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Introduction 

 

A commonly acknowledged paradox in brain research exists between how much we know and 

how little we understand. Although we strive for increasingly detailed information on neuronal 

structure and function, the lack of integrated understanding accentuates the need for studies that 

inspect the brain as a systemic whole. For the researcher, the shift from reduction to synthesis 

requires not only a change in mentality, but also the development of new tools and concepts. By 

using various experimental approaches and scales of inspection we may gradually approach a 

system-level model of brain function. This model should be rooted in the low-level 

neurobiological facts and yet explain the higher-level observations of emerging behavior. A 

natural requirement for such a model is that it be founded in a modern understanding of physics. 

The methods of statistical physics, in particular, are suitable for treating and understanding the 

behavior of systems composed of large numbers of elements – in this case, neuronal cells. The 

data analyses applied in this Thesis are to a large extent influenced by methods in statistical 

physics. 

 

Whereas the basic structural unit of the brain is the neuron, the basic unit of information 

transmission is an action potential, which is elicited in the cell and transmitted to other cells 

through synapses. And, as the cells do not live in solitude but are locally knit into densely 

interwoven cell groups by the synaptic connections, the cells also have inherent group 

dynamics: they commonly fire rhythmically in unison, giving rise to local neuronal oscillations. 

Oscillations seem to be related to an evolutionarily conserved computational implementation of 

information processing in neuronal networks [1]. While we do not yet have a full account of the 

merits of this implementation compared to other possibilities, we have some neurophysiological 

understanding of how activity in single neurons and population oscillations are interlinked. The 

main target of study in this Thesis are the ongoing neuronal oscillations, which are recorded 

using electrophysiological methods. 

 

Localized oscillatory activity is dispersed over the spatial, temporal and spectral dimensions. 

However, our experience and behavior is unified, so distributed processing must be somehow 

brought together across these dimensions. Non-random relationships in network oscillations can 

be estimated from electrophysiological data to reveal multi-dimensional neuronal integration. 

Tight integration is also suggested by the short synaptic distances between neurons in the human 

cerebral cortex: all of the roughly 10
10

 neurons are estimated to be interconnected through as 

few as 6 synapses [1]. This surprisingly short distance becomes understandable in the light of 

recent findings in graph theory, which has been developed to investigate properties of large 

networks [2]. Co-operation between brain regions is thought to be central for brain function, and 

graph theory is well suited to study the networks of inter-regional connections. Neuronal 

connections are in the first place structural, but on this structure resides a fluctuating pattern of 

functional connections supporting our everchanging perception and actions. This Thesis 

advocates the interaction-centered view of brain activity and contributes to methods that can be 

used in studying them. 

 

A complementary view on correlations between spatially separated brain regions is offered by 

the theory of self-organized criticality (SOC), which was originally conceived in physics as a 

general mechanism to explain a wide array of phenomena that operate without a specific spatial 
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or temporal scale [4]. The proposed generative principles of the SOC state fit well to elementary 

models of neuronal networks, as both are composed of large arrays of interacting threshold-

activated elements. SOC offers a convenient solution to the old debate on the choice of the 

correct scale of inspection to study brain function by suggesting that no scale of inspection is 

more informative than the others. What is more, criticality predicts that extended spatial and 

temporal correlations are present in the self-organized dynamics. Hence, not only the spatial 

correlations already considered above, but also correlations over time in neuronal activity 

should be investigated. While the presence of SOC in neuronal systems has already been 

demonstrated in vivo and in vitro, we largely lack the understanding of the functional 

consequences of considering the brain as SOC. In this Thesis, we shed light on this issue by 

contrasting analyses motivated by SOC with behavioral changes during cognitive experiments 

and, on the other hand, with data from brain disorder patients. 

 

This Thesis is involved with the estimation of correlations in neuronal oscillations across the 

dimensions of time, space and frequency [1]. Neuronal oscillations are recorded using 

magnetoencephalography (MEG) and electroencephalography (EEG). In the individual studies 

of this Thesis, I, together with the co-authors, quantify long-range temporal correlations (LRTC) 

to develop a biomarker that could have diagnostic potential as a neuronal correlate of affective 

disorders (Study I). In addition, we apply LRTC in patient recordings to locate the epileptogenic 

region, aiming at therapeutic advances in surgical treatment of epilepsy (Study II). Very slow 

brain activity, recorded with the emerging method of full-band electroencephalography 

(FbEEG) in the frequency band starting from 0.01 Hz, is investigated to study the role of infra-

slow brain activity, which is here taken as brain activity in frequencies < 0.2 Hz, during a 

somatosensory stimulus detection task (Study III). To study ongoing oscillations across the 

spectral dimension, we investigate cross-frequency nested relations between infra-slow activity 

and higher-frequency neuronal oscillations, as well as correlations between infra-slow activity 

and behavioral performance. By studying spatial correlations we aim at revealing how neuronal 

oscillations may enable brain-wide information processing. We quantify spatial correlations 

using phase synchrony, i.e., correlation among the phases of oscillations [3]. We develop an 

approach to assess oscillatory phase synchrony in the extent of the whole cerebral cortex (Study 

IV). Then, we use the novel approach to assess the topology to which the synchronous networks 

self-organize during visual working memory (Study V). Taken together, I search for spatial, 

temporal and spectral correlations that reveal organization of oscillatory neuronal activity. I 

hypothesize that these dependencies define system-wide neuronal states that characterize 

behavior in normal subjects and pathological brain activity in patients with brain disorders. 

 

In this summary part of the Thesis, a literature overview of the central neurobiological and 

systems-level concepts are first presented. Emphasis is put on the generation and significance of 

neuronal network oscillations in the complex structural networks of the brain. The working 

hypotheses for the individual studies, their experimental setups and the methods applied in data 

acquisition and analysis are covered next, followed by the main results from each Study. The 

significance of the results are then discussed in detail along with aspects of the experimental 

approaches. Finally, prospects based on these studies and other developments in the field are 

integrated to consider future studies of normal cognition and neuronal disorders in the context of 

the Thesis.  



3 

 

Background 

 

Neuronal oscillations 

The main interest in this Thesis are the seemingly ubiquitous neuronal oscillations [5]. As noted 

by Caton already in 1875, high-amplitude rhythmic activity is immediately visible when a 

mammalian brain is coupled to a device recording electric signals. Because the oscillations are 

prominent and easily measurable, they have been studied widely ever since their discovery. An 

important early observation, made by Hans Berger, was that closing the eyelids causes an 

increase in the amplitude of the oscillations in the 10 Hz frequency band [6]. Later, it was learnt 

that alterations in EEG patterns in patients corresponded to various clinically relevant changes 

in the patients’ state. These findings opened up the intriguing possibility of studying the basis of 

human mental functions and behavior by measuring the rhythmic electric activity emanating 

from the brain. 

 

Oscillations from coordinated population activity 

To study neuronal oscillations on the macroscopic level, it is useful to have an idea of the 

cellular level activities underlying this signal. After all, the elementary processes of brain 

function take place in individual cells and the synapses connecting them. It is known that the 

firing of action potentials, the primary means of communication between neurons, can be 

rhythmic even in single neuronal cells. Cells that fire rapid bursts of spikes at a relatively 

constant frequency are considered to be central to rhythm generation in populations of cells [7]. 

Furthermore, single cells often have a characteristic resonance frequency, which might have an 

impact on their responsiveness to external stimuli or on their capability to participate in 

rhythmic network activities  [8–10]. 

 

The currently imperfectly understood relationship between neuronal activity and information 

processing is often referred to as the neuronal code. Two views have dominated the discussion 

on information coding in the spike trains of neurons. Conventionally, cells were thought to 

increase their firing rate when they are transmitting information [11, 12]. A more contemporary 

view states that the timing of the spikes is also of high importance, and especially the timing in 

relation to spikes in other neurons [11, 13, 14]. The relative importance or generality of these 

two coding strategies is not completely understood. However, an interesting series of 

experiments with odor recognition in insects showed that interfering with the population coding 

by altering the simultaneity between neuronal spiking activities impaired odor recognition [15]. 

Moreover, the information content that can be encoded by a neuronal population is increased 

when temporal relations between the spikes of cells are taken into account [16, 17]. 

 

The population coding scheme is also interesting when considering oscillatory activity. If a 

neuronal group spiking in unison does so at regular intervals, we will observe oscillatory 
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activity at the population level. Indeed, it is known that the response to a stimulus representation 

often involves repetitive volleys of spikes [18–20]. In addition, the correlations among 

responding cells are evident in average measures of larger scale neuronal activity. By averaging 

over multiple single spikes, they have been found to be associated with similar time courses of 

the local field potential, which is recorded extracellularly and reflects the summed currents from 

close-by neurons [21]. Moreover, repeating spatial patterns of neuronal correlations have been 

observed with voltage-dependent cortical imaging [22]. Finally, an interesting connection 

between neuronal oscillations and the spike coding scheme has been found, where the phase of a 

spike relative to an ongoing oscillation conveys information [23–25]. 

 

The strongly correlated nature of neuronal activity evident in population coding and neuronal 

oscillations seems to be at odds with the understanding from information theory, according to 

which it is entropy, not correlatedness, that conveys the maximum amount of information [26]. 

However, neuronal systems are strongly based on transmission of information that takes place 

through neuronal interactions. The importance of correlations is reflected in the fact that 

maximally entropic, or random, neuronal activity has little effect on the target neurons, 

compared to the effect of spatially and temporally correlated activity. The two different coding 

schemes correspond to established mechanisms in neurons that are in the receiving end of 

neuronal communication. Neurons that are sensitive to the rate code are conceptualized as 

integrate-and-fire neurons, which sum their input over time until the firing threshold is exceeded 

[27, 28]. On the other hand, neurons sensitive to the simultaneity of spikes from a population of 

broadcasting neurons function as coincidende detectors [29]. The current view on the 

importance of population coding is that neurons are sensitive to specific spatio-temporal 

patterns of input, enabling considerable sparsening of neuronal activity and consequential 

expansion of the coding space [13, 20, 30]. 

 

Thus, timing of spikes and their mutual correlations seem to play an important role in neuronal 

processing and generation of oscillatory activity. At higher levels of neuronal organization, 

more macroscopic rhythmic activity takes place in neuronal networks. Theoretically, such 

network oscillations promote neuronal synchrony between the oscillatory populations and 

provide time frames for neuronal communication [31]. The prevalent view on the generation of 

network oscillations is that they emerge as a result from the interactions between inhibitory and 

excitatory cells of the network, instead of central rhythm generators [32, 33]. Then, the 

population of principal neurons, i.e., large pyramidal neurons, recovers simultaneously from the 

refractory period caused by the inhibitory influence of synchronized pre-synaptic interneurons 

[32–35]. Interneuronal activity might give rise to several distinct oscillatory networks, dictated 

by their network structures and interneuronal subtypes [36–38]. However, also excitatory 

principal neurons can work as pacemakers in neuronal networks [32, 39]. These active network-

level rhythm-generation mechanisms in the two most abundant neuronal cells of the neocortex, 

pyramidal neurons and interneurons, further suggest a central position for oscillations in 

neuronal computations. These local oscillations arising at the network level are the main subject 

of this Thesis. 

 



5 

 

Putative significance of oscillations in neuronal information processing 

Despite the fact that oscillations are observed in the brain, as reviewed above, does not attach 

them any role in neuronal information processing or mean that they are functionally significant. 

In a complex dynamical system such as the brain oscillations may simply emerge as an 

irrelevant side effect, and in several engineering applications like control theory they are a sign 

of non-functional dynamical regime. However, it was recently discovered that rhythmic activity 

in the specific frequency band of 30–80 Hz, the so-called gamma oscillations, directly enhances 

the flow of information in the cortex [40]. This finding complements earlier reports of gamma 

oscillations as a network response to stimuli that are optimal at evoking activity in a local 

population of neurons [19]. The period length in this frequency band fits the time scales of 

pyramidal cell membrane relaxation and synaptic plasticity, and can therefore be considered a 

natural frequency of cortical networks. 

 

In human studies, the amplitudes of oscillations at various frequencies recorded with EEG, 

MEG and intracranial EEG, in several locations, have been found to be affected by stimulus 

properties and concurrent tasks [41]. Generally speaking, gamma oscillations are correlated with 

perception of sensory stimuli and attended stimulus processing [42–46]. Activity in other 

frequency bands is related to many other functions, such as the link of 4–8 Hz theta and 8–13 

Hz alpha oscillations to working memory [47, 48]. Although oscillations are consistently related 

to neuronal processing, it is sometimes difficult to assess the exact correlates of oscillations, as 

they sometimes react differently to the same stimulus under even subtly different task 

conditions [49]. More evidence for a functional significance of rhythmic activity comes from 

altered oscillatory profiles in several types of pathophysiological cases [50, 51]. 

 

In the preceding discussion, it was argued that cortical activity is largely characterized by 

oscillations. Are oscillations the only type of network response elicited by external stimuli, or 

are there other mechanisms that code for stimulus properties as well? By averaging recorded 

activity over several epochs with respect to a stimulus onset, a stereotypic wide-band response 

is typically observed at latencies of ~ 20 – 300 ms [52]. However, if the results from averaging 

are inspected in the frequency domain, rather than the time domain, a complementary picture 

emerges. Oscillatory amplitudes react to sensory stimulation, but the latency is often increased 

and is incompatible with fast stimulus recognition that is observed behaviorally [53, 54]. 

Conversely, the phases of the oscillations are partially reset by stimulus presentation, suggesting 

that the stereotypic wide-band evoked responses are affected by overlapping oscillatory 

responses and the resetting of their phases [55–57].  Another mechanism that affects stimulus-

evoked responses has also been proposed, where the asymmetry of oscillatory activity with 

regard to the long-term signal average generates the responses as baseline shifts related to the 

oscillatory amplitude modulation [58].  

 

Correlations in oscillatory activity 

In the preceding review, the mechanisms and significance of correlations in the activity of local 

neuronal populations were reviewed. However, as neurons are coupled synaptically over 

significant distances, their activities could also become coupled at a long range, via one or 



6 

 

consecutive synaptic connections [59]. Indeed, measurements of visual evoked activity in cats 

revealed that two oscillatory neuronal groups can become synchronized across hemispheres via 

a cortico-cortical connection through the corpus callosum [60]. This happens specifically if the 

visual information suggests that the stimuli the two regions in opposite hemispheres are 

responding to are related. Thus, two oscillatory neuronal populations can be long-range 

synchronized to signal their relatedness, a general property of neural systems predicted by the 

correlation hypothesis [61]. On the other hand, apparent synchrony without a functional role can 

be generated simply by common afferent signals or overlap in receptive fields [13]. Apart from 

cortical mechanisms, another strong candidate to mediate cross-region synchrony are cortico-

thalamic interactions [59, 62–64]. Note that there are commonly ambiguities in the terminology 

with respect to local and long-range synchronization, or oscillatory synchrony and synchronous 

oscillations [13]. In the framework of this Thesis, we refer to an oscillation when the oscillating 

neuronal population that is seen with the data acquisition method is spatially continuous, and to 

synchrony only when the oscillatory populations are spatially distinct so that two distinct 

oscillatory networks can be seen with the recordings. Thus, these definitions may be affected by 

the applied data acquisition and processing methods. 

 

In addition to signaling relatedness of two objects or features that are present simultaneously, it 

is conceivable that relatedness should also be bound across time. For instance, short-term 

memory, goal-directed behavior, or complex motor activities require integrating neuronal 

information across time, giving rise to a binding problem not unlike that debated in cognitive 

neuroscience for decades [65]. In short, brain activity should be organized by correlations over 

time just as it is hypothesized to be organized by oscillations and synchrony over space. To 

clarify this dichotomy, the latter one will be referred to as spatial correlations, and integration or 

coordination over the time dimension will be called temporal correlations. 

 

Data lending functional relevance to correlations between two spatially separated regions 

include behaviorally modulated zero-time lag correlations between motor and parietal cortex 

during coordination and a visual discrimination task, as well as attention induced synchrony 

between areas along the visual processing hierarchy [21, 66–68]. In humans, synchrony between 

EEG electrode signals has been found to correlate with perception and associative learning [69, 

70]. Abnormalities in spatial correlation structure have been linked to several cognitive 

dysfunctions and brain disorders [71]. 

 

Experimental data on correlations extending across time in signals that were recorded in single 

brain regions are more scarse and indecisive than the data on correlations over the spatial 

dimension. However, synaptic strength is known to be modulated across time in an activity-

dependent manner, which gives rise to dependency on past activity [72]. This kind of plasticity 

is evident in memory traces imprinted in synaptic networks by preceding activity, which in turn 

affects the responses to upcoming stimuli and can thus be considered as a form of short-term 

memory [73]. Strikingly, neuronal activity patterns can be repeated even after minutes with 

precision in the range of milliseconds, either after stimulation or without associated stimulation 

[74–76]. This can be interpreted physiologically as memory formation or network consolidation. 

From an information processing point of view, on the other hand, the interpretation is that 

network phenomena can be highly repeatable and reliable even when phenomena in individual 

neurons are not. In search of more straightforward interactions across time, certain neurons in 

the prefrontal cortex were found to correlate with either past or future performance, but not with 
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current task performance [77]. These findings show that brain activity is coordinated, or non-

randomly fluctuating, over substantial time lags. Neuronal oscillations themselves clearly have 

strong correlations over time, but not much information may be gathered by inspecting similar 

oscillation periods over time. Instead, the presence of temporal correlations in amplitude of 

neuronal oscillations was recently assessed explicitly in the human brain with MEG and EEG 

recordings. It was found that oscillations display robust long-range temporal correlations lasting 

up to 300 seconds or more [78]. Thus, we may conclude that neuronal oscillatory activity shows 

correlations both across space and across time. Moreover, the presence and strength of such 

correlations may be resolved to allow experimental testing of their functional relevance. 

 

Intrinsic neuronal activity – noise or signal? 

The existence of spontaneous, i.e., non-stimulus related, neuronal activity is well established, 

but its features that are significant for cognitive processing are still largely unclear. This 

intrinsically generated activity reflects changes in the subject’s state, such as from active to 

resting awake state, transitions between different sleep stages and closing the eyes [6, 79, 80]. It 

was also found that the variability in neuronal responses can be explained by the variability in 

spontaneous background activity in single cells and at the neuronal network level [81, 82]. For 

these reasons, spontaneous activity is understood as more than background noise. Rather, the 

momentary state of the whole neuronal system needs to be taken into account when determining 

how the networks are engaged by sensory input and how information is processed and 

transferred [83]. 

 

It is thus established that spontaneous activity reflects intrinsically generated changes in a 

subject’s state and is decisive on how information about upcoming external events are processed 

and interpreted. In this sense, the ongoing activity clearly forms the context of sensory 

processing, independent of whether this context is attributable to internal or external origins. 

Interestingly, it was recently discovered that spontaneously emerging activation states of 

neuronal networks might be similar to neuronal representations of actual objects in the external 

world [84]. Yet, the central question of exactly which features of ongoing activity determine the 

outcome from processing of inbound information stands unresolved. It has been suggested that 

neuronal oscillations and interactions between them play an essential role in the dynamical 

regulation of information flow and neuronal processing [13, 31, 85–88]. Studying spontaneous 

activity as an ongoing brain state is becoming increasingly important at the time when the focus 

of mainstream brain research is shifting away from the simplistic input-output machine view 

towards studies of an adaptive, creative and predictive subject. Based on these views and the 

importance of neuronal interactions in brain function, a prediction arises that the global 

anatomical connectivity that mediates long-range synchrony between oscillatory networks and 

the mechanisms regulating these oscillations are essential for the proper operation of the brain. 

 

Structure of neuronal networks 

Let us turn the focus from the origins and significance of neuronal oscillations to the underlying 

anatomical substrate that these phenomena rely on. Neocortical neuronal networks consist of 
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dozens of different cell types and synapses that densely interconnect them. From these simple 

building blocks, more and more complex structures develop during evolution, ontogenesis and 

activity-dependent rewiring [89]. As it turns out, some interesting non-random properties of 

these network structures can be described and, most importantly, quantified. These 

considerations are often based on graph theory, a branch of mathematics that is now quickly 

spreading as an interdisciplinary toolkit for analysis of structures that can be cast to the simple 

form of nodes connected by edges [1, 90–93]. 

 

Descriptive graph theory for neuroscience 

Graphs in the context of graph theory comprise of individual agents, which are similar to each 

other in some respect, and a set of connections between these agents. In applications of graph 

theory to neuroscience, the agents, or graph nodes, are most often brain regions or restricted 

neuronal ensembles, and sometimes even individual cells. The connections, also called edges, 

often stand for anatomical connections, for example bundles of axons forming monosynaptic 

routes. In addition to structural connectivity, graphs may be constructed from functional data 

recorded at different scales, from the synaptic level to the system level [93]. In the functional 

case, the edges correspond either to functional or effective connectivity. The difference between 

these is that functional connectivity is defined as a statistical interdependence between the 

nodes: when one is active, the activity (or quiescence) of the other can be predicted with a 

probability above chance. Instead of a statistical relationship, the definition of effective 

connectivity enforces a mechanistic rule with a specific direction: the activation of one node 

leads to activation of the other [94]. 

 

The popularity of the graph-theoretical approach probably stems from it being conceptually 

simple but still versatile in describing very different systems. It also represents large and 

complicated data sets efficiently and enables their analysis at the systems level. Applications of 

graph theory to diverse fields of science has revealed surprising commonalities in the structure 

of networks of entirely different nature and origins, natural or manmade [2, 90, 92, 95–97]. This 

suggests that the development or construction of these systems may have underlying common 

principles that are, however, largely unknown at present [96]. These common principles in 

construction might lead to common principles in function as well [2, 90, 91, 95]. 

 

It has been found that many different kinds of systems that can be studied in the graph-

theoretical framework belong to a few basic classes of graphs. This universality has lead to 

extensive studies of these few types of graphs. Naturally, instances of these classes have been 

found also in neuroscience. In the class of completely regular graphs, often embedded in lattice 

structures, all the nodes have the same number of connections . They are constructed by a rule 

such as ―connect to n nearest neighbors‖, making the graph structure and statistics 

homogeneous. With this type of rule one obtains graphs that are fully connected in 

neighborhoods of single nodes, i.e., maximally clustered, but have a large characteristic path 

length, the average number of steps needed to get from one node to another, which scales as ~N 

with a growing number of nodes, N. In the opposite end, random networks are constructed by 

taking a set of nodes and connecting them at random with a certain number of connections. It 

has been shown that this class of networks has a short characteristic path length that scales as 

ln(N) [91, 95]. Very different graphs may result from restricting the pure randomness in the 
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construction process; for instance, if connection probability is made proportional to the number 

of connections d a node already has, called the degree of the node, a scale-free graph emerges 

[96]. The nodes of a scale-free graph have a degree distibution of the form ~ d , which has a 

heavy tail unlike the exponential or Gaussian distributions of the degrees in random graphs. 

Scale-free graphs often have short path lengths as well. Finally, a commonly encountered type 

of networks lies in the middle ground of the completely random and regular ones: by taking a 

clustered lattice and adding some random shortcuts between distant nodes the graph turns into a 

small-world network [95]. This graph is interesting because it combines the often desirable 

features of high local clustering and short characteristic path length from regular and random 

graphs, respectively [90]. The name small-world stems from sociology, where the surprisingly 

common finding of having mutual friends with a stranger was related to the small-world 

property of social networks [90]. Other principal properties of graphs determined by the classes 

include robustness to failures and attacks and efficacy of information transmission. Scale-free 

graphs are very resistant against random failures, because most of the nodes have low degree 

and, hence, their loss has a low impact on overall connectivity [97]. However, these networks 

are vulnerable to targeted attacks on the most connected nodes, called hubs [97]. Efficacy of 

networks, motivated in terms of information processing systems, has most often been related to 

the inverse of path lengths, so networks having random connections are considered to be 

maximally efficient [98, 99]. 

 

Local anatomical networks 

The human neocortex consists of colums of neurons that are densely connected inside the 

column, but less connected to other columns further apart [100]. On the cellular scale, the 

networks are largely defined by the connectivity of interneuron networks [101]. This can be 

seen as corresponding to a conservation principle of expanding brains during evolution, which 

states that pre-existing, and thus tested, networks are simply multiplied instead of replaced by 

new kinds of networks [101, 102]. Many biological networks have a disproportionately large 

amount of certain elementary building blocks, while other, theoretically just as feasible ones, are 

virtually absent [103, 104]. Such basic building blocks are called motifs, and repeating 

structures of them can be found in several neuronal systems in numbers depending on their 

functional stability [102, 105, 106]. Moreover, local cortical structures are characterized by 

abundant reciprocal and cyclic connections and low mean wiring length [107, 108]. Finally, 

local neuronal groups display highly clustered structures [108]. 

 

Systems-level structural networks 

From the point of view of systems neuroscience the properties of small-world networks are 

interesting, as they seem to be compatible with the idea of highly parallel processing, which 

would take place in the local clusters, while still offering efficient system-wide connectivity via 

the shortcuts [95, 107]. In addition, material and space costs of wiring are minimized because of 

the small number of long-range connections needed [94, 109]. Whereas neuronal structures have 

been elucidated using staining methods of mostly animal brain slices for a century, the long-

sought-after large-scale neuronal structure of living human brains has become accessible only 

recently, with the advent of water diffusion-weighted techniques in magnetic resonance imaging 
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(MRI) of brain anatomy making high-resolution neuronal pathway data available [110–113]. 

Evidence for small-world-like organization was found in several studies [112, 114–116], often 

with exponentially truncated power-law degree distributions [112, 114–116]. Central hubs and a 

central connectivity backbone were discovered mainly in medial and posterior cortical regions 

but also in parts of the parietal and frontal cortices [114–117]. Moreover, the structural networks 

were found to be composed of modular subcomponents, which were more densely connected 

within the module than to nodes outside the module [117, 118]. 

 

The presence of hierarchical relationships at multiple levels has been thought to be an essential 

organizational principle of cortical connections [119]. However, the hierarchical relationships in 

the neuronal structure are so complex that defining them in an unambigous way seems next to 

impossible [120]. With solid data on connectivity and emerging computational methods, a 

definite hierarchical organization might be resolved in the future. However, it has already been 

found that the primate visual cortex is, indeed, highly hierarchical and clustered [121]. 

Together, these features suggest a nested modular structure, where modules are composed of 

smaller modules at a lower hierarchical level [93, 122, 123]. Such fractal-like organization has 

already been found in many biological networks that are scale-free, modular and hierarchical 

[123]. 

 

Network structure and neuronal activity 

Like all structures with any functional role that have been evolved in nature, the form and 

function of the human central nervous system are strongly interrelated. It is clear that neuronal 

activity depends on the structure of the underlying neuronal substrate, and the Hebbian principle 

formulates an explicit interdependence between the two by stating that a persistently effective 

connection will increase in strength. Low-level information processing can be performed by 

simple network motifs, some of which can be associated with elementary computations [102–

105]. For example, a motif with positive feedback could implement signal detection by 

transforming a graded signal to an all-or-none response. Furthermore, the difference between 

brain regions underlying different functionalities lies not in the regions themselves being 

affiliated with the processing tasks, but in their connections to other regions [124].  

 

At the systems level, each part of the brain is connected to all the other parts. Furthermore, 

according to the small-world property the connection between any two regions is short. It has 

been estimated that each neuron in the human brain is connected to each other neuron via as few 

as six synapses [1]. A central principle of human brain operation, the simultaneous segregation 

and integration of information, may be brought about by corresponding principles in brain 

structure [93, 107, 125]. Structural modularity has been associated not only with stability in 

evolution and function, but also with differentiation among motor, perceptual and cognitive 

functions and, accordingly, experimental work has shown that brain regions in the same 

structural module are functionally related [93, 117, 118, 121, 122]. The locations of hub nodes, 

which are brain regions in a central position for the systems-level anatomical connectivity, have 

been found to coincide with the conventional association cortices [114, 115, 117]. When 

considering the roles of structural connections as the substrate of brain function, it is plausible 

that the functional neuronal interactions are dynamically modulated from the complex structural 

networks to produce functional networks. Moreover, as the spontaneous neuronal activity is 
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often wildly fluctuating, it is reasonable to expect that the large-scale functional connectivity, 

when averaged over long time windows, will be correlated with the underlying structural 

connectivity [304]. 

 

Dynamical systems theory 

A language for neuronal dynamics 

The activity in the brain, as well as many other physiological systems, are actively investigated 

at multiple scales in the framework of complexity and dynamical systems [93, 122, 126–130]. 

This framework is a natural choice for analysis of the dynamics in neuronal networks, as 

dynamical systems theory provides the concepts required for the description of complex 

phenomena that are otherwise challenging to grasp [131]. Theoretical developments have 

rapidly been implemented as new methods for analyzing recorded data [132]. Next, a short 

digression to the concepts needed to understand the analysis approaches and interpretation of 

the findings follows. 

 

A central concept in dynamical systems theory is the phase space, with the help of which one 

can describe the temporal development of the system by plotting the history of an observable. 

An observable is a dynamic variable that can be measured, at least in principle, as opposed to a 

hidden variable. Nonlinearity is often attributed to activity in the brain. Mathematically, a 

dynamical system is nonlinear if the differential equations governing the behavior of the system 

are not linear. In more practical terms, linear behavior means that the superposition principle is 

valid and that changes in output are proportional to changes in the system’s behavior, which is 

not always the case for nonlinear systems. The simplest neuroscientific example of nonlinear 

behavior is a neuron initiating an action potential after crossing the firing threshold. Stationarity 

means that the statistical expectation values of the system’s observables do not change over 

time. Thus, a harmonic oscillator is stationary, but the alpha oscillations measured occipitally in 

the human brain are not, because their amplitude and frequency tend to shift in time scales 

typically used in their observation. Stability, on the other hand, refers to properties of a single 

dynamic state instead of the system. A dynamical system might set itself into a fixed point, 

which is stable if the system after a small perturbation returns to the same state. Instead of a 

point, the state might be described by a limit cycle on any manifold, in which case the system 

undergoes oscillations. If several stabile states exist, the system is multistable, whereas short-

lived stable states are called metastable. A stable limit cycle is called an attractor, as any 

neighboring phase space trajectories tend to come asymptotically closer to it. The existence of 

an attractor does not, however, mean that the system’s behavior would be predictable. Even if 

the equations describing the dynamics of the system were deterministic, the behavior of the 

system might be unpredictable, except in short time scales, like is the case with the three-body 

problem in mechanics. Furthermore, even in the case that the system is, in fact, deterministic, 

even minute changes in initial conditions may cause changes in phase space coordinates that 

grow exponentially in time. The dynamics of this type of a system are called chaotic and it are 

described by a fractal-dimensional strange attractor. Finally, two dynamic systems might 

spontaneously coordinate their dynamics, or synchronize – in fact, this is surprisingly common 
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in nature as only a weak interaction is needed between the systems. The exact type of 

synchronization depends on the systems [91, 128]. 

 

With the huge numbers of neurons and their connections, studying the detailed dynamics of the 

whole brain is out of the scope of current and foreseeable future research methods. However, 

because neuronal activity is highly correlated across time and space, the complexity in the 

dynamics that are visible in the system scale of inspection becomes reduced. Brain activity, 

measured with electrophysiological methods, could then be potentially understood using the 

concepts and analysis tools provided by dynamical systems theory. Simplification of the system 

is welcome when looking for behavioral correlates in neuronal activity, because behavior is 

often rather simple in dynamical terms, especially in cognitive experiments [133]. The 

drawback of this approach is that the neuron-level details underlying the observed dynamics are 

lost. Therefore, one should try to differentiate between understanding the behavior of a system 

and giving only phenomenological descriptions of it. A classical example is finding an 

explanation for epileptic seizures from bifurcation, a qualitative change in system dynamics that 

clearly takes place at seizure onset, without an idea of the causes of such a change. However, 

combining the idea of searching for dynamical bifurcations to careful neuronal modeling studies 

can prove a fruitful approach [134]. The dynamical systems view thus offers a language to 

qualitatively describe the behavior of neuronal systems and tools for quantitative analyses [127, 

135]. 

 

Self-organized criticality 

The complexity of the structure and function in the nervous system has evolved under the 

pressure of the dynamic complexity and changing requirements in the environment. Therefore, 

it can be argued that the neuronal dynamics could at least partly be inherited directly from the 

surroundings. For the opposite to hold, it should be demonstrated that inherent order may be 

created in the neuronal network dynamics solely by the properties of the interacting non-linear 

neuronal elements. This is possible by modeling a neuronal system and checking if it 

spontaneously develops rich dynamics. Indeed, massive computational simulations with realistic 

models have shown that such systems are able to self-organize from various starting 

configurations and without external influence or guidance to a sustained coherent state, which 

resembles that of human brain dynamics in several aspects [136]. Thus, the spatiotemporal 

complexity in neuronal dynamics is probably created by the properties of the neuronal networks 

themselves, not by being influenced by the complex dynamics in the environment they have 

adapted to. 

 

Statistical thermodynamics describes how bulk substances undergo phase transitions. In certain 

types of phase transitions or close to critical points of the parameter space, correlations 

extending over the entire system emerge, despite the fact that interactions between parts of the 

system are strictly local. Interestingly, the correlations scale with regard to the length variable l 

as a power-law, i.e., ~l
-

, where  is called the scaling exponent. This relation reveals that 

correlations are present at all length scales, which hints at a fractal dynamical structure, where 

no typical length scale to describe the system dynamics is present. However, there is nothing 

that should separate thermodynamic bulk matter phase transitions from systems with similar 

adjustable interactions between its components. This gives rise to phase transitions and critical 
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points in dynamical systems as well. The development of the self-organized critical (SOC) state 

in dynamical systems was initially explained using a simple model, often referred to as the sand-

pile model [4]. Later, analogies were drawn to models of diverse systems in many fields of 

study, which extended the use of the SOC concept to investigate, e.g., dynamics of forest fires 

and financial markets [137–139]. 

 

The conditions for systems to self-organize into a critical state are rather general and compatible 

with the developmental principles of the brain [140]: they should be composed of many agents, 

the system’s evolution should be long and the driving dynamics should be slow, the dissipative 

medium should be structurally modified by the driven perturbations and the behavior of the 

system should be dominated by local interactions between the agents. The SOC state is 

insensitive to initial conditions of the system or exact mechanisms of signal propagation. 

Interestingly, the SOC dynamics are characterized by spatial and temporal correlations, 

intimately linked to each other, at all scales [137, 141]. This is often considered the hallmark of 

SOC, but strictly speaking it is not a sufficient condition [142]. Studies of brain function 

motivated by the SOC model should expect that both spatial and temporal correlations are 

strong and widespread. Moreover, the SOC approach makes it feasible that order and 

correlations in brain activity develop spontaneously, but are context-dependent because of the 

state dependency inherent in the dynamics of the SOC models. 

 

Critical dynamics in brain function 

Spatial and temporal correlations in neuronal systems have been studied in search for evidence 

of SOC. Different methods have been applied, ranging from cellular-level in vitro approaches to 

system-level measurements of behaving humans [78, 143–149]. In analogy with the now 

famous Bak–Tang–Wiesenfeld sand pile model, neuronal networks spontaneously produce 

avalanches, discrete cascades of contiguous neuronal activity, which have spatial and temporal 

correlations described by power-laws both in vitro and in vivo [4, 137, 144, 146]. Neuronal 

oscillatory activity has also been analyzed for presence of scale-free avalanches with similar 

results [147, 150]. In these studies, the power-law decay of long-range temporal correlations 

(LRTC) in human MEG and EEG oscillations have been interpreted as indicative of SOC [78]. 

Note, that the perturbations analyzed in these studies may be internally generated, as opposed to 

the external perturbations in SOC models [4, 137, 142]. The spatial correlations among 

oscillations are harder to quantify than the temporal ones, as the distance between oscillatory 

ensembles is not defined with the Euclidean metric but by the graph constructed from the 

neuronal connections. Despite this, quantifying the strength of phase synchrony against inter-

electrode distance in subdural recordings of epileptic patients reveals a dependence of roughly 

the power-law form (Fig. 1). For robust analyses of this kind, synchrony should be quantified 

across all brain regions in many scales, not only within an electrode grid, and an additional 

distance metric should be taken from structural connectivity data. 
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Fig. 1 Intracranial subdural electric recordings show a dissociated effect of the benzodiazepine 

lorazepam, a GABA-binding promoter, on oscillatory synchrony between electrodes in different 

cortical regions (left). Synchrony scales roughly like a power-law as a function of distance 

(right). (Modified from [268]) 
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Experimental Studies 

 

Experiments 

Somatosensory detection 

Motivation. Human performance in a number of cognitive and coordination tasks has been 

found to be correlated over consecutive trials [151–161]. As the stimuli used in such 

experiments were invariant over time, it is reasonable that such behavioral temporal correlations 

were of neuronal origin, which can be related to the responses or performance in the previous 

trials, or fluctuations in spontaneous activity. It is also known that the inter-trial correlations 

observed in the performance of such tasks display a long memory that decays as a power-law 

over time [152, 153, 155]. Intriguingly, similar scale-free long-memory effects have been 

observed in 3–30-Hz neuronal oscillations recorded with MEG and EEG [78] (Study I). The aim 

of this experiment was to characterize the neuronal correlates of the trial-to-trial dependencies 

in a somatosensory detection task. 

 

Setup. In Study III, we hypothesized that the long-range temporal correlations (LRTC) in 

behavioral performance and neuronal oscillations are governed through the same mechanism of 

slow fluctuations in cortical excitability [162]. To study the basis of trial-to-trial correlations in 

behavioral performance, the subjects were delivered constant-current stimuli with randomized 

1.5 – 4.5 s intervals at an individually set intensity where they were able to report ~ 50 % of 

them. Such design has been shown to give rise to long-term behavioral correlations [152, 156, 

157]. Fluctuations in the frequency range of 0.02–0.2 Hz were previously found to affect the 

occurrence of epileptiform EEG events and modulate neuronal oscillatory activity during sleep 

[162]. Variations in neuronal oscillatory amplitudes in similar time scales have already been 

encountered in studies of LRTC (see Fig. 4; [78]). In addition, spontaneous coherent 

fluctuations were observed in functional MRI (fMRI) data in a similar frequency range [163]. 

We thus recorded simultaneous direct-current coupled full-band EEG (FbEEG) to search for 

correlates of slowly changing oscillatory amplitudes and performance level [164]. 

 

Analysis. We analyzed the FbEEG data in the very low frequency band of 0.01–0.1 Hz to 

identify the phase and amplitude that are preferred for successful stimulus detection. In addition, 

we computed the amplitude modulation of faster neuronal oscillations (1–40 Hz) by the phase of 

the 0.01–0.1 Hz activity to uncover possible cross-frequency nested relationships. If the 

detection performance and oscillation amplitude were governed by the same mechanism related 

to the brain activity in this very low frequency band, they should have the same preferred phase 

or amplitude and their LRTC scaling behavior should be similar. 
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Visual working memory 

Motivation. Visual working memory (VWM) is one of the essential functions provided by the 

human brain. A remarkable property of VWM is that although we sense a rich visual 

environment around us each moment, the actual capacity of VWM is surprisingly low, less than 

five objects [165]. The brain regions underlying VWM task execution and performance have 

been studied extensively, but the bases of the central executive and the sensory storage 

functions of VWM are still unclear [166–169]. In Study V, we hypothesized that the VWM-

related brain regions complete the functions necessary for task performance by co-operating 

with each other to a large extent and in a highly organized manner. 

 

Setup. To inspect our hypothesis, we measured concurrent MEG and EEG during a visual 

delayed-match-to-sample task. The number of colored square objects used as the memorized 

stimuli were varied randomly between 1 and 6 to modulate the memory load. The subjects’ task 

was to report if the probe stimulus presented after a 1-s memory retention period matched the 

initial sample stimulus or not. 

 

Analysis. We expected to find a large-scale task-relevant cortical network formed by oscillatory 

inter-areal interactions. We first developed the methodology required to assess inter-areal 

oscillatory phase synchrony in the extent of the whole cortex (Study IV). Then, we quantified 

synchronization between all brain regions during the retention period in the frequency band of 

3–80 Hz. Finally, we assessed the topological properties of this synchronized network using 

methods adopted from graph theory (Study V). 

 

Major depression 

Motivation. Major depression is an affective disorder, where the patient’s mood and self-

esteem as well as abilities for enjoyment and interest are severely lowered. These feelings 

dominate the everyday life of the patients in most situations
1
. In the absence of explicit tasks or 

stimuli, one of the dominant psychological modes engaged is supposedly introspection [171]. In 

contrast, the patients’ performance under specific tasks may reflect the various cognitive deficits 

that are brought about by the disorder. Therefore, the negative affect that directly characterizes 

the impaired mental state in major depression could be most clearly present during 

unconstrained rest. We hypothesized that the disorder is related to an altered neuronal state that 

can be detected by investigating the correlations in spontaneous neuronal oscillations. 

 

Setup. In this clinical study, we recorded ongoing MEG from 12 acute, unmedicated major 

depression patients and age-matched control subjects during eyes-closed resting state for 20 

minutes. The patients went through the Hamilton questionnaire to rate the degree of the disorder 

[172]. 

 

Analysis. In Study I, we attempted to find a neural correlate for the negative affect in major 

depression patients by quantifying the temporal correlations in oscillatory neuronal activity. 

                                                      
1
 World Health Organization, International Classification of Diseases: 
http://www.who.int/classifications/icd/en/ 
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This could help in the diagnosis and follow-up of depressive disorders. To be called a neuronal 

correlate for depression, the measure should be prominent in the patients but negligible in 

healthy controls or vice versa, it’s magnitude should correlate with the degree of depression and 

it should vanish upon recovery from the disorder. If the two last conditions are not met, the 

measure might indicate a trait dependency, an inclination for the disorder of possibly genetic 

background, rather than be a correlate of the depressed neuronal state per se. We quantified the 

oscillatory amplitudes and LRTC from combined MEG gradiometer signals to obtain separate 

time series to represent the neuronal oscillatory activity in the left and right somatomotor 

regions and the occipital region. In addition, we analyzed the signals from two prefrontal EEG 

derivations. We compared the values from these analyses between groups and correlated them 

with the Hamilton scores by linear regression. 

 

Epilepsy 

Motivation. Epilepsy is one of the most widely known central nervous system disorders 

because of the often dramatic convulsions associated with it. While many genetically, 

etiologically and phenomenologically different epileptic disorders exist, they are all thought to 

be symptoms of excessive neuronal activity. Accordingly, their treatment concentrates on 

controlling the excessive activity. The seizures are most often adequately reduced by 

medication, but sometimes a surgical resection of the seizure-generating tissue is made. In this 

case, localization of the pathological tissue becomes a necessary condition for a successful 

operation. However, localization of the seizure-generating region is not a straightforward task 

with the current methods. 

 

Setup. In Study II, we aimed at finding new ways to locate and circumscribe the seizure-

generating cortical tissue. To this end, we used intracranially recorded EEG data from five 

patients who were undergoing the evaluation period for resection surgery. We hypothesized that 

the neuronal activity in seizure-prone brain regions can be distinguished from normal even 

during non-convulsive inter-ictal periods. In all our patients, the epileptic zone had been located 

using combinations of conventional methods and was found to lie in the brain region covered by 

the electrode grid. The patients had also been successfully operated after the evaluation period, 

so the results from conventional localization methods was correct in these patients and could be 

used as a reference in our study. 

 

Analysis. We attempted to locate the epileptic region from inter-ictal grid electrode data with no 

visible signs of epileptiform activity by computing local amplitudes, signal variability measures 

and LRTC in four narrow frequency bands in the range 1–48 Hz. The analysis was done blindly 

with respect to the reference regions, and was based on finding focal changes in the grid region. 

These foci were then compared with the reference region to identify the most suitable method to 

consistently delineate the epileptic zone in the subjects. The most promising methods could then 

be further tested and developed to give additional information when locating the seizure-

generating regions for clinical needs.  
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Simulating MEG and EEG measurements to assess inter-areal synchrony 

Motivation. When estimating inter-areal phase synchrony from inverse-modelled MEG / EEG 

data, it is not feasible to compute pair-wise synchrony between all the more than 10
7
 source 

pairs formed by the several thousands of source nodes in realistic distributed source models. 

First reason for this is that computing such a large number of signal-to-signal correlations is a 

computationally encumbering task, and second is that measurement information is available 

only from a few hundreds of MEG / EEG channels. Thus, estimation of 10
7
 synchrony values 

from these data is highly redundant. Because of these restrictions, we decided to estimate 

synchrony between small patches of cortex, each consisting of a number of source nodes. We 

hypothesized that an optimal parcellation for analyzing phase synchrony is obtained by 

investigating the spurious correlations between individual source nodes that emerge after a 

MEG / EEG measurement of uncorrelated sources and inverse modeling of the data.  

 

Setup and analysis. In Study IV, we reasoned that to perform optimal brain-wide synchrony 

analysis, patches are needed for which the activity is maximally separable from the activity in 

other patches. Thus, source nodes that are inseparable from each other after recording their 

activity with MEG / EEG and inverse modeling the data should be clustered together into 

patches. To this end, we simulated patterns of uncorrelated neuronal activity in individual 

source models, performed a virtual MEG / EEG measurement by forward modeling the 

uncorrelated source activity, and inverse modeled the simulated sensor data. From this source-

level data we quantified phase synchrony among all pairs of individual sources (see below for 

technical details on forward and inverse modeling and phase synchrony analysis).  

 

Data acquisition 

Measurement techniques 

Scalp-recorded EEG. The scalp-recorded EEG is the workhorse of electrical measurements of 

brain activity in clinical settings and often in research as well [173]. The number of channels in 

EEG measurements varies from only a few to some hundreds: the recording electrodes are most 

often made of silver, coated with silver-chloride. These Ag|AgCl electrodes are coupled to the 

scalp electric potential with a conductive chloride ion-containing gel. In addition to the 

recording electrodes, a high input resistance amplifier is needed. EEG records the potential 

difference between two electrodes, the second of these usually being a dedicated reference 

electrode. Despite many advances in recording and signal processing technology, the lack of 

purely local measurements remains the principal drawback of EEG [174]. Mathematically, the 

EEG measurement channel reading, a potential difference between two electrodes, is obtained 

as a path integral of the electric field in the head. The arbitrariness of the path of integration 

highlights the low spatial resolution of the EEG measurement. From the point of view of source 

modeling, the low resolution is due to the wide sensitivity profile of the electrode pairs to the 

underlying currents. In addition, the electric field in the head is considerably affected by 

inhomogeneity and anisotropy of conductive tissue properties, which makes the forward 
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computations more difficult and sensitive to inaccuracies in tissue modeling. These factors 

together hamper the localization of the current sources that generate the measured EEG signal.  

 

Intracranial EEG. In addition to scalp-recorded EEG, intracranially recorded EEG is 

sometimes needed in clinical settings, mainly when planning epilepsy surgery [175]. The 

recording electrodes are then either depth electrodes, which are thin wires inserted 

stereotaxically into the brain tissue, or sub- or epidurally positioned plate electrodes in the form 

of surface strips or grids (Study II). The latter option is often referred to as the 

electrocorticogram, or ECoG. The signal recorded by intracranial EEG is better localized than 

that from scalp EEG, as the channel derivations are often formed by subtracting neighboring 

electrodes or referencing to a relatively silent and distant scalp electrode. The fact that 

intracranial recordings are only performed upon clinical need with medically justified electrode 

setups restricts the possible experiments and limits their use in neuroscientific research. 

 

Full-band EEG. The recording bandwidth of the EEG has conventionally been limited in the 

lower end to roughly 0.5 Hz. Recording the electrical activity at lower frequencies has been 

rather uncommon and is technically more demanding. The main challenge is electrode design, 

as these must be stable in direct-current (DC) coupled measurements [162, 164, 176]. The 

amplifier needs to have a wide dynamic range because of the high amplitude of the signals and 

electrode potentials, possible drifts due to electrode polarization, and the skin potential. The 

electrodes should be electrically connected to the subcutaneous tissue to short-circuit the skin 

potential. These artifactual sources of potential difference may result in signals of tens of 

millivolts, which is an order of magnitude more than the largest neuronal signals. With current 

full-band EEG (FbEEG) recording techniques, where the DC-stability of the electrodes, the 

amplifier and skin contact preparation are taken into account, the available measurement 

bandwidth extends from 0 Hz up to hundreds of Hz [164]. However, the very low frequency 

components of the signal measured on the scalp are most probably generated by several sources 

[177, 178]. 

 

MEG. MEG differs from the EEG in that it samples the magnetic flux generated by intracranial 

current sources using superconductive coils [179]. This gives MEG two significant advantages 

over EEG. First, the measurement of the magnetic flux is absolute, so there is no need for 

differential measurements using reference sensors. Second, because the MEG measurements are 

negligibly affected by the fine structure of the cranial tissues, the sensitivities of the sensors to 

the field-generating currents are more accurately known; hence, source modeling of multi-

channel MEG data is possible with high accuracy. On the other hand, radial current dipoles do 

not produce an external magnetic field in a spherical conductor, a locally reasonable 

approximation of the real conductor, so MEG might entirely miss some sources that the EEG is 

sensitive to. Thus, the two modalities complement each other. The technology needed for MEG 

measurements is far more sophisticated than that needed for EEG, requiring cryogenics to keep 

the superconductive quantum interference device sensors in the superconductive state, and 

advanced electronics, software and a magnetically shielded measurement room to reduce the 

level of noise in the measured signals [179]. A central factor adding to the flexibility of MEG is 

that different sensor types and geometries can be used to sample different orientations and 

gradients of the magnetic flux. 
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Neuronal origins of the electric signal  

At the neuronal level, there are two primary current sources, i.e., non-ohmic currents, that could 

account for the electromagnetic signals measured outside the head: the currents related to the 

action potential and the post-synaptic currents [173, 179–181]. Because the MEG and EEG 

signals are measurable on the scalp, it is generally agreed that they are generated by a large 

number of simultaneously active neuronal sources with constructive summation. In addition, the 

field generated by the candidate mechanism must be slowly decaying with distance in order to 

reach the sensors. The action potentials in axons may be synchronized, although they are short-

lived, but their associated source configuration is quadrupole-shaped and thus the generated 

magnetic field decays fast, as ~r
–3

 with distance r in homogeneous medium and as ~r
–4

 in the 

case of the sphere model and large r. [179, 180]. On the contrary, the post-synaptic currents, 

which are generated by ionic flow through transmitter-gated cell membrane channels, are 

longer-lived and hence sum up temporally with higher probability. Moreover, the source 

configuration of the current flowing along the dendritic tree of a neuron is dipolar, so the 

magnetic flux decays as ~r
–2

, significantly slower than for quadrupoles [179, 180]. Thus, the 

main sources of extracranially observed electromagnetic activity are the post-synaptic currents. 

 

Assuming that the post-synaptic currents are the main contribution  to the observed 

electromagnetic recordings, we must conclude that the MEG and EEG methods are mostly 

sensitive to input to cells rather than output generated by those cells. This has been partially 

confirmed experimentally by combining electric and optical measurements [182]. However, in 

the case of oscillatory activity that reverberates in a local neuronal population, which is the main 

interest of this Thesis, the synaptic input to and the spiking output from a brain region most 

probably are significantly correlated. 

 

Data processing 

Filtering for oscillations and extracting the phase and the amplitude 

Two different approaches to time series filtering were used in the studies of this Thesis, Morlet 

wavelets and finite impulse response (FIR) filters [190–193]. In wavelet filtering, a data time 

series y(t) was filtered with a Morlet wavelet h(t,f), where f is the center frequency of the 

wavelet. The complex filtered signal, yc(t), is then given by yc(t, f) = y(t)  h(t, f), where h(t, f) = 

A exp(–t
2
 / 2 t

2
) exp(2i ft), t = m / 2 f denotes the standard deviation of the wavelet in time 

domain, m defines the time-frequency resolution, A is a scaling factor and y  h indicates the 

convolution of y and h. The discrete FIR filtered signal was obtained by convoluting the signal 

y(n) with the digital filter coefficient vector [bi], which can be written as yFIR(n) = 

 for each sample n, where N is the filter order. The phase and amplitude of a 

FIR-filtered signal yFIR were obtained with the analytic signal approach by first constructing a 

complex-valued signal using the Hilbert transform H, yFIR,c = yFIR + iH(yFIR). From a wavelet or 

FIR-filtered complex-valued signal the momentary signal amplitude was computed by |yc| = 

(yRE
2
 + yIM

2
)

1/2
, where yRE and yIM are the real and imaginary parts of yc, respectively. The phase 

 of yc(t) was estimated using  = atan2(yIM, yRE), where atan2 is a variant of the arctangent 
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function that gives the angle  between the real axis (x-axis) and the point (x, y) in the complex 

plane. 

 

Quantifying spatial correlations with phase synchrony 

The degrees to which oscillations between brain areas are correlated was quantified by 

computing the phase synchrony between two signals, originating from a pair of sensors or brain 

regions, the latter after inverse modeling of the MEG or EEG signals (Studies IV, V). Phase 

synchrony, as any measure of functional connectivity, is a statistical index specifically of non-

random phase correlations [195]. We quantified phase synchrony by first obtaining a pair of 

complex-valued narrow-band signals, si(n) and sj(n), and then computing the phase-locking 

value, PLV, for each frequency band from samples across trials [192, 196]. We write si = Ai 

exp(i i), where Ai is the amplitude and i is the phase of si. Now, PLV = n
–1

| t exp(i i,t – i j,t)| 

where t = 0…n–1, and n is the number of samples. The statistical significance of PLV was 

assessed using surrogate data (see below). 

 

Quantifying temporal correlations with detrended fluctuation analysis 

Temporal correlations are computed within a single time series, in contrast to paired signal 

analysis used in the computation of spatial correlations. The aim of this analysis is to quantify 

the ―fractal patterns‖ that give rise to the LRTC in the signal [78, 197]. Here, fractality refers to 

self-similarity over time t, which gives rise to slowly decaying temporal correlations that scale 

as a power-law ~t
–

  where  is the power-law exponent. A common way to assess LRTC is the 

analysis of power spectral density (PSD), but the results derived from power spectra may suffer 

from non-stationarities in the data. Detrended fluctuation analysis (DFA) has become another 

widely used method to quantify LRTC [78, 139, 198, 199] (Studies I – III). The idea of DFA is 

to track the fluctuations in the signal across a wide range of time scales. It has been argued that 

the DFA performs robustly even in the presence of artifacts and non-stationarities in the data, 

but the analysis of LRTC still benefits from complementary use of other methods [200, 201] 

(see Fig. 4). 

 

The DFA algorithm computes the root-mean-square deviation, F, of an integrated and 

windowed zero-mean amplitude signal from which the linear fit in each window has been 

subtracted, y( ), in a number of window sizes, . The deviation is calculated with F( ) = [n
–1

 

y ]
1/2

, where the sum runs over the n samples. The scaling exponent  is extracted with a 

least-squares fit in double-logarithmic coordinates; values of 0.5 <  < 1 imply self-similarity 

and positive LRTC. For further details about applying DFA, see [78, 202]. An interesting 

combination of the analyses of spatial and temporal correlations in oscillations has been 

presented in [203]. Recently, an approach to integrate the long-term memory properties in single 

time series and pair-wise correlations between them was formulated to estimate ―fractal‖ 

functional networks [204]. 
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Quantifying cross-frequency correlations with nested synchrony 

The correlations between two oscillatory signals x(t) and y(t) characterized by amplitudes Ai and 

phases i can take three forms: amplitude-to-amplitude correlation, phase-to-phase correlation 

and amplitude-to-phase correlation, which is called nesting. The PLV, which was used above to 

quantify phase synchrony, can be applied to quantify other forms of correlations as well. We 

estimated nested synchrony by computing the PLV between x(t, f) and the amplitude envelope 

of y(t), which had been further band-pass filtered to the center frequency f, Ay(t, f). Then, PLV = 

| exp i x i Ay)]| / n, where x is the phase of x(t, f), Ay) is the phase of Ay(t, f), obtained 

with the Hilbert transform as above, and n is the number of samples. The statistical significance 

of the nested relationship was assessed using surrogate methods (Study III). 

 

Quantifying indices of network topology 

The structure of anatomical and functional networks has been characterized above in descriptive 

terms. Graph theory is a formalism for quantifying topological properties of a network [93, 94]. 

Characterizing the structure of synchronous oscillatory networks was the main target of Study 

V. Construction of a graph is based on the nodes, or vertices, and a connectivity matrix G, also 

called adjacency matrix, which describes the connections, or edges, between the nodes. 

Statistically processed phase synchrony matrices were thresholded to build undirected and 

unweighted graphs, where nodes i (i = 1 ... Nn) are given by the cortical areas and statistically 

significant inter-areal phase synchrony between i and j are the edges, Gi,j = Gj,i = 1 (Study IV). 

In the case of a lack of a significant interaction between i and j the edge is missing and Gi,j = Gj,i 

= 0. The structure of graph G was characterized using several graph theoretical measures. The 

degree, di, of vertex i is the simplest measure of the importance of a node and equals the number 

of edges connected to the vertex. The degree distribution of a graph is the distribution of di of all 

nodes i and is estimated with a histogram. Connection density K is the proportion of existing 

edges to all possible edges, K = Gi,j / [Nn (Nn – 1)]. The clustering coefficient for node i 

indicates the proportion of connections in the neighborhood of vertex i relative to all possible 

connections and is given by Ci = k d’k / [di (di – 1)], where nodes k are those connected to the 

node i and d’k is the degree of node k including only the connections among neighbors of node i. 

The clustering coefficient C of the graph is the mean Ci over all nodes. The shortest path length  

li,j between vertices i and j is the minimum number of edges along a continuous path of edges 

between i and j. The mean of li,j over all pairs of vertices in a one-component network is called 

the characteristic path length L. We defined S = C / L and the small-world index, , as  = S / 

SR, where SR is the mean S of mean-degree-matched random graphs. A graph’s global 

efficiency, Eglob, is given by Eglob = i≠j [li,j Nn (Nn – 1)]
–1

 and cost efficiency relates this to the 

cost of the graph, which is evaluated as the connection density K, and is obtained with  = 

Eglob  [99]. The most densely interconnected structures were identified with k-core analysis: 

vertices belonging to a k-core are those that remain after vertices with d < k have been 

recursively removed. A graph’s maximum k-core number is the value of k such that with k + 1 

all vertices are removed. 
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Use of surrogate data in statistical analysis 

Surrogate data is a general and robust way to determine the statistical significance of an original 

experimental finding. In surrogate analysis, the original data is replaced by surrogate data and 

processed identically to the original. Surrogate data can be generated by mixing, which usually 

has the benefit of conserving the main descriptive statistics in data. Another way to obtain 

surrogate data is to run numerical simulations with carefully selected parameters, which requires 

some knowledge of the original data. In this study, we use surrogate data to find significance 

levels for temporal (Study I) and spatial correlations (Study V) as well as cross-frequency 

nested relationships (Study III) among neuronal oscillations. 

 

In general, phase synchrony can be estimated for samples across time or for samples with the 

same latency across trials. In both cases, surrogate data can be generated by means of temporal 

mixing, where the other signal is shifted in time. In Study V, we computed surrogate PLV from 

signals originated in separate trials to compensate for synchrony generated by the evoked 

response component [196]. Hence, only the temporal relationship between the signals was 

changed, whereas the time series were otherwise left intact. 

 

Analyses of LRTC only employ one time series, so the minimal intervention of translating the 

signal is not valid. Here, it is the relation between samples within the signal that bears 

information, so random mixing of samples would remove the temporal correlations. However, 

this would also distort other signal statistics, such as the power spectrum. A more conservative 

mixing method is to mix clips of data [205]. In Study I, we abolished the temporal structure in 

the MEG time series by Fourier transforming the data to the spectral domain, randomizing the 

phases and inverse transforming back to the time domain [199]. 

 

From channel level to source level using inverse estimation 

Although it has been long known that the results from MEG and EEG channel-level analyses 

are difficult to relate to neuronal processes in specific anatomical brain regions, a vast majority 

of EEG and MEG studies still report exclusively channel-based analyses. This tendency may be 

partly due to the clinical EEG tradition, which concentrates on interpreting the event-related 

averaged responses or ongoing oscillations in single leads placed at specific scalp locations.In 

addition, the mathematical rigor required for high-quality source-space analysis may act as a 

deterrent. Without inverse modeling, the locations of the current sources can barely even be 

judged in terms of the hemisphere of origin from scalp EEG recordings, while accuracy at the 

level of cerebral lobes may be attainable with MEG, depending on the sensor types. The task of 

estimating the source-space projection of the recorded MEG / EEG signal-space data is called 

the neuroelectromagnetic inverse problem. The term inverse arises from the need to estimate the 

causes of observed effects backwards in causality. In the neuroelectromagnetic forward problem 

the electromagnetic fields, the results of a MEG / EEG measurement, are calculated from known 

current sources. It is well known that there is no unique solution to the MEG / EEG inverse 

problem, which makes the inverse estimate highly dependent on the prior assumptions, such as 

the source model.  
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To further motivate analyzing MEG / EEG data in the source space, let us present the two major 

problems in estimating synchrony in the signal space. First, multiple brain regions contribute to 

the signal recorded in a single channel, so information about the spatial location of the 

interacting brain area is lost. Second, activity from single sources spreads to several channels, so 

the sensor signals display spurious correlations even in the absence of inter-areal correlations. 

Thus, in studies of phase synchrony using channel-level data, the ambiguity of underlying 

current sources severely hampers the interpretability of the results. The principal aim of Study 

IV was to develop methods for identifying the real between-regions neuronal interactions from 

such ambiguous measurement data. In addition, the spurious contribution from common signal 

sources in computed synchrony cannot be estimated in the signal space, because it depends on 

the sensitivity of the sensors to the sources giving rise to the data, and can thus be settled only in 

source space [206]. 

 

In the context of MEG and EEG, the most commonly applied inverse estimate is the single 

equivalent current dipole. However, dipole modeling is highly insufficient to describe spatial 

correlations in oscillatory activity. The signal processing methods applied in this Thesis require 

continuous activity in each brain area to quantify the inter-areal correlations. The minimum-

norm estimate (MNE) is a distributed current estimate, originally proposed for MEG, that makes 

minimal a priori assumptions of the current sources [207]. MEG and EEG data can be inverted 

in an integrated way using the lead field concept, which takes into account the different 

sensitivity profiles of MEG and EEG sensors [208]. In Studies IV – V, we inverse modelled the 

concurrently acquired MEG and EEG data using the MNE Suite software
2
. Building an 

anatomically realistic inverse estimator for optimal accuracy requires a source model, a 

conductivity model, the solution to the forward problem and noise covariance statistics from the 

data. The information on individual anatomy was acquired with MRI. Here, the source model 

was a set of dipoles on the cortical mantle with ~7 mm separation and fixed orientation. A 

realistic three-layer conductivity model was applied in the forward computations with the 

boundary element method using realistic values for tissue compartment conductivities.  

 

MEG and EEG sensor signals Y = [yj] with channels j = 1 ... m are linearly related to current 

strengths in n source dipoles X = [xk] so that Y(t) = G X(t) + N(t), where G is the lead field 

matrix and N(t) accounts for unmodelled noise. We obtained X(t) from measured Y(t) using a 

minimum-norm estimator so that X(t) = M Y(t) = RG
T
(GRG

T
 + 

2
C)

–1
 Y(t), where M is the 

inverse operator,  is a regularization parameter, R is a source covariance matrix and C is a 

sensor noise covariance matrix. The complex inverse solution Xc = [xc,k] was obtained from the 

inverse solutions for the real and imaginary parts of the narrow-band filtered data Y = YRE + iYIM 

so that Xc = M YRE + iM YIM. We collapsed the individual complex-valued sources xc,k in each 

cortical area a into amplitude-normalized complex phase time series a so that a = a / | a|, 

where a  = a xc,k and the sum runs over the sources in the cortical area a. Inter-areal synchrony 

between areas a and b was then computed at the source level as PLVa,b = | s a b*| / n, where n 

is the number of samples s and b* denotes the complex conjugate of b. 

 

                                                      
2
 The MNE software is courtesy of Matti Hämäläinen and is publicly available at: 
http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/MNE_register/ 
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Main results 

Infra-slow EEG correlates with stimulus detection and neuronal oscillations 

In Study III, we recorded the FbEEG of subjects performing a somatosensory detection task. We 

found that the behavioral detection performance was clustered in time and presented scale-free 

long-range memory, in agreement with previous psychophysical data [152, 155–157, 159].  The 

detection dynamics included statistically significant detection bursts in time scales of > 3 trials, 

which corresponds to the > 10 s periodicity in the FbEEG data filtered in the frequency band of 

0.01–0.1 Hz. 

 

By analyzing the ongoing activity we identified very slow modulation of the FbEEG signal 

during task execution. We termed this finding infra-slow fluctuations (ISFs). Furthermore, we 

observed that behavioral performance was elevated in the rising phase of ISF and reduced in the 

falling phase (Fig. 2). We then characterized the cross-frequency nested relationships between 

ISFs and faster oscillations in frequencies > 1 Hz. We found that the amplitude dynamics of 1–

40 Hz neuronal oscillations were correlated with the phase of the ISF in a similar way as the 

behavioral performance. Interestingly, the behavioral LRTC estimated with DFA of the trial-by-

trial detection performance was highly similar to the LRTC found in 3–30 Hz EEG and MEG 

oscillations [78] (Study I). Taken together, the dynamics of both behavior and neuronal 

oscillations were similarly nested in the ISFs. 

 

 

 

 

Fig. 2 The phase of infra-slow (0.01–0.1 Hz) fluctuations (ISFs) in scalp-recorded EEG is 

strongly correlated with the detection of threshold-level somatosensory stimuli. (A) The number 

of detected (HIT) and undetected (MISS) stimuli as the function of the ISF phase in a single 

experimental session. (B) Statistical significance and the mean phase  of the phase-locking of 

HITs and MISSes to ISF in all subjects in two electrodes, a prefrontal (PFz) and a central (Cz) 

one. 
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Using phase synchrony to detect functional neuronal networks 

In Study IV, we developed a methodology to estimate large-scale cortical interactions non-

invasively with combined MEG and EEG recordings and source modeling based on individual 

cortical anatomy. Earlier, it was possible to obtain reliable synchrony estimates only by 

comparing synchrony between conditions. Now it is possible to estimate the absolute strength of 

interactions in ongoing data using the compensation method for spurious synchrony, which is 

based on investigating the contributions of data acquisition and inverse estimation on synchrony 

with simulated uncorrelated data (Study IV). We tested the applicability of the method by 

computing phase synchrony in the alpha-frequency band during the pre-stimulus period of a 

visual working memory (VWM) task. We found a network of oscillatory synchrony, where the 

posterior visual regions were strongly interconnected with central and frontal regions (Fig. 3). 

 

The approach to map inter-areal interactions was applied in Study V, where we assessed inter-

areal phase synchrony to characterize the graph properties of the functional networks found in 

frequencies in the range 3–90 Hz during the retention period of the VWM task. We found 

widespread phase synchrony in all frequency bands in both the source-level data and the MEG 

gradiometer data. However, the structure of synchronous networks in distinct frequency bands 

had different topology. More specifically, the alpha-band and beta-band networks displayed 

stronger small-world properties and had a more pronounced core-like structure than networks in 

the other frequencies. The degree distributions of alpha- and beta-band networks were 

characterized by a power-law, whereas exponential models suggesting a smaller amount of 

highly connected hubs were more appropriate for the degree distributions of the theta- and 

gamma-band networks. In addition, the gamma-band networks had higher cost efficiency than 

 

Fig. 3 The network of inter-areal phase synchrony in the pre-stimulus period of the visual 

working memory task presented on a flattened cortex. The dominating pattern of synchrony is 

between bilateral occipital visual cortices and widespread regions in the central, frontal and 

temporal cortices both within and between hemispheres (taken from Study IV). 



27 

 

 

 

networks in the other frequency bands. Finally, the effect of memory load was present as a more 

pronounced small-world structure in the alpha-frequency band for loads of 4 – 6 objects than for 

1 – 3 objects. Thus, phase synchrony computed in the source-space can be used to identify 

behaviorally related functional networks. 

 

Long-range temporal correlations are dissipated in depression 

Study I is concerned with the possibility of dissociating the major depressive disorder patients 

from healthy age-matched controls on the basis of LRTC in neuronal oscillations that were 

recorded with MEG in the eyes-closed resting-state condition. We constructed spatial filters in 

the frequency-domain and projected the gradiometer data through these filters to obtain one 

time series for eachregion of interest [209]. We analyzed the LRTC from this data with the PSD 

and DFA methods [78]. We found that the LRTC were drastically weakened in the patients, 

practically to the level of white noise, in the theta frequency band of around 5 Hz, despite being 

robust in the alpha and beta frequency bands in the patients and in all bands in the subject group 

(Fig. 4). Intriguingly, the LRTC in the left temporo-parietal region was correlated with the 

severity of the disorder, which was quantified with the Hamilton depression rating score [172]. 

In addition, separate analyses of signals from two prefrontal EEG leads showed differences 

between patients and controls in the beta band. 

 

We also found minor amplitude differences between the groups in the theta band, which were 

however not as significant statistically as the difference in DFA or PSD exponents. For this 

Thesis, separate analyses of changes in phase synchrony were performed. We computed 

channel-to-channel synchrony between the most anterior and posterior sensors and between 

right and left temporo-parietal sensors and found slightly larger alpha-band synchrony in the 

patient group (Fig. 5). Thus, the methods searching for correlations in neuronal oscillations were 

sensitive to changes in the spontaneous oscillatory activity in major depression patients. 

 

Fig. 4 Long-range temporal 

correlations in the 5–Hz theta-band 

are weaker in depressed patients 

than in healthy controls. Similar 

results and statistics between 

groups were obtained using either 

the detrended fluctuation analysis 

(DFA, p < 0.002, above) or power 

spectrum density (PSD, p < 0.007, 

below) method in a wide range of 

time scales (DFA) or frequencies 

(PSD). (Modified from Study I) 
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Persistent correlations localize the epileptic focus 

The aim of Study II was clinically motivated: to find a feature in ongoing non-epileptiform 

brain activity that would reveal the location of the seizure-generating zone. An analysis of 

LRTC in ECoG data recorded with 45 – 64 channel subdural grids revealed that these 

correlations were emphasized in the vicinity of the epileptogenic focus. The location of the 

focus was clinically determined from seizure-onset recordings and confirmed by a positive 

outcome of resective surgery in each patient. We also found that LRTC was much more 

sensitive to the seizure onset zone than the oscillatory amplitude or deviations from the power-

law scaling rule in DFA, which was quantified as the least-squares linear fitting error. 

Furthermore, DFA was not correlated with  amplitude at a channel level in any frequency band, 

and a comparison between narrow band and broad band data showed that the fitting errors in 

DFA were larger in the broad band data. From these data alone it cannot be determined if the 

LRTC were actually strengthened close to the focus due to the epileptogenic mechanisms or 

decreased at a distance due to compensatory mechanisms. However, it is not the absolute values 

that are important in this case, but the gradient of LRTC towards the focus region. 

 

Interestingly, we found that the spatial distribution of LRTC, which in unmedicated patients was 

inclined towards the focus, was leveled under medication with lorazepam, a drug widely used as 

an anti-epileptic. This effect was especially prominent in the beta-band, which was also the 

frequency band most sensitive to the epileptic focus. This balancing effect was caused by both 

an LRTC decrease in the regions proximal to the seizure focus and an increase in regions distal 

to it. This data is complemented by our previous findings of changes in phase synchrony in the 

same data (Fig. 1). 

 

Fig. 5 Phase synchrony in the 

alpha-band, but not in theta- or 

beta-frequency bands, is altered 

between frontal and posterior 

MEG sensors in the depressed 

patients compared to the healthy 

controls. Phase-locking values on 

the y-axis are relative to the mean 

of mixed surrogate data. 
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Simulated data enables optimal estimation of inter-areal synchrony 

In Study IV, we simulated neuronal activity by inserting random noise to dipoles in individual 

source models. Thereafter, we forward-modeled and inverse-modeled the simulated sources and 

computed the PLV between all source pairs. We clustered the most strongly correlated sources 

together using an iterative modification of the mean linkage clustering algorithm. We obtained a 

novel cortical parcellation using the clusters as cortical patches. The patches comprise a 

complete parcellation of the cortical mantle and have the highest possible source-to-source 

correlations within each patch. Cortex-wide inter-areal phase synchrony can then be estimated 

by inverse modeling the measured MEG / EEG data and computing phase synchrony among all 

patch pairs. We showed that using these patches in the estimation of inter-areal phase synchrony 

results in lower spurious synchrony than using parcellations based on anatomical information. 

Furthermore, we developed a method to compensate for the spurious synchrony arising in the 

data acquisition and inverse estimation stages to reduce methodological bias in the synchrony 

estimates. We also improved cross-subjects comparison by parcellating the cortex of each 

subject to the same neuroanatomical regions using the information obtained from MRI data. The 

synchrony data, which was initially computed in the individual source cluster parcellations, was 

then projected to the anatomical parcellation using weighted averaging. Then, the individual 

synchrony data represented on the common anatomical parcellation was directly comparable 

across subjects. 

 

  

Fig. 6 The power in brain activity 

recorded with full-band EEG 

during a somatosensory detection 

task is distributed in a scale-free 

manner across a frequency range 

spanning several orders of 

magnitude. The power spectral 

density is computed in the central 

sensor (Cz) referenced to the 

mastoid and is averaged over 11 

subjects. (Taken from Study III) 
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Discussion 

 

Views on brain mechanisms of cognition 

The significance of infra-slow activity in neuronal processing 

We showed, for the first time, that electric infra-slow fluctuations (ISFs) are present and 

correlate with behavior in subjects during task execution (Study III; see Fig. 6). Earlier, such 

activity was found in sleeping patients [162]. On the other hand, our findings of correlations 

between ISF and behavioral performance and, similarly, between ISF and > 1 Hz neuronal 

oscillations show that behavior and oscillations are both nested in the temporal structure of the 

ISF. The results point towards a physiological mechanism linking the long-term variabilities in 

neuronal oscillations and behavior. The interconnectedness of behavior and > 1 Hz neuronal 

oscillations has been known long, but the finding of their common modulation is new. 

Additionally, the nested cross-frequency correlations identified in this study between ISF and > 

1 Hz neuronal oscillations in several distinct frequency bands bring about the possibility of 

common coordination of neuronal oscillations over frequency. It should be investigated further 

if, indeed, ISFs have a modulatory role in neuronal processing (Study III). 

 

Because of the long time scale of ISF, it is attractive to consider it in relation to metabolic 

activities that are imaged with methods such as fMRI and near-infrared spectroscopy. If there 

existed a link between ISF and metabolism, our results would be more easily interpreted. For 

example, the results would partly concur with an fMRI study in which subjective perceptions of 

weak laser-induced somatosensory stimuli were correlated with pre-stimulus activity levels in 

the thalamus and cortex [218]. A central issue that ISF and fMRI have in common is the time 

scale, with frequency ranges mostly below 0.2 Hz. In addition, whereas the fMRI blood 

oxygenation dependent (BOLD) signal is tightly linked to blood flow and metabolism, there are 

also indications that changes in blood flow and CO2 give rise to measureable potential changes 

in the scalp, possibly through mechanisms related to pH and the blood-brain barrier [177, 188, 

219]. Furthermore, the effects of hyperventilation-induced hypocapnia or otherwise down-

regulated intravenous CO2 can be seen with both fMRI and FbEEG [189, 219, 221]. Conversely, 

many neuronal phenomena are known to undergo very slow variations, especially the strength 

of oscillatory spatial correlations [148, 222–224]. The amplitude fluctuations of neuronal 

oscillations give rise to baseline shifts at all time-scales due to scale-free power variations and 

the asymmetry of oscillatory waveforms [58, 78, 148] (Studies I, II). Unfortunately, the mutual 

connections between ISF, LRTC and BOLD have not been investigated. There is, however, 

evidence on a connection between the amplitude of > 1 Hz neuronal oscillations and BOLD 

signal intensity [225–227]. In addition, ISFs are strongly correlated with a measure of cerebral 

blood volume (CBV) in a subject-dependent manner [220]. Neuronal activation is known to 

give rise to long-term metabolic changes  [228, 229]. In light of our results (Study III) it would 

be interesting to examine whether the LRTC in the phase of ISF and in the amplitude of faster 

oscillations are correlated over cortical regions and in several frequencies. Hence, there are 

plenty of data on relatedness of slow modulations in electric neuronal activity on the one hand, 
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and blood flow and metabolism on the other, but the exact mechanisms behind these 

correlations are still unknown. 

 

Spatial correlations from cortical phase synchrony 

By utilizing the novel approaches developed in this Thesis, we found widespread phase 

synchrony among cortical sources in the pre-stimulus period and in the memory retention period 

of the visual working memory (VWM) task (Studies IV, V). The cortical locations found for the 

pre-stimulus alpha-band network overlap to a high degree with the brain regions associated with 

visual attention [211, 212]. This finding is thus compatible with the notion that in the VWM 

task the subjects attend to upcoming stimuli during the few hundreds of milliseconds before the 

stimulus appearance. The identified interactions among the network regions may be crucial for 

the neuronal implementation of the pre-stimulus attentional function [213, 214]. A study of 

lateralized visual attention recently showed that alpha-band synchronization between ipsilateral 

medial temporal and parietal regions increases with respect to the synchrony between the same 

regions in the contralateral hemisphere [215]. While our study design was not explicitly 

designed to study attention, we discovered that the pre-attentive state is generally characterized 

by an increase rather than a decrease in phase synchrony. However, it is still possible that 

unilateral attention causes further hemisphere-specific changes in synchrony. 

 

The structure of the oscillatory synchronous networks varied significantly across frequencies 

(Study V). Robust small-world characteristics were displayed in the alpha- and beta-frequency 

bands. The small-world property with high local clustering of most connections and fewer long-

range shortcuts between clusters was previously found in anatomical networks of the human 

brain and was attributed to simultaneous integration and segregation of information processing 

[107]. Our data showed that, indeed, the same organizational principle might apply to functional 

networks detected in the 3–90 Hz frequency range using phase synchrony. In addition to 

recognizing more pronounced small-world structure in the alpha and beta oscillations, we found 

that the structure of the phase synchrony networks in the gamma-band oscillations was 

organized to optimize efficient signal propagation. This spectral dissociation of network 

structure could mean that processing is distributed to distinct frequency bands having specific 

functional roles, which are integrated by cross-frequency interactions [87, 192, 216]. Future 

studies should aim at dissociating the correlates of frequency-specific networks during task 

execution, stimulus properties, responses and performance to elucidate their functional 

significance. Optimally, all the above factors should be separated already in the study design. At 

the same time, care should be taken that the task does not become too exhaustive for the 

subjects, because exhaustion increases the probability of task-independent thoughts and 

performance errors [217]. The principal conclusion is that phase synchrony between brain 

regions is very common during task execution and that different patterns of synchrony can be 

found in dissociated frequency bands. 
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Clinical prospects of neuronal oscillations 

Diagnosing depression from abnormal oscillatory dynamics 

The principal uses of EEG methods in the clinical environment are diagnostics and state 

monitoring. In our study of major depression patients we found that LRTC in theta-band 

oscillations were absent (Study I). Depression has earlier been related to amplitude 

abnormalities in the theta-band EEG activity [210]. This finding could simply be that of a trait 

indicator, i.e., that persons with a tendency for mood disorders display diminished LRTC but 

that the onset of the actual disease is not associated with a further decrease in the indicator. 

However, the discovery that the strength of theta-band LRTC over the left temporoparietal 

regions inversely correlated with the severity of the disorder suggests that LRTC might actually 

be a state indicator. Proof of this postulate further requires that the indicator revert back to the 

normal range upon remission. This could be studied by measuring the same subjects that were 

measured in the acute state again after they have recovered. 

 

The experiment was performed in the resting state, an inherent property of which is that the 

state of the subject is weakly controlled. Still, the physiological state of the subject in this 

condition is not random, as evidenced by high reproducibility of oscillatory peak frequencies 

and topography within and across subjects and the robust oscillatory LRTC found in this Thesis 

[79]. However, care should be taken that the subject does not become drowsy. We chose to 

probe the subjects’ state offline by using the alpha-band amplitude in occipito-parietal sensors 

as an index of vigilance. We found no difference between patient and control groups, which 

suggests that our results are not due to different vigilance states of patients and controls. 

However, as motivation is known to be reduced in mood disorders along with several other 

factors related to behavioral control and cognition, the effects arising from issues related to 

motivation cannot be ruled out in this case [230]. 

 

After finding a correlation between the degree of the disorder and the LRTC, it is tempting to 

speculate that the diminished temporal correlations in neuronal oscillations could be causally 

related to at least some features in major depression, perhaps even the level of mood itself, 

instead of just signalling changed network activity. Arguably, losing the coordination of 

neuronal activity over time could compromise the ability of the individual to perform goal-

directed activity or keep up coherent trains of thought during introspection. This kind of 

temporal fragmentation of the mental state could indeed underlie many cognitive impairments 

and explain the lack of long-term commitment observed in depressed patients. 

 

Currently, we interpret these findings physiologically as reflecting the system-level 

dysregulation of the cortico-limbic-hippocampal loop, which is the leading candidate for 

generation of an array of symptoms known as the depressive disorder [231, 232]. As it happens, 

the MEG/EEG studies of depression can now be refined to inspect this hypothesis specifically, 

by applying the approach developed in this Thesis (Study IV). 
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Presurgical localization of the epileptic focus using autocorrelations 

The prediction of seizures using nonlinear methods based on oscillatory power and synchrony is 

one emerging application of EEG-based methods in epilepsy [233–236]. However, the 

localization of seizure-generating zones from ongoing data has not been very successful (see, 

however, [237, 238] ). We showed that LRTC are able to discriminate the epileptic focus with 

accuracy on the order of centimeters (Study II). Previously, epileptic hippocampi were shown to 

have SOC properties, and this finding was applied to lateralization of the epileptic hippocampus 

with results similar to ours, namely that the epileptic hippocampus had stronger LRTC than the 

non-epileptic [238, 239]. In addition, these studies found that the scaling behavior does not 

change when a seizure is approaching. This suggests either that seizures are an inherent 

dynamical property of networks that display strong LRTC, or that seizure generation is 

influenced from outside of the actual seizure-initiating regions. Our study presents a spatially 

more detailed structure of covariation between LRTC and the seizure-generating focus and 

shows that the LRTC changes are limited to a rather small region. 

 

The classical view of generalized seizures is that they are generated by periods of excessive 

global synchrony originating from an epileptic network. However, this hypersynchrony 

principle has been challenged recently by theoretical studies showing that neural networks 

cannot maintain a high level of activity in presence of strong synchrony and, conversely, that 

synchrony is not needed for global high-amplitude activity [240–242]. Rather, it appears that 

global synchrony is increased when ictal activity spreads to subsequent regions, recruiting them 

to the same hyperactive neuronal mass in the process [243–245]. In this context it is interesting 

that benzodiazepines that promote the binding of GABA to the chloride-channel complex, 

prevents and even stops the seizures in some patients. While the main effect of GABAergic 

synaptic signaling is inhibition, it also has the potential to increase neuronal synchrony, because 

interneuron networks drive synchronized activity [32, 40]. Our ECoG data in patients as well as 

scalp EEG data in healthy subjects support the idea that benzodiazepine administration increases 

synchrony (Fig. 1) [246]. Interestingly, medication of patients with lorazepam also decreased 

the high LRTC observed in the seizure focus to a more normal level, despite increasing LRTC 

in the non-epileptic tissue surrounding the focus (Study II). Thus, the data on lorazepam-

induced alterations in spatial and temporal correlations in neuronal oscillations suggest that 

GABA plays a role in regulating oscillatory correlations in epileptic neuronal networks. This 

idea is supported by the findings of altered GABAergic function during epileptogenesis [247–

249]. Our results show that the LRTC may be state-dependent and suggest that the level of 

LRTC might indicate the probability of seizures originating in a cortical area. 

 

One of the objectives in Study II was to extend the evaluation of the seizure-generating zone to 

non-invasive methods, which would further speed up the evaluation process and cut down its 

costs. First results obtained with scalp EEG have shown that the focus could indeed be localized 

with DFA even from non-invasive recordings [250]. This opens up the possibility to inspect 

whether the LRTC are normalized whenever an efficient treatment, most often medication, is 

found. Another view arising from our results is that the increase in LRTC is probably more 

related to generation of the epilepsy syndrome, or epileptogenesis, than to generation of the 

individual seizures, or ictogenesis. This hypothesis could be tested with animal models of 

epilepsy by following the development of the local LRTC from the start of the epileptogenic 
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process to the final stage of full-blown epilepsy syndrome characterized by recurrent seizures 

[251]. 

 

One way to interpret enhanced LRTC is that activity of high amplitude is more likely followed 

by further high-amplitude activity than low-amplitude one. Strongly recurrent activity in 

neuronal networks could underlie such behavior. Then, it could well be that strong LRTC are 

related to excitatory feedback structures, which in turn predispose to epileptic activity. While 

this connection between local neuronal structure, epilepsy and LRTC is speculative at this stage, 

it is of particular interest to note that oscillations and the strength of LRTC in healthy twins has 

a remarkable genetic background [205]. Thus, the well-established heritability of some epileptic 

disorders could be linked to increased LRTC through the influence of genetically determined 

structure and dynamic properties of neuronal networks. 

 

The desire to develop clinical tools to aid in the pre-operative localization of the seizure focus 

was the long-term goal set when initiating Study II. Despite the promising results, the approach 

is not yet ready for routine use. Above all, the sensitivity and specificity of the index used in 

localization should be quantified and increased. The primary way to do this is to adjust the data 

acquisition and signal processing parameters, such as the patient’s state, channel setup, filter 

settings and signal processing methods for scaling analysis and increase the amount of collected 

data to gain higher statistical power. Finally, the approach should be tested with non-invasive 

MEG/EEG recordings on a large number of patients. 

 

Other disorders studied using neuronal correlations  

In addition to major depression and epilepsy that were given attention to in this Thesis, methods 

to investigate spatial and temporal oscillatory correlations have been applied to other disorders 

as well. These studies give further support to the conclusion that such approaches can be used to 

identify brain disorders. Additional data on the correlational aspects of neuronal oscillations in 

well specified disorders might also help to elucidate the functional roles and origins of 

oscillatory correlations. Lowered memory function and level of consciousness in Alzheimer’s 

disease have been assessed using both LRTC analysis of oscillatory amplitude and functional 

connectivity, with and without graph methods [252–254]. Changes in oscillatory synchrony in 

motor areas, thalamus and cerebellum associated to tremor have been found in Parkinsonian 

patients [255, 256]. Schizophrenia is a particularly interesting disorder for studies of synchrony, 

as neural connectivity lies at the heart of one of the most long-standing hypotheses for its 

origins, the disconnection hypothesis [257]. Lately, this hypothesis has received experimental 

support from EEG studies showing that cross-channel synchrony is decreased in the beta- and 

gamma-bands in schizophrenic patients performing Gestalt perception tasks [258, 259]. 

However, despite the task-dependent findings of lowered synchrony in signal space, a definite 

relation between the roots of the disorder and large-scale reduction in connectivity remains 

unspecified. 
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The endophenotype concept: biomarkers from brain dynamics 

An endophenotype, sometimes also called an intermediate phenotype, is a heritable biological 

marker which can be related to a psychiatric disorder phenotype in the population level. Thus, it 

can be interpreted as a vulnerability marker that is influenced genetically but not directly related 

to the disorder itself [260]. The idea behind the use of the endophenotype concept in studying 

neurophysiological disorders is to investigate the neuronal correlates of the genetic influence 

without the effects of the acute disorder distracting the analysis. In research, brain imaging data 

of patients and their family members is often used. A commonly proposed candidate for the 

neuronal endophenotype is functional or effective connectivity [261]. The methodological 

advances in this Thesis help to perform connectivity studies with MEG and EEG recordings 

with higher accuracy (Study IV). This opens up new possibilities to track the biomarkers of 

various disorders. However, also oscillatory amplitudes and LRTC have been shown to be under 

genetic control and could therefore be considered as additional candidates of specific 

endophenotypes [205] (Studies I, II). More widespread use of the endophenotype concept in 

research could shed light on the issue of state versus trait dependency of neuronal correlates 

found for some disorders [71, 259] (Study I). 

 

Methodological considerations 

Restrictions of measurement techniques 

When investigating the brain function of healthy human subjects and most patient groups we are 

restricted to non-invasive measurements. It is therefore of crucial importance to understand 

what kind of data can be collected with these methods and what kind of neuronal phenomena 

cannot be captured with them, as this knowledge also has implications on experimental design. 

To start off with, the electromagnetic fields that are strong enough to be measured extracranially 

are generated by post-synaptic neuronal activity that is temporally and spatially congruent over 

a macroscopic tissue volume, at least several millimeters in size [179]. The principle in brain 

processing of representing more refined information with progressively sparser neuronal coding 

could compromise the ability of MEG and EEG to measure higher-level information processing 

and neuronal representations of higher abstraction [262, 263]. Furthermore, even if a neuronal 

source is strong, coherent and temporally stable, it cannot be seen if the topography of the 

generated field does not extend to the distant sensors. This can be due to the multipolar nature of 

the source or its orientation [39, 179]. Furthermore, EEG is sensitive to all currents in the brain, 

but sources that are oriented radially to the local intracranial surface are more weakly detected 

with MEG. In an idealized spherical conductor model, radial current dipoles do not generate 

external magnetic fields. Luckily, most of the cortical surface is folded to the sulci, and the 

currents that flow normally to the cortical surface are then tangential to the approximately 

sphrerical conductor surface and therefore visible to MEG. Finally, several simultaneous 

sources that could be seen individually can mask each other. These limitations make clear that 

the oftentimes overlooked logic truism ―absence of evidence is not evidence of absence‖ holds 

especially in the context of MEG and EEG studies. 
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The problem of source visibility is related to the problem of source separation.  First, this 

problem arises when using channel-level data in performing complicated univariate or 

multivariate signal analyses, where the targets of these analyses are the neuronal currents. 

However, because of the complexities related to estimating the sources from MEG or EEG 

measurement data, the analyses are most often performed in signal space, which deteriorates 

their interpretability. Taking the dynamics into account make the signal space approach even 

more vulnerable, as the signal space data is very sensitive to changes in the geometry of the 

source configuration. As pointed out above, it is especially daring to draw conclusions from 

pairwise channel-to-channel correlation data. We proposed estimating pairwise oscillatory 

synchrony from minimum-norm modelled combined MEG and EEG data (Study IV). The only 

channel-level analyses that could give comparable results with inverse modeled data are 

analyses made with the planar gradiometer sensors after matching the head coordinate systems 

of all subjects to a common location with regard to the sensor array using the signal space 

separation method [264, 265]. However, our investigation of the networks formed by phase 

synchrony during VWM showed that this is not the case (Study V). One approach to validating 

phase synchrony captured by MEG and EEG methods  is to compare their performance to the 

synchrony patterns measured with concurrent ECoG [266]. Simulations show that ECoG 

channel data is a valid tool for quantifying synchrony if the reference electrode is relatively 

silent, for example located in the scalp, whereas scalp-recorded EEG is not [267–269]. The best 

way to increase the locality of the EEG measurement data is to apply the bipolar montage, 

where the signals in adjacent electrodes are subtracted from each other. With proper inverse 

modeling, on the other hand, one can get over the reference electrode problem entirely. 

 

Relationship of electric recordings to other functional imaging methods 

Knowing the relationship between electrical and other functional brain imaging methods would 

allow integration of knowledge from various fields by enabling comparison between the results 

from different methodologies. The non-electric functional imaging methods are based on 

different aspects of metabolic activity, such as cerebral blood flow, the extraction of oxygen 

from blood by brain tissue, the proportions of oxygenated and non-oxygenated haemoglobin in 

blood, or distribution of radioactively labeled functional molecules. However, due to the 

complexity of the metabolic interactions in the brain and across the blood-brain barrier, no one-

to-one relationship between these measures and the measures of electric brain activity in any 

scale can be defined [177, 183, 184]. Still, finding correlations in signal generation between 

different functional brain imaging modalities, most notably between the fMRI and the MEG / 

EEG, would have far-reaching consequences and they are therefore under intense investigation 

and debate [185–187]. 

 

From the point of view of this Thesis, the interrelationships between fast (> 1 Hz) oscillations, 

infra-slow (< 0.1 Hz) EEG fluctuations and the BOLD signal are of specific interest. It has been 

suggested that the ISFs reflect dendritic currents in the cortex [178]. However, it was recently 

demonstrated that the generation of infra-slow EEG signals is in many cases incompatible with 

a neuronal origin [220]. Instead, the ISFs were proposed to be generated across the blood-brain 

barrier in a CO2-dependent manner [177]. The crucial point here is that both of these 

mechanisms may contribute to the excitability of the cortex, the first one by dendritic currents 

flowing to the cell soma and the other by pH-dependent mechanisms [188]. Thus, the 
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modulatory effect of ISF on neuronal oscillations is proposed to relate to changes in gross 

neuronal excitability ([162]; Study III). On the other hand, the fMRI signal has been found to 

co-vary with fast oscillatory activity and be altered after a hyperventilation challenge decreasing 

intravenous CO2 [187, 189]. A concurrent FbEEG and fMRI measurement, using a DC-coupled 

amplifier having a wide dynamic range to withstand the fMRI magnetic field gradient-induced 

signals combined with advanced artefact correction methods, could shed more light on this 

issue. These data on the interrelationships between oscillatory neuronal activity recorded with 

EEG and MEG, infra-slow activity recorded with FbEEG and BOLD signal recorded with fMRI 

demonstrate the complex multi-scale and multi-mechanism nature of functional brain imaging 

data and illustrate the difficulties in integrating knowledge across the diverse fields of functional 

studies of the brain. 

 

Developments and potential flaws in data analysis 

When performing band-pass filtering to uncover oscillations one should be aware that 

artefactual oscillations that may be generated from non-oscillatory signal transients, for example 

epileptic spikes or artefactual signal baseline shifts. The simplest, although tedious, way to 

avoid this is to manually inspect the filtered and unfiltered signals side-by-side. On the other 

hand, considering that the origin of oscillatory time series is in neuronal dynamics, it is not 

conceivable that the recorded signals would display pure harmonic oscillations even in the 

absence of measurement noise. In dynamical terms, the neuronal oscillations can be smooth 

limit-cycle oscillations, either stable or not, or they can be generated by reverberation of more 

spike-like activity. Furthermore, the seemingly rhythmic activity from complex neuronal 

dynamics may be strictly non-periodic, or may change the principal frequency in short and long 

time scales [194]. These possibilities call for development of less simplistic adaptive filtering 

techniques for neuroscience applications. 

 

The analysis for LRTC in MEG and EEG data with the DFA method may have some 

vulnerabilities in its established form [78, 198] (Study I). When linearly fitting for power-law 

scaling in double logarithmic coordinates the fitting range is a free parameter. The time scales 

used for fitting vary from sub-second time scales up to 500 s [78, 203, 205, 238, 252, 270–272] 

(Studies I, II). Finding the optimal range to be used in the analysis of neuronal oscillations and 

quantifying the quality of the fit have not received much attention. It has been suggested that the 

window in the lower end of the fitting range should be wider than the possible artefactual effect 

from signal filtering and that the maximum window width should not exceed one tenth of the 

length of the analyzed time series to maintain good statistics even in the longest time scale [273, 

274]. The goodness-of-fit in DFA can be quantified for example by the mean squared error of 

the linear fit across all window lengths (Study II). This can be used to validate the fitting range 

by requiring that the error is smaller than a selected criterion for the goodness-of-fit. Fitting 

error can also be computed for other kinds of fits than the linear fit to check if non-linear fits 

have remarkably lower fitting error, which would reveal that the signal does not display power-

law scaling. We tested this approach and found that in general the error from a linear fit was as 

small as the error from a second-order polynomial fit in analysis of oscillatory amplitude time 

series (Study II). Furthermore, we suggested that the sensitivity of DFA analysis to artefacts in 

the data, often of technical origin or produced by pathologic activity or movement, could be 

reduced by using the median instead of the mean when computing the typical fluctuation for 
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each time scale (Study II). This is because the median of a sample population is less sensitive to 

large outliers than the mean. Finally, another potential source for mis-interpretations of LRTC 

findings is the amount of available data, because the scaling exponent may change depending on 

the amount of data due to finite size effects. Therefore, surrogate data of the same length but 

with no correlations should be analyzed identically to the experimental data to rule out the effect 

from finite sample size (Studies I, II). 

 

In addition to temporal correlations, methods to quantify correlations over the spatial dimension 

were also developed and applied to the analysis of MEG data in this Thesis (Studies IV, V). The 

approach of combining distributed inverse modeling to full-scale analysis of inter-areal 

synchrony makes a significant contribution to the field, as no comparable method to map phase 

synchrony in the extent of the entire cortex in a data-driven manner existed before. The previous 

approaches to mapping synchrony between oscillatory sources were restricted to selecting a few 

regions of interest (ROIs) and computing the correlations either from the ROIs to all other 

regions or solely between the ROIs [215, 275–278]. ROIs are most often fixed beforehand or 

deduced from the amplitude data [206]. In addition, the previous studies limited the analysis to a 

single or a few frequency bands. Another important advance in our study is the method to 

estimate spurious contributions from data acquisition and inverse modeling to inter-areal 

synchrony. This enables recognizing the functional connections even from ongoing data, 

without contrasting the results to another experimental condition, which is especially important 

in the case of synchrony with zero phase lag. These properties are based on an optimized 

clustering of sources, where optimization refers to maximizing the separability of source 

clusters in the sense of cluster-to-cluster phase synchrony (Study IV). The inter-cluster 

separability criterion is further motivated by the graph-based approach for analyzing the 

structure of source-level networks (Study V). There, a significant source of error in the 

estimation of the network parameters are the artifacts due to similar connectivity patterns of 

neighboring brain regions, or graph nodes, which arise in the data measurement and analysis. 

We argued that our separability criterion is optimal for computing the graph-theoretical 

measures of phase synchrony networks. Yet, rigorous simulations with various models for 

neuronal activations and inter-areal interactions are needed to judge the relative performance of 

the source-space and the signal-space approaches in terms of estimating the strengths and 

locations of the interactions. One necessary drawback of making the analysis in source space is 

that the results become dependent on the models used in inverse estimation. For example, in our 

approach the modeling is restricted to cortical sources, which makes the model inadequate if 

activity in the subcortical structures or the cerebellum significantly contributes to the MEG or 

EEG signals [256]. 

 

From correlations towards causal relations 

In definitions of neuronal connectivity, a distinction is often made between functional and 

effective connectivity [94]. Whereas functional connectivity is determined as statistical 

relatedness between two brain regions, effective connectivity defines a causal relationship 

between the regions. The studies in this Thesis have not assessed the possible causalities in 

estimates of functional connectivity. However, real neuronal connections are directed, even 

though often reciprocal [91, 107, 108].  Furthermore, neuroscientists and clinical practitioners 

alike are more interested in causally separable effects. Several methods have been developed to 
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estimate causality from electrophysiological time series [279–282]. These mostly utilize the idea 

of Granger causality, defined as the additional benefit of using one time series to predict the 

other. This approach has the potential to give important insights to neuronal interactions, and 

allows the use of more sophisticated graph approaches for assessing the large-scale functional 

architecture of the brain. 

 

The estimates of causality outlined above are still only statistical estimates. Effective 

connectivity can be directly studied in humans by combining transcranial magnetic stimulation 

(TMS) or transcranial alternating or direct current stimulation in conjunction with EEG 

measurements. The premise in all three approaches is to induce ―virtual lesions‖ in the brain and 

to study the consequent changes in recorded brain activity [283, 284, 285]. Recently, it has been 

observed that direct brain stimulation can also speed up the processing of stimuli between 

several brain regions [286]. Combining brain stimulation to brain imaging is a promising 

approach to bring causal relationships to the investigation of brain and behavior [287–289]. 

These approaches benefit from the knowledge of connections in the underlying neuronal 

structure, which can be studied for example by diffusion-based MRI methods, because all 

functional and effective connectivity must be based on anatomical connectivity [111, 112]. 

 

Oscillatory correlations and organization of behavior 

Oscillations pervade all temporal and spatial scales  

In the studies composing this Thesis, ongoing activity was recorded in the brain in the frequency 

range 0.01–100 Hz, spanning four decades in magnitude. It appears that in long-time averages 

of spectral power no single frequency band dominates the electric activity either in wide-band 

EEG or in the modulation frequency distribution of narrow-band oscillatory amplitudes (Studies 

I – III; Figs. 4, 6; ref. [5]). This implies that brain activity is doubly scale-free, so that spectral 

densities scale as ~f . Because no single time scale dominates broad-band or narrow-band 

spontaneous brain activity there seems to be no reason to restrict the studies exclusively to only 

sparse frequency ranges of interest. Scale-freeness suggests that the brain flexibly recruits 

neuronal oscillatory assemblies upon need, and that these assemblies do not have common 

operating frequencies. 

 

Oscillatory activity is coordinated by correlations  

The 1/ f -type scaling of EEG power as a function of frequency seems to imply a non-

stationary ―random wandering‖ of oscillatory frequencies, instead of a collection of fixed-point 

oscillators. However, in this Thesis we found surprising regularity among neuronal oscillations 

in the form of spatial, temporal and nested correlations (Studies I – V). The correlations in 0.01–

90 Hz oscillation were significantly different from random. One explanation for 1/f scaling 

could be that despite there being some characteristic operating frequencies, called ―resonance 

frequencies‖,  in freely oscillating neuronal networks, the interactions between oscillators affect 

these frequencies through frequency locking [1, 91]. Because the spontaneous brain activity is 

distributed to a wide frequency range, the activity with 1/ f -scaled power is often referred to as 
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background noise. However, even if the background activity would statistically resemble a noise 

process, it does not mean that the spontaneous neuronal activity would be noise, as in defining it 

―the opposite of signal‖. Furthermore, this is not random white noise but colored noise scaling 

as ~f  with  ≠ 0, which is posed between random and predictable types of noise and displays 

LRTC. From 1/ f -scaling it follows that oscillatory activity can be observed in any frequency 

band by narrow-band filtering. 

 

In the context of this Thesis it is possible to draw a clear distinction between noise and 

coordinated neuronal activity: neuronal activity is not noise if it displays spatial or temporal 

correlation structure statistically different from random. This view is supported by the ideas that 

synchronized activity is more effective on downstream neurons and that the lack of correlations 

between neuronal oscillations would constitute an active mechanism prohibiting communication 

[31]. Although oscillations have been known since the advent of EEG, it is only now that we 

start to see how they are coordinated locally and globally and how this coordination possibly 

relates to system-level control of stimulus processing and behavior (Studies I – V). 

 

Oscillatory organization has functional significance 

The studies in this Thesis showed that there is inherent organization in oscillations that can be 

observed by estimating their correlation structure. Do these correlations display some kind of 

functional significance? Our studies provide preliminary evidence that the synchronous 

networks correlate with task execution, and that changes in some of these networks reflect task 

demands (Study V). Furthermore, we found that the behavioral dynamics in the somatosensory 

detection task are strongly correlated with the ISFs and that the faster neuronal oscillations are 

in a cross-frequency nested relationship with ISF (Study III). In the studies of major depression 

disorder and epilepsy we found that oscillatory temporal correlations might mediate the related 

symptoms and have diagnostic potential. 

 

Traditionally, the amplitude of neuronal activity has held a central position as the target of study 

in research using EEG and MEG. Lately, the phase has emerged as a potentially important 

variable. The findings in this Thesis support the view that the phase plays a major role in 

organizing oscillatory neuronal activity [31, 85–87] (Studies III – V). From the theory of 

dynamical systems it is known that the phase exists in all systems. Interestingly, this is 

connected to the phase being sensitive to perturbations, as it does not recover from them but 

accumulates the effect of small deviations over time. This could be the basis for the sensitivity 

of the phase in quantification of interactions between systems. In practice, the phase has faster 

dynamics than the amplitude, and it can usually be estimated more accurately, i.e., with higher 

SNR, from a noisy signal [57]. Furthermore, evidence is mounting to suggest that the phase can 

functionally entrain the amplitudes of faster oscillations [216, 290, 291] (Study III). To add to 

the importance of the phase, it is known from cellular-level studies that the phase of LFP 

oscillations is closely linked to population-wide spiking activity [20, 21]. These considerations 

suggest that the customary analysis of oscillatory amplitudes should be corroborated with 

analysis of phase to interpret data correctly. 
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Neuronal excitability and cross-frequency hierarchies of oscillations 

We found that the ISF phase correlates with the detection probability of threshold-level stimuli 

and suggested that this is due to excitability-induced changes in responsiveness of the cortex to 

external stimuli (Study III). Similar conclusions have been reached in other experimental studies 

regarding oscillatory activity in higher frequency bands. The response amplitude to vibrissa 

deflection in mice was dependent on the phase of the oscillatory LFP, resulting in a skewed 

distribution of response amplitude as a function of the phase [292]. In humans, the auditory 

evoked potential was found to be dependent on the phase of ongoing broad band activity [293]. 

On the other hand, visual threshold-level flashes were more salient when presented in-phase 

with alpha- and beta-band EEG oscillations [294].  Finally, a visual mask paradigm showed that 

the phase of EEG alpha-band oscillations has an effect on the detectability of the masked 

stimulus [295]. 

 

It is interesting to compare these relationships between the phase of ongoing activity and event-

related or behavioral responses to recently discovered modulations of ongoing oscillatory 

amplitude by the phase of a slower oscillation. These nested relationships have been found 

between theta and high-gamma bands as well as alpha and gamma bands in humans, and delta, 

theta and gamma band oscillatory activities in monkeys [216, 290, 291]. Although the causal 

relationships between these oscillations have not been estimated, the implicit assumption in all 

these studies is that the phase of the lower frequency modulates the amplitude of the higher one, 

as is the case with similar modulations of behavior (Study III). This growing body of data is 

compatible with the idea of an oscillatory hierarchy, where cross-frequency nested relationships 

coordinate excitability and information processing in the brain [88] (Study III). Such cross-scale 

organization has implications to mechanistic accounts of stimulus processing [88, 295, 296]. 

 

On structure–function relationships 

In nature, form goes with function. The intricate form of the cerebral cortex has evolved to serve 

the variable functions of the brain. Indeed, inspecting the neuronal structure has offered 

profound insights to brain function. One of these insights that has special relevance for this 

Thesis is that the brain areas sharing similar connectivity also share similar functionality [124]. 

The local and large-scale structural connectivities thus generate the possible set of dynamic 

operations in brain function and set boundary conditions for it. For example, the same stimulus 

sometimes elicits different behavior in different contexts, and sometimes even in the same 

external context (Study III). For example, a change in the behavioral response to a stimulus 

could be due to a bottom-up effect leading to a different neuronal representation or due to a top-

down effect of ongoing brain state leading to a different interpretation of the same neuronal 

representation. This difference must have its origins at the different fates of the neuronal 

momentum evoked in the sensory systems and spreading further along the possible structural 

connections as channeled by the functional brain state. According to this connectivity view on 

brain function, the patterns of neuronal interactions are central in the flow of stimulus-related 

information (Study V). 
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Modeling studies 

Modeling can be used as a tool to investigate globally emerging functional structures in healthy 

and disordered neuronal networks by combining the network view, via understanding of graphs, 

with neuroscientific knowledge of local neuronal dynamics and interaction mechanisms. 

Modeling aims at finding and explaining universal behavior with minimal models, and it may 

yield results that are relevant for experimental observations. Modeling approaches have 

sometimes been criticized for that only such phenomena can be reproduced by the models that 

have been explicitly included in them. However, agent-based simulations of neuronal systems 

have produced qualitatively new kinds of global behavior that could not be predicted from the 

relatively simple local units that the system has been implemented with. A common approach to 

studying the relationship between local activity and global structure is to simulate simple 

neuronal models or physiologically more realistic neurons on different connectivity topologies, 

which can be constructed either mathematically or acquired from biological data. Modeling is 

becoming an important instrument on our way to the ultimate level of knowledge of cognitive 

systems, engineering them. 

 

Recent modeling efforts show that the connectivity defined by the neuronal structure often 

dictates the dynamic behavior as well. However, the dynamics are highly flexible and may 

sometimes become almost independent of the underlying structure. In a pioneering study, the 

structural constraints that produce maximal complexity of functional connectivity were found to 

be highly similar to real cortical connectivity [107]. Here, the measure of complexity was 

motivated by the ideal of a balance between segregation and integration of functional processing 

and was defined as the combination of locally coherent activity and global variability [107, 

125]. Interestingly, the segregated dynamically coherent clusters were associated with known 

functional roles for the corresponding brain regions. This efficient combination of segregation 

and integration was above linked to biologically realistic small-world graphs on the basis of 

their structural properties only. In another biologically motivated modeling study the aim was to 

characterize the structures that would give rise to both fast responses and ensuing coherent 

oscillations, as observed in the insect antennal lobe after odor perception [18, 297, 298]. The 

main finding was that whereas regular lattices maintained oscillations and random networks 

were able to respond quickly, only small-world networks combined these two central features of 

neuronal processing. In the context of this Thesis, the coherent oscillations are of special 

interest. Later, it was found that the small-world topology also enhances global 

synchronizability of the network compared to other types of graphs, but that a homogenous 

node degree distribution further differentiates a high synchronizability regime [299, 300]. 

 

The above findings mostly deal with the dependence of global dynamical properties of networks 

on the topological structure. However, simulated neuronal dynamics on graphs have also been 

analyzed for more detailed local structure, for instance modularity and hierarchical 

relationships. An interesting series of studies showed that the temporal dynamics in hierarchical 

graphs depend on the level of spontaneous activity, which is a finding with direct relevance for 

the analysis of data from real neuronal networks [301–303]. At the lowest level of excitation, 

the dynamics is dominated by waves or avalanches originating from the central hubs. When 

spontaneous activity increases, synchrony in the densely connected local communities starts to 

build, and the dynamics become modular. With yet higher spontaneous rates, the activity 

becomes less and less dependent of the underlying topology [301, 302]. The reasons for this 
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kind of behavior might be found from the shorter time scales required for synchronization and 

the higher stability in the lower levels of structural hierarchy [303]. These simulations have an 

interesting connection to a simulation made on macaque connectivity data. It was found that 

whereas the structural connectivity highly overlapped with the long-term average of functional 

connectivity, this average consisted of numerous metastable synchronous states at shorter time 

scales that were each largely independent of the underlying structure [304]. 

 

These simulation results show that varying the topological properties of underlying structural 

connectivity may substantially alter the global dynamics, and that the small-world network 

organization, earlier found in neuronal structures on both a local and a global scale, has some 

unique properties that support efficient information processing. 

 

Interplay between structure and function in brain disorders 

An age-old mystery in neurology is why the behavioral effects from even drastic brain insults, 

such as lesions and tumours, may be negligible, whereas certain rather local damages have 

catastrophic consequences to the individual. These findings originally led to a view of the brain 

as consisting of independent local processing units, the roles of which were determined based 

on anatomical and behavioral data from lesion patients. However, the emerging modern view of 

brain function consisting of co-operative networks is challenging this view. The minor effects of 

certain lesions imply that the brain structural and functional networks are very robust to random 

failures. This is a result predicted by analysis of the error tolerance of many natural and man-

made networks with scale-free degree distributions [92, 96, 97]. The small effect of random 

node removal, the graph counterpart of local brain lesion, on system-level connectivity is a 

consequence not only of redundant multiple connections, but the central role of a small number 

of hubs on maintaining the global structure. The drawback of this organization is that such 

systems are highly sensitive to targeted attacks on these central hubs [97]. The possible links 

between neuronal interaction networks and brain disorders, again, extend from local lesions to 

system-level diseases. Many disorders are now seen as dysconnection syndromes, even if their 

origins are not currently understood [305]. 

 

Brain lesions. The vast majority of knowledge on the functional roles of different brain regions 

and structures has been obtained with animal in vitro and in vivo recordings. In humans, the 

function of specific brain regions are presently investigated with imaging methods such as 

fMRI, but lesion studies were, for a long time, the prevailing methodology and are in fact 

applicable even today [306–308]. However, the connectivity-based approach on brain function 

and, conversely, dysconnection syndrome view on brain disorders, suggests that lesions affect 

not only the local information processing, but that global effects may originate from severed 

inter-areal connections [305]. With the knowledge of the structural connectivity in the intact 

human brain, also the behavioral and cognitive effects of lesions can now be approached with 

modeling studies [309]. Large-scale modeling in realistic anatomical networks shows that the 

lesion often has non-local effects, more so for lesions in association cortices than for instance in 

sensory cortices, and that the effects on functional connectivity can to some extent be predicted 

from the structural information [310, 311]. Similar findings have been made in MEG and EEG 

studies of brain tumor patients by estimating oscillatory synchrony and comparing these patterns 

to healthy controls [312, 313]. However, full modeling of cognitive effects of lesions, 
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degenerative diseases and other disorders is still a stretch away. An interesting application of 

lesion modeling could be the re-modeling of task-related networks and related behavioral 

changes, when task execution is perturbed using TMS. This approach could be used as a way to 

corroborate the results from many modeling studies. 

 

Schizophrenia. The most classical dysconnection syndrome is schizophrenia, the Greek 

meaning of ―split mind‖ already carrying the idea of the roots of the symptoms. It is also a 

central topic in graph theory motivated network studies of brain disorders and is therefore 

briefly reviewed here. Specific findings of impaired perception-related synchrony in 

schizophrenia were reviewed above, but there are also network-level graph theoretical studies 

on the possible underpinnings of the disorder. They show that the structural hubs and the 

anatomical hierarchy in the cortical structure are different in schizophrenics compared with 

controls [314]. The functional small-world networks at rest have also been found to be disrupted 

in schizophrenics, as revealed by both fMRI and EEG methods [315, 316]. Furthermore, the 

cost-efficiency of networks in the alpha and beta frequency bands is reduced in the 

schizophrenic patients in an n-back working memory task [98]. Thus, the architecture of 

structural and functional networks has been changed in schizophrenia, but the causes underlying 

specific symptoms related to this disorder are yet to be elucidated [257–259, 317]. For this end, 

it might be fruitful to pursue also the dynamics, not only the structure, of the networks. To 

motivate this approach, it is known that schizophrenic patients display not only a different level 

of performance, compared with healthy subjects, in many cognitive tasks but also distinct 

temporal patterning of performance [158]. Drawing on the approaches presented in this Thesis, 

combining the study of spatial and temporal correlations to study the dynamics of the functional 

networks could be especially effective in schizophrenic patients. 

 

Alzheimer’s. Another brain disorder that has gained considerable attention lately is Alzheimer’s 

disease, a currently incurable degenerative dementia. Using non-linear analyses of fMRI and 

MEG / EEG data, it has been found that individual brain regions have different behavior in 

Alzheimer’s patients compared with healthy controls [252, 318]. Structural studies indicate that 

Alzheimer’s is related to localized changes affecting global network properties, such as higher 

clustering and longer path lengths in patients [319]. MEG and fMRI studies performed in the 

resting state have shown that parameters of global functional networks also differ between 

patients and healthy controls, which could give rise to some of the symptoms of the disease 

[253, 320, 321]. Finally, network reactivity in change-of-task situations was evaluated with 

fMRI and found to be impaired in Alzheimer patients [322]. These findings suggest that 

Alzheimer’s is a disease that affects the organization of neuronal structure and function at the 

level of the whole brain. 

 

Epilepsy. Although not often related to changes in structural or functional connectivity, but 

rather to neurotransmitter functionality, the conventional notion of epilepsy as a hypersynchrony 

disorder lends itself well to analyses utilizing relationships between structure and function. 

Cortical changes in local structural networks have indeed been identified [323]. Furthermore, it 

has been pointed out that epilepsy syndromes are commonplace in the hippocampus, in which 

the neuronal structure involves recurrent connections, whereas epilepsy is very rare in the 

cerebellum, in which the neurons connect mostly locally and in a feedforward manner [324]. 

Thus, strong feedback loops could predispose to epileptic activity [325]. A close connection 

between epileptic seizures and local network structure is manifest in a realistic large-scale 
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dentate gyrus model, where granule-to-granule cell short-range connectivity organized around 

hubs was found to promote seizures, and even a small number of long-range projecting hilar 

cells was enough to keep the network in a hyperexcitability-promoting small-world regime 

[326, 327]. In a study with different types of neurons simulated in a small-world topology, more 

complicated transitions from normal to seizure and from seizure to bursting activity were 

observed with changing network parameters, but, remarkably, the seizure regime stayed always 

within the limits of a small-world network [328]. Finally, a glutamate-induced epilepsy in cell 

cultures was found to radically alter the network structure from small-world towards random 

[329]. Thus, although the changes in network structure associated with epilepsy and its 

functional consequences are not known exactly, it is clear from these studies that the non-

random structure of local neuronal networks is intimately related to the probability of generating 

epileptic events. Regrettably, these studies did not quantify either LRTC or synchrony in the 

networks, so the relevance of network structure to LRTC remains to be determined. In 

conclusion, studying the neuronal bases of brain disorders and their symptoms offers an 

interesting field for applications of spatial and temporal correlations in neuronal oscillations. 

 

Systems view on neuronal correlations 

Functional network architectures from fMRI studies 

The nature of the brain activity measured in the resting-state has some commonalities between 

MEG / EEG and fMRI. For example, many statistical properties of the signals are regular over 

time and the topographical patterns are similar between subjects. In addition, the amplitude of 

ongoing activity is high in comparison to stimulus-evoked activity. As pointed out above, the 

study of systems-level functional connectivity with EEG and MEG is still in its infancy, largely 

because of methodological challenges [206] (Study IV). Therefore, the correlation structure 

between brain regions has mainly been characterized with fMRI using different methods to 

assess functional connectivity. Popular ways to localize correlated voxels with fMRI are to 

search for connections starting from a seed region, to perform independent component analysis 

(ICA) of all recorded voxel signals, and to compute all pair-wise correlations in the level of 

ROIs or individual voxels [330–333]. Most often, the correlations are tracked from signals 

filtered to frequencies < 0.2 Hz. 

 

Spatial correlations in the resting state. The first observations of coordinated and elevated 

resting-state activity came paradoxically from task-evoked studies, when it was noticed that the 

same areas were often reported to be negatively reactive across very different tasks. Thus, the 

baseline state prior to engagement in a task-specific action was invariant across studies and the 

regions showing this effect were therefore coined to comprise the default-mode network [334–

336]. In the light of EEG and MEG studies reporting robust eyes-closed and eyes-open 

oscillations and task-related deactivations, these findings might not come as a surprise, but the 

direct functional correlations established between the deactivated regions have interesting 

consequences on studying brain activity [163, 333, 335]. In addition, the very slow time scales 

involved in the deactivations and mutual correlations are of interest, and should be compared 
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with electrically recorded data. Furthermore, it has turned out that the default-mode network is 

not the only network that can be recovered from correlations in resting-state data, but many 

regions observed to activate in task settings also are functionally connected during the resting-

state [331, 332]. Interestingly, there is increasing evidence that the activities in the default-mode 

network and in the task-related networks are anticorrelated not only during task execution but 

also during rest [330, 333, 337]. Changes in the default-mode network structure and task-related 

dynamics have been related to several neuronal disorders, including depression, schizophrenia 

and attention-deficit hyperactivity disorder [338, 339]. Together, the fMRI data strongly suggest 

that the ongoing human brain activity is highly organized even in the absence of task or external 

stimuli, and the significance of resting-state functional connectivity to task performance and 

brain disorders should be addressed with specific experimental setups [340, 341].  

 

Task performance and the default mode. Psychologically, ongoing activity is not stable in 

either the resting state or during task execution, but is highly prone to wander [171] (Study III). 

Therefore, a natural question is whether the functional networks found with brain imaging are 

different during successful task execution than during periods of poor task performance that is 

often associated with ―mind wandering‖ or ―task-unrelated thought‖ [217]. Indeed, it has been 

demonstrated that impaired task performance and subjective reports of mind wandering are 

related to elevated activity in regions associated with the default-mode network, sometimes in 

conjunction with an active executive network, and that high anticorrelation between the default-

mode network and the task-related network activations predicts good task performance [342–

345]. The interesting connections between impaired task performance, task-unrelated thoughts 

and functional connectivity should be pursued further to investigate whether, for instance, 

changes in modularity or other graph theoretical measures play a role there. 

 

Function follows structure. Although structural and functional connectivity on the systems 

scale seem to be intimately related, it is an important question whether this is just an 

unavoidable statistical consequence of all the functionality residing on an underlying structural 

connectivity, or whether large-scale functional connectivity carries the signatures of cognitive 

processing at each instant of time. The topology of functional system-level networks has been 

delineated mainly with fMRI methods [93]. As expected, functional connectivity is largely 

restricted by the structural connections, as evidenced by a high similarity between BOLD 

resting-state connectivity and anatomical connections from diffusion tensor imaging [346]. 

Thus, studies of long-term average resting-state connectivity largely replicate results from 

structural imaging. The correlated BOLD networks have been reported to be small-world and 

scale-free at rest and during task execution [347–350]. Hubs were discovered mainly in the 

association cortices [349]. Also increased processing efficacy, compared to the elderly or to 

subjects medicated with a dopamine antagonist, was associated with the specific topology of the 

functional networks [99]. In addition, pronounced modular structures has been found, which is 

believed to be essential for adaptability, flexibility and stability of the networks [122, 348, 351]. 

Furthermore, the few high-level modules have been decomposed into smaller modules, which 

suggests a hierarchical modular structure [352, 353]. It is encouraging that roughly the same 

anatomical structures have been discovered by directly analysing the inter-areal correlations in 

resting-state BOLD signals as by decomposing the functional network topology to highly inter-

connected modules by using graph theoretical tools. Taken together, the functional architecture 

seems to be related to task activations through its organization into co-operative hierarchical 
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modules that often occupy a certain cortical region with dense inter-regional structural 

connections. 

 

Network properties from MEG and EEG imaging studies 

Resting-state recordings of MEG and EEG have been used to characterize the nature of sensor 

networks from synchronized oscillatory activity. These results promote the view that the 

oscillatory networks operate in a small-world topology, especially during rest but also during 

task and in most frequencies less than 50 Hz [98, 170, 354–356]. Whereas the previous studies 

only assessed graph properties at the level of sensors, this Thesis presented the first findings 

from source-level analysis of graph properties of networks of synchronized neuronal oscillations 

(Studies IV, V). In addition, our study provides an interesting view on the task-dependency of 

the network structure, instead of being limited to the resting state or to other single-condition 

approaches prevalent in previous studies (Study V). 

  

One missing link in the resting-state studies of functional connectivity is that these networks, in 

particular the default-mode network, have not yet been observed with direct electric recordings. 

To date, the electric default-mode network has been thought to be recoverable by regressing the 

BOLD patterns with simultaneously measured EEG waveforms, after controlling for technical 

measurement artefacts in the EEG and deconvolving the hemodynamic response function from 

BOLD signals [225–227, 357]. However, after some contradictory results and inherent 

difficulties in combining the neurophysiological information obtained with fMRI and EEG 

measurements, it seems that estimating source-level correlations from resting-state MEG/EEG 

recordings using realistic source modeling could be the most straightforward way to uncover 

these networks [358, 359]. As yet, this has not been done, but the methods needed are analogous 

to the ones used in this Thesis (Studies IV, V). For a direct comparison with fMRI BOLD data, 

one could correlate the ISFs or the slow variations in amplitude envelopes of neuronal 

oscillations between brain areas. In this context, it would be interesting to see if the LRTC in 

oscillations, thus far quantified at the sensor level, arise from certain cortical areas or if they are 

uniformly distributed all over the cortex. 

 

An important but often overlooked difference between studies of electric and metabolic brain 

activity, such as neuronal oscillations and BOLD signal, is the time scale of activation. With 

fMRI, the neuronal underpinnings of the signal remain unsettled, and the time windows required 

for computing inter-voxel correlations are long. Therefore, to observe neuronal activity 

correlations at time scales that are relevant for cognitive processing in humans, MEG and EEG 

methods are needed. The networks of neuronal oscillatory synchrony in spontaneous data 

become detectable when different forms of spurious synchrony are controlled for (Study IV). 

Even then, the transient neuronal interactions are often too short-lived to be directly observed 

with statistical estimation from measured time series. The functional connectivities and graph 

topologies obtained with fMRI or long-term averaging of MEG/EEG pairwise synchrony might 

then not correspond to genuine neuronal processing architectures that take place in real-time. 

Robust real-time networks can be detected by analyzing single-trial data from an experiment 

with a repeating-trials design, an approach not possible when focusing on the resting-state 

condition (Studies IV, V) [360]. 
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Power laws in time and space – signs of a critical state? 

In light of the considerations above, some interesting links are readily observable between 

small-world graphs and dynamical systems self-organized into a critical state. First, scale-free, 

or fractal, statistics can be found in the power-law degree distribution and modular structure of 

graphs, as well as in the power-law temporal and spatial correlations in SOC systems [4, 96, 

123]. Second, they can both be described to exist somewhere between regular order and random 

disorder: small-world networks combine the dominant features from lattice and random graphs, 

whereas the critical state reflects dynamics that are statistically between predictable and random 

[95, 149, 361, 362]. Third, small-world graphs and the SOC dynamical state have both been 

claimed to render neuronal networks with optimal information transmission capabilities [95, 

144, 363]. Thus, using both the viewpoints of graph theory and those of SOC theory for the 

study of brain dynamics spawns new approaches and helps interpret the obtained results [364]. 

 

Connectivity in SOC. In physical inspections of SOC, the underlying connectivity structure has 

not been paid much attention to, and nearest-neighbor lattices have often been used in the 

models [4, 137, 138, 140, 142, 149, 361]. The possible significance of connectivity has been 

motivated mainly by neuroscience applications [107, 362, 365]. There, modeling studies suggest 

that although SOC does not require specific connection patterns it might be more easily 

generated in small-world networks of simulated neurons [362, 365]. In fact, simulations with 

physiologically plausible model neurons have revealed that the self-organization process directs 

the connectivity of the network from random to one with a scale-free and small-world topology 

[366]. Furthermore, dynamics of model neuron networks have been shown to self-organize to 

the critical state through mutual interactions and Hebbian or spike timing-dependent plasticity 

rules [362, 366, 367]. These neuronal models of SOC thus implement locality and structural 

modification, which are both central requirements for systems to be classified as SOC [140, 

142]. 

 

Origins of brain network topology. Graphs have been proposed to self-organize to a scale-free 

topology by a mechanism called preferential attachment, where new nodes are attached to the 

existing ones at random, but with a higher probability to the nodes that already are highly 

connected [96]. This mechanism is a plausible candidate to re-configure the connectivity of 

dynamical neuronal systems that display synaptic plasticity, because then the most active 

neurons or areas tend to enhance their connections to other cells or areas, while inactive ones 

lose connections. Other network assembly criteria have been proposed to prevail in the 

development of brain structure, such as the economy of neuronal wiring and the ability of the 

network topology to support complex dynamics [94, 107, 368]. Finally, it was recently 

discovered that during post-natal development, neuronal activity undergoes a profound 

reduction in correlation that is independent of external stimulation [369]. Thus, although the 

exact mechanisms of neuronal network development are incompletely known, it seems clear 

that they are self-organized by ntrinsic neuronal activity, rather than being determined purely by 

genetics or driven by external stimuli. 

 

Avalanche dynamics and oscillatory correlations. Power-law scaling of sizes and lifetimes of 

discrete neuronal events, called avalanches, has been demonstrated on neuron cultures and 

cortical slices [144]. This behavior was associated with high flexibility and information 

processing capabilities. Indeed, compared to avalanches that are either very localized or global, 
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the scale-free avalanche distibution allows a large amount of different activity patterns and 

variety in cross-cortical correlations. These results were later confirmed with in vivo recordings 

in monkey cortex, where the cortical connectivity was intact [146]. Interestingly, avalanches 

were also found to be mediated by a small-world structure [370]. In human MEG and EEG 

recordings, power laws were previously found in LRTC of oscillatory amplitudes [78, 205] 

(Studies I – II). Recently, ongoing oscillatory activity was examined by quantifying avalanche 

sizes and lifetimes. In accordance with the fractal properties observed in animal studies on a 

smaller scale, these studies showed scale-free distributions of lifetimes of oscillatory events, 

thus linking the iconic sand-pile avalanche model of SOC to neuronal activity in a wide range of 

spatial and temporal scales [147, 252]. The existence of a direct relationship between the 

avalanche studies in animals and the studies of oscillatory activity in humans is unclear. The 

animal studies deal mostly with events at scales of millimeters and tens or hundreds of 

milliseconds, whereas the analyses of human neuronal oscillations cover larger scales. Hence, 

the avalanches in the animal microelectrode recordings could be seen as oscillatory activity in 

larger-scale MEG and EEG recordings. The scale-free nature of avalanche life times would then 

predict the observed scale-free spectral density distribution [147, 252]. As a matter of fact, 

scale-free avalanche organization of local cortical oscillations has also been found in 

microelectrode array data [150]. Finally, both global synchrony metrics in MEG and functional 

connectivity network structure in fMRI data have been shown to be indistinguishable from the 

corresponding statistics in a two-dimensional Ising model of ferromagnetism that was fine-

tuned to the critical state by modifying external parameters [149, 361]. These findings together 

provide further evidence for a critical state in the operation of brain neuronal networks. 

 

Distinctions by frequency – systems within a system? 

The analyses of phase synchrony and long-range temporal correlations, in this Thesis as well as 

in most other studies, are performed separately for distinct frequency bands. On the other hand, 

the most conclusive evidence for a critical state of the cortical networks comes from studies of 

broad-band data [144, 146, 371]. This potential discrepancy between theory and analysis was 

already discussed above, but additional justification for restricting the analyses to narrow-band 

oscillations can be found. Most importantly, the data justifies the methods by showing 

frequency-dependent sensitivity to disorders as well as distinct effects in cognitive studies. In 

pathophysiological findings, the beta-band seems to be specifically affected. The LRTC in the 

beta-band are sensitive to the epileptic focus, the effects from lorazepam seem to be pronounced 

in the beta-band and the LRTC in pre-frontal EEG in depressed patients were diminished in the 

beta-band (Studies I – III). Interestingly, beta-band oscillations seem to be involved in 

synchrony in the occipital visual regions as well, although these areas are often associated with 

their prominent alpha-band activity. Other groups have shown that the visual system is most 

easily excited with direct electric stimulation at around 20 Hz and that photosensitive seizures 

are most readily triggered by roughly 15–20 Hz visual stimulation [372, 373] (Study IV). Apart 

from the beta-band, neuronal oscillations in other frequency bands have been linked to several 

functions, the hypothesized central role of the gamma-band oscillations in a wide range of 

cognitive tasks being a prominent example [42]. 

 

In this Thesis, we found consistent spatial and temporal correlations among neuronal 

oscillations by analyzing phase synchrony and LRTC. This observation is consistent with the 
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idea that the narrow bands of oscillatory brain activity, traditionally named after Greek letters, 

indeed form separate systems with specific and rather independent, although context-sensitive, 

roles. In support of oscillatory sub-systems, we found that the goodness-of-fit in the DFA 

power-law estimation was better for narrow-band data than for wide-band data, suggesting that 

narrow-band activity fits better into the framework of self-organized criticality than wide-band 

activity (Study III). Other studies also have found robust LRTC, synchrony and scaling of 

oscillatory activity in several narrow frequency bands and found that these distinct frequency 

bands behave in statistically similar ways [78, 149, 170]. These observations have lead to 

suggestions that brain operation is broad-band critical or fractally organized to a wide frequency 

range [149, 170]. 

 

The views of broad-band or fractal criticality, or other ideas of brain operation spread and 

coordinated across several frequencies, need to be corroborated with actual cross-frequency 

mechanisms that integrate the systems at different scales of time or frequency, in addition to 

integration over space and time in distinct oscillatory sub-systems by spatial and temporal 

correlations. Two mechanisms for cross-frequency binding have been proposed, n:m phase 

synchrony and nested oscillations [87, 150, 192, 216, 290, 374] (Study III). The difference 

between these is that phase synchrony is a relationship between the phases of two oscillators, 

whereas in nested oscillations the phase of the slower oscillator modulates the amplitude of the 

faster one. Above, it was discussed that the phase variable might be more intimately related to 

the dynamics of the system than the amplitude. It has been proposed that the nested relationship 

signals a cross-hierarchical relationship between neuronal processes [290, 375, 376] (Study III). 

In light of this, n:m phase synchrony could be seen to signal the interrelatedness of neuronal 

constructs that reside in parallel in the processing hierarchy. 

 

Neurodynamics of cognition and behavior 

One of the main tasks of the brain is to construct a model of the environment and learn the 

regularities in it. This ability should include capturing long time-scale interrelatedness among 

events, as well as hierarchical structures and nested dynamics therein. The information is then 

used to predict upcoming changes in sensory streams and simulate the effects of possible actions 

to enhance survival [381]. This prediction principle could, for example, explain simple 

conditioning, provide a functional role for imagery and control stimulus selection. Moreover, it 

could clarify the role of ongoing neuronal activity, which is often deemed as mere noise, by 

suggesting that ongoing activity is related to constructing the predictions. 

 

It seems highly reasonable that the neuronal implementation of high-level perception and action 

are intimately interlinked, for arguments of economy and unambiguity. For instance, only one 

functional module, placed high in the processing hierarchy, should suffice to both encode and 

decode spoken language. Indeed, a lesion to Broca’s area, which is located in the inferior frontal 

gyrus, may cause disorders in speech production as well as in its understanding [382, 383]. The 

link of perception and action gains support from animal and human experiments in social 

settings, which show that certain brain areas are activated both when executing and when 

observing an action, the function of the advocated mirror neuron system [384–386]. 
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The hierarchical structure of neuronal processing is linked to the notion that the neuronal 

representations of the environment are transformed from simple reconstructions in the sensory 

cortices to more sparse and abstract descriptions of objects and their spatiotemporal relations in 

later processing stages. If perception actively employs the hierarchical structures inherited from 

the environment, the nested neuronal dynamics in the hierarchy could become evident. Indeed, 

the processing of rhythmic input, including the processing of speech in the human auditory 

cortex, takes place via entrainment of oscillatory neuronal activity to the rhythmic stimulus 

sequence. In the case of speech, the rhythmicity in the syllabic structure facilitates neuronal 

processing of lower-level stimulus features [375, 378, 379]. It has been proposed that the 

facilitating effect on understanding of also seeing the speaker could be due to oscillatory 

entrainment to the syllable-related temporal structure in the mouth motor movements [387]. In 

addition to a hierarchy in perception, evidence for a hierarchy in sound production is provided 

by studies in songbirds. There, the notes and the large-scale syllable sequences in the song of 

mature birds are produced in separate brain nuclei, which are connected through a hierarchical 

interaction [388]. However, this relationship does not exist in unstructured juvenile babbling 

[389]. Although perception and production of social vocalizations were used as examples here, 

hierarchical relationships in action planning and execution can be broadened to cover goal-

directed and context-dependent behavior [130, 390]. 

 

A simple model of hierarchical perception and action interprets slow oscillations as entrainment 

to either externally or internally generated modulation of excitability, and nested interactions as 

mediating a functional hierarchy that has similar dynamic features in production and perception. 

A general rule that higher hierarchical levels, longer windows of temporal integration and more 

intricate dynamic structures are represented in the brain with a caudal-rostral gradient has been 

discovered [377, 380, 390]. However, the hierarchical and modular structures found in the 

connectivity of the human brain predicts a more complex pattern of temporal and hierarchical 

relationships in neuronal processing [93, 118, 348, 351–353, 391]. These considerations should 

be taken into account when defining the dynamic ―brain state‖ that is suggested to control the 

information flow and to provide the context for stimulus processing in the brain [13, 85]. 

Summary and Conclusions 

This work is concerned with quantifying correlations in ongoing neuronal oscillations that 

reflect local neuronal computations and are measured using electromagnetic recordings. The 

leading proposition in this Thesis is that the spatial, temporal and spectral correlations in the 

neuronal oscillations reveals information-rich dynamical structure. These correlations were 

shown to identify novel system-level neuronal phenomena that were behaviorally significant 

during cognitive processing. Furthermore, their abnormalities were shown to be sensitive to 

brain disorders. The findings in this Thesis suggest that dynamic correlations in ongoing 

oscillations may have an impact on how information is represented, processed and transmitted 

in neuronal networks. Some of the main motivations for these studies were the parallels between 

models of self-organized criticality and neuronal networks, and the results lend further support 

to the view of the brain as a self-organizing system operating near criticality. 

 

I recognize three main scientific contributions in the Studies composing this Thesis. First, novel 

approaches were used to discover markers of neuronal disorders in data recorded from epilepsy 
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and major depression patients (Studies I, II). Second, the regime of EEG methods that are 

applied in cognitive studies was extended below the conventional frequency range by revealing 

that infra-slow activity in the range 0.01–0.1 Hz similarly modulated behavioral task 

performance and amplitudes of  > 1 Hz neuronal oscillation (Study III). Third, a method using 

MEG and EEG to map inter-areal phase synchrony among neuronal oscillations across the 

whole cortex was developed and applied to identify the properties of synchronous networks in 

the frequency range 3–90 Hz (Studies IV, V). 
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