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We demonstrate theoretically that, by using external magnetic fields, one can imprint pointlike

topological defects on the spin texture of a dilute Bose-Einstein condensate. The symmetries of the

condensate order parameter render this topological defect to be accompanied with a vortex filament

corresponding to the Dirac string of a magnetic monopole. The vorticity in the condensate coincides with

the magnetic field of a magnetic monopole, providing an ideal analogue to the monopole studied by Dirac.
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The existence of particles with a nonzero magnetic
charge, that is, magnetic monopoles, has far reaching
implications for the laws of quantum mechanics, theories
of elementary particles, and cosmology [1–3]. However,
experimental evidence of magnetic monopoles as funda-
mental constituents of matter is still absent, and hence
there is great incentive to search corresponding configura-
tions in experimentally more tractable systems. Several
aspects of monopoles have been investigated in the context
of liquid crystals [4], the anomalous quantum-Hall effect
[5], exotic spin systems [6], and topological insulators [7].
Yet, an experimental realization of a magnetic monopole as
an emergent particle or any analogy of the Dirac monopole
[1] is still lacking. One of the candidate systems has been
superfluid 3He [8–11], but to date there are no direct
experimental observations of such topological excitations.

Dilute Bose-Einstein condensates (BECs) of alkali
atoms with a hyperfine spin degree of freedom combine
magnetic and superfluid order and share many features
with the superfluid 3He [11–14]. The order parameter
describing such systems is typically invariant under global
symmetries that form a non-Abelian group. Monopoles and
other textures can occur if this symmetry is spontaneously
broken. Alternatively, light-induced gauge potentials can
provide a realization of a magnetic monopole [15,16]. In
the simplest case of a spin-1 condensate, a variety of
different topological defects such as monopoles [17], non-
trivial textures [18], and, in particular, analogies to the
Dirac monopole [19] have been investigated. In the related
two-component condensates, Skyrmions have been widely
studied [20]. An experimental realization of any of these
topological states still remains a milestone in the field of
cold atoms.

In this Letter, we consider a spin-1 BEC which in the
absence of external magnetic fields has two phases: a
ferromagnetic and an antiferromagnetic (polar) phase
[13]. In the presence of a strong enough external magnetic
field, the spin of the condensate aligns with the local field,
and the condensate order parameter corresponds to the

ferromagnetic phase. By modifying the external field adia-
batically, multiquantum vortices can be imprinted into the
condensate [21]. The method we employ here utilizes the
same ideology in this respect, but due to the nontrivial
three-dimensional structure of the magnetic field we are
able to create a pointlike defect to the spin texture of the
condensate giving rise to a vorticity equivalent to the
magnetic field of a magnetic monopole.
Let us assume first that the hyperfine spin of the con-

densate aligns with an external magnetic field which is a
combination of two quadrupole fields and a homogeneous
bias field

B ðr; tÞ ¼ B0
1ðxx̂þ yŷÞ þ B0

2zẑþ B0ðtÞb̂; (1)

where Maxwell’s equations impose the condition 2B0
1 þ

B0
2 ¼ 0. The direction of the bias field is determined by the

unit vector b̂. Such a combination of quadrupole fields is
produced by, e.g., a crossing pair of Helmholtz coils, and it
has recently been shown to generate knotlike textures in
antiferromagnetic BECs [18]. The point where the external
magnetic field vanishes is the center of a monopole defect
in the spin texture S ¼ �yF�, given by the condensate
order parameter � ¼ ðc 1; c 0; c�1ÞT and the spin-1 ma-
trices F ¼ ðF x;F y;F zÞ. This monopole can be charac-

terized by the charge [19]

Q ¼ 1

8�

Z
�
d2�i "ijk"abcŝa@jŝb@kŝc; (2)

where ŝ ¼ S=jSj, the integral is taken over a surface �
enclosing the defect, and the Levi-Civita symbol is denoted
by "���. For the magnetic field in Eq. (1), the charge of the

spin texture becomesQ ¼ �1. A schematic illustration of
two possible textures is shown in Fig. 1.
For the ferromagnetic order parameter manifold, the

second homotopy group is trivial, and isolated monopole
defects are not allowed. Thus the monopole defect in the
spin texture is associated with a vortex filament extending
outwards from the monopole giving rise to a physical Dirac
string [1,19]. Since the monopole is located at the zero of
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the magnetic field, adjusting the bias field B0ðtÞ moves the

monopole along the axis given by b̂. In particular, the
monopole can be brought in from outside of the condensate
by ramping down adiabatically an initially large bias field.

The superfluid velocity can be defined as vs ¼
�i@�yr�=m, where � ¼ ffiffiffiffi

%
p

� , % is the density of parti-
cles, andm is the mass of the constituent atoms [13,19,22].
For simplicity, we first assume that b̂ ¼ ẑ and define new
coordinates by ðx0; y0; z0Þ ¼ ½x; y; 2z� B0ðtÞ=B0

1�. In the
adiabatic limit, the condensate order parameter corre-
sponds to the local eigenstate of the linear Zeeman opera-
tor gF�BB �F . Assuming that the local Zeeman energy is
minimized for B0

1 < 0, B0 > 0, and gF < 0, we obtain in
the F ¼ 1 case

v s ¼ @

m

1� cos#0

r0 sin#0 ê’0 ; (3)

where ðr0; ’0; #0Þ refer to spherical coordinates in the new
coordinate system. A similar result has also been obtained
in Ref. [19] for the hedgehog texture of Fig. 1(b).

The superfluid velocity vs is equivalent to the vector
potential of a magnetic monopole and has a Dirac string
along the negative z0 axis if B0ðt ¼ 0Þ> 0. For spinor
condensates the superfluid flow can be characterized by
its vorticity �s ¼ r� vs, which becomes

� s ¼ @

m

1

r02
êr0 ; (4)

indicating that vorticity corresponding to the imprinted
monopole defect is equivalent to the magnetic field of a
magnetic monopole; see Fig. 1. In particular, the topology
of �s is unaffected by the scaling and translation, and
hence �s remains equivalent to the hedgehog texture of
Fig. 1(b) also in the original coordinate system. The
Mermin-Ho relation for general spin F [22,23] yields

� S ¼ mF@

2m
"ijkn̂irn̂j �rn̂k; (5)

where n̂ ¼ B=jBj. In the adiabatic limit, spin S aligns with
n̂, and the chargeQ in Eq. (2) is thus directly proportional
to the flux of �s through a surface � enclosing the defect.
The flux of the monopole is supplied by the Dirac string
which is omitted from Eq. (4). In the case of F ¼ 1, the
monopole flux is 2h=m, that is, two angular momentum
quanta, which implies that the vortex filament terminating
at the monopole must carry the same amount of vorticity.
The situation is thus similar to the Dirac monopole in
superfluid 3He-A [9,11]. For a general spin-F BEC, the
Dirac string carries 2F quanta of angular momentum.
Nonadiabatic effects arising from interactions between

atoms, kinetic energy, and the finite time scales in manipu-
lating the external magnetic fields can render the spin to
deviate from the direction of the local magnetic field. We
take these effects into account by solving the dynamics of
the spinor order parameter from the Gross-Pitaevskii (GP)
mean-field equation [12,13]

i@@t� ¼ ½ĥ0 þ c0j�j2 þ c2ð�yF�Þ �F ��; (6)

where the interaction strengths c0 and c2 depend on the
scattering lengths in the different channels corresponding
to the total hyperfine spin of two scattering particles [13].

The single-particle operator ĥ0 is given by ĥ0 ¼ � @
2

2mr2 þ
Vopt þ gF�BB �F , where the optical potential is Vopt ¼
mr2!2

r=2 and we take other parameters according to 87Rb
implying ferromagnetic interactions.
In the simulation, energy, time, and spatial variables are

given in the units of @!r, 1=!r, and ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!r

p
, re-

spectively. For !r ¼ 2�� 250 Hz, the dimensional val-
ues of the parameters are given by B0

1 ¼ �0:05 T=m and
B0ðt ¼ 0Þ ¼ 1 �T corresponding to 105 atoms. We have
also considered a different atom number and antiferromag-
netic interactions [24]. The volume considered in the
simulation is 24� 24� 27 in the units of ar and the size
of the computational grid varies from 141� 141� 161 to
175� 175� 195 points. In the simulation, we first calcu-
late the ground state of the system corresponding to the
initial values of the magnetic fields using the successive
over relaxation algorithm and then propagate the initial
state according to the time-dependent GP equation (6)
using the split operator method combined with the
Crank-Nicolson method. The time step used in the simu-
lation is 10�4=!r.
Since the Dirac string carries two quanta of angular

momentum, it is expected to be prone to splitting into
two separate strings each carrying one angular momentum
quantum. To avoid this scenario, we first imprint the
monopole defect with the bias field parallel to the z axis.
The particle density from this simulation is shown in Fig. 2.
The bias field is ramped linearly down to zero in a period
t0 ¼ 50=!r and then equally to negative values. The spin
texture S takes the form of Fig. 1(a), and the corresponding
vorticity is shown in Fig. 3(a). Since the monopole moves
along the symmetry axis of the system, the Dirac string
remains intact. The created monopole appears to be rela-

FIG. 1 (color online). Possible configurations for the spin
texture. Both configurations are characterized by the same
charge Q ¼ 1, but only (a) can be imprinted using the quadru-
pole fields. The hedgehog texture (b) describes the vorticity �s

corresponding to the spin texture in (a). In both cases, the vector
fields are symmetric with respect to rotations about the axis on
which the singularity filament (zigzag line) lies.
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tively stable: After the bias field was ramped down, the
monopole was allowed to evolve in time for a period 5=!r

in the presence of the two quadrupole fields resulting in
slow small-amplitude oscillations along the z axis.
Otherwise, the monopole remained intact. Because of non-
adiabatic effects, the monopole defect in S lags slightly
behind the zero point of the magnetic field and the Dirac
string deviates from a pure �-function distribution. For
antiferromagnetic interactions [24], we obtained essen-
tially the same behavior as in the case of ferromagnetic
interactions.

If the rotation symmetry with respect to the z axis is

explicitly broken by a bias field with b̂� ẑ � 0, we ob-
serve the Dirac string to split into two parts; see Fig. 3(b).
The particle density is not depleted all of the way along the
two strings suggesting that nonadiabatic effects become
more pronounced. The spin density jSj, on the contrary,
exhibits a clear depletion along the path of the two Dirac
strings [26], and together with the state-of-the-art experi-
mental methods [27,28] it should give an efficient signa-
ture of the monopole. In the experiments, a typical
imperfection is a slight misalignment and slow drift be-
tween the center of the optical trap and the symmetry axis

of the magnetic field. We model this by taking b̂ k ẑ and
adding a small constant term ~B0x̂ to the magnetic field in
Eq. (1). This introduces an offset equal to 7% of the
effective radius of the condensate to the path traced by
the monopole with respect to the z axis. The offset breaks
the rotation symmetry of the system, but the Dirac string of
this off-axis monopole remains undivided (data not shown)
suggesting that the instability of the string becomes visible
only for fairly large perturbations.

Since the monopole defect in the spin texture is topo-
logically unstable, it can be removed by local surgery. Thus
we consider the dynamics of the monopole after the mag-
netic fields pinning the monopole are turned off. We have
carried out simulations in which the external magnetic
fields are switched off immediately or ramped down with
constant speed in a period t1. For the finite switch-off
times, the decay of the monopole initiates already while
the external fields are being ramped down. The initial state
corresponds to t0 ¼ 50=!r in Fig. 2.
For ferromagnetic interactions, we have used t1 ¼ 0,

t1 ¼ 2:5=!r, and t1 ¼ 5:0=!r. In all three cases, the quali-
tative features are the same, and they are shown schemati-
cally in Fig. 4 (see also [26]). For the monopole defect in
the spin texture, the monopole unwinds itself along the
Dirac string and results in a closed vortex ring; see
Figs. 4(a)–4(d). In the course of unwinding, a cylindrical
domain wall separating the expanding core of the Dirac
string from the rest of the texture is formed. Depending on
how fast the external fields are turned off, the domain wall
is either directly pushed out of the condensate (slow turn-
off) or contracted to another vortex ring which eventually
drifts out of the condensate (rapid turnoff). The resulting
vortex ring persists until the end of the simulation which in
all three cases spans a period 10=!r. Unwinding of the
monopole in the vorticity�s is depicted in Figs. 4(e)–4(h).
During the unwinding of the monopole, vorticity concen-
trated at the Dirac string diffuses outwards and tends to
relax towards more uniformly distributed values.
For antiferromagnetic interactions, we have carried out a

simulation with magnetic fields ramped down linearly in a
period t1 ¼ 2:5=!r. The results agree qualitatively with
the ferromagnetic case, and the end configuration is again a
vortex ring in the spin texture. Another vortex ring is
generated at the boundary of the condensate, and it persists

FIG. 2 (color online). Particle density at different stages of
monopole creation. The monopole is created by ramping the bias
field down in a period t0 ¼ 50=!r. Blue (dark) color denotes
densities from % ¼ 3:8� 10�5N=a3r to % ¼ 1:8� 10�4N=a3r
and green (light) color densities from % ¼ 1:4� 10�3N=a3r to
% ¼ 1:5� 10�3N=a3r . The Dirac string is identified as the
density depletion that propagates through the condensate.

FIG. 3 (color online). Vorticity corresponding to the mono-
pole. Vorticity �s is computed numerically after the bias field is
ramped from B0ð0Þ ¼ 1 �T to B0ðt0Þ ¼ 0, and it is shown in the
units of h=mar. (a) t0 ¼ 50=!r and the bias field is parallel to
the z axis. (b) t0 ¼ 40=!r and the bias field is parallel to the
vector 3=2x̂þ ŷþ 14=3ẑ. The magnitude of the vorticity is
denoted by color, and the map is linear between the minimum
and maximum values. For clarity, only the relevant parts of the
vector field �s are shown.
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until the end of the simulation. The length of the simulation
was 6=!r. We note that simulations concerning the un-
winding of the monopole span a relatively short period, and
it remains a question for future research to study whether
the evolution of the created monopoles differs qualitatively
between ferromagnetic and antiferromagnetic interactions.
From the global symmetries of the order parameter in the
absence of external fields [13,29], one could expect differ-
ent behavior by purely topological reasoning [4].
Furthermore, we have not included the possible magnetic
dipole-dipole interaction which may change the dynamics
of the monopole unwinding. In particular, the spin texture
in Fig. 1(a) resembles the so-called two-z-flare texture that
was found to be stabilized by the dipole-dipole interaction
[30].

In conclusion, we have introduced and modeled a robust
method to create Dirac monopoles in spinor Bose-Einstein
condensates. Using a tomographic reconstruction of the
three-dimensional density profile [31], the Dirac string can
be detected, and the corresponding spin texture can be
explored using the in situ phase contrast imaging [27,28]
providing an unambiguous signal of the monopole.
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FIG. 4 (color online). Unwinding of the monopole defect in
the spin texture S (a)–(d) and in the vorticity�S (e)–(h). Arrows
pointing upwards (downwards) from the plane are denoted by �
(�). Along the dashed line in (b) and (c), the spin points either
upwards or downwards from the plane. The unwinding in �S is
shown in a plane perpendicular to the z axis, and it is qualita-
tively independent of the z coordinate. High-resolution figures
from the simulation corresponding to these schematic illustra-
tions are available in Ref. [26].
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