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deduce periods when simultaneously measured brain activations would yield deviant activation levels due to 
unphysiological causes. 
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activation data, could occur in the absence of corresponding physiological signal, resulting from the sole signal change. 
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BOLD blood oxygenation level dependent 

EPI echo planar imaging 

FID free induction decay signal 

fMRI functional magnetic resonance imaging 

FOV field of view 

FT Fourier transform 

FWHM full width at half maximum 

GRE gradient recalled 

HRF haemodynamic response function 

MR magnetic resonance 

MRI magnetic resonance imaging 

NMR nuclear magnetic resonance 

r.f. radiofrequency 
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Symbols 

,  magnetic field 

,  static polarizing magnetic field of the MRI scanner 

 excitation magnetic field 

 component of magnetic field in the z-direction 

 inhomogeneity of z-component of magnetic field 

 magnetic volume susceptibility 

 unit vector in z-direction 

 energy difference between spin states 

 functional signal to noise ratio 

 gradient of the z-component of magnetic field 

 gradient of the z-component of magnetic field in the i-direction 

 gyromagnetic ratio 

 Planck’s constant  1.055  1034 Js 

 spin quantum number 

 imaginary unit or index 

 Boltzmann constant  1.381  1023 m2kgs2K1 

 k-vector 

,  k-space coordinates 

 magnetisation 

,  magnetisation in the i-direction  

 magnetic quantum number 

 nuclear magnetic moment 

 number of samples, counting operator 

 angular velocity, angular frequency 

 longitudinal relaxation rate 

 transverse relaxation rate 

 effective transverse relaxation rate 

 inhomogeneity contribution to transverse relaxation rate 

 position vector 



 

 

 spin density 

 signal intensity 

 spin (angular momentum) 

 standard deviation 

 temperature 

 longitudinal relaxation time 

 transverse relaxation time 

 effective transverse relaxation time 

 time 

 azimuth angle 

, ,  spatial coordinates parallel to the frequency encoding, phase encoding, and 

slice selection gradients, respectively 

,  spatial coordinates 

 spatial coordinate in the direction of B0 

 

The International System of Units (SI) is used throughout. 



 

 

1 Introduction 

Brain scanning technologies help appropriate diagnostics and treatments of some of 

the most oppressive illnesses that impair the person’s ability to think, sense, and act. 

Magnetic resonance imaging1 (MRI) is perhaps the most versatile of those 

technologies, having provided a unique view to the brain in action, revolutionising our 

concepts of brain function, as well as deciphering a multitude of physical properties 

without changes in the equipment. Applications of MRI usually produce maps where 

anatomically constrained regions appear distinctly. This contrast can be programmed 

to reflect various features of or within tissues.  

Functional magnetic resonance imaging (fMRI) comprises methods whereby brain 

function can be studied employing MRI. Since its debut in the early 1990s, fMRI has 

matured and become a common imaging tool, especially in basic research, to provide 

new information on human brain function, including sensory systems, memory, 

cognition, social interaction, and even conscious perception. Beyond neuroscience, 

fMRI experimentation combines ingredients of statistics, physiology, physics, 

engineering, signal processing, and psychology, to name a few.  

A robust and the most commonly utilised MRI signal reflecting neuronal activity 

derives from blood oxygenation level dependent (BOLD) modulations of the magnetic 

field. Since oxygenated blood is more diamagnetic than oxygen-depleted blood, and 

because nutrition and oxygen are supplied locally in the activated brain region on 

demand and even in excess of demand, the BOLD signal becomes informative of 

changes and locations of brain activations. 

Echo-planar imaging (EPI) is the predominant MRI technique used to unravel the 

BOLD signal. The ultra-fast EPI is capable of scanning a complete plane image in tens 

of milliseconds. It is, however, intrinsically prone to artefacts, including those of poor 

magnetic field homogeneity. Both the speed and the particular type of artefact-

vulnerability serve the purpose of acquiring information on brain function, because 
                                                 
1 Literature references are postponed to the sections following this Introduction. 
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speed is required to track function—it happens that the BOLD signal changes 

following brain activations can last from a few seconds upwards—and the alterations 

of magnetisation following blood oxygenation level variations transpire by the same 

mechanism as the common susceptibility artefacts.  

As the BOLD signal variation results from varying external magnetic field via 

magnetisation of blood, modifying the field by other means in a model system may 

cause similar effects to the nuclear magnetisation that eventually is measured and gives 

the signal. Whereas changes of magnetic (volume) susceptibility ( ), and 

consequently magnetic field homogeneity, bring about the magnetic field changes in 

the brain, a model system can utilise, e.g. electromagnetic induction to alter magnetic 

field homogeneity and that way simulate the BOLD responses.  

But why is it desirable to investigate fMRI signal in a system other than the brain? 

Pragmatic reasons include the unyielding patience and ability of a model system, a 

machine, to stay immobile while an investigator turns knobs to perfect the 

measurement setup, its placid temper guaranteeing (almost) identical state and 

structure day after day, and the constant availability of the imaging target. It would be 

valuable to have means to calibrate fMRI scanners or studies, preferably during every 

measurement session. When this work commenced, apparently such devices were not 

available, but when we finalised the first system, two prototype devices for basically 

the same purpose had been demonstrated, one about a month earlier and the other the 

previous year. Yet another, more fundamental reason is the circularity of developing 

methods to study a limitedly characterised system, and validating them only against 

the system itself.  

In this dissertation I studied fMRI with artificial imaging objects (for specific goals of 

the present work, see Chapter 3: Objectives). A major share of the work was done on 

assessing features desirable for such a model system, a phantom in imaging language, 

to be able to examine issues specific to fMRI, without resorting to scanning brains. 

Developing appropriate phantoms, and gaining the skills and knowledge to devise 

purposeful phantoms for specific problems was the initial objective, because only that 

enables approaching applications. This study commenced from a test of feasibility of 

controllably time-variant MRI signal phantoms, continuing through further 

developments on such phantoms, and eventually to an application exploring some 

fundamental aspects of transient signal components in fMRI, and the consequent 

proposition of a mechanism that could explain some apparent deviation of previous 

experiments and theory. 



 

 

3

First, a relatively brief review of MRI, fMRI, and methodology relevant to this study is 

presented in Chapter 2. In Chapter 3, the objectives of the dissertation are laid out. 

Chapter 4 gives a succinct review on employed materials and methods, and 

summarises the publications that in part constitute this dissertation. Finally in 

Chapter 5, outcomes of the studies are discussed, and concluding methodological 

considerations and future directions wrap up this thesis.  

Finally, publications P1–P4, included as appendices to this general summary, contain 

most of the original findings of this dissertation. They disclose the individual research 

hypotheses, methods, experiments, and specific discussions. 
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2 Background 

Molecules, the subject of study of nuclear magnetic resonance (NMR) and magnetic 

resonance imaging (MRI), are composed of atoms containing electrons and nuclei. 

Interactions of and among these constituents give the whole world its characteristics. 

Each individual atom is capable of receiving and emitting a variety of differently 

energised photons. In MRI, the rays observed are of feeble energy, arising from the 

hyperfine splitting of nuclear energy levels; the energy of a unit of NMR radiation is 

about a millionth of that of visible light. Sophisticated equipment is required to 

animate and detect the tiny NMR signals.  

The following sections describe concisely the physical and technological framework of 

this thesis, followed by a brief review of some related physiological aspects. 

Nuclear  magnetic  resonance  

Already 64 years ago, Bloch, Hansen, and Packard (Bloch 1946; Bloch et al. 1946a,b) 

and independently Purcell, Torrey, and Pound (1946) discovered interactions occurring 

between nuclei and radio frequency fields in the presence of a strong external magnetic 

field. Bloch (1946) was able to derive expressions for the dynamic behaviour of 

nuclear magnetisation and show that the nuclear spins behave as through 

electromagnetic induction. Purcell et al. (1946) exposed the quantum nature of the 

nuclear spin resonance. Immediately upon their discovery, nuclear magnetic relaxation 

properties were used to explain details of the structure of matter. 

Four years later in 1950, Erwin Hahn discovered that nuclear magnetic signal could be 

recalled by subsequent radio frequency (r.f.) pulses, after the initial signal was gone. 

Both the r.f. pulse technique, applied in Bloch’s work too, and the discovery of the 

nuclear magnetic memory were crucial for the latter applications. Magnetic resonance 

imaging as we know it now would not exist without. The subsequent sections, up until 

the section of magnetic resonance imaging, are based on textbook material, mainly on 

Liang and Lauterbur (2000) and Levitt (2003).  



6 

 

All nuclei containing an odd number of protons or neutrons have a non-vanishing spin 

quantum number ( ) in their ground states. They have an intrinsic angular momentum, 

or spin ( ), which is related to the nuclear magnetic moment ( ) by  

 , (1) 

where  is the gyromagnetic ratio specific to the nuclear species. Particles with  

are often referred to as “spins”. The hydrogen nucleus 1H, or the proton, is a special 

case of such nuclei, and contemporary MRI concentrates heavily on proton imaging, 

although other NMR-active isotopes are utilized as well. For a proton,  and 

consequently two possible values exist for its magnetic quantum number,  

and ; its  = 267.522  106 rads1T1. In a non-zero magnetic field ( ), the energies 

of these two states differ by , which makes the proton susceptible for energy 

exchange, corresponding to electromagnetic radiation at angular frequency ( ) 

according to the Larmor equation,  

 . (2) 

At room temperature, in an external magnetic field, a large number of otherwise 

undisturbed protons polarise between the two quantum states according to the well-

known Boltzmann distribution: 

 , (3) 

where  is the counting operator,  is the Boltzmann constant, and  is the absolute 

temperature of the spin system. Noting that, as stated by Planck’s law, 

 , (4) 

where  is Planck’s constant (divided by 2), it follows from Eqs. 3 and 4 that at room 

temperature and 3 T there is about one excess 1H spin in the low energy state for every 

105 spins of a sample of water, meaning that both states are almost equally occupied. 

However, a sample of 1020 spins already contains a surplus of 1015 low-energy spins. 

This inequality can be harnessed to yield an NMR signal, which immediately shows 

why high , , and total number of spins all elevate the obtainable signal. 

Bloch (1946) found out that when a sample of spins is energised, the dynamic 

behaviour of the resulting magnetisation ( ) can be described by the (Bloch) 

equation: 
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 , (5) 

where , is time,  is thermal equilibrium magnetisation (Eq. 3), and  , , and 

 are the components of magnetisations in -, -, and -directions.  signifies the 

deviation from thermal equilibrium, and  can be identified as a precessional 

term, indicating that the magnetisation vector constantly traverses a circular path 

around  (if it is constant) at the Larmor frequency.  and  are 

sample-specific decay or relaxation rates of the nuclear spin population (where  and 

 are the corresponding relaxation times): 

After the excitation of a sample, the acquired signal decays at the apparent transverse 

relaxation rate, . While the -dependent signal is the primary signal observed, it 

has no fundamental significance, whereas the proper transverse relaxation rate, , 

tells about the spin–spin interactions occurring in the sample. The rates differ by a 

term quantifying magnetic field inhomogeneities, ; 

 . (6) 

 is not observed as a separate entity. The physical interpretation of transverse 

relaxation is the loss of phase coherence of the spins. When the spins in a certain part 

of the object are initially energised, they are coherent, i.e. they have gained directional 

“preference” in the transverse plane. As the neighbouring spins reside in, e.g. slightly 

different magnetic fields, their Larmor frequencies differ, whereby the resultant 

magnetisation vector starts to decay as the spins “point” to progressively more 

divergent directions. Eventually the phase coherence giving rise to transverse 

magnetisation disappears altogether. It is possible to recover the -part of the decayed 

signal with the method of spin echoes (Hahn 1950), which effectively recovers the 

phase coherence after a delay. 

A major contribution to  is due to magnetic susceptibility, which quantifies the 

magnetisability of materials. In biological systems the variations of  are small, e.g. 

the difference of completely oxygen depleted and fully oxygenated red blood cells is 

4    0.264  106 (Spees et al. 2001), which gives rise to a difference of 10 T in a 3-

T external field. 

 is called the longitudinal, or spin–lattice relaxation rate, which specifies the 

sample’s rate of return to the thermal equilibrium occupancy of  states after 



8 

 

excitation, or equivalently, the average duration the sample’s constituents retain the 

excess energy. For all MRI purposes, .  

NMR experiment 

In a typical pulsed NMR experiment, a sample is placed in or near a coil, which resides 

within a strong magnetic field ( ), commonly from several up to about 20 T. The coil 

is used as an antenna to emit radiation at the (Larmor) frequency the sample can 

absorb and re-emit in a direction perpendicular to z-direction that is defined by , i.e. 

. This perpendicular excitation field is called the -field. After the 

alternating current in the coil has been switched off, a similarly alternating and 

typically exponentially decaying voltage, referred to as the free induction decay signal 

(FID), can be measured from the receive coil(s) (that can be the same as the transmit 

coil). NMR signal corresponds to the transverse nuclear magnetization of the sample 

 , (7) 

where  is the signal,  is a position vector, 

 , (8) 

and  is the initial magnetisation.  

If Eq. 8 is regarded in a frame of reference rotating at the angular frequency , then in 

these rotating coordinates, the term  can be dropped from the expression, and the 

relaxation term can be considered quite conveniently when  is constant and 

homogeneous. On the other hand, if  (or ) is inconstant or inhomogeneous, the 

phases of spins located at different  vary as well, which gives rise to , and 

eventually, in rotating frame, the magnetic field can (approximately) be expressed as, 

 . (9) 

Further, as a specific example, if  at two locations differs by 4    0.264  106, e.g. 

after 1 ms, the phases of the spins at those locations have accrued a phase difference of 

27 radians (that can be rewound by the spin echo technique). 

Magnetic  resonance   imaging  

In 1973, Paul Lauterbur presented a methodology whereby the spatial distributions of 

signal sources could be distinguished at a greater accuracy than the wavelength of the 
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radiation involved in the effect (Lauterbur 1973). The methodology, then named 

zeugmatography, was applied to produce spatial maps of NMR signals, effectively 

beginning what would be known as MRI. 

The next section describes the equipment (scanner) used in MRI. The subsequent 

sections concentrate on the use of that equipment. Textbooks by Liang and Lauterbur 

(2000), Levitt (2003), and Bernstein et al. (2004) have mainly been used as references.  

Hardware 

The core components of an MRI scanner are the three different magnets: the main 

magnet, the r.f., and the gradient systems.  

The main magnet provides the static magnetic field . Modern scanners employ 

superconducting electromagnets to produce the main field to create as large a 

population difference as possible between the spin energy levels. A high  affects 

also the fMRI capabilities, apart from the maximum signal claimable from a sample, as 

will be discussed later. Currently, typical magnetic fields range from 1.5 to 7 T, and 

even higher in magnets used for human fMRI.  

Not only high strength but also excellent homogeneity of the main magnetic field is 

necessary for an MRI magnet, as is evident from Eqs. 6–8. Therefore, the magnet is 

“shimmed” (historically with iron “shims”, more recently using “shim coils”) to 

compensate for any inhomogeneities. The permanent shimming provides the magnet 

good overall homogeneity, but usually the field is further homogenised separately for 

each subject under study. As a side note, the imaging sequence may contain additional 

field homogenisation or shim compensation to counter the remaining inhomogeneities, 

to allow investigation of certain highly inhomogeneous targets (Glover 1999a; Truong 

and Song 2008), or to correct for varying homogeneity resulting from, e.g. head 

motion (Morrell and Spielman 1997; Ward et al. 2002). Notwithstanding the 

individual shimming, the operator of the scanner has no control over the main magnet.  

The r.f. system generates the resonance excitation fields and is also used for signal 

reception. It consists of three main parts, the transmitter, the receiver, and the coil. 

While coils are of high importance in MRI, their properties play little role in this work 

and thus will not be discussed further.  
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In normal (f)MRI use, the r.f. transmitter is tuned to the proximity of the Larmor 

frequency of protons at the  of the scanner. The amplitude, the exact centre 

frequency of the r.f. field and its phase can be controlled.  

The receiver is used to amplify, demodulate, and digitise the signal emitted by the 

sample after excitation and detected by the coil. In the demodulation process, a 

technique called quadrature detection is used to capture the complete complex-valued 

signal, whereby the phase of the signal can be recovered in addition to the magnitude 

(Levitt 2003). The digitised signal is then sent to reconstruction by specialised 

hardware. 

A gradient in MRI refers to a (linearly) varying -component of  ( ). An MRI 

scanner usually comprises three gradient systems, used mainly for spatial encoding, 

one for each physical rectangular coordinate , , and , produced by electric current 

driven in double-saddle type (  and ), and Maxwell-type ( ) coils wound around the 

cylindrical scanner bore aligned parallel to the -direction (the actual coil geometries 

are found with numerical simulation by the manufacturer, a practical tool for the 

simulation is the Biot–Savart law). The gradients are denoted as  for 

 = , , and , or . 

The users control these magnets with the user interface of the magnet console, where 

they, instead of giving gradient or r.f. instructions, set pulse sequence parameters, 

which convert to magnetic field pulses through the pulse sequence software. Thus, 

even though the magnet has only so many “moving parts” (shim coils, amplitudes of 

the three orthogonal Bz-gradient fields, r.f.-field’s amplitude, frequency, and phase, 

and the position of the bed), with the pulse sequence, the user can invoke an almost 

unlimited wealth of physical information of the sample. Whereas Eq. 9 presents a 

simplified expression for transverse magnetisation (proportional to signal) from the 

application of a single r.f. pulse, by application of further r.f. and gradient pulses the 

signal can be made sensitive to , , spin density, and diffusion in different 

proportions, as well as to many other parameters (Bernstein et al. 2004). 

Figure 1 provides an illustration of an MRI measurement environment. 
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Figure 1: A schematic of fMRI measurement environment. The subject is resting on the bed with head 

inserted within or near a receive or transmit/receive radiofrequency head coil. The coil and the subject 

are both retracted in the magnet bore to the homogeneous B0‐field, to the isocentre of the applicable 

gradient fields. The user can determine the pulse sequences on the magnet console and send them to 

the computer operating the measurement hardware. The measurement results, e.g. images or spectra, 

are  transferred back  to  the magnet  console  for operator's  reference  and  storage.  The  scan  control 

computer  also  informs  the  stimulus  delivery  system  about  every  radiofrequency pulse  in  the pulse 

sequence  software. Using  that  information,  the  stimuli  can be accurately  time‐locked with  the  scan 

progress. Various stimulus systems can be controlled by a separate computer that in the present study 

was used to control the fMRI phantom. 

Software 

In modern MRI scanners, a special kind of software determines what instructions are 

given to the hardware producing, among other things, time-dependent magnetic fields, 

and when; pulse-sequence-timing diagrams summarise the key components of those 

instructions often revealing the idea of an imaging method at a glance. The pulse 

sequence determines the pulsed magnetic fields to produce the images but it also tells 

how the image is reconstructed from the measured data. Here, I call this software pulse 

sequence software whenever it is necessary to separate the software from the actual 

sequences of magnetic field pulses, called the imaging sequence. Whenever the 

distinction is immaterial, plain pulse sequence is used. 

A pulse sequence normally contains a number of r.f. pulses—of definite powers, centre 

frequencies and amplitude modulation envelopes determining, for instance, the 
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bandwidths of the r.f. pulses—and the schedule of application of field gradients of 

certain amplitudes and durations. The pulse sequence software needs to make sure the 

play-out of all the magnetic fields is physically possible for the hardware, in practise 

within the manufacturer-determined limits, and it often also keeps track of remaining 

within safety limits of changing magnetic fields and absorbed r.f. energy.   

Many pulse sequences can be split into two parts repeated in succession during a 

measurement. In the “r.f. module”, the spins are energised, including preparatory r.f. 

pulses, such as those required to suppression of unwanted signal components arising 

from fat or protons outside the imaging volume; after proper preparation the signal can 

be acquired and digitised in the “readout module”. Spatially selective spin-echo pulse 

is an example of r.f. module, whereas EPI exemplifies a readout module. 

Often the coordinates assigned by the user do not coincide the physical scanner 

coordinates. As a unique advantage of MRI, the three gradient systems can be used 

together to scan any image orientation regardless of the geometry of the scanner. E.g., 

a gradient tilted by 45° in the -plane can be achieved by applying an equal gradient 

amplitude in both directions. When the images are tilted this way, the physical 

coordinates are substituted by so-called logical set of coordinates, , , and , 

conventionally matching, when applicable (see below), the frequency encoding, phase 

encoding, and slice selection directions, respectively; the pulse sequence software 

keeps track that calculations are done correctly. To avoid any confusion between 

different sides of the object, it is convenient, especially in fMRI where a lot of 

“homebuilt” software is used, and images are often too blurred to distinguish even 

gross anatomical landmarks, to include an MRI visible marker in the volume scanned. 

To elucidate the discussion of image formation, in the following it is assumed that the 

sample studied is a perfectly homogeneous body of like nuclei so that each nucleus 

experiences an identical chemical environment. Also the  field is assumed to be 

perfectly homogeneous. As a result, the Larmor frequency of each spin is the same. 

Spatial encoding 

Slice selection 

Many MRI pulse sequences, including EPI (discussed in more detail later on) utilise an 

r.f. module, which excites the spins in a thin partition, a slice, whereby the signal can 

be considered as emanating from that volume only. Conceptually, slice selection can 

be accomplished by applying a magnetic field gradient perpendicular to the desired 
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slice, in -direction, and adjusting the excitation r.f. field to encompass the frequency 

band corresponding to the Larmor frequencies of the spins in the slice established by 

the gradient (Garroway et al. 1974). Information on the sample in its entirety can be 

obtained by appropriately modulating the r.f. band between successive measurements, 

thus looking at a “stack” of slices, one at a time. Fig. 2 illustrates a simple spatial 

encoding process. 

More elaborate slice selection methods exist and are in routine use, such as spatial-

spectral excitation (Block et al. 1997), which excites selectively only certain spectral 

species, e.g. either fat or water, within the determined partition. 

Frequency encoding 

The r.f. excitation (e.g. during slice selection) results in a narrow peak in the NMR 

spectrum. This spectral peak can be spatially encoded (Lauterbur 1973), e.g. so that the 

frequency of the signal depends on location. Superimposing an inhomogeneous, 

typically linear gradient, magnetic field on -field (Lauterbur 1974) spreads the 

spectral peak across a wider frequency band, whereby the direction perpendicular to 

the gradient in -direction, ideally, forms isochromatic planes of spins during the 

acquisition of signal, or readout. 

Phase encoding 

Upon application of the r.f. field, quantum states of spins in the ensemble start to 

switch, from the low- to the high-energy state (excitation) as well as from the high- to 

the low-energy state (stimulated emission). The r.f. field rotates in phase with the 

nuclear magnetic moment precession, whereby—as the spins “see” a constant field—

the newly excited spins produce a directional preference in the total spin population. In 

the rotating frame, these coherent spins give rise to a non-zero transverse 

magnetisation in a constant direction. In the laboratory coordinates, the directionality 

of the spin system is observed as an oscillating signal at the Larmor frequency, the 

FID.  
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Figure 2: An illustration of an exemplary spatial encoding procedure. A partition of spins encompassing 

a frequency band Δω (full width at half maximum of the slice profile) in the presence of field gradient 

Bz/z′ is first excited from the sample with an r.f. field of centre frequency (ω) offset from the mean 

Larmor  frequency  (ω0) by ωoffset. After  the excitation, and rewinding of phase errors due  to  the slice 

selection gradient (not shown), the spins are first phase encoded  in presence of Gy′; after the period 

the  spins  at  different  locations  on  the  y′‐axis  are  at  different  phases  when  the  readout  period 

commences. During the readout, the x′‐axis is frequency encoded, spins precess at different rates as a 

function of  their position. The  sequence  is  repeated  for all prescribed  slices and  the  k‐space  in  the 

phase direction is filled by measuring each slice repeatedly with various Gy′ amplitudes. For an example 

of  a  pulse‐sequence‐timing  diagram,  see  Fig.  3.  Note  that  in  EPI,  phase  encoding  is  accomplished 

somewhat differently. 

When a phase asymmetry has been established in the sample, in addition to frequency 

encoding, the signal can be phase-encoded with positional information (Kumar et al. 

1975; Edelstein et al. 1980). Applying a magnetic field gradient between excitation 

and signal acquisition brings about phase discrepancy as a function of position along 

the direction of the gradient, the -direction, because the Larmor frequencies differ for 

the period. That is, integrating unequal angular velocities over a fixed period yields 

different final phases. 

In most of the conventional pulse sequences, the frequency and phase encoding 

directions are perpendicular, and further, normal to the slice selection direction. “In-

plane” refers to the plane spun by the frequency and phase encoded directions. 

Now that signal is encoded with spatial information, a means is needed to decode it 

and produce an image. The so-called k-space formalism (Ljunggren 1983) enables 

reconstructing images in many circumstances where it would be very difficult to 
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otherwise determine how gradient waveforms affect the frequency and phase at each 

location, and how the thus obtained signal should be distributed in spatial coordinates. 

After arranging the data to the k-space, basically only a Fourier transform (FT) is 

required to reconstruct the image. Another advantage of the formalism comes from its 

easy interpretation in defining what and how should be sampled from the signal, in 

terms of gradient waveforms, to obtain an image of a specified detail level and field of 

view (Bernstein et al. 2004). The following paragraphs describe what this k-space is, 

and how the data can be arranged to it.  

Spatial decoding 

Any signal can be approximated by a linear combination of sine and cosine functions 

(or equivalently by complex exponential functions). Fourier transform is the 

systematic procedure yielding the amplitudes of these. If the signal is two-dimensional, 

e.g. a picture, the two-dimensional FT captures the contributions of each component 

function, often referred to as the (spatial) frequency components. Conversely, inverse 

FT of the frequency components yields the original signal. In fact, the k-space is just 

the (often) two-dimensional Fourier or frequency space.  

Suitable arrangement of the NMR signal to the MRI k-space follows from the 

observation (Ljunggren 1983) that under the influence of field gradients, the signal in 

the rotating frame can be expressed as:  

 , (10) 

and that the FT of spin density  in space coordinate  is 

 , (11) 

above 

 . (12) 

Thus, the signal expression is simplified to 

 . (13) 
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The above describes the signal in terms of the FT of the spin density in the variable . 

In the special case of two-dimensional gradient application, just the two components of 

 can be considered, 

        , and 

  (14) 

 , 

which defines the k-space coordinates ( , ). The temporal (measured) signal can 

thus be transformed to spatial information by viewing it as a linear combination of 

sinusoidal components with weights determined by the values of k-space. 

Now, a pulse-sequence-timing diagram contains  and  (see Fig. 3 for an 

example, there  and  correspond to  and , respectively), and 

the trajectory in the plane of k-space can be traced. The play-out of the, say, -gradient 

with positive amplitude moves the k-space trajectory to the positive -direction. 

Negative -gradient implies movement in the negative -direction. If the k-space is 

sufficiently covered and sampled (Bernstein et al. 2004), , i.e. the spatial map of 

spin density, modified by additional factors accounting for relaxation, can be obtained 

by two-dimensional inverse Fourier transform. However, in the general case, when k-

space is, e.g. not regularly sampled, the data have to be re-sampled before the 

transformation. 

Echo‐planar acquisition 

Echo-planar imaging (EPI) (Mansfield 1977) sequence was the principal imaging 

“modality” in the experiments of P1–P4. Its main characteristics are now reviewed.  

In echo-planar imaging, the k-space of each slice is filled by data acquired from 

(typically) a single r.f. pulse (resulting in an FID), or two pulses (spin echo). Spatial 

encoding of the in-plane directions varies slightly between different embodiments of 

EPI and in all instances the concept of phase encoding in EPI is somewhat different 

from most of other imaging methods. In EPI, phase encoding occurs practically (or 

literally) simultaneously with frequency encoding, i.e. signal acquisition. 
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Figure 3: Pulse‐sequence‐timing diagram and k‐space trajectory for Cartesian echo planar imaging of a 

stack of n  images and 5 phase encodings per plane  (in  fMRI a minimum of 64  is normal). Different 

planes are selected by offsetting the frequency of the r.f. pulses played out in the presence of the slice 

selection gradient Gslice. In EPI, TR is defined as the time between successive excitations of a given slice. 

TE designates the time from the effective centre of the excitation pulse to the sampling of the centre 

of  k‐space.  The  actual  TE  of  every  phase  encoding  line  is  different  from  the  others.  The  k‐space 

trajectory  traversed by  the pulse  sequence  is  shown.  Pulse‐sequence‐timing diagram  adapted  from 

Bernstein et al. (2004). 

The FID decays typically within tens of milliseconds, and therefore, to obtain a 

resolute image using the popular gradient-recalled (GRE) EPI, frequent sampling and 

strong gradients must be used to traverse and sample enough of the k-space. 

Alternatively, a sequence with multiple excitations per image plane, or by spin echo 

(SE) generation can be used to prolong the practical signal acquisition period; partial 

k-space sampling (Zaitsev et al. 2001) is possible as well. However, these strategies 

modify the contrast mechanism from the GRE EPI and in case of multiple excitations 

and SE, reduce the scanning efficiency, measured as image planes per time. 

EPI is popular especially in applications where imaging speed is essential, including 

fMRI. The common Cartesian blipped EPI (Fig. 3) has become the standard in fMRI, 

and in addition to easy implementation and reconstruction, its artefacts are the easiest 

to interpret. However, of the alternatives, the spiral trajectory seems to be less prone to 

artefacts to begin with, while their interpretation might be difficult and requirements 
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for gradient precision are higher (Glover and Lee 1995; Block and Frahm 2005). Also, 

whereas spirals maintain the localisation of fMRI activations better in areas of high 

-induced gradients, the statistical significance of activations is higher with Cartesian 

EPI (Sangill et al. 2006). Thus the optimal choice of k-space traversal depends on 

whether the goal is sensitive detection or accurate mapping. 

The pulse-sequence-timing diagram, shown in Fig. 3, illustrates schematically the 

implementation of the (Cartesian blipped) EPI sequence used in this work. It indicates 

various user selectable imaging parameters. The purpose of the following paragraphs is 

to briefly explain the basic imaging parameters. 

EPI sequence parameters 

Adjustments of imaging parameters can provide a wealth of physical information on 

the imaging samples. The information manifests as image contrast between different 

organs, healthy and lesioned (Damadian 1971; Damadian et al. 1974) tissue, etc.  

Basic contrast-affecting variables are repetition time (TR), echo time (TE), and flip 

angle. In fMRI application of EPI, contrary to many other pulse sequences, TR denotes 

the time between successive excitations of a particular slice, meaning that during a TR 

the total imaging volume is scanned. A typical TR in fMRI ranges from hundreds of 

milliseconds to a few seconds. Sometimes TR can vary during the scan, e.g. when 

motion artefacts are reduced by synchronising the scanning with the heart rate of the 

subject (Guimares et al. 1998; Malinen et al. 2006). TE designates the time from (a 

specified instant of) the excitation pulse to the centre of the echo; in GRE EPI the 

sampling of the centre of the k-space, and in SE EPI the occurrence of the echo, which 

should coincide with the sampling of the centre of the k-space. Flip angle gives the 

nominal tilt of the bulk magnetization vector exerted by the excitation pulse, i.e. the 

amount of magnetisation excited. Flip angle often varies from the nominal value; most 

of all at the edges of the slice where it has to vary from 0 to the nominal value and 

(often) above. TR and TE in an EPI sequence are illustrated in Fig. 3. 

Additionally, slice thickness, slice spacing or gap between slices, slice acquisition 

order, number of slices, slice orientation, size of the imaging matrix, field of view 

(FOV), and the directions of each method of spatial encoding are controllable by the 

user, among other things. The slice thickness is defined as the full width at half 

maximum (FWHM) of the bandwidth of an r.f. pulse, divided by the gradient 

amplitude.  By specifying a gap between neighbouring slices, cross-talk between slices 

can be decreased (reduced overlap of the tails of the frequency spectra of the r.f. pulses 



 

 

19

of adjacent slices) or more space covered in the slice-selection direction while ignoring 

the information in between. By interleaving the slice acquisition order, in contrast with 

sequential scanning, somewhat similar reduction in cross-talk can be achieved, yet the 

sample will be completely scanned. However, without a gap, the information content 

in adjacent slices will unavoidably be overlapping to some extent, defined by the slice 

profile and . Size of the imaging matrix defines the pixel size of the image planes 

together with FOV, which is just another name for the in-plane extent of the image in 

cm. 

Functional  MRI  

In typical fMRI experiments, subjects are receiving stimuli or performing tasks (or 

doing nothing), while their brain is scanned with an MRI technique sensitive to direct 

or indirect signs of neuronal activity. Statistically significant changes of the signal at 

certain volume elements (voxels) can be labelled as activation or deactivation.  

A number of analysis methods, widely discussed in textbooks, e.g. in Huettel et al. 

(2004), have been utilised to find the network of brain areas associated with a task or a 

set of stimuli; popular methods include model-driven analyses, for instance the general 

linear model, which assigns weights to predictors that attempt to explain the total 

variance of the fMRI time series, and blind source separation, such as independent 

component analysis.  

The temporal resolution of fMRI, determined by the sampling rate of successive 

imaging volumes, is much worse than of electrophysiological techniques, such as 

electro- and magnetoencephalography, but still adequate, and amenable to expansion 

by rather simple techniques, such as jittering the timing of stimulus presentation with 

respect to sequencing of the imaging repetition. However, as the effects measured with 

fMRI are also slow (seconds) as compared with electrical signalling of neurons 

(milliseconds), the temporal resolution of fMRI can be deemed sufficient. 

Of the image acquisition methods yielding the data for analysis, GRE EPI results in 

-weighted images (see Eq. 8), which are sensitive to field homogeneities, and thus 

to changes in blood oxygenation level. The GRE EPI images are also sensitive to 

confounding inflow effects, which can be remedied by dual-echo technique (Glover et 

al. 1996). Also different contrast mechanisms may be beneficial. SE EPI compensates 

for static inhomogeneity, leaving diffusion within the inhomogeneous field around red 

blood cells as the main mechanism for contrast, thus bringing the functional signal 

changes closer to neuronal tissue, because changes of signal can be detected from 



20 

 

veins and venules. The sensitivity of GRE EPI to the static inhomogeneity effect 

emphasises the contribution of the larger veins. Thus, SE activations occur slightly 

earlier (from tens to hundreds of ms) and co-localise better with neuronal activations 

than GRE activations (Hulvershorn et al. 2005). However, SE EPI has been noted to 

provide somewhat weaker functional signal than GRE EPI (approximately by a factor 

of two at 1.5 T (Bandettini et al. 1994). It has also been noted that not only  but  

too depend on the blood oxygenation (Thulborn et al. 1982), which is differently 

portrayed in SE and GRE. 

Several other techniques can be applied to capture signs of brain function with MRI. 

Measuring cerebral blood volume using exogenous contrast agent (Belliveau et al. 

1990; Belliveau et al. 1991), or non-invasively (Liu et al. 2000), diffusion imaging 

(Song et al. 1996; Le Bihan et al. 2006; Miller et al. 2007; Roberts et al. 2007; Aso et 

al. 2009), and perfusion imaging, e.g. by use of arterial spin labelling techniques 

(Wong et al. 1998) exemplify non-BOLD techniques. Voxel-based morphometry 

(Ashburner and Friston 2000), tractography, and other structural imaging methods, are 

also useful for understanding changes occurring in the brain. Detecting neuronal 

signals directly is currently below the sensitivity limit of MRI, although scattered 

evidence (Bodurka and Bandettini 2002) and simulations endorse the possibility (Park 

and Lee 2007; Cassará et al. 2009). However, other attempts to show such action in 

vivo have failed thus far (Parkes et al. 2007; Tang et al. 2008), whereas in vitro, 

neuronal electric activity has been detected with MRI (Petridou et al. 2006).  

For now, however, blood oxygenation level dependent (BOLD) techniques (Ogawa et 

al. 1990; Bandettini et al. 1992; Kwong et al. 1992; Ogawa et al. 1992) are used in a 

vast majority of fMRI studies and, therefore, if not stated otherwise, plain fMRI 

typically refers to BOLD fMRI. In this work, fMRI indicates BOLD and BOLD-like 

signals (as simulated by phantoms). 

All fMRI techniques suffer from relatively low functional signal-to-noise ratio, 

 , (15) 

where , , and  are the image intensities at a responding voxel during 

activation and rest, and the standard deviation of the image intensity in that voxel (e.g. 

at rest), respectively. Consequently, both spatial and temporal averaging are commonly 

used to increase .  
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Figure 4: Time course of a hypothetical, noiseless  fMRI experiment, where a brain area  responds  to 

stimulus  impulses  perfectly  linearly.  A  single  impulse  (A)  elicits  a  haemodynamic  response 

characteristic  of  that  area  (the  canonical HRF),  two  impulses  (B)  applied  in  quick  succession  (0.1  s 

separation)  yield approximately  the  same  response as a  single  stimulus, but with double amplitude 

(vertical direction indicates signal intensity). When the inter‐stimulus interval increases to 5 s (C), the 

response spreads over a longer time period, and when several successive stimuli are given every 1.5 s 

(D),  the  typical  shape of blocked‐stimulus  response arises.  In  (D),  the dotted  lines depict  the “initial 

dip”  and  the  post‐stimulus  overshoot  (see  text).  The  bars  on  the  time‐axis  show  the  stimulation 

sequence. 

Haemodynamic response function 

A central concept in fMRI is the haemodynamic response function, HRF. Its 

importance in fMRI analysis stems from the theoretical proposition that knowing the 

HRF and stimulation pattern, the emerging fMRI signal can be evaluated by 

convolving the stimuli with the spatially varying yet fixed HRF. Conversely, from a 

full functional response of the brain, the activation pattern is statistically obtained 

using an HRF model (Lange and Zeger 1997). These properties assume that the 

haemodynamic response is a linear system, having the scaling property and obeying 

the principle of superposition.  

To exemplify the superposition property in the current context, Fig. 4 illustrates the 

HRF to a single stimulus (A) as well as the linear prediction of the output of two 

successive stimuli of different inter-stimulus intervals (B and C). As a notion, the 

linearity considered here should actually be between neuronal activity and the HRF 

(Boynton et al. 1996), not between stimuli and HRF as is usually assumed. Linearity 

between stimuli and the HRF can still exist (Boynton et al. 1996), if the neural system 

can respond linearly to stimuli but, e.g. with short inter-stimulus intervals linearity 

does not generally hold (Huettel and McCarthy 2000; Huettel et al. 2004). 
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Lange and Zeger (1997) noticed that the main characteristics of fMRI signal following 

neuronal activity appear similar to a gamma function. Friston et al. (1998) developed a 

model to account for event-related fMRI responses, in which a second gamma-function 

was subtracted from the first to account for a post-stimulus undershoot. This doubly 

gamma-variate function has been subsequently referred to as the canonical HRF:  

 . (16) 

Figure 4A illustrates the function with the parameter choices derived from auditory 

responses (Glover 1999b) with   = 6.0,  = 12.0,  = 0.9 s,  = 0.9 s,  = 0.35, and 

 are the times to the peaks. 

Components of HRF 

In a typical block-design fMRI experiment, where the stimuli are presented to the 

subjects in periods alternating with a rest or control condition, the BOLD response is 

often of similar periodic appearance, except that its shape contains transient 

components, much like the 30-s (simulated) stimulation illustrated in Fig. 4D, where a 

series of 20 impulses with 1.5-s inter-stimulus intervals has been convolved with the 

canonical HRF. As is evident in the figure, the haemodynamic response starts with a 

delay, followed by an increase of the fMRI signal that overshoots before reaching a 

plateau of sustained response. After the stimulus presentation, the signal decays and 

returns to a constant rest level through an undershoot. In addition, the initial rise of the 

signal is sometimes preceded by a transient signal decrease, the “initial dip”, and at the 

end of stimulation, just before signal starts to decay, an occasional overshoot may be 

observed, as schematically indicated by the (hand-drawn) dotted lines in Fig. 4D. 

The main contribution to the haemodynamic response in BOLD fMRI is quite 

universally accepted to result from the decreased fraction of deoxyhaemoglobin in the 

blood, resulting in a more homogeneous local magnetic field, thus yielding less 

dephasing of spins.  

An exhaustive review on modelling the haemodynamic response summarised the 

experimental observations on the contributions to the HRF (Buxton et al. 2004). Of the 

different models, the Balloon model (Buxton et al. 1998) explains all the principal 

fMRI transients, the initial dip, the overshoot, as well as the undershoot in terms of 

blood volume, blood flow, and oxygen metabolism changes. Still, the cause, meaning, 



 

 

23

and variability of fMRI transients remain debated, the post-stimulus undershoot 

seemingly most so.  

Jones et al. (1998), likewise, investigated the undershoot and largely agreed with the 

Balloon model. Since then, more accurate views have been sought to explain the 

undershoot; the proposed mechanisms include lingering of passive ballooning (or 

expanding) of post-capillary vessels leading to increased venous blood volume 

(Mandeville et al. 1999; Mildner et al. 2001; Emir et al. 2008; Chen and Pike 2009; 

Tang et al. 2009) and prolonged oxidative metabolism (Jones 1999; Schroeter et al. 

2006; Frahm et al. 2008). All the above studies supporting prolonged oxidative 

metabolism employed visual stimulation, in the ballooning group also other types of 

stimuli were used.  

The transients in general seem to have different spatial distribution in the brain than 

the sustained responses, suggesting different underlying mechanisms (Chen et al. 

1998; Seifritz et al. 2002; Fox et al. 2005a), and even different causes in different 

regions in the visual system (Harshbarger and Song 2008). The onset overshoot has 

been found to differ in control subjects and schizophrenia patients (Fox et al. 2005b). 

Neural activity patterns indistinguishable from the sustained BOLD response may be 

recovered from the post-stimulus undershoot (Sadaghiani et al. 2009). 

Whereas the onset and post-stimulus overshoots have received only sporadic interest, 

the “initial dip”, occasionally occurring within 2 s after stimulus presentation, has been 

much discussed in fMRI textbooks and reviews. The enthusiasm for the initial dip 

stems from mainly two factors: the initial dip is thought to be spatially—and, 

obviously, temporally—closer to the neuronal activity than the main BOLD response, 

and knowing its generation mechanism would answer questions about potential 

dynamic decoupling of cerebral blood flow and oxygen metabolism (Buxton 2001).  

Shedding light to the early transients, a near-infrared study in cats and monkeys 

(Frostig et al. 1990) demonstrated that soon (200–400 ms) after the onset of neuronal 

activity, oxygen is delivered from the capillaries with high spatial precision, followed 

by an increase in blood volume 200–400 ms later (400–800 ms from the neuronal 

activity), and an increase in the amount of oxyhaemoglobin less than 1000 ms later. 

Qualitatively similar but slower early responses were reported in cats (Malonek and 

Grinvald 1996), laying foundation for the “initial dip” observed in fMRI. Afterwards, a 

large number of optical studies have both found and not found physiological basis for 

the initial dip, especially the dip is often absent in rodents both in optical studies 
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(Lindauer et al. 2001; Vanzetta and Grinvald 2001; Lindauer et al. 2002) and fMRI 

(Marota et al. 1999; Silva et al. 2000). While the majority of initial dip evidence 

comes from the visual system, in humans, the initial dip has also been found in the 

motor area (Yacoub and Hu 2001).  

The initial dip has, thus, not been observed consistently, which impedes its 

interpretation. Table 1 collects data from papers dealing with the fMRI initial dip in 

healthy subjects and animals. Despite the variability across studies, some interesting 

patterns can be perceived from a strictly technical point of view. The first striking 

coincidence is the relatively short TR used in all experiments. As the initial dip in 

humans is at maximum typically 2 s (range 1–3 s in the Table entries) after the 

stimulus presentation has begun, experiments with substantially longer TR could, in 

that regard, capture the signal. Moreover, studies jittering the stimulus timing with 

respect to scan sequencing should be sensitive to signal changes occurring at any phase 

of the stimulus presentation. Also, the studies with sagittal or coronal slices have 

yielded high percent signal changes of the initial dip. These observations will be 

processed further in the Discussion. 

Of  phantoms  

In MRI, phantoms are used as imaging targets to verify and validate image quality, 

including signal level uniformity over time (Weisskoff 1996), to ascertain the proper 

functioning of the MRI device (McRobbie et al. 2005). As phantoms are, desirably, 

stable, significant changes in imaging conditions are often recognised as abnormalities 

in the images of phantoms acquired using a fixed set of imaging preferences. Such 

changes can indicate scanner problems or the presence of external noise sources, e.g. 

incompatible peripheral devices or movement of heavy machinery in the vicinity of the 

magnet installation (Durand et al. 2001). Many common problems with MRI scanners 

introduce characteristic patterns in images, some of which are apparent regardless of 

the object; others arise more subtly requiring a consistent quality assurance protocol 

for detection. For instance, gradual wearing of hardware components leads to 

deteriorating signal-to-noise ratio, and at some point, service is due, else diagnostic 

and scientific value of the imaging data will degenerate.  
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Table 1: Studies  reporting  the  initial dip.   B0, TR,  slice orientation,  slice  thickness  (thi.), and percent 

signal change (ΔS / %) of fMRI signal during the initial tip are shown for each study (if information was 

provided). 

B0 / T TR / ms slice orient.1  thi. / mm ΔS / %2 Reference 

3 500 axial 4 and 8 0.16 or 0.24 (Behzadi and Liu 2006) 

4.7 and 9.4 
 

500 or 2  2502  2 1.5 (cat) (Duong et al. 2000) 

4 4  1503 or 300 sagittal 5 2.16 (max). or  
1.61 (max.) 

(Hu et al. 1997) 

2 400 oblique along 
calcarine fissure 

5 0.27 (Janz et al. 2000) 

4.7 and 9.4 
 

500  2 0.28 (cat) (Kim et al. 2000) 

4.7 4 or 8 segments 
250 ms each 

 1 or 2 from 0.5 to  
1 (monkey) 

(Logothetis et al. 1999) 

4 100 sagittal 5–8 1 (Menon et al. 1995) 

4 500 oblique along 
calcarine 

3.75 “significant”4 (Roberts et al. 2007) 

1.5 300 oblique along 
calcarine or sagittal 

N/A 0.42 (Yacoub and Hu 1999) 

4 
 

500 sagittal 5 1.68 (max.) (Yacoub et al. 1999) 

7 400 sagittal 5 0.75 (by ruler 
from a graph) 

(Yacoub et al. 2000) 

4 400 coronal 5 1.172 (max.) (Yacoub and Hu 2001) 

7 300 or 450 sagittal 2 0.85 (by ruler 
from a graph) 

(Yacoub et al. 2001) 

3 
 

1000  3 0.5 (Yeşilyurt et al. 2008) 

1Of human studies, where available 

2The signal change percentages were provided irregularly in the articles 

3Multi‐shot EPI 

4No account on percent signal change was provided. It was noted in the study that the initial dip was 

statistically significant in loci where the positive BOLD response and diffusion‐detected activation were 

co‐localised.  In such  locations where the diffusion measure showed no activation, the  initial dip was 

absent, giving further support for better localisation of the initial dip than the positive BOLD response. 

The impact of different imaging options or sequences on image properties can be 

compared having a suitable phantom as the imaging object. Different finely structured 

phantoms can be used to study resolution (in different directions), slice profile, 

geometric distortions, etc., as the spatial structure of the phantoms is known a priori to 

a high precision. Essential properties of different tissues in MRI (Bottomley et al. 

1984; Spees et al. 2001) can obviously be best studied with phantoms of matching 
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qualities (Kato et al. 2005). Anthropomorphic phantoms are useful in studying and 

combating artefacts likely arising in vivo (Rice et al. 1998; Shmueli et al. 2007), 

because especially susceptibility artefacts are highly shape sensitive, and vary in 

different encoding directions (Lüdeke et al. 1985).  Unstructured or more coarsely 

structured phantoms are typically used to examine signal and noise (bulk and 

distribution of), ghosting, and stability over longer scan periods, such as during fMRI. 

Additional advantages of phantoms as compared with volunteer subjects include 

invariability over time, constant availability, and the fact that phantoms cause no 

physiology-related artefacts. However, many technical developments specifically 

target physiological signals or reduction of, e.g. movement artefacts; in these cases 

standard phantoms are of little use. A fundamental disadvantage is that the actual 

objects of interest are rarely phantoms, therefore the ultimate tests of new imaging 

methods, pulse sequences, parameters, or protocols need to be performed on 

volunteers, but often the processes can be expedited cost-effectively using phantoms. 

Phantoms for EPI 

EPI is intrinsically very susceptible to image imperfections, especially to direction-

dependent distortion. EPI has a low bandwidth in the phase encoding direction, 

meaning that a change of Larmor frequency by only tens of Hz displaces the signal 

from a voxel to the neighbour. In addition to displacement, in the presence of magnetic 

field gradients, a voxel comes to contain a range of differently precessing nuclei, 

whereby the spins do not rephase at the centres of gradient echoes, resulting in signal 

void. Hence, a phantom for EPI demands that the constituents are magnetically highly 

similar, as quantified by .  

fMRI phantoms 

Normal phantoms are crucial in every fMRI laboratory and useful for collaborations 

between research facilities (Friedman and Glover 2006) because many aspects of 

acquisition, analysis, reproducibility, and post processing can be validated against such 

phantoms However, they do not provide the temporal variability to the signal that is 

the key ingredient of fMRI. Deterministic variation of physical parameters causing 

signal intensity modulation in a manner similar to that in the brain would yield in 

imaging results the full scope of features due to the imaging process. The total picture 

is harder to achieve by computational simulation, because all the features of the 

imaging system and object physics would need to be known and realised. The total 

picture is also hard to obtain by scanning real brains, because they cannot be 
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accurately controlled and are deterministic only to the extent of the physiology. In this 

dissertation, in three of the four studies (P1, P3, P4) phantoms with remotely 

adjustable signal (fMRI phantom) were used.  

A number of fMRI phantoms and related devices have been developed. The fMRI 

phantoms presented by Joensuu et al. (2004) and Koopmans et al. (2004), and in P1, 

P3, and P4 used electric current to modulate magnetic field and thus signal acquired 

during fMRI experiments. Similar techniques have been adopted while striving to 

directly detect electric activity of brain using MRI (Bodurka et al. 1999; Bodurka and 

Bandettini 2002), more generally in magnetic resonance current density imaging (Scott 

et al. 1991), and also in a very practical application, to visualize catheters in MRI 

(Glowinski et al. 1997; Adam et al. 1998). In other fMRI phantom embodiments, the 

signal level was modulated by adjusting the tuning of a resonant circuit around an MRI 

signal source (Zhao et al. 2003; Cheng et al. 2004; Cheng et al. 2006), and by 

exchange of medium within the imaging volume during fMRI (Olsrud et al. 2008). 

The access to controllable signal variation can be used to reproduce virtually any 

temporal evolution of the signal, such as the canonical HRF, and this benefit has been 

used to correct for aliasing occurring in deconvolution of the hemodynamic response 

in event-related fMRI (Li et al. 2007).  

Phantom construction 

The fMRI phantoms consist of a minimum of four components: the vessel, signal 

delivery system, MRI-active medium (signal medium), and MRI-signal modulator. 

The vessel is typically made of some plastic material; for example polymethyl 

methacrylate, e.g. Plexiglas® and Perspex®, is often appropriate because it is 

transparent and reasonably workable. Moreover, m of polymethyl methalcrylate is 

close to water’s: values 9.0  106 for Plexiglas (Thomas et al. 1993) vs. 9.05  106 

for water (Schenck 1996), a biologically valid surrogate signal source. Polycarbonate 

would be easier to machine but it is magnetically further away from water. When 

prototyping or producing phantoms in small batches, the phantoms often need to be 

machined rather than moulded, and one needs to be meticulous about a clean working 

environment including new drill bits of “nonmagnetic” materials and overall careful 

handling.  

In studies P1 and P3, the phantoms were to be small, to basically fit inside a head coil 

together with the subject’s head. In phantoms of compact size, the edges of the vessel 

are necessarily close by the region of interest (ROI) of the signal medium, and thereby 
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not only the vessel material but also the air surrounding the phantom can cause 

susceptibility gradients. Sometimes it may be advantageous to match the susceptibility 

of the phantom and the signal medium with air (Davis 1998; Bakker and de Roos 

2006) rather than water. An important detail of the vessel is its filling mechanism 

because the vessel should be kept full. The requirement can be to some extent 

circumvented by including a reservoir volume that does not need to be full. 

The signal delivery system can be electric, fibre-optic, pneumatic, wireless, pre-

programmed memory or other signal transferral pathway delivering the signal 

adjustment information to the MRI signal modulator. The signalling system must be 

MRI compliant of second kind, as termed by Schenck (1996), especially it must be 

non-magnetic, tolerant to electromagnetic disturbances, and must not generate 

electromagnetic disturbances visible in MRI. If the delivery system penetrates the r.f.-

shield of the examination room, sufficient isolation must be implemented to reduce 

artefacts and protect equipment. It is worth pointing out that a device safe at, say, 3 T 

is not necessarily so at 1.5 T, mainly because of different wavelengths of the r.f. fields. 

The output performance requirements are dictated by the experiments to be carried out 

but at least stability and critical damping of step responses are useful properties.  

The characteristics of the signal medium depend on the purpose of the phantom. 

Properties that must be considered, and can be modulated in a typical liquid or gel 

signal media, include chemical composition, relaxation times, electric conductivity and 

permittivity, viscosity, and . 

Chemical composition affects the obtainable NMR spectrum, which in typical MRI 

phantoms should desirably be either very simple, e.g. a single water peak, or similar 

with a certain tissue. A simple spectrum is useful in investigating the proper 

functioning of the scanner, whereas a more natural spectrum would provide 

information about obtainable image quality in vivo and thereby help to optimise 

sequence parameters for brain scanning.  

To receive anatomically valid information on the applicability of an imaging protocol 

using a phantom, the relaxation times of the signal medium should be in par with the 

tissues of interest. Particulars of producing solutions with a variety of different 

relaxation times (Schneiders 1988; Rice et al. 1998; Kato et al. 2005) and tissue 

relaxation times at different field strengths (Damadian et al. 1974; Bottomley et al. 

1984; Henriksen et al. 1993; Wansapura et al. 1999; Spees et al. 2001; Lu et al. 2004; 
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Stanisz et al. 2005) are adequately available in the literature. For high magnetic fields, 

data are more sporadic (Shmueli et al. 2007).  

The correct electric conductivities and permittivities in a phantom are important so that 

the r.f. field distributions would be similar than those that arise when humans are 

irradiated. Especially in high-field MRI, where the wavelength of the r.f. inside tissue 

is comparable to the tissue dimensions, and r.f. penetrates poorly to tissue because of 

its conductivity, the field distributions are irregular and concentrate near the surfaces.  

(Yang et al. 2004).  

Viscosity affects the phantom’s sensitivity to movements and vibration. For example, 

spatial encoding of an object containing low-viscosity liquid might fail as a result of 

bulk motion which takes a long while for stabilising. Furthermore, vibrations caused 

by the scanner, especially with pulse sequences requiring high gradient slew rates, 

such as in diffusion tensor imaging (Hiltunen et al. 2006), might keep low-viscosity 

medium in motion throughout the scanning. However, changing a solution’s viscosity 

affects its  relaxation process, in the neighbourhood of viscosity of liquid water,  

decreases with increasing viscosity (Bloembergen et al. 1947), which should be taken 

into account when otherwise tuning the relaxation parameters.  

Since the material for the vessel must normally be chosen from a set of commonly 

available materials, of which information of some physical parameters, especially , 

is typically missing, a moderately appropriate material often has to suffice. 

Particularly, when the vessel must be compact, the susceptibility of nearby air (Davis 

1998) must be compensated by modifying the  of the signal medium, in order to 

obtain acceptable signal in EPI. For a magnetically dilute system, the susceptibility of 

a solution can be calculated from those of the solutes by Wiedemann’s law of magnetic 

susceptibilities in magnetically dilute solutions (Mulay 1963). The -modulating 

substances can, however, affect the relaxation times. E.g., Gd-based contrast agents 

increase  and decrease .  

All the abovementioned signal medium properties depend on the purpose and design of 

the phantom; for a very small object, for instance, r.f. inhomogeneities are unlikely 

whereas for a large homogeneous phantom, susceptibility matching is of minor 

consequence. 

It may also be beneficial if the structures of the phantom are discernable in computed 

tomography (P2) which means that the vessel and (all of) the MR signal source(s) 
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should be of different mass densities. Another, purely practical, addition to the solution 

is a preservative or disinfectant; as an example, NaN3 is used in the Stanford Agar 

Phantom Recipe to “retard the growth of evil green things” (Friedman and Glover 

2006).  

The defining factor of an fMRI phantom is the MRI signal modulator. Different 

modulation techniques were already reviewed above; here I will concentrate on 

current-induced modulation of the magnetic field (for reasons to use such phantoms in 

the present study, see section P1: Feasibility of fMRI phantom with current-induced 

dephasing in Chapter 4). The pertinent issues can be divided into partially overlapping 

categories: MRI compatibility, signal modulation quality, MRI signal quality from the 

phantom, signal modulation geometry, and mechanical or assembly issues. 

MRI compatibility (Schenck 1996) is of course the foremost consideration. To induce 

magnetic fields requires current conductors (for induction coils and potentially power 

cables), which—as unintended effects—can pick-up r.f. energy from the excitation 

pulse and thereby heat the conductor, or focus the r.f. excitation. The primary safety 

concern of fMRI phantoms occurs when the conductor resonates with the r.f. field. As 

a general rule, a resonance occurs if the length of the conductor is approximately equal 

to an integer multiple of half-wavelength of the r.f. field (Vernickel et al. 2005), but 

the geometry, connected components, position in the r.f. coil, etc. modify the 

resonance frequencies. In addition, the electrical permittivity of the signal medium 

affects the wavelength of the r.f. field, which concerns especially wires submerged in 

the medium. Therefore, experimental verification of safety is always required.  

A related issue concerns the quality of signal modulation. As rapidly changing 

magnetic fields induce currents into nearby conductors, the coils of the signal 

modulator are also at risk of generating unknown currents, and consequently 

uncontrolled magnetic field modulation at the signal medium. Further, when current is 

applied to the induction coils of the signal modulator, the coil and the lead-wires are 

subject to Lorentz forces and torque that can move them if they are not attached firmly 

or wound appropriately (e.g. coaxial and twisted arrangements can be used). Moving 

current-carrying conductors obviously cause variable extraneous magnetic fields that 

degrade the image quality, affecting also the signal intensity measured from the fMRI 

phantom.  

MRI signal quality from the phantom is mostly defined by the vessel and the signal 

medium. However, improper wiring geometry may disturb images. If the induction 
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coil of the signal modulator is submerged in the MR signal source, quite severe partial 

volume effects may take place. It follows that the phantom-induced field modulations 

influencing the spatial encoding of signal can effectively “move” signal to the volume 

occupied by the conductor, thus creating a large contrast to that volume; the signal 

would now seem to emanate from a location, which gave no signal prior to the 

modulation. Moreover, if the material of the coil is not susceptibility-matched with the 

signal medium, the coil will naturally deteriorate the image. If partial volume effects 

cannot be avoided, they can be minimised by using thin conductors, or even 

electrolytic conductors that are MRI signal sources themselves, as has been done in 

demonstrating magnetic resonance current density imaging (Joy et al. 1989). It is to be 

noted that if the conductor is placed beside the vessel in the transverse direction, the 

r.f. field cannot penetrate it, and the image suffers from intensity variations.  

The signal modulation geometry defines the usability of an fMRI phantom. The 

alignment in which the phantom will reside in the scanner must be decided early on, 

because only the -component of the induced  matters. The Biot–Savart law can be 

used to calculate the magnetic field distributions arising from various winding 

geometries. Whether the coil has to be “shielded”, meaning that compensatory 

windings are included to reduce the signal modulation outside the fMRI phantom, 

depends on the intended applications. Eq. 7 provides the basis for MRI signal 

estimation based on the field pattern, i.e. how much dephasing will occur at each 

voxel. The Bloch equation (Eq. 5) provides for a more complete simulation 

framework. 

And finally, the phantom needs to be assembled; it really can be the ship in the bottle if 

the eventual put-together is not borne in mind when designing the construct. 
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3 Objectives 

The objectives of this thesis were to develop new experimental means to study fMRI 

signals without resorting to human (or animal) subjects, to illustrate application areas 

where such means would be useful, and to apply such means to demonstrate, verify, 

and discover information on some outstanding problem of importance. Specific aims 

were: 

 to devise and test the feasibility of using electric current to induce magnetic 

field modulation in introducing fMRI activations in vitro, in an fMRI phantom 

(P1 & P3) 

 to develop means to study localisation distortion of the fMRI imaging 

technique (P2) 

 to use an fMRI phantom to simulate and study temporal signal properties at 

transitions between active and rest conditions, as in the brain (P4) 
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4 Summaries of studies 

This chapter summarises the findings of the publications constituting the material of 

this dissertation after a concise account on employed methodology.  

Materials  and methods  

All the experiments were carried out at the Advanced Magnetic Imaging Centre of 

Aalto University School of Science and Technology, and a 3-T General Electric Signa-

series scanner was used in all MRI (the exact model, peripherals etc. varied, as 

indicated in the respective studies P1–P4, as a result of system upgrades).  

The principal imaging method was manufacturer-provided GRE EPI-based fMRI 

although other MRI modalities were applied at times. 

All studies involved construction of phantoms (Fig. 5), which were also the imaging 

targets in the respective works. Additionally, brain images were acquired in P2.     
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Figure 5: Pictures of the phantoms developed and used in the studies as indicated by the publication 

identifiers. The publications include detailed descriptions of each. 
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The work was carried out over an extended period of time and published in several 

papers; still the parts form a continuum. The investigation started out (P1) with testing 

the feasibility of an electrically operated fMRI phantom. Then it went on (P2) to a 

study of features of fMRI imaging, involving also determination of desired qualities in 

a phantom for EPI-based fMRI studies, which helped when (P3) the structure of the 

fMRI phantom was improved (and the modified phantom used to test some temporal 

characteristics of activation signal). Finally (P4), yet other modifications to the fMRI 

phantom, based on previous experience, were used to extract information on fMRI 

signal that could have implications on the analysis of certain types of human fMRI 

studies. Mostly, thus, the work comprised equipment and methods development. 

I will now describe the individual studies and, finally, summarise and discuss the main 

results. The publications, included as appendices, contain the details of each study. 

P1:  Feasibi lity of  fMRI  phantom  with  current‐induced  

dephasing  

The fMRI signal relates with the transverse magnetisation of the sample and is, thus, a 

function of , , , and especially magnetic field homogeneity. Notably, the signal 

does not “care” about the origins of these variables; if they occur similarly via two 

different mechanisms they are the same for the scanner.  

In the brain, the fMRI signal changes because of modulations of oxygenation. The 

main component of the BOLD response is due to changes of local field homogeneity, 

such that spins in or near deoxygenated blood precess at a slightly higher frequency 

than those in oxygenated blood. These signal changes occur at a microscopic scale, but 

eventually they result from locally varying magnetic field homogeneity. These 

differences are addressed in more detail in the Discussion. 

In the phantom used in the study, a local magnetic field was introduced in the sample 

by means of electromagnetic induction. A twisted carbon fibre was submerged in 

vegetable oil inside an elongated tubular vessel (Fig. 5, P1). Applying current to the 

fibre introduced some  in its vicinity; the field was inhomogeneous both axially, due 

to the twisting, and radially, decreasing in the second power of distance from the fibre, 

both with respect to the axis of the helices of the twist (and the vessel).  
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Figure 6: Statistically significant changes produced by applying a current of 0.3 mA (left panel) and 1.3 

mA  (right panel)  in  the  conducting wire  immersed  in  the  centre of  the  vessel  filled with  the  signal 

medium  in 30‐s ON/OFF‐blocks. The  in‐plane  size of  the voxels  shown as  the  coloured  squares was 

3.125  3.125 mm2. The grey underlays illustrate the cross‐section of the phantom. Fig. 2 of P1 shows 

the magnetic fields induced by the levels of inducing current. (Fig. 3 in P1) 

It was shown that the fMRI signal decreased locally as the absolute value of intra-

voxel  homogeneity decreased, as was deemed analogous with fMRI signal changes 

in vivo. When using a low current to induce activations, the phantom produced similar 

responses than are measured in human fMRI. Consequently, the feasibility test was 

successful, demonstrating that current-induced responses are relevant for physically 

simulating fMRI.  

However, as the induction wire passed through the MR signal source, and because 

accurate positioning of the image stack was difficult, the functional point-spread 

function could not be evaluated using the phantom, as was originally thought. In 

particular, it would have been necessary to be able to align the image stack so that the 

wire would have passed only centres of voxels. The localiser image did not, however, 

provide a reliable reference for prescribing the EPI images due to geometric distortion, 

and different spatial encodings. Further, with the higher current level, the activation 

map shows both positive and negative voxels, as illustrated in Fig. 6. The reason is 

most likely a partial volume effect influencing both, the vicinity of the wire, and the 

edges of the phantom, where potentially large signal differences occur as a result of 

even a minute spatial encoding modulation. Similar effect has been noticed in another 

fMRI phantom experiment (Koopmans et al. 2004), with no explanation, but the 

reason could be the same as here. Another explanation is accidental local correction 

for susceptibility gradients at the vessel–signal-medium boundary. By the use of 
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spatial smoothing, all the activated voxels turned negatively correlated with the 

stimulus, which can be taken as a warning against excessive signal pre-processing.  

The temporal and low-current measurements, however, provided results allowing us to 

consider that simulating activations with a current-based phantom is feasible. 

P2:  Quantification  of  geometric  distortions 

As an application of the EPI imaging method, fMRI is prone to severe geometrical 

distortions. To be able to account for the appearance, and to justify post-acquisition 

image deformations of fMRI component images, one needs to know how an accurately 

characterised object appears in the images. Ordinary structural and unstructured 

phantoms are of limited usability because they either do not show regular structure, 

contain too detailed structure, or possibly do not appear in the images at all 

(structured), or provide ambiguously interpretable information (unstructured). 

Existing and available phantoms were deemed suboptimal for characterisation of EPI 

distortions, and thus a new phantom was designed and implemented. The phantom was 

crafted in phases. First the general properties of the vessel were determined by a series 

of trials. Then the vessel structure was designed and machined, and an appropriate 

filling was chosen. 

As the nominal resolution of fMRI is often rather low (typically about 3 mm in , , 

and ), the structures in an appropriate structural phantom must be large and separated 

by considerable distances. The size requirement follows from the need to be able to 

approximate the locations of the structures accurately, which requires a sufficient 

number of voxels, so that a reliable “centre of mass”, representing the location of the 

structure, can be evaluated. Large distance between the structures was necessary for 

reliable discrimination of the signal from distinct compartments, because the EPI 

images tend to be blurred and distorted (see the leftmost panel in Fig. 7 for such an 

example). Also, geometric distortion of a few mm, and moderate susceptibility 

artefacts should be tolerated, so that the structures remain unambiguously discernable 

from each other, especially in the problematic phase encoding direction.  

Plastic plates with several cylindrical holes served in figuring out appropriate 

compartment sizes and separations for the phantom structures. The actual phantom was 

designed and crafted accordingly: equidistant spheres, connected by thin capillaries, in 

the three rectangular directions filled with MR signal source (Fig. 5). The surface 

tension of the signal source was lowered by washing powder, so that after initial 
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Figure  7:  Zeroing  the  phase‐encoding  gradient  gives  a  visual  and  quantitative  window  to 

inhomogeneities.  The  vertical  direction  in  the  lower  row  is  encoded  only  by  deviations  from 

homogeneous B0. Application of autoshim and high‐order shim (ho) in the images is indicated. (Fig. 7 in 

P2) 

bubble formation within the medium, the phantom’s filling remained stable for several 

months. The stability of the filling was improved by initially lowering the pressure of 

the air remaining in the phantom. Thus, air bound to the signal medium and surfaces 

bubbled away and the filling could be completed by adding some more liquid before 

securing the cap.  

In MRI, the user can combat image distortions by meticulous shimming. The use of 

mere “autoshimming” may be justified in clinical imaging in high-throughput settings, 

but given the distortion-vulnerability of EPI, fMRI should always be accompanied by 

more careful B0 homogenisation; in MRI, shimming corresponds to calibrating the 

instrument to accommodate the measurement at hand. However, high-order shimming 

is not always feasible due to the limitations of the user interface of the magnet console.  

Autoshimming, as compared with shimming the image volume by so-called high-order 

shim coils, resulted in seriously increased distortion (Fig. 7, two panels on the left). 

High-order shimming reduced distortion so that the shimmed phantom appeared very 

similar to an image acquired with autoshimming, after it had been transformed to 

correspond an anatomical image. If the image is devoid of distortions to begin with, a 

true one-to-one correspondence can be achieved between the source images and the 

image registration coordinates, for instance. If the signal in image locations is 
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Figure 8: Geometric distortion in EPI. (A) Geometric distortion as a function of encoding direction and 

slice  position  in  a  fMRI  pulse  sequence.  (Fig.  4  in  P2)  (B)  Geometric  distortion  in  diffusion  tensor 

imaging was dependent on the direction of the diffusion‐sensitising gradient. (Fig. 5 in P2) 

“folded”, i.e. originates from an anatomically different area than where it is encoded, 

such registration may lead to severe localisation errors.   

A method employing the standard EPI sequence, but with manually zeroed phase-

encoding gradient amplitudes, turned out to be a practical means to study and visualise 

the impact of poor field homogeneity. When the phase-encoding gradients are off, only 

the inhomogeneity gradients encode the phase direction. Thus, by observing the 

resultant images, the spread along the phase-encoded direction informs about the 

absolute field inhomogeneity, because in perfectly homogeneous field, a sample of a 

single spectral species (e.g. water) would yield a straight line in the frequency-encoded 

direction, where all signal would be aggregated (Fig. 7). 

Without meticulous shimming, geometric distortions in EPI can be severe, as could be 

measured by the phantom. In the phase-encoding direction, the distortion depended on 

the slice, and differences exceeding 20 mm were found between the least distorted and 

maximally distorted structures. The structures within slices at the isocentre of the 

magnet were on average 15 mm less distorted in the phase-direction than structures 

residing on slices on the edges of the image stack. More surprisingly, the frequency-

encoded direction was distorted as well by as much as 0.5–2 mm, with distortion 

depending on slice (Fig. 8A). In diffusion tensor imaging, the distortion depended on 

the direction of diffusion sensitising gradient, which may be detrimental for the proper 
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determination of the diffusion tensors (Fig. 8B). All of these exemplaries prompt for 

testing imaging methods to be used in fMRI by a phantom. The distortion may not be 

as easy to detect and characterise from the brain images, but is quite effortlessly 

obtainable using this phantom optimized for fMRI imaging sequences. 

P3:  Activation  amplitudes  in  a  compact  fMRI  reference  

phantom  

In P3, another fMRI phantom, featuring a very compact signal medium compartment 

was built. The vessel held a 3-mm thick ( -direction) cylindrical liquid compartment 

of 25-mm diameter (Fig. 5). The thickness of the plastic enclosure was 1 mm in the -

direction, which implied that air surrounded the signal source at a very close distance, 

exposing the phantom to severe susceptibility gradients. However, as the MR signal 

modulator was brought outside the vessel, and installed on its -surfaces, a thicker 

capsule would have degraded uniformity of the dephasing gradient field within the 

phantom. Therefore, the induction coil yielding the MR-signal modulation was 

mounted to a block of polyurethane foam (mostly air), because then the empty space 

left by the mould defining the geometry of the coil was surrounded by minimal amount 

of solid material. In practise, the foam was moulded onto the coil. This procedure 

resulted in the least complex susceptibility gradients that were attainable for the 

phantom. 

These choices, however, left the MR-signal source in the close proximity of air. As the 

 of water is lower than of air, the susceptibility gradients dephased the spins, and 

the signal measurable from the phantom was geometrically distorted. 

Adding traces of Gd-based contrast agent to the water increased the susceptibility of 

the solution. Consequently, an optimal point for the  was found where the signal 

from the phantom was close to maximum attainable, and the phantom was 

geometrically relatively undistorted. The  of the resulting solution was 

approximated by the use of Wiedemann’s law (Mulay 1963), and the applicability of 

the law was confirmed by observing the quantitatively correct shifts of the phantom’s 

location in the phase-encoded direction as a function of concentrations of the solute.  

In study P3, also a new transceiver was developed for signal delivery from the 

computer controlling the MR signal modulation to the phantom. The transceiver was 

tested and found to be MRI compliant in the 3-T environment. It was later reused to 

control the phantoms employed in P4. 
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Figure 9: Measurement of activation stability. The top panel shows the  image  intensity from which a 

baseline has been subtracted during an experiment where Bz modulation  (ΔBz) was “OFF” and “ON” 

every other TR. The bottom panel shows a 10‐point moving average of difference between the “OFF” 

and “ON” levels, horizontal lines indicate mean ± σ calculated over the whole measurement. Both the 

signal and the activation levels were very stable, with few crossings of the σ. (Fig. 6 in P3) 

As an application of the phantom, the activation amplitude was traced during a long 

fMRI scanning. In the measurements, the scanner produced a stable signal, and no 

major discrepancies in activation amplitudes were detected (Fig. 9). However, as the 

phantom apparently produces stable activations, statistically significant deviations 

from constant activation amplitude would pinpoint periods when simultaneously 

measured brain fMRI data could be corrupted.  

The design of the phantom described in P3 was preceded by several other attempts to 

use, e.g. rectangular and other more complex enclosures. All this preliminary work 

prompted the importance of  at 3 T. 

P4:  Evidence  of  overshoot  and undershoot  transients  at  step  

transitions  of  fMRI  activation  

In P4, we studied a spin saturation effect (explained below) in the context of fMRI. In 

the real brain, the signal modulations are direct consequences of BOLD  changes. 

However, these changes are not considered as sources of actual artefacts but rather 

regarded as  modulators that additionally bring about some sharpening of signal 

localisation during positive BOLD responses. 



 

 

43

0 15 time / TR

si
gn

al
 / 

ar
b

GRE EPI
Echo time: 30 ms
Flip angle: 90°
Field-of-view: 20 cm
Matrix 64 x 64
Slice thickness / gap: 3 mm / 0 mm
Slice: 5 / 9

b c

a

505 msTR: 1000 ms 2000 ms

“activation” “rest”

...“activ” “rest” “activ” “rest”

“activation”

10

“rest” “activation” “rest”
ΔSmax

Smin
= 12% 3.5% 1.3%

ΔSmax

Smin
= 15%

 

Figure  10:  Transient  over‐  and  undershoots  occurring  in  the  fMRI  signal whenever magnetic  field 

changes.  The  field  modulations  in  the  experiment  were  step‐transitions  of  Bz  between  “OFF” 

(activation) and “ON” (rest). The traces (c) show mean ± σ  (n = 9) of the average signal from the ROI 

indicated by a red square  in the transverse EPI slice of the phantom. Time scales  for  (c) are given  in 

steps of three distinct TRs, as indicated. As an example, (a) expands the data collected in the leftmost 

panel of (c). (Fig. 2 in P4) 

As the fMRI signal arises from oxygenation changes within a complex microstructure, 

it may go unnoticed that the field change during activation is, on average, always in 

the same direction, because the change of a linear  scales . Therefore, the BOLD 

change of  not only randomly alters , but also genuinely changes the field. 

 changes between successive TRs distort the spatial encoding at the activated voxels 

because, due to superimposition of this bias on the slice selection gradient, slice 

selection targets different spins. Now, when the slice of spins affected by identical 

excitation pulses changes between two scans, longitudinal relaxation of the sample no 

longer commences from the same steady initial value than before, as has been noted 

and corrected for bulk motion (Friston et al. 1996; Muresan et al. 2002; Muresan et al. 

2005; Kim et al. 2006; Bhagalia and Kim 2008; Kim et al. 2008), and in effect, the 

longitudinal magnetization starts to evolve toward a steady state after each change of 

, similarly as in the beginning of an fMRI experiment. Therefore, depending on TR, 

it may take several scan repeats before the signal stabilizes again. 

The change of  was physically modelled on two fMRI phantoms; Fig. 5 shows the 

general design, the difference between the two was the winding direction of one of the 

coils. One phantom induced a gradient field to cause dephasing, and the other induced 

a constant additional magnetic field (no dephasing, Fig. 10). The constant field 

alterations were simulated computationally as well.  
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The experiments and the computational simulations demonstrated that following a 

step-modulation of magnetic field between two successive scans of an image plane, 

transient over- and undershoots can occur in the fMRI signal time-course. The 

transient deflections were shown to arise from the finitely steep excitation slice profile. 

The finding has potential implications on the interpretation of fMRI signal transients. 

If the fMRI signal can over- or undershoot in the absence of a corresponding 

physiological response, physiological modelling of haemodynamic response on the 

basis of fMRI signal can go awry. 

 



 

 

5 Discussion 

In this dissertation, I have presented four studies employing artificial imaging objects, 

phantoms. Because phantoms and humans are alike from the “scanner’s point of 

view”, both receiving and emitting MRI signal, phantoms provide intimate 

counterparts to in vivo measurements, more so than, e.g. computational simulations. 

While computer simulations are helpful, a physical model cannot overlook any hidden 

properties of the imaging process. 

The role of phantoms for functional MRI 

Three of the studies involved fMRI phantoms. The correspondence between these and 

human subjects, now as activations are considered, is less clear. Several differences are 

immediately recognised, starting with the functional signal generation mechanism, but 

similarities exist as well. Human BOLD responses occur through a haemodynamic 

response, and eventually the changes of blood oxygenation pertain to the signal 

changes. Also, no MRI-detectable BOLD signal could arise if  did not vary and 

further, the levels of the oxygenation, signal, and  all shift consistently either up or 

down during activations. These observations provide a level of justification for 

physically simulating fMRI by  adjustments of macroscopic range. Of course, the 

effect of interest determines whether an fMRI phantom provides a valid surrogate, and 

the extent of applicability of the physical simulation. 

Our structural phantom to quantify geometric distortion in EPI (P2) is an example of 

an application-specific phantom. While many properties of MRI can be adequately 

confirmed by general-purpose phantoms, specific need is best served with specialised 

equipment. With the EPI-optimised structural phantom, we characterised distortions 

accurately and quantitatively, as was demanded. The requirement of specificity even 

accentuates with fMRI phantoms. E.g., a spatially focused simulation of activation 

limits the spatial averaging potential and may impede certain temporal analyses. 

Conversely, a wide activation with gently-sloping boundaries would be useless in 

characterising the spreading of focused activations. A dephasing phantom is 
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suboptimal for studies of field shifting etc. While phantoms can be operose to 

construct, an expedient phantom serves the purpose best. 

Quality assurance 

If head motion-dependent signal changes from the phantom were detrended, a phantom 

could possibly act as a useful reference during the acquisition of a single subject’s 

within-session data. The rationale for using a phantom to control within-session 

variability is basically the same as for any quality assurance: While (technical) signal 

abnormalities are rare, when they occur and are detected, possibly even accurately 

characterised and compensated, the examinations are better off than without the 

detection. Furthermore, a within-session reference phantom provides consistent 

activations throughout the imaging, so that a data quality check can be obtained from a 

well-defined location instead of analysing a larger ROI. Moreover, for instance in a 

hypothetical clinical condition in which the patient’s activations are abnormal, or when 

rescanning at some later date is not possible (say, because a surgical operation based 

on the data had already been carried out), an activation reference would be valuable. A 

reference comes, however, at the expense of increased field of view, number of slices, 

or coil dimensions. 

Reproducibility of fMRI activations still needs close attention, and individual subject 

variation, between-site variation, and between-subjects variation are regularly 

questioned. For instance, Zandbelt et al. (2008) report that individual fluctuations of 

activations are substantial, but group-level BOLD signal changes are stable over 

sessions. As another example, Gountouna et al. (2010) report that activations between 

different MRI scanners and sessions are well reproducible, while inter-subject 

variation is large. So perhaps equipments are improving and multi-centre studies have 

become feasible and reliable. Still, Friedman et al. (2008) are quite critical in 

evaluating multi-centre collaborative studies, reporting of multiple adjustments needed 

for experiments to produce repeatedly similar data, even with a simple and robust 

sensory-motor paradigm. An fMRI phantom could conceivably provide for objective 

control of instrumental variation by providing a much more stable yardstick than 

repeatedly scanning the same human subjects, enabling better focused psycho-

physiological investigations on variability. The real utility of fMRI phantoms in 

quality assurance remains to be validated in practise. 
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Susceptibility issues 

All fMRI phantoms constructed for this thesis work were rather compact. Controlling 

the EPI-related distortion in so small objects was challenging and in many instances 

material choices had but one parameter of relevance, susceptibility. A larger phantom 

would enable easier detection of current-induced signal changes (Bodurka et al. 1999). 

Nevertheless, in all fMRI works (P1, P3, P4) more reasons existed for keeping the 

vessels small than to make the construction easy. In studies P1 and P3, the phantoms 

were small enough for their eventual placing beside a human subject. In P4, the 

geometry of the induction coil necessitated a rather small diameter for the phantom 

because else a strong current (and unsafely long wires) would have been required to 

implement the physical simulation.  

Although other means to accomplish the same exist, an inverse procedure of the 

susceptibility matching scheme outlined in Summaries of studies (P2) could have been 

useful for material selection, simultaneously quantifying often hard-to-find magnetic 

susceptibilities of prospective phantom materials. Immersing a piece of the material in 

water and subsequently gradually adding a solute of known  while observing 

distortion-sensitive MR-images, e.g. obtainable by GRE EPI, would have come to a 

point where the object appears undistorted. The  of the solution at that point would 

equal that of the material and the material’s usability could have been easily resolved. 

Absence of transients in unnatural physical situations 

In study P4, the transients in the phantom were shown to arise from  shifts, with 

amplitudes depending on the rate of change. But why did measurements on phantom 

constructions of studies P1 and P3 not reveal such transients? In P1, the induction coil 

was a twisted electrical wire immersed within the signal medium, thus both partial 

volume effects and irregular field distribution undermined the shifts, because partly 

self-compensating as  that varied in both - and -directions. In P3, as a result of 

susceptibility matching using Gd, the , of the signal medium was very short, and 

hence spin saturation effect did not occur with the TRs used. In contrast, the signal 

medium in P4 had a long  of 2600 ms, which facilitated the generation of the 

transients. However, additional measurements (unpublished) on a signal medium with 

  1150 ms yielded strong transients as well, yet the percent signal changes of the 

transients were weaker for TR = 1000 and TR = 2000. In the works of others, the r.f.-

focussing phantom of Zhao et al. (2003) is not sensitive to the slice selection artefact, 

because it does not modulate the -field. The transients are not relevant in the gel-
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swapping phantom of Olsrud et al. (2008) either, although a somewhat similar bulk-

motion effect occurs – they correct for it.  

Furthermore, while the studies P1 and P3 concentrated on producing fMRI activations, 

the setup of the homogeneous phantom in P4 did not induce (much) dephasing. 

Possibly, however, some of the earlier data have contained these transients but have 

not caught the eye for any of the several possible reasons, foremost being that with 

step responses and longer TRs the effect is not so prominent. Another reason could be 

that transients in the signal are usually not welcomed, when encountered a possible 

step is to filter the input signal, which here would reduce the rate of change of  and 

consequently to eradicate the visible transients. While the transients were evident with 

both gradient and uniform -modulations, in the uniform case the effect was quite 

conspicuous. Notwithstanding, study P4 showed that unaccounted HRF-type signal 

components can exist and that they can be retrieved by physical simulation. 

Methodological contemplations  

In addition to what has already been discussed about P1, the signal medium was rather 

randomly chosen. While it did not affect the reported measurements completed soon 

after its assembly, in time it would have become rancid and thus not remain stable. 

Also, the carbon lead wire immersed in the signal medium was not optimal. Because of 

extreme difficulties in acquiring proper yarn, the lead wire had to be separated from a 

fabric and insulated by hand, whereby the wire took up more space than would have 

been desired, and its structure was somewhat irregular. The foremost issue in P1 was, 

however, the inhomogenising magnetic field being created by an immersed wire, 

because thereby dissecting useful (uncontaminated by partial volume effect) voxels 

from the phantom became problematical.  

The biggest issue of the fMRI phantom in P3 was the chosen geometry. Whereas the 

phantom itself gave relatively (EPI perspective) undistorted signal of sufficient 

amplitude, it failed to reflect some aspects of physiologically valid physics, because 

the signal medium was squeezed into a 3-mm thick compartment. The contribution of 

the adjacent space, as was shown later, can be rather consequential for natural signal 

formation. Additionally, as with any compact phantom, local shimming effects can 

happen at the vessel–signal-medium boundary with modulated , which would cancel 

some of the intended inhomogeneity effect. However, it was not the purpose of the 

phantom to be a physiology simulator but rather offer a reference for potential 

dephasing amplitude alteration. 
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It seems remote to attempt to calibrate between brain activation measurements using 

an fMRI phantom measured simultaneously with a subject. To obtain comparable 

signals from a phantom in different imaging sessions, while simultaneously acquiring 

signal from the brain appears even harder than to obtain commensurate signal(s) from 

the brain(s) alone. The phantom will necessarily reside in the less homogeneous 

regions of the -field, the -field is shimmed according to the brain to acquire the 

best possible brain data. Moreover, different subjects’ heads (or the same subject’s 

head on different days) will load the coil and inhomogenise the field differently, all of 

which will effectively render the fMRI signal from the phantom much harder to 

equalise than the brain data ever.  

The spin-saturation model quite successfully predicted the shapes of the transient 

responses. Including more parameters could, however, improve the accuracy of the 

simulation, which will be considered in future work. To improve the experimentally 

testable repertoire of hypotheses, a more versatile transceiver would be needed to feed 

the phantom. The current transceiver has only two modes, on and off, which clearly 

does not allow many additional experiments. Furthermore, knowing the true excitation 

profile throughout the phantom would enable more accurate simulations. 

Future  topics  

Printed circuit board phantoms 

To minimise the interference of support structures, and to improve durability and 

accuracy, phantoms made of printed circuit board would be useful. As also flexible 

circuit boards allowing non-planar geometries are available, the compromises due to 

this material choice would be limited. 

Investigation on the significance of the “unphysiological” transients in humans 

The implications of the slice artefact transients on human fMRI remain to be seen and 

tested. How strong this effect ultimately is in humans and whether it relates to the 

observed human fMRI over- and undershoots and the initial dip still remains to be 

studied. In the phantom measurements and computer simulations of P4, the slice 

selection error due to  modulation was, even though of physiologically rooted 

magnitude, wide and smooth. At least the spatial pattern of activations within a voxel 

is unlikely symmetric on the -borders of a slice, nor distributed over the whole voxel. 

The transient increase of signal in the phantom does not necessarily translate directly 

to the brain data of humans. 
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Enhancement and suppression of transients 

As discussed in P4, ways exist to enhance or suppress the transients, and to test 

whether or not these spin saturation transients pertain to human BOLD signal 

transients. An easily conceivable procedure (discussed to some extent in P4) is to 

reduce the amplitude of the slice selection gradient, while keeping other things equal 

because that way the  modulation becomes relatively stronger. Reducing the 

gradient and adjusting the r.f. pulse correspondingly is one possibility. However, an 

immediately available method, of which initial steps have already been taken, is to tilt 

the slice planes from axial toward coronal or sagittal through an angle . Thus  

reduces by a factor of . However, with   /2 could imply signal shifts over 

several planes on slice borders, or signal translation within slices. Additionally, very 

small  variation can then inflict signal mislocation between or within slices. Finally, 

although the importance of short TR in transient generation diminishes as the transition 

time of  rises, because the strongest phantom-produced transients and the initial dip 

both coincide with short TRs, experiments with TR as a variable cannot be neglected. 

Looking for the initial dip 

As reducing  can be envisioned a feasible way to increase the transients, the notion 

that the biggest initial dips have been observed with non-axial slices becomes 

interesting (Refs. in Table 1). We do not yet know how large an impact the effect has 

on human fMRI data, but simulations on physiologically valid parameter choices 

indicate that these unphysiological transients may require attention.  

                 

Functional magnetic resonance imaging provides means to look at brain 

function through a signal informed of blood oxygenation. The signal, thus, 

only indirectly reflects neuronal activity, and it is not earmarked to bear 

information only of brain activations. Phantoms, designed, constructed, 

and tested in this dissertation, provide an attractive means for peeking at 

the signal. The principle of using phantoms to imitate the brain, including 

activations, was demonstrated viable, although the existing concepts can 

be refined and new application-specific instruments developed. The true 

relevance of the phantom findings for physiological interpretations 

remains to be validated. Still, these first steps carry a promise that 

phantom experiments, and phantom experiment-inspired fMRI studies on 

human subjects, will improve our understanding of human brain function.  
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