A100} and {A1, ..., A50} are the only effective patterns in the data. Any
other subpattern of the two itemsets has the same frequency as one or the other,
and hence conveys only redundant information to the user. The set of closed fre-
quent itemsets is the set of frequent itemsets from which such subpatterns have
been removed.

Definition 2.3 A frequent itemset X is a closed frequent itemset if there exists
no frequent itemset Y , such that X ⊆ Y and f(X) = f(Y). Given data D
and a frequency threshold σ, we denote the set of all closed frequent itemsets by
Pclosed(D, σ).

Several efficient algorithms applying various search strategies have been proposed
for mining closed frequent itemsets [74, 77, 97]. For a performance study on closed
frequent itemset mining, see [91].

Maximal frequent itemsets

The reduction from all frequent itemsets to closed frequent itemsets is lossless
in the sense that all sets and their frequencies in P(D, σ) can be easily derived
from Pclosed(D, σ). Maximal frequent itemsets can be considered a lossy and less
conservative variant of the closed frequent itemsets.

Definition 2.4 A frequent itemset X is a maximal frequent itemset if there
exists no frequent itemset Y , such that X ⊆ Y . Given data D and a frequency
threshold σ, we denote the set of all maximal frequent itemsets by Pmax(D, σ).

9

2 Preliminaries

Note that the second condition f(X) = f(Y) imposed for closed frequent itemsets
does not hold for maximal frequent itemsets. Otherwise the definitions are the
same. Consequently P(D, σ) can still be derived from Pmax(D, σ), however, the
frequencies of the sets in P(D, σ)\Pmax(D, σ)1 are lost. Algorithms for computing
maximal frequent itemsets are typically based on effective depth-first look-up
strategies. One of the most cited maximal frequent itemset mining approaches is
the MAFIA-algorithm by Burdick et al. [10].

2.3 Clustering

Out of all data mining and machine learning techniques, clustering is probably
one of the most studied topics (see for instance [60, 46, 33, 88, 92]). The idea
of clustering is to provide a grouping on a set of rows such that the similarity
between the rows within each group is as large as possible while the dissimilarity
in different groups is maximized. Clustering can be used in applications such
as customer profiling and segmentation in market analysis, in bioinformatics, in
ecology, in text document analysis and many more.

In the following we briefly discuss a basic partition-based algorithm, k-means,
which will be referred to later in the thesis.

2.3.1 The k-means algorithm

The k-means algorithm [60] is a basic iterative clustering procedure the can be
used to partition the data in k number of clusters. Each k cluster is represented
by a mean vector computed over the rows in the cluster. Hence the name k-
means. More precisely, if we denote by Ci the set of rows in the i:th cluster, the
corresponding center ri is defined as

ri =
1

|Ci|

∑

t∈Ci

t. (2.1)

Formally the problem of k-means clustering is the following:

Problem 2.3 Given a dataset D = {t1, ..., tn} find a partition of D into k dis-
joint sets (clusters) C1 . . . Ck such that

k
∑

i=1

∑

t∈Ci

(ri − t)2 (2.2)

is minimized.

1It is easy to see that Pmax(D, σ) ⊆ Pclosed(D, σ) ⊆ P(D, σ). In practice, the set
Pmax(D, σ) may be up to orders of magnitude smaller than the set Pclosed(D, σ), which itself
is orders of magnitude smaller than the set P(D, σ) [10].

10

2 Preliminaries

Note that the second condition f(X) = f(Y) imposed for closed frequent itemsets
does not hold for maximal frequent itemsets. Otherwise the definitions are the
same. Consequently P(D, σ) can still be derived from Pmax(D, σ), however, the
frequencies of the sets in P(D, σ)\Pmax(D, σ)1 are lost. Algorithms for computing
maximal frequent itemsets are typically based on effective depth-first look-up
strategies. One of the most cited maximal frequent itemset mining approaches is
the MAFIA-algorithm by Burdick et al. [10].

2.3 Clustering

Out of all data mining and machine learning techniques, clustering is probably
one of the most studied topics (see for instance [60, 46, 33, 88, 92]). The idea
of clustering is to provide a grouping on a set of rows such that the similarity
between the rows within each group is as large as possible while the dissimilarity
in different groups is maximized. Clustering can be used in applications such
as customer profiling and segmentation in market analysis, in bioinformatics, in
ecology, in text document analysis and many more.

In the following we briefly discuss a basic partition-based algorithm, k-means,
which will be referred to later in the thesis.

2.3.1 The k-means algorithm

The k-means algorithm [60] is a basic iterative clustering procedure the can be
used to partition the data in k number of clusters. Each k cluster is represented
by a mean vector computed over the rows in the cluster. Hence the name k-
means. More precisely, if we denote by Ci the set of rows in the i:th cluster, the
corresponding center ri is defined as

ri =
1

|Ci|

∑

t∈Ci

t. (2.1)

Formally the problem of k-means clustering is the following:

Problem 2.3 Given a dataset D = {t1, ..., tn} find a partition of D into k dis-
joint sets (clusters) C1 . . . Ck such that

k
∑

i=1

∑

t∈Ci

(ri − t)2 (2.2)

is minimized.

1It is easy to see that Pmax(D, σ) ⊆ Pclosed(D, σ) ⊆ P(D, σ). In practice, the set
Pmax(D, σ) may be up to orders of magnitude smaller than the set Pclosed(D, σ), which itself
is orders of magnitude smaller than the set P(D, σ) [10].

10

Pattern validation via swap randomization

Algorithm 2 The k-means algorithm

Input: Dataset D = {t1, ..., tn} and the number of clusters k.
Output: Clusters C1, ..., Ck and the corresponding centers r1, ..., rk.
1: for i = 1, .., k do
2: initialize ri with a randomly selected data point in D.
3: end for
4: while changes in C1, ..., Ck happen do
5: // associate rows to clusters
6: for i = 1, .., k do
7: Ci = {t ∈ D|ri = argminrj

(rj − t)2 where j = 1, ..., k}
8: end for
9: // recalculate cluster means

10: for i = 1, .., k do
11: ri = 1

|Ci|

∑

t∈Ci
t.

12: end for
13: end while
14: return C1, ..., Ck and r1, ..., rk

Equation (2.2) is sometimes referred to as the sum-of-squares error of the k-means
model. Depending on the application, the term (ri−t)2 can also be replaced with
other error term variants.

Algorithm 2 gives a pseudo-code presentation of the procedure for minimizing
Equation (2.2). The algorithm is initialized using a random assignment of cluster
centers. The first step of the procedure is to take each row t in the dataset and
associate it with the nearest cluster center ri in terms of the squared error (ri−t)2.
The second step is to recalculate each cluster center by assigning to it the mean
of the data rows associated with it, as in Equation (2.1). By repeating these
two steps sufficiently many times, the algorithm starts to converge, such that
the cluster centers find a locally optimal position in the data space. The final
clustering is obtained by associating each data point with the nearest converged
cluster center.

2.4 Pattern validation via swap randomization

A common property of frequent pattern mining, clustering and other data mining
methods is that they will always produce an outcome of some sort. The k-means
algorithm is guaranteed to produce a partition of the data into k clusters, whether
or not the data truly has a genuine cluster structure. Moreover, the level-wise
algorithm will always produce a set of frequent patterns, even for simple random
data, provided that the frequency threshold σ is assigned sufficiently low. Hence,
it is important to evaluate the statistical significance of the mining results to
make sure that it is due to other than just random noise in the data.

11

Pattern validation via swap randomization

Algorithm 2 The k-means algorithm

Input: Dataset D = {t1, ..., tn} and the number of clusters k.
Output: Clusters C1, ..., Ck and the corresponding centers r1, ..., rk.
1: for i = 1, .., k do
2: initialize ri with a randomly selected data point in D.
3: end for
4: while changes in C1, ..., Ck happen do
5: // associate rows to clusters
6: for i = 1, .., k do
7: Ci = {t ∈ D|ri = argminrj

(rj − t)2 where j = 1, ..., k}
8: end for
9: // recalculate cluster means

10: for i = 1, .., k do
11: ri = 1

|Ci|

∑

t∈Ci
t.

12: end for
13: end while
14: return C1, ..., Ck and r1, ..., rk

Equation (2.2) is sometimes referred to as the sum-of-squares error of the k-means
model. Depending on the application, the term (ri−t)2 can also be replaced with
other error term variants.

Algorithm 2 gives a pseudo-code presentation of the procedure for minimizing
Equation (2.2). The algorithm is initialized using a random assignment of cluster
centers. The first step of the procedure is to take each row t in the dataset and
associate it with the nearest cluster center ri in terms of the squared error (ri−t)2.
The second step is to recalculate each cluster center by assigning to it the mean
of the data rows associated with it, as in Equation (2.1). By repeating these
two steps sufficiently many times, the algorithm starts to converge, such that
the cluster centers find a locally optimal position in the data space. The final
clustering is obtained by associating each data point with the nearest converged
cluster center.

2.4 Pattern validation via swap randomization

A common property of frequent pattern mining, clustering and other data mining
methods is that they will always produce an outcome of some sort. The k-means
algorithm is guaranteed to produce a partition of the data into k clusters, whether
or not the data truly has a genuine cluster structure. Moreover, the level-wise
algorithm will always produce a set of frequent patterns, even for simple random
data, provided that the frequency threshold σ is assigned sufficiently low. Hence,
it is important to evaluate the statistical significance of the mining results to
make sure that it is due to other than just random noise in the data.

11

2 Preliminaries

In significance testing an observed statistic is compared against a null distribu-
tion. The null distribution can be considered as the distribution of the statistic
in the case where no relevant structure is present in the data. If the statistic
tested exhibits a very unlikely (an extreme) value in the null distribution, it can
be concluded that the observed value is due to something mere randomness in
the result. The confidence for this is expressed using the p-value, which is the
probability of obtaining a test statistic at least as extreme as the one that was
actually observed.

The null distribution of a statistic can be derived either analytically or empir-
ically. Generally, for more complex models and their statistics, such as clustering
and frequent pattern sets, analytical derivation of the null distribution becomes
very difficult. Hence, for most common data mining methods, the null distribu-
tion may only be derived empirically.

In [29] Gionis et al. proposed the use of swap randomization [16] for em-
pirically assessing data mining results in binary data. The randomization pro-
cedure is based on repeating a basic swap operation: given data D, take two
random rows t and u and two random attributes A and B of the data, with
t(A) = u(B) = 1 and u(A) = t(B) = 0, and change the values of these entries
such that t(A) = u(B) = 0 and u(A) = t(B) = 1 (see illustration in Figure 2.1).

A special property of the swap operation is that it maintains the row and
column sums of the data, and all datasets with the same row and column sums
can be reached through a series of swaps starting from D [16]. Hence, given
any statistic for a binary dataset D, the swap precedure can be used to sample
random data sets with the same row and column sum as D in order to obtain an
empirical null distribution of the statistic of interest.

More precisely, let S(D) be the statistic of interest, say the number of frequent
patterns in D or the sum-of-squares error for the k-means clustering. Further-
more, let D̂ = {D̂1, . . . , D̂l} be a collection of independent randomized versions
of the original dataset D. The one-tailed empirical p-value of S(D) is

|{D̂ ∈ D̂ | S(D̂) ≥ S(D)}| + 1

l + 1
,

which is the fraction of randomized datasets whose statistic is larger than the
original statistic S(D). The one-tailed empirical p-value when small values of
S(D) are interesting, and the two-tailed empirical p-value are defined similarly.
If the p-value obtained is less than a given threshold α, say α = 0.05, we can
regard the result S(D) as significant.

The randomized data set in the collection D̂ can be produced by using con-
secutive swaps in the style of the Markov chain Monte Carlo. Starting from
the original dataset D, some number of swaps are made, thus producing a new
dataset D̂. It is important, however, that the sampling is done uniformly from
the set of all possible datasets in order to avoid introducing any sampling bias
into the significance test. A straightforward application of swapping does not
guarantee uniform sampling, as some datasets have more swappable matrix en-

12

2 Preliminaries

In significance testing an observed statistic is compared against a null distribu-
tion. The null distribution can be considered as the distribution of the statistic
in the case where no relevant structure is present in the data. If the statistic
tested exhibits a very unlikely (an extreme) value in the null distribution, it can
be concluded that the observed value is due to something mere randomness in
the result. The confidence for this is expressed using the p-value, which is the
probability of obtaining a test statistic at least as extreme as the one that was
actually observed.

The null distribution of a statistic can be derived either analytically or empir-
ically. Generally, for more complex models and their statistics, such as clustering
and frequent pattern sets, analytical derivation of the null distribution becomes
very difficult. Hence, for most common data mining methods, the null distribu-
tion may only be derived empirically.

In [29] Gionis et al. proposed the use of swap randomization [16] for em-
pirically assessing data mining results in binary data. The randomization pro-
cedure is based on repeating a basic swap operation: given data D, take two
random rows t and u and two random attributes A and B of the data, with
t(A) = u(B) = 1 and u(A) = t(B) = 0, and change the values of these entries
such that t(A) = u(B) = 0 and u(A) = t(B) = 1 (see illustration in Figure 2.1).

A special property of the swap operation is that it maintains the row and
column sums of the data, and all datasets with the same row and column sums
can be reached through a series of swaps starting from D [16]. Hence, given
any statistic for a binary dataset D, the swap precedure can be used to sample
random data sets with the same row and column sum as D in order to obtain an
empirical null distribution of the statistic of interest.

More precisely, let S(D) be the statistic of interest, say the number of frequent
patterns in D or the sum-of-squares error for the k-means clustering. Further-
more, let D̂ = {D̂1, . . . , D̂l} be a collection of independent randomized versions
of the original dataset D. The one-tailed empirical p-value of S(D) is

|{D̂ ∈ D̂ | S(D̂) ≥ S(D)}| + 1

l + 1
,

which is the fraction of randomized datasets whose statistic is larger than the
original statistic S(D). The one-tailed empirical p-value when small values of
S(D) are interesting, and the two-tailed empirical p-value are defined similarly.
If the p-value obtained is less than a given threshold α, say α = 0.05, we can
regard the result S(D) as significant.

The randomized data set in the collection D̂ can be produced by using con-
secutive swaps in the style of the Markov chain Monte Carlo. Starting from
the original dataset D, some number of swaps are made, thus producing a new
dataset D̂. It is important, however, that the sampling is done uniformly from
the set of all possible datasets in order to avoid introducing any sampling bias
into the significance test. A straightforward application of swapping does not
guarantee uniform sampling, as some datasets have more swappable matrix en-

12

Datasets

A B
...

...
t · · · 1 · · · 0 · · ·...

...
u · · · 0 · · · 1 · · ·...

...

⇐⇒

A B
...

...
t · · · 0 · · · 1 · · ·...

...
u · · · 1 · · · 0 · · ·...

...

Figure 2.1: A swap in a binary dataset.

tries than others. However, this can be corrected by introducing a very simple
modification into the procedure: when sampling the data matrix for swappable
entries, instead of just counting an occurred swap as a valid randomization step,
count also the nonswappable entries encountered while sampling. The counted
nonswappable entries are sometimes called self-loops. Introducing self-loops leads
to uniform sampling as the difference in swappable entries between datasets will
be evened out by the self-loops. It is estimated that for the process to converge
sufficiently, the number of steps in the randomization procedure should be of the
order of 1s in the data matrix. For a more detailed discussion see [29].

2.5 Datasets

Throughout this thesis the main experimental setting will be based on three
real life datasets: Mammals, MovieLens and Course. In addition to this, we
supplement our experiments in Chapter 5 with a few datasets from the widely
used UCI repository [17].

Mammals data

The Mammals dataset consists of presence/absence records of European mam-
mals [66] in a geographical area defined by the latitudinal and longitudinal bound-
aries of 32◦W, 35◦E, 81◦N, 30◦N. The original data defines the occurrence of 194
species (attributes) within 2670 grid cells (rows) with a resolution of 50×50 km.
For each grid cell and each species the dataset features an entry of 0 or 1 depend-
ing on whether the corresponding species is absent or present in the respective
grid cell. The dataset used in this thesis is the preprocessed (124 species ×
2183 grid cells) version used in [38]. The data were collected by Societas Eu-
ropaea Mammalogica. The full version of the dataset is available for research
purposes upon request from www.european-mammals.org. For the convenience
of the reader we use here the English species names translated from the scientific
names using the Wikipedia encyclopedia (www.wikipedia.org).

In addition to the binary observations we combine a set of numerical attributes
with the Mammals data. For each grid cell we associate the geographical lon-
gitude and latitude (spatial coordinates), as well as observations of mean annual

13

Datasets

A B
...

...
t · · · 1 · · · 0 · · ·...

...
u · · · 0 · · · 1 · · ·...

...

⇐⇒

A B
...

...
t · · · 0 · · · 1 · · ·...

...
u · · · 1 · · · 0 · · ·...

...

Figure 2.1: A swap in a binary dataset.

tries than others. However, this can be corrected by introducing a very simple
modification into the procedure: when sampling the data matrix for swappable
entries, instead of just counting an occurred swap as a valid randomization step,
count also the nonswappable entries encountered while sampling. The counted
nonswappable entries are sometimes called self-loops. Introducing self-loops leads
to uniform sampling as the difference in swappable entries between datasets will
be evened out by the self-loops. It is estimated that for the process to converge
sufficiently, the number of steps in the randomization procedure should be of the
order of 1s in the data matrix. For a more detailed discussion see [29].

2.5 Datasets

Throughout this thesis the main experimental setting will be based on three
real life datasets: Mammals, MovieLens and Course. In addition to this, we
supplement our experiments in Chapter 5 with a few datasets from the widely
used UCI repository [17].

Mammals data

The Mammals dataset consists of presence/absence records of European mam-
mals [66] in a geographical area defined by the latitudinal and longitudinal bound-
aries of 32◦W, 35◦E, 81◦N, 30◦N. The original data defines the occurrence of 194
species (attributes) within 2670 grid cells (rows) with a resolution of 50×50 km.
For each grid cell and each species the dataset features an entry of 0 or 1 depend-
ing on whether the corresponding species is absent or present in the respective
grid cell. The dataset used in this thesis is the preprocessed (124 species ×
2183 grid cells) version used in [38]. The data were collected by Societas Eu-
ropaea Mammalogica. The full version of the dataset is available for research
purposes upon request from www.european-mammals.org. For the convenience
of the reader we use here the English species names translated from the scientific
names using the Wikipedia encyclopedia (www.wikipedia.org).

In addition to the binary observations we combine a set of numerical attributes
with the Mammals data. For each grid cell we associate the geographical lon-
gitude and latitude (spatial coordinates), as well as observations of mean annual

13

2 Preliminaries

temperature, mean annual precipitation, mean annual temperature range2 and av-
erage elevation. The climate and elevation observations were obtained from the
dataset [42] available online at www.worldclim.org.

MovieLens data

The MovieLens data consists of 100,000 movie ratings, valued from 1 to 5, from
943 users (rows) on 1682 movies (attributes). Each user has rated at least 20
movies. Furthermore, for each user the data includes age, gender, occupation and
zip code. The data were collected through the MovieLens website (movielens.
umn.edu) during a seven-month period between September 19th, 1997 and April
22nd, 1998. The data can be download from www.grouplens.org. The data
available for downloading have been preprocessed, that is, users who had less than
20 ratings or did not provide complete demographic information were removed
from the dataset.

For the experiments in this thesis, we converted the movie ratings into binary
items: for any user, a movie rated with 4 or 5 was mapped to a 1, while ratings
from 1 to 3 and non-rated movies were mapped to 0. In other words, one row of
the data was made to correspond to those movie items that a user most prefers.
Numerical demographic attributes were also mapped to each of the users (rows).
Gender was encoded such that males were assigned the value 1 and females the
value 0. Age was used as recorded in the data. Occupation information was
omitted.

Course data

We use two kinds of data gathered at the Department of Computer Science at
the University of Helsinki. The first, Course Enrollment, includes enrollment
records for courses held at the Department of Computer Science at the Univer-
sity of Helsinki. The dataset has 3506 rows corresponding to students and 98
attributes corresponding to courses. The second, Course Completion, con-
sists of course completion data for a different set of students. This data has
2405 observations corresponding to students and 5021 attributes corresponding
to courses.

UCI repository

In addition to the three datasets described above we take from the widely used
UCI repository [17] the datasets Heart, Pen digits, Mushroom and Letter

Recognition to be used in the experiments of Chapter 5. For more information
about these data sets, see archive.ics.uci.edu/ml/datasets.html.

2Difference between the maximum temperature of the warmest month and the minimum
temperature of the coldest month.

14

2 Preliminaries

temperature, mean annual precipitation, mean annual temperature range2 and av-
erage elevation. The climate and elevation observations were obtained from the
dataset [42] available online at www.worldclim.org.

MovieLens data

The MovieLens data consists of 100,000 movie ratings, valued from 1 to 5, from
943 users (rows) on 1682 movies (attributes). Each user has rated at least 20
movies. Furthermore, for each user the data includes age, gender, occupation and
zip code. The data were collected through the MovieLens website (movielens.
umn.edu) during a seven-month period between September 19th, 1997 and April
22nd, 1998. The data can be download from www.grouplens.org. The data
available for downloading have been preprocessed, that is, users who had less than
20 ratings or did not provide complete demographic information were removed
from the dataset.

For the experiments in this thesis, we converted the movie ratings into binary
items: for any user, a movie rated with 4 or 5 was mapped to a 1, while ratings
from 1 to 3 and non-rated movies were mapped to 0. In other words, one row of
the data was made to correspond to those movie items that a user most prefers.
Numerical demographic attributes were also mapped to each of the users (rows).
Gender was encoded such that males were assigned the value 1 and females the
value 0. Age was used as recorded in the data. Occupation information was
omitted.

Course data

We use two kinds of data gathered at the Department of Computer Science at
the University of Helsinki. The first, Course Enrollment, includes enrollment
records for courses held at the Department of Computer Science at the Univer-
sity of Helsinki. The dataset has 3506 rows corresponding to students and 98
attributes corresponding to courses. The second, Course Completion, con-
sists of course completion data for a different set of students. This data has
2405 observations corresponding to students and 5021 attributes corresponding
to courses.

UCI repository

In addition to the three datasets described above we take from the widely used
UCI repository [17] the datasets Heart, Pen digits, Mushroom and Letter

Recognition to be used in the experiments of Chapter 5. For more information
about these data sets, see archive.ics.uci.edu/ml/datasets.html.

2Difference between the maximum temperature of the warmest month and the minimum
temperature of the coldest month.

14

Chapter 3

Mining trees from

unstructured binary data

3.1 Introduction

An itemset does not impose a structure of any kind on its attributes. Also, while
association rules X → Y offer a slightly more structured view, the structure is
presented only with respect to itemsets, not with respect to single attributes.
Yet, even for unstructured data it is likely that the domain from which the
observations are sampled contains a structure, such as a hierarchy, that should be
expressed at the attribute level. Because of the unstructured nature of itemsets,
such relationships will not be revealed.

As an example, consider movie ratings data, such as in the MovieLens

dataset. It is not uncommon for successful Hollywood movies to be followed
by a sequel movie. Popular themes that are box office successes, will be reused
again and again, creating whole genres of niche movies. Take, for instance, the
Indiana Jones hit movie Raiders of the Lost Ark (1981). Figure 3.1 shows how a
genre of treasure hunt movies has followed since its première in 1981.

Looking at this from the point of view of the movie rater, the original movie(s)
will usually be appreciated by a wider audience. However, due to the lack of
novelty, the continuing sequel movies will lose their appeal to the general audience
at some point, while a more specific audience of enthusiasts will still appreciate
the niche films of the genre. Hence, if a user gives a high rating to some specific
niche movie, probably he or she will give high ratings to all of the previous
(including the more mainstream) films of the genre as well. Hence, a hierarchy
of general versus more specific will arise from the dependencies of the movie
attributes.

Consider the hierarchy in Figure 3.1. It is not hard to imagine that a user who
gave a high rating to the movie Indiana Jones and the Kingdom of the Crystal Skull
(2008), also gave a high rating to all the other Indian Jones movies. However,
more users probably preferred the first Indiana Jones movie, Raiders of the Lost

15

Chapter 3

Mining trees from

unstructured binary data

3.1 Introduction

An itemset does not impose a structure of any kind on its attributes. Also, while
association rules X → Y offer a slightly more structured view, the structure is
presented only with respect to itemsets, not with respect to single attributes.
Yet, even for unstructured data it is likely that the domain from which the
observations are sampled contains a structure, such as a hierarchy, that should be
expressed at the attribute level. Because of the unstructured nature of itemsets,
such relationships will not be revealed.

As an example, consider movie ratings data, such as in the MovieLens

dataset. It is not uncommon for successful Hollywood movies to be followed
by a sequel movie. Popular themes that are box office successes, will be reused
again and again, creating whole genres of niche movies. Take, for instance, the
Indiana Jones hit movie Raiders of the Lost Ark (1981). Figure 3.1 shows how a
genre of treasure hunt movies has followed since its première in 1981.

Looking at this from the point of view of the movie rater, the original movie(s)
will usually be appreciated by a wider audience. However, due to the lack of
novelty, the continuing sequel movies will lose their appeal to the general audience
at some point, while a more specific audience of enthusiasts will still appreciate
the niche films of the genre. Hence, if a user gives a high rating to some specific
niche movie, probably he or she will give high ratings to all of the previous
(including the more mainstream) films of the genre as well. Hence, a hierarchy
of general versus more specific will arise from the dependencies of the movie
attributes.

Consider the hierarchy in Figure 3.1. It is not hard to imagine that a user who
gave a high rating to the movie Indiana Jones and the Kingdom of the Crystal Skull
(2008), also gave a high rating to all the other Indian Jones movies. However,
more users probably preferred the first Indiana Jones movie, Raiders of the Lost

15

3 Mining trees from unstructured binary data

Raiders of the Lost Ark (1981)

Indiana Jones
and the

Temple of
Doom (1984)

Indiana Jones
and the Last

Crusade
(1989)

Indiana Jones
and the

Kingdom of
the Crystal
Skull (2008)

The Mummy
(1999)

The Mummy
Returns
(2001)

The Mummy:
Tomb of the

Dragon
Emperor
(2008)

Lara Croft:
Tomb Raider

(2001)

Lara Croft
Tomb Raider:
The Cradle of
Life (2003)

National
Treasure
(2004)

National
Treasure:
Book of
Secrets
(2007)

Figure 3.1: The Indiana Jones hit movie Raiders of the Lost Ark (1981) has been
followed by several Indiana Jones sequels as well as a whole genre of treasure
hunt movies.

Ark (1981), but not the sequel Indiana Jones and the Kingdom of the Crystal Skull
(2008).

A similar kind of structural hierarchy of general versus more specific may
be present in other types of data as well. In the course enrollment data, some
courses require no previous knowledge of their subject, whereas some, more spe-
cific courses, have some introductory courses as prerequisites. In other words,
if a student has enrolled in a course with some specific prerequisites, probably
he or she is likely to have an earlier record of enrollment in the corresponding
introductory course. However, while general courses usually are passed by many,
more specific topics interest only a handful of students.

Similar phenomena can be found from other domains as well. In ecology,
rare niche species may exhibit dependencies with more widespread and abundant
species [34, 35]. In the domain of text mining, dependencies usually exist between
semantically related terms (see [28] for a good example).

Based on these examples, a new class of co-occurrence patterns is proposed:
trees. The idea is to search for frequent hierarchies of general and more specific
attributes. As an example, consider a tree with item A as the root and B and C

16

3 Mining trees from unstructured binary data

Raiders of the Lost Ark (1981)

Indiana Jones
and the

Temple of
Doom (1984)

Indiana Jones
and the Last

Crusade
(1989)

Indiana Jones
and the

Kingdom of
the Crystal
Skull (2008)

The Mummy
(1999)

The Mummy
Returns
(2001)

The Mummy:
Tomb of the

Dragon
Emperor
(2008)

Lara Croft:
Tomb Raider

(2001)

Lara Croft
Tomb Raider:
The Cradle of
Life (2003)

National
Treasure
(2004)

National
Treasure:
Book of
Secrets
(2007)

Figure 3.1: The Indiana Jones hit movie Raiders of the Lost Ark (1981) has been
followed by several Indiana Jones sequels as well as a whole genre of treasure
hunt movies.

Ark (1981), but not the sequel Indiana Jones and the Kingdom of the Crystal Skull
(2008).

A similar kind of structural hierarchy of general versus more specific may
be present in other types of data as well. In the course enrollment data, some
courses require no previous knowledge of their subject, whereas some, more spe-
cific courses, have some introductory courses as prerequisites. In other words,
if a student has enrolled in a course with some specific prerequisites, probably
he or she is likely to have an earlier record of enrollment in the corresponding
introductory course. However, while general courses usually are passed by many,
more specific topics interest only a handful of students.

Similar phenomena can be found from other domains as well. In ecology,
rare niche species may exhibit dependencies with more widespread and abundant
species [34, 35]. In the domain of text mining, dependencies usually exist between
semantically related terms (see [28] for a good example).

Based on these examples, a new class of co-occurrence patterns is proposed:
trees. The idea is to search for frequent hierarchies of general and more specific
attributes. As an example, consider a tree with item A as the root and B and C

16

Problem definition

A

B

D

C

Figure 3.2: Example tree.

as the children of A, and D as the child of B (see Figure 3.2). This means that
A is the general item, B and C are more specific items related to A, and D is a
further specialization of B. We say that a row t follows the structure described
by the tree if the items in t form a subtree of T containing the root. Figure 3.3
gives an example of this: a row with t(A) = t(B) = t(D) = 1 and t(C) = 0
satisfies this condition, but a row with t(A) = t(D) = t(C) = 1 and t(B) = 0
does not.

In this chapter we consider the problem of finding all trees T that have a suf-
ficiently low number of violations with respect to the subtree condition. We also
show that the class of patterns has advantageous properties: high quality trees
are unlikely to occur in random data. The definition also allows a simple level-
wise algorithm. We demonstrate with empirical results that the pattern class is
feasible and that it can be used to discover interesting hierarchical relationships
in real data not expressible with traditional set-type patterns such as frequent
itemsets.

3.2 Problem definition

3.2.1 Graphs and trees

A graph G over a set of items X is a pair G = (X,E), where X is an itemset and
E is a relation defined between pairs of items in X. When referring to an item
in a graph, we use the expression node. Similarly, the elements in E are often
called edges.

The edges E of G can be either directed or undirected. In this chapter we are
concerned with the case where edges in E are directed. Such graphs are called
directed graphs. We denote a directed edge in E with a 2-item sequence (A,B),
for two nodes A,B ∈ X. Respectively, a directed path in G is a sequence of nodes
S = (A1, ..., Ak), such that Ai ∈ X, for i = 1, ..., k and for each consecutive node

17

Problem definition

A

B

D

C

Figure 3.2: Example tree.

as the children of A, and D as the child of B (see Figure 3.2). This means that
A is the general item, B and C are more specific items related to A, and D is a
further specialization of B. We say that a row t follows the structure described
by the tree if the items in t form a subtree of T containing the root. Figure 3.3
gives an example of this: a row with t(A) = t(B) = t(D) = 1 and t(C) = 0
satisfies this condition, but a row with t(A) = t(D) = t(C) = 1 and t(B) = 0
does not.

In this chapter we consider the problem of finding all trees T that have a suf-
ficiently low number of violations with respect to the subtree condition. We also
show that the class of patterns has advantageous properties: high quality trees
are unlikely to occur in random data. The definition also allows a simple level-
wise algorithm. We demonstrate with empirical results that the pattern class is
feasible and that it can be used to discover interesting hierarchical relationships
in real data not expressible with traditional set-type patterns such as frequent
itemsets.

3.2 Problem definition

3.2.1 Graphs and trees

A graph G over a set of items X is a pair G = (X,E), where X is an itemset and
E is a relation defined between pairs of items in X. When referring to an item
in a graph, we use the expression node. Similarly, the elements in E are often
called edges.

The edges E of G can be either directed or undirected. In this chapter we are
concerned with the case where edges in E are directed. Such graphs are called
directed graphs. We denote a directed edge in E with a 2-item sequence (A,B),
for two nodes A,B ∈ X. Respectively, a directed path in G is a sequence of nodes
S = (A1, ..., Ak), such that Ai ∈ X, for i = 1, ..., k and for each consecutive node

17

3 Mining trees from unstructured binary data

pair Ai, Ai+1 in S there exists an edge (Ai, Ai+1) in E.

Definition 3.1 A rooted directed tree is a graph T = (X,E), such that for one
node A ∈ X, called the root, and any node B ∈ X \ A there exists exactly one
directed path from A to B. All edges in T are directed away from the root A.

Example Figure 3.2 depicts a tree (X,E), for which

X = {A,B,C,D} and E = {(A,B), (B,D), (A,C)},

and A is the root of the tree.

Trees are commonly used to represent hierarchical structure. When an edge
(A,B) ∈ E appears in a tree, we say that A is the parent of B and that B is a
child of A. Furthermore, for two nodes A and C, we say that C is a descendant
of A (or, equivalently, A is an ancestor of C), either if C is a child of A, or if C
is a descendant of a child of A. A node with no children is called a leaf. A path
from the root of the tree to any leaf node is called a branch.

Notice that removing node A from the tree in Figure 3.2 will result in two
valid trees with the children B and C now as the root nodes of the two new
trees. Indeed, in some cases a directed tree can be very conveniently expressed
recursively using the root node and the subtrees in which its children act as a
root. We have an alternative definition.

Definition 3.2 A rooted directed tree is a pair T = (A, C), where A is the root
node of the tree T and C is a collection of rooted directed trees C = {T1, T2, . . . , Tk }.
Each Ti ∈ C has the form Ti = (Ai, Ci), such that Ai is a child of A. In the case
where A has no children, the set C is empty.

Example The tree in Figure 3.2 is recursively defined as

(A, {T1, T2}), T1 = (B, {(D, ∅)}), T2 = (C, ∅).

Throughout this thesis, unless stated otherwise Definition 3.1 is used as default
tree definition.

3.2.2 Frequent trees

Given a tree T and a row t ∈ D, we say that the row t conflicts with tree T if
there is a node A and its descendant B in T such that t(A) = 0 and t(B) = 1.
Figure 3.3 provides a example. Respectively, the conflict count, denoted c(T,D),
is the number of rows t ∈ D that conflict with T . We write c(T) when D is clear
from the context.

Our aim here is to consider trees with frequently occurring attributes but
with the property of having a sufficiently low number of conflicts in the data. We
have the following definition.

18

3 Mining trees from unstructured binary data

pair Ai, Ai+1 in S there exists an edge (Ai, Ai+1) in E.

Definition 3.1 A rooted directed tree is a graph T = (X,E), such that for one
node A ∈ X, called the root, and any node B ∈ X \ A there exists exactly one
directed path from A to B. All edges in T are directed away from the root A.

Example Figure 3.2 depicts a tree (X,E), for which

X = {A,B,C,D} and E = {(A,B), (B,D), (A,C)},

and A is the root of the tree.

Trees are commonly used to represent hierarchical structure. When an edge
(A,B) ∈ E appears in a tree, we say that A is the parent of B and that B is a
child of A. Furthermore, for two nodes A and C, we say that C is a descendant
of A (or, equivalently, A is an ancestor of C), either if C is a child of A, or if C
is a descendant of a child of A. A node with no children is called a leaf. A path
from the root of the tree to any leaf node is called a branch.

Notice that removing node A from the tree in Figure 3.2 will result in two
valid trees with the children B and C now as the root nodes of the two new
trees. Indeed, in some cases a directed tree can be very conveniently expressed
recursively using the root node and the subtrees in which its children act as a
root. We have an alternative definition.

Definition 3.2 A rooted directed tree is a pair T = (A, C), where A is the root
node of the tree T and C is a collection of rooted directed trees C = {T1, T2, . . . , Tk }.
Each Ti ∈ C has the form Ti = (Ai, Ci), such that Ai is a child of A. In the case
where A has no children, the set C is empty.

Example The tree in Figure 3.2 is recursively defined as

(A, {T1, T2}), T1 = (B, {(D, ∅)}), T2 = (C, ∅).

Throughout this thesis, unless stated otherwise Definition 3.1 is used as default
tree definition.

3.2.2 Frequent trees

Given a tree T and a row t ∈ D, we say that the row t conflicts with tree T if
there is a node A and its descendant B in T such that t(A) = 0 and t(B) = 1.
Figure 3.3 provides a example. Respectively, the conflict count, denoted c(T,D),
is the number of rows t ∈ D that conflict with T . We write c(T) when D is clear
from the context.

Our aim here is to consider trees with frequently occurring attributes but
with the property of having a sufficiently low number of conflicts in the data. We
have the following definition.

18

Problem properties

A B C D
row 1 1 0 1

A B C D
row 1 0 1 1

A

B

D

C

A

B

D

C

no conflict conflict

Figure 3.3: A row t follows the hierarchy described by a tree if the attributes in
the tree that are 1 in t form a subtree of T containing the root. A row t conflicts
with tree T if there is a node A and its descendant B in T such that t(A) = 0
and t(B) = 1.

Definition 3.3 Consider a dataset D with n rows, and three user-defined thresh-
olds τ , σ and β, where τ, σ ∈ [0, 1], and β ∈ Z

+. For an itemset X, a tree
T = (X,E) is a frequent tree, if c(T,D) ≤ τn, f(A) ≥ nσ, for all A ∈ X, and
all A ∈ X have at most β children. We denote the collection of all frequent trees
in D with T PF (D, τ, σ, β).

We use an upper bound τ on the number of conflicts. Note that frequent itemsets
are defined by a lower bound on their number of occurrences. The parameter σ
has this role, preventing attributes with low frequency from being considered.

The maximum number of children a tree can have (parameter β) is related to
the amount of structure a tree conveys for its nodes. If one single node has many
children, the tree has short branches. This implies a low number of ancestor-
descendant relations in the tree. Respectively, the number of ancestor-descendant
pairs is maximal when each node has at most one child, that is the tree com-
prises only one single branch. In the single branch case the hierarchy is defined
completely for each item pair.

The definition gives rise to the following computational problem.

Problem 3.1 Given D, σ, τ and β compute T PF (D, τ, σ, β).

3.3 Problem properties

Next we consider some basic properties of frequent trees and the pattern collection
T PF (D, τ, σ, β).

19

Problem properties

A B C D
row 1 1 0 1

A B C D
row 1 0 1 1

A

B

D

C

A

B

D

C

no conflict conflict

Figure 3.3: A row t follows the hierarchy described by a tree if the attributes in
the tree that are 1 in t form a subtree of T containing the root. A row t conflicts
with tree T if there is a node A and its descendant B in T such that t(A) = 0
and t(B) = 1.

Definition 3.3 Consider a dataset D with n rows, and three user-defined thresh-
olds τ , σ and β, where τ, σ ∈ [0, 1], and β ∈ Z

+. For an itemset X, a tree
T = (X,E) is a frequent tree, if c(T,D) ≤ τn, f(A) ≥ nσ, for all A ∈ X, and
all A ∈ X have at most β children. We denote the collection of all frequent trees
in D with T PF (D, τ, σ, β).

We use an upper bound τ on the number of conflicts. Note that frequent itemsets
are defined by a lower bound on their number of occurrences. The parameter σ
has this role, preventing attributes with low frequency from being considered.

The maximum number of children a tree can have (parameter β) is related to
the amount of structure a tree conveys for its nodes. If one single node has many
children, the tree has short branches. This implies a low number of ancestor-
descendant relations in the tree. Respectively, the number of ancestor-descendant
pairs is maximal when each node has at most one child, that is the tree com-
prises only one single branch. In the single branch case the hierarchy is defined
completely for each item pair.

The definition gives rise to the following computational problem.

Problem 3.1 Given D, σ, τ and β compute T PF (D, τ, σ, β).

3.3 Problem properties

Next we consider some basic properties of frequent trees and the pattern collection
T PF (D, τ, σ, β).

19

3 Mining trees from unstructured binary data

3.3.1 Monotonicity

The first observation is the simple monotonicity property typical of frequent
patterns. A tree S is a rooted subtree of tree T if S can be obtained from T
by a series of removals of leaves. It is quite clear that removing a leaf A from T
cannot increase the number of conflicts in the tree. Hence, the tree S can have
at most the same number of conflicts as T . Furthermore, the maximal number of
children for a node in the tree can not grow, and the minimum node frequency
cannot decrease.

Proposition 3.1 The pattern class T PF (D, τ, σ, β) is monotonic with respect
to rooted subtrees, i.e., if T ∈ T PF (D, τ, σ, β) and S is a subtree of T , then
S ∈ T PF (D, τ, σ, β).

3.3.2 Number of tree patterns

The number of rooted labeled trees on k nodes, with an unrestricted branching
factor, is kk−1. This follows from the theorem of Cayley, which states that
the number of labeled trees is kk−2; see e.g. [57, Section 3.3] or [85, sequence
A000169]. The number of possible roots is of course k, from which the result
follows.

3.3.3 Expected number of conflicts

The expected number of conflicts E[c(T)] can be computed recursively for a
tree T , under the assumption that the attributes are independent and have the
marginal frequencies observed in the data. Consider a tree T = (A, C), defined
now according to the recursive Definition 3.2. The probability that a row t does
not conflict with tree T , is

1 − Pr(t conflicts with T) = Pr(t(A) = 0)
∏

B

Pr(t(B) = 0)

+ Pr(t(A) = 1)
∏

S∈C

(1 − Pr(t conflicts with S)),

where the first product is taken over all attributes B represented in T , except for
the root A, and the second over all subtrees S of T , rooted by the children of A.

We call E[c(T)]/c(T) the conflict ratio of a tree T . It is obtained by comparing
the number c(T) of conflicting rows in the data with its expectation E[c(T)]. The
conflict ratio will be high for trees that have much fewer conflicts than would
be expected under the independence assumption. Such trees can be argued to
capture interesting co-occurrence patterns in the data that cannot be explained
by mere random occurrence due to frequencies of the attributes. Conflict ratio
can be used as an interestingness criterion for selecting tree patterns.

20

3 Mining trees from unstructured binary data

3.3.1 Monotonicity

The first observation is the simple monotonicity property typical of frequent
patterns. A tree S is a rooted subtree of tree T if S can be obtained from T
by a series of removals of leaves. It is quite clear that removing a leaf A from T
cannot increase the number of conflicts in the tree. Hence, the tree S can have
at most the same number of conflicts as T . Furthermore, the maximal number of
children for a node in the tree can not grow, and the minimum node frequency
cannot decrease.

Proposition 3.1 The pattern class T PF (D, τ, σ, β) is monotonic with respect
to rooted subtrees, i.e., if T ∈ T PF (D, τ, σ, β) and S is a subtree of T , then
S ∈ T PF (D, τ, σ, β).

3.3.2 Number of tree patterns

The number of rooted labeled trees on k nodes, with an unrestricted branching
factor, is kk−1. This follows from the theorem of Cayley, which states that
the number of labeled trees is kk−2; see e.g. [57, Section 3.3] or [85, sequence
A000169]. The number of possible roots is of course k, from which the result
follows.

3.3.3 Expected number of conflicts

The expected number of conflicts E[c(T)] can be computed recursively for a
tree T , under the assumption that the attributes are independent and have the
marginal frequencies observed in the data. Consider a tree T = (A, C), defined
now according to the recursive Definition 3.2. The probability that a row t does
not conflict with tree T , is

1 − Pr(t conflicts with T) = Pr(t(A) = 0)
∏

B

Pr(t(B) = 0)

+ Pr(t(A) = 1)
∏

S∈C

(1 − Pr(t conflicts with S)),

where the first product is taken over all attributes B represented in T , except for
the root A, and the second over all subtrees S of T , rooted by the children of A.

We call E[c(T)]/c(T) the conflict ratio of a tree T . It is obtained by comparing
the number c(T) of conflicting rows in the data with its expectation E[c(T)]. The
conflict ratio will be high for trees that have much fewer conflicts than would
be expected under the independence assumption. Such trees can be argued to
capture interesting co-occurrence patterns in the data that cannot be explained
by mere random occurrence due to frequencies of the attributes. Conflict ratio
can be used as an interestingness criterion for selecting tree patterns.

20

Problem properties

10

One branch of length k

number of nodes k

with

P
r(

t
co

n
fl
ic

ts
w

it
h

T
) p = 0.1

p = 0.2
p = 0.3
p = 0.4

0

0.2

0.4

0.6

0.8

1

2 4 6 8

(a)

10

(k-1) branches of length 2

number of nodes k
P

r(
t

co
n
fl
ic

ts
w

it
h

T
)

0

0.2

0.4

0.6

0.8

1

2 4 6 8

(b)

Figure 3.4: The growth of conflict probability for two different tree topologies
with respect to tree size k and item occurrence probability p.

3.3.4 Number of tree patterns in random data

Although the number of all possible trees is very large, for random data (with
no genuine structure) the number of interesting tree patterns should be small.
To further investigate the case of random data, suppose that data D contains
independent and identically distributed items, such that we have t(A) = 1 for all
items A ∈ I with probability p.

Trees of size k with k−1 children under the root have a low expected number
of conflicts. This is due to the fact that a conflict may occur only when we have
t(A) = 0 for the root A. In fact, the conflict probability of such a tree approaches
(1 − p) as k becomes large: from the previous subsection we have

Pr(t conflicts with T) = 1 − (1 − p)k − p,

where limk→∞ (1 − p)k = 0, as k approaches infinity. For trees with longer
branches the expected number of conflicts is higher. Hence, it makes sense to
use relatively small values of β. Figure 3.4 shows how the conflict probability
grows in two different cases, with respect to tree size k and the item occurrence
probability p.

With respect to the conflict ratio, it can be shown that the probability of
coming across a tree with a large conflict ratio is very small in random data.
Using Chernoff bounds [68, page 70], we can compute an upper bound on the
probability that a tree T having a conflict ratio E[c(T)]/c(T) larger than some
δ ∈ R≤0 will be encountered. From [68, page 70], we have

Pr(c(T) <
1

δ
E[c(T)]) <

1

e(1−1/δ)2E[c(T)]/2
. (3.1)

21

Problem properties

10

One branch of length k

number of nodes k

with

P
r(

t
co

n
fl
ic

ts
w

it
h

T
) p = 0.1

p = 0.2
p = 0.3
p = 0.4

0

0.2

0.4

0.6

0.8

1

2 4 6 8

(a)

10

(k-1) branches of length 2

number of nodes k

P
r(

t
co

n
fl
ic

ts
w

it
h

T
)

0

0.2

0.4

0.6

0.8

1

2 4 6 8

(b)

Figure 3.4: The growth of conflict probability for two different tree topologies
with respect to tree size k and item occurrence probability p.

3.3.4 Number of tree patterns in random data

Although the number of all possible trees is very large, for random data (with
no genuine structure) the number of interesting tree patterns should be small.
To further investigate the case of random data, suppose that data D contains
independent and identically distributed items, such that we have t(A) = 1 for all
items A ∈ I with probability p.

Trees of size k with k−1 children under the root have a low expected number
of conflicts. This is due to the fact that a conflict may occur only when we have
t(A) = 0 for the root A. In fact, the conflict probability of such a tree approaches
(1 − p) as k becomes large: from the previous subsection we have

Pr(t conflicts with T) = 1 − (1 − p)k − p,

where limk→∞ (1 − p)k = 0, as k approaches infinity. For trees with longer
branches the expected number of conflicts is higher. Hence, it makes sense to
use relatively small values of β. Figure 3.4 shows how the conflict probability
grows in two different cases, with respect to tree size k and the item occurrence
probability p.

With respect to the conflict ratio, it can be shown that the probability of
coming across a tree with a large conflict ratio is very small in random data.
Using Chernoff bounds [68, page 70], we can compute an upper bound on the
probability that a tree T having a conflict ratio E[c(T)]/c(T) larger than some
δ ∈ R≤0 will be encountered. From [68, page 70], we have

Pr(c(T) <
1

δ
E[c(T)]) <

1

e(1−1/δ)2E[c(T)]/2
. (3.1)

21

3 Mining trees from unstructured binary data

Consider relating this to a dataset of m items. For such data, there are Γ ≤
(

m
k

)

kk−1 trees with k nodes. Consider the case that for all of these trees T the
expected conflict count is at least E[c(T)] ≥ nq, where n is the number of rows
in the data and q the conflict frequency. Thus, according to Inequality (3.1), the
expected number of trees with a conflict ratio larger than, say δ = 2, is bounded
by

Γ

enq/8
. (3.2)

On the other hand, we can approximate Γ from above, as

Γ ≤

(

m

k

)

kk−1 ≤ mkkk ≤ m2k. (3.3)

Inserting this into (3.2), we can write the condition that the expected number of
trees T with E[c(t)]/c(T) ≥ 2 is at most 1 as

m2k

enq/8
≤ 1. (3.4)

This inequality is satisfied when

2k log m ≤
nq

8
. (3.5)

As the number of tree nodes k is typically small, the inequality holds as long as
we have enough data, that is, n is large enough. Hence, for a reasonable size
random data set, the number of trees with large conflict ratios (interesting trees)
is very small. This is a desirable property for a pattern.

Example Consider a random data set with the same dimensions as the Mam-

mals data set, that is, with m = 124 attributes and n = 2183 rows. Say, we are
interested in trees T of size k = 4 with conflict ratio E[c(T)]/c(T) ≥ 2. We have

2 × 4 × log 124 ≤
2183 × q

8
,

which holds when q ≥ 0.14. Hence, assuming that the expected conflict frequency
of the trees in the data is larger than 0.14 (compare Figure 3.4), the expected
number of 4 size trees with conflict ratio E[c(T)]/c(T) ≥ 2 is less then one.

Similar reasoning has been applied to frequent itemsets in [3].

3.3.5 Trees, itemsets and association rules

Next we discuss the relationship between trees, itemsets and association rules.
Consider a simple 2-size tree T = ({A,B}, (A,B)) containing the root A and
the child B of the root. It is easy to see that the conflict count c(T) is equal
to f(B)− f({A,B}), where f(B) and f({A,B}) are the frequencies of B and

22

3 Mining trees from unstructured binary data

Consider relating this to a dataset of m items. For such data, there are Γ ≤
(

m
k

)

kk−1 trees with k nodes. Consider the case that for all of these trees T the
expected conflict count is at least E[c(T)] ≥ nq, where n is the number of rows
in the data and q the conflict frequency. Thus, according to Inequality (3.1), the
expected number of trees with a conflict ratio larger than, say δ = 2, is bounded
by

Γ

enq/8
. (3.2)

On the other hand, we can approximate Γ from above, as

Γ ≤

(

m

k

)

kk−1 ≤ mkkk ≤ m2k. (3.3)

Inserting this into (3.2), we can write the condition that the expected number of
trees T with E[c(t)]/c(T) ≥ 2 is at most 1 as

m2k

enq/8
≤ 1. (3.4)

This inequality is satisfied when

2k log m ≤
nq

8
. (3.5)

As the number of tree nodes k is typically small, the inequality holds as long as
we have enough data, that is, n is large enough. Hence, for a reasonable size
random data set, the number of trees with large conflict ratios (interesting trees)
is very small. This is a desirable property for a pattern.

Example Consider a random data set with the same dimensions as the Mam-

mals data set, that is, with m = 124 attributes and n = 2183 rows. Say, we are
interested in trees T of size k = 4 with conflict ratio E[c(T)]/c(T) ≥ 2. We have

2 × 4 × log 124 ≤
2183 × q

8
,

which holds when q ≥ 0.14. Hence, assuming that the expected conflict frequency
of the trees in the data is larger than 0.14 (compare Figure 3.4), the expected
number of 4 size trees with conflict ratio E[c(T)]/c(T) ≥ 2 is less then one.

Similar reasoning has been applied to frequent itemsets in [3].

3.3.5 Trees, itemsets and association rules

Next we discuss the relationship between trees, itemsets and association rules.
Consider a simple 2-size tree T = ({A,B}, (A,B)) containing the root A and
the child B of the root. It is easy to see that the conflict count c(T) is equal
to f(B)− f({A,B}), where f(B) and f({A,B}) are the frequencies of B and

22

Algorithms

{A,B}, respectively. Also, for the association rule B → A, denoting the accuracy
of the rule by γ = accur(B → A), we have that c(T) = f(B)(1−γ). One can ask
whether other, more complex trees could be reduced to frequent itemset mining
and association rules. Could we perhaps find all the trees in T PF (D, τ, σ, β) just
by post-processing1 a set of frequent itemsets or association rules for the set of
items in the data? This turns out not to be the case, however.

For any tree T , a row t will not conflict with T if the rule B → A is true on t
for all pairs (A,B) such that B is a descendant of A in T . However, there is no
simple formula for the conflict count of tree T given the accuracies of the rules
B → A for item pairs of T . The reason is that a tree conflicts with a row t if at
least one rule is violated: the frequency with which this happens depends on the
interaction of the different rules.

As an example, consider a three-item tree with root A, and B and C as the
children of A. If f(A) = f(B) = f(C) = 0.2 and f({A,B}) = f({A,C}) = 0.1,
the accuracies of the rules B → A and C → A are both 0.5. Denoting by n
the number of rows in the data, the conflict count of tree T can, however, vary
between 0.2n0.5 and 2(0.2n0.5). If the set of rows which do not satisfy B → A is
the same as the set of rows that do not satisfy C → A, the conflict count will be
(0.2n0.5). On the other hand, if the rows are disjoint, the conflict count will be
2 × (0.2n0.5). Hence there is no algorithm for computing T PF (D, τ, σ, β) given
only the collection of frequent itemsets/association rules for the items.2

3.4 Algorithms

Proposition 3.1 allows a standard level-wise algorithm to be used for computing
trees in T PF (D, τ, σ, β), as when computing frequent itemsets (recall Algorithm 1
in Section 2.2): start from single attributes, and on every pass combine trees of
size k into trees of size k + 1.

However, the combination phase for trees is not as simple as for itemsets.
Fortunately however, there are several existing methods for level-wise type of
tree enumeration stemming from research on frequent subtree discovery from
relational databases (see [12] for an overview). In this study, we implement the
approach by Zaki [96], mainly because of its simplicity with respect to other
existing methods. For a more detailed description of the method, the reader is
referred to [96]. Here we give a simplified overview.

Briefly, a tree is represented as a string by traversing it depth-first in preorder,
recording the attribute in each node, and −1 when backtracking. Figure 3.5
provides an example of the encoding. In this encoding, it is sufficient to consider
combining pairs of trees sharing the same (k − 1)-prefix, as opposed to trying to

1See, e.g., [89, 58, 59, 53, 48] for interesting work on post-processing collections of association
rules.

2The exponential collection of frequencies of all frequent itemsets for frequency threshold 0
specifies the distribution of the data rows uniquely, so that exponential input would also suffice
to determine the collection T PF (D, τ, σ, β).

23

Algorithms

{A,B}, respectively. Also, for the association rule B → A, denoting the accuracy
of the rule by γ = accur(B → A), we have that c(T) = f(B)(1−γ). One can ask
whether other, more complex trees could be reduced to frequent itemset mining
and association rules. Could we perhaps find all the trees in T PF (D, τ, σ, β) just
by post-processing1 a set of frequent itemsets or association rules for the set of
items in the data? This turns out not to be the case, however.

For any tree T , a row t will not conflict with T if the rule B → A is true on t
for all pairs (A,B) such that B is a descendant of A in T . However, there is no
simple formula for the conflict count of tree T given the accuracies of the rules
B → A for item pairs of T . The reason is that a tree conflicts with a row t if at
least one rule is violated: the frequency with which this happens depends on the
interaction of the different rules.

As an example, consider a three-item tree with root A, and B and C as the
children of A. If f(A) = f(B) = f(C) = 0.2 and f({A,B}) = f({A,C}) = 0.1,
the accuracies of the rules B → A and C → A are both 0.5. Denoting by n
the number of rows in the data, the conflict count of tree T can, however, vary
between 0.2n0.5 and 2(0.2n0.5). If the set of rows which do not satisfy B → A is
the same as the set of rows that do not satisfy C → A, the conflict count will be
(0.2n0.5). On the other hand, if the rows are disjoint, the conflict count will be
2 × (0.2n0.5). Hence there is no algorithm for computing T PF (D, τ, σ, β) given
only the collection of frequent itemsets/association rules for the items.2

3.4 Algorithms

Proposition 3.1 allows a standard level-wise algorithm to be used for computing
trees in T PF (D, τ, σ, β), as when computing frequent itemsets (recall Algorithm 1
in Section 2.2): start from single attributes, and on every pass combine trees of
size k into trees of size k + 1.

However, the combination phase for trees is not as simple as for itemsets.
Fortunately however, there are several existing methods for level-wise type of
tree enumeration stemming from research on frequent subtree discovery from
relational databases (see [12] for an overview). In this study, we implement the
approach by Zaki [96], mainly because of its simplicity with respect to other
existing methods. For a more detailed description of the method, the reader is
referred to [96]. Here we give a simplified overview.

Briefly, a tree is represented as a string by traversing it depth-first in preorder,
recording the attribute in each node, and −1 when backtracking. Figure 3.5
provides an example of the encoding. In this encoding, it is sufficient to consider
combining pairs of trees sharing the same (k − 1)-prefix, as opposed to trying to

1See, e.g., [89, 58, 59, 53, 48] for interesting work on post-processing collections of association
rules.

2The exponential collection of frequencies of all frequent itemsets for frequency threshold 0
specifies the distribution of the data rows uniquely, so that exponential input would also suffice
to determine the collection T PF (D, τ, σ, β).

23

3 Mining trees from unstructured binary data

C

B

A D

E

Encoding:
(C,B,A,−1, D,−1,−1, E,−1)

Figure 3.5: Example of tree encoding by Zaki [96].

combine all pairs of trees. Consequently, the otherwise quadratic time complexity
is cut down.

A drawback of the Zaki combination method is that each (k + 1)-tree is gen-
erated multiple times as isomorphic copies: for example, the isomorphic trees
(A,B,−1, C,−1) and (A,C,−1, B,−1) are both generated. We optimize the
database pass by only accessing the database for trees where the children of
each node are in alphabetical order, and using the same information for iso-
morphic trees. However, it is not possible to completely prune the copies. For
example, the 4-tree (A,C,−1, D,B,−1,−1) can only be generated from the 3-
trees (A,C,−1, D,−1) and (A,C,−1, B,−1), the latter of which does not have
the order property. Another possibility would be to work only with canonical
forms of trees, as in [5, 72, 13]. On the other hand, for canonical forms of trees
the combination phase is conceptually more complex.

3.5 Experiments

To test the tree mining method in practice an implementation of the Zaki’s al-
gorithm (discussed in Section 3.4) was built using Java language. The results of
the experiments are reported in this section.

3.5.1 Examples of trees

Some examples are now presented of the kind of individual tree patterns that
result from real data. The data sets MovieLens, Mammals, and Course En-

rollment are used in the examples.

MovieLens data

We start with the MovieLens data by exploring frequent trees in comparisons
with the use of only regular frequent itemset. To do this we mined all frequent
itemsets using a frequency of 100 rows (relative frequency = 0.106) and ranked the

24

3 Mining trees from unstructured binary data

C

B

A D

E

Encoding:
(C,B,A,−1, D,−1,−1, E,−1)

Figure 3.5: Example of tree encoding by Zaki [96].

combine all pairs of trees. Consequently, the otherwise quadratic time complexity
is cut down.

A drawback of the Zaki combination method is that each (k + 1)-tree is gen-
erated multiple times as isomorphic copies: for example, the isomorphic trees
(A,B,−1, C,−1) and (A,C,−1, B,−1) are both generated. We optimize the
database pass by only accessing the database for trees where the children of
each node are in alphabetical order, and using the same information for iso-
morphic trees. However, it is not possible to completely prune the copies. For
example, the 4-tree (A,C,−1, D,B,−1,−1) can only be generated from the 3-
trees (A,C,−1, D,−1) and (A,C,−1, B,−1), the latter of which does not have
the order property. Another possibility would be to work only with canonical
forms of trees, as in [5, 72, 13]. On the other hand, for canonical forms of trees
the combination phase is conceptually more complex.

3.5 Experiments

To test the tree mining method in practice an implementation of the Zaki’s al-
gorithm (discussed in Section 3.4) was built using Java language. The results of
the experiments are reported in this section.

3.5.1 Examples of trees

Some examples are now presented of the kind of individual tree patterns that
result from real data. The data sets MovieLens, Mammals, and Course En-

rollment are used in the examples.

MovieLens data

We start with the MovieLens data by exploring frequent trees in comparisons
with the use of only regular frequent itemset. To do this we mined all frequent
itemsets using a frequency of 100 rows (relative frequency = 0.106) and ranked the

24

Experiments

itemsets according to the ratio of their observed frequency with respect to their
expected frequency (computed from marginal frequencies assuming independence
of attributes). The top three itemsets are the following:

1. {Back to the Future (1985), Empire Strikes Back (1980), Indiana Jones and
the Last Crusade (1989), Raiders of the Lost Ark (1981), Return of The Jedi
(1983), Star Wars (1977)}

2. {Alien (1979), Aliens (1986), Blade Runner (1982)}

3. {Godfather (1972), Pulp Fiction (1994), Shawshank Redemption (1994), Si-
lence of the Lambs (1991)}

The first itemset features three Star Wars movies and two Indiana Jones
movies, all films by the producer-director George Lucas. The item Back to the
Future (1985) is a movie directed by Steven Spielberg, as are the two Indiana Jones
movies. The second itemset includes the movies Alien (1979) and Blade Runner
(1982), both science fiction movies by Ridley Scott, with Aliens (1986) being the
sequel to Alien (1979). The third itemset features the drama and crime thriller
movies Godfather (1972), Pulp Fiction (1994), Shawshank Redemption (1994) and
Silence of the Lambs (1991).

To see the more structural view provided by the frequent tree pattern class,
we computed the best tree, according to the conflict ratio score, for each of the
three itemsets. The search was restricted to trees with a maximum of 3 children
per node, that is β ≤ 3. The resulting trees are shown in Figure 3.6.

The tree structures bring out thematical and temporal relationships. The
trees contain altogether four sequel movies, (Empire Strikes Back (1980), Return
of The Jedi (1983), Indiana Jones and the Last Crusade (1989) and Aliens (1986)),
all occurring as children of the original movie (Star Wars (1977), Raiders of the
Lost Ark (1981) and Alien (1979)). Furthermore, movies with no sequel relations
show temporal ordering; for instance, the movie Star Wars (1977) is parent to the
movie Raiders of the Lost Ark (1981), which premiered four years later. None of
these relationships are directly visible from the plain itemset patterns.

Figure 3.7 shows the top-3 disjoint frequent trees, now using the frequent tree
mining method. For the result we used an occurrence count threshold of σ ≥ 0.1,
a conflict count of τ ≤ 0.075 and a maximum number of children of β ≤ 2. The
trees were ranked first according to size and then conflict ratio.

The common denominator for the frequent itemsets seemed to be more related
to the makers of the movies, that is, George Lucas, Steven Spielberg and Ridley
Scott. The trees in Figure 3.7, on the other hand, show perhaps more coherence
in genre/theme. The tree in Figure 3.7(a) has a strong sci-fi theme with two Star
Wars and two Star Trek movies, the Star Trek movies in particular being more

25

Experiments

itemsets according to the ratio of their observed frequency with respect to their
expected frequency (computed from marginal frequencies assuming independence
of attributes). The top three itemsets are the following:

1. {Back to the Future (1985), Empire Strikes Back (1980), Indiana Jones and
the Last Crusade (1989), Raiders of the Lost Ark (1981), Return of The Jedi
(1983), Star Wars (1977)}

2. {Alien (1979), Aliens (1986), Blade Runner (1982)}

3. {Godfather (1972), Pulp Fiction (1994), Shawshank Redemption (1994), Si-
lence of the Lambs (1991)}

The first itemset features three Star Wars movies and two Indiana Jones
movies, all films by the producer-director George Lucas. The item Back to the
Future (1985) is a movie directed by Steven Spielberg, as are the two Indiana Jones
movies. The second itemset includes the movies Alien (1979) and Blade Runner
(1982), both science fiction movies by Ridley Scott, with Aliens (1986) being the
sequel to Alien (1979). The third itemset features the drama and crime thriller
movies Godfather (1972), Pulp Fiction (1994), Shawshank Redemption (1994) and
Silence of the Lambs (1991).

To see the more structural view provided by the frequent tree pattern class,
we computed the best tree, according to the conflict ratio score, for each of the
three itemsets. The search was restricted to trees with a maximum of 3 children
per node, that is β ≤ 3. The resulting trees are shown in Figure 3.6.

The tree structures bring out thematical and temporal relationships. The
trees contain altogether four sequel movies, (Empire Strikes Back (1980), Return
of The Jedi (1983), Indiana Jones and the Last Crusade (1989) and Aliens (1986)),
all occurring as children of the original movie (Star Wars (1977), Raiders of the
Lost Ark (1981) and Alien (1979)). Furthermore, movies with no sequel relations
show temporal ordering; for instance, the movie Star Wars (1977) is parent to the
movie Raiders of the Lost Ark (1981), which premiered four years later. None of
these relationships are directly visible from the plain itemset patterns.

Figure 3.7 shows the top-3 disjoint frequent trees, now using the frequent tree
mining method. For the result we used an occurrence count threshold of σ ≥ 0.1,
a conflict count of τ ≤ 0.075 and a maximum number of children of β ≤ 2. The
trees were ranked first according to size and then conflict ratio.

The common denominator for the frequent itemsets seemed to be more related
to the makers of the movies, that is, George Lucas, Steven Spielberg and Ridley
Scott. The trees in Figure 3.7, on the other hand, show perhaps more coherence
in genre/theme. The tree in Figure 3.7(a) has a strong sci-fi theme with two Star
Wars and two Star Trek movies, the Star Trek movies in particular being more

25

3 Mining trees from unstructured binary data

Star Wars (1977)

Empire
Strikes
Back

(1980)

Return of
the Jedi
(1983)

Raiders of
the Lost Ark

(1981)

Indiana Jones
and the Last

Crusade
(1989)

Back to
the

Future
(1985)

(a)

Alien (1979)

Aliens
(1986)

Blade
Runner
(1982)

(b)

Godfather (1972)

Pulp
Fiction
(1994)

Silence of
the Lambs

(1991)

Shawshank
Redemption

(1994)

(c)

Figure 3.6: Tree structure revealed for itemsets in the dataset MovieLens. The
itemsets are the top-3 disjoint sets with a frequency threshold of 100 rows (relative
frequency = 0.106). The tree structures for each of the itemsets have been selected
by maximizing the conflict ratio for trees with at most 3 children for each node.
Trees (a), (b) and (c) have conflict ratios 3.5, 2.7 and 1.8, respectively.

niche items for a specific sci-fi audience. The tree in Figure 3.7(b) features a set of
more “testosterone backed” action movies, such as the war movie Full Metal Jacket
(1987) by Stanley Kubrick, the high tempo action movies True Lies (1994) and The
Terminator (1984) by James Cameron, and the action adventure movie Raiders
of the Lost Ark (1981) by Steven Spielberg and George Lucas. Correspondingly,
the tree in Figure 3.7(c) shows a common Italian-American theme with the two
Mafia movies The Godfather (1972) and The Godfather: Part II (1974), the movie

26

3 Mining trees from unstructured binary data

Star Wars (1977)

Empire
Strikes
Back

(1980)

Return of
the Jedi
(1983)

Raiders of
the Lost Ark

(1981)

Indiana Jones
and the Last

Crusade
(1989)

Back to
the

Future
(1985)

(a)

Alien (1979)

Aliens
(1986)

Blade
Runner
(1982)

(b)

Godfather (1972)

Pulp
Fiction
(1994)

Silence of
the Lambs

(1991)

Shawshank
Redemption

(1994)

(c)

Figure 3.6: Tree structure revealed for itemsets in the dataset MovieLens. The
itemsets are the top-3 disjoint sets with a frequency threshold of 100 rows (relative
frequency = 0.106). The tree structures for each of the itemsets have been selected
by maximizing the conflict ratio for trees with at most 3 children for each node.
Trees (a), (b) and (c) have conflict ratios 3.5, 2.7 and 1.8, respectively.

niche items for a specific sci-fi audience. The tree in Figure 3.7(b) features a set of
more “testosterone backed” action movies, such as the war movie Full Metal Jacket
(1987) by Stanley Kubrick, the high tempo action movies True Lies (1994) and The
Terminator (1984) by James Cameron, and the action adventure movie Raiders
of the Lost Ark (1981) by Steven Spielberg and George Lucas. Correspondingly,
the tree in Figure 3.7(c) shows a common Italian-American theme with the two
Mafia movies The Godfather (1972) and The Godfather: Part II (1974), the movie

26

Experiments

Star Wars (1977)

Empire
Strikes Back

(1980)

Star Trek IV:
The Voyage
Home (1986)

Batman
(1989)

Star Trek:
The Wrath
of Khan
(1982)

(a)

Raiders of the Lost
Ark (1981)

True Lies
(1994)

The
Terminator

(1984)

Full Metal
Jacket (1987)

(b)

Godfather (1972)

The
Godfather:

Part II
(1974)

The Good,
the Bad and

the Ugly

Raging
Bull

(1980)

(c)

Figure 3.7: Top-3 disjoint frequent trees from the MovieLens data computed
from the set of frequent trees having a maximum node degree of 2, occurrence
count threshold σ ≥ 0.1 and conflict count threshold τ ≤ 0.075. The ranking is
based on first size and then conflict ratio. The trees (a), (b) and (c) have the
conflict ratios of 5.5, 4.0 and 3.2, respectively.

Raging Bull (1980), a story about an Italian-American boxer, and the well known
spaghetti western The Good, the Bad and the Ugly. Again, sequel and temporal
relationships are featured in all of the trees, with for instance, the movies Star
Wars (1977) and Empire Strikes Back (1980), as well as The Godfather (1972) and
The Godfather: Part II (1974).

27

Experiments

Star Wars (1977)

Empire
Strikes Back

(1980)

Star Trek IV:
The Voyage
Home (1986)

Batman
(1989)

Star Trek:
The Wrath
of Khan
(1982)

(a)

Raiders of the Lost
Ark (1981)

True Lies
(1994)

The
Terminator

(1984)

Full Metal
Jacket (1987)

(b)

Godfather (1972)

The
Godfather:

Part II
(1974)

The Good,
the Bad and

the Ugly

Raging
Bull

(1980)

(c)

Figure 3.7: Top-3 disjoint frequent trees from the MovieLens data computed
from the set of frequent trees having a maximum node degree of 2, occurrence
count threshold σ ≥ 0.1 and conflict count threshold τ ≤ 0.075. The ranking is
based on first size and then conflict ratio. The trees (a), (b) and (c) have the
conflict ratios of 5.5, 4.0 and 3.2, respectively.

Raging Bull (1980), a story about an Italian-American boxer, and the well known
spaghetti western The Good, the Bad and the Ugly. Again, sequel and temporal
relationships are featured in all of the trees, with for instance, the movies Star
Wars (1977) and Empire Strikes Back (1980), as well as The Godfather (1972) and
The Godfather: Part II (1974).

27

3 Mining trees from unstructured binary data

Squirrel

Weasel

Elk

(a)

Brown Hare

White-
bellied

Hedgehog

Common
Mole

Striped
Field

Mouse

Common
Vole

European
Pine Vole

(b)

Figure 3.8: Frequent trees found in Mammals. Tree (a) shows the best tree
structure for the itemset {Squirrel, Weasel, Elk} according to the conflict ratio
score. Tree (b) is the best tree according conflict ratio in the set of maximal
trees having occurrence count 0.2 ≤ σ ≤ 0.8, conflict count τ ≤ 0.11 and β ≤ 2.
Tree (a) has a conflict ratio of 2.72, while tree (b) has a conflict ratio of 5.09.

Mammals data

Figure 3.8(a) shows the best tree structure according to the conflict ratio score for
the itemset {Squirrel, Weasel, Elk} found3 in Mammals. The tree structure found
again reveals something not perceivable from the plain itemset: the three species
in question have a nested relationship [62]. That is, if Elk is present, Weasel and
Squirrel are rarely absent (conflict). Furthermore, if Weasel is present, Squirrel
is rarely absent. In other words, the occurrence range of Elk is more or less in
a subset relationship with the occurrence range of Weasel, which is in turn in
a subset relationship with the range of Squirrel. Nestedness is a phenomenon
studied extensively in the ecological domain [75, 6, 20, 45].

Figure 3.8(b) shows the best tree according to conflict ratio, for trees mined
using an occurrence count threshold of 0.2 ≤ σ ≤ 0.8, a conflict count threshold

3In the experiments of Chapter 6, Section 6.5.1, we present a clustering of the dataset
Mammals, based on real-valued environmental observations and a subset of itemsets computed
from the binary observations of the data. The itemset {Squirrel, Weasel, Elk} turns out to
characterize a Nordic cluster defining a region covering the geographical areas of Finland and
Sweden (see Figure 6.3 and Table 6.1).

28

3 Mining trees from unstructured binary data

Squirrel

Weasel

Elk

(a)

Brown Hare

White-
bellied

Hedgehog

Common
Mole

Striped
Field

Mouse

Common
Vole

European
Pine Vole

(b)

Figure 3.8: Frequent trees found in Mammals. Tree (a) shows the best tree
structure for the itemset {Squirrel, Weasel, Elk} according to the conflict ratio
score. Tree (b) is the best tree according conflict ratio in the set of maximal
trees having occurrence count 0.2 ≤ σ ≤ 0.8, conflict count τ ≤ 0.11 and β ≤ 2.
Tree (a) has a conflict ratio of 2.72, while tree (b) has a conflict ratio of 5.09.

Mammals data

Figure 3.8(a) shows the best tree structure according to the conflict ratio score for
the itemset {Squirrel, Weasel, Elk} found3 in Mammals. The tree structure found
again reveals something not perceivable from the plain itemset: the three species
in question have a nested relationship [62]. That is, if Elk is present, Weasel and
Squirrel are rarely absent (conflict). Furthermore, if Weasel is present, Squirrel
is rarely absent. In other words, the occurrence range of Elk is more or less in
a subset relationship with the occurrence range of Weasel, which is in turn in
a subset relationship with the range of Squirrel. Nestedness is a phenomenon
studied extensively in the ecological domain [75, 6, 20, 45].

Figure 3.8(b) shows the best tree according to conflict ratio, for trees mined
using an occurrence count threshold of 0.2 ≤ σ ≤ 0.8, a conflict count threshold

3In the experiments of Chapter 6, Section 6.5.1, we present a clustering of the dataset
Mammals, based on real-valued environmental observations and a subset of itemsets computed
from the binary observations of the data. The itemset {Squirrel, Weasel, Elk} turns out to
characterize a Nordic cluster defining a region covering the geographical areas of Finland and
Sweden (see Figure 6.3 and Table 6.1).

28

Experiments

Introduction to
Programming

Programming
in Java

Programming
in C

Data
Structures

Computer
Organization

Figure 3.9: Best tree according conflict ratio and size in the dataset Course

Enrollment. The result was obtained using occurrence count σ ≥ 0.09, conflict
count τ ≤ 0.165 and β ≤ 2. The tree has a conflict ratio of 2.20.

of τ ≤ 0.11 and a branching constraint of β ≤ 2. The root Brown Hare is a
common species all around Europe, while the leafs feature White-bellied Hedgehog
and Striped Field Mouse, both species occurring mostly only in eastern Europe.
Moreover, as their English language species names suggest, the species European
Pine Vole is a more habitat-specified species than the more general Common Vole.

Course enrollment data

For course enrollment there is an ordering in which the Department of Com-
puter Science recommends students to take certain courses. For instance, some
courses require only a basic understanding of programming concepts, whereas
other courses have more specific prerequisites. Figure 3.9 shows the best tree
with the largest number of items together with the best conflict ratio among
trees having occurrence count σ ≥ 0.09, conflict count τ ≤ 0.165 and β ≤ 2. The
tree nicely reflects the fact that the more advanced courses Data structures and
Programming in C have Java programming as a prerequisite, whereas for Computer
Organization, the course Introduction to Programming suffices. The order pre-
sented in the example tree is also the order in which the department recommends
these courses to be taken.

3.5.2 Tree pattern validation

A good pattern model should find structure where it exists, and produce little or
no patterns for attribute sets for which no structure is present. To validate our
method, a generated dataset with specific “planted” trees is used to see whether
the artificially placed structure can be found using our tree pattern model. The

29

Experiments

Introduction to
Programming

Programming
in Java

Programming
in C

Data
Structures

Computer
Organization

Figure 3.9: Best tree according conflict ratio and size in the dataset Course

Enrollment. The result was obtained using occurrence count σ ≥ 0.09, conflict
count τ ≤ 0.165 and β ≤ 2. The tree has a conflict ratio of 2.20.

of τ ≤ 0.11 and a branching constraint of β ≤ 2. The root Brown Hare is a
common species all around Europe, while the leafs feature White-bellied Hedgehog
and Striped Field Mouse, both species occurring mostly only in eastern Europe.
Moreover, as their English language species names suggest, the species European
Pine Vole is a more habitat-specified species than the more general Common Vole.

Course enrollment data

For course enrollment there is an ordering in which the Department of Com-
puter Science recommends students to take certain courses. For instance, some
courses require only a basic understanding of programming concepts, whereas
other courses have more specific prerequisites. Figure 3.9 shows the best tree
with the largest number of items together with the best conflict ratio among
trees having occurrence count σ ≥ 0.09, conflict count τ ≤ 0.165 and β ≤ 2. The
tree nicely reflects the fact that the more advanced courses Data structures and
Programming in C have Java programming as a prerequisite, whereas for Computer
Organization, the course Introduction to Programming suffices. The order pre-
sented in the example tree is also the order in which the department recommends
these courses to be taken.

3.5.2 Tree pattern validation

A good pattern model should find structure where it exists, and produce little or
no patterns for attribute sets for which no structure is present. To validate our
method, a generated dataset with specific “planted” trees is used to see whether
the artificially placed structure can be found using our tree pattern model. The

29

3 Mining trees from unstructured binary data

Table 3.1: Results from generated data. m: number of attributes; |S|: number of
trees used in the generating process; σ, τ : thresholds for frequency and conflicts;
|T PF |: size of the output set; |R|: size of the final result set obtained by taking
enough trees to cover S.

m |S| σ τ |T PF | |R|
10 2 0.2 0.30 1343 5
14 3 0.2 0.30 1172 8
18 4 0.2 0.30 1965 21
20 5 0.2 0.30 2208 27
23 6 0.2 0.30 1674 45
28 7 0.2 0.30 5469 43

method was also tested with swap randomization [29] using the MovieLens

dataset. The randomization procedure preserves the row and column margins of
the given dataset, but obscures the internal dependencies of the data. The idea
is to see whether the number and quality of patterns between the original data
and the swap randomized data differ. If the true structure in the data is captured
by the pattern class, there should be significant differences between the models
found on the original and randomized datasets.

Generated data

Data were generated using the following procedure. First, a number of disjoint
trees with different values of the specificity measure were created by hand. The
number of trees used for the experiment was varied by taking different subcol-
lections of the trees. Given such a collection S, data was produced as follows.
A row t was generated by first making all attributes of t equal to 0. Then, each
tree T ∈ S was selected with probability p. If T was selected, we sampled a
subset X of the nodes of T by taking each node with probability q. Letting Y
be the set of all ancestors of nodes in X, we let t(A) = 1 for all A ∈ X ∪ Y .
Finally, each bit in the dataset was flipped independently with probability r to
create noise. The parameter values used were p = q = 0.5 and r = 0.1, and 1000
data rows were generated.

From the data generated, all the frequent trees were mined. The parameter σ
was chosen to be 0.2, since each tree has a p = 0.5 chance of occurring, and each
attribute in the tree may have as low as a pq = 0.25 chance of occurring. The
parameter τ was chosen as large as possible so that a reasonable number of trees
was still obtained; typically τ = 0.3 was close to the limit.

The result set T PF was reasonably small, while containing all the trees in S.
In order to test how well these trees were positioned in the results with respect
to the two interestingness measures, We partitioned the mined trees into classes
by their number of ancestor-descendant pairs φ, and each class was sorted by

30

3 Mining trees from unstructured binary data

Table 3.1: Results from generated data. m: number of attributes; |S|: number of
trees used in the generating process; σ, τ : thresholds for frequency and conflicts;
|T PF |: size of the output set; |R|: size of the final result set obtained by taking
enough trees to cover S.

m |S| σ τ |T PF | |R|
10 2 0.2 0.30 1343 5
14 3 0.2 0.30 1172 8
18 4 0.2 0.30 1965 21
20 5 0.2 0.30 2208 27
23 6 0.2 0.30 1674 45
28 7 0.2 0.30 5469 43

method was also tested with swap randomization [29] using the MovieLens

dataset. The randomization procedure preserves the row and column margins of
the given dataset, but obscures the internal dependencies of the data. The idea
is to see whether the number and quality of patterns between the original data
and the swap randomized data differ. If the true structure in the data is captured
by the pattern class, there should be significant differences between the models
found on the original and randomized datasets.

Generated data

Data were generated using the following procedure. First, a number of disjoint
trees with different values of the specificity measure were created by hand. The
number of trees used for the experiment was varied by taking different subcol-
lections of the trees. Given such a collection S, data was produced as follows.
A row t was generated by first making all attributes of t equal to 0. Then, each
tree T ∈ S was selected with probability p. If T was selected, we sampled a
subset X of the nodes of T by taking each node with probability q. Letting Y
be the set of all ancestors of nodes in X, we let t(A) = 1 for all A ∈ X ∪ Y .
Finally, each bit in the dataset was flipped independently with probability r to
create noise. The parameter values used were p = q = 0.5 and r = 0.1, and 1000
data rows were generated.

From the data generated, all the frequent trees were mined. The parameter σ
was chosen to be 0.2, since each tree has a p = 0.5 chance of occurring, and each
attribute in the tree may have as low as a pq = 0.25 chance of occurring. The
parameter τ was chosen as large as possible so that a reasonable number of trees
was still obtained; typically τ = 0.3 was close to the limit.

The result set T PF was reasonably small, while containing all the trees in S.
In order to test how well these trees were positioned in the results with respect
to the two interestingness measures, We partitioned the mined trees into classes
by their number of ancestor-descendant pairs φ, and each class was sorted by

30

Experiments

the conflict ratio. From each class φ, trees were selected into the final result
set R in decreasing order of conflict ratio until all trees in S had been selected.
The size |R| of the final result set is thus a measure of how close to the top the
generating trees in S were. The results are shown in Table 3.1.

We see that in every case the number of trees one needs to examine in order
to find the generating trees is fairly low. In fact, most of the extra trees are
variations of the generating trees: for example, in the smallest dataset, one of
the two generating trees is found immediately, and three of its simple variants
precede the other generating tree in conflict ratio order. The sensitivity to the
parameter is evident in that, while we have σ = 0.2 and τ = 0.3 in all the cases
shown, the size of the output |T P| varies non-monotonically in m.

Swap randomized data

We used the MovieLens dataset in the swap randomization test. The number
of swaps in the procedure was equivalent to the number of rows multiplied by
the number of columns in the original data. A set of 100 swap randomized data
instances was produced. We generated a collection of frequent trees using the
occurrence count threshold σ ≥ 0.2 and the conflict count threshold τ ≤ 0.15 and
β ≤ 2, for the original data and each of the 100 swap randomized data instances.

Figure 3.10 shows the results of the swap randomization tests. Figure 3.10(a)
shows the distribution of conflict ratios in the original MovieLens dataset. To
compare this with the patterns found in the swap randomized data we took a 1%
random sample of the entire set of patterns generated from 100 swap randomized
dataset instances. The distribution of conflict ratios resulting from these patterns
is shown in the same subfigure with the dashed outline. A clear difference can
be noticed in these two distributions.

To obtain an empirical p-value [29, page 4] we compared two pattern statistics
in the original data with the corresponding statistics in the 100 swap randomized
data instances: the 100th best conflict ratio and the total size of the pattern
set. Figure 3.10(b) shows the histogram of the 100th best confliction ratio in
the swap randomized datasets, while Figure 3.10(c) shows the histogram for the
size of the pattern output set. The values of the corresponding statistics in the
original dataset are marked with an arrow. In both cases an empirical p-value of
0.001 is obtained.

3.5.3 General statistics

Finally some general mining statistics are given in Table 3.2 for the three datasets:
MovieLens, Mammals and Course Enrollment. We see that the number of
elements in the answer increases rapidly with decreasing frequency threshold σ
and increasing conflict threshold τ . It should be noted, however, that it is quite
easy to iteratively find values of σ and τ that produce outputs of the desired size.
Also, retaining trees with a low branching factor efficiently prunes the answer set
and search space. The run-times are feasible.

31

Experiments

the conflict ratio. From each class φ, trees were selected into the final result
set R in decreasing order of conflict ratio until all trees in S had been selected.
The size |R| of the final result set is thus a measure of how close to the top the
generating trees in S were. The results are shown in Table 3.1.

We see that in every case the number of trees one needs to examine in order
to find the generating trees is fairly low. In fact, most of the extra trees are
variations of the generating trees: for example, in the smallest dataset, one of
the two generating trees is found immediately, and three of its simple variants
precede the other generating tree in conflict ratio order. The sensitivity to the
parameter is evident in that, while we have σ = 0.2 and τ = 0.3 in all the cases
shown, the size of the output |T P| varies non-monotonically in m.

Swap randomized data

We used the MovieLens dataset in the swap randomization test. The number
of swaps in the procedure was equivalent to the number of rows multiplied by
the number of columns in the original data. A set of 100 swap randomized data
instances was produced. We generated a collection of frequent trees using the
occurrence count threshold σ ≥ 0.2 and the conflict count threshold τ ≤ 0.15 and
β ≤ 2, for the original data and each of the 100 swap randomized data instances.

Figure 3.10 shows the results of the swap randomization tests. Figure 3.10(a)
shows the distribution of conflict ratios in the original MovieLens dataset. To
compare this with the patterns found in the swap randomized data we took a 1%
random sample of the entire set of patterns generated from 100 swap randomized
dataset instances. The distribution of conflict ratios resulting from these patterns
is shown in the same subfigure with the dashed outline. A clear difference can
be noticed in these two distributions.

To obtain an empirical p-value [29, page 4] we compared two pattern statistics
in the original data with the corresponding statistics in the 100 swap randomized
data instances: the 100th best conflict ratio and the total size of the pattern
set. Figure 3.10(b) shows the histogram of the 100th best confliction ratio in
the swap randomized datasets, while Figure 3.10(c) shows the histogram for the
size of the pattern output set. The values of the corresponding statistics in the
original dataset are marked with an arrow. In both cases an empirical p-value of
0.001 is obtained.

3.5.3 General statistics

Finally some general mining statistics are given in Table 3.2 for the three datasets:
MovieLens, Mammals and Course Enrollment. We see that the number of
elements in the answer increases rapidly with decreasing frequency threshold σ
and increasing conflict threshold τ . It should be noted, however, that it is quite
easy to iteratively find values of σ and τ that produce outputs of the desired size.
Also, retaining trees with a low branching factor efficiently prunes the answer set
and search space. The run-times are feasible.

31

3 Mining trees from unstructured binary data

conflict ratio

n
u
m

b
er

of
p
a
tt

er
n
s

Original data
Randomized data

0
1 1.5 2 2.5 3 3.5 4 4.5

4000

100

200

(a)

conflict ratio

n
u
m

b
er

of
p
at

te
rn

s

Original data

0
1 1.5 2 2.5 3 3.5 4 4.5

20

40

(b)

patterns

size of output set

n
u
m

b
er

of
ra

n
d
om

iz
ed

d
at

a
se

ts

Original data

0
0 7000600050004000300020001000

10

20

30

(c)

Figure 3.10: Comparison between the original MovieLens data and correspond-
ing swap randomized data. Figure (a) shows the empirical distribution of conflict
ratios of all patterns generated from the original data, in comparison to a 1% ran-
dom sample on the set of patterns generated from 100 swap randomized dataset
instances. Figure (b) shows the histogram of the 100th best conflict ratio over
the 100 swap randomized datasets. Figure (c) shows the histogram for the cor-
responding sizes of the pattern output sets.

32

3 Mining trees from unstructured binary data

conflict ratio

n
u
m

b
er

of
p
a
tt

er
n
s

Original data
Randomized data

0
1 1.5 2 2.5 3 3.5 4 4.5

4000

100

200

(a)

conflict ratio

n
u
m

b
er

of
p
at

te
rn

s

Original data

0
1 1.5 2 2.5 3 3.5 4 4.5

20

40

(b)

patterns

size of output set

n
u
m

b
er

of
ra

n
d
om

iz
ed

d
at

a
se

ts

Original data

0
0 7000600050004000300020001000

10

20

30

(c)

Figure 3.10: Comparison between the original MovieLens data and correspond-
ing swap randomized data. Figure (a) shows the empirical distribution of conflict
ratios of all patterns generated from the original data, in comparison to a 1% ran-
dom sample on the set of patterns generated from 100 swap randomized dataset
instances. Figure (b) shows the histogram of the 100th best conflict ratio over
the 100 swap randomized datasets. Figure (c) shows the histogram for the cor-
responding sizes of the pattern output sets.

32

Related work

Table 3.2: Frequent tree mining statistics for the datasets MovieLens, Mam-

mals and Course Enrollment. The number of trees in the collection
T P(D, τ, σ) for various values of τ , σ and the branching factor β. k = max |T |,
the largest tree in the pattern set. Time/sec = algorithm running time in seconds.
Gen Cands = number of generated candidate tree patterns. *For the Mammals

data an occurrence count threshold of 0.2 ≤ σ ≤ 0.8 was used.

Dataset σ τ β |T P| k Time/sec. Gen Cands
Mammals 0.2∗ 0.075 2 1023 5 7 9124
Mammals 0.2∗ 0.075 3 2198 6 36 20266
Mammals 0.2∗ 0.1 2 2984 5 25 22145
Mammals 0.2∗ 0.1 3 8811 7 867 80729
Mammals 0.2∗ 0.11 2 4651 6 46 32887
Mammals 0.2∗ 0.11 3 15644 7 2773 148483
MovieLens 0.2 0.075 2 219 3 2 6050
MovieLens 0.2 0.075 3 255 4 3 8036
MovieLens 0.1 0.05 2 4763 4 158 149032
MovieLens 0.1 0.05 3 9329 4 2159 390076
MovieLens 0.1 0.055 2 7384 4 433 203800
MovieLens 0.1 0.055 3 18753 5 10745 686266
MovieLens 0.1 0.075 2 31935 5 13602 869238
Course E. 0.085 0.14 2 888 4 17 9560
Course E. 0.085 0.14 3 1023 5 16 13080
Course E. 0.08 0.15 2 4895 5 76 52237
Course E. 0.08 0.15 3 6348 6 234 88607
Course E. 0.07 0.145 2 34946 6 3056 528704
Course E. 0.07 0.165 2 127381 6 31432 2036887

3.6 Related work

While a vast amount of research has been conducted into finding trees from
relational tree- or graph-structured data [12], the crucial difference here is that
we start from unstructured 0-1 data, as in mining frequent sets and association
rules [3]. Hierarchical clustering [49, 46, 92] or finding phylogenetic trees [23] seeks
to find trees from 0-1 data, but typically the goal is to find one tree containing all
the attributes of the data. The same is true for finding tree-structured Bayes nets
[18, 56, 37, 84] from data. Another difference is that in a hierarchical clustering
or phylogenetic trees all attributes of the data are in the leaves of the tree. We
seek trees where all nodes of the tree are attributes from the data.

Another somewhat analogous class of patterns are approximate itemsets, such
as error-tolerant or dense itemsets [94, 80, 78]. These are relaxed versions of
frequent itemsets: the set is considered to occur in a row provided most of the

33

Related work

Table 3.2: Frequent tree mining statistics for the datasets MovieLens, Mam-

mals and Course Enrollment. The number of trees in the collection
T P(D, τ, σ) for various values of τ , σ and the branching factor β. k = max |T |,
the largest tree in the pattern set. Time/sec = algorithm running time in seconds.
Gen Cands = number of generated candidate tree patterns. *For the Mammals

data an occurrence count threshold of 0.2 ≤ σ ≤ 0.8 was used.

Dataset σ τ β |T P| k Time/sec. Gen Cands
Mammals 0.2∗ 0.075 2 1023 5 7 9124
Mammals 0.2∗ 0.075 3 2198 6 36 20266
Mammals 0.2∗ 0.1 2 2984 5 25 22145
Mammals 0.2∗ 0.1 3 8811 7 867 80729
Mammals 0.2∗ 0.11 2 4651 6 46 32887
Mammals 0.2∗ 0.11 3 15644 7 2773 148483
MovieLens 0.2 0.075 2 219 3 2 6050
MovieLens 0.2 0.075 3 255 4 3 8036
MovieLens 0.1 0.05 2 4763 4 158 149032
MovieLens 0.1 0.05 3 9329 4 2159 390076
MovieLens 0.1 0.055 2 7384 4 433 203800
MovieLens 0.1 0.055 3 18753 5 10745 686266
MovieLens 0.1 0.075 2 31935 5 13602 869238
Course E. 0.085 0.14 2 888 4 17 9560
Course E. 0.085 0.14 3 1023 5 16 13080
Course E. 0.08 0.15 2 4895 5 76 52237
Course E. 0.08 0.15 3 6348 6 234 88607
Course E. 0.07 0.145 2 34946 6 3056 528704
Course E. 0.07 0.165 2 127381 6 31432 2036887

3.6 Related work

While a vast amount of research has been conducted into finding trees from
relational tree- or graph-structured data [12], the crucial difference here is that
we start from unstructured 0-1 data, as in mining frequent sets and association
rules [3]. Hierarchical clustering [49, 46, 92] or finding phylogenetic trees [23] seeks
to find trees from 0-1 data, but typically the goal is to find one tree containing all
the attributes of the data. The same is true for finding tree-structured Bayes nets
[18, 56, 37, 84] from data. Another difference is that in a hierarchical clustering
or phylogenetic trees all attributes of the data are in the leaves of the tree. We
seek trees where all nodes of the tree are attributes from the data.

Another somewhat analogous class of patterns are approximate itemsets, such
as error-tolerant or dense itemsets [94, 80, 78]. These are relaxed versions of
frequent itemsets: the set is considered to occur in a row provided most of the

33

3 Mining trees from unstructured binary data

attributes of the set are 1 in the row. Similarly to these patterns, in this work
a tree can be supported by rows that do not have all of the items of the tree.
The tree structure reflects more closely the kinds of co-occurrence that are in
fact present in the data. Fragments of order [28] are a type of directed itemset:
a fragment is violated by rows having two of its items but lacking at least one
item that appears between the two. Fragments of order can be viewed as simple
unrooted trees having only one branch.

3.7 Conclusions

In this chapter we introduced the idea of mining trees from unordered binary data
and showed that this pattern class is distinct from traditional frequent itemsets or
association rules. We also showed that the method has advantageous properties:
high quality tree patterns are unlikely to occur in random data. The definition
allows a simple level-wise algorithm for mining all frequently occurring trees.
Empirical results prove that the level-wise algorithm can find interesting trees in
real data, and relevant patterns in generated data. The extra structure provided
by the new pattern class can help the data analyst to make further conclusions
on the relationships between the attributes not possible with traditional frequent
itemsets.

34

3 Mining trees from unstructured binary data

attributes of the set are 1 in the row. Similarly to these patterns, in this work
a tree can be supported by rows that do not have all of the items of the tree.
The tree structure reflects more closely the kinds of co-occurrence that are in
fact present in the data. Fragments of order [28] are a type of directed itemset:
a fragment is violated by rows having two of its items but lacking at least one
item that appears between the two. Fragments of order can be viewed as simple
unrooted trees having only one branch.

3.7 Conclusions

In this chapter we introduced the idea of mining trees from unordered binary data
and showed that this pattern class is distinct from traditional frequent itemsets or
association rules. We also showed that the method has advantageous properties:
high quality tree patterns are unlikely to occur in random data. The definition
allows a simple level-wise algorithm for mining all frequently occurring trees.
Empirical results prove that the level-wise algorithm can find interesting trees in
real data, and relevant patterns in generated data. The extra structure provided
by the new pattern class can help the data analyst to make further conclusions
on the relationships between the attributes not possible with traditional frequent
itemsets.

34

Chapter 4

Low-entropy sets and trees

4.1 Introduction

Pattern classes such as frequent itemsets stress the co-occurrence of the value 1
in the data. Take for instance the itemset X = {A,B,C,D}. We say that X is
frequent if there are sufficiently many data rows t that have a value combination
in the attributes such that t(A)=t(B)=t(C)=t(D)=1. But, why concentrate only
on the co-occurrences of the value 1? The data could hide a potentially interesting
subset of attributes that have some other type of dependency structure.

As an example, consider the dataset Mammals. An ecologist might be in-
terested in species occurrence dynamics from some other point of view than just
plain co-occurrence. It could be relevant, for instance, to conclude that X com-
prises two (or more) prominent value combinations. The case could be that when
A and B occur, C and D almost never occur, and when C and D occur, only very
rarely do A and B occur. Occurrence behavior like this could stem from com-
petition over scarce resources, or some other environmental factors, and would
not be possible to detect with frequent itemsets. Table 4.1 gives an example of a
distribution in which the value combinations occur like this.

Instead of concentrating on attribute sets with one frequent value combina-
tion, in this chapter we discuss a more general approach. Given an itemset X, we
say that X is interesting if the attributes of X have low overall complexity. As a
measure of complexity we take entropy, which can be used to describe the skew-
ness of the distribution according to which the value combinations of X occur.
The lower the entropy, the more structured and more concentrated the value
combinations are. We call attribute sets with entropy below some predefined
threshold low-entropy sets.

Low-entropy sets can be viewed as a generalization of frequent itemsets in the
sense that they are not restricted to co-occurrences of the value 1 in the data.
Compared with frequent itemsets they are also more expressive in that they can
locate subsets that have a number of different value combinations, such as in

35

Chapter 4

Low-entropy sets and trees

4.1 Introduction

Pattern classes such as frequent itemsets stress the co-occurrence of the value 1
in the data. Take for instance the itemset X = {A,B,C,D}. We say that X is
frequent if there are sufficiently many data rows t that have a value combination
in the attributes such that t(A)=t(B)=t(C)=t(D)=1. But, why concentrate only
on the co-occurrences of the value 1? The data could hide a potentially interesting
subset of attributes that have some other type of dependency structure.

As an example, consider the dataset Mammals. An ecologist might be in-
terested in species occurrence dynamics from some other point of view than just
plain co-occurrence. It could be relevant, for instance, to conclude that X com-
prises two (or more) prominent value combinations. The case could be that when
A and B occur, C and D almost never occur, and when C and D occur, only very
rarely do A and B occur. Occurrence behavior like this could stem from com-
petition over scarce resources, or some other environmental factors, and would
not be possible to detect with frequent itemsets. Table 4.1 gives an example of a
distribution in which the value combinations occur like this.

Instead of concentrating on attribute sets with one frequent value combina-
tion, in this chapter we discuss a more general approach. Given an itemset X, we
say that X is interesting if the attributes of X have low overall complexity. As a
measure of complexity we take entropy, which can be used to describe the skew-
ness of the distribution according to which the value combinations of X occur.
The lower the entropy, the more structured and more concentrated the value
combinations are. We call attribute sets with entropy below some predefined
threshold low-entropy sets.

Low-entropy sets can be viewed as a generalization of frequent itemsets in the
sense that they are not restricted to co-occurrences of the value 1 in the data.
Compared with frequent itemsets they are also more expressive in that they can
locate subsets that have a number of different value combinations, such as in

35

4 Low-entropy sets and trees

the example of Table 4.1. Also, unlike frequent itemsets, low-entropy sets are
symmetric with respect to 0 and 1, that is, flipping 0s to 1s and vice versa will
not change the score.

While it can be argued that the property of having low entropy is interesting
in itself, it is also beneficial to have an explanation of how the attributes in the
set are connected to each other, as already discussed in Chapter 3. Fortunately,
it is easy to extend the notion of entropy to structural patterns such as trees. A
low-entropy tree is a subclass of a tree-structured network with an entropy score
below a predefined threshold. Low-entropy trees can be seen as Bayes trees [37],
Markov trees [76], dependence trees [64], or Chow-Liu trees [14], but an important
distinction is that we do not attempt to model the complete joint distribution
but to find interesting local patterns.

In this chapter we give formal definitions to two new pattern classes: low-
entropy sets and low-entropy trees. We show that entropy has the monotonicity
property, and thus a level-wise approach can find all low-entropy sets. We also
show that the low-entropy trees are bounded above by the entropy of the corre-
sponding set, allowing similar algorithms to be used for finding low-entropy trees.
We describe algorithms for finding all patterns satisfying an entropy condition for
both pattern types. We give an empirical evaluation of patterns found by these
methods and compare their properties with results with frequent itemsets. We
show that entropy allows to express structure related not only with single types
of co-occurrence but also with more general occurrence patterns.

4.2 Problem definitions

4.2.1 Low-entropy sets

Given a set of items X, we denote by πX(t) the projection of the transaction
t onto X. In other words, πX(t) is a 0–1 vector of values t(A) defined by the
attributes A ∈ X.

Let ΩX be the set { 0, 1 }|X| of all 0-1 vectors of length |X|. We call the
vectors i ∈ ΩX the instantiations of the itemset X. We say that the instantiation
i fits transaction t iff i = πX(t). We denote by pX(i,D) the relative frequency of
the attribute X in D having the value i. More formally,

pX(i,D) =
|{t ∈ D|i = πX(t)}|

|D|
.

Or, simply put, the fraction of transactions in D where i fits. The entropy of an
itemset X in D is

H (X,D) = −
∑

i∈ΩX

pX(i) log2 pX(i),

where 0 log2 0 is assigned the value 0 by convention. For readability, we write
pX(i) and H (X) wherever D is clear from the context.

36

4 Low-entropy sets and trees

the example of Table 4.1. Also, unlike frequent itemsets, low-entropy sets are
symmetric with respect to 0 and 1, that is, flipping 0s to 1s and vice versa will
not change the score.

While it can be argued that the property of having low entropy is interesting
in itself, it is also beneficial to have an explanation of how the attributes in the
set are connected to each other, as already discussed in Chapter 3. Fortunately,
it is easy to extend the notion of entropy to structural patterns such as trees. A
low-entropy tree is a subclass of a tree-structured network with an entropy score
below a predefined threshold. Low-entropy trees can be seen as Bayes trees [37],
Markov trees [76], dependence trees [64], or Chow-Liu trees [14], but an important
distinction is that we do not attempt to model the complete joint distribution
but to find interesting local patterns.

In this chapter we give formal definitions to two new pattern classes: low-
entropy sets and low-entropy trees. We show that entropy has the monotonicity
property, and thus a level-wise approach can find all low-entropy sets. We also
show that the low-entropy trees are bounded above by the entropy of the corre-
sponding set, allowing similar algorithms to be used for finding low-entropy trees.
We describe algorithms for finding all patterns satisfying an entropy condition for
both pattern types. We give an empirical evaluation of patterns found by these
methods and compare their properties with results with frequent itemsets. We
show that entropy allows to express structure related not only with single types
of co-occurrence but also with more general occurrence patterns.

4.2 Problem definitions

4.2.1 Low-entropy sets

Given a set of items X, we denote by πX(t) the projection of the transaction
t onto X. In other words, πX(t) is a 0–1 vector of values t(A) defined by the
attributes A ∈ X.

Let ΩX be the set { 0, 1 }|X| of all 0-1 vectors of length |X|. We call the
vectors i ∈ ΩX the instantiations of the itemset X. We say that the instantiation
i fits transaction t iff i = πX(t). We denote by pX(i,D) the relative frequency of
the attribute X in D having the value i. More formally,

pX(i,D) =
|{t ∈ D|i = πX(t)}|

|D|
.

Or, simply put, the fraction of transactions in D where i fits. The entropy of an
itemset X in D is

H (X,D) = −
∑

i∈ΩX

pX(i) log2 pX(i),

where 0 log2 0 is assigned the value 0 by convention. For readability, we write
pX(i) and H (X) wherever D is clear from the context.

36

Problem definitions

Table 4.1: Example low-entropy set {A,B,C,D}. The distribution of the set is
concentrated on two frequent value combinations.

A B C D
value
counts

1 1 0 0 434
0 0 1 1 398
0 0 0 0 88
0 1 0 0 34
0 0 0 1 22
1 0 0 1 14
1 1 1 1 10
Number of

1000
rows in data

The entropy of X can be seen as a measure of uncertainty about the value
of πX(t) if we were to randomly sample a row t from D. Intuitively, entropy is
increased by outcomes that are unlikely, as − log2 pX(i) will be high in this case.
However, since these contributions are weighted by their frequencies, a single
unlikely outcome contributes little. Hence, entropy is only maximized when each
outcome is equally unlikely. Indeed, the entropy function H (X) has its maximum
value when all probabilities pX(i) are equal. In this case H(x) = log2 |ΩX | = |X|.

Correspondingly, entropy is small when most outcomes are not surprising.
The lower the entropy, the more structured and more concentrated the instan-
tiations are. The minimum value H (X) = 0 is achieved when only a single
instantiation occurs in the data, i.e., when p(i) = 1. This can be contrasted with
frequent itemsets: an itemset X has maximum frequency if pX(i) = 1 for i = ~1.
In this case the entropy of X is also minimized. More generally, high frequency
implies low entropy, but not necessarily vice versa. From a pattern mining point
of view, attribute sets exhibiting structure in the form of low entropy can be
deemed interesting. For more on the basic properties of entropy, see e.g. [19,
Chapter 2].

Definition 4.1 Given an entropy threshold ǫ, a low entropy set X (LE-set) is an
itemset that has entropy lower than ǫ in D, that is H (X,D) ≤ ǫ. The collection
of all low-entropy sets in D is denoted by PLE(D, ǫ).

Problem 4.1 Given D and ǫ, compute PLE(D, ǫ).

4.2.2 Low-entropy trees

A potential drawback of mining low-entropy sets is that the sets do not have any
structure that would explain how the attributes in the set are connected to each

37

Problem definitions

Table 4.1: Example low-entropy set {A,B,C,D}. The distribution of the set is
concentrated on two frequent value combinations.

A B C D
value
counts

1 1 0 0 434
0 0 1 1 398
0 0 0 0 88
0 1 0 0 34
0 0 0 1 22
1 0 0 1 14
1 1 1 1 10
Number of

1000
rows in data

The entropy of X can be seen as a measure of uncertainty about the value
of πX(t) if we were to randomly sample a row t from D. Intuitively, entropy is
increased by outcomes that are unlikely, as − log2 pX(i) will be high in this case.
However, since these contributions are weighted by their frequencies, a single
unlikely outcome contributes little. Hence, entropy is only maximized when each
outcome is equally unlikely. Indeed, the entropy function H (X) has its maximum
value when all probabilities pX(i) are equal. In this case H(x) = log2 |ΩX | = |X|.

Correspondingly, entropy is small when most outcomes are not surprising.
The lower the entropy, the more structured and more concentrated the instan-
tiations are. The minimum value H (X) = 0 is achieved when only a single
instantiation occurs in the data, i.e., when p(i) = 1. This can be contrasted with
frequent itemsets: an itemset X has maximum frequency if pX(i) = 1 for i = ~1.
In this case the entropy of X is also minimized. More generally, high frequency
implies low entropy, but not necessarily vice versa. From a pattern mining point
of view, attribute sets exhibiting structure in the form of low entropy can be
deemed interesting. For more on the basic properties of entropy, see e.g. [19,
Chapter 2].

Definition 4.1 Given an entropy threshold ǫ, a low entropy set X (LE-set) is an
itemset that has entropy lower than ǫ in D, that is H (X,D) ≤ ǫ. The collection
of all low-entropy sets in D is denoted by PLE(D, ǫ).

Problem 4.1 Given D and ǫ, compute PLE(D, ǫ).

4.2.2 Low-entropy trees

A potential drawback of mining low-entropy sets is that the sets do not have any
structure that would explain how the attributes in the set are connected to each

37

4 Low-entropy sets and trees

A

B C

(a)

A

B

C

(b)

Figure 4.1: Two example trees.

other, a topic already discussed in Chapter 3. In this subsection we consider
replacing itemsets by a tree-type pattern; the pattern imposes a model on the
attribute sets, and it is the entropy of the model that we seek to minimize.

Consider the tree T = (X,E). Furthermore, denote the root of T with R. We
define the entropy of T as

HT (T) = H (R) +
∑

(A,B)∈E

H (B | A), (4.1)

where H (B | A) is the conditional entropy of B given A, that is,

H (B | A) = H ({A,B}) − H (A).

Conditional entropy may be interpreted as the amount of uncertainty that re-
mains about the value of t(B) if the value of t(A) is known, when randomly
sampling a row t from D.

Example Consider Figure 4.1. The tree in Figure 4.1(a) has entropy

H (A) + H (B | A) + H (C | A),

while the tree in Figure 4.1(b) has entropy

H (A) + H (B | A) + H (C | B).

The tree in Figure 4.1(a) will have lower entropy than the tree in Figure 4.1(b)
if H (C | A) < H (C | B). The interpretation of this would be that knowing t(A)
reduces one’s uncertainty about t(C) more than knowing t(B) would. Indeed,
in general, we would like to have trees, in which each child node is as closely
determined by its parent as possible. In other words trees that capture the
interaction structure of the attributes as well as possible. We say that tree
T = (X,E) is optimal for itemset X if the set of edges E minimizes HT for
the itemset X. In other words, HT (T) ≤ HT (T ′), for all trees T ′ = (X,E′), such
that E′ 6= E.

38

4 Low-entropy sets and trees

A

B C

(a)

A

B

C

(b)

Figure 4.1: Two example trees.

other, a topic already discussed in Chapter 3. In this subsection we consider
replacing itemsets by a tree-type pattern; the pattern imposes a model on the
attribute sets, and it is the entropy of the model that we seek to minimize.

Consider the tree T = (X,E). Furthermore, denote the root of T with R. We
define the entropy of T as

HT (T) = H (R) +
∑

(A,B)∈E

H (B | A), (4.1)

where H (B | A) is the conditional entropy of B given A, that is,

H (B | A) = H ({A,B}) − H (A).

Conditional entropy may be interpreted as the amount of uncertainty that re-
mains about the value of t(B) if the value of t(A) is known, when randomly
sampling a row t from D.

Example Consider Figure 4.1. The tree in Figure 4.1(a) has entropy

H (A) + H (B | A) + H (C | A),

while the tree in Figure 4.1(b) has entropy

H (A) + H (B | A) + H (C | B).

The tree in Figure 4.1(a) will have lower entropy than the tree in Figure 4.1(b)
if H (C | A) < H (C | B). The interpretation of this would be that knowing t(A)
reduces one’s uncertainty about t(C) more than knowing t(B) would. Indeed,
in general, we would like to have trees, in which each child node is as closely
determined by its parent as possible. In other words trees that capture the
interaction structure of the attributes as well as possible. We say that tree
T = (X,E) is optimal for itemset X if the set of edges E minimizes HT for
the itemset X. In other words, HT (T) ≤ HT (T ′), for all trees T ′ = (X,E′), such
that E′ 6= E.

38

Problem properties

Definition 4.2 Given an entropy threshold ǫ, a low-entropy tree (LE-tree) is an
optimal tree T (X,E) for itemset X that has entropy lower than ǫ in D, that is
HT (T) ≤ ǫ and HT (T) ≤ HT (T ′) for all trees T ′ = (X,E′) such that E′ 6= E.
The collection of all low-entropy trees in D is denoted by T PLE(D, ǫ).

We have the following computational problem:

Problem 4.2 Given D and ǫ, compute T PLE(D, ǫ).

4.3 Problem properties

Next we consider the basic properties of Problems 4.1 and 4.2. We start with
monotonicity.

4.3.1 Monotonicity

Proposition 4.1 For all datasets D,

H (X) ≥ H (X \ A)

for all A ∈ X and X 6= ∅.

Proof We use H (X | Y) = H (X ∪ Y) − H (Y), and the fact that entropy is
always nonnegative.

H (X) = H (X \ A) + H (A | X \ A) ≥ H (X \ A)

Note that the equality H (X) = H (X \ A) holds only when H (A | X \ A) = 0,
i.e., when there is a functional dependency X \ A → A. 2

4.3.2 LE-trees versus LE-sets

The following states that any low-entropy tree is necessarily a low-entropy set.

Proposition 4.2 Given any tree T = (X,E), we have H (X) ≤ HT (T).

Proof To see this, consider marking each node A ∈ X with an index i(A) ∈
1, . . . , |X|, such that for each edge (A,B) ∈ E we have i(A) < i(B). This can be
done easily by traversing the nodes in the tree in a breath-first manner starting
from the root, and at each step assigning index i to the ith node visited. For
readability we write Ai when we have i(A). The entropy of tree T can now be
written out as

HT (T) = H (A1) +

|X|
∑

i=2

∑

(Ai,Aj)∈E

H (Aj | Ai). (4.2)

39

Problem properties

Definition 4.2 Given an entropy threshold ǫ, a low-entropy tree (LE-tree) is an
optimal tree T (X,E) for itemset X that has entropy lower than ǫ in D, that is
HT (T) ≤ ǫ and HT (T) ≤ HT (T ′) for all trees T ′ = (X,E′) such that E′ 6= E.
The collection of all low-entropy trees in D is denoted by T PLE(D, ǫ).

We have the following computational problem:

Problem 4.2 Given D and ǫ, compute T PLE(D, ǫ).

4.3 Problem properties

Next we consider the basic properties of Problems 4.1 and 4.2. We start with
monotonicity.

4.3.1 Monotonicity

Proposition 4.1 For all datasets D,

H (X) ≥ H (X \ A)

for all A ∈ X and X 6= ∅.

Proof We use H (X | Y) = H (X ∪ Y) − H (Y), and the fact that entropy is
always nonnegative.

H (X) = H (X \ A) + H (A | X \ A) ≥ H (X \ A)

Note that the equality H (X) = H (X \ A) holds only when H (A | X \ A) = 0,
i.e., when there is a functional dependency X \ A → A. 2

4.3.2 LE-trees versus LE-sets

The following states that any low-entropy tree is necessarily a low-entropy set.

Proposition 4.2 Given any tree T = (X,E), we have H (X) ≤ HT (T).

Proof To see this, consider marking each node A ∈ X with an index i(A) ∈
1, . . . , |X|, such that for each edge (A,B) ∈ E we have i(A) < i(B). This can be
done easily by traversing the nodes in the tree in a breath-first manner starting
from the root, and at each step assigning index i to the ith node visited. For
readability we write Ai when we have i(A). The entropy of tree T can now be
written out as

HT (T) = H (A1) +

|X|
∑

i=2

∑

(Ai,Aj)∈E

H (Aj | Ai). (4.2)

39

4 Low-entropy sets and trees

A

B

C

(a)

B

A C

(b)

C

B

A

(c)

Figure 4.2: All trees in the figure are equal in terms of HT .

Conditioning reduces entropy [19, Theorem 2.6.5]. Hence, by replacing each
H (Aj | Ai) with H (Aj | {Aj−1, . . . , A1}), we can only decrease the value of the
sum. Note that as (Ai, Aj) ∈ E we have Ai ∈ {Aj−1, . . . , A1}. Thus,

HT (T) ≥ H (A1) + H (A2 | A1) + . . .

+H (A|X| | {A|X|−1, . . . , A2, A1})

= H (X)

The final equality follows from the chain rule of entropy [19, Theorem 2.5.1].
2

The proposition implies that one possible way to mine low-entropy trees is to
mine first the low-entropy itemsets using e.g. the level-wise search and then fit
tree structures into each itemset.

Notice also that in the proof of Proposition 4.2 we have equality only for trees
of size two. In that case Y = {Ai}. For equality to hold in the general case it
would require a fully connected Bayesian network.

Corollary 4.1 Let G = (X,E) be a fully connected directed acyclic graph, in-
terpreted as a Bayesian network whose every node has the maximum-likelihood
distribution from the data D. Then we have H(X) = H(G).

4.3.3 Symmetry of entropy

A known property of entropy is symmetry, from which it follows that the score
HT (T) is not dependent on the choice of the root for the tree T = (X,E).
Picking any node as root and then redirecting links away from this root will

40

4 Low-entropy sets and trees

A

B

C

(a)

B

A C

(b)

C

B

A

(c)

Figure 4.2: All trees in the figure are equal in terms of HT .

Conditioning reduces entropy [19, Theorem 2.6.5]. Hence, by replacing each
H (Aj | Ai) with H (Aj | {Aj−1, . . . , A1}), we can only decrease the value of the
sum. Note that as (Ai, Aj) ∈ E we have Ai ∈ {Aj−1, . . . , A1}. Thus,

HT (T) ≥ H (A1) + H (A2 | A1) + . . .

+H (A|X| | {A|X|−1, . . . , A2, A1})

= H (X)

The final equality follows from the chain rule of entropy [19, Theorem 2.5.1].
2

The proposition implies that one possible way to mine low-entropy trees is to
mine first the low-entropy itemsets using e.g. the level-wise search and then fit
tree structures into each itemset.

Notice also that in the proof of Proposition 4.2 we have equality only for trees
of size two. In that case Y = {Ai}. For equality to hold in the general case it
would require a fully connected Bayesian network.

Corollary 4.1 Let G = (X,E) be a fully connected directed acyclic graph, in-
terpreted as a Bayesian network whose every node has the maximum-likelihood
distribution from the data D. Then we have H(X) = H(G).

4.3.3 Symmetry of entropy

A known property of entropy is symmetry, from which it follows that the score
HT (T) is not dependent on the choice of the root for the tree T = (X,E).
Picking any node as root and then redirecting links away from this root will

40

Problem properties

results in an equivalent entropy value HT . As an example, consider the trees in
Figure 4.2. Due to symmetry, all the trees in the figure are equal in terms of
HT . Consequently, the undirected tree in Figure 4.3 can be used to depict the
common structure of these trees.

To see this, consider a tree T = (X,E). We define the degree deg(A) of node
A ∈ X as the number of edges incident to A, that is

deg(A) = |{A ∈ X | (A,B) ∈ E ∨ (B,A) ∈ E}|.

It turns out that HT (T) can be expressed as a sum depending only on the degrees
of the nodes A ∈ X and the joint entropies H ({A,B}) for all edges (A,B) ∈ E.
Clearly, neither deg(A) nor H ({A,B}) are quantities that depend on whether we
have (A,B) ∈ E or (B,A) ∈ E.

Proposition 4.3 Consider the tree T = (X,E). The entropy of T can be ex-
pressed as

HT (T) =
∑

(A,B)∈E

H ({A,B}) −
∑

A∈X

(deg(A) − 1)H (A).

Proof Denoting the root of T by R, the entropy HT (T) of T is

HT (T) = H (R) +
∑

(A,B)∈E

H (B | A)

= H (R) +
∑

(A,B)∈E

H ({A,B}) −
∑

(A,B)∈E

H (A)

= H (R) +
∑

(A,B)∈E

H ({A,B}) −
∑

A∈X

∑

(A,B)∈E

H (A)

= H (R) +
∑

(A,B)∈E

H ({A,B}) −
∑

A∈X

(H (A)
∑

(A,B)∈E

1)

For each node A ∈ X \ R, we have exactly 1 edge connection to its parent and
deg(A)−1 connections to each of its child nodes B. Thus, for a fixed node A 6= R,

∑

(A,B)∈E

1 = |{ (A,B) | (A,B) ∈ E }| = deg(A) − 1.

As the root R has no parents, we have
∑

(R,B)∈E 1 = deg(R). From this it follows
that

HT (T) =
∑

(A,B)∈E

H ({A,B}) −
∑

A∈X\R

(deg(A) − 1)H (A) − deg(R)H (R) + H (R)

=
∑

(A,B)∈E

H ({A,B}) −
∑

A∈X

(deg(A) − 1)H (A).

2

41

Problem properties

results in an equivalent entropy value HT . As an example, consider the trees in
Figure 4.2. Due to symmetry, all the trees in the figure are equal in terms of
HT . Consequently, the undirected tree in Figure 4.3 can be used to depict the
common structure of these trees.

To see this, consider a tree T = (X,E). We define the degree deg(A) of node
A ∈ X as the number of edges incident to A, that is

deg(A) = |{A ∈ X | (A,B) ∈ E ∨ (B,A) ∈ E}|.

It turns out that HT (T) can be expressed as a sum depending only on the degrees
of the nodes A ∈ X and the joint entropies H ({A,B}) for all edges (A,B) ∈ E.
Clearly, neither deg(A) nor H ({A,B}) are quantities that depend on whether we
have (A,B) ∈ E or (B,A) ∈ E.

Proposition 4.3 Consider the tree T = (X,E). The entropy of T can be ex-
pressed as

HT (T) =
∑

(A,B)∈E

H ({A,B}) −
∑

A∈X

(deg(A) − 1)H (A).

Proof Denoting the root of T by R, the entropy HT (T) of T is

HT (T) = H (R) +
∑

(A,B)∈E

H (B | A)

= H (R) +
∑

(A,B)∈E

H ({A,B}) −
∑

(A,B)∈E

H (A)

= H (R) +
∑

(A,B)∈E

H ({A,B}) −
∑

A∈X

∑

(A,B)∈E

H (A)

= H (R) +
∑

(A,B)∈E

H ({A,B}) −
∑

A∈X

(H (A)
∑

(A,B)∈E

1)

For each node A ∈ X \ R, we have exactly 1 edge connection to its parent and
deg(A)−1 connections to each of its child nodes B. Thus, for a fixed node A 6= R,

∑

(A,B)∈E

1 = |{ (A,B) | (A,B) ∈ E }| = deg(A) − 1.

As the root R has no parents, we have
∑

(R,B)∈E 1 = deg(R). From this it follows
that

HT (T) =
∑

(A,B)∈E

H ({A,B}) −
∑

A∈X\R

(deg(A) − 1)H (A) − deg(R)H (R) + H (R)

=
∑

(A,B)∈E

H ({A,B}) −
∑

A∈X

(deg(A) − 1)H (A).

2

41

4 Low-entropy sets and trees

B

A

C

Figure 4.3: An undirected version of the trees in Figure 4.2.

4.4 Algorithms

4.4.1 Low-entropy sets

Proposition 4.1 implies that low-entropy sets can be found using techniques sim-
ilar to those used in frequent itemsets mining (recall Algorithm 1 in Section 2.2).
Still, in practice, one seeming complication in mining low-entropy sets is that the
entropy H(X) is a sum over all possible instantiations that the attributes in X
can have, which involves 2|X| different values. However, because of the conven-
tion 0 log 0 = 0 used in the definition of entropy, we only need to count those
instantiations that appear in the data. Thus the database pass can be done using
O(cℓn log n) auxiliary space, where c is the number of candidate itemsets being
examined, ℓ is the size of the candidates, and n is the number of records in the
data. For each candidate X, we keep track of the instantiations seen and a count
for each; there are at most n instantiations, each requiring space O(ℓ), and each
count takes O(log n) space. If the data fits into main memory, then the entropy
computation can easily be performed individually for each itemset.

An additional noteworthy observation is that the pruning strategies used in
maximal frequent itemset mining algorithms (recall Subsection 2.2.4) may also
be used as an alternative. Storing the instantiation counts of each maximal LE-
set, and then by count marginalization, it is possible to generate the full pattern
lattice without full database passes for the submaximal patterns. Indeed, for
many real-life mining tasks, the maximal pattern set may suffice as satisfactory
output result.

4.4.2 Low-entropy trees

We next turn to the question of how to mine low-entropy trees. As noted above
in Proposition 4.2, the entropy of the set gives a lower bound for the entropy of
the best LE-tree. However, the lower bound can be rather loose.

42

4 Low-entropy sets and trees

B

A

C

Figure 4.3: An undirected version of the trees in Figure 4.2.

4.4 Algorithms

4.4.1 Low-entropy sets

Proposition 4.1 implies that low-entropy sets can be found using techniques sim-
ilar to those used in frequent itemsets mining (recall Algorithm 1 in Section 2.2).
Still, in practice, one seeming complication in mining low-entropy sets is that the
entropy H(X) is a sum over all possible instantiations that the attributes in X
can have, which involves 2|X| different values. However, because of the conven-
tion 0 log 0 = 0 used in the definition of entropy, we only need to count those
instantiations that appear in the data. Thus the database pass can be done using
O(cℓn log n) auxiliary space, where c is the number of candidate itemsets being
examined, ℓ is the size of the candidates, and n is the number of records in the
data. For each candidate X, we keep track of the instantiations seen and a count
for each; there are at most n instantiations, each requiring space O(ℓ), and each
count takes O(log n) space. If the data fits into main memory, then the entropy
computation can easily be performed individually for each itemset.

An additional noteworthy observation is that the pruning strategies used in
maximal frequent itemset mining algorithms (recall Subsection 2.2.4) may also
be used as an alternative. Storing the instantiation counts of each maximal LE-
set, and then by count marginalization, it is possible to generate the full pattern
lattice without full database passes for the submaximal patterns. Indeed, for
many real-life mining tasks, the maximal pattern set may suffice as satisfactory
output result.

4.4.2 Low-entropy trees

We next turn to the question of how to mine low-entropy trees. As noted above
in Proposition 4.2, the entropy of the set gives a lower bound for the entropy of
the best LE-tree. However, the lower bound can be rather loose.

42

Experiments

As we look for the optimal tree for a given set of attributes X, it turns out
that this can be obtained by adding an edge to the optimal tree for X \ A for
some A ∈ X.

Proposition 4.4 Let T = (X,E) be the optimal tree for the itemset X. Fur-
thermore, let S be the tree resulting from removing some leaf node B ∈ X and
the corresponding edge (A,B) ∈ E from T . For all leaf nodes B ∈ X, the tree S
is the optimal tree for the itemset X \ B.

Proof Let T = (X,E) be the optimal tree for itemset X, that is, the edges E
minimize HT for the itemset X. Furthermore, let S be the tree resulting from
removing some leaf node B and an edge (A,B) ∈ E from T . In other words,
S = (X \ B,F), where F = E \ (A,B).

We can compute the entropy of T by

HT (T) = HT (S) + H (B | A).

Now assume that there exists some other tree S′ = (X \B,F ′), such that F 6= F ′

and HT (S′) < HT (S). Adding the node B and edge (A,B) to S′ will result in a
tree T ′ = (X,F ′ ∪ (A,B)), such that

HT (T ′) = HT (S′) + H (B | A) < HT (S) + H (B | A) = HT (T).

Hence, we have HT (T ′) < HT (T), a contradiction. 2

One way to find low-entropy trees is therefore to conduct a level-wise breadth-first
search. For each k-size tree T = (X,E), we extend T by trying to connect each
A ∈ I \X to each X in T . Hence, there are |I \ X| |X| possible extensions of T .
Note also that as the tree entropy score consists only of pairwise entropies, after
level 2 the score evaluation can be done in constant time without looking into
the data. Algorithm 3 gives a pseudo-code description of the level-wise search for
finding low-entropy trees.

4.5 Experiments

To test the low-entropy mining methods discussed above in practice, implemen-
tations of the algorithms described in Subsection 4.4 were built using Perl lan-
guage. Also, a depth-first search-based low-entropy set miner implemented by
Jilles Vreeken at the Universiteit Utrecht was used. The results are reported in
this section. Section 5.4 contains more experiments on low-entropy sets.

4.5.1 High frequency versus low entropy

We start by comparing statistics on a collection of frequent sets and a collection of
low-entropy sets both mined from Mammals. For the comparison we generated

43

Experiments

As we look for the optimal tree for a given set of attributes X, it turns out
that this can be obtained by adding an edge to the optimal tree for X \ A for
some A ∈ X.

Proposition 4.4 Let T = (X,E) be the optimal tree for the itemset X. Fur-
thermore, let S be the tree resulting from removing some leaf node B ∈ X and
the corresponding edge (A,B) ∈ E from T . For all leaf nodes B ∈ X, the tree S
is the optimal tree for the itemset X \ B.

Proof Let T = (X,E) be the optimal tree for itemset X, that is, the edges E
minimize HT for the itemset X. Furthermore, let S be the tree resulting from
removing some leaf node B and an edge (A,B) ∈ E from T . In other words,
S = (X \ B,F), where F = E \ (A,B).

We can compute the entropy of T by

HT (T) = HT (S) + H (B | A).

Now assume that there exists some other tree S′ = (X \B,F ′), such that F 6= F ′

and HT (S′) < HT (S). Adding the node B and edge (A,B) to S′ will result in a
tree T ′ = (X,F ′ ∪ (A,B)), such that

HT (T ′) = HT (S′) + H (B | A) < HT (S) + H (B | A) = HT (T).

Hence, we have HT (T ′) < HT (T), a contradiction. 2

One way to find low-entropy trees is therefore to conduct a level-wise breadth-first
search. For each k-size tree T = (X,E), we extend T by trying to connect each
A ∈ I \X to each X in T . Hence, there are |I \ X| |X| possible extensions of T .
Note also that as the tree entropy score consists only of pairwise entropies, after
level 2 the score evaluation can be done in constant time without looking into
the data. Algorithm 3 gives a pseudo-code description of the level-wise search for
finding low-entropy trees.

4.5 Experiments

To test the low-entropy mining methods discussed above in practice, implemen-
tations of the algorithms described in Subsection 4.4 were built using Perl lan-
guage. Also, a depth-first search-based low-entropy set miner implemented by
Jilles Vreeken at the Universiteit Utrecht was used. The results are reported in
this section. Section 5.4 contains more experiments on low-entropy sets.

4.5.1 High frequency versus low entropy

We start by comparing statistics on a collection of frequent sets and a collection of
low-entropy sets both mined from Mammals. For the comparison we generated

43

4 Low-entropy sets and trees

Algorithm 3 level-wise search for low-entropy trees.

Input: Dataset D and entropy threshold ǫ.
Output: Collection of low-entropy trees T PLE(D, ǫ).
1: i = 1
2: candidate collection Ci = {T = (A, ∅)— A is an attribute}
3: while Ci is not empty do
4: set of size i patterns Pi = {}
5: //entropy checking
6: for each T = (X,E) in Ci do
7: if HT (T) ≤ ǫ then
8: add T to Pi

9: end if
10: end for
11: // candidate generation
12: for each T = (X,E) in Pi do
13: for each (A,B) such that A ∈ I \ X and B ∈ X do
14: Tcand = (X ∪ A,E ∪ (A,B))
15: if ∃U = (Y, F) ∈ Ci+1 such that Y = X ∪ A and F 6= E ∪ (A,B)

then
16: if HT (Tcand) < HT (U) then
17: Ci+1 = (Ci+1 ∪ Tcand) \ U
18: end if
19: else
20: add Tcand to Ci+1

21: end if
22: end for
23: end for
24: add Pi to T PLE(D, ǫ)
25: i = i + 1
26: end while
27: return T PLE(D, ǫ)

a set of size-5 frequent sets using a frequency threshold of 400 rows. This resulted
in a set of 26106 size-5 frequent itemsets. After this a matching number of size-5
low-entropy sets was generated by iteratively setting the entropy threshold to
3.623673. Only attributes with a frequency larger then 0.2 but smaller then 0.8
were included in the experiment.

Figure 4.4(a) shows the distribution of entropy for both pattern sets. We see
that for frequent sets, the entropy is distributed more widely and towards higher
values. This implies that most attribute sets found by the frequent itemsets
mining algorithm are less structured in terms of the entire data. In contrast, the
attribute sets of the low-entropy mining algorithm are more concentrated in their
attribute combination throughout the data.

44

4 Low-entropy sets and trees

Algorithm 3 level-wise search for low-entropy trees.

Input: Dataset D and entropy threshold ǫ.
Output: Collection of low-entropy trees T PLE(D, ǫ).
1: i = 1
2: candidate collection Ci = {T = (A, ∅)— A is an attribute}
3: while Ci is not empty do
4: set of size i patterns Pi = {}
5: //entropy checking
6: for each T = (X,E) in Ci do
7: if HT (T) ≤ ǫ then
8: add T to Pi

9: end if
10: end for
11: // candidate generation
12: for each T = (X,E) in Pi do
13: for each (A,B) such that A ∈ I \ X and B ∈ X do
14: Tcand = (X ∪ A,E ∪ (A,B))
15: if ∃U = (Y, F) ∈ Ci+1 such that Y = X ∪ A and F 6= E ∪ (A,B)

then
16: if HT (Tcand) < HT (U) then
17: Ci+1 = (Ci+1 ∪ Tcand) \ U
18: end if
19: else
20: add Tcand to Ci+1

21: end if
22: end for
23: end for
24: add Pi to T PLE(D, ǫ)
25: i = i + 1
26: end while
27: return T PLE(D, ǫ)

a set of size-5 frequent sets using a frequency threshold of 400 rows. This resulted
in a set of 26106 size-5 frequent itemsets. After this a matching number of size-5
low-entropy sets was generated by iteratively setting the entropy threshold to
3.623673. Only attributes with a frequency larger then 0.2 but smaller then 0.8
were included in the experiment.

Figure 4.4(a) shows the distribution of entropy for both pattern sets. We see
that for frequent sets, the entropy is distributed more widely and towards higher
values. This implies that most attribute sets found by the frequent itemsets
mining algorithm are less structured in terms of the entire data. In contrast, the
attribute sets of the low-entropy mining algorithm are more concentrated in their
attribute combination throughout the data.

44

Experiments

entropy (bits)

Distribution of entropy

Low-entropy sets
Frequent sets

0

3000

2000

1500

1000

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

(a)

200 300 400 600 700 800 900

frequency (number of rows)

Distribution of frequency

Low-entropy sets
Frequent sets

0

2000

1500

1000

1000

500

500

(b)

Figure 4.4: Comparison of the distribution of entropy and frequency for size-5
frequent sets (σ ≥ 0.1832) and the same number of similar sized low-entropy sets
(ǫ ≤ 3.623673) in Mammals. The frequency for a low-entropy set in Figure (b)
is defined as the number of rows supported by its most frequent instantiation.

Figure 4.4(b) depicts the situation from the point of view of the frequency of
a single instantiation. For frequent itemsets this is naturally the frequency of the
instantiation of all attributes having the value 1. For low-entropy sets we define
this as the number of rows supported by its most frequent instantiation. This
time we see that the distribution of frequency is quite similar for both pattern
sets. Hence, low-entropy sets are also able to find frequent attribute combinations
similarly to frequent itemsets.

Furthermore, Figure 4.5 shows that a number of low-entropy sets have several
instantiations that count as frequent according to the 400 rows frequency. This
is a natural feature of low-entropy sets, but not to frequent itemsets that concen-
trate only on the count of one instantiation. In the next subsection we show an
example pattern with several frequent instantiations.

45

Experiments

entropy (bits)

Distribution of entropy

Low-entropy sets
Frequent sets

0

3000

2000

1500

1000

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

(a)

200 300 400 600 700 800 900

frequency (number of rows)

Distribution of frequency

Low-entropy sets
Frequent sets

0

2000

1500

1000

1000

500

500

(b)

Figure 4.4: Comparison of the distribution of entropy and frequency for size-5
frequent sets (σ ≥ 0.1832) and the same number of similar sized low-entropy sets
(ǫ ≤ 3.623673) in Mammals. The frequency for a low-entropy set in Figure (b)
is defined as the number of rows supported by its most frequent instantiation.

Figure 4.4(b) depicts the situation from the point of view of the frequency of
a single instantiation. For frequent itemsets this is naturally the frequency of the
instantiation of all attributes having the value 1. For low-entropy sets we define
this as the number of rows supported by its most frequent instantiation. This
time we see that the distribution of frequency is quite similar for both pattern
sets. Hence, low-entropy sets are also able to find frequent attribute combinations
similarly to frequent itemsets.

Furthermore, Figure 4.5 shows that a number of low-entropy sets have several
instantiations that count as frequent according to the 400 rows frequency. This
is a natural feature of low-entropy sets, but not to frequent itemsets that concen-
trate only on the count of one instantiation. In the next subsection we show an
example pattern with several frequent instantiations.

45

4 Low-entropy sets and trees

Number of contained instantiations exceeding a frequency of 400 rows

N
u
m

b
er

of
lo

w
-e

n
tr

o
p
y

se
ts

0
0

1

1

2

2

3

3

4

4 5

2326

20007

3750
23

× 10

Figure 4.5: The distribution of patterns when classified according to the number
of contained instantiations exceeding a frequency of 400 rows. The distribution
is computed over a set of 26106 low-entropy sets of size 5 in Mammals.

4.5.2 Examples of low-entropy patterns

Mammals data

Next we look at some examples of the low-entropy sets and trees found in real
data. Recall that using the 3.623673 bit threshold we found 23 LE-sets from the
mammal data that had three instantiations with a frequency count of over 400
rows (see Figure 4.5).

Figure 4.6 shows the best pattern from these 23 sets, with a table of instan-
tiation counts and expected counts according to the independence assumption.
The attributes show an interesting pattern of negative correlation between the
couple Blue Hare and Elk and the triplet Garden Dormouse, Wood Mouse and
Greater White-toothed Shrew. Notice also that this occurrence behavior is very
unexpected according to the independence assumption, and may hence reflect
some significant structure in the data. A mutual exclusion pattern like this may
derive from scarcity of resources such as food or other environmental factors, and
could be hard to detect with regular frequent itemsets. Indeed, we notice that
the count of all ones instantiation for the attributes in the pattern is zero.

On the right of Figure 4.6 we see the corresponding low-entropy tree for these
attributes. The tree suggests that the presence and absence of Elk is the most
central for determining the occurrence of the other species in the set.

For comparison, Figure 4.7 shows the two best (in terms of entropy) dis-
joint size-5 low-entropy trees in the same Mammals dataset. The tree in Fig-
ure 4.7(a) is an interesting subset of north European species with two large preda-
tors, Eurasian Lynx and Brown Bear, and three prey species, Wood Mouse, Blue
Hare and Elk. Notice that the three last species are the same as in the LE-set in
Figure 4.6. Here again the structure of the tree suggests that the presence and ab-

46

4 Low-entropy sets and trees

Number of contained instantiations exceeding a frequency of 400 rows

N
u
m

b
er

of
lo

w
-e

n
tr

o
p
y

se
ts

0
0

1

1

2

2

3

3

4

4 5

2326

20007

3750
23

× 10

Figure 4.5: The distribution of patterns when classified according to the number
of contained instantiations exceeding a frequency of 400 rows. The distribution
is computed over a set of 26106 low-entropy sets of size 5 in Mammals.

4.5.2 Examples of low-entropy patterns

Mammals data

Next we look at some examples of the low-entropy sets and trees found in real
data. Recall that using the 3.623673 bit threshold we found 23 LE-sets from the
mammal data that had three instantiations with a frequency count of over 400
rows (see Figure 4.5).

Figure 4.6 shows the best pattern from these 23 sets, with a table of instan-
tiation counts and expected counts according to the independence assumption.
The attributes show an interesting pattern of negative correlation between the
couple Blue Hare and Elk and the triplet Garden Dormouse, Wood Mouse and
Greater White-toothed Shrew. Notice also that this occurrence behavior is very
unexpected according to the independence assumption, and may hence reflect
some significant structure in the data. A mutual exclusion pattern like this may
derive from scarcity of resources such as food or other environmental factors, and
could be hard to detect with regular frequent itemsets. Indeed, we notice that
the count of all ones instantiation for the attributes in the pattern is zero.

On the right of Figure 4.6 we see the corresponding low-entropy tree for these
attributes. The tree suggests that the presence and absence of Elk is the most
central for determining the occurrence of the other species in the set.

For comparison, Figure 4.7 shows the two best (in terms of entropy) dis-
joint size-5 low-entropy trees in the same Mammals dataset. The tree in Fig-
ure 4.7(a) is an interesting subset of north European species with two large preda-
tors, Eurasian Lynx and Brown Bear, and three prey species, Wood Mouse, Blue
Hare and Elk. Notice that the three last species are the same as in the LE-set in
Figure 4.6. Here again the structure of the tree suggests that the presence and ab-

46

Experiments

count Bl
ue

H
ar
e

El
k

Ga
rd
en

D
or
m
ou

se

W
oo

d
M
ou

se

Gr
ea
te
r W

hi
te
-t
oo

th
ed

Sh
re
w

expected
count

554 0 0 0 1 0 391.9
412 1 1 0 0 0 30.2
404 0 0 1 1 1 57.5
144 0 0 0 1 1 141.4
135 0 0 1 1 0 159.3
117 1 0 0 1 0 193.2
112 1 1 0 1 0 82.1
103 0 0 0 0 0 144.1
79 0 1 0 1 0 166.5
24 1 1 1 0 0 12.3
24 1 0 1 1 0 78.6
21 1 0 1 1 1 28.4
18 0 1 0 0 0 61.2
10 0 0 1 0 0 58.6
7 1 0 0 0 0 71.1
5 0 1 1 1 0 67.7
5 0 0 0 0 1 52.0
4 0 0 1 0 1 21.2
3 1 0 1 0 0 28.9
1 0 1 1 0 0 24.9
1 1 0 0 1 1 69.8

Elk

Wood
Mouse

Garden
Dormouse

Blue Hare

Greater
White-toothed

Shrew

Figure 4.6: The table of instantiation counts for the best low-entropy set (ac-
cording to entropy) that has at least three instantiations with frequency > 400.
The tree on the right is the corresponding LE-tree for these attributes. The low-
entropy set has an entropy score of 3.15, while the tree has an entropy score of
3.28. The patterns are from the data set Mammals.

47

Experiments

count Bl
ue

H
ar
e

El
k

Ga
rd
en

D
or
m
ou

se

W
oo

d
M
ou

se

Gr
ea
te
r W

hi
te
-t
oo

th
ed

Sh
re
w

expected
count

554 0 0 0 1 0 391.9
412 1 1 0 0 0 30.2
404 0 0 1 1 1 57.5
144 0 0 0 1 1 141.4
135 0 0 1 1 0 159.3
117 1 0 0 1 0 193.2
112 1 1 0 1 0 82.1
103 0 0 0 0 0 144.1
79 0 1 0 1 0 166.5
24 1 1 1 0 0 12.3
24 1 0 1 1 0 78.6
21 1 0 1 1 1 28.4
18 0 1 0 0 0 61.2
10 0 0 1 0 0 58.6
7 1 0 0 0 0 71.1
5 0 1 1 1 0 67.7
5 0 0 0 0 1 52.0
4 0 0 1 0 1 21.2
3 1 0 1 0 0 28.9
1 0 1 1 0 0 24.9
1 1 0 0 1 1 69.8

Elk

Wood
Mouse

Garden
Dormouse

Blue Hare

Greater
White-toothed

Shrew

Figure 4.6: The table of instantiation counts for the best low-entropy set (ac-
cording to entropy) that has at least three instantiations with frequency > 400.
The tree on the right is the corresponding LE-tree for these attributes. The low-
entropy set has an entropy score of 3.15, while the tree has an entropy score of
3.28. The patterns are from the data set Mammals.

47

4 Low-entropy sets and trees

Elk

Blue Hare

Brown Bear

Wood
Mouse

Eurasian Lynx

(a)

Eurasian
Water
Shrew

Field Vole

Squirrel

Eurasian
Pygmy
Shrew

Bank Vole

(b)

Figure 4.7: The top 2 disjoint size-5 low-entropy trees in Mammals. The en-
tropies of the trees in Figure (a) and (b) are 3.16 and 3.31, respectively.

sence of Elk is the most central factor for determining the occurrence of the other
species in the set. The other tree in Figure 4.7(b) shows a subset of small rodent
or rodent-like mammals typically found in north European woodland areas.

MovieLens data

In Figure 4.8 we see the best size-5 low-entropy set in MovieLens after removal
of attributes with a frequency < 0.2. The set features five thematically similar
futuristic science fiction movies, Blade Runner (1982), Alien (1979), Aliens (1986),
The Terminator (1984) and Terminator 2: Judgment Day (1991), with Aliens (1986)
and Terminator 2: Judgment Day (1991) being sequels to the movies Alien (1979)
and The Terminator (1984), respectively. From the instantiation counts we notice
that this LE-set behaves more like a normal frequent itemset in comparison with
the example in Figure 4.6: the two most frequent instantiations are the all-zeros
and the all-ones cases. Similar behavior of instantiation counts was detected in
most of the other LE-sets found in the MovieLens data.

On the right side of Figure 4.8 we see the best low-entropy tree for these
attributes. The sequel movies are positioned consecutively with respect to the
original movie in the tree. Furthermore, a time line is present from the early
Blade Runner (1982) via the Aliens movies, and to the Terminator films. Note
that temporal attribute ordering is also a familiar phenomenon in the results of
frequent trees in Section 3.5.

Figure 4.9 shows the second and the third best disjoint size-5 low entropy trees
in MovieLens. The tree in Figure 4.9(a) features a variety of drama movies from
E.T the Extra-Terrestrial (1982) to Braveheart (1995). The tree in Figure 4.9(b)
features action movies with Harrison Ford starring in all except the film Back to

48

4 Low-entropy sets and trees

Elk

Blue Hare

Brown Bear

Wood
Mouse

Eurasian Lynx

(a)

Eurasian
Water
Shrew

Field Vole

Squirrel

Eurasian
Pygmy
Shrew

Bank Vole

(b)

Figure 4.7: The top 2 disjoint size-5 low-entropy trees in Mammals. The en-
tropies of the trees in Figure (a) and (b) are 3.16 and 3.31, respectively.

sence of Elk is the most central factor for determining the occurrence of the other
species in the set. The other tree in Figure 4.7(b) shows a subset of small rodent
or rodent-like mammals typically found in north European woodland areas.

MovieLens data

In Figure 4.8 we see the best size-5 low-entropy set in MovieLens after removal
of attributes with a frequency < 0.2. The set features five thematically similar
futuristic science fiction movies, Blade Runner (1982), Alien (1979), Aliens (1986),
The Terminator (1984) and Terminator 2: Judgment Day (1991), with Aliens (1986)
and Terminator 2: Judgment Day (1991) being sequels to the movies Alien (1979)
and The Terminator (1984), respectively. From the instantiation counts we notice
that this LE-set behaves more like a normal frequent itemset in comparison with
the example in Figure 4.6: the two most frequent instantiations are the all-zeros
and the all-ones cases. Similar behavior of instantiation counts was detected in
most of the other LE-sets found in the MovieLens data.

On the right side of Figure 4.8 we see the best low-entropy tree for these
attributes. The sequel movies are positioned consecutively with respect to the
original movie in the tree. Furthermore, a time line is present from the early
Blade Runner (1982) via the Aliens movies, and to the Terminator films. Note
that temporal attribute ordering is also a familiar phenomenon in the results of
frequent trees in Section 3.5.

Figure 4.9 shows the second and the third best disjoint size-5 low entropy trees
in MovieLens. The tree in Figure 4.9(a) features a variety of drama movies from
E.T the Extra-Terrestrial (1982) to Braveheart (1995). The tree in Figure 4.9(b)
features action movies with Harrison Ford starring in all except the film Back to

48

Experiments

count Te
rm

in
at
or

2:
Ju

dg
m
en

t
D
ay

(1
99

1)

Al
ien

(1
97

9)

Bl
ad

e
Ru

nn
er

(1
98

2)

Th
e
Te

rm
in
at
or

(1
98

4)

Al
ien

s
(1
98

6)

expected
count

541 0 0 0 0 0 251.5
67 1 1 1 1 1 0.6
29 0 0 1 0 0 76.1
27 1 0 0 0 0 79.3
26 1 0 0 1 0 23.7
19 0 1 0 0 1 22.3
18 0 1 0 0 0 77.9
18 0 1 1 0 0 23.6
17 0 0 0 1 0 75.2
17 0 0 0 0 1 72.1
17 1 1 0 1 1 2.1
14 1 1 1 0 1 2.1
14 0 1 1 1 1 2.0
13 1 0 1 1 0 7.2
13 0 1 1 0 1 6.8
10 1 1 1 1 0 2.2
10 1 0 0 1 1 6.8
9 1 1 0 1 0 7.3
9 1 0 1 1 1 2.1
...

...
...

Aliens
(1986)

Alien
(1979)

Blade
Runner
(1982)

The
Terminator

(1984)

Terminator 2:
Judgment Day

(1991)

Figure 4.8: The table of instantiation counts for the best size-5 MovieLens LE-
set in terms of entropy. The tree on the right is the corresponding low-entropy tree
for these attributes. The low-entropy set has an entropy score of 2.89 while the
tree has an entropy score of 3.04. Because of space constraints, 15 instantiations
with a frequency less than 10 rows have been removed.

49

Experiments

count Te
rm

in
at
or

2:
Ju

dg
m
en

t
D
ay

(1
99

1)

Al
ien

(1
97

9)

Bl
ad

e
Ru

nn
er

(1
98

2)

Th
e
Te

rm
in
at
or

(1
98

4)

Al
ien

s
(1
98

6)

expected
count

541 0 0 0 0 0 251.5
67 1 1 1 1 1 0.6
29 0 0 1 0 0 76.1
27 1 0 0 0 0 79.3
26 1 0 0 1 0 23.7
19 0 1 0 0 1 22.3
18 0 1 0 0 0 77.9
18 0 1 1 0 0 23.6
17 0 0 0 1 0 75.2
17 0 0 0 0 1 72.1
17 1 1 0 1 1 2.1
14 1 1 1 0 1 2.1
14 0 1 1 1 1 2.0
13 1 0 1 1 0 7.2
13 0 1 1 0 1 6.8
10 1 1 1 1 0 2.2
10 1 0 0 1 1 6.8
9 1 1 0 1 0 7.3
9 1 0 1 1 1 2.1
...

...
...

Aliens
(1986)

Alien
(1979)

Blade
Runner
(1982)

The
Terminator

(1984)

Terminator 2:
Judgment Day

(1991)

Figure 4.8: The table of instantiation counts for the best size-5 MovieLens LE-
set in terms of entropy. The tree on the right is the corresponding low-entropy tree
for these attributes. The low-entropy set has an entropy score of 2.89 while the
tree has an entropy score of 3.04. Because of space constraints, 15 instantiations
with a frequency less than 10 rows have been removed.

49

4 Low-entropy sets and trees

Forrest Gump (1994)

Braveheart
(1995)

E.T. the
Extra-Terrestrial

(1982)

When Harry Met
Sally... (1989)

Apollo 13
(1995)

(a)

Raiders of the
Lost Ark
(1981)

The
Fugitive
(1993)

Indiana Jones and
the Last Crusade

(1989)

Empire Strikes
Back (1980)

Back to the
Future (1985)

(b)

Figure 4.9: The top 2 and 3 disjoint size-5 low-entropy trees in MovieLens. The
top 1 tree is shown in Figure 4.8. The entropies of the trees in Figure (a) and
(b) are 3.23 and 3.40 respectively.

the Future (1985). For the latter tree the structure suggests that Raiders of the
Lost Ark (1981) is a central attribute in relation to the preference of the movie
database users with respect to the other films in Figure 4.9(b), something that
could not have been seen from the corresponding set-type pattern.

4.5.3 Pattern validation using swap randomization

We used the Mammals dataset to perform a swap randomization test in order
to evaluate the extent of the relevant structure captured by the low-entropy sets.
The number of swaps in the procedure was equivalent to the number of rows
multiplied by the number of columns in the original data. Using this procedure
we produced a set of 100 swap randomized data instances. After this we generated
a set of LE-sets using an entropy threshold of 3.623673 for the original data and
each of the 100 swap randomized data instances. Only attributes with 0.2 ≤
frequency ≤ 0.8 were included in the experiment.

To be able to evaluate the entire set of patterns resulting from the procedure,
we used a normalized version of the score as a test statistic, in order to rule
out the differences in the entropy score resulting from varying pattern sizes. For
each LE-set we divided the entropy score with the sum of the entropies of the
attributes in the set. Notice that the idea of the statistic is similar to that of
the conflict ratio introduced in Chapter 3; the real score is compared with the
expected score assuming independence of attributes in the data.

Figure 4.10 shows the results of the swap randomization tests. In Figure 4.10(a)
we see the distribution of normalized entropy scores in the original Mammals.
To compare this with the patterns found in swap randomized data we took a 1%
random sample of the entire set of patterns generated from 100 swap randomized

50

4 Low-entropy sets and trees

Forrest Gump (1994)

Braveheart
(1995)

E.T. the
Extra-Terrestrial

(1982)

When Harry Met
Sally... (1989)

Apollo 13
(1995)

(a)

Raiders of the
Lost Ark
(1981)

The
Fugitive
(1993)

Indiana Jones and
the Last Crusade

(1989)

Empire Strikes
Back (1980)

Back to the
Future (1985)

(b)

Figure 4.9: The top 2 and 3 disjoint size-5 low-entropy trees in MovieLens. The
top 1 tree is shown in Figure 4.8. The entropies of the trees in Figure (a) and
(b) are 3.23 and 3.40 respectively.

the Future (1985). For the latter tree the structure suggests that Raiders of the
Lost Ark (1981) is a central attribute in relation to the preference of the movie
database users with respect to the other films in Figure 4.9(b), something that
could not have been seen from the corresponding set-type pattern.

4.5.3 Pattern validation using swap randomization

We used the Mammals dataset to perform a swap randomization test in order
to evaluate the extent of the relevant structure captured by the low-entropy sets.
The number of swaps in the procedure was equivalent to the number of rows
multiplied by the number of columns in the original data. Using this procedure
we produced a set of 100 swap randomized data instances. After this we generated
a set of LE-sets using an entropy threshold of 3.623673 for the original data and
each of the 100 swap randomized data instances. Only attributes with 0.2 ≤
frequency ≤ 0.8 were included in the experiment.

To be able to evaluate the entire set of patterns resulting from the procedure,
we used a normalized version of the score as a test statistic, in order to rule
out the differences in the entropy score resulting from varying pattern sizes. For
each LE-set we divided the entropy score with the sum of the entropies of the
attributes in the set. Notice that the idea of the statistic is similar to that of
the conflict ratio introduced in Chapter 3; the real score is compared with the
expected score assuming independence of attributes in the data.

Figure 4.10 shows the results of the swap randomization tests. In Figure 4.10(a)
we see the distribution of normalized entropy scores in the original Mammals.
To compare this with the patterns found in swap randomized data we took a 1%
random sample of the entire set of patterns generated from 100 swap randomized

50

Experiments

normalized entropy

n
u
m

b
er

of
p
at

te
rn

s

Original data

Randomized data

0.65 0.7 0.75 0.8 0.85 0.9 0.95

1

1
0

2

3

4× 10

(a)

normalized entropy

n
u
m

b
er

of
p
at

te
rn

s

Original data

Original data

0.6 0.7 0.8 0.9 1 1.1
0

100

50

(b)

size of output set

n
u
m

b
er

of
ra

n
d
om

iz
ed

d
at

as
et

s

Original data

0.7 0.8 0.9 1 1.1 1.2 1.3
0

5× 10

100

50

(c)

Figure 4.10: Comparison between the original Mammals data and the corre-
sponding swap randomized data. Figure (a) shows the empirical distribution of
normalized entropy ratio of all patterns generated from the original data, in com-
parison with a 1% random sample on the set of patterns generated from 100 swap
randomized dataset instances. Figure (b) shows the histogram of the 100th best
normalized entropy ratio in the swap randomized data sets. Figure (c) shows the
histogram for the corresponding sizes of the pattern output sets.

51

Experiments

normalized entropy

n
u
m

b
er

of
p
at

te
rn

s

Original data

Randomized data

0.65 0.7 0.75 0.8 0.85 0.9 0.95

1

1
0

2

3

4× 10

(a)

normalized entropy

n
u
m

b
er

of
p
at

te
rn

s

Original data

Original data

0.6 0.7 0.8 0.9 1 1.1
0

100

50

(b)

size of output set

n
u
m

b
er

of
ra

n
d
om

iz
ed

d
at

as
et

s

Original data

0.7 0.8 0.9 1 1.1 1.2 1.3
0

5× 10

100

50

(c)

Figure 4.10: Comparison between the original Mammals data and the corre-
sponding swap randomized data. Figure (a) shows the empirical distribution of
normalized entropy ratio of all patterns generated from the original data, in com-
parison with a 1% random sample on the set of patterns generated from 100 swap
randomized dataset instances. Figure (b) shows the histogram of the 100th best
normalized entropy ratio in the swap randomized data sets. Figure (c) shows the
histogram for the corresponding sizes of the pattern output sets.

51

4 Low-entropy sets and trees

dataset instances. The distribution of normalized entropies resulting from these
patterns is shown in the same figure with the dashed outline. A clear difference
can be noticed in these two distributions.

To obtain an empirical p-value we compared two other pattern statistics in
the original data with the corresponding statistics in the 100 swap randomized
data instances: the 100th best normalized entropy score and the total size of the
pattern set. In Figure 4.10(b) we see the histogram of the 100th best normalized
entropy in the swap randomized datasets, and in Figure 4.10(c) the histogram for
the size of the pattern output set. The values of the corresponding statistics in
the original dataset are marked with an arrow in the histograms. In both cases
an empirical p-value of 0.0004 is obtained.

4.5.4 General mining statistics

Finally we look at some general mining statistics in Table 4.2 for the three
datasets: MovieLens, Mammals and Course Completion. We see that the
run-times of the algorithms stay feasible even when the number of elements in
the answer increasing as the entropy threshold ǫ is set higher.

4.6 Related work

The idea of low-entropy sets can be considered as an entropy-based alternative to
frequent itemset mining [3]. On the other hand, in Chapter 3 we defined a tree
type of pattern that is considered to be present in a row of data if the attributes
of a rooted subtree are present simultaneously. Respectively, low-entropy trees
can be considered as a general version of this type of pattern by allowing the
distribution to be concentrated on combinations other than positive conjunctions.

Decision trees [36, Chapter 9.2] are similar to low-entropy trees in that low
classification error implies low entropy. In [71, 70] Nijssen et al. proposed the
idea of mining optimal decision trees from the itemset lattice. Traditionally, de-
cision tree algorithms use a greedy search approach. One difference with respect
to decision tree methods here is that we do not split the data into groups corre-
sponding to different values of an attribute, but all data are considered in each
node. In other words, H(A|B) is used instead of e.g. H(A|B = b).

The task of finding interesting itemsets has been addressed mainly in the
context of frequent itemset mining. Morishita and Sese have presented a branch-
and-bound method for finding association rules like X → Y where the itemsets X
and Y are not required to have high support but high correlation [67]. They also
count those data rows where X and Y appear completely, whereas our entropy-
based method counts arbitrary combinations.

Strategies similar to that of [67] have also been employed by Zimmermann
et al. [99]. In [9] they describe a sequence of graph pattern classes, and study
the strategy of discovering structured patterns, say trees, using the subset of
corresponding less complex patterns such as sequences or sets.

52

4 Low-entropy sets and trees

dataset instances. The distribution of normalized entropies resulting from these
patterns is shown in the same figure with the dashed outline. A clear difference
can be noticed in these two distributions.

To obtain an empirical p-value we compared two other pattern statistics in
the original data with the corresponding statistics in the 100 swap randomized
data instances: the 100th best normalized entropy score and the total size of the
pattern set. In Figure 4.10(b) we see the histogram of the 100th best normalized
entropy in the swap randomized datasets, and in Figure 4.10(c) the histogram for
the size of the pattern output set. The values of the corresponding statistics in
the original dataset are marked with an arrow in the histograms. In both cases
an empirical p-value of 0.0004 is obtained.

4.5.4 General mining statistics

Finally we look at some general mining statistics in Table 4.2 for the three
datasets: MovieLens, Mammals and Course Completion. We see that the
run-times of the algorithms stay feasible even when the number of elements in
the answer increasing as the entropy threshold ǫ is set higher.

4.6 Related work

The idea of low-entropy sets can be considered as an entropy-based alternative to
frequent itemset mining [3]. On the other hand, in Chapter 3 we defined a tree
type of pattern that is considered to be present in a row of data if the attributes
of a rooted subtree are present simultaneously. Respectively, low-entropy trees
can be considered as a general version of this type of pattern by allowing the
distribution to be concentrated on combinations other than positive conjunctions.

Decision trees [36, Chapter 9.2] are similar to low-entropy trees in that low
classification error implies low entropy. In [71, 70] Nijssen et al. proposed the
idea of mining optimal decision trees from the itemset lattice. Traditionally, de-
cision tree algorithms use a greedy search approach. One difference with respect
to decision tree methods here is that we do not split the data into groups corre-
sponding to different values of an attribute, but all data are considered in each
node. In other words, H(A|B) is used instead of e.g. H(A|B = b).

The task of finding interesting itemsets has been addressed mainly in the
context of frequent itemset mining. Morishita and Sese have presented a branch-
and-bound method for finding association rules like X → Y where the itemsets X
and Y are not required to have high support but high correlation [67]. They also
count those data rows where X and Y appear completely, whereas our entropy-
based method counts arbitrary combinations.

Strategies similar to that of [67] have also been employed by Zimmermann
et al. [99]. In [9] they describe a sequence of graph pattern classes, and study
the strategy of discovering structured patterns, say trees, using the subset of
corresponding less complex patterns such as sequences or sets.

52

Related work

Table 4.2: Low-entropy mining statistics for the datasets MovieLens, Mammals

and Course Completion. The run times between the set and the tree pattern
results are not directly comparable: the sets implementation uses C++ while the
tree implementation is done with Perl.

Dataset ǫ Pattern |P| |X| time/sec. Gen Cands
Type

MovieLens 2.0 Set 1257 3 <1 19652
MovieLens 2.0 Tree 1241 3 2 20332
MovieLens 2.75 Set 22967 4 1 230875
MovieLens 2.75 Tree 20690 4 34 267217
MovieLens 3.5 Set 348902 6 18 2303166
MovieLens 3.5 Tree 259037 6 488 2888023
Mammals 2.0 Set 821 3 <1 10700
Mammals 2.0 Tree 821 3 1 10737
Mammals 2.75 Set 10396 4 1 90548
Mammals 2.75 Tree 10209 4 14 102918
Mammals 3.8 Set 250628 6 17 989597
Mammals 3.8 Tree 148904 6 246 1540910
Course C. 1.0 Set 1323 3 <1 11165
Course C. 1.0 Tree 1314 3 6 77499
Course C. 1.5 Set 34936 5 2 203437
Course C. 1.5 Tree 33722 5 149 1675337
Course C. 1.8 Set 220087 6 12 1113800
Course C. 1.8 Tree 205008 6 894 9210538

Closer to our approach are Knobbe and Ho’s maximally informative k-itemsets,
i.e., itemsets with as high an entropy as possible [54]. Here we study itemsets with
low entropy. Another difference is that Knobbe and Ho restrict their itemsets to
a fixed number, k, of elements.

In real-valued data, the task of finding interesting subsets has been addressed
in research areas such as subspace clustering [1, 73] and projection pursuit [24, 44].
Another method related to our task is the problem of learning the structure of
a Bayesian network. This problem is computationally challenging, and the main
methods are probabilistic [18, 37]; the best current exact algorithms are of the
order O(n2n) [56, 84]. The key difference between Bayesian network structure
learning and our approach is that we seek interesting subsets of the data, not
complete models; also, we investigate only fully connected or tree-structured
networks and not arbitrary graphs, and we do not try to incorporate any prior
knowledge into the patterns.

53

Related work

Table 4.2: Low-entropy mining statistics for the datasets MovieLens, Mammals

and Course Completion. The run times between the set and the tree pattern
results are not directly comparable: the sets implementation uses C++ while the
tree implementation is done with Perl.

Dataset ǫ Pattern |P| |X| time/sec. Gen Cands
Type

MovieLens 2.0 Set 1257 3 <1 19652
MovieLens 2.0 Tree 1241 3 2 20332
MovieLens 2.75 Set 22967 4 1 230875
MovieLens 2.75 Tree 20690 4 34 267217
MovieLens 3.5 Set 348902 6 18 2303166
MovieLens 3.5 Tree 259037 6 488 2888023
Mammals 2.0 Set 821 3 <1 10700
Mammals 2.0 Tree 821 3 1 10737
Mammals 2.75 Set 10396 4 1 90548
Mammals 2.75 Tree 10209 4 14 102918
Mammals 3.8 Set 250628 6 17 989597
Mammals 3.8 Tree 148904 6 246 1540910
Course C. 1.0 Set 1323 3 <1 11165
Course C. 1.0 Tree 1314 3 6 77499
Course C. 1.5 Set 34936 5 2 203437
Course C. 1.5 Tree 33722 5 149 1675337
Course C. 1.8 Set 220087 6 12 1113800
Course C. 1.8 Tree 205008 6 894 9210538

Closer to our approach are Knobbe and Ho’s maximally informative k-itemsets,
i.e., itemsets with as high an entropy as possible [54]. Here we study itemsets with
low entropy. Another difference is that Knobbe and Ho restrict their itemsets to
a fixed number, k, of elements.

In real-valued data, the task of finding interesting subsets has been addressed
in research areas such as subspace clustering [1, 73] and projection pursuit [24, 44].
Another method related to our task is the problem of learning the structure of
a Bayesian network. This problem is computationally challenging, and the main
methods are probabilistic [18, 37]; the best current exact algorithms are of the
order O(n2n) [56, 84]. The key difference between Bayesian network structure
learning and our approach is that we seek interesting subsets of the data, not
complete models; also, we investigate only fully connected or tree-structured
networks and not arbitrary graphs, and we do not try to incorporate any prior
knowledge into the patterns.

53

4 Low-entropy sets and trees

4.7 Conclusions

We have considered the problem of finding low-entropy sets and trees from binary
data. The approach we have chosen is a natural generalization of the discovery
of frequent sets: low-entropy sets are not restricted to the all-one value combi-
nation and can locate subsets that have a number of different dominant value
combinations instead of just one. The experiments show that the methods are
able to discover interesting sets and trees and that they can also be used on large
datasets. Our approach searches for local structure: small subsets of variables
for which the data can be modeled well, in the sense of having low entropy or
being amenable to description by a tree.

54

4 Low-entropy sets and trees

4.7 Conclusions

We have considered the problem of finding low-entropy sets and trees from binary
data. The approach we have chosen is a natural generalization of the discovery
of frequent sets: low-entropy sets are not restricted to the all-one value combi-
nation and can locate subsets that have a number of different dominant value
combinations instead of just one. The experiments show that the methods are
able to discover interesting sets and trees and that they can also be used on large
datasets. Our approach searches for local structure: small subsets of variables
for which the data can be modeled well, in the sense of having low entropy or
being amenable to description by a tree.

54

Chapter 5

Pattern selection for

low-entropy sets

5.1 Introduction

In the previous two chapters we concentrated on the task of enumerating a com-
plete set of patterns that satisfy certain conditions or constraints. For instance,
with low-entropy sets we were interested in the entire set of patterns that yield
an entropy value that is below a certain predefined threshold ǫ. In a way this is
a very natural goal. The user defines the pattern set that he or she is interested
in and makes a query that returns all patterns.

However, receiving all possible patterns may be impractical as the number of
patterns returned may be prohibitively large. Indeed, in many cases the pattern
set found may be larger than the entire number of observations in the data.
Hence, giving exactly what the user wants may not be what he really needs.
Instead, perhaps more beneficial for the user would be to give a small subset of
the most essential patterns with some desired property (like low entropy or high
frequency). This problem is often referred to as the pattern selection problem,
and has recently attracted a significant amount of research [65, 83, 55, 8, 93].

In 2006 Siebes et al. [83] introduced an interesting approach to the pattern
selection problem by promoting the use of the MDL (minimum description length)
principle. MDL is a general model selection criterion introduced originally by
Rissanen [79] that states that the best model for a given set of data is the one that
leads to the largest compression of the data. Following from this, the argument
of Siebes et al. was that the best collection of frequent itemsets should be the
one that requires the fewest bits to describe all the data. Furthermore, a row of
data can be described simply by telling which itemsets together (i.e. their union)
form the data row.

The original work by Siebes et al. was for selecting frequent itemsets. How-
ever, low-entropy sets offer an interesting possibility to study this idea further.

55

Chapter 5

Pattern selection for

low-entropy sets

5.1 Introduction

In the previous two chapters we concentrated on the task of enumerating a com-
plete set of patterns that satisfy certain conditions or constraints. For instance,
with low-entropy sets we were interested in the entire set of patterns that yield
an entropy value that is below a certain predefined threshold ǫ. In a way this is
a very natural goal. The user defines the pattern set that he or she is interested
in and makes a query that returns all patterns.

However, receiving all possible patterns may be impractical as the number of
patterns returned may be prohibitively large. Indeed, in many cases the pattern
set found may be larger than the entire number of observations in the data.
Hence, giving exactly what the user wants may not be what he really needs.
Instead, perhaps more beneficial for the user would be to give a small subset of
the most essential patterns with some desired property (like low entropy or high
frequency). This problem is often referred to as the pattern selection problem,
and has recently attracted a significant amount of research [65, 83, 55, 8, 93].

In 2006 Siebes et al. [83] introduced an interesting approach to the pattern
selection problem by promoting the use of the MDL (minimum description length)
principle. MDL is a general model selection criterion introduced originally by
Rissanen [79] that states that the best model for a given set of data is the one that
leads to the largest compression of the data. Following from this, the argument
of Siebes et al. was that the best collection of frequent itemsets should be the
one that requires the fewest bits to describe all the data. Furthermore, a row of
data can be described simply by telling which itemsets together (i.e. their union)
form the data row.

The original work by Siebes et al. was for selecting frequent itemsets. How-
ever, low-entropy sets offer an interesting possibility to study this idea further.

55

5 Pattern selection for low-entropy sets

Indeed, in terms of information theory, entropy is the average number of bits
needed to encode the values of the attributes of the set X on a single row of
data. Hence, for low-entropy sets this quantity is naturally low and therefore
they make good candidates for minimizing overall data description length, and
are hence well suited for the pattern selection problem using MDL.

There is also another property that gives low-entropy sets an advantage. This
is the fact that low-entropy sets may capture multiple instantiations at once for
the same attribute set, while a frequent set has only one instantiation that it
can use. Take for instance the low-entropy set depicted in Figure 4.6. If the
same instantiation occurrence had to be described using regular itemsets, many
separate sets would be required, instead of the single low-entropy set required
in this case. Low-entropy sets can be seen as providing a two-level abstraction.
The higher, pattern-level abstraction, provides those attributes that have depen-
dencies between each other. The lower, instantiation-level abstraction, specifies
in detail the attribute value combinations occurring in the data. Hence, at the
pattern level, less is needed to describe more complex phenomena in the data.

Based on these ideas, this chapter discusses the pattern selection problem
using low-entropy sets and the MDL principle. We study describing each row in
the data with a subset of low-entropy sets using the maximum likelihood princi-
ple. Furthermore, two algorithms for data row encoding are provided. Finally,
the overall pattern selection problem is solved using a heuristic algorithm. Ex-
periments demonstrate that the end results yield an easily interpretable, small
collection of low-entropy sets, that in most cases are an order of magnitude smaller
than with a similar method using frequent itemsets.

5.2 Problem definition

5.2.1 The MDL model for low-entropy sets

The MDL approach can be summarized by the following statement: the best
model is the one that yields the best compression for the data. To put it slightly
more formally, given a set of models M, the best model M ∈ M is the one that
minimizes

L(D|M) + L(M),

in which

• L(D|M) is the length, in bits, of the description of the data when encoded
with M , and

• L(M) is the length, in bits, of the description of M .

In our case a model M defines a collection S of low-entropy sets. Respectively, a
description of the data is obtained so that for each row t ∈ D, the model M tells
which LE-sets in S and which corresponding instantiations are used to obtain
the values of t(A) for each attribute A ∈ I.

56

5 Pattern selection for low-entropy sets

Indeed, in terms of information theory, entropy is the average number of bits
needed to encode the values of the attributes of the set X on a single row of
data. Hence, for low-entropy sets this quantity is naturally low and therefore
they make good candidates for minimizing overall data description length, and
are hence well suited for the pattern selection problem using MDL.

There is also another property that gives low-entropy sets an advantage. This
is the fact that low-entropy sets may capture multiple instantiations at once for
the same attribute set, while a frequent set has only one instantiation that it
can use. Take for instance the low-entropy set depicted in Figure 4.6. If the
same instantiation occurrence had to be described using regular itemsets, many
separate sets would be required, instead of the single low-entropy set required
in this case. Low-entropy sets can be seen as providing a two-level abstraction.
The higher, pattern-level abstraction, provides those attributes that have depen-
dencies between each other. The lower, instantiation-level abstraction, specifies
in detail the attribute value combinations occurring in the data. Hence, at the
pattern level, less is needed to describe more complex phenomena in the data.

Based on these ideas, this chapter discusses the pattern selection problem
using low-entropy sets and the MDL principle. We study describing each row in
the data with a subset of low-entropy sets using the maximum likelihood princi-
ple. Furthermore, two algorithms for data row encoding are provided. Finally,
the overall pattern selection problem is solved using a heuristic algorithm. Ex-
periments demonstrate that the end results yield an easily interpretable, small
collection of low-entropy sets, that in most cases are an order of magnitude smaller
than with a similar method using frequent itemsets.

5.2 Problem definition

5.2.1 The MDL model for low-entropy sets

The MDL approach can be summarized by the following statement: the best
model is the one that yields the best compression for the data. To put it slightly
more formally, given a set of models M, the best model M ∈ M is the one that
minimizes

L(D|M) + L(M),

in which

• L(D|M) is the length, in bits, of the description of the data when encoded
with M , and

• L(M) is the length, in bits, of the description of M .

In our case a model M defines a collection S of low-entropy sets. Respectively, a
description of the data is obtained so that for each row t ∈ D, the model M tells
which LE-sets in S and which corresponding instantiations are used to obtain
the values of t(A) for each attribute A ∈ I.

56

Problem definition

Example Given a row t we describe it by a sequence of LE-sets and instanti-
ations. As a simple example, consider the attributes {A,B,C,D} and a data
row t = (1, 0, 0, 1), with attributes A and D having the value 1 and B and C
the value 0. This row can be described by the LE-sets {A,B} and {C,D} and
instantiations (1, 0) and (0, 1) respectively.

The compression is done using two code tables. The first code table contains the
collection of the LE-sets S and the codes used to encode them. The second code
table contains the corresponding instantiations and their respective codes. The
data are then described using the codes in the code tables.

Example Let the codes associated with {A,B} and {C,D} be c1 and c2, re-
spectively. Furthermore, let l1 be the code associated with (1, 0) and l2 the one
with (0, 1). The row {A,D} is encoded by the pair of codes c1c2 and l1l2.

In the following we give a more formal definition for a code table.

Definition 5.1 Consider a dataset D, the entropy threshold ǫ, and a subset S ⊆
PLE(D, ǫ). We define the low-entropy set code table as the set of pairs

CTLE = {(X, c) |X ∈ S ∪ I},

where X is a low-entropy set and c the respective code for X. Correspondingly,
we define the instantiation code table as the set of pairs

CTI = {(i, l) | i ∈
⋃

Y ∈S∪I

ΩY },

where i is a low-entropy set instantiation, l is its respective code, and ΩY the
set of all instantiations for the low-entropy set Y . We write X ∈ CTLE (and
similarly for CTI), to indicate that for a low-entropy set X, there exists an entry
(X, c) ∈ CTLE

Notice that CTLE is required to contain at least the singleton attribute sets, such
that all possible rows can be encoded using at least the single-item low-entropy
sets. Similarly, if the largest LE-set in S contains k attributes, CTI is defined
to contain entries for all possible instantiations from one-element LE-sets up to
those for k-element LE-sets.

The pair of code tables results in a pair of encodings for the dataset D. The
first, DLE , contains the codes from CTLE , the second, DI , contains the codes from
CTI . We denote the lengths of the two encodings of the data by L(DLE | CTLE)
and L(DI | CTI). The number of bits required to encode CTLE and CTI is
denoted by L(CTLE) and L(CTI), respectively.

Now, given data D, and a set of low-entropy sets PLE(D, ǫ) for some entropy
threshold ǫ, our objective will be to find the code tables CTLE and CTLE that
minimize L(D|CT) + L(CT), where

L(D|CT) = L(DLE | CTLE) + L(DI | CTI),

L(CT) = L(CTLE) + L(CTI).

57

Problem definition

Example Given a row t we describe it by a sequence of LE-sets and instanti-
ations. As a simple example, consider the attributes {A,B,C,D} and a data
row t = (1, 0, 0, 1), with attributes A and D having the value 1 and B and C
the value 0. This row can be described by the LE-sets {A,B} and {C,D} and
instantiations (1, 0) and (0, 1) respectively.

The compression is done using two code tables. The first code table contains the
collection of the LE-sets S and the codes used to encode them. The second code
table contains the corresponding instantiations and their respective codes. The
data are then described using the codes in the code tables.

Example Let the codes associated with {A,B} and {C,D} be c1 and c2, re-
spectively. Furthermore, let l1 be the code associated with (1, 0) and l2 the one
with (0, 1). The row {A,D} is encoded by the pair of codes c1c2 and l1l2.

In the following we give a more formal definition for a code table.

Definition 5.1 Consider a dataset D, the entropy threshold ǫ, and a subset S ⊆
PLE(D, ǫ). We define the low-entropy set code table as the set of pairs

CTLE = {(X, c) |X ∈ S ∪ I},

where X is a low-entropy set and c the respective code for X. Correspondingly,
we define the instantiation code table as the set of pairs

CTI = {(i, l) | i ∈
⋃

Y ∈S∪I

ΩY },

where i is a low-entropy set instantiation, l is its respective code, and ΩY the
set of all instantiations for the low-entropy set Y . We write X ∈ CTLE (and
similarly for CTI), to indicate that for a low-entropy set X, there exists an entry
(X, c) ∈ CTLE

Notice that CTLE is required to contain at least the singleton attribute sets, such
that all possible rows can be encoded using at least the single-item low-entropy
sets. Similarly, if the largest LE-set in S contains k attributes, CTI is defined
to contain entries for all possible instantiations from one-element LE-sets up to
those for k-element LE-sets.

The pair of code tables results in a pair of encodings for the dataset D. The
first, DLE , contains the codes from CTLE , the second, DI , contains the codes from
CTI . We denote the lengths of the two encodings of the data by L(DLE | CTLE)
and L(DI | CTI). The number of bits required to encode CTLE and CTI is
denoted by L(CTLE) and L(CTI), respectively.

Now, given data D, and a set of low-entropy sets PLE(D, ǫ) for some entropy
threshold ǫ, our objective will be to find the code tables CTLE and CTLE that
minimize L(D|CT) + L(CT), where

L(D|CT) = L(DLE | CTLE) + L(DI | CTI),

L(CT) = L(CTLE) + L(CTI).

57

5 Pattern selection for low-entropy sets

In the following Subsections 5.2.2 and 5.2.3, we discuss L(D | CT) and L(CT) in
detail. The formal overall problem statement is given in Subsection 5.2.4.

5.2.2 L(D | CT): size of the encoded dataset

The size of the encoded dataset will be the sum of lengths of the codes used to
encode each data row. To determine the appropriate codes, we need to know how
often an LE-set and its instantiations are used in the encoding. That is, we have
to define which low-entropy sets are used to cover a row t and which instantiations
of those elements are used. For this purpose we use a cover function that provides
a set of non-overlapping LE-sets such that they describe all attributes I of a row
t of the data D. More formally:

Definition 5.2 Given a low-entropy set code table CTLE and a row t ∈ D, the
collection C of low-entropy sets is a cover of t, iff

⋃

X∈C = I,
⋂

X∈C = ∅, and
for each X ∈ C we have X ∈ CTLE. A cover function is a function

cover : CTLE × t → C,

where C is a cover of t.

Since the elements in a cover C are non-overlapping, cover(CTLE , t) only needs
to return a set of LE-sets from CTLE . The associated instantiations can easily
be reconstructed by using the values of row t. We omit CTLE and write cover(t)
when CTLE is clear from the context.

The number of times a CTLE element X is used in the cover of each row t ∈ D
is called its cover frequency of X, denoted by fc(D, X). The cover frequency of
an instantiation i ∈ CTI is defined similarly:

fc(D, X) = |{t ∈ D| X ∈ cover(t)}|,

fc(D, i) = |{t ∈ D| X ∈ cover(t) ∧ i = πX(t)}|.

We denote fc(X) and fc(i) when D is clear from the context.
The probability that X, or respectively i, is used in the cover of a randomly

selected row t is thus

Pr(X|D) =
fc(X)

∑

Y ∈CTLE
fc(Y)

,

Pr(i|D) =
fc(i)

∑

j∈CTI
fc(j)

.

To compress the dataset optimally, we use a Shannon code [30] for both code
tables. The more often a set or an instantiation is used, the shorter its associated

58

5 Pattern selection for low-entropy sets

In the following Subsections 5.2.2 and 5.2.3, we discuss L(D | CT) and L(CT) in
detail. The formal overall problem statement is given in Subsection 5.2.4.

5.2.2 L(D | CT): size of the encoded dataset

The size of the encoded dataset will be the sum of lengths of the codes used to
encode each data row. To determine the appropriate codes, we need to know how
often an LE-set and its instantiations are used in the encoding. That is, we have
to define which low-entropy sets are used to cover a row t and which instantiations
of those elements are used. For this purpose we use a cover function that provides
a set of non-overlapping LE-sets such that they describe all attributes I of a row
t of the data D. More formally:

Definition 5.2 Given a low-entropy set code table CTLE and a row t ∈ D, the
collection C of low-entropy sets is a cover of t, iff

⋃

X∈C = I,
⋂

X∈C = ∅, and
for each X ∈ C we have X ∈ CTLE. A cover function is a function

cover : CTLE × t → C,

where C is a cover of t.

Since the elements in a cover C are non-overlapping, cover(CTLE , t) only needs
to return a set of LE-sets from CTLE . The associated instantiations can easily
be reconstructed by using the values of row t. We omit CTLE and write cover(t)
when CTLE is clear from the context.

The number of times a CTLE element X is used in the cover of each row t ∈ D
is called its cover frequency of X, denoted by fc(D, X). The cover frequency of
an instantiation i ∈ CTI is defined similarly:

fc(D, X) = |{t ∈ D| X ∈ cover(t)}|,

fc(D, i) = |{t ∈ D| X ∈ cover(t) ∧ i = πX(t)}|.

We denote fc(X) and fc(i) when D is clear from the context.
The probability that X, or respectively i, is used in the cover of a randomly

selected row t is thus

Pr(X|D) =
fc(X)

∑

Y ∈CTLE
fc(Y)

,

Pr(i|D) =
fc(i)

∑

j∈CTI
fc(j)

.

To compress the dataset optimally, we use a Shannon code [30] for both code
tables. The more often a set or an instantiation is used, the shorter its associated

58

Problem definition

code. The lengths1 (in bits) of the codes c and l for the code table elements
(X, c) ∈ CTLE and (i, l) ∈ CTI , are

L(c) = − log(Pr(X|D)),

L(l) = − log(Pr(i|D)).

Finally, the sizes of the encoded datasets DLE and DI are

L(DLE | CTLE) =
∑

(X,c)∈CTLE

fc(X)L(c),

L(DI | CTI) =
∑

(i,l)∈CTI

fc(i)L(l).

The encoded size of the full dataset is then

L(D | CT) = L(DLE | CTLE) + L(DI | CTI). (5.1)

5.2.3 L(CT): size of the code table

As stated earlier the two code tables, CTLE and CTI , comprise pairs (X, c)
and (i, l), respectively. For the codes we already know their lengths, that is,
L(c) and L(l) as defined above. However, to compute the full size of the code
tables, we need to include the encoding lengths of the low-entropy sets X and
the instantiations i as well. In other words, we must define L(X) and L(i).

For CTLE , we encode each LE-set X with the encoding defined by the standard
code table

ST = {(A, c)|A ∈ I},

where ST contains only the singleton attribute sets A ∈ I, and the codes c
resulting from encoding the data only with them. We have

L(X) =
∑

(A,c)∈ST :A∈X

L(c)

The size of CTLE is then

L(CTLE) =
∑

(X,c)∈CTLE :fc 6=0

L(X) + L(c).

For CTI , we simply use the bit-representation of the instantiations. That is,
the instantiation (0, 1) is represented by 01. We denote the bit-representation of

1Note that we are only interested in the lengths of the codes c and l, not the actual codes
themselves.

59

Problem definition

code. The lengths1 (in bits) of the codes c and l for the code table elements
(X, c) ∈ CTLE and (i, l) ∈ CTI , are

L(c) = − log(Pr(X|D)),

L(l) = − log(Pr(i|D)).

Finally, the sizes of the encoded datasets DLE and DI are

L(DLE | CTLE) =
∑

(X,c)∈CTLE

fc(X)L(c),

L(DI | CTI) =
∑

(i,l)∈CTI

fc(i)L(l).

The encoded size of the full dataset is then

L(D | CT) = L(DLE | CTLE) + L(DI | CTI). (5.1)

5.2.3 L(CT): size of the code table

As stated earlier the two code tables, CTLE and CTI , comprise pairs (X, c)
and (i, l), respectively. For the codes we already know their lengths, that is,
L(c) and L(l) as defined above. However, to compute the full size of the code
tables, we need to include the encoding lengths of the low-entropy sets X and
the instantiations i as well. In other words, we must define L(X) and L(i).

For CTLE , we encode each LE-set X with the encoding defined by the standard
code table

ST = {(A, c)|A ∈ I},

where ST contains only the singleton attribute sets A ∈ I, and the codes c
resulting from encoding the data only with them. We have

L(X) =
∑

(A,c)∈ST :A∈X

L(c)

The size of CTLE is then

L(CTLE) =
∑

(X,c)∈CTLE :fc 6=0

L(X) + L(c).

For CTI , we simply use the bit-representation of the instantiations. That is,
the instantiation (0, 1) is represented by 01. We denote the bit-representation of

1Note that we are only interested in the lengths of the codes c and l, not the actual codes
themselves.

59

5 Pattern selection for low-entropy sets

i ∈ CTI by bit(i), and the number of bits in bit(i) by L(bit(i)). Hence, the size
of CTI is

L(CTI) =
∑

(i,l)∈CTI :fc 6=0

L(bit(i)) + L(l).

We have as the total size for the code tables,

L(CT) = L(CTLE) + L(CTI).

5.2.4 The problem statement

Now that we have given the details of our MDL model class, we define the overall
computational problem as follows.

Problem 5.1 Given data D, and a set of low-entropy sets PLE(D, ǫ) for some
entropy threshold ǫ, find the code table CTLE and the cover function cover(CTLE , t)
minimizing the total encoded size

L(D, CTLE) = L(D | CT) + L(CT).

Note that given CTLE and the cover function cover(CTLE , t), we can determine
CTI .

5.3 Algorithms

The search space of the problem consists of all possible code tables CTLE , that
is, all possible subsets of PLE that contain at least the singleton sets I. So, there
are

|PLE |−|I|
∑

k=0

(

|PLE | − |I|

k

)

possible code tables. In order to determine which one minimizes the total encoded
size, the naive approach is to consider these using every possible cover function.
This means constructing the row covers using every possible cover order for each
row. Since there are m! possible orders for a set of size m, the total size of the
search space is

|PLE |−|I|
∑

k=0

(

(

|PLE | − |I|

k

)

× (k + |I|)! × |D|

)

.

In short, the search space is very large. To make matters worse, there is no known
structure that allows us to prune it. Hence, we must resort to a heuristic overall
solution.

60

5 Pattern selection for low-entropy sets

i ∈ CTI by bit(i), and the number of bits in bit(i) by L(bit(i)). Hence, the size
of CTI is

L(CTI) =
∑

(i,l)∈CTI :fc 6=0

L(bit(i)) + L(l).

We have as the total size for the code tables,

L(CT) = L(CTLE) + L(CTI).

5.2.4 The problem statement

Now that we have given the details of our MDL model class, we define the overall
computational problem as follows.

Problem 5.1 Given data D, and a set of low-entropy sets PLE(D, ǫ) for some
entropy threshold ǫ, find the code table CTLE and the cover function cover(CTLE , t)
minimizing the total encoded size

L(D, CTLE) = L(D | CT) + L(CT).

Note that given CTLE and the cover function cover(CTLE , t), we can determine
CTI .

5.3 Algorithms

The search space of the problem consists of all possible code tables CTLE , that
is, all possible subsets of PLE that contain at least the singleton sets I. So, there
are

|PLE |−|I|
∑

k=0

(

|PLE | − |I|

k

)

possible code tables. In order to determine which one minimizes the total encoded
size, the naive approach is to consider these using every possible cover function.
This means constructing the row covers using every possible cover order for each
row. Since there are m! possible orders for a set of size m, the total size of the
search space is

|PLE |−|I|
∑

k=0

(

(

|PLE | − |I|

k

)

× (k + |I|)! × |D|

)

.

In short, the search space is very large. To make matters worse, there is no known
structure that allows us to prune it. Hence, we must resort to a heuristic overall
solution.

60

Algorithms

5.3.1 Solution outline

Our approach to finding the best possible code table can be divided into two
main elements:

• row encoding phase, where a good compression for each row (the cover
function) is found using the patterns in the code table.

• code table search strategy, which is the way in which the search space of all
possible pattern subsets is traversed to find a good code table CTLE .

The method follows the general framework of [83]. However, we apply different
technical solutions within the different parts of the approach. We will discuss
row encoding in Subsection 5.3.2 and the search strategy in 5.3.3.

5.3.2 Row encoding phase

As discussed in Section 5.2, when encoding the dataset the task is to compress
the data as well as possible using the low-entropy sets in the existing code table.
This is done by covering each row t with a set of patterns from the code table
using some cover function cover(t). Until now we have not explicitly defined
what a cover function might look like.

An LE-set always has an instantiation that can be used to describe a row, so
any disjoint subset of LE-sets covering I can be used. However, we know that we
need a function that yields covers that are favorable for the overall task at hand.

Our strategy is to take advantage of the statistical nature of low-entropy
sets and use the maximum likelihood (ML) principle. The idea is to define the
cover function such that each cover C = cover(t) for each row t maximizes the
conditional probability p(t|C) (likelihood) of the row. Recall that we denote with
πX(t) the instantiation of the LE-set X that fits row t. We define the likelihood
of row t as follows:

Definition 5.3 Let t be a row and C a cover of t.

L(t, C) =
∑

X∈C

log p(πX(t)) (5.2)

is the loglikelihood of t given C.

Using the notion of likelihood we define cover(t) as the function

cover(t) = C∗ = arg max
C

L(t, C). (5.3)

That is, for each row t the function cover(t) yields a cover C∗ such that the
likelihood function L is maximized with respect to all possible covers C. We call
C∗ the optimal cover of t.

61

Algorithms

5.3.1 Solution outline

Our approach to finding the best possible code table can be divided into two
main elements:

• row encoding phase, where a good compression for each row (the cover
function) is found using the patterns in the code table.

• code table search strategy, which is the way in which the search space of all
possible pattern subsets is traversed to find a good code table CTLE .

The method follows the general framework of [83]. However, we apply different
technical solutions within the different parts of the approach. We will discuss
row encoding in Subsection 5.3.2 and the search strategy in 5.3.3.

5.3.2 Row encoding phase

As discussed in Section 5.2, when encoding the dataset the task is to compress
the data as well as possible using the low-entropy sets in the existing code table.
This is done by covering each row t with a set of patterns from the code table
using some cover function cover(t). Until now we have not explicitly defined
what a cover function might look like.

An LE-set always has an instantiation that can be used to describe a row, so
any disjoint subset of LE-sets covering I can be used. However, we know that we
need a function that yields covers that are favorable for the overall task at hand.

Our strategy is to take advantage of the statistical nature of low-entropy
sets and use the maximum likelihood (ML) principle. The idea is to define the
cover function such that each cover C = cover(t) for each row t maximizes the
conditional probability p(t|C) (likelihood) of the row. Recall that we denote with
πX(t) the instantiation of the LE-set X that fits row t. We define the likelihood
of row t as follows:

Definition 5.3 Let t be a row and C a cover of t.

L(t, C) =
∑

X∈C

log p(πX(t)) (5.2)

is the loglikelihood of t given C.

Using the notion of likelihood we define cover(t) as the function

cover(t) = C∗ = arg max
C

L(t, C). (5.3)

That is, for each row t the function cover(t) yields a cover C∗ such that the
likelihood function L is maximized with respect to all possible covers C. We call
C∗ the optimal cover of t.

61

5 Pattern selection for low-entropy sets

Maximum likelihood is a widely used and well principled way of fitting the
best model to the data. Moreover, Equation (5.2) has an intuitive connection to
the total encoded length of the data.

In more detail, the connection is as follows. Given row t and its cover C, let’s
assume that for all the rest of the rows u ∈ D \ t, each LE-set X ∈ C is used to
cover u only whenever πX(t) fits u2. This implies that for each X ∈ C, we have
a cover frequency of

fc(X) = |D| · p(πX(t)),

where |D| is the number of rows in the data, and p(πX(t)) the relative frequency
of the rows for which πX(t) fits.

From this it follows that for the code c, such that (X, c) ∈ CTLE , the length
L(c) will be strictly proportional to the negative loglikelihood of X on row t.
That is,

L(c) = − log
fc(X)

∑

Y ∈CTLE
fc(Y)

∝ − log
fc(X)

|D|
= − log p(πX(t)), (5.4)

where
∑

Y ∈CTLE
fc(Y) and |D| can be considered as constants. It follows that

the encoding length L(t) of row t will be

L(t) ∝ −
∑

X∈C

log p(πX(t)),

that is, the negation of Equation (5.2).

Finding the optimal cover

Finding the optimal cover for a row using patterns of size 1 and 2 is equivalent to
the 2-dimensional matching problem and hence solvable in polynomial time. The
general case where the code table includes patterns of size 3 or larger is as hard as
or harder than the NP-complete 3-dimensional matching problem [26]. Therefore,
the cover function defined in Equation (5.3) is not known to be computable in
the general case for large datasets. Fortunately, many covering problems can be
well approximated by using greedy heuristics.

In this subsection, we first study covering a row optimally according to the
maximum likelihood principle, with an exhaustive search strategy using pruning.
In the next subsection, we discuss a greedy heuristic that can be applied for larger
datasets.

To compute the optimal cover for row t, consider assigning a weight w(t,X)
to each LE-set X ∈ CTLE , such that

w(t,X) = log
(

p(πX(t))
)

/|X|, (5.5)

2It is clear that these assumptions will not strictly hold in every case. However, patterns
with a few high frequency instantiations are likely to behave approximately like this. Such
patterns are also more likely to be chosen for the cover by the maximum likelihood principle.

62

5 Pattern selection for low-entropy sets

Maximum likelihood is a widely used and well principled way of fitting the
best model to the data. Moreover, Equation (5.2) has an intuitive connection to
the total encoded length of the data.

In more detail, the connection is as follows. Given row t and its cover C, let’s
assume that for all the rest of the rows u ∈ D \ t, each LE-set X ∈ C is used to
cover u only whenever πX(t) fits u2. This implies that for each X ∈ C, we have
a cover frequency of

fc(X) = |D| · p(πX(t)),

where |D| is the number of rows in the data, and p(πX(t)) the relative frequency
of the rows for which πX(t) fits.

From this it follows that for the code c, such that (X, c) ∈ CTLE , the length
L(c) will be strictly proportional to the negative loglikelihood of X on row t.
That is,

L(c) = − log
fc(X)

∑

Y ∈CTLE
fc(Y)

∝ − log
fc(X)

|D|
= − log p(πX(t)), (5.4)

where
∑

Y ∈CTLE
fc(Y) and |D| can be considered as constants. It follows that

the encoding length L(t) of row t will be

L(t) ∝ −
∑

X∈C

log p(πX(t)),

that is, the negation of Equation (5.2).

Finding the optimal cover

Finding the optimal cover for a row using patterns of size 1 and 2 is equivalent to
the 2-dimensional matching problem and hence solvable in polynomial time. The
general case where the code table includes patterns of size 3 or larger is as hard as
or harder than the NP-complete 3-dimensional matching problem [26]. Therefore,
the cover function defined in Equation (5.3) is not known to be computable in
the general case for large datasets. Fortunately, many covering problems can be
well approximated by using greedy heuristics.

In this subsection, we first study covering a row optimally according to the
maximum likelihood principle, with an exhaustive search strategy using pruning.
In the next subsection, we discuss a greedy heuristic that can be applied for larger
datasets.

To compute the optimal cover for row t, consider assigning a weight w(t,X)
to each LE-set X ∈ CTLE , such that

w(t,X) = log
(

p(πX(t))
)

/|X|, (5.5)

2It is clear that these assumptions will not strictly hold in every case. However, patterns
with a few high frequency instantiations are likely to behave approximately like this. Such
patterns are also more likely to be chosen for the cover by the maximum likelihood principle.

62

Algorithms

where w(t,X) is equal to the per-attribute addition in the likelihood that X
would give if it were to be added to the cover of t.

Now, start with a code table that is ordered according to w(t,X). Given
this ordered code table, we need to enumerate all possible covers in a depth-
first manner. We start from the set X with the largest weight w(t,X) and
greedily continue to add non-overlapping sets to the cover in decreasing order,
backtracking the search at each time when reaching a full cover.

By taking this order into account, we can cut the search space down consid-
erably using the following proposition.

Proposition 5.1 Consider covering row t with disjoint attribute sets in strictly
decreasing order according to the weight function w. Now, when at the ith at-
tribute set Xi, already having covered attributes Y with cover CY , we know that
the final resulting cover will have a likelihood of at most

L(t, C) ≤ k · w(t,Xi) + L(t, CY), (5.6)

where k is the number of uncovered attributes.

The proposition follows straightforwardly from the fact that, if Xi covers all
the previously uncovered attributes without overlapping Y , the likelihood of the
resulting covering will be exactly the right-hand side of inequality 5.6. Otherwise,
we will have to include some other set, which by the ordering on w will provide
an equal or smaller addition in likelihood per attribute. Hence, this will result in
a smaller overall likelihood for the row. Thus, Proposition 5.1 defines an upper
bound that we can compare with the best solution found so far; and thus to
decide whether it makes sense to continue building the current cover or to start
backtracking.

Written in pseudo-code, this optimal covering approach is depicted in Algo-
rithm 4. However, as the optimal covering method considers a prohibitively large
search space, it only makes sense to apply it to moderately sized datasets of up
to about 25 attributes. To allow for more practical applications, we present a
fast, heuristic alternative that follows very naturally from the minimum encoding
length/maximum likelihood principle.

Approximating the optimal cover

Recall that our goal is to cover rows using LE-sets that provide as high a gain as
possible in the overall likelihood. The initial order used by the optimal algorithm
provides us with an approximation, as it orders the elements on the gain in
likelihood per attribute. If we use this order in a greedy fashion (without overlap),
the resulting cover is the same as the first full cover the optimal cover strategy
considers. We present, as Algorithm 5, the translation of this simple scheme into
pseudo-code.

63

Algorithms

where w(t,X) is equal to the per-attribute addition in the likelihood that X
would give if it were to be added to the cover of t.

Now, start with a code table that is ordered according to w(t,X). Given
this ordered code table, we need to enumerate all possible covers in a depth-
first manner. We start from the set X with the largest weight w(t,X) and
greedily continue to add non-overlapping sets to the cover in decreasing order,
backtracking the search at each time when reaching a full cover.

By taking this order into account, we can cut the search space down consid-
erably using the following proposition.

Proposition 5.1 Consider covering row t with disjoint attribute sets in strictly
decreasing order according to the weight function w. Now, when at the ith at-
tribute set Xi, already having covered attributes Y with cover CY , we know that
the final resulting cover will have a likelihood of at most

L(t, C) ≤ k · w(t,Xi) + L(t, CY), (5.6)

where k is the number of uncovered attributes.

The proposition follows straightforwardly from the fact that, if Xi covers all
the previously uncovered attributes without overlapping Y , the likelihood of the
resulting covering will be exactly the right-hand side of inequality 5.6. Otherwise,
we will have to include some other set, which by the ordering on w will provide
an equal or smaller addition in likelihood per attribute. Hence, this will result in
a smaller overall likelihood for the row. Thus, Proposition 5.1 defines an upper
bound that we can compare with the best solution found so far; and thus to
decide whether it makes sense to continue building the current cover or to start
backtracking.

Written in pseudo-code, this optimal covering approach is depicted in Algo-
rithm 4. However, as the optimal covering method considers a prohibitively large
search space, it only makes sense to apply it to moderately sized datasets of up
to about 25 attributes. To allow for more practical applications, we present a
fast, heuristic alternative that follows very naturally from the minimum encoding
length/maximum likelihood principle.

Approximating the optimal cover

Recall that our goal is to cover rows using LE-sets that provide as high a gain as
possible in the overall likelihood. The initial order used by the optimal algorithm
provides us with an approximation, as it orders the elements on the gain in
likelihood per attribute. If we use this order in a greedy fashion (without overlap),
the resulting cover is the same as the first full cover the optimal cover strategy
considers. We present, as Algorithm 5, the translation of this simple scheme into
pseudo-code.

63

5 Pattern selection for low-entropy sets

Algorithm 4 Optimal row covering algorithm

Input: Row t for attributes I and code table CTLE .
Output: Optimal cover C∗ as defined in Equation (5.3).
1: return Optimal(I, CTLE , ∅, ∅)
2:

3: Optimal(I, CTLE , CY , C∗) :
4: if |CY | = |I| then
5: return CY

6: end if
7: ∆ = ∅
8: k = |I| − |CY |
9: for X ∈ CTLE in decreasing order of w(t,X) do

10: ∆ = X ∪ ∆
11: if X ∩ CY = ∅ then
12: if k · w(X) + L(CY) > L(C∗) then
13: C =Optimal(CTLE\∆, X ∪CY , C∗)
14: C∗ =arg max{C∗,C}(L(C∗), L(C))
15: else
16: return C∗

17: end if
18: end if
19: end for
20: return C∗

5.3.3 Code table search strategy

In the previous subsection we discussed data encoding assuming a fixed code
table CTLE . In this subsection we assume that CTLE is unknown, and turn our
attention to the problem of finding the best instance of it, given PLE(D, ǫ). Our
solution is to use the following simple greedy search strategy:

• Start with the (standard) code table consisting only of singleton attribute
sets.

• Add each candidate X ∈ PLE(D, ǫ) to the code table one by one. If the
resulting codes, after adding X to the code table, lead to a better compres-
sion, keep X. Otherwise, discard it.

By its iterative nature, the success of this strategy largely depends on the order
in which the patterns are considered.

Ordering the candidate sets

Using the above strategy, the optimal compression can be best approximated by
trying all possible orders. However, as the number of possible orders of a set

64

5 Pattern selection for low-entropy sets

Algorithm 4 Optimal row covering algorithm

Input: Row t for attributes I and code table CTLE .
Output: Optimal cover C∗ as defined in Equation (5.3).
1: return Optimal(I, CTLE , ∅, ∅)
2:

3: Optimal(I, CTLE , CY , C∗) :
4: if |CY | = |I| then
5: return CY

6: end if
7: ∆ = ∅
8: k = |I| − |CY |
9: for X ∈ CTLE in decreasing order of w(t,X) do

10: ∆ = X ∪ ∆
11: if X ∩ CY = ∅ then
12: if k · w(X) + L(CY) > L(C∗) then
13: C =Optimal(CTLE\∆, X ∪CY , C∗)
14: C∗ =arg max{C∗,C}(L(C∗), L(C))
15: else
16: return C∗

17: end if
18: end if
19: end for
20: return C∗

5.3.3 Code table search strategy

In the previous subsection we discussed data encoding assuming a fixed code
table CTLE . In this subsection we assume that CTLE is unknown, and turn our
attention to the problem of finding the best instance of it, given PLE(D, ǫ). Our
solution is to use the following simple greedy search strategy:

• Start with the (standard) code table consisting only of singleton attribute
sets.

• Add each candidate X ∈ PLE(D, ǫ) to the code table one by one. If the
resulting codes, after adding X to the code table, lead to a better compres-
sion, keep X. Otherwise, discard it.

By its iterative nature, the success of this strategy largely depends on the order
in which the patterns are considered.

Ordering the candidate sets

Using the above strategy, the optimal compression can be best approximated by
trying all possible orders. However, as the number of possible orders of a set

64

Algorithms

Algorithm 5 The greedy row covering algorithm

Input: Row t for attributes I and code table CTLE .
Output: A greedy approximation C for the optimal cover C∗ as defined in Equa-

tion (5.3).
1: cover C = ∅
2: for X ∈ CTLE in decreasing order of w(t,X) do
3: if X ∩ C = ∅ then
4: C = X ∪ C
5: if |C| = |I| then
6: return C
7: end if
8: end if
9: end for

Algorithm 6 The low-entropy set selection algorithm LESS

Input: attribute set I, the candidate LE-sets PLE(D, ǫ), and a dataset D.
Output: Code table CTLE

1: //start with the standard code table
2: CTLE = ST = {(A, c)|A ∈ I}
3: // try each candidate in the code table
4: for X ∈ P(D, ǫ) in increasing order of H (X)/|X| do
5: if L(D, CTLE ∪ (X, c)) < L(D, CTLE) then
6: CTLE = CTLE ∪ (X, c)
7: end if
8: end for
9: return CTLE

of size n equals n!, this clearly is infeasible for all but the smallest of pattern
collections. Hence, we heuristically reduce the search space of the problem by
introducing an order on PLE(D, ǫ). That is, we order the candidates such that
the best sets have a good chance of being used – those with high likelihood
instantiations – are at the top of the list. At the candidate set level, this means
preferring sets that have a low entropy per attribute, or H (X)/|X|.

5.3.4 The low-entropy set selection algorithm

Now the main ingredients for a low-entropy set-based compression algorithm
are in place, and we can assemble these into the Low-Entropy Set Selection
(LESS for short) algorithm. Algorithm 6 presents the pseudo–code version of the
method.

As input, the algorithm requires the attribute set I, the candidate set of low-
entropy sets PLE(D, ǫ), and a dataset D. As a first step the routine initializes
the code table CTLE with the set of singleton patterns. Then, iteratively low-

65

Algorithms

Algorithm 5 The greedy row covering algorithm

Input: Row t for attributes I and code table CTLE .
Output: A greedy approximation C for the optimal cover C∗ as defined in Equa-

tion (5.3).
1: cover C = ∅
2: for X ∈ CTLE in decreasing order of w(t,X) do
3: if X ∩ C = ∅ then
4: C = X ∪ C
5: if |C| = |I| then
6: return C
7: end if
8: end if
9: end for

Algorithm 6 The low-entropy set selection algorithm LESS

Input: attribute set I, the candidate LE-sets PLE(D, ǫ), and a dataset D.
Output: Code table CTLE

1: //start with the standard code table
2: CTLE = ST = {(A, c)|A ∈ I}
3: // try each candidate in the code table
4: for X ∈ P(D, ǫ) in increasing order of H (X)/|X| do
5: if L(D, CTLE ∪ (X, c)) < L(D, CTLE) then
6: CTLE = CTLE ∪ (X, c)
7: end if
8: end for
9: return CTLE

of size n equals n!, this clearly is infeasible for all but the smallest of pattern
collections. Hence, we heuristically reduce the search space of the problem by
introducing an order on PLE(D, ǫ). That is, we order the candidates such that
the best sets have a good chance of being used – those with high likelihood
instantiations – are at the top of the list. At the candidate set level, this means
preferring sets that have a low entropy per attribute, or H (X)/|X|.

5.3.4 The low-entropy set selection algorithm

Now the main ingredients for a low-entropy set-based compression algorithm
are in place, and we can assemble these into the Low-Entropy Set Selection
(LESS for short) algorithm. Algorithm 6 presents the pseudo–code version of the
method.

As input, the algorithm requires the attribute set I, the candidate set of low-
entropy sets PLE(D, ǫ), and a dataset D. As a first step the routine initializes
the code table CTLE with the set of singleton patterns. Then, iteratively low-

65

5 Pattern selection for low-entropy sets

entropy sets are added to the code table one by one. Each time, for each row
t ∈ D Algorithm 4 (or Algorithm 5) is called, and a new pattern coverage and
the total compressed size of the dataset are calculated. If this addition improves
the compression attained, the set is kept, otherwise it is permanently discarded.

Code table pruning

In the course of this iterative process it is quite possible that adding a pattern to
the code table will suddenly greatly diminish the usage of other patterns in the
code table thereby increasing their code lengths and possibly hindering overall
compression. We therefore introduce a pruning variant of our method. Once a
candidate of X ∈ PLE(D, ǫ) is accepted into the code table, we reconsider all
other elements Y ∈ CTLE : X 6= Y iteratively by temporarily removing them
and calculating the compressed size. Using the MDL-principle, we then go for
the best compression, permanently removing those elements that no longer help
the compression.

5.4 Experiments

To test the low-entropy selection algorithm in practice a C++ implementation
was constructed. The results of the experiments are reported in this section.

5.4.1 Size of pattern set reduction

Table 5.1 presents the quantified results of running LESS using the greedy cov-
ering Algorithm 5. The table shows the large reduction in the number of low-
entropy sets that the algorithm attains. Even for relatively low thresholds of ǫ,
up to 5 orders of magnitude fewer sets are selected, while attaining substantial
compression of the databases.

We also see that enabling pruning has a strong effect on the number of sets
selected: roughly an order of magnitude. Inspection of the code tables (see the
example code table in Section 5.4.4) shows that the two strategies provide slightly
different views on the data. Without pruning, the likelihood maximization pro-
cess selects more specific sets. Consequently, from the selected sets typically only
a few (one or two) very characteristic instantiations find major use. With prun-
ing enabled the process is forced to select more general patterns. This effect is
clearly illustrated by the much smaller number of sets returned, of which now
multiple instantiations are often used. The better compression scores show that
pruning results in better data descriptions.

5.4.2 MDL with LE-sets versus frequent sets

Table 5.1 includes a comparison of the reduction results between the LESS
method and the frequent itemsets-based MDL approach KRIMP [83]. Note that

66

5 Pattern selection for low-entropy sets

entropy sets are added to the code table one by one. Each time, for each row
t ∈ D Algorithm 4 (or Algorithm 5) is called, and a new pattern coverage and
the total compressed size of the dataset are calculated. If this addition improves
the compression attained, the set is kept, otherwise it is permanently discarded.

Code table pruning

In the course of this iterative process it is quite possible that adding a pattern to
the code table will suddenly greatly diminish the usage of other patterns in the
code table thereby increasing their code lengths and possibly hindering overall
compression. We therefore introduce a pruning variant of our method. Once a
candidate of X ∈ PLE(D, ǫ) is accepted into the code table, we reconsider all
other elements Y ∈ CTLE : X 6= Y iteratively by temporarily removing them
and calculating the compressed size. Using the MDL-principle, we then go for
the best compression, permanently removing those elements that no longer help
the compression.

5.4 Experiments

To test the low-entropy selection algorithm in practice a C++ implementation
was constructed. The results of the experiments are reported in this section.

5.4.1 Size of pattern set reduction

Table 5.1 presents the quantified results of running LESS using the greedy cov-
ering Algorithm 5. The table shows the large reduction in the number of low-
entropy sets that the algorithm attains. Even for relatively low thresholds of ǫ,
up to 5 orders of magnitude fewer sets are selected, while attaining substantial
compression of the databases.

We also see that enabling pruning has a strong effect on the number of sets
selected: roughly an order of magnitude. Inspection of the code tables (see the
example code table in Section 5.4.4) shows that the two strategies provide slightly
different views on the data. Without pruning, the likelihood maximization pro-
cess selects more specific sets. Consequently, from the selected sets typically only
a few (one or two) very characteristic instantiations find major use. With prun-
ing enabled the process is forced to select more general patterns. This effect is
clearly illustrated by the much smaller number of sets returned, of which now
multiple instantiations are often used. The better compression scores show that
pruning results in better data descriptions.

5.4.2 MDL with LE-sets versus frequent sets

Table 5.1 includes a comparison of the reduction results between the LESS
method and the frequent itemsets-based MDL approach KRIMP [83]. Note that

66

Experiments

T
ab

le
5.

1:
A

m
ou

n
t

of
p
a
tt

er
n

re
d
u
ct

io
n

ob
ta

in
ed

b
y

L
E

S
S
,
u
si

n
g

gr
ee

d
y

co
ve

ri
n
g

A
lg

or
it

h
m

5
an

d
a

va
ri

et
y

of
d
a
ta

se
ts

,
w

it
h

a
co

m
p
ar

is
o
n

w
it

h
th

e
fr

eq
u
en

t
it

em
se

t-
b
as

ed
m

et
h
o
d

K
R

IM
P
.
%

co
m

p
r.

=
co

m
p
re

ss
io

n
ac

h
ie

ve
d

w
it

h
th

e
M

D
L

m
o
d
el

D
at

a
se

t
P

ru
n
in

g
L
E

S
S

K
R

IM
P

N
a
m

e
|I
|

|D
|

E
n
a
bl

ed
ǫ

|P
L

E
(D

,ǫ
)|

|C
T

L
E
|

%
co

m
p
r.

σ
|D

|
|P

(D
,σ

)|
|C

T
|

M
a
m
m
a
l
s

40
21

83
N

o
3.

8
25

06
28

4
8
8

65
.0

20
0

11
60

35
31

5
3
6

Y
es

3
0

57
.0

2
5
4

M
o
v
ie

L
e
n
s

49
94

3
N

o
3.

5
34

89
02

9
1
9

65
.9

40
35

52
59

2
9
7

Y
es

3
4
1

59
.3

1
8
2

C
o
u
r
s
e

C
.

83
24

05
N

o
2.

8
44

57
09

9
1
8

70
.6

10
0

10
89

64
64

5
5
1

Y
es

2
8

61
.7

2
8
5

A
d
u
l
t

97
48

84
2

N
o

2.
9

14
37

66
1
5
3

79
.3

1
58

46
17

63
1
9
4
1

Y
es

1
0

77
.9

1
3
0
3

H
e
a
r
t

50
30

3
N

o
3.

3
41

45
89

1
1
5

87
.2

1
19

22
98

3
1
0
8

Y
es

4
9

85
.8

7
9

L
e
t
t
e
r

R
.

1
02

20
00

0
N

o
3.

3
36

88
89

8
3
8

76
.1

50
52

19
32

7
3
3
9
5

Y
es

2
1

7
0.

2
1
2
5
9

M
u
s
h
r
o
o
m

1
19

81
24

N
o

2.
8

43
72

39
2
4
1

7
3.

5
1

55
74

93
04

37
6
8
9

Y
es

1
0

6
9.

3
4
2
4

P
e
n

D
ig

it
s

86
10

99
2

N
o

2.
5

71
99

4
1
6
0

60
.5

50
24

14
94

5
2
6
6
7

Y
es

2
8

5
5.

9
1
0
9
1

67

Experiments

T
ab

le
5.

1:
A

m
ou

n
t

of
p
a
tt

er
n

re
d
u
ct

io
n

ob
ta

in
ed

b
y

L
E

S
S
,
u
si

n
g

gr
ee

d
y

co
ve

ri
n
g

A
lg

or
it

h
m

5
an

d
a

va
ri

et
y

of
d
a
ta

se
ts

,
w

it
h

a
co

m
p
ar

is
o
n

w
it

h
th

e
fr

eq
u
en

t
it

em
se

t-
b
as

ed
m

et
h
o
d

K
R

IM
P
.
%

co
m

p
r.

=
co

m
p
re

ss
io

n
ac

h
ie

ve
d

w
it

h
th

e
M

D
L

m
o
d
el

D
at

a
se

t
P

ru
n
in

g
L
E

S
S

K
R

IM
P

N
a
m

e
|I
|

|D
|

E
n
a
bl

ed
ǫ

|P
L

E
(D

,ǫ
)|

|C
T

L
E
|

%
co

m
p
r.

σ
|D

|
|P

(D
,σ

)|
|C

T
|

M
a
m
m
a
l
s

40
21

83
N

o
3.

8
25

06
28

4
8
8

65
.0

20
0

11
60

35
31

5
3
6

Y
es

3
0

57
.0

2
5
4

M
o
v
ie

L
e
n
s

49
94

3
N

o
3.

5
34

89
02

9
1
9

65
.9

40
35

52
59

2
9
7

Y
es

3
4
1

59
.3

1
8
2

C
o
u
r
s
e

C
.

83
24

05
N

o
2.

8
44

57
09

9
1
8

70
.6

10
0

10
89

64
64

5
5
1

Y
es

2
8

61
.7

2
8
5

A
d
u
l
t

97
48

84
2

N
o

2.
9

14
37

66
1
5
3

79
.3

1
58

46
17

63
1
9
4
1

Y
es

1
0

77
.9

1
3
0
3

H
e
a
r
t

50
30

3
N

o
3.

3
41

45
89

1
1
5

87
.2

1
19

22
98

3
1
0
8

Y
es

4
9

85
.8

7
9

L
e
t
t
e
r

R
.

1
02

20
00

0
N

o
3.

3
36

88
89

8
3
8

76
.1

50
52

19
32

7
3
3
9
5

Y
es

2
1

7
0.

2
1
2
5
9

M
u
s
h
r
o
o
m

1
19

81
24

N
o

2.
8

43
72

39
2
4
1

7
3.

5
1

55
74

93
04

37
6
8
9

Y
es

1
0

6
9.

3
4
2
4

P
e
n

D
ig

it
s

86
10

99
2

N
o

2.
5

71
99

4
1
6
0

60
.5

50
24

14
94

5
2
6
6
7

Y
es

2
8

5
5.

9
1
0
9
1

67

5 Pattern selection for low-entropy sets

in most cases for KRIMP we use a significantly larger candidate set P(D, σ),
compared with the candidate set PLE(D, ǫ) used with LESS. This is an advan-
tage to KRIMP, since there is a larger candidate set to choose from, for the final
result. On the other hand, low-entropy sets have multiple instantiation to use in
the compression, which is not the case for frequent sets.

We see that using LE-sets instead of frequent sets pays off, however, in the
overall number of patterns that are used to describe the data. With pruning
enabled, in 7 out of 8 cases the number of patterns selected is one or two orders
of magnitude smaller with the LE-set-based LESS than with the frequent itemset-
based KRIMP. For LESS, pruning disabled, the LE-sets selected have typically
only one or two very characteristic instantiations finding major use. This results
in a more frequent itemset type of behavior. Still, with pruning disabled, in 5
cases out of 8 the result set is smaller with LESS than with KRIMP.

5.4.3 Optimal and greedy covering

To compare the performance between the optimal and the greedy covering strate-
gies (Algorithms 4 and 5), we use a reduced version of the Mammals dataset,
Mammals20 containing only the 20 most varying attributes of the full Mammals

dataset. With this data we mined low-entropy sets using a maximum entropy
threshold of 3.33 bits, resulting in 2321 low-entropy sets.

For each row we computed a cover using both the greedy covering Algorithm 5
and the optimal covering Algorithm 4, as well as a baseline cover computed only
with singleton sets. The full collection of 2321 LE-sets was used as the fixed code
table for the greedy and the optimal approaches.

The results for each single row are presented in Figure 5.1. First of all, we
see that using sets pays off for both the optimal and the greedy methods with
an increase in loglikelihood for each row. Moreover, we see that the optimal row
cover does indeed result in the highest loglikelihood scores. However, the much
faster greedy approach finds covers that approximate the optimal score fairly
closely.

Next, we test the covering strategies with the LESS algorithm (Algorithm 6)
using the LE-sets as candidates. We first ran the test without pruning. In two
hours, the optimal variant selected 25 sets to compress the data into 184572
bits. In one minute, the greedy approach found a description of only 163908
bits, using 148 sets. By using a larger number of sets, this approach attains a
higher loglikelihood over the data (-22091 and -19767, respectively). Analyzing
the resulting code tables, it is evident that the optimal method is more deliberate:
if a set is allowed into the code table, it will stay in use and will not be fully traded
in, unlike with the greedy method. However, the resulting code tables are very
similar to those of the greedy algorithm when pruning is enabled. The greedy
approach seems to concatenate the “optimal” sets together into 12 sets to achieve
a likelihood of -22330, while using only 145940 bits. Overall, the greedy cover
algorithm allows MDL to condense the data better. When considered together,

68

5 Pattern selection for low-entropy sets

in most cases for KRIMP we use a significantly larger candidate set P(D, σ),
compared with the candidate set PLE(D, ǫ) used with LESS. This is an advan-
tage to KRIMP, since there is a larger candidate set to choose from, for the final
result. On the other hand, low-entropy sets have multiple instantiation to use in
the compression, which is not the case for frequent sets.

We see that using LE-sets instead of frequent sets pays off, however, in the
overall number of patterns that are used to describe the data. With pruning
enabled, in 7 out of 8 cases the number of patterns selected is one or two orders
of magnitude smaller with the LE-set-based LESS than with the frequent itemset-
based KRIMP. For LESS, pruning disabled, the LE-sets selected have typically
only one or two very characteristic instantiations finding major use. This results
in a more frequent itemset type of behavior. Still, with pruning disabled, in 5
cases out of 8 the result set is smaller with LESS than with KRIMP.

5.4.3 Optimal and greedy covering

To compare the performance between the optimal and the greedy covering strate-
gies (Algorithms 4 and 5), we use a reduced version of the Mammals dataset,
Mammals20 containing only the 20 most varying attributes of the full Mammals

dataset. With this data we mined low-entropy sets using a maximum entropy
threshold of 3.33 bits, resulting in 2321 low-entropy sets.

For each row we computed a cover using both the greedy covering Algorithm 5
and the optimal covering Algorithm 4, as well as a baseline cover computed only
with singleton sets. The full collection of 2321 LE-sets was used as the fixed code
table for the greedy and the optimal approaches.

The results for each single row are presented in Figure 5.1. First of all, we
see that using sets pays off for both the optimal and the greedy methods with
an increase in loglikelihood for each row. Moreover, we see that the optimal row
cover does indeed result in the highest loglikelihood scores. However, the much
faster greedy approach finds covers that approximate the optimal score fairly
closely.

Next, we test the covering strategies with the LESS algorithm (Algorithm 6)
using the LE-sets as candidates. We first ran the test without pruning. In two
hours, the optimal variant selected 25 sets to compress the data into 184572
bits. In one minute, the greedy approach found a description of only 163908
bits, using 148 sets. By using a larger number of sets, this approach attains a
higher loglikelihood over the data (-22091 and -19767, respectively). Analyzing
the resulting code tables, it is evident that the optimal method is more deliberate:
if a set is allowed into the code table, it will stay in use and will not be fully traded
in, unlike with the greedy method. However, the resulting code tables are very
similar to those of the greedy algorithm when pruning is enabled. The greedy
approach seems to concatenate the “optimal” sets together into 12 sets to achieve
a likelihood of -22330, while using only 145940 bits. Overall, the greedy cover
algorithm allows MDL to condense the data better. When considered together,

68

Experiments

t (sorted row index)

L
(t

,C
)

0

-5

-10

-15

200015001000500

greedy

optimal

singleton

Figure 5.1: The loglikelihood scores for each row in the Mammals20 dataset
using the optimal cover Algorithm 4, the greedy cover Algorithm 5 and singleton
(only singleton itemsets) covering. The rows have been sorted according to the
loglikelihood score of greedy cover Algorithm 5. The function L(t, C) denotes the
loglikelihood of the row t as defined in Equation (5.2).

this tells us that greedy Algorithm 5 can be used as a fast and high quality
alternative to optimal covering Algorithm 4.

5.4.4 Mammals data: an example code table

Based on the experiments, the code tables produced by LESS Algorithm 6 are
mostly small enough to fit on a single sheet of paper. Table 5.2 provides an exam-
ple using Mammals. The figure presents a code table computed from a collection
of 67767 LE-sets with an entropy of less than 3.3 bits. The resulting code table
comprises 29 LE-sets, and is obtained using the greedy covering Algorithm 5 and
pruning. Each row in the table corresponds to one low-entropy set, with bullets
indicating the attributes of the set.

A full analysis of the code table is beyond the scope of this thesis. However,
we notice some familiar pattern elements from the previous chapters. The set
with id 27 is similar to the LE-tree in Figure 4.7(a) including Brown Bear, Wood
Mouse, Blue Hare and Elk, with Eurasian Lynx replaced with the Greater White-
toothed Shrew. The set (id 23) with the species Eurasian Water Shrew, Red Squirrel
and Bank Vole can be found similarly in Figure 4.7(b), only with Beech Marten
replacing the couple Field Vole and Eurasian Pygmy Shrew. The couple is, however,
found together in the set with id 20: Ermine, Field Vole, Eurasian Pygmy Shrew
and Grey Wolf.

Taking a more in-depth look at Table 5.3 reveals the instantiation used in the
data description for the set with id 4. The pattern includes the two vole species
Common Vole and European Pine Vole together with the predators Wildcat and

69

Experiments

t (sorted row index)

L
(t

,C
)

0

-5

-10

-15

200015001000500

greedy

optimal

singleton

Figure 5.1: The loglikelihood scores for each row in the Mammals20 dataset
using the optimal cover Algorithm 4, the greedy cover Algorithm 5 and singleton
(only singleton itemsets) covering. The rows have been sorted according to the
loglikelihood score of greedy cover Algorithm 5. The function L(t, C) denotes the
loglikelihood of the row t as defined in Equation (5.2).

this tells us that greedy Algorithm 5 can be used as a fast and high quality
alternative to optimal covering Algorithm 4.

5.4.4 Mammals data: an example code table

Based on the experiments, the code tables produced by LESS Algorithm 6 are
mostly small enough to fit on a single sheet of paper. Table 5.2 provides an exam-
ple using Mammals. The figure presents a code table computed from a collection
of 67767 LE-sets with an entropy of less than 3.3 bits. The resulting code table
comprises 29 LE-sets, and is obtained using the greedy covering Algorithm 5 and
pruning. Each row in the table corresponds to one low-entropy set, with bullets
indicating the attributes of the set.

A full analysis of the code table is beyond the scope of this thesis. However,
we notice some familiar pattern elements from the previous chapters. The set
with id 27 is similar to the LE-tree in Figure 4.7(a) including Brown Bear, Wood
Mouse, Blue Hare and Elk, with Eurasian Lynx replaced with the Greater White-
toothed Shrew. The set (id 23) with the species Eurasian Water Shrew, Red Squirrel
and Bank Vole can be found similarly in Figure 4.7(b), only with Beech Marten
replacing the couple Field Vole and Eurasian Pygmy Shrew. The couple is, however,
found together in the set with id 20: Ermine, Field Vole, Eurasian Pygmy Shrew
and Grey Wolf.

Taking a more in-depth look at Table 5.3 reveals the instantiation used in the
data description for the set with id 4. The pattern includes the two vole species
Common Vole and European Pine Vole together with the predators Wildcat and

69

5 Pattern selection for low-entropy sets

Table 5.2: A code table (in three subtables) computed from the data set Mam-

mals and a set of 67767 low-entropy sets (with ǫ ≤ 3.3). The code table was
obtained using the greedy cover Algorithm 5 and pruning. Each row in the table
corresponds to one low-entropy set, with bullets indicating the attributes of the
set.

Set id W
ild

ca
t

Co
m
m
on

Vo
le

Eu
ro
pe

an
Pi
ne

Vo
le

Eu
ro
pe

an
Po

le
ca
t

Re
d
D
ee
r

Eu
ro
pe

an
O
tt
er

Ed
ib
le

D
or
m
ou

se

B
ee
ch

M
ar
te
n

H
ar
ve
st

M
ou

se

B
ro
w
n
H
ar
e

Co
m
m
on

M
ol
e

Fa
llo

w
D
ee
r

Eu
ro
pe

an
W
at
er

Vo
le

Ye
llo

w
-n
ec
ke
d
M
ou

se

Co
m
m
on

Sh
re
w

Eu
ro
pe

an
B
ea
ve
r

W
es
t
Eu

ro
pe

an
H
ed

ge
ho

g

1 • • • •
2 • • • •
3 • • • •
4 • • • •
5 • • • •
6 • • • •
7 • • •
8 • • •
9 • • •
10 • • •
11 • • • •
12 • • • •
13 • • •
14 • • • •
15 • • • •
16 • • • •
17 • • • •
18 • • •

Set id B
ee
ch

M
ar
te
n

Co
m
m
on

Sh
re
w

Eu
ro
pe

an
be

av
er

Ro
e
D
ee
r

Eu
ro
pe

an
Pi
ne

M
ar
te
n

W
es
t
Eu

ro
pe

an
H
ed

ge
ho

g

Eu
ra
sia

n
W
at
er

Sh
re
w

Re
d
Sq

ui
rr
el

B
an

k
Vo

le

Ra
cc
oo

n
D
og

Er
m
in
e

Fi
el
d
Vo

le

Eu
ra
sia

n
Py

gm
y
Sh

re
w

G
re
y
W
ol
f

Eu
ra
sia

n
Ly

nx

M
ed

ite
rr
an

ea
n
W
at
er

Sh
re
w

Le
ss
er

W
hi
te
-t
oo

th
ed

Sh
re
w

B
ic
ol
or
ed

Sh
re
w

19 • • • •
20 • • • •
21 • • • •
22 • • • •
23 • • • •
24 • • • •
25 • • • •
26 • • • •

Set id B
ro
w
n
B
ea
r

W
oo

d
M
ou

se

B
lu
e
H
ar
e

G
re
at
er

W
hi
te
-t
oo

th
ed

Sh
re
w

El
k W

ild
B
oa

r

St
rip

ed
Fi
el
d
M
ou

se

G
ar
de

n
D
or
m
ou

se

So
ut
he

rn
W

hi
te
-b
re
as
te
d
H
ed

ge
ho

g

Eu
ro
pe

an
W
at
er

Vo
le

Fi
el
d
Vo

le

Ro
e
D
ee
r

Eu
ro
pe

an
Pi
ne

M
ar
te
n

27 • • • • •
28 • • • •
29 • • • •

70

5 Pattern selection for low-entropy sets

Table 5.2: A code table (in three subtables) computed from the data set Mam-

mals and a set of 67767 low-entropy sets (with ǫ ≤ 3.3). The code table was
obtained using the greedy cover Algorithm 5 and pruning. Each row in the table
corresponds to one low-entropy set, with bullets indicating the attributes of the
set.

Set id W
ild

ca
t

Co
m
m
on

Vo
le

Eu
ro
pe

an
Pi
ne

Vo
le

Eu
ro
pe

an
Po

le
ca
t

Re
d
D
ee
r

Eu
ro
pe

an
O
tt
er

Ed
ib
le

D
or
m
ou

se

B
ee
ch

M
ar
te
n

H
ar
ve
st

M
ou

se

B
ro
w
n
H
ar
e

Co
m
m
on

M
ol
e

Fa
llo

w
D
ee
r

Eu
ro
pe

an
W
at
er

Vo
le

Ye
llo

w
-n
ec
ke
d
M
ou

se

Co
m
m
on

Sh
re
w

Eu
ro
pe

an
B
ea
ve
r

W
es
t
Eu

ro
pe

an
H
ed

ge
ho

g

1 • • • •
2 • • • •
3 • • • •
4 • • • •
5 • • • •
6 • • • •
7 • • •
8 • • •
9 • • •
10 • • •
11 • • • •
12 • • • •
13 • • •
14 • • • •
15 • • • •
16 • • • •
17 • • • •
18 • • •

Set id B
ee
ch

M
ar
te
n

Co
m
m
on

Sh
re
w

Eu
ro
pe

an
be

av
er

Ro
e
D
ee
r

Eu
ro
pe

an
Pi
ne

M
ar
te
n

W
es
t
Eu

ro
pe

an
H
ed

ge
ho

g

Eu
ra
sia

n
W
at
er

Sh
re
w

Re
d
Sq

ui
rr
el

B
an

k
Vo

le

Ra
cc
oo

n
D
og

Er
m
in
e

Fi
el
d
Vo

le

Eu
ra
sia

n
Py

gm
y
Sh

re
w

G
re
y
W
ol
f

Eu
ra
sia

n
Ly

nx

M
ed

ite
rr
an

ea
n
W
at
er

Sh
re
w

Le
ss
er

W
hi
te
-t
oo

th
ed

Sh
re
w

B
ic
ol
or
ed

Sh
re
w

19 • • • •
20 • • • •
21 • • • •
22 • • • •
23 • • • •
24 • • • •
25 • • • •
26 • • • •

Set id B
ro
w
n
B
ea
r

W
oo

d
M
ou

se

B
lu
e
H
ar
e

G
re
at
er

W
hi
te
-t
oo

th
ed

Sh
re
w

El
k W

ild
B
oa

r

St
rip

ed
Fi
el
d
M
ou

se

G
ar
de

n
D
or
m
ou

se

So
ut
he

rn
W

hi
te
-b
re
as
te
d
H
ed

ge
ho

g

Eu
ro
pe

an
W
at
er

Vo
le

Fi
el
d
Vo

le

Ro
e
D
ee
r

Eu
ro
pe

an
Pi
ne

M
ar
te
n

27 • • • • •
28 • • • •
29 • • • •

70

Experiments

Table 5.3: Detailed view of how LESS Algorithm 6 uses the low-entropy set with
set id 4 of Figure 5.2 to encode the data. The set depicts the most relevant
presence interactions of the four mammal species according to the low-entropy
set selection method.

W
ild

ca
t

Co
m
m
on

Vo
le

Eu
ro
pe

an
Pi
ne

Vo
le

Eu
ro
pe

an
Po

le
ca
t

counts
0 0 0 0 44
0 0 0 1 10
0 1 0 0 18
0 1 0 1 199
0 1 1 1 248
1 0 0 0 5
1 0 0 1 7
total # usage 531

European Polecat. The table shows that the major instantiations involve several
occurrence combinations, as well as absence of the species. For the 531 rows in
the data that this pattern is covers, Common Vole and European Polecat co-exist
in about 84 % of cases, and from about 55 % of these cases we see European Pine
Vole in the same area. For these cases Wildcat is never present and is found to
occur only in 12 cases out of the 531 for this pattern.

Table 5.3 is also a good example of why far fewer patterns are needed with
the LE-sets versus frequent itemsets, as was shown in Table 5.1. As the table
suggests, relevant interactions involve several occurrence combinations, as well
as absence of the species. Hence, if the same interactions had to be described
using regular itemsets, many separate sets would be required, instead of the single
low-entropy set.

The phenomenon can be seen as a two-level abstraction. The pattern level
provides dependencies between attributes, while the instantiation level specifies
in detail the attribute value combinations occurring in the data.

5.4.5 Run times

The run times of the experiments ranged from one minute up to ten hours.
Analysis shows that the run time is mainly dependent on the number of rows
and particularly the size of the code tables. Hence, the timed required for the
experiments, where pruning keeps the code tables small, are og the order of few
a minutes up to one hour – typically 45 minutes. The experiments with pruning
disabled (where the code tables are allowed to grow to hundreds of elements)

71

Experiments

Table 5.3: Detailed view of how LESS Algorithm 6 uses the low-entropy set with
set id 4 of Figure 5.2 to encode the data. The set depicts the most relevant
presence interactions of the four mammal species according to the low-entropy
set selection method.

W
ild

ca
t

Co
m
m
on

Vo
le

Eu
ro
pe

an
Pi
ne

Vo
le

Eu
ro
pe

an
Po

le
ca
t

counts
0 0 0 0 44
0 0 0 1 10
0 1 0 0 18
0 1 0 1 199
0 1 1 1 248
1 0 0 0 5
1 0 0 1 7
total # usage 531

European Polecat. The table shows that the major instantiations involve several
occurrence combinations, as well as absence of the species. For the 531 rows in
the data that this pattern is covers, Common Vole and European Polecat co-exist
in about 84 % of cases, and from about 55 % of these cases we see European Pine
Vole in the same area. For these cases Wildcat is never present and is found to
occur only in 12 cases out of the 531 for this pattern.

Table 5.3 is also a good example of why far fewer patterns are needed with
the LE-sets versus frequent itemsets, as was shown in Table 5.1. As the table
suggests, relevant interactions involve several occurrence combinations, as well
as absence of the species. Hence, if the same interactions had to be described
using regular itemsets, many separate sets would be required, instead of the single
low-entropy set.

The phenomenon can be seen as a two-level abstraction. The pattern level
provides dependencies between attributes, while the instantiation level specifies
in detail the attribute value combinations occurring in the data.

5.4.5 Run times

The run times of the experiments ranged from one minute up to ten hours.
Analysis shows that the run time is mainly dependent on the number of rows
and particularly the size of the code tables. Hence, the timed required for the
experiments, where pruning keeps the code tables small, are og the order of few
a minutes up to one hour – typically 45 minutes. The experiments with pruning
disabled (where the code tables are allowed to grow to hundreds of elements)

71

5 Pattern selection for low-entropy sets

N
u
m

b
er

of
ra

n
d
o
m

iz
ed

d
at

a
se

ts

total compression size in bits

Original data

0

5

5

10

15

1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

× 10

Figure 5.2: Distribution of the compressed sizes of the swap randomized
mammals20 datasets.

typically took up to three hours, with an exception for mushroom of ten hours.

5.4.6 Model validation via swap randomization

Finally, swap randomization was performed for Mammals20 to evaluate the ex-
tent of relevant structure in the data modeled by LESS using the greedy covering
algorithm. The compression score of the model was used as a test statistic.

Figure 5.2 shows the histogram of the compressed sizes of the randomized
datasets. We can see that the original data can be compressed significantly better
than that of the randomized datasets (empirical p-value of 0.0005). Further,
analyzing the contents of the code tables, we also note a significant difference
in LE-set cardinality. For the real data, the average set was 2.35 attributes
long, while for the randomized data we see sets with an average number of 1.89
attributes.

5.5 Related work

Lately, the pattern explosion problem has attracted a lot of research. For frequent
pattern mining, lossless methods such as non-derivable [11] and closed [74] item-
sets were proposed to remove the redundancy within the pattern set. Methods
that provide a lossy representation of the complete pattern set include maximal
itemsets [7].

More recent works on the topic of finding small subsets of informative patterns
include [65, 93, 83, 55, 8, 86, 87]. Mielikäinen and Mannila consider in [65] the
problem of ordering a collection of patterns so that each prefix of the ordering
gives as good an estimation of the attribute frequencies in the data as possible.
Yan et al. propose in [93] a method that selects k representative patterns that
together summarize the pattern set well. Pattern Teams [55] are groups of k

72

5 Pattern selection for low-entropy sets

N
u
m

b
er

of
ra

n
d
o
m

iz
ed

d
at

a
se

ts

total compression size in bits

Original data

0

5

5

10

15

1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

× 10

Figure 5.2: Distribution of the compressed sizes of the swap randomized
mammals20 datasets.

typically took up to three hours, with an exception for mushroom of ten hours.

5.4.6 Model validation via swap randomization

Finally, swap randomization was performed for Mammals20 to evaluate the ex-
tent of relevant structure in the data modeled by LESS using the greedy covering
algorithm. The compression score of the model was used as a test statistic.

Figure 5.2 shows the histogram of the compressed sizes of the randomized
datasets. We can see that the original data can be compressed significantly better
than that of the randomized datasets (empirical p-value of 0.0005). Further,
analyzing the contents of the code tables, we also note a significant difference
in LE-set cardinality. For the real data, the average set was 2.35 attributes
long, while for the randomized data we see sets with an average number of 1.89
attributes.

5.5 Related work

Lately, the pattern explosion problem has attracted a lot of research. For frequent
pattern mining, lossless methods such as non-derivable [11] and closed [74] item-
sets were proposed to remove the redundancy within the pattern set. Methods
that provide a lossy representation of the complete pattern set include maximal
itemsets [7].

More recent works on the topic of finding small subsets of informative patterns
include [65, 93, 83, 55, 8, 86, 87]. Mielikäinen and Mannila consider in [65] the
problem of ordering a collection of patterns so that each prefix of the ordering
gives as good an estimation of the attribute frequencies in the data as possible.
Yan et al. propose in [93] a method that selects k representative patterns that
together summarize the pattern set well. Pattern Teams [55] are groups of k

72

Conclusions

non-redundant patterns that have been exhaustively (k<10) optimized according
to criteria such as joint entropy. Bringmann et al. [8] propose a greedy variant
that can consider larger (in the 100’s) pattern sets. All these methods are lossy
by nature, in the sense that they find pattern sets that cover only part of the
data. Alternatively, pattern sets can be selected on the data description basis,
which falls naturally in the compression approach to data mining [22]. Siebes
et al. [83] introduced the MDL-based itemset selection algorithm KRIMP. More
recent work on itemset selection includes [86] and [87].

Although the selection approach followed here is similar to that of Siebes et
al. [83], the generality and applicability of the methods are rather different. By
considering data as 0/1–symmetric, all major interactions are captured between
attributes, not just co-occurrences. Partly thanks to this generalization, the ex-
periments show that in most cases LESS yields tens of patterns, as opposed to
hundreds to thousands for KRIMP [83]. Through these much smaller numbers,
manual inspection of the pattern set is now possible. Also, these pattern sets
have a different meaning, as they view the data in terms of strongly interact-
ing variables, not just present items. Further, the technical solutions proposed
here are more general. Instead of using ad-hoc order heuristics to determine
which patterns describe what part of the data, a more principled way of finding
locally optimal covers of the data through the maximum likelihood principle is
introduced.

5.6 Conclusions

In this chapter we discussed a method for selecting small collections of descriptive
low-entropy sets through compression. By founding the cover strategies on the
maximum likelihood principle, we have a natural approach to using instantiations
to describe data only where this makes sense.

The method combines the advantages of both the lossless and lossy approaches
to data description; the number of patterns returned is comparable to the latter,
while at the same time our pattern sets do provide a lossless description of the
data. Based on the experiments, the code tables produced by LESS are mostly
small enough to fit on a single sheet of paper. This is a very big advantage when
working with domain experts, compared to the hundreds, thousands or tens of
thousands of patterns produced by many frequent pattern mining methods.

The small size of the pattern sets is due to a two-level abstraction made
possible by low-entropy sets. The pattern level provides dependencies between
attributes, while the instantiation level specifies in detail the attribute value
combinations occurring in the data. Furthermore, for low-entropy sets the average
number of bits needed to encode the values of the attributes is naturally low.
Thus, the overall data description length can be efficiently minimized.

73

Conclusions

non-redundant patterns that have been exhaustively (k<10) optimized according
to criteria such as joint entropy. Bringmann et al. [8] propose a greedy variant
that can consider larger (in the 100’s) pattern sets. All these methods are lossy
by nature, in the sense that they find pattern sets that cover only part of the
data. Alternatively, pattern sets can be selected on the data description basis,
which falls naturally in the compression approach to data mining [22]. Siebes
et al. [83] introduced the MDL-based itemset selection algorithm KRIMP. More
recent work on itemset selection includes [86] and [87].

Although the selection approach followed here is similar to that of Siebes et
al. [83], the generality and applicability of the methods are rather different. By
considering data as 0/1–symmetric, all major interactions are captured between
attributes, not just co-occurrences. Partly thanks to this generalization, the ex-
periments show that in most cases LESS yields tens of patterns, as opposed to
hundreds to thousands for KRIMP [83]. Through these much smaller numbers,
manual inspection of the pattern set is now possible. Also, these pattern sets
have a different meaning, as they view the data in terms of strongly interact-
ing variables, not just present items. Further, the technical solutions proposed
here are more general. Instead of using ad-hoc order heuristics to determine
which patterns describe what part of the data, a more principled way of finding
locally optimal covers of the data through the maximum likelihood principle is
introduced.

5.6 Conclusions

In this chapter we discussed a method for selecting small collections of descriptive
low-entropy sets through compression. By founding the cover strategies on the
maximum likelihood principle, we have a natural approach to using instantiations
to describe data only where this makes sense.

The method combines the advantages of both the lossless and lossy approaches
to data description; the number of patterns returned is comparable to the latter,
while at the same time our pattern sets do provide a lossless description of the
data. Based on the experiments, the code tables produced by LESS are mostly
small enough to fit on a single sheet of paper. This is a very big advantage when
working with domain experts, compared to the hundreds, thousands or tens of
thousands of patterns produced by many frequent pattern mining methods.

The small size of the pattern sets is due to a two-level abstraction made
possible by low-entropy sets. The pattern level provides dependencies between
attributes, while the instantiation level specifies in detail the attribute value
combinations occurring in the data. Furthermore, for low-entropy sets the average
number of bits needed to encode the values of the attributes is naturally low.
Thus, the overall data description length can be efficiently minimized.

73

74 74

Chapter 6

Crossmining binary and

numerical data

6.1 Introduction

Many real-world datasets include other types of attribute beside the binary type
that we have focused on thus far. For instance, in the MovieLens dataset, the
binary part of the data corresponds to users’ movie preferences; however, an
additional numerical part is included, with user age, location (zip code), gender
and occupation. Correspondingly, the dataset Mammals includes geographical
location (longitude and latitude), as well as environmental observations of mean
temperature, mean annual precipitation, mean annual temperature range and average
elevation for each grid cell, in addition to the binary presence/absence records of
species.

For the MovieLens dataset, it might be of interest to cluster the users ac-
cording to their demographics: age, location, etc., and to find a small set of
characteristic movies preferred by the users in each of these clusters. Similarly,
an ecologist might be interested in finding environmentally homogeneous regions
in the Mammals data, and in associating with them a small discrete set of char-
acteristic species for each of these regions.

However, neither an itemset mining method, nor a clustering method can
alone achieve such a goal very elegantly. Using itemset mining we would need to
force the continuous numerical attributes into discrete buckets. Using clustering,
the resulting model will characterize the binary attributes of the data with a
continuous vector for which the values may be difficult to interpret as either
presence or absence.

In this chapter we discuss a new kind of approach to address this problem:
crossmining. The idea is to find frequent itemsets that provide a link to structure
in the numerical attributes of the data. This structure may be defined as a cluster

75

Chapter 6

Crossmining binary and

numerical data

6.1 Introduction

Many real-world datasets include other types of attribute beside the binary type
that we have focused on thus far. For instance, in the MovieLens dataset, the
binary part of the data corresponds to users’ movie preferences; however, an
additional numerical part is included, with user age, location (zip code), gender
and occupation. Correspondingly, the dataset Mammals includes geographical
location (longitude and latitude), as well as environmental observations of mean
temperature, mean annual precipitation, mean annual temperature range and average
elevation for each grid cell, in addition to the binary presence/absence records of
species.

For the MovieLens dataset, it might be of interest to cluster the users ac-
cording to their demographics: age, location, etc., and to find a small set of
characteristic movies preferred by the users in each of these clusters. Similarly,
an ecologist might be interested in finding environmentally homogeneous regions
in the Mammals data, and in associating with them a small discrete set of char-
acteristic species for each of these regions.

However, neither an itemset mining method, nor a clustering method can
alone achieve such a goal very elegantly. Using itemset mining we would need to
force the continuous numerical attributes into discrete buckets. Using clustering,
the resulting model will characterize the binary attributes of the data with a
continuous vector for which the values may be difficult to interpret as either
presence or absence.

In this chapter we discuss a new kind of approach to address this problem:
crossmining. The idea is to find frequent itemsets that provide a link to structure
in the numerical attributes of the data. This structure may be defined as a cluster

75

6 Crossmining binary and numerical data

Dataset Crossmining patterns

Binary Numerical

Precip- Temper-
El
k

W
ol
f
Ra

t
Ly

nx
Be

ar
itation ature

1 1 0 0 0 601 14.9
}

{Elk, Wolf},(560, 12.3)
1 1 1 0 1 583 13.1
1 1 1 0 1 544 9.5
1 1 0 1 1 513 11.6
0 1 1 1 1 426 0.3

}

{Rat, Lynx},(394, -1.4)0 0 1 1 0 397 -1.7
0 0 1 1 1 358 -2.8

Figure 6.1: An example of a small dataset with a vertical split into binary and
real-valued numerical attributes. The itemsets {Elk, Wolf} and {Rat, Lynx} par-
tition the data into two clusters.

or some other type of model1 suitable for numerical data. The overall task is then
to find a partitioning of the numerical part of the data using the structure defined
by the frequent itemsets. In this manner both the binary and the numerical parts
of the data are modeled in a natural way.

To illustrate this idea, take the example in Figure 6.1. The itemset {Elk,Wolf}
occurs in the first four data rows. Considering a k-means type of model, these
rows define the mean vector (560, 12.3) for the numerical part of the data. Simi-
larly, for each frequent itemset in the data, a mean vector can be defined based
on the numerical attributes and the rows that the itemset occurs in. As in clus-
tering, we can then select a set of k itemsets that gives a small overall modeling
error for the numerical part of the data. The figure provides an answer obtained
for the two-cluster case using the itemsets {Elk,Wolf} and {Rat, Lynx}.

From the viewpoint of clustering, the idea can be thought of as a way of con-
straining the search for possible clusters using frequent itemsets. The advantage
compared to conventional clustering, such as k-means, is that the resulting model
will be more natural in terms of the binary part of the data. Furthermore, it will
also be more compact. This is an important observation as the number of binary
attributes in a real-life dataset can be very large. For Mammals, it is 194. For
MovieLens it is 1682. Moreover, many market basket datasets may have up to
tens of thousands of items. A frequent itemset, which typically includes less than
twenty items, is a much shorter cluster representative compared with the full
vector of, say, 194 species frequencies that the k-means would use for a dataset
such as Mammals.

1An alternative could be to approximate the numerical attributes with a low-dimensional
subspace, or with points having low fractal dimension [21]

76

6 Crossmining binary and numerical data

Dataset Crossmining patterns

Binary Numerical

Precip- Temper-
El
k

W
ol
f
Ra

t
Ly

nx
Be

ar
itation ature

1 1 0 0 0 601 14.9
}

{Elk, Wolf},(560, 12.3)
1 1 1 0 1 583 13.1
1 1 1 0 1 544 9.5
1 1 0 1 1 513 11.6
0 1 1 1 1 426 0.3

}

{Rat, Lynx},(394, -1.4)0 0 1 1 0 397 -1.7
0 0 1 1 1 358 -2.8

Figure 6.1: An example of a small dataset with a vertical split into binary and
real-valued numerical attributes. The itemsets {Elk, Wolf} and {Rat, Lynx} par-
tition the data into two clusters.

or some other type of model1 suitable for numerical data. The overall task is then
to find a partitioning of the numerical part of the data using the structure defined
by the frequent itemsets. In this manner both the binary and the numerical parts
of the data are modeled in a natural way.

To illustrate this idea, take the example in Figure 6.1. The itemset {Elk,Wolf}
occurs in the first four data rows. Considering a k-means type of model, these
rows define the mean vector (560, 12.3) for the numerical part of the data. Simi-
larly, for each frequent itemset in the data, a mean vector can be defined based
on the numerical attributes and the rows that the itemset occurs in. As in clus-
tering, we can then select a set of k itemsets that gives a small overall modeling
error for the numerical part of the data. The figure provides an answer obtained
for the two-cluster case using the itemsets {Elk,Wolf} and {Rat, Lynx}.

From the viewpoint of clustering, the idea can be thought of as a way of con-
straining the search for possible clusters using frequent itemsets. The advantage
compared to conventional clustering, such as k-means, is that the resulting model
will be more natural in terms of the binary part of the data. Furthermore, it will
also be more compact. This is an important observation as the number of binary
attributes in a real-life dataset can be very large. For Mammals, it is 194. For
MovieLens it is 1682. Moreover, many market basket datasets may have up to
tens of thousands of items. A frequent itemset, which typically includes less than
twenty items, is a much shorter cluster representative compared with the full
vector of, say, 194 species frequencies that the k-means would use for a dataset
such as Mammals.

1An alternative could be to approximate the numerical attributes with a low-dimensional
subspace, or with points having low fractal dimension [21]

76

Problem definition

Finally, from the viewpoint of itemset mining the idea can be viewed as itemset
selection. However here, as opposed to the approach in Chapter 5, the numerical
attributes are used to measure the interestingness of the itemsets.

In the following we consider the problem presented above. We discuss a
formal definition, study it theoretically, and come up with a simple constant-
factor approximation algorithm. Experiments show that the algorithm finds high
quality itemsets that convey structure, in both the numerical and binary parts
of the data, in a compact and intuitive manner.

6.2 Problem definition

Consider a dataset D containing two types of attributes, binary-valued attributes
and real-valued numerical attributes. We refer to this vertical split on D by
denoting each row t ∈ D as t = [tB , tR], where tB is a binary vector and tR is a
real-valued vector. Here we use the convention of referring to the binary part of
each row as a subset of the universe of items, i.e., tB ⊆ I. We will refer to the
binary and numerical parts of the data D as DB and DR, respectively.

Definition 6.1 Consider data D, a collection of frequent itemsets P(DB , σ) (for
some σ), and a class of models M. A candidate model c is a pair

c = (X,M),

where X ∈ P(DB , σ) and M ∈ M, such that M is the best model that can be
assigned to the real-valued attributes of the rows covered by X.

To simplify the discussion we assume in practice that the class M concerns clus-
tering around a mean, so that

M = mean({tR | X ⊆ tB , t = [tB , tR] ∈ D}).

However, more complex models are also possible, like the local dimension of the
data, or an entropy measure.

For a candidate model c = (X,M), the error of one row t = [tB , tR] ∈ D with
respect to c is defined as follows,

e(t | c) =

{

‖tR − M‖2 if X ⊆ tB ,

∞ otherwise.
(6.1)

The idea is to assign a candidate model c for each row t ∈ D such that the
error defined by Equation (6.1) is as small as possible. However, depending on
the pattern collection P, it could be that for some t = [tB , tR] ∈ D there is no
c = (X,M), such that X ⊆ tB . In this case the error will run off to infinity.
To ensure that this does not happen, we will always assume that there exists a
default model that covers all the rows in the data D. This will be the model

77

Problem definition

Finally, from the viewpoint of itemset mining the idea can be viewed as itemset
selection. However here, as opposed to the approach in Chapter 5, the numerical
attributes are used to measure the interestingness of the itemsets.

In the following we consider the problem presented above. We discuss a
formal definition, study it theoretically, and come up with a simple constant-
factor approximation algorithm. Experiments show that the algorithm finds high
quality itemsets that convey structure, in both the numerical and binary parts
of the data, in a compact and intuitive manner.

6.2 Problem definition

Consider a dataset D containing two types of attributes, binary-valued attributes
and real-valued numerical attributes. We refer to this vertical split on D by
denoting each row t ∈ D as t = [tB , tR], where tB is a binary vector and tR is a
real-valued vector. Here we use the convention of referring to the binary part of
each row as a subset of the universe of items, i.e., tB ⊆ I. We will refer to the
binary and numerical parts of the data D as DB and DR, respectively.

Definition 6.1 Consider data D, a collection of frequent itemsets P(DB , σ) (for
some σ), and a class of models M. A candidate model c is a pair

c = (X,M),

where X ∈ P(DB , σ) and M ∈ M, such that M is the best model that can be
assigned to the real-valued attributes of the rows covered by X.

To simplify the discussion we assume in practice that the class M concerns clus-
tering around a mean, so that

M = mean({tR | X ⊆ tB , t = [tB , tR] ∈ D}).

However, more complex models are also possible, like the local dimension of the
data, or an entropy measure.

For a candidate model c = (X,M), the error of one row t = [tB , tR] ∈ D with
respect to c is defined as follows,

e(t | c) =

{

‖tR − M‖2 if X ⊆ tB ,

∞ otherwise.
(6.1)

The idea is to assign a candidate model c for each row t ∈ D such that the
error defined by Equation (6.1) is as small as possible. However, depending on
the pattern collection P, it could be that for some t = [tB , tR] ∈ D there is no
c = (X,M), such that X ⊆ tB . In this case the error will run off to infinity.
To ensure that this does not happen, we will always assume that there exists a
default model that covers all the rows in the data D. This will be the model

77

6 Crossmining binary and numerical data

defined by the empty set, default = (∅,M0) with M0 being the mean of the
real-valued attributes of the entire data.

Since the default model can always be assigned to any row t, it only makes
sense to assign a candidate model c to t when c yields a smaller error than the
default model. Indeed, given several candidate models S = {c1, . . . , ck} we want
to assign the model ci ∈ S that yields the largest reduction in error, that is,

g(t | S) = max
ci∈S

{e(t | default) − e(t | ci), 0}. (6.2)

Given a fixed set of candidate models in S, we usually say that a row t ∈ D is
assigned (or modeled) by the best candidate model in S. Respectively, this model
will correspond to the argument of the maximum of Equation (6.2). If we have
g(t | S) = 0, the default model is assigned.

The problem we study here is the following:

Problem 6.1 Given a dataset D, a collection2 of frequent itemsets P(DB , σ),
for some σ, a class of models M and a set of candidate models

C = {(X,M) | X ∈ P(DB , σ), M ∈ M},

find a k-size subset S ⊆ C of candidate models such that the sum

G(D, S) =
∑

t∈D

g(t | S) (6.3)

is maximized.

Note that Problem 6.1 could have been defined with respect to minimizing

e(t | S) = min
ci∈S

{e(t | default), {e(t | si)}, (6.4)

where e(t | S) is the absolute error obtained by the candidate model assignment
for each row t. Our analysis of the problem will, however, benefit more from
formulating the problem as the maximization variant. Both Equation (6.2) and
Equation (6.4) optimize exactly the same thing.

6.3 Problem properties

Next we consider the basic properties of Problem 6.1. We start with complexity
considerations.

2In practice, the collection P may correspond to frequent sets, frequent closed sets or max-
imal frequent sets (recall Section 2.2.4) mined on the binary attributes of the data. Because
closed sets are a lossless representation of frequent sets it will be better in practice to directly
use frequent closed sets instead of the regular frequent itemsets.

78

6 Crossmining binary and numerical data

defined by the empty set, default = (∅,M0) with M0 being the mean of the
real-valued attributes of the entire data.

Since the default model can always be assigned to any row t, it only makes
sense to assign a candidate model c to t when c yields a smaller error than the
default model. Indeed, given several candidate models S = {c1, . . . , ck} we want
to assign the model ci ∈ S that yields the largest reduction in error, that is,

g(t | S) = max
ci∈S

{e(t | default) − e(t | ci), 0}. (6.2)

Given a fixed set of candidate models in S, we usually say that a row t ∈ D is
assigned (or modeled) by the best candidate model in S. Respectively, this model
will correspond to the argument of the maximum of Equation (6.2). If we have
g(t | S) = 0, the default model is assigned.

The problem we study here is the following:

Problem 6.1 Given a dataset D, a collection2 of frequent itemsets P(DB , σ),
for some σ, a class of models M and a set of candidate models

C = {(X,M) | X ∈ P(DB , σ), M ∈ M},

find a k-size subset S ⊆ C of candidate models such that the sum

G(D, S) =
∑

t∈D

g(t | S) (6.3)

is maximized.

Note that Problem 6.1 could have been defined with respect to minimizing

e(t | S) = min
ci∈S

{e(t | default), {e(t | si)}, (6.4)

where e(t | S) is the absolute error obtained by the candidate model assignment
for each row t. Our analysis of the problem will, however, benefit more from
formulating the problem as the maximization variant. Both Equation (6.2) and
Equation (6.4) optimize exactly the same thing.

6.3 Problem properties

Next we consider the basic properties of Problem 6.1. We start with complexity
considerations.

2In practice, the collection P may correspond to frequent sets, frequent closed sets or max-
imal frequent sets (recall Section 2.2.4) mined on the binary attributes of the data. Because
closed sets are a lossless representation of frequent sets it will be better in practice to directly
use frequent closed sets instead of the regular frequent itemsets.

78

Problem properties

6.3.1 Complexity

Theorem 6.1 Problem 6.1 is NP-hard.

Proof Consider an instance of the NP-complete set cover problem, defined by a
collection of m subsets S1, . . . , Sm such that each Si ⊆ U where U is the universe
of n objects U = {u1, . . . , un}. We want to know whether there exists k sets from
{Si} whose union is equal to U .

Given an arbitrary instance of the set cover problem, we reduce it to an
instance of Problem 6.1 as follows. Let I = {Ai | i ∈ [1 . . . m]} and D = {tj |

j ∈ [1 . . . n]}. We then define each row as tj = [tjB , tjR] with tjB = {Ai | uj ∈

Si, i ∈ [1 . . . m]} and tjR = 1. That is, for the binary part, we have tjB(Ai) = 1 if
and only if uj ∈ Si. In other words, the row occurrence of the binary attribute
Ai represents the elements of the set Si. The numerical part consists of rows
that all have a single real-valued attribute with the value 1. Finally, we define as
many candidate models as there are binary attributes, that is ci = ({Ai}, 1) for
i ∈ [1 . . . m], and a default model default = (∅, r0) for some r0 > 1.

The set cover problem is equivalent to deciding if there exists a set of k
candidate models that yield the sum n · (1 − r0)

2 for Equation (6.3). 2

While mean models were used in the proof, it is fairly easy to see that most
nontrivial model classes admit a similar proof. The hardness of the result relies
on the exponential number of decisions for covering with candidate models, not
on the details of the model class M itself. If the number of itemsets defining
the candidate models is constant, the number of possible k size solutions is also
bounded by a constant. In such cases the problem could be solved in time propor-
tional to |D|s, where s is the possible number of all solutions, and |D| the number
of rows in D. Of course, the number of possible itemsets may be exponentially
large if a very low frequency threshold σ has been used.

6.3.2 Approximability

Despite NP-hardness, it turns out that by using submodular functions it is pos-
sible to show approximation guarantees for Problem 6.1. A function is said to be
submodular if it satisfies the following property: the marginal gain from adding
an element c to the solution set S decreases if the element c is added to a superset
of S: f(S ∪ {c}) − f(S) ≥ f(S′ ∪ {c}) − f(S′) for S ⊆ S′.

Submodular functions have been extensively studied for optimization prob-
lems [25]. Particularly interesting for our problem is the following result shown
by Nemhauser, Wolsey, and Fisher [69].

Theorem 6.2 ([69]) For a non-negative, monotone submodular function f , let
S be a solution set of size k obtained by selecting an element c /∈ S one at
a time, each time choosing the element that provides the largest marginal gain
f(S ∪ {c}) − f(S). Let S∗ be a set that maximizes the value of f , then f(S) ≥
(1 − 1/e) · f(S∗).

79

Problem properties

6.3.1 Complexity

Theorem 6.1 Problem 6.1 is NP-hard.

Proof Consider an instance of the NP-complete set cover problem, defined by a
collection of m subsets S1, . . . , Sm such that each Si ⊆ U where U is the universe
of n objects U = {u1, . . . , un}. We want to know whether there exists k sets from
{Si} whose union is equal to U .

Given an arbitrary instance of the set cover problem, we reduce it to an
instance of Problem 6.1 as follows. Let I = {Ai | i ∈ [1 . . . m]} and D = {tj |

j ∈ [1 . . . n]}. We then define each row as tj = [tjB , tjR] with tjB = {Ai | uj ∈

Si, i ∈ [1 . . . m]} and tjR = 1. That is, for the binary part, we have tjB(Ai) = 1 if
and only if uj ∈ Si. In other words, the row occurrence of the binary attribute
Ai represents the elements of the set Si. The numerical part consists of rows
that all have a single real-valued attribute with the value 1. Finally, we define as
many candidate models as there are binary attributes, that is ci = ({Ai}, 1) for
i ∈ [1 . . . m], and a default model default = (∅, r0) for some r0 > 1.

The set cover problem is equivalent to deciding if there exists a set of k
candidate models that yield the sum n · (1 − r0)

2 for Equation (6.3). 2

While mean models were used in the proof, it is fairly easy to see that most
nontrivial model classes admit a similar proof. The hardness of the result relies
on the exponential number of decisions for covering with candidate models, not
on the details of the model class M itself. If the number of itemsets defining
the candidate models is constant, the number of possible k size solutions is also
bounded by a constant. In such cases the problem could be solved in time propor-
tional to |D|s, where s is the possible number of all solutions, and |D| the number
of rows in D. Of course, the number of possible itemsets may be exponentially
large if a very low frequency threshold σ has been used.

6.3.2 Approximability

Despite NP-hardness, it turns out that by using submodular functions it is pos-
sible to show approximation guarantees for Problem 6.1. A function is said to be
submodular if it satisfies the following property: the marginal gain from adding
an element c to the solution set S decreases if the element c is added to a superset
of S: f(S ∪ {c}) − f(S) ≥ f(S′ ∪ {c}) − f(S′) for S ⊆ S′.

Submodular functions have been extensively studied for optimization prob-
lems [25]. Particularly interesting for our problem is the following result shown
by Nemhauser, Wolsey, and Fisher [69].

Theorem 6.2 ([69]) For a non-negative, monotone submodular function f , let
S be a solution set of size k obtained by selecting an element c /∈ S one at
a time, each time choosing the element that provides the largest marginal gain
f(S ∪ {c}) − f(S). Let S∗ be a set that maximizes the value of f , then f(S) ≥
(1 − 1/e) · f(S∗).

79

6 Crossmining binary and numerical data

The use of this submodularity result for Problem 6.1 resembles maximizing the
spread of influence through a social network in [50]. Because the result of Theo-
rem 6.2 is very general, it has been applied to other optimization problems from
the literature as well (see Section 6.6 for related work).

Our strategy is to show that the function we wish to maximize in Problem 6.1
satisfies the properties defined in Theorem 6.2: it is always non-negative, mono-
tone and submodular. By ensuring these three properties the approximation
guarantee of Theorem 6.2 will immediately follow. Recall that the optimization
function of Problem 6.1 is the following.

G(D, S) =
∑

t∈D

g(t | S) (6.5)

By the definition of g(t | S), it is immediately clear that the function is always
non-negative. Also, we could assume without loss of generality that G(D, ∅) = 0.
The other two properties are proved next. We make use of the following notation.

We denote with DS
c the subset of rows from D that are assigned to the candi-

date model c, when c is added to the current set of solution models S. Formally,
DS

c = {t ∈ D | c = argmaxS∪{c} g(t | S ∪ {c})}.

Observe that for all t ∈ DS
c , we always have e(t | c) ≤ e(t | c′) for each c′ ∈ S.

Another way of writing this is DS
c = {t ∈ D | e(t | c) ≤ e(t | c′),∀c′ ∈ S}. This

observation is important for the monotonicity property.

Proposition 6.1 (Monotonicity) G(D, S ∪ c) ≥ G(D, S).

Proof For the candidate models in S and a single candidate model c, the rows
in D can be expressed as D = DS

c ∪D\DS
c . We can now decompose G(D, S∪{c})

into the score measured for DS
c plus the score for the rest of the rows in D.

G(D, S ∪ {c}) =
∑

t∈D\DS
c

g(t | S) +
∑

t∈DS
c

g(t | {c})

The same decomposition can be applied for G(D, S), but this time all rows in D
can only be assigned to models in S. That is,

G(D, S) =
∑

t∈D\DS
c

g(t | S) +
∑

t∈DS
c

g(t | S)

Subtracting now the second equation from the first,

G(D, S ∪ {s}) − G(D, S) =
∑

t∈DS
c

[

g(t | {c}) − g(t|S)
]

(6.6)

By construction for all t ∈ DS
c we have e(t | c) ≤ e(t | c′) for every c′ ∈ S. From

this it follows that

e(t | default) − e(t | c) ≥ max
c′∈S

{e(t | default) − e(t | c′), 0}.

80

6 Crossmining binary and numerical data

The use of this submodularity result for Problem 6.1 resembles maximizing the
spread of influence through a social network in [50]. Because the result of Theo-
rem 6.2 is very general, it has been applied to other optimization problems from
the literature as well (see Section 6.6 for related work).

Our strategy is to show that the function we wish to maximize in Problem 6.1
satisfies the properties defined in Theorem 6.2: it is always non-negative, mono-
tone and submodular. By ensuring these three properties the approximation
guarantee of Theorem 6.2 will immediately follow. Recall that the optimization
function of Problem 6.1 is the following.

G(D, S) =
∑

t∈D

g(t | S) (6.5)

By the definition of g(t | S), it is immediately clear that the function is always
non-negative. Also, we could assume without loss of generality that G(D, ∅) = 0.
The other two properties are proved next. We make use of the following notation.

We denote with DS
c the subset of rows from D that are assigned to the candi-

date model c, when c is added to the current set of solution models S. Formally,
DS

c = {t ∈ D | c = argmaxS∪{c} g(t | S ∪ {c})}.

Observe that for all t ∈ DS
c , we always have e(t | c) ≤ e(t | c′) for each c′ ∈ S.

Another way of writing this is DS
c = {t ∈ D | e(t | c) ≤ e(t | c′),∀c′ ∈ S}. This

observation is important for the monotonicity property.

Proposition 6.1 (Monotonicity) G(D, S ∪ c) ≥ G(D, S).

Proof For the candidate models in S and a single candidate model c, the rows
in D can be expressed as D = DS

c ∪D\DS
c . We can now decompose G(D, S∪{c})

into the score measured for DS
c plus the score for the rest of the rows in D.

G(D, S ∪ {c}) =
∑

t∈D\DS
c

g(t | S) +
∑

t∈DS
c

g(t | {c})

The same decomposition can be applied for G(D, S), but this time all rows in D
can only be assigned to models in S. That is,

G(D, S) =
∑

t∈D\DS
c

g(t | S) +
∑

t∈DS
c

g(t | S)

Subtracting now the second equation from the first,

G(D, S ∪ {s}) − G(D, S) =
∑

t∈DS
c

[

g(t | {c}) − g(t|S)
]

(6.6)

By construction for all t ∈ DS
c we have e(t | c) ≤ e(t | c′) for every c′ ∈ S. From

this it follows that

e(t | default) − e(t | c) ≥ max
c′∈S

{e(t | default) − e(t | c′), 0}.

80

Problem properties

Hence, for all t ∈ DS
c , we have g(t | {s})− g(t | S) ≥ 0, and therefore, G(D, S) is

monotone. 2

Next we show the submodularity property of the function G(D, S).

Proposition 6.2 (Submodularity) G(D, S ∪ {c}) − G(D, S) ≥ G(D, S′ ∪ {c}) −
G(D, S′), with S ⊆ S′.

Proof For the sake of simplicity let ∆(S) = G(D, S∪{c})−G(D, S) and ∆(S′) =
G(D, S′∪{c})−G(D, S′). From Equation (6.6) in the previous proof we can write
the value of ∆(S) as the increment of having rows reassigned from candidate
models S to candidate models S ∪ {c}. As is shown, only rows in DS

c contribute
to this value. The same applies to ∆(S′) and the set of rows DS′

c . That is,

∆(S) =
∑

t∈DS
c

[

g(t | {c}) − g(t | S)
]

∆(S′) =
∑

t∈DS′

c

[

g(t | {c}) − g(t | S′)
]

Because S ⊆ S′ we know that DS′

c ⊆ DS
c . Therefore, rows DS

c can be divided
into DS

c = DS′

c ∪ (DS
c \ DS′

c). This allows the following simple rewriting of ∆(S).

∆(S) =
∑

t∈DS′

c

[

g(t | {c}) − g(t | S)
]

+
∑

t∈DS
c \DS′

c

[

g(t | {c}) − g(t | S)
]

From the monotonicity property we always have that g(t | S′) ≥ g(t | S). It
immediately follows that

∆(S) ≥
∑

t∈DS′

c

[

g(t | {c}) − g(t | S′)
]

+
∑

t∈DS
c \DS′

c

[

g(t | {c}) − g(t | S)
]

= ∆(S′) +
∑

t∈DS
c \DS′

c

[

g(t | {c}) − g(t | S)
]

≥ ∆(S′)

Thus, we have G(D, S ∪ {c}) − G(D, S) ≥ G(D, S′ ∪ {c}) − G(D, S′) and the
function is submodular. 2

81

Problem properties

Hence, for all t ∈ DS
c , we have g(t | {s})− g(t | S) ≥ 0, and therefore, G(D, S) is

monotone. 2

Next we show the submodularity property of the function G(D, S).

Proposition 6.2 (Submodularity) G(D, S ∪ {c}) − G(D, S) ≥ G(D, S′ ∪ {c}) −
G(D, S′), with S ⊆ S′.

Proof For the sake of simplicity let ∆(S) = G(D, S∪{c})−G(D, S) and ∆(S′) =
G(D, S′∪{c})−G(D, S′). From Equation (6.6) in the previous proof we can write
the value of ∆(S) as the increment of having rows reassigned from candidate
models S to candidate models S ∪ {c}. As is shown, only rows in DS

c contribute
to this value. The same applies to ∆(S′) and the set of rows DS′

c . That is,

∆(S) =
∑

t∈DS
c

[

g(t | {c}) − g(t | S)
]

∆(S′) =
∑

t∈DS′

c

[

g(t | {c}) − g(t | S′)
]

Because S ⊆ S′ we know that DS′

c ⊆ DS
c . Therefore, rows DS

c can be divided
into DS

c = DS′

c ∪ (DS
c \ DS′

c). This allows the following simple rewriting of ∆(S).

∆(S) =
∑

t∈DS′

c

[

g(t | {c}) − g(t | S)
]

+
∑

t∈DS
c \DS′

c

[

g(t | {c}) − g(t | S)
]

From the monotonicity property we always have that g(t | S′) ≥ g(t | S). It
immediately follows that

∆(S) ≥
∑

t∈DS′

c

[

g(t | {c}) − g(t | S′)
]

+
∑

t∈DS
c \DS′

c

[

g(t | {c}) − g(t | S)
]

= ∆(S′) +
∑

t∈DS
c \DS′

c

[

g(t | {c}) − g(t | S)
]

≥ ∆(S′)

Thus, we have G(D, S ∪ {c}) − G(D, S) ≥ G(D, S′ ∪ {c}) − G(D, S′) and the
function is submodular. 2

81

6 Crossmining binary and numerical data

6.3.3 A note on maximization versus minimization

As mentioned in Section 6.2, the score g(t | S) of Equation (6.2) could also have
been defined as a minimization function of the form

e(t | S) = min
ci∈S

{e(t | default), {e(t | si)}.

This way Problem 6.1 would have been transformed into minimizing the sum

E(D, S) =
∑

t∈D

e(t | S). (6.7)

It is easy to see that the same constant factor approximation result of Theorem 6.2
does not apply directly to this quantity. Note, however, that

G(D, S) =
∑

t∈D

e(t | default) − E(D, S).

By expressing the bound obtained from Theorem 6.2 in terms of E(D, S), we
have the following bound for the minimization variant of the problem

E(D, S) ≤ (1 − 1/e) · E(D, S∗) + 1/e
∑

t∈D

e(t | default).

6.4 Algorithms

From Theorem 6.2, we have the following greedy algorithm: Given a collection
of candidate models C, at all times maintain a candidate solution set S. Choose
the next element c ∈ C : c /∈ S having the largest marginal gain G(D, S ∪ {c}) −
G(D, S) until |S| = k. As discussed above, this greedy approach will yield a
solution of candidate models S such that G(D, S) ≥ (1 − 1/e) · G(T, S∗), where
S∗ is the optimal solution to Problem 6.1.

After adding a candidate model c to the solution set S, the greedy routine will
keep c in S until the end. However, it may be that at some point of the greedy
routine, a large portion of the rows modeled by c will be reassigned to some other
segment c′ added after c, rendering s largely inutile in S. Furthermore, the few
remaining rows DS

c \ DS
c′ might be better assigned to a more specific candidate

model ĉ in C \S. Hence, after running the greedy algorithm we further optimize
the solution by performing local swaps between the sets in S and C \ S, that is,
if G(D, S) ≤ G(D, (S \ c)∪ ĉ), for some c ∈ S and ĉ ∈ C \ S, we swap c with ĉ in
the results set S.

Algorithm 7 gives a pseudo-code description of the greedy algorithm for Prob-
lem 6.1.

82

6 Crossmining binary and numerical data

6.3.3 A note on maximization versus minimization

As mentioned in Section 6.2, the score g(t | S) of Equation (6.2) could also have
been defined as a minimization function of the form

e(t | S) = min
ci∈S

{e(t | default), {e(t | si)}.

This way Problem 6.1 would have been transformed into minimizing the sum

E(D, S) =
∑

t∈D

e(t | S). (6.7)

It is easy to see that the same constant factor approximation result of Theorem 6.2
does not apply directly to this quantity. Note, however, that

G(D, S) =
∑

t∈D

e(t | default) − E(D, S).

By expressing the bound obtained from Theorem 6.2 in terms of E(D, S), we
have the following bound for the minimization variant of the problem

E(D, S) ≤ (1 − 1/e) · E(D, S∗) + 1/e
∑

t∈D

e(t | default).

6.4 Algorithms

From Theorem 6.2, we have the following greedy algorithm: Given a collection
of candidate models C, at all times maintain a candidate solution set S. Choose
the next element c ∈ C : c /∈ S having the largest marginal gain G(D, S ∪ {c}) −
G(D, S) until |S| = k. As discussed above, this greedy approach will yield a
solution of candidate models S such that G(D, S) ≥ (1 − 1/e) · G(T, S∗), where
S∗ is the optimal solution to Problem 6.1.

After adding a candidate model c to the solution set S, the greedy routine will
keep c in S until the end. However, it may be that at some point of the greedy
routine, a large portion of the rows modeled by c will be reassigned to some other
segment c′ added after c, rendering s largely inutile in S. Furthermore, the few
remaining rows DS

c \ DS
c′ might be better assigned to a more specific candidate

model ĉ in C \S. Hence, after running the greedy algorithm we further optimize
the solution by performing local swaps between the sets in S and C \ S, that is,
if G(D, S) ≤ G(D, (S \ c)∪ ĉ), for some c ∈ S and ĉ ∈ C \ S, we swap c with ĉ in
the results set S.

Algorithm 7 gives a pseudo-code description of the greedy algorithm for Prob-
lem 6.1.

82

Experiments

Algorithm 7 Greedy crossmining algorithm.

Input: A dataset D, a set of candidate models C, and k the size of the solution
set S.

Output: A subset S ⊆ C of size k.
1: // First the greedy marginal gain optimization.
2: S = ∅
3: while |S| < k do
4: s = argmaxc∈C\SG(D, S ∪ {c}) − G(D, S)
5: S = S ∪ s
6: end while
7: // Finishing with the swaps.
8: for all (s, c), such that s ∈ S, c ∈ C \ S do
9: if G(D, S) ≤ G(D, (S \ s) ∪ c) then

10: S = (S \ s) ∪ c
11: end if
12: end for
13: return S

6.5 Experiments

To verify the applicability of the crossmining method an implementation of Al-
gorithm 7 using Matlab was constructed. Its behavior was tested on the two
datasets that both have binary and numerical real-valued attributes: Mammals

and MovieLens. To ease the intuition of the results obtained, only mean models
were considered in the experiments. All numerical attributes were normalized to
zero mean and unit variance.

6.5.1 Mammals data

A collection of closed itemsets mined with a minimum support threshold of 25%
was used as the basis of the candidate model set for the crossmining of the dataset
Mammals. To reduce redundancy in the candidate model set, only items with
a frequency of less than 80% were considered. This resulted in a collection of
55 130 closed itemsets. As numerical data mean annual temperature, mean annual
precipitation, mean annual temperature range and average elevation of each grid
cell were used.

Figure 6.2 shows the development of the score G(D, S) and error E(D, S) as
a function of the steps taken by Algorithm 7, while selecting a set of six can-
didate models. The figure shows that the first candidate models, corresponding
to itemsets {Elk} and {Hedgehog, Wood mouse}, reduce the error heavily, while
the gains in error reduction for the last steps, when adding {Racoon Dog, Brown
Hare} and {Blue Hare}, get smaller. As the last step the algorithm swaps the
itemset {Elk} with a refined set of {Elk, Weasel, Squirrel}, further introducing
a small reduction in the error function. No other swaps in the process of the

83

Experiments

Algorithm 7 Greedy crossmining algorithm.

Input: A dataset D, a set of candidate models C, and k the size of the solution
set S.

Output: A subset S ⊆ C of size k.
1: // First the greedy marginal gain optimization.
2: S = ∅
3: while |S| < k do
4: s = argmaxc∈C\SG(D, S ∪ {c}) − G(D, S)
5: S = S ∪ s
6: end while
7: // Finishing with the swaps.
8: for all (s, c), such that s ∈ S, c ∈ C \ S do
9: if G(D, S) ≤ G(D, (S \ s) ∪ c) then

10: S = (S \ s) ∪ c
11: end if
12: end for
13: return S

6.5 Experiments

To verify the applicability of the crossmining method an implementation of Al-
gorithm 7 using Matlab was constructed. Its behavior was tested on the two
datasets that both have binary and numerical real-valued attributes: Mammals

and MovieLens. To ease the intuition of the results obtained, only mean models
were considered in the experiments. All numerical attributes were normalized to
zero mean and unit variance.

6.5.1 Mammals data

A collection of closed itemsets mined with a minimum support threshold of 25%
was used as the basis of the candidate model set for the crossmining of the dataset
Mammals. To reduce redundancy in the candidate model set, only items with
a frequency of less than 80% were considered. This resulted in a collection of
55 130 closed itemsets. As numerical data mean annual temperature, mean annual
precipitation, mean annual temperature range and average elevation of each grid
cell were used.

Figure 6.2 shows the development of the score G(D, S) and error E(D, S) as
a function of the steps taken by Algorithm 7, while selecting a set of six can-
didate models. The figure shows that the first candidate models, corresponding
to itemsets {Elk} and {Hedgehog, Wood mouse}, reduce the error heavily, while
the gains in error reduction for the last steps, when adding {Racoon Dog, Brown
Hare} and {Blue Hare}, get smaller. As the last step the algorithm swaps the
itemset {Elk} with a refined set of {Elk, Weasel, Squirrel}, further introducing
a small reduction in the error function. No other swaps in the process of the

83

6 Crossmining binary and numerical data

G
(D

,S
)

Step

8000

3500

3000

2500

2000

1500

1000

500

8642
0
0

(a)

E
(D

,S
)

Step

8000

6000

4000

2000

8642
0
0

(b)

Step Action Score gain
1 Select {Elk} 1364
2 Select {West European Hedgehog, Wood Mouse} 899
3 Select {Edible Dormouse, Bank Vole, Roe Deer} 394
4 Select {Wildcat} 237
5 Select {Racoon dog, Brown hare} 160
6 Select {Blue hare} 155
7 Swap {Elk} with {Elk, Ermine, Red Squirrel} 26

Figure 6.2: Score/error function convergence during selection of 6 itemsets from
the dataset Mammals using Algorithm 7. The functions G(D, S) and E(D, S)
are defined as in Equations (6.2) and (6.7), respectively.

algorithm are made, giving support to the quality of the initial result obtained
by the pure greedy algorithm.

Figure 6.3 shows the geographical mapping of the clusters defined by the
final candidate models, while Table 6.1 gives a closer look at their numerical de-
scriptions. Scandinavian countries are modeled with the itemsets {Elk, Weasel,
Red Squirrel} and {Blue Hare}. More specifically, the former describes areas
across Finland and Sweden having low average temperature and low average ele-
vation, while the latter defines an area within Norway of higher average elevation.
Coastal regions, mostly within western Europe and the British Isles, are charac-
terized by the itemset {West European Hedgehog, Wood Mouse}. The grid cells
covered by this itemset experience on average high precipitation. The itemset
{Dormouse, Vole, Roe Deer} covers the mountain systems across Alps and Pyre-
nees, while the itemset {Wildcat} characterizes a cluster of southern European
countries, with mainly high average temperatures. The candidate model related
to the itemset {Racoon dog, Brown hare} is assigned to the areas covering the
Baltic states and Poland. Notice that the final coverage of the candidate model

84

6 Crossmining binary and numerical data

G
(D

,S
)

Step

8000

3500

3000

2500

2000

1500

1000

500

8642
0
0

(a)

E
(D

,S
)

Step

8000

6000

4000

2000

8642
0
0

(b)

Step Action Score gain
1 Select {Elk} 1364
2 Select {West European Hedgehog, Wood Mouse} 899
3 Select {Edible Dormouse, Bank Vole, Roe Deer} 394
4 Select {Wildcat} 237
5 Select {Racoon dog, Brown hare} 160
6 Select {Blue hare} 155
7 Swap {Elk} with {Elk, Ermine, Red Squirrel} 26

Figure 6.2: Score/error function convergence during selection of 6 itemsets from
the dataset Mammals using Algorithm 7. The functions G(D, S) and E(D, S)
are defined as in Equations (6.2) and (6.7), respectively.

algorithm are made, giving support to the quality of the initial result obtained
by the pure greedy algorithm.

Figure 6.3 shows the geographical mapping of the clusters defined by the
final candidate models, while Table 6.1 gives a closer look at their numerical de-
scriptions. Scandinavian countries are modeled with the itemsets {Elk, Weasel,
Red Squirrel} and {Blue Hare}. More specifically, the former describes areas
across Finland and Sweden having low average temperature and low average ele-
vation, while the latter defines an area within Norway of higher average elevation.
Coastal regions, mostly within western Europe and the British Isles, are charac-
terized by the itemset {West European Hedgehog, Wood Mouse}. The grid cells
covered by this itemset experience on average high precipitation. The itemset
{Dormouse, Vole, Roe Deer} covers the mountain systems across Alps and Pyre-
nees, while the itemset {Wildcat} characterizes a cluster of southern European
countries, with mainly high average temperatures. The candidate model related
to the itemset {Racoon dog, Brown hare} is assigned to the areas covering the
Baltic states and Poland. Notice that the final coverage of the candidate model

84

Experiments

Default model

{West European Hedgehog, Wood Mouse}

{Edible Dormouse, Bank Vole, Roe Deer}

{Wildcat}

{Racoon Dog, Brown Hare}

{Blue Hare}

{Elk, Ermine, Red Squirrel}

Figure 6.3: Spatial mapping of the clusters defined by the 6 final candidate models
for Mammals.

85

Experiments

Default model

{West European Hedgehog, Wood Mouse}

{Edible Dormouse, Bank Vole, Roe Deer}

{Wildcat}

{Racoon Dog, Brown Hare}

{Blue Hare}

{Elk, Ermine, Red Squirrel}

Figure 6.3: Spatial mapping of the clusters defined by the 6 final candidate models
for Mammals.

85

6 Crossmining binary and numerical data

Table 6.1: Numerical description of the 6 best candidate models for Mammals.
The columns Elev., Precip., Temp. and Temp. range correspond to the mean
of the attributes mean average elevation, mean annual precipitation, mean annual
temperature and mean annual temperature range of those rows covered by the
candidate model itemset. Frequency corresponds to the number of rows that the
itemset occurs in. Final cover is the number of rows that are eventually assigned
to the actual candidate model.

Itemset Mean model Frequency Final
Elev. Prepic. Temp. Temp. range cover
(m) (mm/year) (C◦) (C◦)

Default model 339.2 758.2 8.2 27.0 2183 394
{Elk, Ermine, Red Squirrel} 248.9 667.2 3.4 31.0 592 297
{West European Hedgehog, 317.8 811.3 9.9 23.9 1103 603
Wood Mouse}
{Edible Dormouse, Bank Vole, 540.2 827.1 8.7 26.9 557 224
Roe Deer}
{Wildcat} 460.2 748.8 10.9 27.4 624 264
{Racoon Dog, Brown Hare} 204.7 633.5 6.8 30.1 552 284
{Blue Hare} 354.1 808.7 3.7 28.7 721 117

is not necessarily equal to the frequency of the corresponding itemset. For in-
stance, while the itemset {Elk, Weasel, Red Squirrel} covers 592 grid cells in the
data, a subset of 297 grid cells are best described by its candidate model in the
final result. This is due to the choice of overlapping candidate models: rows
covered by multiple itemsets are always assigned to the best fitting candidate
model.

6.5.2 MovieLens data

A set of maximal frequent itemsets mined with a minimum frequency threshold
of 6% were used as the basis for the candidate models of the MovieLens dataset.
This resulted in a collection 63 432 candidate models.

Figure 6.4 shows the development of the score G(D, S) and error E(D, S)
as a function of the steps taken by Algorithm 7, while selecting a set of eight
candidate models. We notice that, in comparison to Mammals, the relative
reduction in error is much smaller here. Still, no local swaps are made at the end
of the process, indicating that the result of the greedy algorithm is optimal with
respect to swapping.

Figure 6.5 visualizes the resulting models chosen for the final crossmining
partition with respect to the attributes age and gender. Recall that the default
model reflects the average of the attributes over the entire data. The default
model is mapped into the middle of the plot. The movie combinations {Das Boot
(1981), The Full Monty (1997)} and {The Treasure of the Sierra Madre (1948), The
Bridge on the River Kwai (1957)} can be considered to characterize the preferences
of groups of older male users, while the taste of younger male users may be char-
acterize by the movie combinations {Trainspotting (1996), Scream (1996)} and

86

6 Crossmining binary and numerical data

Table 6.1: Numerical description of the 6 best candidate models for Mammals.
The columns Elev., Precip., Temp. and Temp. range correspond to the mean
of the attributes mean average elevation, mean annual precipitation, mean annual
temperature and mean annual temperature range of those rows covered by the
candidate model itemset. Frequency corresponds to the number of rows that the
itemset occurs in. Final cover is the number of rows that are eventually assigned
to the actual candidate model.

Itemset Mean model Frequency Final
Elev. Prepic. Temp. Temp. range cover
(m) (mm/year) (C◦) (C◦)

Default model 339.2 758.2 8.2 27.0 2183 394
{Elk, Ermine, Red Squirrel} 248.9 667.2 3.4 31.0 592 297
{West European Hedgehog, 317.8 811.3 9.9 23.9 1103 603
Wood Mouse}
{Edible Dormouse, Bank Vole, 540.2 827.1 8.7 26.9 557 224
Roe Deer}
{Wildcat} 460.2 748.8 10.9 27.4 624 264
{Racoon Dog, Brown Hare} 204.7 633.5 6.8 30.1 552 284
{Blue Hare} 354.1 808.7 3.7 28.7 721 117

is not necessarily equal to the frequency of the corresponding itemset. For in-
stance, while the itemset {Elk, Weasel, Red Squirrel} covers 592 grid cells in the
data, a subset of 297 grid cells are best described by its candidate model in the
final result. This is due to the choice of overlapping candidate models: rows
covered by multiple itemsets are always assigned to the best fitting candidate
model.

6.5.2 MovieLens data

A set of maximal frequent itemsets mined with a minimum frequency threshold
of 6% were used as the basis for the candidate models of the MovieLens dataset.
This resulted in a collection 63 432 candidate models.

Figure 6.4 shows the development of the score G(D, S) and error E(D, S)
as a function of the steps taken by Algorithm 7, while selecting a set of eight
candidate models. We notice that, in comparison to Mammals, the relative
reduction in error is much smaller here. Still, no local swaps are made at the end
of the process, indicating that the result of the greedy algorithm is optimal with
respect to swapping.

Figure 6.5 visualizes the resulting models chosen for the final crossmining
partition with respect to the attributes age and gender. Recall that the default
model reflects the average of the attributes over the entire data. The default
model is mapped into the middle of the plot. The movie combinations {Das Boot
(1981), The Full Monty (1997)} and {The Treasure of the Sierra Madre (1948), The
Bridge on the River Kwai (1957)} can be considered to characterize the preferences
of groups of older male users, while the taste of younger male users may be char-
acterize by the movie combinations {Trainspotting (1996), Scream (1996)} and

86

Experiments

G
(D

,S
)

Step

Step

400

300

200

100

8642
0
0

(a)

E
(D

,S
)

Step

2500

2000

1500

1000

500

8642
0
0

(b)

Step Action Score gain
1 Select {The Treasure of the Sierra Madre (1948), 76

The Bridge on the River Kwai (1957)}
2 Select {Little Women (1994)} 65
3 Select {Liar Liar (1997), Scream (1996)} 55
4 Select {Rosewood (1997)} 45
5 Select {Trainspotting (1996), Scream (1996)} 42
6 Select {Secrets & Lies (1996), Fargo (1996), 36

The English Patient (1996)}
7 Select {The Truth About Cats & Dogs (1996) 34
8 Select {Das Boot (1981), The Full Monty (1997)} 32

Figure 6.4: Score/error function convergence during selection of 8 itemsets from
the dataset MovieLens using Algorithm 7. The functions G(D, S) and E(D, S)
are defined as in Equations (6.2) and (6.7), respectively.

{Liar Liar (1997), Scream (1996)}, according to the models. The itemset {Little
Women (1994)} is chosen as a characterization of female preferences. Respec-
tively, the itemsets {Rosewood (1997)} and {Secrets & Lies (1996), The English
Patient (1996), Fargo (1996)} characterize a group of slightly older women, while
the combination {The Truth About Cats & Dogs (1996), Jerry Maguire (1996)}
characterizes slightly younger women. Table 6.2 gives a further numeric descrip-
tion of the 8 final candidate models for MovieLens.

6.5.3 Comparison with k-means clustering

The outcome of the crossmining method was experimentally compared with the
outcome of the standard k-means algorithm. The dataset Mammals and the
result of Section 6.5.1 were used as the bases for comparison. Furthermore, three
k-means clusterings were performed. One clustering was optimized using the

87

Experiments

G
(D

,S
)

Step

Step

400

300

200

100

8642
0
0

(a)

E
(D

,S
)

Step

2500

2000

1500

1000

500

8642
0
0

(b)

Step Action Score gain
1 Select {The Treasure of the Sierra Madre (1948), 76

The Bridge on the River Kwai (1957)}
2 Select {Little Women (1994)} 65
3 Select {Liar Liar (1997), Scream (1996)} 55
4 Select {Rosewood (1997)} 45
5 Select {Trainspotting (1996), Scream (1996)} 42
6 Select {Secrets & Lies (1996), Fargo (1996), 36

The English Patient (1996)}
7 Select {The Truth About Cats & Dogs (1996) 34
8 Select {Das Boot (1981), The Full Monty (1997)} 32

Figure 6.4: Score/error function convergence during selection of 8 itemsets from
the dataset MovieLens using Algorithm 7. The functions G(D, S) and E(D, S)
are defined as in Equations (6.2) and (6.7), respectively.

{Liar Liar (1997), Scream (1996)}, according to the models. The itemset {Little
Women (1994)} is chosen as a characterization of female preferences. Respec-
tively, the itemsets {Rosewood (1997)} and {Secrets & Lies (1996), The English
Patient (1996), Fargo (1996)} characterize a group of slightly older women, while
the combination {The Truth About Cats & Dogs (1996), Jerry Maguire (1996)}
characterizes slightly younger women. Table 6.2 gives a further numeric descrip-
tion of the 8 final candidate models for MovieLens.

6.5.3 Comparison with k-means clustering

The outcome of the crossmining method was experimentally compared with the
outcome of the standard k-means algorithm. The dataset Mammals and the
result of Section 6.5.1 were used as the bases for comparison. Furthermore, three
k-means clusterings were performed. One clustering was optimized using the

87

6 Crossmining binary and numerical data

0.3

ge
n
d
er

:
p
er

ce
n
ta

ge
of

m
al

es

age: mean years

1

0.9

0.8

0.7

0.6

0.5

0.4

20 25 30 35 40 45 50

Default model

{The Treasure of the Sierra Madre (1948),

The Bridge on the River Kwai (1957)}

{Trainspotting (1996), Scream (1996)} {Das Boot (1981),

The Full Monty (1997)}

{Liar Liar (1997), Scream (1996)} {Secrets & Lies (1996),

The English Patient (1996),

Fargo (1996)}

{Rosewood (1997)}

{The Truth About Cats & Dogs (1996),

Jerry Maguire (1996)}

{Little Women (1994)}

Figure 6.5: Visualization of the resulting 8 movie candidate models with re-
spect to the attributes age and gender for the crossmining results for the dataset
MovieLens.

numerical part of the data. This clustering is denoted by k-meansR. A second
clustering was optimized using the binary part of the data. This clustering is
denoted by k-meansB. Finally, a third clustering, denoted here by k-meansR∪B,
was optimized using both the binary and numerical part of the data together.

The within-cluster sum-of-squares (as defined in Equation (2.2) of Chapter 2)
was used as the error metric. Note that each of the methods, including Al-
gorithm 7, will give an assignment of the data points into k distinct clusters
(partitions). For each partition the corresponding mean vectors were computed
in both the binary and numerical parts of the data. These means were then used
to compute the sum-of-squares errors in each case.

Notice here that in case of crossmining, the means of the clusters are not
necessarily the same as the mean models defined by the candidate models. The
candidate model is computed over all the rows covered by the itemset. However,
one point may be covered by several itemsets but assigned to only one candidate
model in the final crossmining results. Here the error was computed with respect
to the mean of the partitions, as opposed to using the candidate model means.

Note also that the numerical part of Mammals features four numerical at-

88

6 Crossmining binary and numerical data

0.3

ge
n
d
er

:
p
er

ce
n
ta

ge
of

m
al

es

age: mean years

1

0.9

0.8

0.7

0.6

0.5

0.4

20 25 30 35 40 45 50

Default model

{The Treasure of the Sierra Madre (1948),

The Bridge on the River Kwai (1957)}

{Trainspotting (1996), Scream (1996)} {Das Boot (1981),

The Full Monty (1997)}

{Liar Liar (1997), Scream (1996)} {Secrets & Lies (1996),

The English Patient (1996),

Fargo (1996)}

{Rosewood (1997)}

{The Truth About Cats & Dogs (1996),

Jerry Maguire (1996)}

{Little Women (1994)}

Figure 6.5: Visualization of the resulting 8 movie candidate models with re-
spect to the attributes age and gender for the crossmining results for the dataset
MovieLens.

numerical part of the data. This clustering is denoted by k-meansR. A second
clustering was optimized using the binary part of the data. This clustering is
denoted by k-meansB. Finally, a third clustering, denoted here by k-meansR∪B,
was optimized using both the binary and numerical part of the data together.

The within-cluster sum-of-squares (as defined in Equation (2.2) of Chapter 2)
was used as the error metric. Note that each of the methods, including Al-
gorithm 7, will give an assignment of the data points into k distinct clusters
(partitions). For each partition the corresponding mean vectors were computed
in both the binary and numerical parts of the data. These means were then used
to compute the sum-of-squares errors in each case.

Notice here that in case of crossmining, the means of the clusters are not
necessarily the same as the mean models defined by the candidate models. The
candidate model is computed over all the rows covered by the itemset. However,
one point may be covered by several itemsets but assigned to only one candidate
model in the final crossmining results. Here the error was computed with respect
to the mean of the partitions, as opposed to using the candidate model means.

Note also that the numerical part of Mammals features four numerical at-

88

Experiments

Table 6.2: Numerical description of the 8 final candidate models for MovieLens.
Frequency corresponds to the number of rows that the itemset occurs in. Final
cover is the number of rows that are eventually assigned to the actual candidate
model.

Itemset Mean model Fre- Final
Age Gender quency cover

(Years) Male ratio
Default model 34.05 0.71 943 667
{The Treasure of the Sierra Madre (1948), 44.52 0.94 50 33
The Bridge on the River Kwai (1957)}
{Little Women (1994)} 34.70 0.39 64 38
{Liar Liar (1997), Scream (1996)} 25.84 0.80 74 44
{Rosewood (1997)} 39.09 0.53 70 37
{Trainspotting (1996), Scream (1996)} 24.82 0.82 62 44
{Secrets & Lies (1996), Fargo (1996), 41.49 0.65 57 24
The English Patient (1996)}
{The Truth About Cats & Dogs (1996), 30.11 0.53 74 28
Jerry Maguire (1996)}
{Das Boot (1981), The Full Monty (1997)} 40.71 0.84 56 28

tributes while the number of binary attributes is 124. Hence, for clustering in the
combined space of both binary and numerical valued attributes, the two parts
of the data were weighted such that the sets of both binary and the numerical
valued attributes had equal weight with respect to the overall score. In practice
this was done by copying the set of the 4 numerical attributes 31 times to obtain
a weight of 124 attributes matching the binary part of the data.

The crossmining result presented in Section 6.5.1 features k=6 final candidate
models. To have an equal number of parameters for the methods, k=6 was also
used with the k-means clusterings. Note however, that Algorithm 7 may assign
some points to the default model. Hence, the rows assigned to the default model
were excluded from the comparison. The three k-means clusterings (for k = 6)
were computed for these remaining data rows.

The result in Figure 6.6 shows that in crossmining, constraining the search of
possible clusters with frequent itemsets comes with a slight penalty in the numer-
ical part of the data when compared with k-meansR∪B. However, the difference
is not very large. On the other hand, for the binary part of the data, crossmining
performs equally well, or even slightly better. Hence, we see that the compact
itemset based representation used by crossmining is in this case as effective as the
mean vectors of k-meansR∪B in capturing structure in the binary part of the data.
In other words, with a slight reduction in modeling error for the numerical part
of the data, we get the shorter discrete set of models offered by the crossmining
approach for the binary part of the data.

89

Experiments

Table 6.2: Numerical description of the 8 final candidate models for MovieLens.
Frequency corresponds to the number of rows that the itemset occurs in. Final
cover is the number of rows that are eventually assigned to the actual candidate
model.

Itemset Mean model Fre- Final
Age Gender quency cover

(Years) Male ratio
Default model 34.05 0.71 943 667
{The Treasure of the Sierra Madre (1948), 44.52 0.94 50 33
The Bridge on the River Kwai (1957)}
{Little Women (1994)} 34.70 0.39 64 38
{Liar Liar (1997), Scream (1996)} 25.84 0.80 74 44
{Rosewood (1997)} 39.09 0.53 70 37
{Trainspotting (1996), Scream (1996)} 24.82 0.82 62 44
{Secrets & Lies (1996), Fargo (1996), 41.49 0.65 57 24
The English Patient (1996)}
{The Truth About Cats & Dogs (1996), 30.11 0.53 74 28
Jerry Maguire (1996)}
{Das Boot (1981), The Full Monty (1997)} 40.71 0.84 56 28

tributes while the number of binary attributes is 124. Hence, for clustering in the
combined space of both binary and numerical valued attributes, the two parts
of the data were weighted such that the sets of both binary and the numerical
valued attributes had equal weight with respect to the overall score. In practice
this was done by copying the set of the 4 numerical attributes 31 times to obtain
a weight of 124 attributes matching the binary part of the data.

The crossmining result presented in Section 6.5.1 features k=6 final candidate
models. To have an equal number of parameters for the methods, k=6 was also
used with the k-means clusterings. Note however, that Algorithm 7 may assign
some points to the default model. Hence, the rows assigned to the default model
were excluded from the comparison. The three k-means clusterings (for k = 6)
were computed for these remaining data rows.

The result in Figure 6.6 shows that in crossmining, constraining the search of
possible clusters with frequent itemsets comes with a slight penalty in the numer-
ical part of the data when compared with k-meansR∪B. However, the difference
is not very large. On the other hand, for the binary part of the data, crossmining
performs equally well, or even slightly better. Hence, we see that the compact
itemset based representation used by crossmining is in this case as effective as the
mean vectors of k-meansR∪B in capturing structure in the binary part of the data.
In other words, with a slight reduction in modeling error for the numerical part
of the data, we get the shorter discrete set of models offered by the crossmining
approach for the binary part of the data.

89

6 Crossmining binary and numerical data

7000

6000

5000

4000

3000

2000

1000

0

su
m

-o
f-
sq

u
ar

es
er

ro
r

Error in numerical part

k-meansR k-meansR∪B crossmine k-meansB

2275 2486

3248

6667

(a)

× 105

2.5

2

1.5

1

0.5

0

su
m

-o
f-
sq

u
ar

es
er

ro
r

Error in binary part

k-meansB crossmine k-meansR∪B k-meansR

165501
175593 176628

213421

(b)

Figure 6.6: Comparison of the within-cluster sum-of-squares error between three
k-means clusterings (with k = 6) and the result presented in Table 6.1 (excluding
data rows assigned to the default model). The bars have been ordered according
to the resulting errors.

90

6 Crossmining binary and numerical data

7000

6000

5000

4000

3000

2000

1000

0

su
m

-o
f-
sq

u
ar

es
er

ro
r

Error in numerical part

k-meansR k-meansR∪B crossmine k-meansB

2275 2486

3248

6667

(a)

× 105

2.5

2

1.5

1

0.5

0

su
m

-o
f-
sq

u
ar

es
er

ro
r

Error in binary part

k-meansB crossmine k-meansR∪B k-meansR

165501
175593 176628

213421

(b)

Figure 6.6: Comparison of the within-cluster sum-of-squares error between three
k-means clusterings (with k = 6) and the result presented in Table 6.1 (excluding
data rows assigned to the default model). The bars have been ordered according
to the resulting errors.

90

Related work

6.6 Related work

The problem defined here exhibits an apparent similarity to the facility location
problem [82, 47, 61], where the aim is to “open” some number of facilities to
serve customers and typically there is a fixed cost for each facility opened plus a
penalty for each customer-facility distance. The nature of this problem has pro-
duced mainly results for minimization of the proper score function. Of course, as
mentioned earlier, Problem 6.1 could also be defined in the minimization form.
Still, the details in the optimization setting of the facility location problem are
typically different from the setting presented here: the most relevant approxima-
tion results, related to the k-median problem, assume that the customer-facility
distances have the metric property. This does not hold here. A good summary of
the approximation bounds for the facility location problems can be found in [47].

Crossmining is also closely related to the segmentation problems from [51, 52].
The bounds obtained here correspond to the bounds obtained for the catalog
segmentation problem, which can be seen as a generalization of the problem
presented here. However, the idea of using collections of itemsets to bound the
space of decisions to good models is new in this context. Moreover, the analysis of
Algorithm 7 does not come from any existing work, nor does the idea of providing
a characterization of the final model with a set of relevant features corresponding
to itemsets. Other works in the current literature that use submodular functions
to prove approximation bounds include [50]

A similar application to crossmining is clustering [60, 46, 33, 88, 92]. The
contribution here is two-fold. First, from the numerous clustering methods it
usually becomes difficult to evaluate the partition, especially when the number of
binary attributes is large. In our case, the partition is always properly represented
by a unique itemset which defines a small set of relevant features describing the
partition. Second, one could cluster numerical attributes independently from the
binary attributes, and then mine itemsets from each partition. In this case it is
not clear what are the characteristic itemsets for each partition. Furthermore,
different partitions could end up being characterized by the same itemset. Using
crossmining, however, these questions are addressed.

The crossmining problem can also be seen as a form of constrained clustering.
In typical constrained clustering algorithms, the constraints are of the form of a
cannot-link and must-link [90]. A cannot-link constraint says that rows t1 and t2
must belong to different clusters, while a must-link forces them to be in the same
cluster. In crossmining a cannot-link can be encoded by assigning disjoint binary
parts to the rows. A must-link constraint can be approximated by assigning the
rows exactly to the same binary attributes. In the case of the must-link, this does
not, however, guarantee that the rows end up in the same segment if they have
very different numerical attributes. If must-link constraints are required in the
application, they can of course be added to the crossmining problem.

In [43] Hollmén et al. study the collections of frequent sets in clusters pro-
duced by a probabilistic clustering using mixtures of Bernoulli models. The

91

Related work

6.6 Related work

The problem defined here exhibits an apparent similarity to the facility location
problem [82, 47, 61], where the aim is to “open” some number of facilities to
serve customers and typically there is a fixed cost for each facility opened plus a
penalty for each customer-facility distance. The nature of this problem has pro-
duced mainly results for minimization of the proper score function. Of course, as
mentioned earlier, Problem 6.1 could also be defined in the minimization form.
Still, the details in the optimization setting of the facility location problem are
typically different from the setting presented here: the most relevant approxima-
tion results, related to the k-median problem, assume that the customer-facility
distances have the metric property. This does not hold here. A good summary of
the approximation bounds for the facility location problems can be found in [47].

Crossmining is also closely related to the segmentation problems from [51, 52].
The bounds obtained here correspond to the bounds obtained for the catalog
segmentation problem, which can be seen as a generalization of the problem
presented here. However, the idea of using collections of itemsets to bound the
space of decisions to good models is new in this context. Moreover, the analysis of
Algorithm 7 does not come from any existing work, nor does the idea of providing
a characterization of the final model with a set of relevant features corresponding
to itemsets. Other works in the current literature that use submodular functions
to prove approximation bounds include [50]

A similar application to crossmining is clustering [60, 46, 33, 88, 92]. The
contribution here is two-fold. First, from the numerous clustering methods it
usually becomes difficult to evaluate the partition, especially when the number of
binary attributes is large. In our case, the partition is always properly represented
by a unique itemset which defines a small set of relevant features describing the
partition. Second, one could cluster numerical attributes independently from the
binary attributes, and then mine itemsets from each partition. In this case it is
not clear what are the characteristic itemsets for each partition. Furthermore,
different partitions could end up being characterized by the same itemset. Using
crossmining, however, these questions are addressed.

The crossmining problem can also be seen as a form of constrained clustering.
In typical constrained clustering algorithms, the constraints are of the form of a
cannot-link and must-link [90]. A cannot-link constraint says that rows t1 and t2
must belong to different clusters, while a must-link forces them to be in the same
cluster. In crossmining a cannot-link can be encoded by assigning disjoint binary
parts to the rows. A must-link constraint can be approximated by assigning the
rows exactly to the same binary attributes. In the case of the must-link, this does
not, however, guarantee that the rows end up in the same segment if they have
very different numerical attributes. If must-link constraints are required in the
application, they can of course be added to the crossmining problem.

In [43] Hollmén et al. study the collections of frequent sets in clusters pro-
duced by a probabilistic clustering using mixtures of Bernoulli models. The

91

6 Crossmining binary and numerical data

approach discussed here is the reverse: first a collection of frequent sets is gener-
ated, then based on which the partition is produced. Conceptually closer are Sese
and Morishita [81] with the idea of itemset classified clustering. As here, they
study data with both binary and numerical attributes. They search for itemsets
that maximize interclass variance in the numerical attributes between the rows
that an itemset covers and the respective complement. The difference from the
crossmining method is that they try to find interesting groups of examples rather
than a set of itemsets that cover all examples. In [98] Zenko et al. address the
idea of learning predictive clustering rules. They combine decision trees learning
and rule learning with concepts of clustering in a setting that is fairly close to
that used in this thesis. However, their approach is based on the CN2 rule in-
duction algorithm [15] and is more general in the sense that it allows continuous
variables in both parts of the data.

Finally, the results contribute to itemset selection: here itemsets are selected
based on their ability to describe structure in the numerical part of the data.
Algorithm 7 can be seen as providing the best top-k itemsets in the data based
on auxiliary numerical data. Return to Section 5.5 for more related work on
pattern and itemset selection.

6.7 Conclusions

In this chapter we have studied the problem of mining binary data along with the
corresponding numerical data. From the viewpoint of clustering, the approach
can be thought of as a way of constraining the search for possible clusters using
frequent itemsets. From the viewpoint of itemset mining, the approach can be
seen as itemset selection.

We concluded that the problem can be solved with a simple greedy constant-
factor approximation algorithm. Experiments on numerical data show that the
algorithm finds high quality itemsets that also convey structur in the numerical
part of the data. The advantage here, compared with clustering, such as k-means,
is that the results yield more natural and more compact cluster representations
for the binary part of the data.

92

6 Crossmining binary and numerical data

approach discussed here is the reverse: first a collection of frequent sets is gener-
ated, then based on which the partition is produced. Conceptually closer are Sese
and Morishita [81] with the idea of itemset classified clustering. As here, they
study data with both binary and numerical attributes. They search for itemsets
that maximize interclass variance in the numerical attributes between the rows
that an itemset covers and the respective complement. The difference from the
crossmining method is that they try to find interesting groups of examples rather
than a set of itemsets that cover all examples. In [98] Zenko et al. address the
idea of learning predictive clustering rules. They combine decision trees learning
and rule learning with concepts of clustering in a setting that is fairly close to
that used in this thesis. However, their approach is based on the CN2 rule in-
duction algorithm [15] and is more general in the sense that it allows continuous
variables in both parts of the data.

Finally, the results contribute to itemset selection: here itemsets are selected
based on their ability to describe structure in the numerical part of the data.
Algorithm 7 can be seen as providing the best top-k itemsets in the data based
on auxiliary numerical data. Return to Section 5.5 for more related work on
pattern and itemset selection.

6.7 Conclusions

In this chapter we have studied the problem of mining binary data along with the
corresponding numerical data. From the viewpoint of clustering, the approach
can be thought of as a way of constraining the search for possible clusters using
frequent itemsets. From the viewpoint of itemset mining, the approach can be
seen as itemset selection.

We concluded that the problem can be solved with a simple greedy constant-
factor approximation algorithm. Experiments on numerical data show that the
algorithm finds high quality itemsets that also convey structur in the numerical
part of the data. The advantage here, compared with clustering, such as k-means,
is that the results yield more natural and more compact cluster representations
for the binary part of the data.

92

Chapter 7

Conclusions and discussion

In this thesis we have studied new methods for enhancing the expressive power
of frequent pattern mining. The goal has been to come up with methods that
have the ability to express new kinds of relationships between attributes and to
convey only the most relevant and important interactions of the attributes in a
concise and non-redundant manner.

In Chapter 3 we discussed a new type of tree pattern class for expressing
hierarchies of general and more specific attributes in unstructured binary data.
The new introduced definition has advantageous properties: high quality patterns
are unlikely to occur in random data, and the definition allows construction of a
simple level-wise algorithm. The results suggest that trees can be used to discover
relationships in data that cannot be expressed alone with the more traditional
frequent itemset or association rule type of patterns.

Chapter 4 proposed a new type of score for frequent pattern mining, entropy.
The score makes it possible to express more general types of occurrence structure
than with frequent itemsets. Entropy can easily be applied to both set and tree
types of pattern, and as a monotonic concept allows the use of the level-wise
approach.

Chapter 5 presents the idea of using low-entropy based patterns and minimum
description length (MDL) for compact data description. It was shown that each
row in the data can be encoded using the maximum likelihood principle, which
is in relation to minimizing data encoding length. Harnessing the expressive
power of the low-entropy sets, the method gives small and easily interpretable
collections of patterns that in most cases are an order of magnitude smaller than
by using frequent itemsets.

Chapter 6 introduced the idea of relating itemsets to numerical variables in a
database of mixed data types. This can be considered either as a pattern selection
approach or a constraint clustering problem. Theoretical contributions included
proofs of NP-hardness and a simple greedy constant-factor approximation algo-
rithm. Experiments on data, including both binary and numerical attributes,

93

Chapter 7

Conclusions and discussion

In this thesis we have studied new methods for enhancing the expressive power
of frequent pattern mining. The goal has been to come up with methods that
have the ability to express new kinds of relationships between attributes and to
convey only the most relevant and important interactions of the attributes in a
concise and non-redundant manner.

In Chapter 3 we discussed a new type of tree pattern class for expressing
hierarchies of general and more specific attributes in unstructured binary data.
The new introduced definition has advantageous properties: high quality patterns
are unlikely to occur in random data, and the definition allows construction of a
simple level-wise algorithm. The results suggest that trees can be used to discover
relationships in data that cannot be expressed alone with the more traditional
frequent itemset or association rule type of patterns.

Chapter 4 proposed a new type of score for frequent pattern mining, entropy.
The score makes it possible to express more general types of occurrence structure
than with frequent itemsets. Entropy can easily be applied to both set and tree
types of pattern, and as a monotonic concept allows the use of the level-wise
approach.

Chapter 5 presents the idea of using low-entropy based patterns and minimum
description length (MDL) for compact data description. It was shown that each
row in the data can be encoded using the maximum likelihood principle, which
is in relation to minimizing data encoding length. Harnessing the expressive
power of the low-entropy sets, the method gives small and easily interpretable
collections of patterns that in most cases are an order of magnitude smaller than
by using frequent itemsets.

Chapter 6 introduced the idea of relating itemsets to numerical variables in a
database of mixed data types. This can be considered either as a pattern selection
approach or a constraint clustering problem. Theoretical contributions included
proofs of NP-hardness and a simple greedy constant-factor approximation algo-
rithm. Experiments on data, including both binary and numerical attributes,

93

7 Conclusions and discussion

showed that the algorithm finds high quality itemsets that convey structure in
both the numerical and the binary part of the data in a compact and intuitive
manner.

Many interesting issues related to the methods proposed here still remain un-
addressed. A drawback of the tree mining algorithm used in Chapter 3 is that
each tree is generated multiple times as an isomorphic copy of itself. Research
on finding trees from relational tree- or graph-structured data [12] is already ad-
dressing many issues related to efficient tree enumeration. It would be interesting,
however, to study the special properties of this problem from a more algorithmic
point of view, in order to come up with a more efficient way of generating the
defined tree pattern class.

The score for low-entropy sets proposed in Chapter 4 is unnormalized and un-
penalized by the size of the pattern. The reason for this is that the monotonicity
property breaks when the most obvious normalizations are brought in. However,
it would be interesting to investigate whether there exists some other meaningful
normalization that would still enable efficient discovery of the proposed entropy-
based pattern classes.

Both pattern selection frameworks, discussed in Chapters 5 and 6, are based
on two basic steps. In the first step, a complete set of candidate patterns, using
traditional frequent pattern mining algorithms, is generated. In the second step,
pattern selection is applied. To minimize the number of candidates generated,
a relevant question is whether it is possible to omit the first step and mine the
candidates patterns as we proceed.

For the low-entropy set selection problem the overall approach was based on
heuristics. An obvious area for research would be to study whether there exists
a more theoretically motivated approach for solving the overall problem. The
crossmining problem in Chapter 6 is theoretically better understood. However,
as the problem is close to clustering, instead of greedy selection, could the cross-
mining model be optimized using a more clustering type of approach, that is,
more in the spirit of the well known EM-algorithm?

94

7 Conclusions and discussion

showed that the algorithm finds high quality itemsets that convey structure in
both the numerical and the binary part of the data in a compact and intuitive
manner.

Many interesting issues related to the methods proposed here still remain un-
addressed. A drawback of the tree mining algorithm used in Chapter 3 is that
each tree is generated multiple times as an isomorphic copy of itself. Research
on finding trees from relational tree- or graph-structured data [12] is already ad-
dressing many issues related to efficient tree enumeration. It would be interesting,
however, to study the special properties of this problem from a more algorithmic
point of view, in order to come up with a more efficient way of generating the
defined tree pattern class.

The score for low-entropy sets proposed in Chapter 4 is unnormalized and un-
penalized by the size of the pattern. The reason for this is that the monotonicity
property breaks when the most obvious normalizations are brought in. However,
it would be interesting to investigate whether there exists some other meaningful
normalization that would still enable efficient discovery of the proposed entropy-
based pattern classes.

Both pattern selection frameworks, discussed in Chapters 5 and 6, are based
on two basic steps. In the first step, a complete set of candidate patterns, using
traditional frequent pattern mining algorithms, is generated. In the second step,
pattern selection is applied. To minimize the number of candidates generated,
a relevant question is whether it is possible to omit the first step and mine the
candidates patterns as we proceed.

For the low-entropy set selection problem the overall approach was based on
heuristics. An obvious area for research would be to study whether there exists
a more theoretically motivated approach for solving the overall problem. The
crossmining problem in Chapter 6 is theoretically better understood. However,
as the problem is close to clustering, instead of greedy selection, could the cross-
mining model be optimized using a more clustering type of approach, that is,
more in the spirit of the well known EM-algorithm?

94

Bibliography

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data. Data Mining and Knowledge Discovery,
11(1):5–33, July 2005.

[2] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between
sets of items in large databases. In SIGMOD ’93: Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, pages
207–216, New York, NY, USA, 1993. ACM.

[3] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast
discovery of association rules. In Advances in Knowledge Discovery and Data
Mining, pages 307–328. AAAI/MIT Press, 1996.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. In VLDB ’94: Proceedings of the 20th International
Conference on Very Large Data Bases, pages 487–499, San Francisco, CA,
USA, 1994. Morgan Kaufmann Publishers Inc.

[5] T. Asai, H. Arimura, T. Uno, and S. ichi Nakano. Discovering frequent
substructures in large unordered trees. In The 6th International Conference
on Discovery Science, pages 47–61, 2003.

[6] J. Bascompte, P. Jordano, C. J. Melián, and J. M. Olesen. The nested
assembly of plant-animal mutualistic networks. Proceedings of the National
Academy of Sciences, 100(16):9383–9387, 2003.

[7] R. J. Bayardo, Jr. Efficiently mining long patterns from databases. SIGMOD
Record, 27(2):85–93, 1998.

[8] B. Bringmann and A. Zimmermann. The chosen few: On identifying valuable
patterns. In IEEE International Conference on Data Mining. ICDM 2007,
pages 63–72, Oct. 2007.

[9] B. Bringmann, A. Zimmermann, L. De Raedt, and S. Nijssen. Don’t be
afraid of simpler patterns. In Knowledge Discovery in Databases: PKDD
2006, pages 55–66, 2006.

95

Bibliography

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data. Data Mining and Knowledge Discovery,
11(1):5–33, July 2005.

[2] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between
sets of items in large databases. In SIGMOD ’93: Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, pages
207–216, New York, NY, USA, 1993. ACM.

[3] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast
discovery of association rules. In Advances in Knowledge Discovery and Data
Mining, pages 307–328. AAAI/MIT Press, 1996.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. In VLDB ’94: Proceedings of the 20th International
Conference on Very Large Data Bases, pages 487–499, San Francisco, CA,
USA, 1994. Morgan Kaufmann Publishers Inc.

[5] T. Asai, H. Arimura, T. Uno, and S. ichi Nakano. Discovering frequent
substructures in large unordered trees. In The 6th International Conference
on Discovery Science, pages 47–61, 2003.

[6] J. Bascompte, P. Jordano, C. J. Melián, and J. M. Olesen. The nested
assembly of plant-animal mutualistic networks. Proceedings of the National
Academy of Sciences, 100(16):9383–9387, 2003.

[7] R. J. Bayardo, Jr. Efficiently mining long patterns from databases. SIGMOD
Record, 27(2):85–93, 1998.

[8] B. Bringmann and A. Zimmermann. The chosen few: On identifying valuable
patterns. In IEEE International Conference on Data Mining. ICDM 2007,
pages 63–72, Oct. 2007.

[9] B. Bringmann, A. Zimmermann, L. De Raedt, and S. Nijssen. Don’t be
afraid of simpler patterns. In Knowledge Discovery in Databases: PKDD
2006, pages 55–66, 2006.

95

7 Bibliography

[10] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu. Mafia: a
maximal frequent itemset algorithm. IEEE Transactions on Knowledge and
Data Engineering, 17(11):1490–1504, Nov. 2005.

[11] T. Calders and B. Goethals. Mining all non-derivable frequent itemsets.
In Proceedings of the 6th European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases, pages 74–85,
2002.

[12] Y. Chi, R. R. Muntz, S. Nijssen, and J. N. Kok. Frequent subtree mining –
an overview. Fundamenta Informaticae, 66(1-2):161–198, 2005.

[13] Y. Chi, Y. Yang, and R. R. Muntz. HybridTreeMiner: an efficient algorithm
for mining frequent rooted trees and free trees using canonical forms. In
Proceedings of the 16th International Conference on Scientific and Statistical
Database Management (SSDBM), pages 11–20, 2004.

[14] C. K. Chow and C. N. Liu. Approximating discrete probability distribu-
tions with dependence trees. IEEE Transactions on Information Theory,
14(3):462–467, 1968.

[15] P. Clark and T. Niblett. The cn2 induction algorithm. Machine Learning,
3(4):261–283, 1989.

[16] G. W. Cobb and Y.-P. Chen. An application of markov chain monte carlo to
community ecology. The American Mathematical Monthly, 110(4):265–288,
2003.

[17] F. Coenen. The LUCS-KDD discretised/normalised ARM and CARM data
library, 2003.

[18] G. F. Cooper and E. Herskovits. A Bayesian method for the induction of
probabilistic networks from data. Machine Learning, 9:309–347, 1992.

[19] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley
Series in Telecommunications. Wiley Interscience, 1991.

[20] C. J. Donlan, J. Knowlton, D. F. Doak, and N. Biavaschi. Nested commu-
nities, invasive species and holocene extinctions: evaluating the power of a
potential conservation tool. Oecologia, 145(3):475–485, 2005.

[21] C. Faloutsos and I. Kamel. Beyond uniformity and independence: analysis
of r-trees using the concept of fractal dimension. In PODS ’94: Proceedings
of the 13th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 4–13, New York, NY, USA, 1994. ACM.

[22] C. Faloutsos and V. Megalooikonomou. On data mining, compression and
kolmogorov complexity. Data Mining and Knowledge Discovery, 15:3–20,
2007.

96

7 Bibliography

[10] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu. Mafia: a
maximal frequent itemset algorithm. IEEE Transactions on Knowledge and
Data Engineering, 17(11):1490–1504, Nov. 2005.

[11] T. Calders and B. Goethals. Mining all non-derivable frequent itemsets.
In Proceedings of the 6th European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases, pages 74–85,
2002.

[12] Y. Chi, R. R. Muntz, S. Nijssen, and J. N. Kok. Frequent subtree mining –
an overview. Fundamenta Informaticae, 66(1-2):161–198, 2005.

[13] Y. Chi, Y. Yang, and R. R. Muntz. HybridTreeMiner: an efficient algorithm
for mining frequent rooted trees and free trees using canonical forms. In
Proceedings of the 16th International Conference on Scientific and Statistical
Database Management (SSDBM), pages 11–20, 2004.

[14] C. K. Chow and C. N. Liu. Approximating discrete probability distribu-
tions with dependence trees. IEEE Transactions on Information Theory,
14(3):462–467, 1968.

[15] P. Clark and T. Niblett. The cn2 induction algorithm. Machine Learning,
3(4):261–283, 1989.

[16] G. W. Cobb and Y.-P. Chen. An application of markov chain monte carlo to
community ecology. The American Mathematical Monthly, 110(4):265–288,
2003.

[17] F. Coenen. The LUCS-KDD discretised/normalised ARM and CARM data
library, 2003.

[18] G. F. Cooper and E. Herskovits. A Bayesian method for the induction of
probabilistic networks from data. Machine Learning, 9:309–347, 1992.

[19] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley
Series in Telecommunications. Wiley Interscience, 1991.

[20] C. J. Donlan, J. Knowlton, D. F. Doak, and N. Biavaschi. Nested commu-
nities, invasive species and holocene extinctions: evaluating the power of a
potential conservation tool. Oecologia, 145(3):475–485, 2005.

[21] C. Faloutsos and I. Kamel. Beyond uniformity and independence: analysis
of r-trees using the concept of fractal dimension. In PODS ’94: Proceedings
of the 13th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 4–13, New York, NY, USA, 1994. ACM.

[22] C. Faloutsos and V. Megalooikonomou. On data mining, compression and
kolmogorov complexity. Data Mining and Knowledge Discovery, 15:3–20,
2007.

96

Bibliography

[23] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., Sunderland,
MA, 2004.

[24] J. H. Friedman and J. W. Tukey. A projection pursuit algorithm for ex-
ploratory data analysis. IEEE Transactions on Computers, 23:881–890,
1974.

[25] S. Fujishige. Submodular Functions and Optimization, volume 58 of Annals
of Discrete Mathematics. Elsevier, 2nd edition, 2005.

[26] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[27] G. C. Garriga, H. Heikinheimo, and J. K. Seppänen. Cross-mining binary
and numerical attributes. In IEEE International Conference on Data Mining
(ICDM), pages 481–486, 2007.

[28] A. Gionis, T. Kujala, and H. Mannila. Fragments of order. In KDD ’03:
Proceedings of the 9th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 129–136, New York, NY, USA, 2003.
ACM.

[29] A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas. Assessing data
mining results via swap randomization. ACM Transactions on Knowledge
Discovery from Data, 1(3):14, 2006.

[30] P. D. Grünwald, I. J. Myung, and M. A. Pitt, editors. Advances in Minimum
Description Length: Theory and Applications. MIT Press, 2005.

[31] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: cur-
rent status and future directions. Data Mining and Knowledge Discovery,
15(1):55–86, August 2007.

[32] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD Inter-
national Conference on Management of Data, pages 1–12, New York, NY,
USA, 2000. ACM.

[33] D. J. Hand, H. Mannila, and P. Smyth. Principles of data mining. MIT
Press, Cambridge, MA, USA, 2001.

[34] I. Hanski. Dynamics of regional distribution: the core and satellite species
hypothesis. Oikos, 32(2):210–221, 1982.

[35] I. Hanski and M. Gyllenberg. Two general metapopulation models and the
core-satellite species hypothesis. The American Naturalist, 142(1):17–41,
1993.

97

Bibliography

[23] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., Sunderland,
MA, 2004.

[24] J. H. Friedman and J. W. Tukey. A projection pursuit algorithm for ex-
ploratory data analysis. IEEE Transactions on Computers, 23:881–890,
1974.

[25] S. Fujishige. Submodular Functions and Optimization, volume 58 of Annals
of Discrete Mathematics. Elsevier, 2nd edition, 2005.

[26] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[27] G. C. Garriga, H. Heikinheimo, and J. K. Seppänen. Cross-mining binary
and numerical attributes. In IEEE International Conference on Data Mining
(ICDM), pages 481–486, 2007.

[28] A. Gionis, T. Kujala, and H. Mannila. Fragments of order. In KDD ’03:
Proceedings of the 9th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 129–136, New York, NY, USA, 2003.
ACM.

[29] A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas. Assessing data
mining results via swap randomization. ACM Transactions on Knowledge
Discovery from Data, 1(3):14, 2006.

[30] P. D. Grünwald, I. J. Myung, and M. A. Pitt, editors. Advances in Minimum
Description Length: Theory and Applications. MIT Press, 2005.

[31] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: cur-
rent status and future directions. Data Mining and Knowledge Discovery,
15(1):55–86, August 2007.

[32] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD Inter-
national Conference on Management of Data, pages 1–12, New York, NY,
USA, 2000. ACM.

[33] D. J. Hand, H. Mannila, and P. Smyth. Principles of data mining. MIT
Press, Cambridge, MA, USA, 2001.

[34] I. Hanski. Dynamics of regional distribution: the core and satellite species
hypothesis. Oikos, 32(2):210–221, 1982.

[35] I. Hanski and M. Gyllenberg. Two general metapopulation models and the
core-satellite species hypothesis. The American Naturalist, 142(1):17–41,
1993.

97

7 Bibliography

[36] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing. Springer, 2001.

[37] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian net-
works: The combination of knowledge and statistical data. Machine Learn-
ing, 20(3):197–243, 1995.

[38] H. Heikinheimo, M. Fortelius, J. Eronen, and H. Mannila. Biogeography
of European land mammals shows environmentally distinct and spatially
coherent clusters. Journal of Biogeography, 34(6):1053–1064, 2007.

[39] H. Heikinheimo, E. Hinkkanen, H. Mannila, T. Mielikäinen, and J. K.
Seppänen. Finding low-entropy sets and trees from binary data. In KDD ’07:
Proceedings of the 13th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 350–359, New York, NY, USA, 2007.
ACM.

[40] H. Heikinheimo, H. Mannila, and J. K. Seppänen. Finding trees from un-
ordered 0-1 data. In 10th European Conference on Principles and Practice
of Knowledge Discovery in Databases, pages 175–186, 2006.

[41] H. Heikinheimo, J. Vreeken, A. Siebes, and H. Mannila. Low-entropy set
selection. In SIAM International Conference on Data Mining, pages 569–
580, 2009.

[42] R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. Very
high resolution interpolated climate surfaces for global land areas. Interna-
tional Journal of Climatology, 25(15):1965–1978, 2005.

[43] J. Hollmén, J. K. Seppänen, and H. Mannila. Mixture models and frequent
sets: combining global and local methods for 0-1 data. In SIAM International
Conference on Data Mining, pages 289–293, 2003.

[44] P. J. Huber. Projection pursuit. The Annals of Statistics, 13(2):435–475,
June 1985.

[45] J. J. Ibánez, J. Caniego, and A. Garćıa-Álvarez. Nested subset analysis
and taxa-range size distributions of pedological assemblages: implications
for biodiversity studies. Ecological Modelling, 182(3–4):239–256, 2005.

[46] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[47] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility lo-
cation and k-median problems using the primal-dual schema and Lagrangian
relaxation. Journal of ACM, 48(2):274–296, 2001.

98

7 Bibliography

[36] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing. Springer, 2001.

[37] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian net-
works: The combination of knowledge and statistical data. Machine Learn-
ing, 20(3):197–243, 1995.

[38] H. Heikinheimo, M. Fortelius, J. Eronen, and H. Mannila. Biogeography
of European land mammals shows environmentally distinct and spatially
coherent clusters. Journal of Biogeography, 34(6):1053–1064, 2007.

[39] H. Heikinheimo, E. Hinkkanen, H. Mannila, T. Mielikäinen, and J. K.
Seppänen. Finding low-entropy sets and trees from binary data. In KDD ’07:
Proceedings of the 13th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 350–359, New York, NY, USA, 2007.
ACM.

[40] H. Heikinheimo, H. Mannila, and J. K. Seppänen. Finding trees from un-
ordered 0-1 data. In 10th European Conference on Principles and Practice
of Knowledge Discovery in Databases, pages 175–186, 2006.

[41] H. Heikinheimo, J. Vreeken, A. Siebes, and H. Mannila. Low-entropy set
selection. In SIAM International Conference on Data Mining, pages 569–
580, 2009.

[42] R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. Very
high resolution interpolated climate surfaces for global land areas. Interna-
tional Journal of Climatology, 25(15):1965–1978, 2005.

[43] J. Hollmén, J. K. Seppänen, and H. Mannila. Mixture models and frequent
sets: combining global and local methods for 0-1 data. In SIAM International
Conference on Data Mining, pages 289–293, 2003.

[44] P. J. Huber. Projection pursuit. The Annals of Statistics, 13(2):435–475,
June 1985.

[45] J. J. Ibánez, J. Caniego, and A. Garćıa-Álvarez. Nested subset analysis
and taxa-range size distributions of pedological assemblages: implications
for biodiversity studies. Ecological Modelling, 182(3–4):239–256, 2005.

[46] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[47] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility lo-
cation and k-median problems using the primal-dual schema and Lagrangian
relaxation. Journal of ACM, 48(2):274–296, 2001.

98

Bibliography

[48] S. Jaroszewicz and D. A. Simovici. Pruning redundant association rules using
maximum entropy principle. In PAKDD ’02: Proceedings of the 6th Pacific-
Asia Conference on Advances in Knowledge Discovery and Data Mining,
pages 135–147, London, UK, 2002. Springer-Verlag.

[49] S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–
251, 1967.

[50] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence
through a social network. In KDD ’03: Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
137–146, New York, NY, USA, 2003. ACM.

[51] J. Kleinberg, C. Papadimitriou, and P. Raghavan. A microeconomic view of
data mining. Data Mining and Knowledge Discovery, 2(4):311–324, 1998.

[52] J. Kleinberg, C. Papadimitriou, and P. Raghavan. Segmentation problems.
Journal of ACM, 51(2):263–280, 2004.

[53] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo.
Finding interesting rules from large sets of discovered association rules. In
CIKM ’94: Proceedings of the third International Conference on Information
and Knowledge Management, pages 401–407, New York, NY, USA, 1994.
ACM.

[54] A. J. Knobbe and E. K. Y. Ho. Maximally informative k-itemsets and their
efficient discovery. In KDD ’06: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
237–244, New York, NY, USA, 2006. ACM.

[55] A. J. Knobbe and E. K. Y. Ho. Pattern teams. In European Conference on
Principles and Practice of Knowledge Discovery in Databases, pages 577–
584, 2006.

[56] M. Koivisto and K. Sood. Exact bayesian structure discovery in bayesian
networks. Journal of Machine Learning Research, 5:549–573, 2004.

[57] D. L. Kreher and D. R. Stinson. Combinatorial Algorithms: Generation,
Enumeration and Search. Discrete mathematics and its applications. CRC
Press, 1999.

[58] B. Lent, A. Swami, and J. Widom. Clustering association rules. In 13th
International Conference on Data Engineering, pages 220–231, 1997.

[59] B. Liu, W. Hsu, and Y. Ma. Pruning and summarizing the discovered asso-
ciations. In KDD ’99: Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 125–134, New
York, NY, USA, 1999. ACM.

99

Bibliography

[48] S. Jaroszewicz and D. A. Simovici. Pruning redundant association rules using
maximum entropy principle. In PAKDD ’02: Proceedings of the 6th Pacific-
Asia Conference on Advances in Knowledge Discovery and Data Mining,
pages 135–147, London, UK, 2002. Springer-Verlag.

[49] S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–
251, 1967.

[50] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence
through a social network. In KDD ’03: Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
137–146, New York, NY, USA, 2003. ACM.

[51] J. Kleinberg, C. Papadimitriou, and P. Raghavan. A microeconomic view of
data mining. Data Mining and Knowledge Discovery, 2(4):311–324, 1998.

[52] J. Kleinberg, C. Papadimitriou, and P. Raghavan. Segmentation problems.
Journal of ACM, 51(2):263–280, 2004.

[53] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo.
Finding interesting rules from large sets of discovered association rules. In
CIKM ’94: Proceedings of the third International Conference on Information
and Knowledge Management, pages 401–407, New York, NY, USA, 1994.
ACM.

[54] A. J. Knobbe and E. K. Y. Ho. Maximally informative k-itemsets and their
efficient discovery. In KDD ’06: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
237–244, New York, NY, USA, 2006. ACM.

[55] A. J. Knobbe and E. K. Y. Ho. Pattern teams. In European Conference on
Principles and Practice of Knowledge Discovery in Databases, pages 577–
584, 2006.

[56] M. Koivisto and K. Sood. Exact bayesian structure discovery in bayesian
networks. Journal of Machine Learning Research, 5:549–573, 2004.

[57] D. L. Kreher and D. R. Stinson. Combinatorial Algorithms: Generation,
Enumeration and Search. Discrete mathematics and its applications. CRC
Press, 1999.

[58] B. Lent, A. Swami, and J. Widom. Clustering association rules. In 13th
International Conference on Data Engineering, pages 220–231, 1997.

[59] B. Liu, W. Hsu, and Y. Ma. Pruning and summarizing the discovered asso-
ciations. In KDD ’99: Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 125–134, New
York, NY, USA, 1999. ACM.

99

7 Bibliography

[60] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In 5th Berkeley Symposium on Mathematical Statistics and
Probability, pages 281–297, 1967.

[61] M. Mahdian, Y. Ye, and J. Zhang. Approximation algorithms for metric fa-
cility location problems. SIAM Journal of Computing, 36(2):411–432, 2006.

[62] H. Mannila and E. Terzi. Nestedness and segmented nestedness. In KDD
’07: Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 480–489, New York, NY, USA,
2007. ACM.

[63] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for dis-
covering association rules. In AAAI Workshop on Knowledge Discovery in
Databases, pages 181–192, 1994.

[64] M. Meilă and M. I. Jordan. Learning mixtures of trees. Journal of Machine
Learning Research, 1:1–48, 2000.

[65] T. Mielikäinen and H. Mannila. The pattern ordering problem. In European
Conference on Principles and Practice of Knowledge Discovery in Databases,
pages 327–338, 2003.

[66] A. J. Mitchell-Jones, G. Amori, W. Bogdanowicz, B. Krystufek, P. J. H.
Reijnders, F. Spitzenberger, M. Stubbe, J. B. M. Thissen, V. Vohralik, and
J. Zima. The Atlas of European Mammals. Poyser, 1999.

[67] S. Morishita and J. Sese. Transversing itemset lattices with statistical metric
pruning. In PODS ’00: Proceedings of the 9th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pages 226–236, New
York, NY, USA, 2000. ACM.

[68] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Univer-
sity Press, 1995.

[69] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approxima-
tions for maximizing submodular set functions. Mathematical Programming,
14(1):265–294, 1978.

[70] S. Nijssen. Bayes optimal classification for decision trees. In ICML ’08: Pro-
ceedings of the 25th International Conference on Machine Learning, pages
696–703, New York, NY, USA, 2008. ACM.

[71] S. Nijssen and E. Fromont. Mining optimal decision trees from itemset
lattices. In KDD ’07: Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 530–539, New
York, NY, USA, 2007. ACM.

100

7 Bibliography

[60] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In 5th Berkeley Symposium on Mathematical Statistics and
Probability, pages 281–297, 1967.

[61] M. Mahdian, Y. Ye, and J. Zhang. Approximation algorithms for metric fa-
cility location problems. SIAM Journal of Computing, 36(2):411–432, 2006.

[62] H. Mannila and E. Terzi. Nestedness and segmented nestedness. In KDD
’07: Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 480–489, New York, NY, USA,
2007. ACM.

[63] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for dis-
covering association rules. In AAAI Workshop on Knowledge Discovery in
Databases, pages 181–192, 1994.

[64] M. Meilă and M. I. Jordan. Learning mixtures of trees. Journal of Machine
Learning Research, 1:1–48, 2000.

[65] T. Mielikäinen and H. Mannila. The pattern ordering problem. In European
Conference on Principles and Practice of Knowledge Discovery in Databases,
pages 327–338, 2003.

[66] A. J. Mitchell-Jones, G. Amori, W. Bogdanowicz, B. Krystufek, P. J. H.
Reijnders, F. Spitzenberger, M. Stubbe, J. B. M. Thissen, V. Vohralik, and
J. Zima. The Atlas of European Mammals. Poyser, 1999.

[67] S. Morishita and J. Sese. Transversing itemset lattices with statistical metric
pruning. In PODS ’00: Proceedings of the 9th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pages 226–236, New
York, NY, USA, 2000. ACM.

[68] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Univer-
sity Press, 1995.

[69] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approxima-
tions for maximizing submodular set functions. Mathematical Programming,
14(1):265–294, 1978.

[70] S. Nijssen. Bayes optimal classification for decision trees. In ICML ’08: Pro-
ceedings of the 25th International Conference on Machine Learning, pages
696–703, New York, NY, USA, 2008. ACM.

[71] S. Nijssen and E. Fromont. Mining optimal decision trees from itemset
lattices. In KDD ’07: Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 530–539, New
York, NY, USA, 2007. ACM.

100

Bibliography

[72] S. Nijssen and J. N. Kok. Efficient discovery of frequent unordered trees.
In First International Workshop on Mining Graphs, Trees and Sequences
(MGST), pages 55–64, 2003.

[73] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional
data: a review. ACM SIGKDD Explorations Newsletter, 6(1):90–105, 2004.

[74] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. Lecture Notes in Computer Science,
1540:398–416, 1999.

[75] B. D. Patterson and W. Atmar. Nested subsets and the structure of insu-
lar mammalian faunas and archipelagos. Biological Journal of the Linnean
Society, 28(1–2):65–82, 1986.

[76] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, 1988.

[77] J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for mining frequent
closed itemsets. In ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, 2000.

[78] A. K. Poernomo and V. Gopalkrishnan. Efficient computation of partial-
support for mining interesting itemsets. In SIAM International Conference
on Data Mining, pages 1014–1025, 2009.

[79] J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471,
1978.

[80] J. K. Seppänen and H. Mannila. Dense itemsets. In KDD ’04: Proceedings of
the tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 683–688, New York, NY, USA, 2004. ACM.

[81] J. Sese and S. Morishita. Itemset classified clustering. In PKDD ’04:
Proceedings of the 8th European Conference on Principles and Practice of
Knowledge Discovery in Databases, pages 398–409, New York, NY, USA,
2004. Springer-Verlag New York, Inc.

[82] D. B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for
facility location problems (extended abstract). In STOC ’97: Proceedings of
the 29th Annual ACM Symposium on Theory of Computing, pages 265–274,
New York, NY, USA, 1997. ACM.

[83] A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that compress. In
SIAM International Conference on Data Mining, pages 393–404, 2006.

[84] T. Silander and P. Myllymäki. A simple optimal approach for finding the
globally optimal bayesian network structure. In 22nd Annual Conference on
Uncertainty in Artificial Intelligence, pages 445–452, 2006.

101

Bibliography

[72] S. Nijssen and J. N. Kok. Efficient discovery of frequent unordered trees.
In First International Workshop on Mining Graphs, Trees and Sequences
(MGST), pages 55–64, 2003.

[73] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional
data: a review. ACM SIGKDD Explorations Newsletter, 6(1):90–105, 2004.

[74] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. Lecture Notes in Computer Science,
1540:398–416, 1999.

[75] B. D. Patterson and W. Atmar. Nested subsets and the structure of insu-
lar mammalian faunas and archipelagos. Biological Journal of the Linnean
Society, 28(1–2):65–82, 1986.

[76] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, 1988.

[77] J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for mining frequent
closed itemsets. In ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, 2000.

[78] A. K. Poernomo and V. Gopalkrishnan. Efficient computation of partial-
support for mining interesting itemsets. In SIAM International Conference
on Data Mining, pages 1014–1025, 2009.

[79] J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471,
1978.

[80] J. K. Seppänen and H. Mannila. Dense itemsets. In KDD ’04: Proceedings of
the tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 683–688, New York, NY, USA, 2004. ACM.

[81] J. Sese and S. Morishita. Itemset classified clustering. In PKDD ’04:
Proceedings of the 8th European Conference on Principles and Practice of
Knowledge Discovery in Databases, pages 398–409, New York, NY, USA,
2004. Springer-Verlag New York, Inc.

[82] D. B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for
facility location problems (extended abstract). In STOC ’97: Proceedings of
the 29th Annual ACM Symposium on Theory of Computing, pages 265–274,
New York, NY, USA, 1997. ACM.

[83] A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that compress. In
SIAM International Conference on Data Mining, pages 393–404, 2006.

[84] T. Silander and P. Myllymäki. A simple optimal approach for finding the
globally optimal bayesian network structure. In 22nd Annual Conference on
Uncertainty in Artificial Intelligence, pages 445–452, 2006.

101

7 Bibliography

[85] N. J. A. Sloane. The on-line encyclopedia of integer sequences, 2006. http:
//www.research.att.com/~njas/sequences/.

[86] N. Tatti and H. Heikinheimo. Decomposable families of itemsets. In Euro-
pean Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases (ECML PKDD), pages 472–487, 2008.

[87] N. Tatti and J. Vreeken. Finding good itemsets by packing data. In Proceed-
ings of the 8th IEEE International Conference on Data Mining (ICDM’08),
2008.

[88] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Elsevier, second
edition, 2003.

[89] A. Tuzhilin and G. Adomavicius. Handling very large numbers of association
rules in the analysis of microarray data. In KDD ’02: Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 396–404, New York, NY, USA, 2002. ACM.

[90] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-means
clustering with background knowledge. In ICML ’01: Proceedings of the
18th International Conference on Machine Learning, pages 577–584, 2001.

[91] J. Wang, J. Han, and J. Pei. Closet+: searching for the best strategies
for mining frequent closed itemsets. In KDD ’03: Proceedings of the ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 236–245, New York, NY, USA, 2003. ACM.

[92] R. Xu and I. Wunsch, D. Survey of clustering algorithms. IEEE Transactions
on Neural Networks, 16(3):645–678, May 2005.

[93] X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset patterns: a
profile-based approach. In KDD ’05: Proceedings of the 11th ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, pages
314–323, New York, NY, USA, 2005. ACM.

[94] C. Yang, U. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant
frequent itemsets in high dimensions. In KDD ’01: Proceedings of the 7th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 194–203, New York, NY, USA, 2001. ACM.

[95] M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions
on Knowledge and Data Engineering, 12(3):372–390, 2000.

[96] M. J. Zaki. Efficiently mining frequent trees in a forest: algorithms and
applications. IEEE Transactions on Knowledge and Data Engineering,
17(8):1021–1035, Aug. 2005.

102

7 Bibliography

[85] N. J. A. Sloane. The on-line encyclopedia of integer sequences, 2006. http:
//www.research.att.com/~njas/sequences/.

[86] N. Tatti and H. Heikinheimo. Decomposable families of itemsets. In Euro-
pean Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases (ECML PKDD), pages 472–487, 2008.

[87] N. Tatti and J. Vreeken. Finding good itemsets by packing data. In Proceed-
ings of the 8th IEEE International Conference on Data Mining (ICDM’08),
2008.

[88] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Elsevier, second
edition, 2003.

[89] A. Tuzhilin and G. Adomavicius. Handling very large numbers of association
rules in the analysis of microarray data. In KDD ’02: Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 396–404, New York, NY, USA, 2002. ACM.

[90] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-means
clustering with background knowledge. In ICML ’01: Proceedings of the
18th International Conference on Machine Learning, pages 577–584, 2001.

[91] J. Wang, J. Han, and J. Pei. Closet+: searching for the best strategies
for mining frequent closed itemsets. In KDD ’03: Proceedings of the ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 236–245, New York, NY, USA, 2003. ACM.

[92] R. Xu and I. Wunsch, D. Survey of clustering algorithms. IEEE Transactions
on Neural Networks, 16(3):645–678, May 2005.

[93] X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset patterns: a
profile-based approach. In KDD ’05: Proceedings of the 11th ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, pages
314–323, New York, NY, USA, 2005. ACM.

[94] C. Yang, U. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant
frequent itemsets in high dimensions. In KDD ’01: Proceedings of the 7th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 194–203, New York, NY, USA, 2001. ACM.

[95] M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions
on Knowledge and Data Engineering, 12(3):372–390, 2000.

[96] M. J. Zaki. Efficiently mining frequent trees in a forest: algorithms and
applications. IEEE Transactions on Knowledge and Data Engineering,
17(8):1021–1035, Aug. 2005.

102

Bibliography

[97] M. J. Zaki and C.-J. Hsiao. Charm: An efficient algorithm for closed itemset
mining. In SIAM International Conference on Data Mining, 2002.

[98] B. Zenko, S. Džeroski, and J. Struyf. Learning predictive clustering rules.
In Knowledge Discovery in Inductive Databases, 4th International Work-
shop, KDID’05, Revised, Selected and Invited Papers, volume 3933 of Lecture
Notes in Computer Science, pages 234–250. Springer, 2006.

[99] A. Zimmermann and L. De Raedt. CorClass: Correlated association rule
mining for classification. In International Conference on Discovery Science,
pages 60–72, 2004.

103

Bibliography

[97] M. J. Zaki and C.-J. Hsiao. Charm: An efficient algorithm for closed itemset
mining. In SIAM International Conference on Data Mining, 2002.

[98] B. Zenko, S. Džeroski, and J. Struyf. Learning predictive clustering rules.
In Knowledge Discovery in Inductive Databases, 4th International Work-
shop, KDID’05, Revised, Selected and Invited Papers, volume 3933 of Lecture
Notes in Computer Science, pages 234–250. Springer, 2006.

[99] A. Zimmermann and L. De Raedt. CorClass: Correlated association rule
mining for classification. In International Conference on Discovery Science,
pages 60–72, 2004.

103

