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1 Introduction 

Carbon nanotubes (CNTs) are molecular-scale tubes of graphitic carbon. Intensive 

research into CNTs was initiated in 1991 by Prof. Sumio Iijima after his landmark 

publication [1], in which he showed clear structures of double-walled and multiwalled 

CNTs. Single-walled CNTs (SWCNT) were independently discovered by Iijima and 

Ichihashi [2] and Bethune et al. [3] in 1993. SWCNTs have diameters of the order of 

single nanometers, with a tube length that can be many millions of times longer.  

Widespread interest in CNTs soon stemmed from their diverse useful properties, which 

can provide various applications in many fields, such as field electron emission 

technologies, nanoelectronics, superstrong fibres, composite materials, catalysts, 

molecular wires, switches, and photonic materials, etc. 

The most common CNT synthesis methods are arc-discharge, laser ablation, and 

chemical vapour deposition (CVD). Arc-discharge and laser ablation methods are based 

on vaporization of solid carbon targets. The advantage of these methods is the high 

crystallinity of the CNT sample, i.e. the low number of defects in the CNT wall 

structure [1,4]. Nevertheless, these methods generally produce a complex mixture of 

SWCNTs or multiwalled CNTs (MWCNTs), metal particles, carbon particles, and 

amorphous carbon, making purification a necessary process step.  

The CVD method involves decomposition of carbon-containing precursor molecules on 

the surface of transition metal catalyst particles, typically Fe, Ni and Co, usually 

supported on a substrate. Recently, it was demonstrated that even such materials as Au, 

Ag, Cu, Al2O3 and diamond [5-7] can act as a catalyst for SWCNT synthesis. 

Alternatively, catalytic CNT synthesis can be performed in the gas phase without a 

support material. Unsupported CVD methods have many advantages over other 

methods. The CVD methods are operated at essentially low temperatures (about 

6001000 ºC) and allow continuous CNT production. From an industrial point of view, 

for many applications it is desirable to produce and/or directly deposit CNTs onto the 

required substrates, so that time-consuming steps of CNT purification from the catalyst 

and support, and dispersion and deposition processes are avoided. Therefore, the aerosol 
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unsupported CVD technique, which allows the production of high-quality clean 

SWCNTs, is preferable. Also, the amount of the undesirable products can be decreased 

by utilizing CO as a carbon source, which is known to disintegrate only on the surface 

of catalyst. An additional advantage of the aerosol unsupported method is the possibility 

of studying the mechanism and kinetics of SWCNT formation by means of on-line 

aerosol measurements and in situ sampling experiments.  

This thesis presents studies of SWCNT aerosol synthesis in a hot-wire generator reactor 

[8] and in a reactor based on ferrocene vapour decomposition [9]. The aim of these 

studies has been to better understand the mechanism and kinetics of SWCNT growth. 

Optimization of synthesis parameters, such as temperature and gas composition, has 

enabled the synthesis of a novel hybrid material that combines fullerenes and SWCNTs 

into single structure ― carbon nanobuds. Randomly oriented mats of nanobuds have 

been found to show excellent field-emission properties. This thesis introduces novel 

methods for the separation of bundled and individual SWCNTs and for the integration 

of SWCNT mats into polymers.  

This work is based on publications I–VII, which are attached as appendices. On the 

basis of in situ sampling from different locations in the reactor, the kinetics of SWCNT 

growth was studied in Paper I. The essential role of etching molecules (CO2 and H2O) in 

the CNT formation was demonstrated in Paper II. The synthesis of a novel hybrid 

material, nanobuds, that combines fullerenes and SWCNTs in a single structure in 

which the fullerenes are covalently bonded to the outer surface of the SWCNTs, was 

shown for the first time in Paper III. The mechanism of nanobud formation was 

discussed in Paper IV. On the basis of the observed CNT self-charging phenomena, a 

novel method for the gas-phase separation of individual CNTs from bundles and their 

subsequent deposition onto any substrate at ambient temperature was introduced in 

Paper V. The charging phenomenon of CNTs was thoroughly investigated in Paper VI. 

As one of the applications of SWCNTs, a simple and efficient one-step integration 

process for transferring SWCNT mats into polyethylene (PE) thin films was 

demonstrated in Paper VII. 
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2 Literature review  

2.1 Carbon nanotubes (structure, properties, and 
applications) 

A CNT can be thought of as a graphene sheet rolled up to form a cylinder [10,11]. 

CNTs may be found either as individual cylinders, i.e. SWCNTs, or as two or more 

concentric cylinders, i.e. MWCNTs (Figure 1). 

 
 The dimensions of CNTs vary over a wide range. The diameters of SWCNTs are 

usually 0.4–3 nm, and their lengths range from a few tens of nanometers to several 

centimeters. To understand the structure and properties of CNTs, the bonding structure 

and properties of carbon atoms should first be described. A carbon atom has six 

electrons, with two of them filling the 1s orbital. The remaining four electrons fill the 

sp3 or sp2 as well as sp hybrid orbital, responsible for the bonding structures of 

diamond, graphite, nanotubes, or fullerenes. In diamond, the four valence electrons of 

each carbon occupy the sp3 hybrid orbital. In graphite, three outer-shell electrons of 

each carbon atom occupy the planar sp2 hybrid orbital. Bonding in CNTs is essentially 

sp2. However, the circular curvature will cause quantum confinement and σ-π 

rehybridization in which three σ bonds are slightly out of plane; to compensate, the π 

orbital is more delocalized on the outside of the CNT. This makes CNTs mechanically 

stronger, and electrically and thermally more conductive than graphite [13]. 

Figure 1. Structure of carbon nanotubes [12]. 
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Depending on the manner in which the graphene sheet is rolled up, the arrangement of 

carbon atoms along the cylinder circumference can be “arm-chair”, “zig-zag”, or several 

different intermediate chiral structures (Figure 2). The arrangement of the hexagons in 

the cylinder is referred to as the chirality and is defined in terms of indices (n,m). The 

chirality of the graphene sheet determines the electrical conductivity of the SWCNT. 

Metallic SWCNTs have equal n and m. When n  m is a multiple of three, the SWCNT 

is semimetallic, while all other combinations result in semiconductor SWCNTs [14]. 

 

 

CNTs and especially SWCNTs were found to have exceptional mechanical, thermal, 

and electronic properties [10,11,14]. A brief summary of the physical properties of 

SWCNTs and materials made of SWCNTs is presented in Table 1. 

Many potential applications have been proposed for CNTs, such as their use in 

reinforcement composite materials [1618], nano-transistors [1921], AFM/STM tips 

[2224], transparent and flexible electrodes [25,26], and electron-field emitters [27,28]. 

Thin SWCNT films can exhibit conductivity/transmittance values comparable to those 

of low-temperature ITO and, in particular, transparent conducting SWCNT coatings on 

flexible substrates such as polyethylene terephthalate (PET) outperform ITO/PET 

Figure 2. Chiral structure of carbon nanotubes [15]. 
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electrodes in terms of chemical and mechanical stability and exhibit a wider 

electrochemical window [26,29]. 

Table 1. Physical properties of individual SWCNTs and materials made of SWCNTs.  

Individual SWCNTs Ref. 

Young’s modulus of 
elasticity  

3001470 GPa (compared to 200 GPa for high-
strength steel)  [30] 

Tensile strength  30200 GPa (compared to 12 GPa for high-
strength steel)  [30,31] 

Thermal conductivity 
along the tube  ~6600 W/(m.K) (twice as high as that of diamond)   [32] 

Electrical resistance of 
metallic CNTs 

3106 .сm at 300 K (compared to 2.82106 .сm 
for Al and 1.72106 .сm for Cu)  

[33,34] 

Maximum current density 
(without destruction) 

109 A/cm2, with a theoretical limit of 1013 A/cm2 
(compared to 107 A/cm2 for copper wire of 100 nm 
in diameter)  

[3537] 

Hole and electron 
mobilities  

(26)×104 cm2/Vs (compared to 450 and 1400 
cm2/Vs for Si at 300 K) [38] 

In addition, the application of SWCNTs as field-emission electron sources for use in 

flat-panel displays, lamps, gas-discharge tubes, X-ray sources, and microwave 

generators has been widely explored. The advantages of these devices over those made 

from conventional metals such as tungsten and molybdenum are the following: 

relatively easy manufacturing/fabrication process, less deterioration in moderate 

vacuum (108 Torr), and high current densities of ~109 A/cm2 [28]. 

Other desirable properties that make CNTs promising materials as field emitters are 

their nanosize diameter, structural integrity, high electrical conductivity, and high 

chemical stability. Notwithstanding these favourable advantages, CNT-based emission 

devices face stiff competition from liquid-crystal panel displays and other organic and 

polymeric light-emitting-diode displays [39]. 

Studies on a field-effect transistor made from a semiconducting SWCNT showed it to 

have the ability to be switched from a conducting to an insulating state. Logic switches, 
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the basic components of computers, can be constructed by coupling such CNT 

transistors [18,39]. 

Recently, the application of random CNT networks (CNTNs) as semiconducting 

materials for thin-film transistors (TFT) has attracted interest due to their superior 

performance compared to that of organic TFTs and potentially low-cost fabrication 

[19,20]. Uniformity of CNTN properties is achieved by statistical averaging over the 

large number of individual tubes that make up the network. Various devices and 

components based on CNTNs have been successfully demonstrated, including diodes, 

logic circuit elements, solar cells, displays, and sensors [19,20]. 

2.2 Synthesis of carbon nanotubes 

All CNT synthesis methods can be classified according to the type of carbon 

atomization as either physical or chemical techniques. Physical production involves 

high energy input to the carbon source (graphite or carbon black) by arc-discharge or 

laser evaporation [4042]. For the synthesis of SWCNTs, a small amount of metal 

catalyst is added.  

Arc discharge. The carbon arc-discharge method was initially used for producing C60 

fullerenes. However, this technique produces a mixture of SWCNTs, MWCNTs, 

fullerenes, and amorphous carbon, making purification a necessary process step, which 

involves separating the nanotubes from the soot and the catalytic metals present in the 

crude product. This method creates nanotubes through arc-discharge between two 

carbon rods placed end to end, separated by approximately 1 mm, in an enclosure that is 

usually filled with an inert gas (helium, argon) at low pressure (between 50 and 700 

mbar) (Fig. 3). 

Recent investigations have shown that it is also possible to create nanotubes by an arc 

method in liquid nitrogen [43]. A direct current of 50 to 100 A driven by approximately 

20 V creates a high-temperature discharge between two electrodes. The discharge 

vaporizes one of the carbon rods and forms a small rod-shaped deposit on the other rod 

[4]. 
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Laser ablation. In 1995, Smalley's group [45] at Rice University reported the synthesis 

of CNTs by laser vaporization. A pulsed [46,47] or continuous [48,49] laser was used to 

vaporize a graphite target in an oven at 1200 °C. The main difference between the 

continuous and pulsed lasers is that the pulsed laser demands a much higher light 

intensity (100 kW/cm2 compared with 12 kW/cm2) (Figure 4). The oven is filled with 

helium or argon gas in order to keep the pressure at 500 Torr. 

 

 Figure 4. Schematic representation of the laser ablation system [50]. 

Figure 3. Schematic representation of the arc-discharge system [44]. 
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Chemical vapour deposition. The chemical route is based on the catalytic 

decomposition of carbon-containing precursors. The obvious advantage of this method 

is the possibility of producing CNTs at relatively low temperatures. The chemical 

methods can be divided into substrate CVD [e.g., 5153] and free-floating catalyst 

(aerosol unsupported) CVD synthesis [e.g., 5456]. In the substrate CVD process, 

decomposition of the carbon precursor and CNT formation take place on the surface of 

catalyst particles that are supported on a substrate, commonly aluminium oxide or 

silicon dioxide. 

In the free-floating catalyst method, the whole process takes place in the gas phase or on 

the surface of catalyst particles suspended in a gas. As catalysts, transition metals such 

as Fe, Co, or Ni are commonly used. One of the first floating catalyst techniques, the 

HiPco process, was developed by Nikolaev et al. at Rice University in 1999 [57,58]. 

HiPco is based on CO disproportionation on the surface of iron particles. The catalyst is 

generated in situ by thermal decomposition of iron pentacarbonyl (Fe(CO)5) in a reactor 

heated to 10001200 C. The HiPco process is operated at high CO pressures (up to 50 

bar), which significantly increases the CO disproportionation rate and thus enhances the 

SWCNT yield. SWCNT synthesis methods studied in this thesis, the ferrocene-based 

method and the hot-wire generator method, are also floating catalyst methods.  
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3 Experimental 

3.1 Synthesis: HWG and ferrocene-based reactors 

For the synthesis of SWCNTs and nanobuds, and for the investigation of their formation 

mechanisms, two different experimental set-ups were used. The first experimental set-

up consisted of a hot-wire generator (HWG) of catalyst particles and a heated vertical 

tubular reactor (Figure 5) (Papers II, III, V). The alumina ceramic tube used for the 

experiments contained SiO2 (0.25%), Ca (0.02%), Fe (0.02%), and Cd (0.09%) as 

impurities.  

fu
rn

ac
e

   ESP

filter

power supply

DMA

H
2/N

2

C
O

 4
00

 c
m

3  /
m

in

40
0 

- 8
00

 c
m

3  /
m

in

DILUTOR 

 H
ot

 w
ire

 
ge

ne
ra

to
r

12
 L

/m
in

N
2

 

Figure 5. Schematic representation of the HWG method. 
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A tube with an internal diameter of 22 mm inserted inside a furnace of length 90 cm 

was used as the reactor. Another ceramic tube with external and internal diameters of 13 

and 9 mm, respectively, and of length 25 cm was inserted into the reactor in order to 

protect the HWG from the CO atmosphere. Hereinafter, this method will be referred to 

as the HWG method. 

The HWG consisted of a resistively heated thin iron wire (0.25 mm in diameter) located 

inside the internal tube. The location of the internal tube and the hot wire could be 

adjusted. The metal particles produced by the HWG were carried into the reactor with 

nitrogen/hydrogen (with a mole component ratio of 93.0/7.0). In the reactor, the flow 

containing the aerosol metal particles from the HWG was mixed with the outer CO flow 

(400 cm3/min). Inside the reactor, CO disproportionation (Boudouard reaction) 

CO(g) + CO(g) ↔ C(s) + CO2(g)       (1) 

and hydrogenation 

H2(g) + CO(g) ↔ C(s) + H2O(g)       (2) 

reactions took place on the surface of these metal particles. A porous tube dilutor (12 

L/min flow of N2) was installed downstream of the reactor to prevent SWCNT 

deposition on the walls.  

The second experimental method (Figure 6) was based on ferrocene vapour 

decomposition (Papers IIV, VI, VII). The experimental set-up included a precursor 

feed system, a furnace of length 55 cm equipped with a ceramic tube, as well as 

sampling and analysis devices. Carbon monoxide (CO) was used both as a carrier gas 

and as the carbon precursor. To vaporize ferrocene, a flow of CO (300 cm3/min) was 

continuously directed through a cartridge containing the precursor powder mixed with 

SiO2 powder at ambient temperature. A stainless steel water-cooled injector probe, held 

constantly at 24 ºC, was used to feed the precursors to the furnace. The location of the 

injector probe was varied in order to control the precursor vapour heating rate and the 

residence time in the furnace. The temperature at which the precursor was introduced 

was determined by the furnace wall temperature and varied only slightly depending on 

the vertical location of the injector probe inside the furnace. An additional CO flow of 
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100 cm3/min was introduced outside of the water-cooled probe. A constant partial 

pressure of 0.7 Pa of ferrocene vapour was introduced into the reactor.  

Downstream of the furnace, the aerosol was diluted with 12 L/min of pure, ambient 

temperature N2 to reduce losses on the reactor walls due to diffusion and 

thermophoresis and to decrease SWCNT agglomeration. Moreover, the dilutor was used 

to lower the gas temperature downstream of the reactor. Alternatively, the dilutor was 

removed and samples were collected by filtration through silver or nitrocellulose filters 

at the outlet of the furnace at ambient temperature.  
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For the synthesis of nanobuds in both reactors, controlled amounts of H2O vapour and 

CO2 were introduced together with the CO. A mass flow controller was used for 

additional introduction of CO2 and/or H2O vapour. In order to introduce the H2O 

vapour, a flow of a carrier gas was passed through a water saturation vessel. The 

Figure 6. Schematic representation of the ferrocene reactor. 
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amount of introduced H2O vapour was varied from 0 to 405 ppm. The concentration of 

introduced CO2 was varied from 0 to 5000 ppm in the HWG case and from 0 to 12000 

ppm in the ferrocene case.  

3.2 Characterization methods and techniques 

Following fabrication by both methods, the samples were collected downstream of the 

reactor either on 2.45 cm diameter nitrocellulose (or silver) disk filters (Millipore Corp., 

USA) (Papers IIII, VI, VII) or on transmission electron microscopy (TEM) grids by an 

electrostatic precipitator (ESP) (Papers IVII). The morphology and crystallinity of the 

products were investigated with a field emission gun transmission electron microscope 

(Philips CM200 FEG) (Papers IVII) operating at an accelerating voltage of 200 kV or 

with a transmission electron microscope equipped with an imaging Cs-corrector (FEI 

Titan 80-300) operating at an accelerating voltage of 300 kV (Paper I). Chemical 

elemental analysis of the as-produced samples of nanobuds by means of electron energy 

loss spectroscopy was performed with a field emission transmission electron 

microscope (Philips CM200 FEG) (Paper III). 

The aerosol number size distributions of the gas-phase samples were measured 

continuously at the outlet of the reactor with a DMA system [59,60]. The DMA system 

consisted of a classifier (TSI 3081) with a sample flow rate of 0.3 L/min and a sheath 

flow rate of 6 L/min of N2, a condensation particle counter (TSI 3022), and a 241Am 

bipolar charger (optional). The classifier contained two electrodes, between which 

charged aerosol particles were classified according to their electrical mobility, which, in 

turn, was dependent on both the size and electrical charge of the particles. This method 

allows unambiguous delineation of the conditions of SWCNT formation, without 

having to resort to time-consuming transmission electron microscopy (TEM) 

observations. Adequate power supplies for applying both positive and negative polarity 

to the classifier internal electrode were used, while the external electrode was kept 

grounded.  
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In order to study the charging state of the naturally charged SWCNTs, tandem DMA 

measurements were carried out. For this purpose, a Hauke DMA classifier with a 

sample flow rate of 1.5 L/min and a sheath flow rate of 15 L/min (N2) was used to 

extract fractions of certain mobility-sized SWCNTs, which were then introduced into a 

second TSI DMA via a 85Kr charger (Figure 7).  

An electrostatic filter (ESF) located downstream of the reactor was used to filter out all 

charged aerosol products from the gas phase by applying an electric field. It comprised 

two metallic plates with dimensions of 15 cm in length and 1.5 cm in width separated 

from each other by a distance of 1 cm. An electric field was created by connecting one 

of the plates to a high voltage (4 kV) source, while the other one was kept grounded. 

 

 Figure 7. Schematic representation of the tandem DMA system. 
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In order to sample the SWCNTs in situ, a stainless steel sampling rod with a TEM grid 

attached to the top was rapidly inserted into the reactor and held in a steady position for 

30 s. The sample was collected due to the thermophoretic forces between the hot 

atmosphere in the reactor and the cold sampling rod (Papers I, IV).  

Fourier-transform infrared spectroscopy (FT-IR) was applied to study the 

disproportionation reactions of ferrocene and CO during the SWCNT synthesis (Papers 

III, VI). The FTIR measurements were mainly used to study the conversion of CO to 

CO2. The FTIR instrument (GASMET DX4000, Temes Instruments) was fitted with a 1 

dm3 flow-through cuvette and the measurement temperature was 45 ºC. 

In order to examine the nature of the ions emitted from the SWCNTs, which could be 

responsible for SWCNT ionization, laser desorption ionization time-of-flight 

spectrometry (LDI-TOF) measurements were carried out with a Voyager-D STR 

MALDI-TOF mass spectrometer. For this purpose, SWCNT samples were collected on 

a silver filter as a powder and transferred to an LDI-TOF steel sample substrate (Paper 

VI). 

The layer thickness of the collected SWCNT mats was measured with a scanning 

electron microscope (SEM, LEO DSM-982 GEMINI) and an atomic force microscope 

(AFM). Eight cross-sections of SWCNT mat samples at different mat positions (three in 

the centre and five at the edges) were measured and averaged (Paper VII). 

Electron FE measurements on randomly oriented mats of SWCNTs and nanobuds were 

performed using a 2 mm hole and 450 μm and 675 μm spacers between the cathode and 

anode. Cold electron field emission measurements were carried out at a chamber 

pressure below 5  107 Torr. A 5 kV Keithley 248 power supply and a Keithley 6517A 

electrometer with pA precision were used for electric field generation and emission 

current monitoring, respectively (Paper III). 

The Raman spectra of the nanobud samples were measured under excitation with 633, 

514, and 488 nm lasers (Paper III). 
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4 Results and Discussion 

4.1 Control and optimization of aerosol synthesis 

Initially, the synthesis of SWCNTs in the HWG and ferrocene reactors was unstable. 

Analysis of the experimental data showed that these instabilities were primarily 

associated with the reactor wall conditions. It was found that for stable SWCNT 

synthesis the wall of the reactor had to contain a catalyst material. This could be 

realized by deposition of a catalyst on the reactor walls or by using a reactor tube made 

out of the catalyst material, e.g. stainless steel.  

Further investigations showed that for stable SWCNT synthesis the introduction of a 

small concentration of an etching reagent such as CO2 or H2O was needed. FT-IR 

measurements showed that the main gaseous product of CO disproportionation was 

CO2, with concentrations of 120 and 1540 ppm in the HWG method and the ferrocene 

set-up, respectively.  

In order to clarify the roles of CO2 and H2O during SWCNT synthesis, experiments 

were carried out in a “clean” wall reactor. An HWG reactor, made from a ceramic tube, 

was mechanically cleaned and baked at 1200 °C, thereby removing all catalyst material 

from the walls. It was found that no SWCNTs were produced when pure CO was used. 

Introducing 1000 ppm CO2 into the clean HWG reactor resulted in SWCNT formation. 

Figures 8a,b show respective TEM images of the typical products synthesized in the 

presence of “native” CO2  and when 1000 ppm CO2 was introduced into the “clean” 

reactor. A clear effect on the morphology of the produced SWCNTs can be observed. 

The TEM images show that the lengths of the SWCNT bundles increased from 

approximately 300 nm to more than 1 μm when additional CO2 was introduced into the 

reactor. Also, the lengths of the individual SWCNTs increased from 60 nm up to 300 

nm. The optimal CO2 concentration for SWCNT growth was found to be between 80 

and 1500 ppm in the case of the HWG reactor. At a CO2 concentration of 1750 ppm, a 
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portion of the catalyst particles becomes inactive for the initiation of the CNT 

formation. 

H2O vapour is also always present among the effluent gases from reactors having iron 

on their walls due to the catalytic CO hydrogenation reaction on these walls. 

Experiments were carried out in both reactors in which 150 or 330 ppm of H2O vapour 

was introduced in addition to the “native” H2O formed on the reactor walls. The TEM 

image in Figure 8c shows an increase in the SWCNT bundle length compared to those 

fabricated under conditions when neither CO2 nor H2O was additionally introduced 

(Figure 8a).  

 

 

The experimental results showed that in the HWG reactor the presence of CO2 and H2O 

in the system can significantly alter the growth of the SWCNTs. The possible function 

of CO2 and H2O may be to etch amorphous carbon that might otherwise poison the 

catalyst particles needed for SWCNT nucleation and growth. The catalyst particles play 

two important roles: they catalyze the CO disproportionation reaction that produces free 

carbon for SWCNT production and they determine the diameter of the produced 

SWCNTs. Additionally, steady-state growth of SWCNTs cannot proceed if the surface 

of the catalyst particle is poisoned by amorphous carbon. Importantly, the reaction of 

CO2 (or H2O) with amorphous carbon is more energetically favourable than that with 

carbon integrated in the graphene layer. 

1 µm1 µm0.5 µm0.5 µm

a) b) c) 

Figure 8. TEM images of SWCNTs synthesized in HWG reactor under conditions: a) when CO2 and 
H2O were formed on the reactor walls (CO2 – about 100 ppm, H2O – about 10 ppm); b) when 1000 ppm 

CO2 was introduced; c) when 150 pp H2O was introduced. 
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4.2 Carbon nanobuds 

Variation of the H2O vapour or CO2 concentrations introduced into the reactor allowed 

us to synthesize SWCNTs covered with covalently attached fullerenes. This material 

was termed carbon nanobuds, since the fullerenes on the surface of the SWCNTs were 

reminiscent of buds on a branch (Figure 9).  

 

In an attempt to control the density of fullerenes on the SWCNTs, systematic 

investigations on the effect of the reactor temperature and of the concentrations of H2O 

vapour and CO2 were carried out. These parameters were found to have a noticeable 

effect on the density of fullerenes on the surface of the tubes. The introduction of H2O 

or CO2 into the ferrocene reactor revealed that the optimal concentrations were between 

45 and 245 ppm for H2O and between 2000 and 6000 ppm for CO2, with the highest 

fullerene density on individual SWCNTs being in excess of 1 fullerene/nm. The 

preferred conditions for nanobud formation were identified as an H2O concentration 

between 125 and 185 ppm and a CO2 concentration of approximately 2500 ppm. 

An example of the change of the nanobud morphology with the reactor conditions is 

shown in Figure 10, wherein the effect of H2O vapour concentration in the reactor at a 

Figure 9. TEM images of a carbon nanobud sample, revealing the presence of spherical structures on 
the surface of the SWCNTs. 
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temperature of 1000 °C can clearly be seen. Experimental conditions without the 

addition of H2O resulted in the formation of largely pure SWCNTs together with non-

active catalyst particles. Nanobuds started to form in abundance at H2O vapour 

concentrations of 45 ppm and above. Conversely, at high concentrations of H2O (>365 

ppm), the sample contained a high fraction of inactive catalyst particles and few 

nanobuds. 

 

In addition to TEM observations, the presence of fullerenes on the SWCNT surface was 

proved by means of STM, MALDI-TOF MS, and UV/vis absorption measurements. 

Their covalent attachment to the outer walls of the SWCNTs was examined by their 

dissolution and evaporation from the SWCNT surface. 

In order to understand the nature of the bonding between fullerenes and SWCNTs, 

atomistic density functional theory (DFT)-based calculations were carried out. The 

calculations showed that systems composed of fullerenes covalently bonded through 

ester groups to single-vacancy SWCNTs can indeed exist (Figure 11a). Calculations 

with a model Hamiltonian showed that fullerenes can be directly covalently bonded to 

SWCNTs or can form hybrid structures.  

Figure 10. Effect of the concentration of the water vapour introduced into the ferrocene reactor at 1000 
°C. 



28 

Results for the different adsorption scenarios of fullerenes on an (8,8) SWCNT are 

summarized in Figures 11b and 11c. It was found that the structure formed by the 

chemisorption of perfect C60 molecules on SWCNTs (Figure 11b) is quite stable, but 

that the configuration becomes unstable or only marginally stable with respect to a 

defective SWCNT and an isolated fullerene (Figure 11c). One of the viable hybrid 

geometries involves imperfect fullerenes covalently bonded to defective SWCNTs. 

Such bonded structures, with a neck connecting the fullerene and the SWCNT, are 

depicted in Figures 11d and 11e. The local binding energies in these structures 

(represented in colour) suggest that none of the carbon atoms are less stable than those 

in a C60 molecule. 

 

In situ experiments were performed to study nanobud formation. It might have been 

assumed that fullerenes were formed in the reactor separately from SWCNTs and then 

deposited on their surface at the outlet of the reactor. However, it was shown by in situ 

sampling experiments that fullerenes were present in all samples in which SWCNTs 

were detected. Thus, one can conclude that SWCNTs and fullerenes were formed 

simultaneously. TEM observations suggest that both fullerenes and SWCNTs originate 

from graphitic carbon precipitated on the surface of Fe nanoparticles catalyzing CO 

Figure 11. Bonding scenarios of fullerenes on SWNTs: (a) C42 connected with a SWNT via an ester 
group; (b,c) C60 chemisorbed on a defect-free (8,8) SWNT; (d, e) fullerene-SWNT hybrid structures, 

reminiscent of buds on a branch. (Courtesy of Dr. A.V. Krasheninnikov). 



29 

disproportionation [5,61,62]. This is supported by the results of molecular dynamics 

simulations, which indicate that various curved carbon nanostructures (fullerenes or 

fullerene-like structures) can be formed on the surface of catalyst particles [63,64]. It 

was proposed that the growth of SWCNTs occurs in a steady-state regime by the 

provision of additional carbon from reactions (1) and (2) at the catalyst surface to the 

edge of the carbon layer. Therefore, the formation of SWCNTs occurs in the 

temperature range between 885 and 945 ºC, in which the inverse reactions (1) and (2) 

are significant either due to the introduction or formation of H2O vapour and CO2 

upstream of the reactor. 

Before discussion of the nanobud formation mechanism, the observed nanobud 

structures should be classified. The first type, fullerenes on the surface of SWCNTs, can 

possess a complete spherical structure and can be covalently bonded to SWCNTs 

through sp3-hybridized carbon atoms (Figures 11ac). The second type, in which all 

carbon atoms are sp2-hybridized, can be described as a fully hybrid structure, where a 

fullerene forms a continuous part of a SWCNT (Figure 11d,e). Nevertheless, 

irrespective of the structure of the nanobuds, initially a certain number of pentagons 

should be generated for fullerene formation. It is known that for fullerene formation, 12 

pentagons are needed. The formation route of these pentagons, promoted by the 

presence of etching molecules, is expected to determine the formation of fullerenes. 

Figure 12 schematically depicts our understanding of the formation of pentagons on the 

surface of a catalyst particle.  

Carbon atoms at the edge of the dynamic layer (with dangling bonds) can be attacked by 

etching molecules such as H2O. This results in the release of CO and H2 and in the 

closure of rings consisting of five carbon atoms (pentagon formation). Further, the 

former pentagon can be surrounded by hexagons, and new pentagons can be formed as 

indicated in the suggested schematics. According to the proposed mechanism, the 

concentration of etching molecules should have some optimal value, since a low 

concentration of oxidants will lead to the formation of pure SWCNTs (without 

fullerenes), while high concentrations should suppress the formation of SWCNTs 

because of excess positive curvature. 
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4.3 Charging phenomena 

4.3.1 Separation of individual carbon nanotubes 

The DMA is a standard tool in the field of aerosol science for determining particle 

number size distributions in the gas phase. The DMA system consists of a classifier, a 

condensation particle counter, and a 241Am bipolar charger (optional). However, DMA 

measurements obtained without the charger prior to the DMA revealed that the 

SWCNTs coming from the HWG reactor were naturally charged and did not need to be 

charged to be measured by the DMA system. Moreover, it was found that the higher the 

concentration of SWCNTs, the higher the charging. This fact is believed to be related to 

bundling of the SWCNTs, since the probability of bundling increases with their 

concentration in the gas phase. Accordingly, the natural charging of the SWCNTs may 

occur due to the formation of bundles.  

Figure 12. Schematic representations of (a) nanobud growth by continuous transportation of a carbon 
layer from a particle to a SWCNT, (b) pentagon formation at the edge of the dynamic layer of a 

growing SWCNT, and (c) the growth mechanism of nanobuds. 

) 

) 

) 
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TEM observation of the sample collected downstream of the HWG reactor revealed the 

presence of both bundles and individual SWCNTs (Figure 13a). However, sample 

collection downstream of an operating ESF showed only the presence of individual 

SWCNTs (Figure 13b). This indicates that bundled SWCNTs were charged and trapped 

in the ESF, whereas individual SWCNTs were electrically neutral. To statistically 

confirm these results, careful TEM investigations were carried out. It was found that 

neutral SWCNTs consisted of 94% individual SWCNTs, and that a sample with 99% 

naturally charged SWCNTs contained 93% bundled SWCNTs. In both cases, the 

statistical sample involved 70 counts. The presence of a small fraction of charged 

individual SWCNTs can be explained in terms of thermal ion emission or collisions of 

neutral tubes with ions available in the gas phase. Conversely, the presence of a small 

fraction of neutral bundled SWCNTs may be related to possible SWCNT bundle 

discharge processes.  

 

 

On the basis of the fact that most of the individual SWCNTs were found to be 

electrically neutral, placing the electrostatic filter after the reactor allows the separation 

of individual and bundled SWCNTs. Since the sample collection is carried out at 

ambient temperature, this approach enables the deposition of individual SWCNTs on a 

wide variety of substrates, including those substrate materials that cannot withstand 

elevated temperatures.  

0.1 µm

Individuals 

0.1 µm

Bundles 

Individual 

(a) (b) 

Figure 13. TEM images of (a) individual CNTs collected after filtering charged bundles with an ESF 
and (b) both individual and bundles of SWCNTs collected without ESF filtering. 
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4.3.2 Charging mechanism 

Investigations of SWCNT formation by ferrocene vapour decomposition were carried 

out at 800, 1000, and 1150 °C in a CO atmosphere. The fraction of charged CNTs was 

determined on the basis of DMA size mobility measurements using a 85Kr charger. 

Aerosol mobility size measurements were presented in two different ways: as 

distributions and as spectra. The mobility size distributions were measured by passing 

the aerosol-containing flow through a radioactive charger and then a typical inversion 

procedure was performed to calculate the real aerosol concentration assuming 

equilibrium charging in the charger [65]. The spectra, in which the concentration of the 

naturally charged aerosol was not subjected to the inversion procedure, were obtained 

without the charger. The mobility diameter, D, was calculated assuming spherically 

shaped and singly charged aerosol particles on the basis of the Millikan equation [66]. 

The concentrations of charged SWCNTs were very high (92% at 800 °C; 99% at 1000 

°C; 98% at 1150 °C). Number size distributions of all and the noncharged fraction of 

SWCNTs synthesized at 1000 °C are presented in Figure 14. 
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Figure 14. Number size distributions of all and the noncharged fraction of CNTs at 1000 °C.  
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At 800 °C, the concentration of negatively charged ions was found to be about 6 times 

higher than that of positively charged SWCNTs. Increasing the reactor temperature to 

1000 °C resulted in an increase in the fraction of positively charged SWCNTs: the ratio 

between negatively and positively charged ion concentrations decreased to a factor of 2 

(Figure 15). At 1150 °C, the spectra of both the negative and positive polarities were 

very similar.  
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In order to study the charge state of the naturally charged SWCNTs, tandem DMA 

measurements were carried out (Figure 7). For this purpose, the first DMA was used to 

extract fractions of 80, 100, or 130 nm mobility-selected SWCNTs, which were then 

introduced into the second TSI DMA via a 85Kr charger. The results of Gaussian 

function fittings with the measured standard geometric deviation showed that the 

SWCNTs possessed between 1 and 5 elementary charges (Figure 16). 

In order to examine the nature of the ions that could be emitted from the SWCNTs, and 

hence could be responsible for the SWCNT ionization, LDI-TOF measurements were 

performed on the SWCNT samples, assuming that laser irradiation simulates the 

conditions inside the reactor. During the measurements, the power of the laser was 

varied from 0 to 3500 arbitrary units.  

Figure 15. Mobility spectra of negatively and positively naturally charged CNTs at 1000 C. 
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It was found that positively charged ions started to be detected at a power of about 2900 

units (Figure 17a). Three strong peaks appeared at m/z = 91.07, 119, and 149 amu, 

which could be attributed to C6OH3
+, C7O2H3

+, and C9O2H9
+, respectively. Negatively 

charged ions appeared only at a high power of around 3200 power units, when the 

process of SWCNT destruction was already observed (Figure 17b).  

 
Figure 17. LDI-TOF spectra of ions released from CNTs at laser powers of (a) 2900 arbitrary power 

units (positively charged ions) and (b) 3500 power units (negatively charged ions). 

Figure 16. Results of tandem mobility measurements of naturally charged mobility-selected CNTs at 
80 nm. Charge states are represented as follows: original number of charges/number of charges after 

passing through the neutralizer. 

50 100 150 200 250
0

20

40

60

80

100

C6OH3
+

C9O2H9
+

C7O2H3
+

Positively-charged ions
Laser power 2900 au

N
or

m
al

is
ed

 c
ou

nt
s 

(a
u)

m/z (amu)
60 90 120 150 180 210

0

20

40

60

80

100

C10
C9

C8

C7

C
6

C
5

m/z (amu)

N
or

m
al

is
ed

 c
ou

nt
s 

(a
u)

Negatively-charged ions
Laser power 3200 au

a) b) 



35 

At a laser power ≥ 3200 units, one could observe the formation of carbon clusters, C5 

(m/z = 60 amu), C6 (72), C7 (84), C8 (96), C9 (108), and C10 (120), in both the negative 

and positive modes. The ionization of positive ions therefore occurs at a much lower 

laser power, while no negative ions were detected before the onset of SWCNT 

destruction. 

In order to explain the charging phenomenon, the presence of impurities with low 

adsorption energy has to be accepted. Positively charged ions can be emitted from the 

surface of SWCNTs at relatively low laser power. Chemically, these ions can be 

represented as long-chain carbon structures, akin to intermediates in the SWCNT 

growth process [67]. It is most likely that emission of ions of this kind was responsible 

for the negative charging of the SWCNTs. Since the LDI-TOF measurements could not 

detect negative ions emitted from the surface of the SWCNTs under laser irradiation, 

the SWCNT positive charging during bundling most likely occurred because of electron 

emission. 

4.4 Carbon nanotube and nanobud formation mechanism 

In order to investigate the SWCNT growth mechanism and kinetics, in situ experiments 

were performed using two different temperature profiles in the ferrocene reactor (Figure 

18). The low temperature profile had a maximum temperature of 862 °C, while the high 

temperature profile had a maximum temperature of 1054 °C. In the case of the low 

temperature profile, the sample collected from a sampling point corresponding to a 

temperature of 816 °C did not reveal the presence of SWCNTs. Only inactive catalyst 

particles were seen by TEM observation. This position corresponds to the pre-

nucleation SWCNT condition. SWCNTs were detected in samples collected 

downstream at sampling points corresponding to the following temperatures: 857 °C, 

853 °C, 845 °C, and 763 °C.  

Multiple measurements made from TEM images allowed determination of the average 

lengths of the SWCNTs collected at these different locations. The average length of 

individual SWCNTs collected at a temperature of 857 °C was 388 nm. At 845 °C and 
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763 °C, the average SWCNT lengths were 1225 and 1622 nm, respectively. Similar 

experiments were performed in the case of the high temperature profile. Surprisingly, 

the average lengths of SWCNTs collected at different locations over the high 

temperature profile were 290 nm throughout and did not depend on the position.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the basis of the SWCNT length, temperature, and residence time in the reactor, the 

average growth rate of the SWCNTs could be calculated. The residence time was 

calculated as the distance between two sampling points divided by the average velocity 

of the gas flow. The calculations showed that, in the case of the low temperature profile, 

over the temperature ranges 816857, 857845, and 845763 °C the average growth 

rates were 1.01, 1.11, and 0.67 µm/s, respectively. In the case of the high temperature 

profile, the average growth rate of the tubes with the length of 290 nm in the 

temperature range from 885 to 945 °C was calculated to be 2.7 µm/s.  

Figure 18. Schematic representation of the experimental set-up, temperature profiles, and positions 
inside the reactor used for in situ sampling of the product. 
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Formally, the kinetics of SWCNT growth can be described by a process considering the 

transformation of carbon deposited on the surface of a catalyst particle into the 

hexagonal SWCNT carbon network:  

C(s) → CSWCNT        (3) 

The rate of this reaction, r, can then be expressed in terms of the carbon concentration 

[C] on the surface of the catalyst particle:  









RT
ECkCkr ann exp][][ 0      (4) 

where k and k0 are the rate constant and the pre-exponential coefficient, respectively; n 

is the reaction order; Ea is the activation energy of the SWCNT growth; R is the gas 

constant; and T is the absolute temperature. 

It is worth noting that the concentration of carbon on the surface of the catalyst particles 

does not determine the growth rate of SWCNTs. Otherwise, the highest growth rate 

would be observed at around 600700 °C, the range in which the Boudouard reaction 

[61] has its maximum. Controversially, the conditions conducive to the maximum 

growth rate were those under which the disproportionation reaction rate was 

significantly suppressed thermodynamically. Therefore, the growth rate can be formally 

described in terms of a zeroth-order reaction (n = 0). Plotting the kinetic data of the 

growth rate in terms of the Arrhenius coordinates ln r vs 1/T gave a linear dependence 

(Figure 19), from which the pre-exponential coefficient and the activation energy were 

found to be k0 = 1.99  106 µm/s and Ea = 133.8 kJ/mol = 1.39 eV, respectively. In the 

figure, the temperature points correspond to the average temperature for each of the 

temperature ranges. This energy can be assigned as the activation energy for diffusion 

of carbon atoms in bulk solid iron with carbon concentrations ranging from 0.1 to 1 

mass %. Thus, on the basis of the kinetic measurements, it can be concluded that the 

rate-limiting step for the growth of the SWCNTs is carbon diffusion through the solid 

catalyst particles.  
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4.5 Demonstration of SWCNT and nanobud applications 

Experiments on a single-step process for incorporating SWCNT mats of adjustable 

thickness, transparency, and conductivity into polymer substrates were carried out by a 

simple thermo-compression method. SWCNTs were first produced in a ferrocene 

reactor, and then SWCNT mats were collected directly from the gas phase downstream 

of the reactor by filtering through nitrocellulose (or silver) disk filters. Depending on the 

desired mat thickness, the deposition time was varied from a few minutes to several 

hours.  

For the integration of SWCNT mats into PE films, the following procedure was 

performed. The PE film was placed on a heating plate and heated to 100 C at a rate of 

5–6 C/min. PE films treated at this temperature were found to be the most transparent. 

Then, the aforementioned filter disk, coated with a SWCNT mat, was pressed against 

the heated PE film with a pressure of 0.35 N/cm2 for 5–10 s. After removing the filter 

disk from the PE film, it was found that the SWCNT mat had been successfully 

Figure 19. Kinetic dependence of ln r on inverse temperature revealing its linear behavior. 
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transferred. Double-sided lamination of SWCNT mats between PE films was also 

performed, as well as laminating several layers of PE films with SWCNT mats in series. 

Since the as-deposited SWCNT mats had low density and, as a result, low contact 

between the tubes, prior to the measurements of the electrical properties, these mats 

were compacted by adding a droplet of ethanol to the transferred layer. For the electrical 

conductivity measurements, SWCNT mat samples of width 1 mm were placed on top of 

two copper electrodes with a gap between them of 1 mm. Addition of an ethanol droplet 

to the sample initially resulted in a sudden increase in the resistance, which was 

followed by an approximately constant rate of decrease during the ethanol evaporation 

process. After approximately 3 min, the resistance decreased to between 1.8 and 7.2 

times lower than the original value. This significant decrease in resistance may be 

explained in terms of SWCNT film densification, increased inter-tube contact and, 

consequently, an improvement in the percolation between SWCNTs.  

 

 

It is worth noting that the process of integrating SWCNT mats into polymer films by 

thermal compression did not cause significant changes in the electrical conductivity. 

The relationship between square resistance and optical transmittance for SWCNT mats 

of different thicknesses integrated into PE films is presented in Figure 20a. 

Since one of the potential applications of SWCNTs is in devices based on cold electron 

field emission, measurements to demonstrate the applicability of SWCNT/PE films for 

Figure 20.  (a) Dependence of square resistance and transmittance (at 550 nm) on SWCNT mat 
thickness; numbers are given in nanometers. (b) Dependence of current density on the electric field 

strength. 
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such purposes were carried out. Figure 20b shows the dependence of the current density 

on the electric field strength obtained during 10 runs. The SWCNT/PE film exhibited a 

low field threshold of about 1.2 V/µm. Another advantage of such films is the presence 

of a clear current plateau, which is valuable, for instance, in flat-screen displays. Here, 

variation of the electric field between 1.7 and 2.7 V/µm did not lead to a significant 

change in the electron emission.  

 

 

 

Another important and useful property of our SWCNT/PE films is their flexibility. The 

SWCNT/PE films were found to be bendable and could be repeatedly rolled and 

unrolled while retaining their transparency, conductivity, and field emission properties 

(Figure 21). 

Nanobuds provide interesting materials for cold electron field emission due to the large 

number of highly curved fullerene surfaces acting as emission sites on conductive 

SWCNTs. A comparison of the field emissions from unaligned in-plane deposited mats 

Figure 21.  Illustration of the flexibility and transparency of a PE/SWCNT film produced according 
to the described method. 
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(with thicknesses between 0.5 and 1 µm) of nanobuds and equivalent mats of SWCNTs 

synthesized under similar conditions but without adding H2O vapour showed that the 

nanobuds exhibited a lower field threshold of about 0.65 V/µm and a much higher 

current density compared with those of pure SWCNTs (Figure 22).  
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Figure 22. Field-emission properties of nanobuds. Comparison of averaged current density versus 
electric field strength of nanobuds (synthesized in a ferrocene reactor in the presence of  65, 100, and 
150 ppm of added water vapour) with that of a sample of SWCNTs (synthesized without added water 

vapour). Inset shows a close-up in the vicinity of the threshold voltage. Coverage of SWCNTs by 
fullerenes increases with water vapour concentration, resulting in higher emission current. 
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5 Summary 

SWCNTs and nanobuds have been synthesized by CO disproportionation on the surface 

of iron particles produced by two different aerosol methods: hot-wire generator and 

ferrocene vapour decomposition. 

In situ sampling investigations of the SWCNT formation by CO disproportionation 

reaction on Fe catalyst particles formed by ferrocene vapour decomposition have been 

presented. The kinetics of the SWCNT growth has been studied on the basis of in situ 

sampling from different locations in the reactor. At temperatures of 804, 836, 851, and 

915 °C, the average growth rates were found to be 0.67, 1.11, 1.01, and 2.70 µm/s, 

respectively. The average growth rate constant complies with the Arrhenius dependence 

of  RTEkk ao  exp , with the pre-exponential coefficient k0 = 1.99  106 µm/s and 

an activation energy of Ea = 1.39 eV. It can be concluded that the rate-limiting step of 

the SWCNT growth is the diffusion of carbon atoms in the solid iron catalyst.  

A novel hybrid carbon material  SWCNTs covered by covalently bonded fullerenes 

 has been synthesized by a one-step continuous process in the HWG and ferrocene 

reactors. Fullerenes and CNTs were simultaneously formed by CO disproportionation 

on the surface of iron particles in the presence of H2O and CO2. The reactor wall 

temperature was varied from 800 to 1150 °C. Varying the amounts of H2O and CO2 

introduced into the reactor at 1000 °C revealed that the optimal concentrations were 

between 45 and 245 ppm for H2O and between 2000 and 6000 ppm for CO2, when the 

ferrocene concentration was 8 ppm. The structural arrangement of highly curved 

fullerenes and SWCNTs has been shown to exhibit enhanced cold electron field 

emission properties. 

Variation of the synthesis temperature at an introduced H2O concentration of 145 ppm 

showed its significant effect on the fullerene concentration on the SWCNT surface. In 

situ sampling of the nanobuds formed at different locations in the reactor showed that 

fullerenes were formed together with CNTs in the temperature interval between 885 and 
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945 ºC. A mechanism for fullerene formation during the SWCNT growth has been 

proposed.  

Spontaneous charging of SWCNTs synthesized by means of the aerosol method has 

been observed. The origin of this phenomenon can be directly linked to the bundling of 

the SWCNTs. Furthermore, on the basis of the charging phenomena, a novel method for 

separating bundled and individual SWCNTs synthesized using the HWG method, and 

for collecting the individuals on any type of solid substrate, including low-temperature 

ones, has been developed.  

On-line DMA measurements of SWCNTs synthesized by ferrocene vapour 

decomposition in a CO atmosphere revealed the formation of positively and negatively 

charged (up to 99%) SWCNT bundles. Tandem DMA measurements showed non-

equilibrium charging of the SWCNT bundles with 15 elementary charges. Based on 

the analysis of LDI-TOF experimental data, it was proposed that the positive charging 

of CNTs occurs because of electron emissions, while negative charging is caused by the 

emission of impurities from the surface of the CNTs. The charging phenomenon of 

CNTs can be explained in the framework of aggregation processes leading to energy 

release owing to minimization of the surface energy and the emission of electrons and 

positive adsorbed molecules.  

In addition, a simple and efficient one-step integration process for transferring SWCNT 

mats into PE thin films has been demonstrated. These SWCNT/PE thin films exhibited 

good optical transparency and conductivity as well as high mechanical flexibility. The 

electrical conductivity of the SWCNT mats was significantly improved by ethanol 

densification. Cold electron field emission measurements from a SWCNT/PE film 

showed a low field threshold and revealed the presence of a clear current plateau at 

electric field strengths between 1.7 and 2.7 V/µm. 
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