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Robust Antenna Array Processing Using
M -estimators of Pseudo-Covariance

Esa Ollila and Visa Koivunen
Signal Processing Laboratory,

Helsinki University of Technology,
P.O.Box 3000, FIN-02015 HUT, Finland

Abstract— This paper addresses the problem of antenna array
processing in non-Gaussian noise and interference conditions.
Such conditions arise due to man-made interference in indoor
and outdoor mobile communication channels as well as in
military communications. In this paper M -estimators of the array
(pseudo-)covariance matrix based upon complex data set are
introduced. Estimates of the noise and signal subspaces based on
M -estimators are then used to robustify the subspace direction
of arrival (DOA) estimation methods. In addition, eigenvalues
based on M -estimators are used in MDL criterion, thus yielding
a robust signal detection method. The reliable performance of
the proposed methods are shown by simulations.

I. INTRODUCTION

Multi-antenna transceivers are the key element in beyond
3G communications with high spectral efficiency (MIMO sys-
tems), and smart antennas capable of interference cancellation.
A starting point for many multi-antenna receiver algorithms is
the array output covariance matrix. In particular, noise and
signal subspaces spanned by the eigenvectors of the array
covariance matrix need to be estimated in many high resolution
DOA, channel and symbol sequence estimation methods [1].
Conventional sample covariance matrix computed from spatial
snapshots is optimal under Gaussian distribution assumption
but it gives poor performance in non-Gaussian and impulsive
noise environments. In the latter case, it is well known that
if the covariance matrix is estimated in a non-robust manner,
statistics (such as eigenvalues and eigenvectors) based on it are
unreliable and far from optimal. Obtaining robust estimates
of the (pseudo-)covariance matrix is crucial since noise and
interference in indoor and outdoor mobile communication
channels as well as in sonar and radar signals have been shown
to be contaminated by non-Gaussian noise and interference.
See e.g. Middeleton [2] and Williams and Johnson [3] and
references therein. Several authors have proposed robust DOA
estimation methods for non-Gaussian environments, see e.g.
[4], [3], [5].

For data in Rk robust alternatives for the sample covariance
estimate are the M -estimators of multivariate scatter matrix
introduced in [6] and later studied by several authors, see
e.g. [7], [8], [9], [10]. In this paper, we extend the con-
cept of M -estimators of scatter matrix (pseudo-covariance
matrix) for data in complex vector space Ck. Maximum
Likelihood (ML-)estimators of the scatter for the complex
multivariate t-distribution with ν > 0 degrees of freedom
are introduced in Section II-A. This model describes a wide

variety of heavy-tailed noise models of practical interest
including Cauchy noise. In Section II-B, the complex M -
estimators of the scatter are introduced. ML-estimators for
the complex t-distribution are members in this class. We also
introduce complex analogues of Huber’s [7] and Tyler’s [8]
M -estimators. In Section III, the sensor array signal model
and subspace and stochastic ML DOA estimation methods
are reviewed. In Section IV, simulation studies demonstrating
the reliable performance of the subspace DOA estimation and
MDL number of signals estimation methods associated with
the proposed M -estimators are given. We also demonstrate the
reliable performance of the stochastic ML method based on
complex multivariate t-distribution as the array output model
distribution. Section V concludes the paper.

II. ROBUST ESTIMATORS OF THE PSEUDO-COVARIANCE

A. ML-estimators

Consider a data set z1, . . . , zn in Ck and a set Pk of all k×k
positive definite hermitian matrices. We will use superscript
H to denote the hermitian transpose and j =

√
−1 is the

imaginary unit. Sample mean z̄ = ave{zi} and covariance
matrix S = ave{(zi− z̄)(zi− z̄)H} are the ML-estimators of
the location µ ∈ Ck and scatter Σ ∈ Pk, respectively, if zi’s
are i.i.d. random vectors from the complex k-variate normal
(Gaussian) distribution, denoted by CNk(µ,Σ). The complex
normal distribution belongs to a class of complex elliptically
symmetric (CES) distributions introduced in [11]. Here we
discuss the ML-estimation of the multivariate location µ and
scatter Σ when the underlying CES distribution is complex
multivariate t-distribution defined as follows.

Definition 1: A random vector z ∈ Ck is said to have a
complex multivariate t-distribution with ν > 0 degrees of
freedom, denoted by Ctk,ν(µ,Σ), if its probability density
function (pdf) is of the form

f(z;µ,Σ) = c|Σ|−1{1 + 2s/ν}−(2k+ν)/2,

where s = (z−µ)HΣ−1(z−µ) and c is a normalizing constant
not dependent on the parameters µ ∈ Ck and Σ ∈ Pk.

Note that f is real and non-negative as Σ ∈ Pk (conse-
quently s ≥ 0 and |Σ| > 0). The complex multivariate t-
distribution is analogous to the real multivariate t-distribution.
Indeed, the real 2k-variate vector composed of real and imag-
inary parts of z has a certain real multivariate t-distribution in
R2k. The multivariate t-distribution with ν = 1 is called the



multivariate complex Cauchy distribution. Cauchy distribution
is a prominent robust heavy-tailed alternative for the Gaussian
which is obtained in the limit ν → ∞. The complex multi-
variate t-distributions are thus useful for studying robustness
of multivariate statistics as a decrement of ν yields a (t-
)distribution with an increased heaviness of the tails.

The parameter µ is the symmetry center of the distribution
and equals the expectation E(z) for ν > 2. By symmetry we
mean that z−µ has the same distribution as exp(jθ)(z−µ) for
all θ ∈ R. Furthermore, the covariance matrix of the k-variate
t-distribution is Cov(z) = {ν/(ν − 2)}Σ for ν > 2, whereas
the Cauchy distribution (ν = 1) has infinite variances. Thus the
scatter matrix Σ is proportional to covariance matrix (when it
exist), and may therefore also be termed as pseudo-covariance
matrix. Note that in the case of Gaussian distribution (ν =
∞), Cov(z) = Σ. A random vector z from the complex
multivariate t-distribution can be generated as follows: for
independent y ∼ CNk(µ,Σ) and s ∼ χ2

ν , z = (s/ν)−1/2y
has Ctk,ν(µ,Σ) distribution.

Analogous to the real case [10], one can show that the ML-
estimates µ̂ ∈ Ck and Σ̂ ∈ Pk of the location µ and scatter Σ
are the joint solutions to the estimating equations:

µ̂ = ave{uν(si)zi}/ave{uν(si)} (1)

Σ̂ = ave{uν(si)(zi − µ̂)(zi − µ̂)H}, (2)

where

si = (zi − µ̂)HΣ̂−1(zi − µ̂) (3)

and

uν(s) =
2k + ν

ν + 2s
.

In this paper we will consider the scatter-only case, that is, we
suppose that the location µ is known or fixed, and without loss
of generality we assume µ = 0. Note that the DOA estimation
problem may be considered as a scatter-only problem (zero
mean signals and noise). Nonetheless, computing the ML-
estimate µ̂ is useful in some other applications where µ is
of interest, thus serving as a robust alternative for the sample
mean vector.

Algorithm: In the scatter-only problem, the ML-estimate
of scatter thus satisfy

Σ̂ = ave{uν(zHi Σ̂−1zi)ziz
H
i }. (4)

Given an initial estimate Σ0 ∈ Pk, define

Σm+1 = ave{uν(zHi Σ−1
m zi)ziz

H
i }. (5)

Kent and Tyler [10] have shown that under mild regularity
conditions on the data (e.g. n > k and the data is not
too concentrated in low-dimensional subspaces) the iterations
Σm+1 converge to the unique solution Σ̂ of (4). The authors
of [10] consider the real case only, but the complex case
follows similarly. This also follows from the fact that Σ̂ can
be calculated using real arithmetic as follows. Replace the n

vectors zi = xi + jyi (x,y ∈ Rk) in Ck by the 2n vectors z̃i
in R2k:

z̃i = (xTi ,y
T
i )T for i = 1, . . . , n,

z̃i = (−yTi ,x
T
i )T for i = n+ 1, . . . , 2n.

Thus we double the sample space and also the dimension.
Based on the real data set z̃1, . . . , z̃2n calculate the real 2k×
2k positive definite symmetric (PDS) M -estimate of scatter
matrix Σ̃ which satisfy

Σ̃ = ave{ũν(z̃Ti Σ̃−1z̃i)z̃iz̃
T
i }, (6)

where ũν(s) = uν(s/2). Given an initial real PDS 2k × 2k-
matrix Σ̃0, the iterations

Σ̃m+1 = ave{ũν(z̃Ti Σ̃−1
m z̃i)z̃iz̃

T
i }

converge to the solution Σ̃ of (6) under mild regularity
conditions [10]. It is immediate to verify that Σ̃ is of the form

Σ̃ =

(
Σ̃1 −Σ̃2

Σ̃2 Σ̃1

)
,

where Σ̃1 and Σ̃2 are real PDS k × k-matrices. The complex
ML-estimate of scatter Σ̂ can then be formed from components
of Σ̃, that is, Σ̂ = 2(Σ̃1 + jΣ̃2).

In practical implementation of the proposed algorithm (5),
we used as a termination point εm := ‖I − Σ−1

m−1Σm‖ < ε,
where ‖ · ‖ is some matrix norm and ε is some predetermined
tolerance level, for example ε = 0.001. The computational
complexity is O(niternk

2), where niter is the number of
iteration. Naturally, niter is strongly dependent on the choice
of the tolerance level ε, but not significantly (in our experience
based on simulations) on the choice of the initial estimate
Σ0 ∈ Pk.

On the choice of ν: The choice of ν, and consequently
the weight function uν(), merits some discussion. For ν � 1,
the complex t-distribution for which the estimators are based
on, is close to complex Gaussian distribution (having slightly
heavier tails). However, since in the DOA estimation problem
we wish to achieve good robustness, a small value such as
1 ≤ ν < 5 needs to be chosen. We suggest to use ν = 1
(corresponding to Cauchy distribution) which yields the best
safeguard against outliers. If the underlying distribution is in
fact the nominal CNk(µ,Σ) instead of Ctk,ν(µ,Σ), then Σ̂ is
not a consistent to Σ but to σΣ, where σ ∈ R+ is the solution
of

E[uν(R/2σ)R/σ] = 2k (7)

and R is a random deviate from a chi-square distribution with
2k degrees of freedom. Thereby, σ can be solved numerically
since (7) can be written as a simple integral. Then the
estimator (1/σ)Σ̂ is a consistent estimator of the covariance
matrix Cov[zi] = Σ in the Gaussian case. However, in many
applications, the covariance matrix is needed only up to a
multiplicative scalar factor and therefore the calculation of the
consistency factor σ is indeed not necessary.



B. M-estimators

Since the ML-estimators are the solutions to a set of implicit
equations (1) and (2), they clearly belong to a class of M -
estimators introduced by Maronna [6], and to a more restricted
class of redescending M -estimators studied by Kent and Tyler
[10]. The authors of [6] and [10] consider the real case only,
but in an analogous fashion we may define M -estimators for
complex data set as follows.

Definition 2: The simultaneous M-estimators µ̂ ∈ Ck and
Σ̂ ∈ Pk of the location µ and scatter Σ based upon a sample
z1, . . . , zn in Ck are the solutions to the estimating equations:

µ̂ = ave{u1(si)zi}/ave{u1(si)}
Σ̂ = ave{u2(si)(zi − µ̂)(zi − µ̂)H},

where si is given by (3) and u1 and u2 are real valued
functions.

As noted earlier, we will focus on this paper to the scatter-
only case and assume µ = 0. Thus the M -estimate of scatter
Σ̂ is the solution to

Σ̂ = ave{u2(zHi Σ̂−1zi)ziz
H
i }. (8)

Similarly as in Section II-A, Σ̂ can be calculated using real
arithmetics from the matrix components of the real 2k × 2k
PDS M -estimator of scatter Σ̃ satisfying

Σ̃ = ave{ũ2(z̃Ti Σ̃−1z̃i)z̃iz̃
T
i }, (9)

where ũ2(s) = u2(s/2). Obtaining the above relation with
the real M -estimator Σ̃ and the complex M -estimator Σ̂ has
theoretical and computational motivation: for existence and
uniqueness of the solution Σ̂ to (8) it is sufficient that the data
z̃1, . . . , z̃2n satisfies the conditions (see [6], [9]) needed for
the existence and uniqueness of the solution Σ̃ to (9).

Huber’s M -estimator. The complex analogue of Huber’s
M -estimator of scatter, denoted by M(q), can be defined with
the weight function

u2(s) =

{
1/β for s ≤ c2
c2/sβ for s > c2

where c is a tuning constant defined so that q = Fχ2
2k

(2c2).
The scaling factor β is defined as

β = Fχ2
2(k+1)

(2c2) + c2(1− q)/k,

where Fχ2
k

denotes the cdf of real chi-square distribution with
k degrees of freedom. The scaling factor makes the scatter
estimator consistent for Cov(z) in the complex Gaussian case.
The algorithm described in Huber [7], Section 8, can be
modified for the complex case.

Tyler’s M -estimator. The complex analoque of Tyler’s [8]
M -estimator is obtained with u2(s) = k/s. Complex Tyler’s
scatter Σ̂ thus satisfies

Σ̂ = k ave{zizHi /(zHi Σ̂−1zi)}. (10)

The solution is also the ML-estimate of scatter for the complex
angular central Gaussian distribution as was noted by Kent

[12]. Note also that with ν = 0, uν() gives Tyler’s weight
function (but naturally ν = 0 does not correspond to any
t-distribution). The solution Σ̂ can be calculated as follows.
Given an initial estimate Σ0 ∈ Pk, define

Σm+1 = k ave{zizHi /(zHi Σ−1
m zi)}.

As in the real case [10], under mild regularity conditions on
the data (e.g. n > k, zi 6= 0), the iterations Σm+1 converge
to the solution Σ̂ of (10) which is unique up to scaling.

III. DOA ESTIMATION

A. Signal Model

Consider an array of k elements and p sources impinging
on the array, where k > p. Assume that the incoming signals
s1(t), . . . , sp(t) arriving at distinct DOAs θ1, . . . , θp at time
t are from point sources at far field, narrowband and non-
coherent. As a result, at time t, we read a k × 1 dimensional
array output (snapshot) z(t) ∈ Ck which is a weighted linear
combination of the signal sources s(t) = [s1(t), . . . , sp(t)]

T ∈
Cp corrupted by additive noise n(t) ∈ Ck, that is,

z(t) = A(θ)s(t) + n(t),

where A(θ) is the k × p array steering matrix parametrized
by the vector of DOAs θ = (θ1, . . . , θp)

T . The noise is
assumed to be zero mean, spatially white with variance σ2

and uncorrelated with the signals. A(θ) is assumed to be full
rank. The observed data z1 = z(t1), . . . , zn = z(tn) sampled
at discrete time instants t1, . . . , tn are then modeled as i.i.d.
random vectors.

Observe that in the noiseless case the measurements lie
in a p-dimensional signal subspace spanned by the columns
of A(θ). But since white noise with diagonal scatter matrix
is present any collection z1, . . . , zk+1 of measurements will
with probability one span all Ck yielding the so called low-
rank signal in full-rank noise data model. The assumptions of
k > p and spatially white noise are restrictions needed by
the subspace DOA methods. In some cases the noncoherence
assumption of the signals can be relaxed [1].

B. Subspace Methods

Subspace methods [1] employ the structure of the covari-
ance matrix of z(t),

Cov[z(t)] = A(θ)ΩA(θ)H + σ2I, (11)

where σ2I = Cov[n(t)] and Ω = Cov[s(t)] are the noise
and signal covariance matrices respectively. Consequently the
k − p smallest eigenvalues of Cov[z(t)] are equal to σ2 and
the corresponding eigenvectors γp+1, . . . , γk are orthogonal
to the columns of A(θ). These eigenvectors span the noise
subspace and the eigenvectors γ1, . . . , γp corresponding to p
largest eigenvalues span the signal subspace (the column space
of A(θ)).

The subspace DOA estimation methods are based on dif-
ferent properties of the signal and noise subspaces. Basically,
subspace methods needs to solve the following two problems:



1) Find an estimate of the signal subspace ΓS = [γ1 · · · γp]
or noise subspace ΓN = [γp+1 · · · γk]

2) Find θ̂ which best matches the derived criterion, for
example, find θ̂ such that distance between subspace
A(θ̂) and the estimated subspace Γ̂S is minimal in some
sense.

Commonly, the subspace methods differ only in how they
approach Problem 2 since the estimates Γ̂N or Γ̂S are obtained
from eigenvectors of S = ave{zizHi }. Problem 1, however, is
in a way more crucial: no matter how clever criterion is used
or how distances between subspaces are measured in Problem
2, the DOA estimate θ̂ will be unreliable if the estimates of
the subspaces Γ̂S or Γ̂N are unreliable.

To obtain an estimate Γ̂N or Γ̂S , we need to estimate
the covariance matrix only up to a scalar factor. We may
plug in the estimates of Γ̂S or Γ̂N based on M -estimators
to existing subspace methods for solving Problem 2. This
approach has been used also by other authors. For example,
Visuri, Koivunen and Oja [5] employed spatial sign covariance
matrix and Williams and Johnson [3] used ML estimation.

C. Stochastic Maximum Likelihood

In the classical stochastic ML (SML) approach [1] the
noise and the signal distribution are modeled as complex
Gaussian, in which case z(t) ∼ CNk(0,Σ) (recall that Σ =
Cov[z(t)]) and the signal parameters θ, Ω ∈ Pp, σ2 ∈ R+ and
consequently Σ are found by solving

{θ̂, Ω̂, σ̂2} = arg min
θ,Ω,σ2

{log[det(Σ)] + Tr[Σ−1S]},

where S = ave{zizHi }. We may then construct the scatter
matrix estimate by

Σ̂ml = A(θ̂)Ω̂AH(θ̂) + σ̂2I. (12)

Although optimal (if the model is correct), the drawback of
the SML method is that it leads to a difficult multidimensional
nonlinear optimization problem. To obtain robust estimates of
DOAs, one could use the complex multivariate t-distribution
of Definition 1 as a (robust) array output model distribution.
Thus, if we model z(t) ∼ Ctk,ν(0,Σ), the ML estimate of the
signal parameters are found from

{θ̂, Ω̂,σ̂2} = arg min
θ,Ω,σ2

{
log[det(Σ)]+

{(2k + ν)/2}ave{log(1 + 2zHi Σ−1zi/ν)}
}
.

See also Williams and Johnson [3] who used heavy-tailed array
output distributions together with the SML approach.

IV. SIMULATION EXAMPLES

A. Subspace DOA Estimation

We now compare the quality of the MUSIC pseudospec-
trum associated with each estimate of the scatter matrix.
A 8-element (k = 8) Uniform Linear Array (ULA) with
interelement spacing equal to λ/2 was used. Two uncorrelated
signals (p = 2) with SNR 20 dB are impinging on the
array from DOA’s θ1 = −2o and θ2 = 2o (broadside).

Under these assumptions the covariance matrix (when it exists)
is Cov[z(t)] = E(|s1(t)|2)A(θ)A(θ)H + E(|n1(t)|2)I . In
our study n = 300 snapshots are generated from complex
Gaussian CNk(0,Σ) and complex Cauchy Ctk,1(0,Σ). Recall
that Σ is proportional to Cov[z(t)] (when it exists).

We estimated the noise subspace ΓN needed by MUSIC
using: a) classical sample estimator S = ave{zizHi }, b) ML-
estimate of scatter (4) for the Cauchy distribution (i.e. ν = 1),
denoted by t1M -estimator, c) Huber’s M -estimator M(q) with
choice q = 0.9, d) ML estimate Σ̂ml (12) assuming the
underlying CES distribution of the snapshots (i.e. complex
Gaussian and Cauchy) is known. We assumed that the number
of signals is known. Note that the SML method yields the
DOA estimates directly. However, in our simulation study,
also the MUSIC pseudospectrum based on Σ̂ml is included
to facilitate the comparison with the suboptimal but more
practical subspace methods based on scatter matrix estimators.

Figure 1 depicts the MUSIC pseudospectrum associated
with the various estimates of the scatter matrix for five
simulated complex Gaussian and Cauchy snapshots. The
pseudospectrum using ML-estimate Σ̂ml which exploits the
structure of the covariance matrix (hermitian Toepliz) and the
underlying model distribution is, as expected, the best in the
sense that the signals are more accurately resolved. We notice
that all the estimators are able to resolve the two sources in
the Gaussian case, and that the scatter estimators, S, t1M -
estimator and Huber’s M(0.9)-estimator, perform comparably.
In the Cauchy case, however, the classical sample estimator S
is not able to resolve the sources. The robust M -estimators,
however, yield reliable estimates of the DOAs.

B. Estimating number of signals

We now compare the performance of the scatter estimators
in resolving the number of sources using the Minimum De-
scription Length (MDL) criteria (see [13]). In other words, the
eigenvalues based on different scatter estimators are plugged
in to the MDL criterion. Recall that classically the estimates
of the eigenvalues are based on the sample covariance matrix.
The ULA contains k = 8 sensors with half a wavelength in-
terelement spacing and the DoAs are at θ1 = −5o and θ2 = 5o.
Two uncorrelated Gaussian signals s1(t) and s2(t) with equal
power 20 dB are impinging on the array. The components
n1(t), . . . , nk(t) of the additive noise n(t) are modeled as
i.i.d. with complex symmetric α-stable (SαS) distribution [4]
with dispersion γ = 1 and values α ranging from α = 1
(complex Cauchy noise) to α = 2 (complex Gaussian noise).
Simulations results are based on 200 Monte Carlo runs with
n = 300 as the sample size. Figure 2 depicts the relative
proportion of resolved sources using MDL criterion based on
the S and t1M -estimator. Tyler’s and Huber’s estimators are
omitted in the Figure since percentage of the resolved sources
differed from those of t1M -estimator by at most 2% for all
cases of α-values. We notice that MDL criterion based on
t1M -estimator is able to maintain 100% correct estimates of
the number of signals for 1.4 ≤ α ≤ 2 and has 87% correct
detection as its worst case for α = 1. The performance of the



−15 −10 −5 0 5 10 15
−10

0

10

20

30

40

50

60

70

−15 −10 −5 0 5 10 15
−10

0

10

20

30

40

50

60

70

−15 −10 −5 0 5 10 15
−10

0

10

20

30

40

50

60

70

−15 −10 −5 0 5 10 15
−10

0

10

20

30

40

50

60

70

−15 −10 −5 0 5 10 15
−10

0

10

20

30

40

50

60

70

−15 −10 −5 0 5 10 15
−10

0

10

20

30

40

50

60

70

−15 −10 −5 0 5 10 15
−10

0

10

20

30

40

50

60

70

−15 −10 −5 0 5 10 15
−10

0

10

20

30

40

50

60

70

Fig. 1. MUSIC pseudospectrum based on S (first row), t1M -estimator
(second row), M(0.9)-estimator (third row) and Σ̂ml (fourth row) for five
simulated data sets generated from complex normal (first column) and Cauchy
(second column) distribution.

classical MDL employing the sample covariance matrix S is
disastrous: it is able to estimate the number of signals reliably
only for α = 2, i.e. the Gaussian case.

V. CONCLUSION

In this paper we introduced M -estimators of scatter (i.e.
pseudo-covariance) for complex data set observed by receiver
antenna array. Simple iterative algorithm may be used for all of
the considered M -estimators. The ML-estimator correspond-
ing to complex t-distribution and Tyler’s scatter estimator are
especially convenient since, unlike the Huber’s M -estimator,
they do not require any tuning constants. Our simulation stud-
ies demonstrated that number of signals and subspace DOA
estimation methods based on M -estimators perform compara-
bly to optimal methods under nominal Gaussian conditions but
have a superior performance under heavy-tailed non-Gaussian
environments. Furthermore, out simulation study demonstrated
that the complex multivariate t-distribution is also convenient
as a model distribution for the SML approach yielding robust
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Fig. 2. Relative proportion of resolved sources using MDL criterion based
on the sample covariance matrix and the t1M -estimator.

DOA estimates. Robustness of the considered M -estimators
follows from the fact that, unlike the regular mean and
covariance, they possess a bounded influence function and a
positive breakdown point [14]. More theoretical treatment of
the complex M -estimators and CES distributions can be found
in [14].
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