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1 Introduction

One of the key promises of the Semantic Web [23] is to facilitate information finding
and search on the Web. In the Semantic Web, content—such as a webpage—is de-
scribed using concepts from machine readable conceptual models—i.e., ontologies—
expressed in standard knowledge representation languages such as RDFS [8] and
OWL [6]. This enables better re-use and sharing of content between different Web

applications, and also the creation of more intelligent services for the end-user.

This dissertation focuses on faceted semantic search (FSS) [54], a field of Semantic
Web research which has already matured enough to produce commercial and public
Web applications, such as the Finnish health portal HealthFinland! [60]. The work
presented in this thesis includes the development of some of the fundamental solu-
tions used in FSS up to this day. The main focus, however, is on the development of
methods to model uncertainty and conceptual overlap in Semantic Web taxonomies,
and weighting of annotations based on textual content of documents to equip FSS
with such features as ranking of search results, and mapping of separately created

end-user search facets onto annotation ontologies.

1.1 Faceted Search

Traditionally, information retrieval on the Web has manifested mainly as free-term
search performed using a search engine such as Google?. Free-term search works well
when the user has a well-defined search problem in mind, e.g., if the user searches
for information about a specific person, organization, or a subject that he/she is

able to characterize with a simple word or phrase. However, often the user does not

thttp://www.tervesuomi.fi/fi/etusivu
Zhttp://www.google.com
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exactly know what he/she is looking for, or wants to get a high-level understanding
of a subject, its inner relations, and relations to other subjects. Activity of this kind
is called exploratory search [74], and it can be greatly facilitated by providing the
user with navigation aids, such as indices, terms related to the chosen subject, and

recommendations.

The faceted search paradigm[86, 43| supports exploratory search well. In faceted
search the search items are indexed along multiple orthogonal—i.e., independent—
taxonomies that are called facets. An individual concept that belongs to a facet
is called a search category. The graphical user interface (GUI) reveals these facets
to the user and enables the browsing of the indexed content according to any of
them. In addition, the organization and structure of the facets reveal key relations
among the different concepts related to the subject of interest. The faceted search
paradigm can be further divided into single-faceted search and multi-faceted search.
In single-faceted search the user can browse using one facet at a time, as opposed
to multi-faceted search which supports simultaneous search category selections from

different facets [100].

The faceted search paradigm is based on facet analysis [73], a classification scheme
introduced in information sciences by S. R. Ranganathan already in the 1930’s.
From the 1970’s on, facet analysis has been applied in information retrieval re-
search, as a basis for search. The focus and goal of faceted search applications such
as HIBROWSE [103], Relation Browser [75], Flamenco [43], and mSpace [94] has
been to create intuitive, and easy-to-use search interfaces. An excellent survey—

unfortunately only in Finnish—of these faceted search systems can be found in [100].
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1.2 Faceted Semantic Search

Faceted search is integrated with the notion of ontologies and the Semantic Web
[54, 80, 52, 72, 44] to form the faceted semantic search (FSS) paradigm. In the
context of the Semantic Web, ontologies are machine readable conceptual models
represented in one of the RDF [9] based ontology languages, such as RDFS [8] and
OWL [6] recommended by the W3C?. These languages contain constructs that are
typically needed in conceptual models. For example, in OWL the concepts of an
ontology are defined as instances of owl:Class, and a conceptual hierarchy is created
using the rdfs:subClassOf relation between concepts. These language constructs
have predefined semantics so general purpose software libraries such as Jena[3] have
been developed to take care of ontological data processing. Web content such as
webpages or other documents found on the Web are described or annotated using
concepts from these ontologies. Together the ontologies and the annotations of Web
content form a semantic knowledge base. Semantic knowledge bases like this are the

basis for FISS systems.

The motivation for the integration of faceted search with Semantic Web ontologies is
that the latter offers a natural basis for the creation of the facets used in the former.
Faceted semantic search has been used successfully in a number of semantic portals.
Examples of content publishing tools which use the faceted semantic search paradigm
are SWeHG—which is one of the results of this dissertation—and OntoViews. The
original idea—which was developed in SWeHG and OntoViews—was to create facets
algorithmically from a set of underlying ontologies that are used as the basis for
annotating search items. This offered an easy and fast way to create the search
facets. Furthermore, the mapping of search items onto search facets can be defined

9

using logic rules. This facilitates more "intelligent” semantic search of indirectly

related items.

Shttp://www.w3c.org
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1.3 Faceted Semantic Search and Uncertainty

However, not before long it was discovered that ontologies used in the annotation of
search items are often created primarily for domain specialists, and are not as such
suitable to be presented as facets in a portal offered to the layman [46]. In fact, the
straightforward algorithmic creation of facets from annotation ontologies sometimes
resulted in rather difficult systems from usability point-of-view, and seemed to un-
dermine the main goal of traditional faceted search systems, namely, the creation
of intuitive user interfaces for exploratory search. Another problem that was soon
discovered was that because the ontology languages of the Semantic Web are based
on crisp logic, they are not able to model the uncertainty inherent in our world,
and in the faceted search system itself. According to F'SS, search items are either
relevant or non-relevant to a given search, but there are no degrees or probabilities
of relevance. Thus, FSS lacks the ability to rank results according to relevance.
Ranking of search results, however, is seen as a core feature of information retrieval
systems [20], and the significance of this feature is emphasized in environments such
as national library collections, national museum collections, or the Internet where
the amount of searchable information is vast [30]. The main focus of this dissertation

is in developing methods to overcome these problems.

The dominant approaches to modeling uncertainty in ontologies and concept tax-
onomies are fuzzy logic [113, 97, 110, 18, 77| and probability theory [84, 85, 32,
39, 41, 79, 63, 105, 69]. For this reason we chose to base our solutions on these
approaches. We created both a fuzzy and a probabilistic version of faceted seman-
tic search, each of which provides solutions to the above presented problems. These

approaches are empirically evaluated and compared as part of this dissertation work.
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1.4 Problems and Solutions

Table 1.1 outlines the problems and the corresponding solutions presented in this
dissertation. The work included in the dissertation is spread over the years 2003
- 2009, and many of the chapters presented here are based on published scientific
papers. Table 1.1 specifies the chapters of this dissertation and the corresponding
publication—if applicable—in which the solution is presented. A more detailed
listing of the results of this dissertation work is presented in Chapter 14. Figure
1.1 gives a timeline visualization of the dissertation, and related work done in the
Semantic Computing (SeCo)* research group. The work included in this dissertation

is written in bold font.

2003 2004 2005 2008 2007 2008 2009
| | | | | | |
SWeHG Overlap graph Fuzzy faceted Probabilistic faceted
Pramoottori OntoViews, Geo-Spatialime series Semantic search  HealthFinland semantic search
ONTODELLA Ontological
tf-idf

Figure 1.1: The timeline of this dissertation work. The work included in this
dissertation is in bold, and work influencing or influenced by the dissertation work
in normal font.

The earliest work is presented in Chapter 3, and it dates back to the year 2003, when
the F'SS paradigm itself was still just emerging. Thus, the problems addressed and
the solutions developed concentrate on enabling the utilization of Semantic Web
ontologies in the creation of an F'SS system, and in the easy publishing of Semantic
Web content to the human user (Problems 1 - 3 in Table 1.1). In short, Chapter
3 presents the projection of facets, and the generation of recommendation links
from the ontological knowledge base using logical rules implemented using the the

SWI-Prolog programming framework® [13]. These solutions are developed as part

4http://www.seco.tkk.fi
Shttp://www.swi-prolog.org
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Table 1.1: The problems and solutions presented in this dissertation work.

Problem

Solution

Chapter

Publication

How should search facets be
created from ontologies to form

FSS?

Logical rule-based projection

of facets from ontologies.

3.

Designing and Creating a Web
Site Based on RDF Content
[49].

How can the ontological knowl-
edge be used to enable seman-

tic browsing of content?

Ontology-based recommenda-
tions that are expressed as log-

ical rules.

Designing and Creating a Web
Site Based on RDF Content
[49].

How can semantic content be
published easily on the Web us-
ing the ideas of faceted seman-

tic search?

A tool for generating static
websites that are organized
as simple single-faceted search

systems.

Designing and Creating a Web
Site Based on RDF Content
[49].

Semantic Web ontologies lack
the support for modeling un-
certainty inherent in the world,
including the FSS system it-
self. This shortcoming hinders
the system’s ability to provide
high quality search results for

the user.

A graph notation for represent-
ing uncertainty and concep-
tual overlap in Semantic Web
taxonomies, and a Bayesian
method for computing degrees

of overlap between the con-

cepts of such a taxonomy.

10.

Modeling Uncertainty in Se-

mantic Web Taxonomies [47].

An ontological extension to
the term frequency - inverse
document frequency (TF-IDF)
method to enable weighting
of document annotations based

on their textual content.

Integrating TF-IDF Weighting
with Fuzzy View-Based Search
(48].

Crisp faceted semantic search
lacks the capability to rank
search results based on rele-

vance.

Fuzzy faceted semantic search.

Fuzzy View-Based Semantic
Search [46].

Probabilistic faceted semantic

search.

11.

New work, published in this

thesis.

Concepts of annotation ontolo-
gies are not always suitable to
be presented as search cate-

gories on the search GUI.

Fuzzy faceted semantic search.

Fuzzy View-Based Semantic

Search [46].

Probabilistic faceted semantic

search.

11.

New work, published in this

thesis.

How could rankings of search
result provided by different
schemes combined to provide
better ranking of search re-

sults?

Probabilistic faceted semantic

search.

11.

New work, published in this

thesis.
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of a tool-—Semantic Web HTML Generator (SWeHG)—which generates a site of
static webpages that uses the facet projection solution above to create navigation
menus (indices), and the ontology-based recommendation rules to link resources
to others. The generated website is in fact a simple single-faceted search system.
Before the SWeHG tool the faceted photo exhibition tool Promoottori [57] was
already developed. In Promoottori the facets were projected along simple ontological
properties such as the rdfs:subClassOf property. The SWeHG tool introduced the
more flexible rule-based projection of facets. The solutions developed for Problems
1 and 2 of Table 1.1 were later included in the ONTODELLA [108] facet projection

and recommendation engine, which is part of the Onto Views [72] FSS framework.

The problems that surfaced along with the promising results of Chapter 3 are pre-
sented as Problems 4 - 6 in Table 1.1. The first problem that was noticed is that
Semantic Web ontologies are not capable of modeling uncertainty, a problem which
sometimes hinders the systems ability to provide high quality search results for the
user. As a response to this we created a Bayesian method to model uncertainty in
Semantic Web taxonomies. The method was first presented in my Master of Sci-
ence thesis [45] in 2004, and later published in [47]. This solution contains a graph
notation for representing uncertainty and conceptual overlap in Semantic Web tax-
onomies, and a method to compute the degrees of overlap between the concepts
based on the representation. The computation can be done either directly based on
the taxonomical structure, or by transforming the representation into a Bayesian
network. This method has influenced the methods for modeling geo-spatial reason-
ing over ontology changes in time [63]. Later—as part of the work related to fuzzy
faceted semantic search—we also created a method to weight document annotations
based on their textual content. This method is an ontological extension to the term

frequency - inverse document frequency (TF-IDF) [20] term weighting scheme.

The second problem of FiSS was that faceted semantic search does not have the capa-

bility to rank search results according to relevance. The third problem was that con-
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cepts of annotation ontologies—which are usually created for domain specialists—
are not always suitable to be presented as search categories on the search GUIL As a
solution to these problems we created first a fuzzy version of F'SS which extends the
crisp set theory underlying faceted search to fuzzy sets [113]. Fuzzy FSS is based on
weighted—i.e., fuzzy—annotations. The results to searches specified by the user are
not crisp but fuzzy sets of search items. The degree of membership of a search item
in the result set is interpreted as the degree of relevance of the search item. Fuzzy
FSS also includes a facility to define end-user facets separately from the annotation
ontologies, and then fuzzily map these facets to concepts of annotation ontologies.
This separation of search facets from annotation ontologies and the mappings be-
tween the two has been utilized in the HealthFinland [60, 100] portal prototype, in
which the method is combined with card sorting technique [92, 76] to create the

end-user facets.

Fuzzy FSS is a promising and a relatively simple way to extend crisp FiSS to enable
ranking and separation of end-user facets from annotation ontologies, and according
to our evaluations it provides good ranking results. However, fuzzy logic has been
criticized of its heuristic nature (see e.g. [98, 26]). In addition, we wanted to be
able to combine evidence from multiple ranking schemes, because this has been
shown to improve ranking performance [70]. As a result we started to develop the

probabilistic FSS.

In probabilistic F'SS a Bayesian probability model of the search system is created,
and search results are ranked based on the probability of relevance of each item.
Similarly to fuzzy FSS, also probabilistic F'SS supports the mapping of separate
end-user facets to annotation ontologies. However, in contrary to fuzzy FSS, the
probabilistic version supports the usage of more than one ranking scheme to provide
the final ranking. After the fuzzy and probabilistic FiSS frameworks are presented,

they are evaluated and compared using a real-world dataset.
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As mentioned, many of the chapters in this dissertation are based on published
scientific articles [49, 47, 48, 46]. The SWeHG tool presented in Chapter 3, which
is based on [49] was originally developed in a student project, by a team of students
which I was a member of. Guidance to this project was given by Eero Hyvénen
and Kim Viljanen. The project was an Extreme Programming [22] style project,
in which the roles where loose and in fact the project manager role was circulated
among members. My main contribution during the software project was in the
design and implementation of the facet projection, and recommendation rules using
SWI-Prolog. Later I was part of the team that wrote the scientific paper [49]. In all
of the other publications I am the main author, and they in fact present my personal
work, which was helped and sparred by the co-writers. This is also true for the yet

unpublished parts of the dissertation.

1.5 Organization of the Dissertation

The rest of the dissertation is divided into the following four parts:

Crisp Faceted Semantic Search This part consists of Chapters 2—4. Chapter
2 contains a brief introduction to faceted search, and to the main ideas of
faceted semantic search. Chapter 3 then presents the single-faceted search
tool SWeHG along with the facet projection, and recommendation solutions
that have been used in FSS ever since. After these results are presented,
some problems of FSS are raised in Chapter 4, which are then answered in
later parts of the dissertation. Here, the usually used name faceted semantic
search is prefixed with the term crisp to distinguish it from the fuzzy, and

probabilistic extensions that are presented later in the dissertation.

Fuzzy Approach This part consists of Chapters 5-8. Chapter 5 presents some

necessary background knowledge about fuzzy sets, and how they have been
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combined with Semantic Web ontologies. Chapter 6 then presents the fuzzy
FSS framework which is the main result of this part. Chapter 7 augments
the results of Chapter 6 by providing a method for weighting document an-
notations based on the document’s textual content. Chapter 8 summarizes

the contributions and remaining problems of the fuzzy approach.

Probabilistic Approach The Probabilistic Approach part consists of Chapters
9-12. Chapter 9 consists of necessary background information about the
probabilistic methods applied in the rest of this part, a short review of prob-
abilistic search methods, and also of probabilistic methods to model uncer-
tainty in Semantic Web ontologies. Chapter 10 presents a new method for
modeling uncertainty in Semantic Web taxonomies. This method is utilized
in probabilistic FSS which is presented in Chapter 11. An implementation
of the probabilistic F'SS framework is presented in Appendix A. Chapter 12

summarizes and discusses the contributions of the probabilistic approach.

Evaluation and Conclusions In the last part of the dissertation we present an
empirical evaluation of the ranking methods presented earlier in the disserta-
tion (Chapter 13). After this, in Chapter 14, the results of the dissertation are
reviewed, lessons learned are elaborated, and directions for future research

outlined.
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Part |

CRISP FACETED SEMANTIC
SEARCH
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2 Introduction to Faceted Semantic Search

This chapter provides the necessary background information about faceted search
that is needed in order to fully understand what faceted search is about, and how

the work done in this dissertation contributes to it.

2.1 How Faceted Search Works?

tervesuomi.fi
prototyyppi

N

Kansalaisen portti luotettavaan terveystietoon

suomeksi | p svenska | in English

News

2 HealthFinland is a channel to a wide selection of rellable health
information produced by Finnish research and expert

cross-language searches improved

organizations, government institutions and health organizations. 00 SR

Topic areas

Food and nutrition
diet and eating habits, foodstuffs,

nutrients.. ¢

Exercise
(halsomotion), fitness and phy sical
activity, sports...

Weight control
body mass index, fatness,
owerweight.,,

Sexuality
sexual health, sexual intercourse,
sexually transmitted diseases.

Family and children
breastfeeding, delivery,
preanancy.

Intoxicants

alcohal, intoxicant problems,

smoking

“Catastrophes

chemical accidents, disasters,
terrorism...

Epidemies and infectious
diseases
bacteria, infectious diseases,
waceines...

Mental health and sleep
depression, mental disorders, sleep
and sleep disorders...

Violence and crises
marginalisation, violence...

Conditions and symptoms
conditions, symptoms, treatment
methods..

Accidents and first aid
actident prevention, accidental
falls, wounds and injuries...

Finding help
care institutions, health centres,
public health service..,

Environment
air, residential environment,
water...

Occupational health
koulutus, teimintakyky, ty5

Largest topics

The portal now defaults to searching over
materials in any language, Most of the
material is in Finnish. Searches can still be
restricted to a specific language using the
language selection facility abave the search
results.

Portaalin aineistoja piivitetty

13.2.2008

portaalin aineistoihin kuuluvat Savonia-
ammattikorkeakoulun raskaus- ja vauva-
aiheiset artikkelit on nyt paivitetty

Aineistot ovat vield keskeneraisia ja niita
kehitetaan parhailaan portaalin
tuotantoversioon.

Portaalin tuotantoversio jullaistaan
huhtikuussa 2009 osoitteessa tervesuomi.fi,

T i-portaalin prototyyppi i

12,9.2008
Kansaterveyslaitoksen johdolla kehitteilla
olevan kansalaizen terveystistoportaslin
TerveSuomi.fi prototyyppi on valmistunut:
05ana Tekesin rahoittamaa kansallista
FiNNONTO-kehityshanketta 2003-2010.

(halsomotion) adult type diabetes adults babies child
diabetes dietetics health health pramation infectious diseases
instructions juvenile type diabetes men physical
training prophylaxis research risk factors smokers
srmoking symptoms vacdnation vaccnes women young
people

Julkistamistilaisuuden ohielma ja lisstietoia

x  Find; [ ontodels & tiext & Previous o Hghightal [ Match case

[#) Downloads| | -4 Tarjousayyit_A Clear

Figure 2.1: The start page of the HealthFinland faceted health portal.

Faceted search is explained here from end-user point-of-view using a realistic ex-
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terves
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immediate family 5 nikotiinista, Kemiallisen riippuvuuden lisaksi tupakointia Tupakan tuotevastuun aika
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experts 1
family members 4 tilanteisiin littyvaksi tavaksi,
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pensianers El European Metwork on
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risk groups E ==/ Jatkuvan tupakoinnin keskeinen syy on = ENYPAT
relatives 4 nikatiiniriippuvuus ja tupakainnin lopettamisen jalkeiset EU-Web - projekt tupakan
étudents ; wam\tusm}:eet}’.‘ Saannullmenktupakoth Dnhiuwl . verkkaovisroftuksesta
inns terveysriski aiheuttaessaan kroonista keuhkoputken
Bohiois-Karialan
health service personnel 1 tulshdusta (ks. myas Keuhkoahtaumatauti Zi’l‘z‘f‘az:gﬁa”
smokers b nicotine, smoking, tobacco, tobacco, tobacco use disorder Feie e iR
mathers 1 Duadecim Laakarikiria e
Eeiirars 21.4,2007 — (kansalaiset)
face 1 = T isuus ja Kohderyhmat W test
ED”dJ“”Et‘Va L == Tupakkatealisuus suhtautuu ristiritaisesti
bgd: Z tupakkamamomaan_Ja myynmnedistamisgn rajoituksiin. e e
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Degstruqens 1 mainontaansa rajoittavia toimia voimakk i, =8
sammalla kiistaa mainonnan vaikutuksen kulutukseen. =l

* Find: [ ortodelia & ext & Previous & Hohlohtal [ Makch case

(%) Downloads || 4| Tarugayyt A .. | | clear

Figure 2.2: The result list page of the HealthFinland faceted health portal for the
selection of the search category Smoking.

ample adapted from the HealthFinland health portal demonstration video®. Anna
is a smoker who wants to have a baby. She is concerned about the health effects
of smoking on the child, and wants to learn more about the subject. She goes to
the HealthFinland health portal. The starting page is shown in Figure 2.1. In the
middle of the screen the main topics of the portal are shown. These topics, in fact,
constitute the main facet of the portal. On the top right there is a free-term search
box, which augments the search facets, and enables normal keyword-based search

of the portal’s content.

Anna selects the search category Smoking from the topics. As a response to this

Shttp:/ /www.seco.tkk.fi/applications/tervesuomi/ui-presentation.html
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Figure 2.3: The result list page of the HealthFinland faceted health portal for the
search category selection of Smoking and Pregnancy.

selection the page shown in Figure 2.2 appears. The list of documents matching
the selection Smoking are shown in the middle of the page. For each search result,
the title, a small passage from the document, and some other metadata is shown.
Above the list of search results the selected topic is shown, and below it subtopics.
Next to each subcategory a number is shown, which indicates the number of search
results matching that selection. On the left the other facets are shown. In our case
these are Life event, Group of People, Body Part, Type, Publisher, and Audience.
The available search categories with a number indicating the search results matching
that selection are shown under each facet title. The user can refine the search by
making a selection either from the subcategories shown in the top center of the page

or from one of the facets shown on the left.



35

tervesuomi. =
prototyyppi
/
— | Tupakoinnin vaikutukset raskauteen Bl information page
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Julkaistu 20.5.2008, tarkistettu 20.5.2008 Kuopia

Tupakoinnin vaikutukset raskauteen

waikutuksia
raskaudenkulkuun ia
sikititin

Raskaudenaikaisia hairiaits
- alkuraskaus

Tupakka sis&ltad monia kemiallisia yhdisteitd, jotka ovat haitallisia naisen terveydelle ja sikitn
voinnille. Yhdisteet kulkeutuvat istukan kautta sikidsn ja vaikuttavat sikién vaintiin. Tupakointi
huonontaa sikitn ravinnon saantia ja kasvua sekd altistaa sikin hapenpuutteelle.

Tupakan sisaltama nikotiini on rasvalivkoinen aine, joka imeytyy nopeasti verenkiertoon, Nikotiini supistaa
wvoimakkaasti verisuonia ja vaikeuttaa elimistan hapen saantia. Nikotiini on aine, jolla on samanlainen
riippuvuutta aiheuttava vaikutus kuin huumausaineills, Tupakan sisaltama haka Chilimonoksidi) on
ymparistémyrkiy, joka sitoutuu hemaglabiiniin ja syrjayttas sielta hapen. Talldin veren hapen kuljetuskyky
heikkenee ja elimistd kirsi hapenpuutteesta. Sikiin kehitykseen talls on aina haitallinen vaikutus, vaikka
syntymapaino olisikin yli 3000 g.

Tupakka sisaltas lisaksi myrkyllisia raskasmetalleja: kadmiumia, lyijya ja syanidia. Raskasmetaliit hairitsevat
solujen elintoimintoja ja kuluttavat elimiston vitaminivaroja (kuten B-12 ja C-vitaminit) sekd tarkeits
rakennusaineita (aminohappaja).

Tupakoinnin vaikutus raskaudenkulkuun ja sikigén

Tupakoinnin vaikutus raskaudenkulkuun ja sikigon

Jos iti tupakoi raskauden aikana, vastasyntynyt painaa paivittain poltettujen savukksiden maarast rippusn
150 - 400 g vahemman kuin tupakoimattoman aidin lapsi, Yaikeasti alipainoisista vauvoista B0 % on tupakoivien
aitien vauvoja, Joissakin tutkimuksissa on todettu myos tupakainnin yhteys sikion epamuodostumiin, Havaintoja
on tehty etenkin keskushermoston ja kitalakiepamuodostumien riskin kasvusta tupakeinnin vuoksi,

Sikiiilla on tupakan altistuksen vuoksi heikentynyt pituuskasvu sekd pienempi paan ja vatsan ymprysmitta,
Tupakointi raskauden aikana hidastaa sikion luustan ja keskushermoston kasvua, Kasvun hidastuminen tulee
esille jo 5-10 savukkeen paivittaisen polttamisen vaikutuksesta, Eniten sikion painoon vaikuttas
loppuraskaudenaikainen tupakointi

Tupakainti lissa keskosuutta ja snnenaikaisen synnytyksen riski kasvaa suhtsessa paivittsin poltsttujen
savukkeiden maarasn, Kaiken kaikkiaan jo raskauden alku voi epsonnistus, sills tupakoivilla naisilla on kohdun
ulkoisten raskauksien masrs lissantynyt. Myss passivisells tupakainnille altistunsilla naisilla on snemman
alkuraskauden keskermenaja kuin tupaksimattomilla.

Tupakainnin {nikatiini ja haks) siheuttama krooninen hapsnpuute on riskitekiis koko raskauden ajan. Sen
haitalisst vaikutuksst lisasvat sikiskuoleman riskia kaikissa raskauden vaiheizsa. Loppuraskaudessa tapshtuvan
kohdunsissisen sikitkualeman riski on tupakoivilla Sideills 1.5 kertainen tupskaimattomin iteinin verrattuna

Tupakoivien ditien sikiots ja wastasyntynytts uhkaavat etenkin istukkakomplikaatiot. Tupakointi lis3a ns
eteisistukan (istukka sijaitsee kokonaan tai osittain kohdunsuun edesss) riskin kaksinkertaiseksi. Tupakointi
raskauden aikana lisaa myts raskaudenaikaisen verenvuodon riskis, mikd altistaa keskenmenalle ja
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Figure 2.4: The document page of the HealthFinland faceted health portal.

Anna selects pregnancy from the facet Life event, because she is interested in the
effects of smoking on pregnancy. The page is shown in Figure 2.3. Now the result
list contains documents that match both smoking and pregnancy. In this manner
the user can browse the content according to multiple facets simultaneously. The
facets on the left and the subtopics in the top center of the page are updated to
match the new situation. According to the principles of faceted search it is not
possible to make a selection which results in an empty result set. For this reason
some of the search categories on the left are hidden and the subtopics in the center
are disabled. Also the numbers next to the search categories are updated to match

the new situation.
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Anna selects one of the search results. Now the page shown in Figure 2.4 containing
the selected document is shown. On the right, recommendations of similar docu-
ments are shown, which are in this case organized according to the Type of the item.

Here Type is one of the facets of the system.

A facet often, but not always, has a hierarchical structure. In the example of Figures
2.1-2.4, both the facets Topics and Life Fvent, have a hierarchical structure. The
selected search category smoking selected from the facet Topics is a subcategory of
intozicants, and supercategory of e.g. smoking cessation, smoking prevention, and
nicotine. The other selected search category pregnancy is a subcategory of family
and relationships. When a user selects a search category from a facet he/she is
actually making an OR query using the selected search category and the transitive
closure of its subcategories. When a user makes selections from multiple facets
he/she is actually making an AND query of the individual facet queries. Thus,
faceted search can be seen as an easy and intuitive way to create Boolean queries,
which have been shown to be very effective, however, often not widely used, because

non-expert users often have problems constructing them [43].

2.2 Set-theoretic Interpretation of Faceted Search

In this section we will present a set-theoretic interpretation of the faceted search
framework. The fuzzy and probabilistic extensions to faceted search that will be
presented in Parts II and IIT of this dissertation will build on this set theoretic

interpretation.

In terms of set theory, a search category SC; can be defined by its result set; i.e.,
SC; = {D;|D; is a search item directly or indirectly annotated with SC;}. Thus,
each individual annotation of a search item D; according to a search category SC;

is interpreted as an explicit statement of direct membership of D; in SCj; i.e.,
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D, € SC;. By indirect annotations we mean annotations to a subcategory of SCj.
This is consistent with the last paragraph of Section 2.1, where it was stated that
a selection of a search category SC; is interpreted as an OR query of SC; and
the transitive closure of its subcategories. In set-theoretic terms the subcategory
relationship is defined as the subset relation between the involved search categories.
Specifically, if the search category SCj is a subcategory of SCj, then SCy, C SCj,
which means that all search items belonging to SC}, belong also to SC;. Facets are
sets of search categories; i.e., sets of sets of search items. Intuitively, the search
items are the individual objects of concern in faceted search, and the other objects
(facets, search categories, annotations) are used just to enable the efficient finding
of search items. Thus, it is natural that the search items compose the universal set

of the faceted search framework.

Finally, the last paragraph of Section 2.1 stated that selections from multiple facets
are interpreted as an AND query of the individual facet queries. In our set-theoretic
interpretation this corresponds to the intersection of the result sets corresponding to
the selected search categories. Thus, the search S specified by the user is defined as
S=NS8C;, VI el,...,m, such that SC1, ..., SC,, are the search categories selected
by the user, and each SCj belongs to a different facet. Notice, that we do not have
to deal with the case of the user making multiple selections from a single facet,
because by convention the user can only select one search category from one facet

at any given time.

2.3 Facets and Metadata

Faceted search is based on metadata attached to the searched items. This metadata
is organized according to facets, that is, composed of orthogonal sets of categories as
exemplified above. This organization of metadata is called faceted classification [86]

and it was originally created to classify library collections [89]. In faceted classifica-
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tion the searched items are classified according to each of the orthogonal facets. In
addition, each item might belong to more than one category of each facet, however,
some facets might allow only one category per item [43]. Thus, faceted classification
differs significantly from the widely used Dewey’s library classification [31], where
all items are classified according to one monolithic taxonomy, and each item belongs

to exactly one category of this taxonomy.

One of the challenges of faceted search is how to create these facets, and how to
assign the metadata to the items accordingly. Often, the facets are created using

one, or a combination, of the following approaches:

Using an existing vocabulary or thesaurus If a suitable vocabulary exists, it

can be used as a facet as such, or by selecting a part of it.

Manual creation If a suitable vocabulary is not available, a facet vocabulary
can be created by hand according to the specific need. In many cases, card

sorting or similar method is used in the creation of these facets [100].

Analyzing the existing metadata and content of the items to classify Some
facets—e.g., Creation date—can be created automatically based on existing
metadata of the items. This applies to facets that are based on metadata that
is typically attached to items in a standard format using standard metadata

fields, such as fields specified by the Dublin Core [1] metadata scheme.

After the facets themselves are created the search items are described—i.e., indexed,
annotated—according to these facets. This is depicted in Figure 2.5. Typically, some
of this indexing can be done automatically, e.g., indexing according to the Creation
date facet above, and at least some of it has to be done manually, e.g., indexing
according to a manually created vocabulary above, which might be an arduous and

resource consuming process [100, 43].
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Facets

Search items

Figure 2.5: Depiction of faceted classification. Search items are classified according
to each of the facets.

2.4 The Promise of Faceted Semantic Search

According to the vision of the Semantic Web, current Web content will be described,
i.e., annotated using ontological concepts. Thus, rich machine readable metadata
will be available for at least a large part of Web content, which could be utilized
to construct facets algorithmically from a set of underlying ontologies that are used
as the basis for annotating search items. Furthermore, the mapping of search items
onto search facets could be defined using logic rules. This facilitates more intelligent
semantic search of indirectly related items. Another benefit is that the logic layer
of rules makes it possible to use the same search engine for content annotated using

different annotation schemes. Ontologies and logic also facilitates semantic browsing,
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i.e., linking of search items in a meaningful way to other content not necessarily

present in the search set.

2.5 Content Creation for Faceted Semantic Search

This dissertation focuses on the utilization of existing ontologies and databases of
documents annotated according to these ontologies. This kind of data already ex-
ists in rather large quantities, and faceted search systems are being built on such
knowledge bases both in research and commercial settings. However, in order to
complete the picture, a short discussion of content creation methods is presented in

this section. This discussion is largely based on [101] and [62].

2.5.1 Ontology Creation and Reuse

Typically a faceted semantic search solution is implemented as a part of a Web
portal, where content is gathered from multiple source organizations [101, 51, 52].
The used ontologies should describe all the relevant concepts in the application
domain of the portal. In addition, there should be a relative consensus among the
participating organizations about these concepts and the relations between them.
For these reasons pre-existing, established ontologies and structured vocabularies
are often used as the basis of ontologies. Reusing existing vocabularies offers also
several other advantages: it eases semantic interoperability with other applications,
saves time and money by avoiding unnecessary ontology engineering work, and helps
to ensure broad coverage of the subject area as established ontologies typically have

been used and developed for a long time [101].

Often, standard vocabularies are expressed as thesauri. In Finland, for example,

there are numerous thesauri conforming to the ISO [2788] standard [15], such as
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YSA” which is the general finnish thesaurus, MASA [71] which is a thesaurus for
the subject domain of museums, and Agriforest® which is an agriculture and forest

thesaurus.

In the National Semantic Web Ontology project (FinnONTO 2003-2007) [59] a
method was developed for transforming thesauri into ontologies [62]. The method is
not purely syntactic, because thesauri, typically, are semantically loose and contain
relations that require implicit background knowledge by the user, whereas the idea
of ontologies is to define the meaning of concepts explicitly and accurately enough
for the machine to use. Instead, the method developed in FinnOnto was based on
criteria from DOLCE [37], and the transformation is done by refining and enriching
the semantic structures of the transformed thesaurus. According to the method the
thesaurus is first syntactically transformed into RDF/SKOS [10]. Then the following

enrichments to the thesaurus structure are done using the Protegé ontology editor?:

Completing the hierarchies The thesaurus hierarchies typically are incomplete
and arrange the terms into separate smaller subhierarchies. For this reason
the hierarchies have to be completed. A central structuring principle in con-
structing the hierarchies is to avoid multiple inheritance across major upper

ontology categories [62].

Removing ambiguity of the BT relation The hierarchical Broader term (BT)
relation used in thesauri may mean either subclass-of relation, part-of rela-
tion, or instance-of relation. The BT relation is transformed into subclass-of
and part-of relations according to the current semantics, but instance-of re-

lations are not used.

Assuring transitivity of concept hierarchies The BT hierarchies are not al-

ways transitive in the ontological sense, i.e., an instance of A is not necessarily

Thttp://vesa.lib.helsinki.fi/
S8http://www-db.helsinki.fi/triphome/agri/agrisanasto/Welcomeng.html
9http://protege.stanford.edu/
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instance of B even if B is a broader term of A. Thus, the hierarchies are

cleaned from non-transitive hierarchical structures.

Removing ambiguity of concept meanings Terms in thesauri often contain
multiple meanings. E.g. the term child can mean a family relation or a period
of human life. Ambiguous terms are split to multiple concepts according to

the different meanings.

The FinnOnto project also developed a semi-automatic method for aligning ontolo-
gies. In this method, ontology classes are first automatically aligned based on term
labels using equivalence, then imported into Protegé for further editing and checking
by a human expert. In this scenario, the ontologies are usually not aligned pairwise,
but instead domain ontologies are aligned to the Finnish General Upper Ontology
(YSO)!'° which is an ontologized version of the general finnish thesaurus YSA. YSO

acts as a glue or mediator between the domain ontologies.

An alternative to the above described thesaurus based ontology creation process
would be to use algorithms for ontology learning. The main idea of these algorithms
is to use available—typically textual—information sources such as webpages, dictio-
naries, knowledge bases out of which concepts and concept-relations are extracted
to form an ontology [40]. Usually these ontology learning algorithms aim at partial
automatization of the ontology creation process. The ontology learning methods

can be grouped as follows:

Linguistic Analysis These methods are based on linguistic techniques such as
linguistic patterns, pattern-based extraction, semantic relativeness measures
etc. One example would be using common linguistic patterns in text, such
as, a birch is a tree, to infer subclass-of relations, such as birch subclass-of

tree. For more information see e.g. [17, 19, 42].

Whttp:/ /www.seco.tkk.fi/ontologies/yso/
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Statistical Analysis Statistical methods use statistical measures to help the on-
tology engineer to detect new concepts or relations among concepts. Sta-
tistical techniques are often applied together with other techniques such as
natural language processing. For example, Faatz and Steinmetz present a
statistical method that uses the Web as a corpus, to suggest new concepts to
an existing ontology [33]. Agirre et al. present a method [14] that enriches
the relations among concepts in an existing ontology using both the Web and

WordNet [34].

Machine learning These methods base ontology learning on machine learning
algorithms, for detecting new concepts or relations among them. Machine
learning techniques are usually applied together with natural language pro-
cessing techniques. For example, Cimino and Staab [28] have developed a
method that learns concept hierarchies based on WordNet, the Web, and

other text collections.

An empirical comparison of the thesaurus based and the ontology learning ap-
proaches has not been performed. For this reason we do not know the difference
between the approaches in terms of manual work needed, as well as the quality of
the resulting ontologies. However, in situations where a thesauri is not available

ontology learning algorithms offer a viable solution.

2.5.2 Annotation of Content

To enable use of heterogeneous content from multiple sources a faceted semantic
search portal needs a metadata or annotation schema in addition to the common
ontologies discussed above. This annotation schema defines what metadata the
portal needs for each published document, and how this metadata should be rep-

resented. Typically this annotation schema is based on the Dublin Core metadata
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standard [1] to maximize reusability of content.

Metadata creation requires suitable tools that aim to assist the annotators in the
process. In the FinnONTO project a number of solutions to this problem have been

developed:

Extending the content producer’s CMS Often content producers of a faceted
semantic search portal have a content management system (CMS) to produce
and publish Web documents on their own site. Adding support for meta-
data production using the portal’s metadata schema and ontologies makes
it easy for content authors to produce metadata and keep it synchronized
with updates in the content. In such a setting many metadata fields such
as publication and modification dates can be automatically assigned values.
The FinnOnto project has developed a National Ontology Library Service
ONKI, which includes an ONKI Selector Widget [61], which enables the easy
extension of a CMS to support the needed annotation schema features. The
ONKI Widget is an AJAX-enabled component that can easily be integrated
into any HTML form and it allows the selection of concepts from any vo-
cabulary available on the ONKI server. The CMS can then be configured
to publish this semantic metadata either into individual HTML pages or as

RDF data that is retrievable by the faceted semantic search portal [101].

SAHA To create metadata for content producers that do not use a CMS a browser-
based metadata editor SAHA has been developed [106]. SAHA enables the
manual distributed creation of metadata according to an annotation schema

using shared domain ontologies.

Semi-automatic annotation The POKA tool has been developed in the FinnONTO
project to enable the semi-automatic annotation of text documents [107]. The
tool finds candidate annotations from a text document by matching labels

of ontology concepts to words in the document. The human annotator then
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chooses the best ones to be used as annotations. Naturally, the human an-

notator can also add annotations that are not suggested by POKA.

Also other approaches to automatic annotation exist. For example, Mukher-
jee et al. [82] present an approach for automatically annotation of HTML
documents with semantic labels. In the approach, HTML documents are
partitioned into semantic structures, and it incorporates the use of ontolo-
gies and lexical databases such as WordNet. As an another example, Yang
[112] presents an approach to automatically annotate documents that em-
ploys techniques of ontology and linguistics. The method is part of a larger

effort to develop semantic portals.

2.5.3 Attachment of Uncertain Information to Ontologies and Annotations

Parts II and IIT will present methods to represent and reason about uncertainty in
faceted semantic search systems. This uncertain information is mostly intended to
be attached automatically to the ontologies and annotations. This methods will be
discussed in detail in the relevant parts of this dissertation, however, here is a short
summary about the automatic methods to attach uncertain information to a faceted

semantic search system that are described in this dissertation:

1. Chapter 7 will present an ontological extension to the TF-IDF term weighting
scheme for automatically weighting annotations with a real number in the

range [0, 1].

2. Chapter 10 assigns probabilities to a geographical taxonomy based on ge-
ographical knowledge which could be extracted automatically from a geo-

graphical knowledge base.

3. Chapter 10 also presents a method to assign probabilities to any concept

taxonomy based on a document set annotated according to the concepts of
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this taxonomy.

4. Chapter 13 presents a technique to weight annotations based on the total

number of individual annotations that a document has.

5. Chapter 13 also automatically assigns probabilities to ontological relations

based on the semantics of the relation.

2.5.4 Evolution of Content
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Figure 2.6: Content Creation and Evolution

Figure 2.6 outlines the typical major phases in a faceted search application from the

point-of-view of content creation and evolution:

1. Content Creation. The first phase is the creation of content, and it cor-
responds to the ontology creation and the annotation of content activities

described in Sections 2.5.1-2.5.3 above.

2. Construction of the Faceted Semantic Search Application. The sec-

ond phase is the algorithmic construction of the faceted semantic search
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application based on the created content; i.e., the projection of facets and
possibly recommendation rules based on the underlying semantic knowledge
base. Chapter 3 describes the construction of a single faceted semantic search
application, Chapter 6 presents the construction of a fuzzy faceted semantic
search application, and Chapter 11 presents the construction of a probabilis-
tic faceted search application. In principle, this phase could be executed on
demand when the end-user performs a search in the F'SS application, however,

typically essential parts of the application functionality are precomputed.

3. Usage and Maintenance of the FSS Application. After the faceted
semantic search application is constructed it is used by the end-users. This
phase is the purpose for the development of the application in the first place.
This phase will typically include maintenance activities, such as the addition
of new documents, the updating of the metadata of existing documents etc. In
these situations each new or updated document will be dynamically indexed

according to the facets.

4. Major Content Update. At some point during the usage of the application
a need for a major content update may arise. This may be due e.g. to
evolution in the underlying thesauruses, the incorporation of a new content
provider to the portal. In this phase content is updated using the methods
and tools described in Sections 2.5.1-2.5.3 above. After content is updated
the faceted semantic search application is constructed again according to Step

2 above.

This dissertation focuses on the second phase of the process described above. The
proper handling of the other phases is not less important, however, they are scoped
out of this dissertation because each of these phases deserves a dissertation in its

own right.

The next chapter presents a tool for publishing Semantic Web content as a website
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that is organized according to facets, and recommendation links, that are generated
algorithmically from the ontologies used to annotate this content. The solutions
developed in this chapter have later been used as facet projection and recommen-
dation link creation methods of the OntoViews faceted semantic search framework.
Notice, however, that SWeHG in itself not a fully featured faceted semantic search
tool. Namely, SWeHG lacks the possibility to make selections from multiple facets
simultaneously. For this reason sites created using SWeHG can be called single-
faceted semantic search applications, to distinguish from the usual FiSS portals that

are, in fact, multi-faceted semantic search applications.
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3 Designing and Creating a Website Based on RDF

Content

This chapter is largely based on the article:
Eero Hyvénen, Markus Holi, and Kim Viljanen. 2004. Designing and Creating
a Web Site Based on RDF Content[49]. In: WWW2004 Workshop, Application

Design, Development and Implementation Issues.

3.1 Two Views of the Semantic Web

The notion of the Semantic Web [23, 35] has two interpretations. From the machine’s
viewpoint, the Semantic Web manifests itself as a distributed source of interpretable
metadata concerning resources, such as webpages, documents, photos, and real world
objects. The metadata descriptions are given in terms of ontologies using frame-
works and languages such as RDF(S) and OWL. From the human’s viewpoint, the
Semantic Web looks like the current Web; i.e., it is a repository of HTML pages, but
empowered with more useful semantics-based links, search engines, and intelligent

Web services.

A central question in the development of Semantic Web applications is how the
content represented for the machine can be transformed for the human to view; i.e.,
how machine interpretable RDF(S) or OWL content proliferating the Web can be
rendered to the human end-user as a searchable and browsable HTML website or
space. In this chapter we present a genuine approach and tool named Semantic Web
HTML Generator (SWeHG) [58] to address this problem (See Figure 3.1). The idea
is to specify the structure and the layout of an HTML website in terms of a set

of HTML templates using a tag language. The templates can be used by a Web
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Figure 3.1: Rendering RDF(S) content as an HTML website.

layout designer who does not know the details of the underlying RDF(S) content
or Semantic Web technologies. The semantics of the tags—i.e., the machine’s view
on the RDF level—is specified by a Semantic Web programmer in terms of logic
predicates. A benefit of separating the HTML and RDF levels is that ontological
details and variance can be hidden from the HTML designer. By modifying the
semantics of the tag, content represented using different ontological structures can
be mapped on the same HTML tags that the HT'ML designer is capable of using.
The tag definitions can be re-used directly in applications based on similar ontolo-
gies and annotation schemes. The templates provide a declarative description of
the website structure, indices, and linkage. By modifying the templates alone in
HTML, the same RDF(S) content can more easily be rendered in different ways
in different applications to human end-users. In the following, we first discuss two
examples of semantically indexed and linked HTML websites generated by SWeHG.
The layout specifications with the corresponding tag definitions needed for the RDF
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to HTML transformation are then discussed. After this, the transformation process
and its implementation are presented. In conclusion, experiences of our research
and experimentation are summarized, related work is described, and directions for

further research are outlined.

3.2 Example Applications

As an example of using SWeHG, the virtual exhibition of a photo archive in the
Helsinki University Museum was generated. The archive contained 629 photographs
about the promotion ceremonies of the University of Helsinki. The content of the
archive was transformed into RDF(S) format in an other application project [53]
and was used as it is by SWeHG. The domain knowledge consists of six ontologies
with 329 promotion-related concept classes, such as Person and Building, 125 prop-
erties, and 2890 instances, such as Linus Torvalds and the Entrance of Cathedral
of Helsinki. In the photo annotation schema, the subject of a photograph is repre-
sented by a collection of ontology classes and individuals that appear on the image.
For example, if Linus Torvalds appears in a photo on a particular street, then the
photo record is related directly with the corresponding person and street resources

with a property corresponding to dc:subject.

However, the relation between photos and subjects can be indirect, as well, involving
traversal through several RDF arcs in the underlying knowledge base. For example,
Linus Torvalds is present in a photograph as a Honorary Doctor. Then only an
instance of such a role is associated with the image. The person instance is not
directly linked with the image, but indirectly through the role instance. SWeHG
predicate definition facility is very handy in hiding such annotation schema specific
details from the HTML designer: the persons can be associated with images either
directly or indirectly through roles. The criterion for association can be defined

freely and conveniently by a declarative predicate.
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Using SWeHG to publish the archive provides the end-users with two services. First,
the photos can be found along the different orthogonal facets based on the ontologies.
Second, the photos can be browsed by using the links created between semantically
related photos. The links are grouped based on the semantics of the link. For

example, there is a link group that points to other photos taken of the same person.
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Figure 3.2: A photo exhibition generated with SWeHG.

Figure 3.2 presents the home page of another example application of SWeHG, i.e.,
the exhibition Espoo City Museum on the Semantic Web. Seven RDF(S) ontologies
are used with some 10,000 classes and individuals and the metadata is described in
terms of 38 properties. The RDF(S) repositories where originally created for the
semantic portal MuseumFinland [52]. In this work, we could re-use the semantic
recommendation predicates and the inference rule base developed for the original

system, and the exhibition could be generated in a day or two.

In the RDF(S) repository, each ontological property of the collection objects in

the exhibition, such as material is associated with a domain ontology of its own.
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For example, artifact, material, and technique ontologies have been defined based
on the Finnish MASA Thesaurus [71] of keywords used in several museums for
indexing data. The ontology MAO [55] created based on MASA contains some
6600 classes organized in a taxonomy. There is also a location ontology that defines
geographical concepts such as country and town. Their instances are individual
areas and places. The places are related with each other by a part-of meronymy.
In the same way, an agent ontology defines concepts such as person and company,
whose instances are active individuals. There is also an ontology for time periods.
Still another ontology of activities and processes contains a taxonomy of concepts
such as wedding and fishing. It is used to provide the end-user with an event-based
view to cultural artifacts by associating them with corresponding events through
annotations and logical rules. Each object’s metadata and annotations are given in
an RDF instance, that points to different classes and instances of the ontologies by
the respective URIs through RDF properties. Some of the properties in an RDF

card have literal values, and some point to resources by using URIs.

The created HTML site consists of some 1200 resource webpages (RPage) describ-
ing objects in the museum’s collection database, pages indexing the contents along
different classifications, and a short user’s guide. On the left in Figure 3.2, three
frames containing indices for the underlying content are seen. The alphabetical
index (Aakkostettu hakemisto) contains links to the RPages in alphabetical order.
By selecting a link, the corresponding RPage is shown on the right. In Figure 3.2,
the user has selected a link to an RPage depicting perfume bottles. Before making
a selection, the user’s guide was shown in the same frame. The classified index
(Hakemisto aiheittain) is based on the RDFS taxonomy of the underlying cultural
MAO ontology [55] that was used when creating the collection metadata. When se-
lecting a concept, the rightmost frame shows links to its subconcepts together with
links to RPages whose objects are directly related to the concept. By selecting a
subconcept link there, the taxonomy can be browsed further downward; by selecting

a link to an RPage, the corresponding collection object with its metadata can be
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viewed in the frame. The third index Hakemisto tapahtumittain classifies the col-
lection objects by associating them with the different events, processes or activities

in which the objects are used or otherwise related to.

By using the indices, the user can find collection objects of interest. An alternative
way is to use a conventional search engine. In the upper right corner of Figure 3.2
a form for using Google to search for the pages in the repository is seen. The hit
list will be shown in the rightmost frame. After finding an PRage of interest, the
collection can be browsed by using the semantic links generated between related col-
lection items. For example, in Figure 3.2 links to objects manufactured at the same
location, objects of similar material etc. can be clicked. The semantic links are gen-
erated based on the underlying ontologies, metadata, and logical recommendation

rules.

The museum can publish the content by just copying the pages into a public HTML
directory. This is of practical importance, since museums do not necessarily have
competent IT personnel, servers, and resources to create and maintain semantic
portals of their own. To sum up, the output of SWeHG is a semantically linked
space of HTML pages of the following kind: 1) Resource pages (RPage) depict
selected resources with their metadata. 2) Index pages (IPage) classify RPages along
conceptual hierarchical classifications; i.e., facets or views [86]. By using IPages,
RPages can be found along different facets. 3) A home page (HPage) defines the
entrance page to the HTML repository.

3.3 Specifying the Transformation

Figure 3.3 depicts the RDF to HTML transformation. The RDF graph is on the
left. Each ..R,, corresponds to a resource corresponding to a data entry in the

RDF repository. In our example, the data entries are collection objects with their
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Figure 3.3: Transforming an RDF repository into HTML pages.

metadata. On the right, the HPage has links to various IPages classifying the
underlying RPages that are related with each other by semantic links.

The transformation is based on descriptions on two levels: 1) The layout of the
HTML pages is described on the HTML level by templates using custom tags. 2) The
semantics of the tags is defined on the RDF level in terms of logical rules based on
the input RDF(S) content. The idea is that an HTML designer can design the layout
of the page repository to be generated by using tags without knowing details of the
underlying RDF structures, RDFS ontologies, and Prolog programming. RDF(S)
related knowledge as well as programming capability in Prolog is needed only for
the system programmer when defining the tags. The same tag definitions can be

re-used in applications conforming to similar ontological schemes.

SWeHG provides the HTML designer with three major tags: getProperty, getLinks,
and getView. The tag
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<getProperty name=.. >

is used for rendering a label related to the resource underlying an RPage. For
example, the metadata property values of the bottles and the photo in Figure 3.2
are rendered in this way. The relation can be specified by the system programmer
on the RDF level freely by a binary logical predicate. The tag <getLinks> is used

for rendering links between RPages. For example, the tag

<swehg:getLinks
name="SameLocation"
listType="ul"

listStyle="text-size: 10;"/>

could expand into the following HTML code linking photographs taken at the same

location:

<ul style="text-size: 10;">
<li><a href="entry.Mediacard_00071.html">
View from Eiffel-tower</a></1li>
<li><a href="entry.Mediacard_00143.html">

Cafe Parisienne</a></1i>

</ul>

On the RDF level, the criterion SameLocation for the linkage could be defined by the
predicate below. It associates the attribute SameLocation with the HTML link label

Same Place and the predicate photos WithSameLocation defining the link relation.
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swehg_relation_rule( ’SamelLocation’,
’Same Place’,

photosWithSameLocation) .

photosWithSameLocation(Context, Target) :-
photo(Context), photo(Target),
rdf (Context, _:place, Location),
rdf (Target, _:place, Location),

not (Context == Target).

The tag <getView> renders into a hierarchical index-like facet of category resources
used in IPages. Each category is associated with a set of subcategories and ad-
ditional individuals of the categories. A facet is defined by specifying 1) the root
resource selector, 2) a binary subcategory relation predicate, and 3) a binary relation
predicate that maps the hierarchy categories with the individuals used as leaves in

the facet. For example, the tag

<swehg:getView
roots="buildings"
branches="subclass"
leaves="photoOf"

listType="ul" />

expands recursively into a hierarchical unordered tree (ul), where the leaves are links
to photo record resources related to different building categories. The predicate

definitions for the attribute values can be, e.g., the following:

buildings(URI) :- rdf(URI, rdf:type, ’http://some.org#building’).
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subclass(SubCategory, SuperCategory) :-

rdf (SubCategory, rdfs:subClass0f, SuperCategory).

photoOf (Class, Record) :-
rdf (Instance, rdf:type, Class),

rdf (Record, dc:subject, Instance).

Here the predicate buildings selects the class building as the facet root, and the
hierarchy is expanded along the rdfs:subClassOf property. The photoOf predicate
relates each building type of this tree with a set of photo record resources which are
used as the leaf categories. These are rendered as HTML links to the corresponding
RPages. The tag definitions could also be much more complex than this, depend-
ing on the structure of the RDF(S) repository, and the desired output. The facet
expansion into HTML can be controlled with the help of additional tag attributes

for, e.g., ordering the categories.

The following is an example of a complete RPage template. It could be used for

rendering the images using the HT'ML img-tag and links to related RPages:

<swehg:template selector="photo">
<html>
<body>
<h2><swehg:getProperty
name="Title_0f_Photo"/></h2>
<p><img src="<swehg:getProperty
name="PhotoURL"/>" /></p>

<h3>Photos from the same place:</h3>

<swehg:getLinks
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predicate="sameLocation"
listType="ul"/>
</body>
</html>

</swehg:template>

The tag attribute selector in the tag <swehg:template> tells the criterion for se-
lecting context resources from the RDF repository. Each context resource will have
an RPage of their own on the HTML level. The attribute value, here photo, is
the name of a unary Prolog predicate called selector that should evaluate true for
context resource URIs. An example of a complete [Page template is given below

using the view—i.e., facet—definitions above:

<swehg:template>

<html>
<body>
<h1>Building index</h1>
<swehg:getView
roots="buildings"
branches="subclass"
leaves="photoOf"
orderby="order_alphabetically"
listType="ul"/>
</body>
</html>

</swehg:template>



60

INPUT SWeHG OUTPUT

RDF(S)

repository & Link
b . XML page —_»| Page content XML | Linkage ] Analysis
o generator analyzer Report
0 - HTML

Prolog
predicates

W Processing

instructions

2

HTML  H—— Template . Layout . XSL | HTML
templates proces=ne XSL transformer pages

Figure 3.4: Internal architecture of SWeHG.

3.4 \Website Generation

The process for transforming an RDF(S) repository into HTML pages is defined
by Algorithms 1 and 2. The input of the procedure is a set of HTML templates,
and an RDF(S) repository. The output is an HTML page repository conforming to
the templates. The transformation is based on a set of logical rules for selectors,

properties, links, and facets, which are called views in the templates tag language.

The pages are generated using the HT'ML templates one after another. If a template
is associated with a selector, then it is expanded into a set of RPages corresponding
to the selected context resources, else it is expanded once without a reference to
a context resource. In the latter case, the HPage and [Pages are created. When

generating an HTML page, the tags are expanded into HTML in the ways described
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Figure 3.5: An analysis page created by SWeHG.

in the previous section.

IAlgorithm:RDF2HTML

[Data: Templates T, RDF(S) repository R
[HTMLPageRepository H = empty;
fforeach Template t in T do

if ¢ has a selector rule S then

foreach RDF Resource r in R do

if S(r) == true then
h = createHTMLpage(r, t);
add h to H;

end

h = createHTMLpage(T);
add h to H;

lend

Algorithm 1: Main procedure for the RDF to HTML transformation

Figure 3.4 depicts the architecture of our implementation. The main program is a
Perl script which first builds an XSLT 9 template out of the HT'ML templates using
the module Template processor. This module also writes out a set of Processing
instructions into a separate Prolog source code file. These instructions link template
tags with the Prolog predicates used in them as attribute values. The module XML
page generator is a Prolog program that applies the predicates used in the HT'ML

tags with respect to the RDF repository according to the Processing instructions.
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IAlgorithm:createHTMLpage

[Data: Template t, Context Resource r
[Result: HTML page H
String H = t;
fforeach Tag in H do
h = executeRule(Tag.rulename, r);
replace Tag in H with h;

lend

Algorithm 2: Algorithm createHTMLpage for rendering an HTML template.
Tag.rulename returns the name of the rule, e.g., getProperty. An analysis page

created by SWeHG.

The result is a set of XML files describing the page contents. These XML files are
then transformed using Apache Xalan10 and with the help of the XSLT templates

generated earlier into the final HTML pages.

The intermediate XML files in Figure 3.4 are also used as a basis for the Linkage
analyzer module that tries to identify the following potential problems: Self loops
(a link that points to the page itself), Bad links (link pointing to a non-existing
page), Dead ends (RPages with no outbound links), No way in (an RPage with no
inbound links from any RPages or [Pages), Not in index (an RPage with no inbound
links from any IPage), and Unused rules (rules that are newer used when generating
the HTML repository). The analysis results are represented as HTML pages. This
helps the designer in debugging the specifications. Figure 3.5 depicts a portion of

the result from the analyzer.

On this page the number of in-coming and out-going links can be seen for each
RPage together with a status explanation. The analyzer has found out that the
page with label Aikaisempien yleisten ... is not connected with any other page or
index. Furthermore, the page Airueet has one incoming and two outgoing links but
was not included in any index. This kind of connectivity information is vital when

debugging the logical rules that produce the HTML pages.



63

3.5 Related Work

At the time of writing of the original article, logic and dynamic link creation on
the Semantic Web had been discussed, e.g., in [21, 87]. Our approach is different in
its use of HTML templates and Prolog for describing the static HTML output. In
the RDF Twig tool [109] the RDF to HTML transformation is based on XSLT. A
problem here is that an RDF graph can be serialized in many ways in XML. Different
applications may produce different XML serializations of the same RDF graph, and
thus a number of XSLT templates would have to be written for a single graph. In
our approach only actual changes in the graph structures are relevant, because in
SWI-Prolog, by which we define the logical rules, the RDF graph is processed purely
as triplets. In Spectacle [99] the RDF to HTML transformation is based on APIs.
Then the user must write programs that use the API, and also an application server
is needed. In contrast, our approach is based on tags, and is declarative, which—
we argue—makes the creation of sites technically less demanding in comparison to
Spectacle. In addition, the result of a SWeHG transformation is a set of static pages
whose linkage structure is inferred by logical linking predicates. The site then is not
dependent on an application server, but can be served from any Web server capable

of serving static HTML pages.

In the years that have passed since writing the article in 2004, the bulk of work
related to publishing and utilizing of semantic content has been in the field of se-
mantic portals and dynamic systems. Typical such systems for publishing semantic

content are faceted semantic search portals which have been reviewed in [100].
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3.6 Conclusions

Our initial experiences indicated that the presented RDF to HTML transformation
method was feasible because HTML templates can be created fairly easily, and
they can be adapted to different RDF repositories. Moreover, changes in ontology
versions do not affect the usage of the templates on the HTML level in any way.
The idea of using logic and Prolog for defining the semantics of the tags proved
to be powerful. Complicated semantic link relations and facets can be defined and
modified easily thanks to the declarative nature of logic programming. By using
generic rules it is possible, in principle, to create tag definitions that will apply to

any RDF repository.

In retrospection, the most durable result of this chapter’s work was the use of logical
rules both to algorithmically create the facets based on the annotation ontologies,
and to attach the search items to these facets. This is in contrast to traditional
faceted search systems, such as [86, 43|, where the process of creation of facets and
then indexing of search items according to these facets is often manual. The main
benefit—in addition to the resource savings—is that arbitrary mappings between
search categories and data resources can be flexibly defined. The system infers the
mapping between facets and resources which gives it an intelligent flavor. Further-
more, the HTML pages are linked semantically with each other according to the
ontologies, metadata, and rule base used. To the end-user, the underlying hidden
associations between collection objects is a most interesting aspect of cultural col-

lections. The nature of the associations can be explained to the user by the labels

of the links.

Also the use of tag definitions to specify the layout of the HTML pages seemed a
viable solution, because the tags are not application specific, and can be used also
in different applications that use the same RDF(S) content. For example, we could

use the linkage rules, the selector rules, and the rules generating the facets of the
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indices of the Espoo City Museum on the Semantic Web developed originally for a

semantic portal [50].

However, the tag language of SWeHG was and still is limited, and it can not be
extended easily. Also, the set of different HTML outputs that the tags produce
is limited. The output varies from simple strings to lists of links. In addition,
SWeHG does not offer sufficient tools for testing the tag definitions before the actual
transformation. A preview or debug function would be useful, because when the

RDF(S) database is large, then the transformation process is long.

SWeHG generates static pages in a batch process before publishing them on the Web.
This approach has the following benefits when compared with dynamic semantic
portals: First, the page repository can be published easily by just copying it into a
public HTML directory. SWeHG can be adapted to different contents conforming to
different ontologies. Second, the publication process is independent from semantic
portal providers. No special server software is needed. Third, the pages need no
special maintenance. The static pages are indexed and searched for by general search
engines. Fourth, the pages can be viewed efficiently. Fifth, data security problems
are minimal. And sixth, the properties of the resulting HTML page set can be
analyzed efficiently.

On the other hand, the static approach taken in SWeHG also has, of course, its
limitations. First, static pages can not adapt their content dynamically to different
user or patterns of usage. Second, dynamic systems can be connected more easily
with other services providing additional functionality. Third, if the RDF repository,
the rules, or the HTML templates change, the site has to be regenerated usually
from scratch. Dynamic systems can adapt better to such changes. Fourth, if the
RDF repository is large and many templates are used, then the number and size
of generated pages can be large. In retrospection the limitations of the static,

template based, publication approach outweighed the benefits, and the utilizing
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and publishing of Semantic Web content on the Web went heavily on the dynamic

side of the equation.

3.7 Contributions and Significance for Later Research

The rule-based facet projection and recommendation link generation solutions de-
veloped for SWeHG were later included in the ONTODELLA [108] facet projection
and recommendation engine, which is part of the OntoViews [72] FSS framework.
In this sense, the solutions developed initially for the SWeHG tool had a big impact
on the development of FSS, and were later used in a large number of FSS applica-
tions such as MuseumFinland [52], Orava [65], HealthFinland [60], Veturi [81], and
SW-Suomi.fi [95] to mention just a few.

The work presented in this chapter was also important in realizing the problems
and shortcomings of the faceted search paradigm in general, and faceted semantic
search in particular. These problems are detailed and explained in the next chapter,

and the rest of the dissertation is dedicated to finding solutions to these problems.
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4 Problems of Crisp Faceted Semantic Search

In this chapter a number of fundamental problems of faceted semantic search are
described. The rest of the dissertation then provides solutions and answers to these

problems.

4.1 Lack of Capability to Model Uncertainty

Ontologies and ontology-based—i.e., semantic—knowledge bases often contain un-
modeled and unaddressed uncertainty, which sometimes hinders the ability of the
FSS application to provide high-quality search results. This follows from the fact
that ontologies are based on crisp logic, but our world is inherently uncertain. Also
the information system—i.e., the F'SS application—might be a source of uncertainty.
According to Semantic Web ontologies there are not degrees or probabilities of truth,
but statements are modeled either as true or false. We will consider the following

two kinds of uncertainty:

Uncertainty related to concepts of an ontology The world is full of uncer-
tainty, and situations that are difficult to model using crisp ontological con-
cepts. For example, consider the geographical area Lapland. Lapland is
divided between the countries Finland, Norway, Russia, and Sweden. The
amount of overlap between Lapland and each of the countries varies from
country to country. For example, about 1/3 of the total area of Lapland is
situated in Finland, and Lapland constitutes about 1/4 of the geographical
area of Finland. On the other hand, only about 1/10 of the Lapland is sit-
uated in Russia, and Lapland covers only a tiny fraction of the geographical

area of Russia. These degrees of overlap are difficult to express using the
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standard Semantic Web ontology languages, such as RDFS and OWL. As a
result, an FSS application which has a geographical facet projected from a
geographical taxonomy might return as the first result a search item about
Lapland to the selection Russia even though this might seem unintuitive to

the user, and the result might even not be related to Russia in any way.

Uncertainty related to annotations A search item is either annotated using
an ontological concept or it is not. The ontological languages do not provide
semantics for weighted annotations. This might also result in unoptimal
search results. Consider for example, a photograph of a group of people
eating sausage next to a fire near a lake. On the other side of the lake one
can barely notice a silhouette of a church. A diligent information specialist
will annotate this photo using concepts such as Group, Human, Sausage, Fire,
Fating, Lake, Church. As a result, if an FSS application was generated from
the semantic database which contains this photograph, someone might search
for photographs about churches, and will be surprised to get a photograph of

people eating sausages as the first result.

4.2 Information Overflow: Lack of Ranking

Faceted search does not incorporate the notion of relevance. In faceted search,
search items are either annotated using the categories or mapped onto them using
logic rules. In both cases, the search result for a category selection is the crisp set

of search items annotated to it or its subconcepts.

Thus, all search results are equally relevant, and this is also the reason that the
photograph about sausages might appear as the first result in the list when searching
for churches in the example of the previous section. However, ranking of search

results is a core feature of information retrieval systems [20], and its significance is
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emphasized in environments such as national library collections, national museum
collections, or the Internet where the amount of searchable information is vast [30].
When the amount of information is large, it is very important to be able to give
the most relevant, or most probably relevant search result in the beginning of the
result list. For this to be possible, the search system should be able to produce
accurate ranking of the result set, and faceted search systems are not capable of
doing this. Proponents of faceted search might say, that the user can then refine the
search using another facet, or a subcategory of the selected category. This is not,
however, always an optimal solution, because it might also be the case that the user
has already specified the search in the accuracy of choice, and it would be artificial

to make a further refinement.

4.3 Lack of User-Centric Facets

Taxonomies or ontologies often consist of complicated professional concepts needed
for accurate indexing and annotation of content. Ontologies are typically organized
according to a formal division of the topics or based on an upper-ontology. This
is beneficial because it enables automatic reasoning over the ontologies. However,
such categorizations are not necessarily useful as search facets because they can be

difficult to understand and too detailed from the end-users viewpoint.

In this case, the user needs a view to the content that is different from the machine’s
or indexer’s viewpoint. However, current faceted systems do not differentiate be-
tween indexer’s, machine’s, and end-user’s views. For example, the HealthFinland
portal publishes health content to ordinary citizens. Much of the material used has
been indexed using complicated medical terms and classifications, such as Medical
Subject Headings'' (MeSH). Since the end-user is not an expert of the domain and

is not familiar with the professional terms used in the ontology, the hierarchical

Uhttp:/ /www.nlm.nih.gov/mesh/
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organization of the ontololgy is not suitable for formulating end-user queries or pre-
senting the result set, but only for indexing and machine processing. For this reason,
in HealthFinland it was decided to create separate end-user facets and map them

onto the annotation ontologies. The next sections provide solutions for this kind of

mapping.
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5 Introduction to the Fuzzy Approach

This part of the dissertation will present solutions to the problems presented in
Chapter 4 based on fuzzy set theory. Fuzzy set theory was chosen as a solution ap-
proach, because it is a widely used formalism to capture imprecise knowledge, and
it has been applied successfully to many contexts in which uncertain or imprecise
reasoning is required [64, 115, 27]. Specific to the semantic search context of this
dissertation, fuzzy sets have been used to extend Semantic Web ontologies and de-
scription logic formalisms underlying these ontologies to provide uncertain reasoning
(97, 96, 78], and to enhance query answering and semantic search [114, 16, 110]. A

short review of this work will be given in Section 6.7 after fuzzy FSS is presented.

The problems addressed and solutions provided by the fuzzy approach are outlined
in Table 5.1. This chapter will provide a short introduction to fuzzy sets, in order
to equip the reader with required preliminary knowledge to understand the fuzzy
FSS framework presented in Chapter 6. It will be seen that the fuzzy set theory
is essentially an extension of the classical crisp set theory. Chapter 6 will present
the fuzzy faceted semantic search (FFSS) framework. FFSS is based on weighted
annotations, and supports the mapping of separate end-user facets onto annotation
ontologies. Chapter 7 will present a method to produce weighted annotations by
integrating the widely used term frequency - inverse document frequency (TF-IDF)
weighting [93] with FFSS. Chapter 8 will summarize the contributions of the work
presented in this part, and raise some remaining problems that will be then answered

in the Probabilistic Approach part of the dissertation.
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Table 5.1: The problems addressed and the solutions provided by fuzzy FSS.

Problem Solution Chapter
Semantic Web ontologies lack of support for | Annotations are weighted; i.e., fuzzy. Anno- | 6., 7.
modeling uncertainty inherent in the world, in- | tations can be weighted algorithmically by an

cluding the F'SS system itself. This shortcom- | ontological extension to the TF-IDF weighting

ing hinders the system’s ability to provide high | method.

quality search results for the user.

The crisp faceted semantic search lacks the ca- | The degrees of relevance can be determined | 6.

pability to rank search results based on rele-

and search results ranked accordingly.

vance.

3. | Concepts of annotation ontologies are not al- | Distinct end-user’s facets to search items can | 6.

ways suitable to be presented as search cate- | be created and mapped fuzzily onto index-
gories on the search GUIL ing ontologies and the underlying search items

(documents). Boolean combinations of anno-

tation concepts can be used in the mappings.

5.1 Cirisp Sets

To indicate that an individual object x is a member of a set A, we write x € A. The
opposite case, i.e., that = is not a member of A, is written = ¢ A. The universal set,
denoted by U, is the set of all individual objects of concern in a particular universe
from which sets can be formed. A set is defined by a characteristic function, that
declares which elements of U are members of the set and which are not. Set A is

defined by its characteristic function X4 as follows:

The Boolean set operations union, intersection and complement are defined by their

characteristic functions as follows:
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Union
Xaup(z) = mazx(Xa(z), Xp(x)), Ve e U (5.2)
Intersection
Xanp(x) = min(Xa(x), Xg(z)), Ve € U (5.3)
Complement
XﬁA(ZL') =1- XA([L’), Ve e U (54)

For each x € U, when X4(x) = 1, x is a member of A; when X4(xz) = 0, x is a
non-member of A. Thus, for each possible set A, each x € U is either a member of
A or a nonmember of A, and there are no degrees of membership; i.e., the value of

X4(z) can not be something in between 0 and 1.

5.2 Fuzzy Sets

The characteristic function of any crisp set A can be generalized such that the value
assigned to each individual z € U fall within the range [0,1] and indicates the
membership grade of these elements in the set A, such that higher values denote
higher degrees of membership. Such a function is called a membership function, and
the set defined by it is a fuzzy set. The membership function, thus, maps members
of a universal set U, which is still a crisp set, to a real number in the range [0, 1].

This function is denoted

U — [0,1]. (5.5)

The following, so called standard fuzzy set operations, generalize the three basic oper-
ations on crisp sets introduced above—the complement, union, and intersection—to

fuzzy sets:
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Standard complement

p-a() =1— pa(z), Vo €U (5.6)
Standard union
paup(r) = max(pa(x), pp(x)), Vo € U (5.7)
Standard intersection
panp(x) = min(pa(z), ps(r)), Vo e U (5.8)

As can be seen, the standard fuzzy operations perform precisely as the correspond-
ing operations for crisp sets, as defined by the characteristic function. These are,
however, not the only possible generalizations of the crisp set operations. For each of
the three operations there exists a broad class of functions whose members qualify as
fuzzy generalizations of the classical operations. Thus, when adapting fuzzy sets to
a specific application, it is possible to choose or determine the fuzzy operations that
best fit to the context of the application. This greatly enhances the usefulness and
applicability of fuzzy set theory. To qualify as a fuzzy generalization of a crisp set
operation, the generalization must possess certain properties that intuitively guar-
antee that the fuzzy operation indeed is a generalization of the crisp set operation it
claims to generalize. The properties that each fuzzy generalization operation must
satisfy are defined as a set of axioms. As an example, we show next the basic defi-
nition of the properties that a function has to satisfy in order to qualify as a fuzzy

complement operation.

Let pa(z) be the degree to which z € U belongs to the fuzzy set A. Let cA denote
the fuzzy complement of A. Then p.4(x) can be interpreted both as the degree to
which x belongs to cA, and as the degree to which = does not belong to A. The
complement cA is defined by a function ¢ : [0,1] — [0, 1], which assigns a value

c(pa(z)) to each membership degree pa(x) of any given fuzzy set A. The value
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c(pa(z)) is interpreted as the value of pea(x); ie., c(pa(z)) = pea(z). To qualify as

a fuzzy complement, any function ¢ must satisfy at least the following two axioms:

Axiom cl

c(0)=1and c¢(1) =0 (5.9)

Axiom c2

Va,b € [0,1], if a <b, then c(a) > c(b) (5.10)

As can be seen, Aziom cl guarantees that ¢ produces correct complements for crisp
sets, and Aziom ¢2 guarantees that when a membership grade in A increases by
changing x, the corresponding membership grade in cA does not increase as well.
Similar axioms are defined for the other fuzzy set operations as well, and in fuzzy

FSS these will be used.
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6 Fuzzy Faceted Semantic Search

This chapter is largely based on the article:
Markus Holi and Eero Hyvénen. 2006. Fuzzy View-Based Semantic Search [46].
In: Proceedings of the Asian Semantic Web Conference (ASWC2006).

This chapter presents a fuzzy version of the faceted semantic search paradigm, called
fuzzy faceted search (FFSS) and will provide solutions to the problems of crisp FSS
raised in Chapter 4. Table 5.1 summarizes the problems addressed and the solutions

provided in this chapter.

The lack of support for modeling uncertainty in Semantic Web ontologies is given a
partial solution by creating a formalism to weight annotations, and to reason based
on these annotation weights in the context of FSS. The weighting of annotations is
then used as a basis for computing the degrees of relevance of documents in relation
to faceted search queries. Fuzzy FSS also includes a facility for the creation of
distinct end-user’s views—i.e., facets—to search items, and for the mapping of these

facets onto the annotation ontologies and the underlying search items (documents).

The fuzzy FSS framework presented here generalizes crisp FSS (CFSS) from using
crisp sets—as described in Section 2.2—to fuzzy set theory. In the following, this
scheme is first developed using examples from the HealthFinland portal content. Af-
ter this an implementation of the system is presented. Chapter 7 will then provide
a method to create weighted annotations that can be utilized in FFSS. The weight-
ing is done algorithmically based on textual content of the annotated documents.
Chapter 8 will summarize the contributions and remaining problems of the fuzzy

approach.
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6.1 Architecture of the Framework

Search Items Annotation Ontology Search Views
V1 V2
sc1 scs
sc2
|— sca
sc3

——pp» SubConceptOf
S Fuzzy annotation

------ Y Fuzzy mapping
.- Annotation projection

Figure 6.1: Components of the fuzzy faceted semantic search (FFSS) framework.

Figure 6.1 depicts the architecture of the fuzzy faceted semantic search framework.
Next, we describe the components of the framework in short, and show how the

set-theoretic interpretation of crisp faceted search is extended to fuzzy sets:

Search Items The search items are a finite set of documents D depicted on the
left. As in CFSS, also in FFSS D is the set of individual objects from which
sets are formed. Thus, D is the universal set of the fuzzy faceted search

framework.

Annotation Ontology Asin CFSS the search items are annotated according to
the ontology. This might happen either automatically, semi-automatically,

or manually by a human indexer. The ontology consists of two parts:

First, a finite set of annotation concepts AC. Recall from part I that accord-
ing to the set-theoretic interpretation of CFSS, an annotation concept is seen

as a set of documents. This is because in Section 2.2 search categories were
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defined as sets of search items, and in CFSS annotation concepts are used
as search categories. In FFSS this set theoretic interpretation of annotation
concepts is extended to fuzzy sets; i.e., each annotation concept AC; is seen
as a fuzzy subsets of D. Intuitively, the degree of membership of a document
in an annotation concept represents the relevance of the document to the an-
notation concept; i.e., how relevant the document would be to an individual
interested in the annotation concept. Annotation concepts AC; € AC are

atomic; i.e., not defined as e.g. Boolean combinations of other concepts.

Second, the annotation ontology consists of subsumption relations between
the annotation concepts, constituting a concept hierarchy. In different anno-
tation ontologies these subsumption relations may be defined using different
properties, such as subClassOf, partOf, or broaderTerm, depending on the
used ontology language (RDFS, OWL, SKOS, etc.), and the subject do-
main in question. Whatever the exact properties used, in the context of
FFESS these subsumption relations are interpreted as concept inclusion ax-
ioms AC; C AC;', where AC;, AC; € AC are annotation concepts, and
1,j € N, such that N is the set of natural numbers, and 7 # j. Recall,
that in Section 2.2 subcategory relationships between search categories were
interpreted as the subset relation. Thus, also in this point FFSS extends
the crisp set theoretic interpretation of CFSS to fuzzy sets. Intuitively, the
subset relation between the annotation concepts means, that if a document
is relevant to a subconcept of AC; it has to be relevant also to AC;. Notice
that we do not aim to redefine the semantics of the various subsumption
properties used in ontologies, but only to give them a set theoretic meaning

in the context of faceted search.

Facets Asin CFSS, also in FFSS facets are sets of hierarchically organized search
categories for the end-user to use during searching. In contrast to CFSS, in

FFSS the facets are created and organized with end-user interaction in mind

12Subset relation between fuzzy sets is defined as: AC; € AC; iff pac,(Dr) > pac, (D),
VD € D, where D is the universal set.
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and may be non-identical to the annotation concepts. As a natural extension
to the set-theoretic interpretation of faceted search of Section 2.2, in FFSS

each search category SC; is a fuzzy subset of D.

Recall from 2.2, that in CFSS the intersection of documents related to se-
lected search categories is returned as the result set. In FFSS, the intersection

is replaced by the fuzzy intersection.

Search items related to a search category SC; can be found by mapping them first
onto annotation concepts by annotations, and then by mapping annotation concepts
to SC;. The search result S is not a crisp set of search items S = SC1N...NSC, =
{Docy, ..., Doc,, } as in CFSS, but a fuzzy set where the relevance of each item is

specified by the value of the membership function mapping:

S = SCl Nn..N SCn = {(DOCl, ,Ul), ceey (DOCm, um)} (61)

In the following the required mappings are described in detail.

6.2 Fuzzy Annotations

Search items (documents) have to be annotated in terms of the annotation concepts—
either manually or automatically by using e.g. logic rules. Recall from Section 2.2,
that in CFSS an annotation of a search item to a search category is interpreted as an
explicit statement of the membership of the search item in the set of search items
defining that category. In Figure 6.1, annotations are represented using bending
dashed arcs from Search Items to Annotation Ontology. For example, in CFSS the
dashed arc between Docl and B would be interpreted as an explicit statement of

the membership of Docl in the set of search items defining B, in effect, Docl € B.
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In our approach, the relevance of a document with respect to an annotation concept
my vary. This represents the fact that for a user interested in the concept B in
Figure 6.1, Docl might be more or less relevant than Doc2 even though both of
these documents are members of the set defining B. This representation of degrees
relevance is achieved by extending the crisp set interpretation of an annotation from
the assertion of membership to the assertion of a degree of membership. For example,
the dashed arc between Docl, and B in Figure 6.1 is interpreted as A, (poc1) €
[0,1]. Notice, that we do not interpret the fuzzy annotations directly as degrees
of membership pg(Docl), but only as assertions of degree of membership. This
is because in order to know the degree of membership of the document D; in the
annotation concept AC; we have also to take into account the degree of membership

of D; in the subconcepts of AC; as described below.

Based on the fuzzy annotations, the membership function of each fuzzy set AC; €
AC can be defined. This is done based on the meaning of subsumption, i.e. inclusion.
One concept is subsumed by the other if and only if all individuals in the set denoting
the subconcept are also in the set denoting the superconcept; i.e., if being in the
subconcept implies being in the superconcept [90]. In terms of fuzzy sets this means
that AC; C ACj, and piac,(D;) = v implies that pac,(D;) > v, where v € (0, 1}, D;
is a search item, and pac;(D;) and pac,(D;) are the membership functions of sets

AC; and ACj, respectively.

Thus, we define the membership degree of a document D; in AC; as the maximum
of its concept membership assertions made for the subconcepts of AC; (including

AC;) itself.

VD; € D, piac;(D;) = max (A, .. (b)), where AC; C AC (6.2)

For example, assume that we have a document D1 that is annotated by the annota-
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tion concept Asthma with weight 0.8,1.e. A,, ,, p1) = 0.8, and that D1 is also an-
notated with weight 0.1 to the annotation concept Diseases;i.e., A,,, ... (p1) = 0.1.
Assume further, that in the annotation ontology Asthma is a subconcept of Diseases,

i.e. Asthma C Diseases. Then,

,UDz'seases(Dl) = ma$(A,uAsthma(D1)’ AuDiseases(Dl)) = max(0.8, 0.1) =0.8 (6.3)

6.3 Fuzzy Mappings

Each search category SC; in a facet V; is defined using concepts from the annotation
ontology by a finite set of fuzzy concept inclusion axioms that we call fuzzy mappings.
M is the set of all fuzzy mappings in the FFSS system, and each fuzzy mapping M},

is defined as:

M, = AC; €, SC;, where AC; € AC,SC; €V, i,5,k,l € N (6.4)
where N is the set of natural numbers, and v € (0, 1] .

Mj, constrains the meaning of a search category SC; by telling to what degree v the

membership of a document D,, in an annotation concept AC; implies its membership

in SCJ

Thus, fuzzy inclusion is interpreted as fuzzy implication. The definition is based
on the connection between inclusion and implication described previously. This is

extended to fuzzy inclusion as in [97, 25]. We use Goguen’s fuzzy implication, i.e.
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i(pac;(Dr), pse,(Di)) = 1if pse, (D) = pac;(Di), and

(6.5)
,uscl(Dk)/,uch (Dk) otherwise, VD, € D

Applying this fuzzy implication, each fuzzy mapping M, = AC; C, SC; defines a

fuzzy set SC’JM’“ s.b. pgom (Dr) = vipac,(Dy), VD, € D, where i(pac, (D), psc,(D1)) =
J

v and v € (0,1]. Apart from its semantic compatibility, Goguen’s implication was

chosen, because it provides a straight-forward formula to compute the set S C']M k.

In FFSS a search category SCj is the union of its subcategories and the sets de-
fined by the fuzzy mappings pointing to it. This is called the union principle in
FFSS, it is illustrated in Figure 6.2(f), and a concrete example of the application of
this principle will be given in Section 6.4 after fuzzy mappings to Boolean combina-
tions of annotation concepts will be described. Using Godel’s union function!® the

membership function of SCj is

psc, (D;) = max(pse, (Ds), ..., s, (D), HgcMn (Ds), '--7/J/SCJMm(Di>>7VDi €D
(6.6)

where SC _, are subcategories of SCj}, and M, __,, are the fuzzy mappings pointing
to SC;. This extends the idea of faceted search, where search categories correspond

directly to annotation concepts.

Let us continue with the example case in the end of Section 6.2 where we defined
the membership of document D; in the annotation concept Diseases. If we have a
fuzzy mapping

M, = Diseases Cy 1 Food& Diseases (6.7)

Braus(Di) = max(pa(Ds), pp(D;)),¥D; € D
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then—if this is the only mapping that the search category Food & Diseases has,
and Food € Diseases does not have subcategories—the membership degree of the

document Dy in Food& Diseases is
,UFood&Diseases(Dl) = MDiseases(D]-) *0.1=0.8%0.1=0.08 (68)

Intuitively, the fuzzy mapping reveals to which degree the annotation concept can
be considered a subconcept of the search category. Fuzzy mappings can be created
by a human expert or by an automatic or a semi-automatic ontology mapping tool.

In Figure 6.1, fuzzy mappings are represented using straight dashed arcs.

The fuzzy mappings of a search category can be nested. Intuitively, in this case a
search category is explicitly mapped to both an annotation concept and one of its
subconcepts, as depicted in Figure 6.2(e). Formally, two fuzzy mappings M; and

My are nested if

M, = AC; C,;, SC;,
M, = AC; C, 8C;, and (6.9)
AC; C AC;.

To avoid the double mapping of the subconcept—through the explicit mapping,
and through the mapping of the superconcept—we dissolve this nesting. In effect,
we modify the fuzzy mappings so that documents will be projected to the search
category only through the most specific mapping. To achieve this, nesting between

the fuzzy mappings M; and M, above is interpreted as a shorthand for

This interpretation actually dissolves the nesting. For example, if we have mappings
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My = Animal nutrition Coq1 Nutrition,., and

(6.11)
My = Nutrition Cg9 Nutrition,,
and in the annotation ontology
Animal nutrition C Nutrition, (6.12)
then M, is actually interpreted as
M, = Nutrition N ~Animal nutrition Cyg Nutrition,.. (6.13)

In some situations it is useful to be able to map a search category to a Boolean
combination of annotation concepts. For example, if a facet contains the search
category Food & Fxercise then those documents that talk about both nutrition
and exercise are relevant. Thus, it would be valuable to map Food & FExercise
to the intersection of the annotation concepts Nutrition and Exercise. To enable
mappings of this kind, a Boolean combination of annotation concepts can be used

in a fuzzy mapping. The Boolean combinations are:

1. AC,N..NAC, (intersection),
2. AC,U...UAC, (union), and

3. —AC, (negation),

where ACY, ..., AC,, € AC.

In the next section, a detailed description is presented on how to determine the
fuzzy sets corresponding to search categories in each of the Boolean cases. The
real-world cases of Figure 6.2 will be used as examples in the text. In Section 6.5
we describe how to execute the faceted search based on the projected annotations

and the end-user’s selections.
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6.4 Mappings to Boolean Concepts

In the following, the membership function definition for each type of Boolean concept

is listed, according to the widely used Godel’s functions':

Union Case AC; = AC;U...UAC,,: The membership degree of a document in AC;
is the maximum of its concept membership values in any of the components

of the union concept:

VD € D, pac,(Dr) = max(pac,(Dy)), wherei€l,...,n. (6.14)

In the example union case of Figure 6.2(c) we get

H Thinnessu Obesity(D5)
= maz (i phinpess(D5): 1 Obesity(D5)) (6.15)
= max(0,0.8) = 0.8.

Intersection Case AC; = AC; N ...N AC,: The membership degree of a docu-
ment in ACj is the minimum of its concept membership values in any of the

components of the union concept:
VD € D, pac,(Di) = min(pac,(Dy)), whereiel,...,n. (6.16)

In the example intersection case of Figure 6.2(b) we get

I Nutritionn Ezercise(P1)

= man(t Nytrition(DV): 1 Eyercise(P1)) (6.17)
=min(0.4,0.3) = 0.3.

If A and B are fuzzy sets of the universal set X, then paup(r) = maz(ua(x), us(z)),
wans(x) = min(ua(x), ps(x)), and p-a(x) =0, if pa(x) > 0, 1 otherwise, Vo € X.
Notice, that the Godel complement differs from the standard complement introduced in Section
5.2. TIt, however, complies with the axioms of fuzzy complement introduced in Section 5.2, and
represents well the intuition of semantic faceted search that documents not annotated at all to a
concept belong to its complement, and other documents—no matter how small the membership
degree—are still considered members.
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Figure 6.2: Real-world examples of annotation projection cases
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Negation Case AC; = -AC;: The membership degree of a document in ACj is

1 if the membership degree of the document in ACY}, is 0, and 0 otherwise.

VD, € D, HAC; (Dk) =0 Zf ,uAcl(Dk) > 0 and

(6.18)
prac; (D) = 1if prac,(Dy) = 0.
In the example negation case of Figure 6.2(d) we get
H- Hereditary eye—diseases<D4) =0, (6.19)

because ( (D4) =0.9) > 0.

M Hereditary eye-diseases
Notice, that in Figure 6.2(d), the search category Food and Diseases is
mapped to the intersection of Diseases and —Hereditary eye-diseases, instead
of directly mapping to the negation concept. This is because it seems that
in real-world situations search categories are often not mapped directly to
negations of concepts, but negation is often used as a component of another
Boolean concept. In fact, we could not find any good example of mapping of

a search category directly to a negation concept.

After the membership function of each Boolean concept is defined, the membership
functions of the search categories can be computed based on the fuzzy mappings.
This is done using the wunion principle described in Section 6.3. For example, in
Figure 6.2(f) the projection of document D6 to the search category Weight Control
is done by first computing the membership degree of D6 in the relevant annotation

concepts:

'“ThmnessuObeszty(De’) = max(,uThmness(D@, /J/Obesity(D6)) = max(O, 07) =0.7

F Body weight<D6) =0.7
(6.20)

Now, the fuzzy mapping M; with weight 11 = 1 between the union concept

Thinness U Obesity and Weight Control yields the membership degree

1224 (DG) = ,uThinnessUObesity(DG) ¥V = 0.7%1=0.7. (621)
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The fuzzy mapping M, with weight 15 = 0.8 between the annotation concept Body
weight and Weight Control yields the membership degree

101, (D6) = pwweight controt(D6) % v = 0.7 % 0.8 = 0.56. (6.22)

Because each search category is the union of its subcategories and the sets defined
by the fuzzy mappings pointing to it, and Weight Control does not have any sub-

categories, we get

Uw eightControl(D6) = max(par, (D6), par, (D6)) = max(0.7,0.56) = 0.7.  (6.23)

6.5 Performing the Search

In faceted search the user can query by choosing at most one category from each
facet. Recall from Section 2.2 that in CFSS a search is defined as the intersection of
the result sets corresponding to the selected search categories; i.e., S =N SC;, Vi €

1, ..., k, where the user has selected the search categories SC1, ..., SC}.

In FFSS we extend the crisp intersection to fuzzy sets. Using Godel’s intersection

[115], we have:

s(Dj) = min(psc, (D), ... psc, (D;)), YD; € D. (6.24)

As a result, search results can be sorted according to relevance in a well-defined

manner, based on the values of the membership function.
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6.6 Implementation

In the following an implementation of our framework is presented. In Sections 6.6.1
and 6.6.2, RDF [7] representations of fuzzy annotations and facets are described,
respectively. Section 6.6.3 presents an algorithm for the annotation projection dis-

cussed in Section 6.4.

6.6.1 Representing Fuzzy Annotations

We comply with Semantic Web standards, we created an RDF representation for
fuzzy annotations. In the representation each document is a resource represented by
an URI, which is the URL of the document. The fuzzy annotation of the document is
represented as an instance of a "Descriptor’ class with two properties. 1) A 'describes’
property points to a document URI, and 2) a ’hasElement’ property points to a
list representing the fuzzy annotations. The fuzzy annotation is an instance of a
"DescriptorElement’ class. This class has two properties: 1) "hasConcept’ which
points to the annotation concept, and 2) ’hasWeight’, which tells the weight; i.e.,
the fuzziness of the annotation. For example, the fuzzy annotation of the document

D1 in Figure 6.2 is represented in the following way.

<!-- instances of DescriptorElement represents fuzzy annotations-->
<DescriptorElement rdf:ID="descriptorelement_63">
<!-- hasTerm points to the concept to which a document is annotated,
here it is a MeSH term.-->
<hasTerm rdf:resource="&mesh;D004032"/>
<!-- hasWeight tells the degree of membership of the document in the fuzzy set
that represents the concept which hasTerm points to-->
<hasWeight>0.4</hasWeight>
</DescriptorElement>
<DescriptorElement rdf:ID="descriptorelement_64">
<hasTerm rdf:resource="&mesh;D015444"/>
<hasWeight>0.3</hasWeight>
</DescriptorElement>
<!-- Instance of descriptor class defines the annotation of a document -->

<Descriptor rdf:ID="Descriptor_6">
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<!-- describes points to the annotated document>

<describes rdf:resource="#D1"/>

<!-- The hasElement is a collection that contains the individual fuzzy
annotations (DescriptorElement instances) of the document-->

<hasElement rdf:parseType="Collection">
<DescriptorElement rdf:about="#descriptorelement_63"/>
<DescriptorElement rdf:about="#descriptorelement_64"/>

</hasElement>

</Descriptor>

Also the projected annotations are represented in the same manner.

6.6.2 Representing Search Facets

We created an RDF representation of the facets and the mappings between the
search categories of the facets and the annotation concepts. Our representation
is based on the Simple Knowledge Organization System (SKOS) [10, 12]. We
chose SKOS mainly because it provides readily defined properties for represent-
ing mappings between concepts. For example the search categories Nutrition and

Nutrition& Diseases in Figure 6.2 are represented in the following way:

<skos:Concept rdf:ID="Nutrition">
<skos:preflLabel xml:lang="en">Nutrition
</skos:prefLabel>
<fuzzy:mapping>
<rdf:Description>
<skosMap:narrowMatch rdf:resource="&mesh;D009747"/>
<fuzzy:degree>0.9</fuzzy:degree>
<rdf:Description>
</fuzzy:mapping>
<fuzzy:mapping>
<rdf:Description>
<skosMap:narrowMatch rdf:resource="&mesh;D000824"/>
<fuzzy:degree>0.1</fuzzy:degree>
<rdf:Description>
</fuzzy:mapping>
</skos:Concept>
<skos:Concept rdf:ID="FoodAndDisease">
<skos:prefLabel xml:lang="en">Food and Disease
</skos:prefLabel>
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<skos:broader rdf:resource="#Nutrition"/>
<fuzzy:mapping>
<rdf:Description>
<skosMap:narrowMatch>
<skosMap:AND>
<rdf:1i rdf:resource="&mesh;Diseases"/>
<rdf:1i>
<skosMap:NOT>
<rdf:1i rdf:resource="&mesh;D015785"/>
</skosMap:NOT>
</rdf:1i>
</skosMap: AND>
</skosMap:narrowMatch>
<fuzzy:degree>0.25</fuzzy:degree>
<rdf:Description>
</fuzzy:mapping>
</skos:Concept>

We use the narrowMatch property of SKOS for the mapping because its semantics
corresponds closely to the implication operator as we want: If a document d is
annotated with an annotation concept AC:, and AC] is a narrowMatch of a search
category SC1, then the annotation can be projected from AC) to SCy. The degree
property corresponds to the degree of truth of the mapping used in SKOS.

6.6.3 Projection of Annotations

We implemented the projection of annotations—i.e., the computation of the mem-
bership degrees of the documents in each search category—using the Jena Semantic

Web Framework!®. The implementation performs the following steps:

1. The RDF data described above is read and a model based on it is created.
This involves also the construction of the concept hierarchies based on the

RDF files.

2. The nested mappings are handled as described in Section 6.3.

5http://jena.sourceforge.net/
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3. The membership function of each annotation concept is computed using the

method described in Section 6.2.

4. The membership function of each search category is computed using the

method described in Section 6.3.

6.7 Related Work

We have applied the idea presented by Straccia [97] in his fuzzy extension to the
description logic SHOIN(D) and Bordogna [25] of using fuzzy implication to model
fuzzy inclusion between fuzzy sets. Recall, that in FFSS the concepts and search
categories are modeled as fuzzy sets, and the fuzzy inclusion is used to model the
mapping of search categories to annotation concepts. However, in contrast to the
fuzzy extensions of description logics, FFSS operates under the closed world as-
sumption. Thus, something is true if it is found in the current knowledge base,
otherwise it is false. Under the open world assumption used in description logics
something is false only if it is logically impossible; i.e., if it is not possible to con-
struct a knowledge base in which the statement would be found true. Besides the
fuzzy extension of Straccia, also other fuzzy extensions to description logic exist,

such as [96, 78].

Zhang et al. [114] have applied fuzzy description logic and information retrieval
mechanisms to enhance query answering in semantic portals. Their framework is
similar to ours in that both the textual content of the documents and the semantic
metadata is used to improve information retrieval. Chapter 7 will describe a method
by which the textual content of documents can be used to weight annotations.
However, the main difference in the approaches is that their work does not help the
user in query construction whereas the work presented in this paper does this by

providing an end-user specific view to the search items.
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Akrivas et al. [16] present an interesting method for context sensitive semantic
query expansion. In this method, the user’s query words are expanded using fuzzy
concept hierarchies. An inclusion relation defines the hierarchy. The inclusion re-
lation is defined as the composition of subclass and part-of relations. Each word
in a query is expanded by all the concepts that are included in it according to the
fuzzy hierarchy. In [16], the inclusion relation is of the form P(a,b) € [0,1] with
the following meaning: A concept a is completely a part of b. High values of the
P(a,b) function mean that the meaning of a approaches the meaning of b. In our
work the relation itself—i.e., inclusion—is fuzzy, and not only the sets. This fuzzy
inclusion was interpreted as fuzzy implication, meaning that the inclusion relation
itself is partial. This interpretation enables the modeling of the vague or inexact

relations; i.e., fuzzy mappings using fuzzy logics.

Widyantoro and Yen [110] have created a domain-specific search engine called PASS.
The system includes an interactive query refinement mechanism to help to find the
most appropriate query terms. The system uses a fuzzy ontology of term associa-
tions as one of the sources of its knowledge to suggest alternative query terms. The
ontology is organized according to narrower-term relations. The ontology is auto-

matically built using information obtained from the system’s document collections.

6.8 Summary

This chapter presented the fuzzy faceted semantic search (FFSS) framework, which
extends the C'FSS from crisp sets to fuzzy sets. In FFSS the annotation concepts
and search categories are modeled as fuzzy sets of document instances. This fuzzyfi-
cation is based on weighted document annotations, such that the annotation weight
indicates the degree of membership of the document in the fuzzy set represented by
the concept. The membership degree represents the relevance of the document to

the annotation concept.
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FFESS supports the definition of separate end-user facets that are then mapped to the
annotation concepts using fuzzy mappings. The end-user facets can be mapped to
either individual annotation concepts or Boolean combinations of these annotation
concepts. In the mappings fuzzy generalizations of crisp set operations are used. The
used fuzzy set operations are complement, intersection, union, and inclusion (i.e.,
subset). FF'SS is a generalization of crisp FSS in the sense that the crisp version is a
special case of FFSS such that both the annotation weights, and the fuzzy mapping
values are either 0 or 1. As the FFSS is dependent on the existence of weighted
annotations it is important to be able to create such annotation weights easily. The
next Chapter (7) presents a method to integrate term frequency - inverse document
frequency (TF-IDF) weighting with annotations of documents to algorithmically

produce such annotation weights.

Chapter 7 also provides a preliminary empirical evaluation of FFSS that was con-
ducted in the year 2006 when the article on which the chapter is based was first pub-
lished. A more complete evaluation of FFSS, is presented in Chapter 13. According
to both of these evaluations the document rankings provided by FFSS significantly

improve retrieval performance over CFSS.
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7 Integrating Term Frequency - Inverse Document
Frequency (TF-IDF) Weighting with Fuzzy

Faceted Semantic Search

This chapter is largely based on the article:

Markus Holi, Eero Hyvonen, and Petri Lindgren. 2006. Integrating tf-idf Weighting
with Fuzzy View-Based Search(}8]. In: Proceedings of the ECAI Workshop on Text-
Based Information Retrieval (TIR-06).

This chapter presents a method to weight existing crisp annotations using an on-
tological extension of the widely used TF-IDF term weighting scheme [93]. The
fuzzy annotation weight reflects the relevance of the document to the annotation
concept, and in the context of FFSS it can be used as the membership degree of the
individual representing the document in the fuzzy set representing the annotation

concept.

The method presented in this chapter is important because it presents an algorith-
mic way to weight existing crisp annotations. The manual weighting of annotations
might prove to be in many cases too arduous a task. Furthermore, this same weight-
ing method can be used also to produce the probabilistic annotations required by the
probabilistic faceted semantic search framework that will be presented in Chapter

11.

In the following, we will first briefly describe TF-IDF weighting method, and then
present the ontological extension to it. After the ontological extension of TF-IDF

is developed, a test implementation and evaluation is presented.
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7.1 The TF-IDF Method

The TF-IDF [93] weighting method is often used in information retrieval. It is
a statistical technique to evaluate how important a term is to a document. The
importance increases proportionally to the number of times a word appears in the
document but is offset by how common the word is in all of the documents in the
document collection. TF-IDF is often used by search engines to find the most
relevant documents to a user’s query. There are many different formulas used to
calculate TF-IDF. A widely used formula that calculates a normalized TF-IDF

weight!6 is presented below. The formula gives values between 0 and 1.

The term frequency ¢ f, poc, of term ¢; in a document Doc; gives a measure of the
importance of the term within the document. In the formula that we used, tf;, po,

is simply the number of occurrences of ¢; in Doc;.

The inverse document frequency ¢df is a measure of the general importance of the
term. In the formula that we used, idf;, is the natural logarithm of the number of
all documents N divided by df;,—the number of documents containing the term ¢;,

1.e.

idf, = log 7+ (7.1)

The normalized TF-IDF weight of the term ¢; in document Doc; is

tfti DOCJ' * detz

- (7.2)
\/sz\il (tftiDOCj * detz)2

tf_ldftl Doc;

16See, http://www.sims.berkeley.edu:8000/courses/is202/f05/LectureNotes/202-20051110.pdf
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where M is the number of terms in Doc;. A high weight in TF-IDF is reached by
a high term frequency in the given document and a low document frequency in the

whole collection of documents.

7.2 Ontological Extension of TF-IDF

We extended the TF-IDF weighting method so that it can be used to weight exist-
ing crisp document annotations. A crisp annotation of a document Doc; is the set
Apoe; = {ACY, ..., AC,}, where ACY, ..., AC, are concepts of the annotation ontol-
ogy. The weighting is done based on the textual content of the document and the

description of each concept ACY, ..., AC,, in the ontology.

The main idea is that instead of calculating the importance of each word to a
given document Doc; we calculate the importance of each concept in ADOCJ. to the

document. The weighting of the annotation of Doc; is done as follows:

1. A set of words W, is created for each concept in Ap,,. The set is the union

of the labels of AC; and the labels of the subconcepts of AC; in the ontology.

2. The term frequency ¢ fac,poc; for each AC; in Doc; is counted. This is done
by reading (automatically) through Doc; and each time that a word that
belongs to the set Wac, is encountered tfac;poc; 1s increased by one. The
counter starts from 1, thus if there are no occurrences of AC; in Doc;, then
tfac;poc; = 1. This is to recognize the fact that if a document is annotated
using AC; then AC; is relevant to the document even if the content does not

speak of AC; directly.

3. The number of documents annotated with ACj, i.e. dfac, is counted.



99

Now

N

idf ac, = log(deC.

) (7.3)

where N is the number of documents in the collection, and

tfac;pDoc; * 1df ac,

\/Zi\il (thCiDOCj * ideCi )2

where M is the number of concepts in Apg, -

The ontological extension of TF-IDF presented above offers some benefits when
compared to traditional TF-IDF. The benefits are a result of the utilization of the
structure of the annotation ontology. First, terms that are expressions of the same
concept are detected. Thus they can be represented using a single concept identifier
and the representation of the document content is compressed. Second, the concept
hierarchies enable a better query answering. For example, the system knows that

documents about dogs are relevant to a query about animals.

One possible pitfall here is that the recall will improve on the expense of precision
as a result of this annotation expansion. The effects of ontological query expansion
on recall-precision performance has been studied e.g. in [68, 67]. For an example of
a situation where this could occur consider a database of maps which are annotated
using a geographical ontology. A map could be annotated using e.g. Helsinki,
the capital of Finland which in the geographical ontology would be a subconcept of
Finland based on geographical inclusion. Now, as a result of the ontological TF-IDF
the map about Helsinki would be counted relevant to Finland. For a user searching

maps about Finland this might feel misleading, if on the search interface Finland is



100

explained to mean maps of Finland as a whole. However, this problem is overcome
when the ontological TF-IDF is used as part of the FFSS framework, which enables
the mapping of a search category to an annotation concept without including its
subconcepts. The search system might define the search category Finland using a
mapping to a Boolean concept that is the intersection of the annotation concept
Finland and the negation of the union of its child concepts. In this case the map

about Helsinki will not be included in the result set of the search category Finland.

7.3 Evaluation

To evaluate the method, we implemented the ontologies, annotations and search
views using RDF. The algorithms were implemented using Java!” and its Semantic

Web Framework Jena!®.

Our document set consisted of 163 documents of the website of the National Public

Health Institute! of Finland (NPHI).

As an annotation ontology we created a SKOS translation of FinMeSH [5], the
Finnish translation of MeSH [4]. The fuzzy annotations were created in two steps.
First, an information scientist working for the NPHI annotated each document with
a number of FinMeSH concepts. These annotations were crisp. Second, the crisp
annotations were weighted using an ontological version of the TF-IDF weighting
method. We scanned through each document and weighted the annotations based
on the occurrences of the annotation concept labels (including subconcept labels)
in the documents. The weight was then normalized, to conform to the fuzzy set
representation. The normalized version of TF-IDF naturally translates into a mem-

bership degree in a fuzzy set as defined in FFSS. In TF-IDF the value is between

17http://java.sun.com
8http://jena.sourceforge.net
9See, http://www.ktl.fi/
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0 and 1 as a membership degree in a fuzzy set. 0 means that the document does
not match the concept at all which can be interpreted as a membership degree 0
in the fuzzy set defined by the concept, and 1 means that the document matches
the concept perfectly which can be interpreted as a membership degree 1 in the

respective fuzzy set.

The search facets with mappings to annotation concepts were designed and cre-
ated by hand, and five search categories were chosen randomly. These categories
were: Diabetes, Food, Food Related Diseases, Food Related Allergies, and Weight
Control. The document set of each category was divided into two parts. The first
part consisted of the documents whose rank was equal or better than the median
rank, and the second part consisted of documents below the median rank. Then a
document was chosen from each part randomly. Thus, each of the chosen categories
was attached with two documents, one representing a well ranking document, and

the other representing a poorly ranking document.

The test group consisted of five subjects, each of which was asked to read the two
documents attached to a search category, e.g. Diabetes, in a random order, and
pick the one that they thought was more relevant to the search category. This was
repeated for all the selected search categories. Thus, each tested person read 10
documents. The relevance assessment of the test subjects were compared to the
ordering done by our implementation. According to the results every test subject
ordered the documents in the same way that the algorithm did. Due to the small
number of test subjects this evaluation has to be taken as preliminary. Also the
document selection method—where only two documents where selected for each
search category—only gives a rough estimation of whether the method produces
good rankings. However, the results strongly suggest that FFSS used together with
the ontological extension to TF-IDF produces useful ranking of document results
when compared to the crisp faceted semantic search, which does not support ranking

based on content relevance at all.
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8 Contributions and Lessons Learned

This chapter will summarize the contributions, and lessons learned of the work
presented in this part (Fuzzy Approach) of the dissertation. Some problems are
then raised, which will be solved as part of the work presented in the next part

(Probabilistic Approach).

8.1 Contributions

The presented FFSS method provides the following solutions to the problems pre-
sented in Chapter 4.

Modeling of Annotation Related Uncertainty FFSS supports, and in fact,
is based on weighted—i.e., fuzzy—annotations. It provides a formalisms to
represent and reason based on weighted annotations, where the annotation
weight is interpreted as a degree of membership of the annotated search item
in the fuzzy set representing the annotation concept. This degree of mem-
bership is interpreted as the relevance of the search item to the annotation
concept. Thus, FFSS presents a solution to the annotation specific uncer-

tainty problem presented in Chapter 4.

Furthermore, Chapter 7 presented a method by which crisp annotations
can be algorithmically weighted, increasing the applicability of FFSS. This,
method is an ontological extension of the TF-IDF weighting method, and it
provides also some benefits when compared to traditional TF-IDF weighting.
In this comparison, the main benefits of ontological TF-IDF are the follow-
ing: First, terms that are expressions of the same concept can be represented

using a single concept identifier which results in a compressed representation
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of the document content. Second, the concept hierarchies of the ontologies
can be utilized to enable better query answering as a result of the search

system becoming aware of the semantic relations between concepts.

Ranking of the result set Crisp faceted semantic search provides sophisticated
means to order results by grouping. However, it does not provide ways to
rank results. By extending the set theoretical model of view-based search to
fuzzy sets, ranking the results is possible based on the membership functions
of the concepts. When the amount of information is large it is very important
to be able to give the most relevant, or most probably relevant search result
in the beginning of the result list. As will be shown in the evaluation of

Chapter 13, FFSS’s ranking performance is good.

Enabling the separation of end-user views from annotation ontologies In
many cases the formal ontologies created by and for domain experts are not
ideal for the end-user to search. The concepts are not familiar to a non-
expert and the organization of the ontology may be unintuitive. When search
facets are algorithmically projected from these annotation ontologies, as de-
scribed in Chapter 3, the resulting search GUI might end-up being rather
complicated and unintuitive. This sometimes undermines the main goal of
faceted search systems, i.e., providing intuitive and easy user interfaces for
exploratory search. In this paper we tackled the problem by creating a way to
represent search views separately from the ontologies and to map the search

concepts to the annotation concepts. The mappings may contain uncertainty.

The methods presented in this part of the dissertation were later utilized in the
HealthFinland portal?®, which is a national Finnish health portal for the common

citizen [60].

2Ohttp://www.tervesuomi.fi
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8.2 Lessons Learned

Both the FFSS paradigm, and the ontological extension of the TF-IDF weighting
method proved to be rather straight forward to design and implement. CFEFSS can
be seen as a special case of the fuzzy framework such that the annotations and the
mappings have the weight 1.0, i.e. are crisp. According to the case study that will

be presented in Chapter 13, the framework provides good ranking results.

Our framework did get some inspiration from the fuzzy versions of description logics.
We share the idea of generalizing the set theoretic basis of an IR-system to fuzzy sets
in order to enable the handling of vagueness and uncertainty. In addition, the use
of fuzzy implication to reason about fuzzy inclusion between concepts is introduced
in the fuzzy version [97] of the description logic SHOIN(D). However, the ontologies
that we use are mainly simple concept taxonomies, and in many practical cases we

saw it as an unnecessary overhead to anchor our framework in description logics.

In terms of computation complexity, FFSS is feasible, because it adds only complex-
ity of ordering the search items according to relevance CFSS paradigm, which has
proved to be a rather scalable framework. For example, the FISS engine Onto Views
was tested to scale up to 2.3 million search items and 275,000 search categories in

7).

However, the fuzzy logic approach is criticized because of the arbitrariness in finding
the numeric values needed and lack of solid mathematical basis [98]. A concrete de-
ficiency related to this is that FF'SS does not provide mathematically well-founded
ways to combine evidence of search item relevance from multiple sources. For ex-
ample, documents could be ranked based on relevance feedback given by the users,
by standard TF-IDF'-based relevance measures, or some other heuristics. We would
like to be able to combine the relevance measures given by different ranking algo-

rithms in a sound way, because it has been shown that the combination of evidence
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from multiple sources improves ranking [70]. For example, we would like to be able
to quantify our level of trust in each ranking algorithm so that this trust will be
taken into account in the final ranking. Naturally we could combine rankings e.g.
by fuzzy union or intersection, however, this would be just a heuristic combination.
On the other hand, probability theory has been shown to provide mathematically
well-founded mechanisms for evidence combination [20]. As a result of these consid-
erations we decided to develop also probabilistic solutions to the problems of FSS.

The probabilistic approach will be presented next.
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Part 1|

PROBABILISTIC APPROACH
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Introduction to the Probabilistic Approach

This part of the dissertation will present probabilistic solutions to the problems of

CFSS presented in Chapter 4, and it also provides a flexible way to combine evidence

of relevance from multiple sources. The problems and solution are outlined in Table

9.1.

Table 9.1: The problems and solutions presented in this part of the dissertation.

Problem Solution Chapter
1. | Semantic Web ontologies lack the support for | A graph notation for representing uncertainty | 10.
modeling uncertainty inherent in the world, in- | and conceptual overlap in Semantic Web tax-
cluding the F'SS system itself. onomies, and a Bayesian method for comput-
ing degrees of overlap between the concepts of
such a taxonomy.
2. | Crisp faceted semantic search lacks the capa- | Ranking of documents based on probability | 11.
bility to rank search results based on relevance. | of relevance inferred based on weighted anno-
tations, ontology structure, and mappings of
end-user search facets to annotation ontolo-
gies.
3. | Concepts of annotation ontologies are not al- | Search facets are defined separately and prob- | 11.
ways suitable to be presented as search cate- | abilistically mapped to annotation ontologies.
gories on the search GUI. Boolean combinations of annotation concepts
can be used in the mappings.
4. | How to combine rankings of search result pro- | Rankings of multiple ranking schemes are | 10., 11.

vided by different schemes to provide better

ranking of search results?

probabilistically combined to reach the final
probability of relevance of the document. A

number of ranking schemes are developed.

The lack of support of Semantic Web ontologies for uncertainty modeling is tack-

led by creating a method to probabilistically exploit the concept hierarchies which

usually constitute the backbone of Semantic Web ontologies. Ranking of search

results is supported by the developed probabilistic faceted semantic search (PFSS)

framework, based on weighted annotations, probabilistically interpreted concept hi-

erarchies found in ontologies, and mappings between search facets and annotation

ontologies. To solve the third problem, in PFSS search facets are separately defined
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and mapped to annotation ontologies. As in FFSS, also in PF'SS Boolean combina-
tions of annotation concepts can be used in the mappings. The problem of evidence
combination is solved by creating a probabilistic mechanism to combine evidence

from multiple ranking schemes.

The solutions presented in this part are based on Bayesian probability, which is a
branch of probability theory, where probability is interpreted as a degree of belief.
This is plausible, because it has been shown, that an agent’s rational degrees of
belief follow the rules of probability. More specifically, if one wishes to represent
the plausibility of a proposition by a real number and requires consistency in the
resulting calculus, the axioms of probability follow logically [111, 29]. Thus, Bayesian
probability theory is more than a heuristic for modeling uncertainty, but a formalism
that truly captures rational inference under uncertainty. This also means, that
fuzzy logic, which has a different set of axioms, necessarily violates the consistency

requirements [26].

Intuitively, it is easy to grasp how semantic search could be modeled using Bayesian
probability. One can view the search engine as uncertain about the information
needs of the user [24]. This uncertainty can be reduced by utilizing the information
contained in the semantic knowledge base, which the search application is based
on. The system then makes inferences about the probabilities of relevance of search
items, and based on these inferences it decides the ranking of search results. Ev-
idence combination is at the core of the Bayesian probability theory, and thus it
seems a good approach for combining evidence of document relevance, which has

been shown to improve quality of ranking [70] of search systems.

There are, of course, a lot of modeling issues. For example, the semantic knowledge
base can be interpreted probabilistically in more than one way, and we will see
that there are already numerous probabilistic methods to model uncertainty related

to Semantic Web ontologies [85, 32, 41, 79, 63|, each of which has usually been
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developed with one application area in mind. Also the information retrieval event
itself can be modeled in different ways, and as a consequence, there are also numerous

probability models developed for information retrieval [88, 20, 104, 91, 24].

The first probabilistic information retrieval method was the Probabilistic Ranking
Principle Approach [88], which was an extension to standard Boolean information
retrieval, such that the index terms of documents were weighted based on the impor-
tance of the index term to the document. Later, also other probabilistic methods
have been developed, such as the Inference Network Model for IR [104], and the
Belief Network Model [91], both of which model the information retrieval system as
a Bayesian network. Both these methods still adhere to the bag of words principle,
in which the documents are seen as bags of index terms, and those index terms
themselves are seen as mutually independent entities. However, the Bayesian net-
work based approaches above have already shown, that probabilistic information
retrieval approaches are suitable to combination of evidence to improve rankings.
Latent Dirichlet Allocation [24], has a different approach, in the sense that it models
each document as a probability distribution over topics, and each topic is represented
by a probability distribution of words. Thus, the model has a hierarchical struc-
ture. However, this model is constructed bottom-up by analyzing the words in a
document collection. Despite of the amount of work done, it seems that a com-
plete framework for probabilistic semantic search and probabilistic faceted semantic
search, in particular, is still missing, and this part of the dissertation will present

such a framework.

One potential problem of such a probabilistic semantic search system is computa-
tional complexity. Even though Bayesian networks [83] have improved the appli-
cability of probability theory to a great degree, a Bayesian network modeling the
ontological concepts, documents, and search facets in a faceted semantic search ap-
plication might still prove to be too inefficient for real world use. However, from the

point of view of computational complexity, faceted search has the virtue of prepar-
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ing the way for precomputation. In fact, all search category specific probabilities
of document relevance can be precomputed. The only remaining part for on-line
computation is the probability of document relevance for the multi-faceted selection

based on the individual search category specific probabilities.

The rest of this part of the dissertation is organized as follows: First, a short pre-
liminary of Bayesian probability and Bayesian networks needed to follow the de-
velopment of the probabilistic solutions is given. Then, in Chapter 10 a method
for modeling uncertainty in Semantic Web taxonomies will be presented, which will
also include comparison to related methods found in the literature. Chapter 11 will
develop the PFSS framework, and a reference implementation of it is presented in
Appendix A. The contributions of—and lessons learned from—the work presented
in this part, are then summarized in Chapter 12. An empirical evaluation of PFSS

and FFSS will be presented in the final part of this dissertation, in Chapter 13.

9.1 Basic Probability Theory

Probability theory is concerned with experiments that have outcomes. The set
of all outcomes is called the sample space, and is denoted 2. For example, for a
minimalistic faceted search system composed of two documents D1 and D2, the set

of outcomes—i.e., the elements of Q0—is:

e D1 is relevant, D2 is relevant
e D1 is relevant, D2 is not relevant
e D1 is not relevant, D2 is relevant

e D1 is not relevant, D2 is not relevant
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A subset of the sample space is called an event, and a subset containing exactly one

element is called an elementary event.

A function that assigns a real number P(F) to each event £ C Q, where Q) =
{e1, e, ...,e,} is called a probability function on the set of subsets of € if it satisfies

the following conditions:

1. 0<P{e})<lforl<i<n.
2. P{ei})+P({e})+ ...+ P({e,}) =1

3. For each event E = {e;,, e;,, ..., €;, } that is not an elementary event, P(E) =

P({en}) + P({en}) + ..+ P({ei}).

If P is a probability function, then P(F) is called the probability of E. The pair
(Q, P) is called a probability space. According to the principle of indifference, ele-
mentary events are to be considered equiprobable if we have no reason to expect or
prefer one over the other. According to this principle when there are n elementary

events, the probability of each is the ratio 1/n.

If £ and F are events, s.t. F' # (0, then P(E|F) is the conditional probability of
event F given the event F'. It given by:

P(E|F) = P(EN F)/P(F). (9.1)

The intuition comes from probability as a ratio, i.e., the fraction of outcomes in F

that are also outcomes in F', i.e.

_ nEF/n _ Negr
nr/n ng

P(ENF)/P(F) (9.2)

where n is the number of outcomes in a sample space, ngr is the number of outcomes

in £ N F, and ng the number of outcomes in F.
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Given a probability space (P, {2), a random variable X is a function over ), s.t. it
assigns a value of X to each element of Q. X7 denotes all the elements in  that
the function X maps to the value j of X. X7 C €, so each value of a variable
is an event. A random variable induces a probability function over the set of its
values (the space of X). This probability function is usually called the probability
distribution of X.

For example, in our minimalistic faceted search system we could define the binary

random variable D; such that value D{ represents the outcomes

e D1 is relevant, D2 is relevant

e D1 is relevant, D2 is not relevant

and DY represents the outcomes

e D1 is not relevant, D2 is relevant

e D1 is not relevant, D2 is not relevant

Thus, Dy is a binary random variable that represents the relevance of document
D1. Similarly, we could define the random variable D, to represent the relevance
of document D2. If our system contained a search category SC1 the result set of
which contained D1 but not D2 then we could define a binary random variable SC}
such that SC{ represents the outcome DI is relevant, D2 is not relevant, and SC?

represents all the other three outcomes in 2.

Now, the conditional probability of D1 being relevant given that SC1 is selected is:

P(D;[SCy) = nD%scll/nscll =1/1=1, (9.3)
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And the conditional conditional probability that D2 is relevant given SC'1 is:

P(D,|SCY) = nD;scll/nscll =0/1=0. (9.4)

Two random variables X and Y, s.t., P(X) # 0, and P(Y) # 0, are independent if
for all values of X and Y
P(X'|Y7) = P(X") (9.5)

For example, it can be easily seen that D; and D, above are independent. However,

SC} and D, are not independent, because P(Dj|SC}) =1 # P(Dj).
Two or more random variables induce a probability function over the cartesian
product of their spaces. This multivariable distribution is called the joint probability

distribution of the variables.

For example the joint probability distribution of D; and SC is:

o P(D},5C1) = P(DiNSCY) =npiser/n=1/4,
o P(Di,SCY) = P(DYNSCY) =npeser/n = 0/4,
o P(D},SCY) =P(D;NSCY) =npigeo/n = 1/4,

o P(DY,SCY) = P(DYNSCY) =npysee/n = 2/4

As can be seen this distribution is a probability function.

9.2 Bayesian Networks

A Bayesian network is a graphical formalism that offers a natural way of representing

the probabilistic independencies satisfied by a probability function, and for this
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reason it can be used to efficiently represent a probability function [111]. Efficient
inference algorithms, that take advantage of the probabilistic independencies among
the variables, have been developed for Bayesian networks. A Bayesian network

consists of two components:

1. A directed acyclic graph (DAG), where a set of random variables makes up
the nodes of the network and a set of directed links connects pairs of nodes.
An example DAG is presented in Figure 9.1. For any node X in a DAG,
the nodes from which there are links pointing to X, are called the parents of
X, often denoted Paryx. The links originating from X point to nodes that
are called the children of X, often denoted C'hiy. The ancestors of X are
its parents, the parents of the parents and so on. The descendants of X are
its children, the children of the children and so on. A node that does not
have any parents is a root node. In the DAG of Figure 9.1, for example, the
parents of C' are A and D, and the ancestors of C' are A, B, and D. C' does
not have any children or descendants. The children of B are A and D, and
its descendants are A, D, C, and FE. B does not have any parents, so it is
a root node. Semantically, a link from one node to another means that the

first has a direct influence on the second.

2. A Probability specification, which specifies the probability distributions of
each variable X in the DAG, conditional on its parents. This specification is
usually given by a conditional probability table, and it quantifies the influence
of the parent variables on X. The conditional probability table contains a cell
for each assignment to X conditional on each assignment to the parents of X.
As an example, Table 9.2 contains a possible conditional probability table for
the variable C' of Figure 9.1 under the assumption that all the variables in
the network are binary random variables, i.e., have two possible assignments

superscripted by 0 and 1.
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Figure 9.1: An example of a DAG.

Table 9.2: An example conditional probability table for variable C' of DAG of
Figure 9.1.

P(C°|A°D%) = 0.3 | P(C'|A°D0) =0.7
P(C°|A°D') = 0.8 | P(C'|A°D') =0.2
P(C°|A'D®) =05 | P(C'|A'D?) =0.5
P(COlA'DY) =0.1 | P(C'|AID') =09

A fundamental feature of a Bayesian network is stated by the Markov Condition,
which says that conditional on its parents any variable is probabilistically inde-
pendent of all other variables apart from its descendants. This is the reason for
the efficiency of the Bayesian network representation of a joint probability distri-
bution. Under normal circumstances the joint probability distribution of a set of
variables is specified by the chain rule. For example, for the variables of the DAG
of Figure 9.1, the joint probability distribution computed by the chain rule would
be P(A,B,C,D,FE) = P(A)P(B|A)P(C|A, B)P(D|A, B,C)P(E|A, B,C,D). The
size of this representation, i.e., the number of parameters (individual probabilities)
required by the probability specification, is the number of assignments in the joint

distribution minus one, in our example this is 2° — 1 = 31.
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Thanks to the structure of the Bayesian network, it can be represented in the more
efficient form P(A, B,C,D,FE) = P(B)P(A|B)P(D|B)P(C|A,D)P(E|D), where
the size of the representation is the sum of the sizes of the representations of each
variable’s distributions. The size of a variable’s distributions is the number of assign-
ments to the variable minus 1, multiplied by the number of assignments to its parents
(which is 1 in the case of a root variable). In our example the size of the Bayesian
network representation is thus 1+2+2+4+2 = 11 [111]. This factorization of the
joint probability distribution enables the use of efficient reasoning algorithms. As
applied to Bayesian networks, reasoning means computing the probability distribu-
tion of values of the variable Y when we know the value (or probability distribution

of values) of X.
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10 Modeling Degrees of Overlap Between Concepts

in Semantic Web Taxonomies

This chapter is largely based on the article:

Markus Holi and Fero Hyvonen. 2006. Modeling Uncertainty in Semantic Web
Taxonomies[47]. In: Soft Computing in Ontologies and Semantic Web (Zhongmin
Ma (ed.)), Springer-Verlag.

This section provides the probabilistic extension to ontologies which will be used in

the probabilistic faceted semantic search framework presented in the next chapter.

10.1 The Problem and the Solution Approach

The Venn diagram of Figure 10.1 illustrates some countries and areas in the world.
A crisp partOf meronymy cannot represent the partial overlap between the geo-
graphical area Lapland and the countries Finland, Sweden, Norway, and Russia, for
example. A frequently used way to model the above situation would be to repre-
sent Lapland as the direct meronym of all the countries it overlaps, as in Figure
10.2. This structure, however does not represent the situation of the map correctly,
because Lapland is not subsumed by anyone of these countries. In addition, the
transitivity of the subsumption relation disappears in this structure. See, for ex-
ample, the relationship between Lapland and Asia. In the Venn diagram they are

disjoint, but according to the taxonomy, Lapland is subsumed by Asia.

Another way would be to partition Lapland according to the countries it overlaps,
as in Figure 10.3. Every part is a direct meronym of both the respective country and

Lapland. This structure is correct, in principle, but it too does not contain enough
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Europe Asia

La;ﬂ and

Sweden World

Norway
Finland

Russia

EU

World 37*23 = 851
Europe 15*23 = 345
Asia 18*23 =414
EU 8*21 =168
Sweden 4*9 = 36
Finland 4*9 = 36
Norway 4*9 = 36

Lapland 13*2 = 26 Lapland&(Finland | Sweden | Norway) = 8
Lapland&EU = 16 Lapland&Russia = 2
Russia 18*19 = 342 Russia&Europe =57 Russia&Asia = 285

Figure 10.1: A Venn diagram illustrating countries, areas, their overlap, and size
in the world.

information to make inferences about the degrees of overlap between the areas. It
does not say anything about the sizes of the different parts of Lapland, and how

much they cover of the whole area of Lapland and the respective countries.

According to Figure 10.1, the size of Lapland is 26 units, and the size of Finland is
36 units. The size of the overlapping area between Finland and Lapland is 8 units.
Thus, 8/26 of Lapland belongs to Finland, and 8/36 of Finland belongs to Lapland.
On the other hand, Lapland and Asia do not have any overlapping area, thus no
part (0) of Lapland is part of Asia, and no part of Asia is part of Lapland. If we
want a taxonomy to be an accurate representation of the 'map’ of Figure 10.1, there

should be a way to make this kind of inferences based on the taxonomy.

Our method enables the representation of overlap in taxonomies, and the compu-
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World
/
Europe Asia
EU
/\
Finland Sweden Norway Russia
/
Lapland

Figure 10.2: A standard Semantic Web taxonomy based on the Venn diagram of
Figure 10.1.

tation of overlap between a selected concept and every other, i.e. referred concept
in the taxonomy. Thus, an overlap table is created for the selected concept. The
overlap table can be created for every concept of a taxonomy. For example, Table
10.1 presents the overlap table of Lapland based on the the Venn diagram of Figure

10.1. The Overlap column lists values expressing the mutual overlap of the selected

|SelectedNRe ferred| € [0 1]
, L.

concept and the other - referred - concepts, i.e., Qverlap = Referred

Intuitively, the overlap value has the following meaning: The value is 0 for disjoint
concepts (e.g., Lapland and Asia) and 1, if the referred concept is subsumed by the
selected one. High values lesser than one imply, that the meaning of the selected

concept approaches the meaning of the referred one.

This overlap value can be used in information retrieval tasks. Assume that an ontol-

ogy contains individual products manufactured in the different countries and areas
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Finland Sweden Norway Russia
FinLap Swelap NorLap RusLap
Lapland

Figure 10.3: Representing Lapland’s overlaps by partitioning it according to the
areas it overlaps. Each part is subsumed by both Lapland and the respective country.

of Figure 10.1. The user is interested in finding objects manufactured in Lapland.
The overlap values of Table 10.1 then tell how well the annotations “Finland”, “EU”,
“Asia”, etc., match with the query concept “Lapland” in a well-defined probabilistic

sense, and the hit list can be sorted into an order of relevance accordingly.

The overlap value between the selected concept (e.g. Lapland) and the referred
concept (e.g. Finland) can in fact be written as the conditional probability
P(Finland'|Lapland’) whose interpretation is the following: If a person is inter-
ested in data records about Lapland, what is the probability that the annotation
“Finland” matches her query? X' is a binary random variable such that X' = true
means that the annotation “X” matches the query, and X’ = false means that “X”
is not a match. This conditional probability interpretation of overlap values will be
used in Section 10.4 where the computation of the overlaps is explained. Notice that

the modeling of overlap between geographical concepts, as in our example, is truly

uncertain, because the exact amount of overlap is never known.

It is mathematically easy to compute the overlap tables, if a Venn diagram (the
sets) is known. In practice, the Venn diagram may be difficult to create from the
modeling view point, and computing with explicit sets is computationally compli-

cated and inefficient. For these reasons our method calculates the overlap values
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Table 10.1: The overlap table of Lapland according to Figure 10.1.

Selected Referred Overlap

Lapland ~ World 26/851 = 0.0306
Europe 26/345 = 0.0754
Asia 0/414 = 0.0
EU 16/168 = 0.0953
Norway 8/36 = 0.2222
Sweden 8/36 = 0.2222
Finland 8/36 = 0.2222
Russia 2/342 = 0.0059

from a taxonomic representation of the Venn diagram.

Our method consists of two parts:

1.

A graphical notation by which partial subsumption and concepts can be

represented in a quantified form. The notation can be represented easily in

RDF.

The computation of the degrees of overlap between the concepts of a taxon-
omy. We will present two methods to compute the overlap: The first method
is a tailored algorithm based directly on the taxonomical structure, and the
second method quantifies the overlap by transforming the taxonomy first into

a Bayesian network [36].
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10.2 Representing Overlap

In RDFS and OWL a concept, often represented by a class refers to a set of indi-
viduals. Subsumption reduces essentially into the subset relationship between the
sets corresponding to the classes. A taxonomy is therefore a set of sets and can be

represented, e.g., by a Venn diagram.

If A and B are sets, then A must be in one of the following relationships to B.

1. Ais asubset of B;ie., ACB.
2. A partially overlaps B;ie., dx,y: (t € ANz € BYA(y € ANy & B).

3. A is disjoint from B;ie., ANB =0.

Based on these relations, we have developed a simple graph notation for representing
uncertainty and overlap in a taxonomy as an acyclic overlap graph (OG). Here
concepts are nodes, and a number called mass is attached to each node. The mass
of the concept A is a measure of the size of the set corresponding to A, i.e. m(A) =
|s(A)|, where s(A) is the set corresponding to A. A solid directed arc from concept A
to B denotes crisp subsumption s(A) C s(B), a dashed arrow denotes disjointness
s(A) N s(B) = 0, and a dotted arrow represents quantified partial subsumption
between concepts, which means that the concepts partially overlap in the Venn

diagram. The amount of overlap is represented by the partial overlap value p =

[s(A)Ns(B)]
|s(A)

In addition to the quantities attached to the dotted arrows, also the other arrow
types have implicit overlap values. The overlap value of a solid arc is 1 (crisp
subsumption) and the value of a dashed arc is 0 (disjointness). The quantities

of the arcs emerging from a concept must sum up to 1. This means that either
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only one solid arc can emerge from a node or several dotted arcs (partial overlap).
In both cases, additional dashed arcs can be used (disjointness). Intuitively, the
outgoing arcs constitute a quantified partition of the concept. Thus, the dotted
arrows emerging from a concept must always point to concepts that are mutually

disjoint with each other.

Notice that if two concepts overlap, there must be a directed (solid or dotted)
path between them. If the path includes dotted arrows, then (possible) disjointness
between the concepts must be expressed explicitly using the disjointness relation. If

the directed path is solid, then the concepts necessarily overlap.

For example, Figure 10.4 depicts the meronymy of Figure 10.1 as an overlap graph.
The geographic sizes of the areas are used as masses and the partial overlap values
are determined based on the Venn diagram. This graph notation is complete in the
sense that any Venn diagram can be represented by it [45]. However, sometimes the
accurate representation of a Venn diagram requires the use of auxiliary concepts,
which represent results of set operations over named sets, for example s(A) \ s(B),
where A and B are ordinary concepts and \ denotes the subtraction operation

between sets.

Lapland
26

Figure 10.4: The taxonomy corresponding to the Venn diagram of Figure 10.1.
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10.3 Solid Path Structure

Our method creates an overlap table (as in Figure 10.1) for each concept in the
taxonomy. Computing the overlaps is easiest when there are only solid arcs; i.e.,

complete subsumption relation, between concepts. If there is a directed solid path

from A (selected) to B (referred), then overlap o = ‘S(ﬁ)&s)(|B)‘ = Zggg If the solid
path is directed from B to A, then o = ‘s(ﬁ)&s)('B)‘ = Zg; = 1. If there is not a
directed path between A and B, then o = |8(‘|48)(r;35)(‘3)| = m'g‘g) =0.

If there is a mixed path of solid and dotted arcs between A and B, then the calcula-
tion is not as simple. Consider, for example, the relation between Lapland and EU
in Figure 10.4. To compute the overlap, we have to follow all the paths emerging
from Lapland, take into account the disjoint relation between Lapland and Asia,

and sum up the partial subsumption values somehow.

To exploit the simple solid arc case, a taxonomy with partial overlaps is first trans-
formed into a solid path structure, in which crisp subsumption is the only relation
between the concepts. The transformation is done by using to the following princi-

ple:

Transformation Principle 1 Let A be the direct partial subconcept of B with
overlap value o. In the solid path structure the partial subsumption is replaced by
an additional middle concept, that represents s(A) N s(B). It is marked to be the

complete subconcept of both A and B, and its mass is o - m(A).

For example, the taxonomy of Figure 10.4 is transformed into the solid path structure
of Figure 10.5. The original partial overlaps of Lapland and Russia are transformed

into crisp subsumption by using middle concepts.
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Result:

foreach

e

end

end

Data: OverlapGraph T

SolidPathStructure SPS

SPS := empty;

concept ¢ in T do

foreach complete or partial direct superconcept p of ¢ in T do

if p connected to its superconcepts through middle concepts in SPS then

mc := the middle concept that ¢ overlaps;

if ¢ complete subconcept of p then

mark ¢ to be complete subconcept of mc in SPS;
else

newMc := middle concept representing

s(c) Ns(p);

mark newMC to be complete subconcept of ¢ and mc in SPS;

end
Ise

if ¢ complete subconcept of p then
mark ¢ as complete subconcept of p in SPS;
else
newMc .= middle concept representing
s(c) N s(p);

mark newMc to be complete subconcept of ¢ and p in SPS;

end

nd

Algorithm 3: Creating the solid path structure
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Europe
345

<<RusAsia>>
285

<<RusEur>>
57
2

Sweden
36

Finland Norway
36 36

Russia
342

<<LapNor>>
8
Lapland
26

<<LapSwe>> <<LapFin>>
8 8

Figure 10.5: The taxonomy of Figure 10.4 as a solid path structure.

The transformation is specified in Algorithm 3. The algorithm processes the overlap
graph T in a breadth-first manner starting from the root concept. A concept ¢ is
processed only after all of its super concepts (partial or complete) are processed.

Because the graph is acyclic, all the concept will eventually be processed.

Each processed concept c¢ is written to the solid path structure SPS. Then each
arrow emerging from c is processed in the following way. If the arrow is solid,
indicating subsumption, then it is written into the solid path structure as such. If
the arrow is dotted, indicating partial subsumption, then a middle concept newMc
is added into the solid path structure. It is marked to be the complete subconcept
of both ¢ and the concept p to which the dotted arrow points in 1. The mass of
newMc is m(newMc) = |s(c)Ns(p)| = o-m(c), where o is the overlap value attached

to the dotted arrow.

However, if p is connected to its superconcepts (partial or complete) with a middle
concept structure, then the processing is not as simple. In that case ¢ has to be
connected to one of those middle concepts. The right middle concept is found by
using the information conveyed in the dashed arcs emerging from c¢. The right
middle concept mc is the one that is not subsumed by a concept that is marked to

be disjoint from ¢ in the overlap graph. This is the middle concept that ¢ overlaps.
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Notice, that if the overlap graph is an accurate representation of the underlying

Venn diagram, then mc is the only middle concept that fulfills the condition.

If ¢ is a complete subconcept of p in the overlap graph T, then ¢ is marked to be
the complete subconcept of me in SPS. If ¢ is a partial subconcept of p in T', then

it is connected to mc with a middle concept structure.

Notice, that if ¢ was connected directly to p, instead of mc, then the information
conveyed in the dashed arrows, indicating disjointness between concepts would have
been lost. For example, if in Figure 10.5 Lapland was connected directly to Russia,
then the information about the disjointness of Lapland and Asia would have been

lost.

10.4 Computing the Overlaps

We have implemented two alternatives for computing the overlaps. The first is
based directly on the solid path structure, and the second transforms the solid path
structure into a Bayesian network which can be used to compute the conceptual

overlap. Both alternatives are presented here.

10.4.1 The Solid Path Structure Approach

The overlap table values o for a selected concept A and a referred concept B can
be calculated from the solid path structure using Equation 10.1, where C' denotes
the set of common subconcepts of A and B, such that there are not two concepts
C;, Cp € C, j # k, such that C} subsumes Cj. The overlap table for A can be
computed by going through all the concepts of the graph and calculating the overlap

value according to the equation.
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1 if A subsumes B,

=10 if € =0, (10.1)
>_mfc)
CE%T otherwise

Equation 10.1 is composed of three cases. The first case states that if B is a subcon-
cept of A then the overlap value o is always 1. This is because then B is completely
covered by A. The second case states that if the set C' is empty then o is 0. If this
set is empty, then A and B are disjoint, and the overlap value o is 0. The third case
states that if C' is not empty, then o equals the sum of the masses of the concepts

belonging to C' divided by the mass of B.

Recall from Section 10.1, that the overlap value between A (selected) and B (re-
ferred) can be interpreted as the conditional probability P(B’|A"), where X' is a
binary random variable such that X’ = true or X"! represents the situation that the
user is interested in the concept X, and X’ = false or X' represents the situation
that the user is not interested in that concept. We will use this interpretation of
the overlap value in the next chapter (11) when developing the probabilistic faceted

semantic search (PFSS) framework.

Notice that the Venn diagram from which s(A) and s(B) are taken is not interpreted
as a probability space, and the elements of the sets are not interpreted as elementary
outcomes of some random phenomenon. The overlap value between s(A) and s(B)

is used merely as a means for determining the conditional probability defined above.

10.4.2 The Bayesian Network Approach

Because the overlap values between concepts can be interpreted as conditional prob-

abilities, we chose to implement the computation of overlap values also by trans-
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forming the solid path structure into a Bayesian network. This alternative approach
was created because we think that the ability to represent the model as a Bayesian

network proves that it is probabilistically sound.

In this approach we use the solid path structure as a Bayesian network topology.
In the Bayesian network the Boolean random variable X’ replaces the concept X of

the solid path structure.

The joint probability distribution of the Bayesian network is defined by conditional
probability tables (CPT) P(A'|By, BY, ... B},) for nodes with parents B},i =1...n,

7

and by prior marginal probabilities set for nodes without parents. The CPT

P(A'|By, B}, ...Bl) for a node A" can be constructed by enumerating the value

!/

combinations (true/false) of the parents B],7 = 1...n, and by assigning:

Z m(B;)
P A/ _ B/ —b B/ —b . i€{i:b;=true} 10.2
(A = truel B = b, B =) = S (102)

The value for the complementary case P(A" = false|By = by,...B!, = b,) is ob-
tained simply by subtracting from 1. The above formula is based on Equation 10.1.
The intuition behind the formula is the following. If a user is interested in Sweden
and in Finland, then she is interested both in data records about Finland and in data
records about Sweden. The set corresponding to this is s(Finland) U s(Sweden).
In terms of the OG this is written as m(Finland) + m(Sweden). In the Bayesian
network both Finland and Sweden will be set “true”. Thus, the bigger the num-
ber of European countries that the user is interested in, the bigger the probability
that the annotation “Europe” matches her query, i.e., P(Europe’ = true|Sweden’ =
true, Finland = true) > P(Europe’ = true|Finland = true). As an example,
Table 10.2 presents the complete CPT for the variable EU’ along with a verbal in-

terpretation of each case. As can be observed, each conditional probability has a well
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defined probabilistic meaning, however, as we will see in Chapter 11, in the context
of probabilistic faceted search we will not explicitly ask for conditional probabilities

with negative given values.

If A’ has no parents, then P(A" = true) = A, where X is a very small non-zero
probability, because we want the posterior probabilities to result from conditional
probabilities only, i.e., from the overlap information. The whole overlap table of
a concept can now be determined efficiently by using the Bayesian network with
its conditional and prior probabilities. By instantiating the nodes corresponding
to the selected concept and the concepts subsumed by it as evidence (their values
are set “true”), the propagation algorithm returns the overlap values as posterior

probabilities of nodes.

Notice that when using the Bayesian network in the above way, a small inaccuracy
is attached to each value as the result of the A prior probability that was given to the
parentless variables. This error approaches zero as A approaches zero. Despite this
small inaccuracy we decided to define the Bayesian network in the above manner

for the following reasons.

First, to be able to easily use the the solid path structure as the topology of the
Bayesian network. The CPTs can be calculated directly based on the masses of the
concepts. Second, with this definition the Bayesian evidence propagation algorithm
returns the overlap values readily as posterior probabilities. We experimented with
various ways to construct a Bayesian network according to probabilistic interpreta-
tions of the Venn diagram. However, none of these constructions answered to our

needs as well as the construction described above.
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Table 10.2: The conditional probability table for the random variable EU’ along
with the verbal interpretation of each case.

P(EU"|Sweden’, Finland'") = (m(Sweden) + m(Finland))/m(EU) = 72/168 = 0.429
The probability that the user is interested in EU if the user is interested in both

Finland and Sweden.

P(EU"|Sweden', Finland™) = 1 — P(EU" |Sweden*, Finland'') = 1 — 0.429 = 0.571
The probability that the user is not interested in EU if the user is interested in both

Finland and Sweden.

P(EU"|Sweden’, Finland) = m(Sweden)/m(EU) = 36/168 = 0.214
The probability that the user is interested in EU if the user is interested in Sweden

but not in Finland.

P(EU"|Sweden’, Finland®) = 1 — P(EU" |Sweden’, Finland") =1 — 0.214 = 0.786
The probability that the user is not interested in EU if the user is interested in Sweden

but not in Finland.

P(EU"|Sweden”, Finland*) = m(Finland))/m(EU) = 36/168 = 0.214
The probability that the user is interested in EU if the user is interested in Finland

but not in Sweden.

P(EU"|Sweden’, Finland™) = 1 — P(EU" |Sweden°, Finland'") = 1 — 0.214 = 0.786
The probability that the user is not interested in EU if the user is interested in Finland

but not in Sweden.

P(EU"|Sweden’, Finland®) = 0/m(EU) = 0/168 = 0
The probability that the user is interested in EU if the user is interested neither

in Finland nor in Sweden.

P(EU"|Sweden’, Finland®) = 1 — P(EU" |Sweden®, Finland®) =1 -0 =1
The probability that the user is not interested in EU if the user is interested neither

in Finland nor in Sweden.
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10.5 Implementation

The presented method has been implemented as a proof-of-concept. The impele-

mentation uses the Bayesian network approacy for computing the overlaps.

10.5.1 Overlap Graph

To comply with Semantic Web representation standards, overlap graphs are repre-
sented as RDF ontologies in the following way. Concepts are represented as RDFS
classes?'. The concept masses are represented using a special Mass class. It has two
properties, subject and mass that tell the concept resource in question and the mass
as a numeric value, respectively. The subsumption relation can be implemented
with a property of the user’s choice. Partial subsumption is implemented by a spe-
cial PartialSubsumption class with three properties: subject, object and overlap.
The subject property points to the direct partial subclass, the object to the direct
partial superclass, and overlap is the partial overlap value. The disjointness arc is

implemented by the disjointFrom property used in OWL.

10.5.2 Overlap Computations

The architecture of the implementation can be seen in Figure 10.6. The input of the
implementation is an RDF ontology, the URI of the root node of the overlap graph,
and the URI of the subsumption property used in the ontology. Additionally, also
an RDF data file that contains data records annotated according to the ontology
may be given. The output is the overlap tables for every concept in the taxonomy
extracted from the input RDF ontology. Next, each submodule in the system is

discussed briefly.

21 Actually, any resources including instances could be used to represent concepts.
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Figure 10.6: The architecture of the implementation.

The preprocessing module transforms the taxonomy into a predefined standard form.
If an RDF data file that contains data records annotated according to the ontology
is given as optional input, then the preprocessing module determines the mass of
each concept in the taxonomy based on these annotations. The mass is the number
of data records annotated to the concept directly or indirectly. The quantification

principle is illustrated in Figure 10.7.

The transformation module implements the transformation algorithm, and defines
the CPTs of the resulting Bayesian network. In addition to the Bayesian network,
it creates an RDF graph with an identical topology, where nodes are classes and the

arcs are represented by the rdf:subClassOf property. This graph will be used by the
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selection module that expands the selection to include the concepts subsumed by

the selected one, when using the Bayesian network.

The Bayesian reasoner does the evidence propagation based on the selection and
the Bayesian network. The selection and Bayesian reasoner modules are operated
in a loop, where each concept in the taxonomy is selected one after the other, and

the overlap table is created.

a
10+14+16=40

N

C 0]
10+0.4*10=14 10+0.6*10=16
v 4
04 .. 06
d
10

Figure 10.7: Quantification of concepts. The number of direct instances of each
concept is 10. In the case of partial subsumption, only a part of the mass of the
subconcept is taken as the mass of the superconcept

The preprocessing, transformation, and selection modules are implemented with
SWI-Prolog??. The Semantic Web package is used. The Bayesian reasoner module
is implemented in Java, and it uses the Hugin Lite 6.3%® through its Java API.

10.6 Conclusions

Our method for modeling conceptual overlap between concepts proved to be simple,

but it still enables the representation of overlap and partial subsumption between

Zhttp: //www.swi-prolog.org/
Bhttp://www.hugin.com/
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concepts. Our two approaches to compute the overlap values between concepts
are useful, but in the implementation of the probabilistic faceted semantic search
framework that will be presented in Chapter 11 we used the solid path structure
approach and not the Bayesian network approach. This is because the computations
were in practice more straight forward to implement using the taxonomy directly

without the transformation to a Bayesian network.

Overlap graphs are simple and can be represented in RDF easily. Using the notation
does not require knowledge of probability or set theory. The concepts can be quan-
tified automatically, based on data records annotated according to the ontology, for
example. The notation enables the representation of any Venn diagram, but there

are set structures, which lead to complicated representations.

Such a situation arises, for example, when three or more concepts mutually partially
overlap each other. In these situations some auxiliary concepts have to be used.
We are considering to extend the notation so that this kind of situations could be
represented better. On the other hand, taxonomies can be designed so that they

avoid the extensive usage of partial overlap.

We used a geographical example case when presenting the method, however, the
method is not limited to the geographical domain. In fact, in Chapter 11, when
presenting the probabilistic faceted semantic search framework we will use examples
from the mental health sector, and the approach fits also to other domains. As a
minimalistic example, see Figure 10.8. This example represents the situation where
the concept Mirror partially overlaps Furniture, Car parts, and Personal belongings,
because some mirrors are furniture, some are parts of cars, and some are personal
belongings that can be held in a person’s pocket. Figure 10.9 presents the overlap
graph of Figure 10.8 quantified based on the annotations and transformed into the
solid path structure. Based on this solid path structure the overlap values between

the concepts can be computed using Equation 10.1.
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Figure 10.8: Overlap graph where mirror is partially overlapping furniture, car
parts, and personal belongings

The Bayesian network structure that is created with the presented method is only
one of the many possibilities. This one was chosen, because it can be used for
computing the overlap tables in a most direct manner. The next section will discuss

a number of other approaches to combine an ontology to a Bayesian network.

10.7 Related Work

Ng [85, 84| presents methods to combine probabilistic information with logic pro-
gramming. This is called probabilistic logic programming. In principle we could
have also created a probabilistic logic database for the taxonomy with Equation
10.1. However, this would be inefficient with large ontologies, because all the possi-
ble concept combinations would have to be taken into account and encoded in the

database.

Ding and Peng [32] present principles and methods to convert an OWL ontology
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Figure 10.9: Overlap graph of Figure 10.8 quantified and transformed to solid path
structure.

into a Bayesian network. Their methods are based on probabilistic extensions to
description logics. For more information on these extensions, see [66, 39]. The
approach has some differences to ours. First, their aim is to create a method to
transform any OWL ontology into a Bayesian network. Our goal is not to transform
existing ontologies into Bayesian networks, but to create a method by which overlap
between concepts could be represented and computed from a taxonomic structure.
However, we designed the overlap graph and its RDF implementation so that it is
possible, quite easily, to convert an existing crisp taxonomy to our extended notation.
Second, in the approach of Ding and Peng, probabilistic information must be added
to the ontology by the human modeler that needs to know probability theory. In
our approach, the taxonomies can be constructed without virtually any knowledge

of probability theory or Bayesian networks.

Also other approaches for combining Bayesian networks and ontologies exist. Gu [41]
present a Bayesian approach for dealing with uncertain contexts. In this approach

probabilistic information is represented using OWL. Probabilities and conditional
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probabilities are represented using classes constructed for these purposes. Mitra [79]
presents a probabilistic ontology mapping tool. In this approach the nodes of the
Bayesian network represents matches between pairs of classes in the two ontologies

to be mapped. The arrows of the BN are dependencies between matches.

Kauppinen and Hyvonen [63] present a method for modeling partial overlap between
versions of a concept that changes over long periods of time. The approach differs
from ours in that we are interested in modeling degrees of overlap between different

concepts in a single point of time.
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11 Probabilistic Faceted Semantic Search

This chapter will present the probabilistic faceted semantic search (PFSS) frame-
work, which will incorporate the method for modeling uncertainty presented in
Chapter 10, weighted annotations, and separate end-user category definitions
mapped to annotation ontologies to provide ranking of search results. PFSS also
supports the combination of more than one ranking schemes to compute the proba-
bilities of document relevance. Thus, PFSS aims to solve the problems encountered

both in CFSS, and FFSS.

In PFSS the semantic knowledge base containing the document annotations, the
annotation ontologies, and the search category definitions are interpreted probabilis-
tically. The probabilities of document relevance in relation to each search category
is computed using a recursive algorithm that adheres to the probabilistic interpre-

tation of the knowledge base. The rest of this chapter is organized as follows:

1. A motivating example. Section 11.1 will present a motivating example of
a PFSS search system and the knowledge base behind it. This motivating
example will be used when the PFSS will be presented in the rest of the
chapter.

2. PFSS in a nutshell. In Section 11.2 we will present the main intuitive prin-
ciples behind PFSS as well as the high-level PFSS algorithm and the basic
probability model. This section should give the reader a high-level under-
standing of PFSS to be able to follow the detailed presentation that is con-

tained in the sections that follow.

3. Simple search category. Section 11.3 will present the case where probabil-
ities of document relevance are computed for a search category that has

a one-to-one mapping to an annotation concept. We will further develop
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the probabilistic method for modeling overlap between concepts presented in
Section 10 to include documents and search categories so that the desired

probabilities of document relevance can be computed.

4.  Search categories defined in terms of Boolean combinations of annotation
concepts. In Section 11.4 the search categories are mapped to the annotation
concepts using Boolean combinations (AND, OR, NOT). We will show how

these kind of Boolean combinations can be incorporated into PFSS.

5. Hierarchical search categories. End-user search categories are typically orga-
nized as a hierarchy. In Section 11.5 we will describe how the hierarchical
organization of the search categories is taken into account when computing

probabilities of document relevance.

6. Combining ranking schemes. In Section 11.6 we will develop the framework
further by allowing the usage of multiple ranking schemes simultaneously.
The final probability of relevance of a document computed by PFSS is a
mixture,—i.e., a weighted average—of the probability given by each ranking

scheme.

7.  Performing the search. After the search category specific probabilities of
document relevance are computed they can be used to answer to a faceted

search provided by the user as will be presented in Section 11.7.

8. Summary. Section 11.8 will summarize the results presented in this chapter.

For each detailed case presented in Sections 11.3-11.7 we will present the intuitive

principles behind the case, and how the high-level algorithm and the probability

model of Section 11.2 is extended in this case.
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11.1 A Motivating Example

As a motivating example for PFSS, a hypothetical mental health portal is presented
here. The portal is called Virtual Mental Health Center (VMHC). It aims to pro-
vide mental health information to citizens as well as help non-expert users to find
available mental health services based on their problem or need. To achieve the
latter the portal offers a faceted search functionality in which the user can search
for services based on typical mental health symptoms/problems, and the severity of
the problem. A mockup user interface of VMHC' is presented in Figure 11.1. The
Symptom and Severity facets are shown on the left, the search results are presented
as a list in the middle and they are also visualized on a map based on the addresses
of the service provider. The search results are presented according to their relevance

in a descending order.

The mental health service search is based on a semantic knowledge base in which
semantic metadata of each service is stored. A sample from this knowledge base
is presented in Figure 11.2. The services are annotated according to the ICD-10
disease classification [2], a step vocabulary that indicates the level of severity of
the mental health problems that the service deals with, and a small geo-spatial
taxonomy. End-user facets are defined separately with end-users’ needs in mind.
To provide the search functionality depicted in Figure 11.1 these end-user facets are

mapped onto the annotatation concepts.

D2 and D5 represent two of the services that are contained in the knowledge base.
We will mostly refer to D2 and D5 as documents in the following text. The ovals
represent annotation concepts, squares represent search categories, and the squares
with soft corners represent Boolean combinations of concepts. The components of
a Boolean concept are marked using the straight dashed arrows that originate from
the Boolean concept. In the context of PFSS the semantics of each type of Boolean

concept can be defined as follows:
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Figure 11.1: A mockup of the Virtual Mental Health Center portal.

OR Documents that are relevant to at least one of the component concepts of this
OR concepts are relevant to this concept. Notice, that the dashed arrows
emanating from OR concepts, e.g. Stepl U Step2 can have weights in the
range [0,1], and the default weight is 1.0. If the arrow is weighted, then
probabilities of relevance according to the weighted component concept are

trusted only with the probability indicated by the weight.

AND Documents that are relevant to all the component concepts of this AND

concept are relevant to this concept.

NOT Documents that are not relevant to the component concept of this NOT

concept are relevant to this concept.



144

The solid arrows between annotation concepts represent a subconceptOf relation-
ship, i.e. transitive inclusion. The bended dashed arrows between documents and
annotation concepts represent annotation relationship. The numbers next to these
bended arrows represent annotation weight, i.e. how probable it is that the anno-
tated document is relevant to the annotation concept. The bolded arrows between
search categories and concepts represent the mappings of search categories to the
annotation concepts. The numbers next to these bolded arrows represent the weight
of the mapping. A mapping with weight 1.0 can be understood as an instruction to
the PFSS system saying, *When determining probabilities of document relevance
for this search category, trust with probability 1.0 to the probabilities of document
relevance computed according to this—mapped—annotation concept™. The weight
is in the range [0, 1], and the above described instruction is adapted accordingly. The
arrows with crisp corners represent subCategoryOf relationships, i.e., the search cat-
egory at the start of the arrow is a subcategory of the search category at the end of

the arrow. This relationship is transitive.

Based on the above descriptions we can already make some intuitive estimations
of probabilities of document relevance for search category selections. For example,
consider the case that the user has selected the search category Fears. This search
category is mapped to the annotation concept F/0 Phobias with weight 1.0, which
means that when PFSS determines the probabilities of document relevance for the
search category Fears it completely trusts probabilities of document relevance com-
puted for F40 Phobias. We see, that document D2 is annotated to F40 Phobias with
weight 0.9. Annotation weights in PFSS mean probability of document relevance.
Thus, probability of document D2 being relevant to F40 Phobias is 0.9. Thus, the

probability of relevance of D2 to the selected search category Fears is 0.9.
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Figure 11.2: Conceptual structure behind the Virtual Mental Health Center search
functionality.

11.2 PFSS in a Nutshell

This section presents the general intuition behind PFSS, the high-level algorithms
for computing the probabilities of document relevance for facet selections, and the
overview of the PFSS probability model. The details of the PFSS framework will
be presented in Sections 11.3-11.7.
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11.2.1 The Intuitive Interpretation of PFSS

In CFSS the result set of a multi-faceted search is the intersection of the result sets
of the individual facets. We will follow this intuition in PFSS. In faceted search the
facets are generally considered orthogonal, i.e. independent, of each other. Because
the product is the probabilistic operator for computing the co-occurrence of two
mutually independent events, in PFSS the probability of relevance of a document
in relation to the facet selections of the user is the product of each individual facet

selection specific probability.

The probability of relevance of a document in relation to a facet selection—i.e., a
selection of a single search category—is computed recursively. This recursive com-
putation is motivated by the structure and interpretation of the knowledge base
described in Section 11.1: The weighted annotations are interpreted directly as
probabilities of document relevance, and the relationships between the conceptual
entities (annotation concepts, Boolean concepts, and search categories) are inter-
preted as instructions how to infer the probability of document relevance for one
party in the relationship based on the probability of relevance of that document for
the other party. This translates naturally into a recursive algorithm. The base case
of the algorithm is the computation of the probabilities of document relevance in
relation to the annotation concepts. The recursive step then uses the probabilities of
document relevance specific to annotation concepts for computing the probabilities

of document relevance specific to the selected search categories.

To clarify this, let us look at the example described in the last paragraph of the
previous Section (11.1). In this example the base case is the computation of the
probability of relevance of D2 in relation to the annotation concept F40 Phobias,
which yields the probability 0.9. This probability is then used to compute the
probability of D2 in relation to the selected search category Fears. This is the

recursion step of the computation, which is performed based on the mapping of
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the search category Fears to the annotation concept F40 Phobias. Because, in the
example case, the mapping has the weight 1.0 the probability of relevance of D2 to
Fears is the same as the probability of relevance of D2 to F40 Phobias.

The above example is very simple in the following respects: First, the probability of
relevance of the document D2 to the annotation concept F40 Phobias is acquired
directly from the annotation weight in the knowledge base. Second, the selected
search category is directly mapped to the annotation concept, which leaves us with
a single recursion step. In PFSS both the base case and the recursion can be more

complicated as follows:

Base case When computing the probability of relevance of documents to anno-
tation concepts, not only direct but also indirect annotations are taken into
account. For example, in Figure 11.2, the document D5 is indirectly anno-
tated to the concept F60-69 Personality Disorders, because the document
is directly annotated to F60.1 Schizoid Personality, which is the subconcept
of F60-69 Personality Disorders. Thus, the computation of probabilities of
relevance of documents in relation to annotation concepts is not comprised
merely of the reading of the annotation weights of each document, but it in-
volves also computations based on the subconcept relationships between the

annotation concepts.

Recursion step The recursion may have more layers than just one. For example,
when computing the probability of relevance of document D2 to the search
category Severe Problems we would first compute the probability of relevance
of D2 to the annotation concepts Step 1, Step 2, and Step 3. This is the base
case. Then we would use the probabilities computed in the base case to
compute the probability of D2 to the Boolean concepts =Stepl, and Step2 U
Step3. This is the first layer of recursion. Each type of Boolean concept

has its own mathematical function to perform the necessary computation.
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The probabilities computed in the first recursion step are used to compute
the probability of relevance of D2 to the Boolean concept —Stepl U (Step2 U
Step3). This is the second layer of recursion. And finally, the probability
computed in the second recursion layer is used to compute the probability of
D2 to the selected search category Severe Problems. If the search category
had sub categories, we would also have to first compute the relevance of the
document in relation to the child categories, and use that probability in the
computation of the final probability value. The computation of probabilities
of document relevance specific to the different types of Boolean concepts is
described in Section 11.4, the handling of the hierarchical structure of facets

is described in Section 11.5.

11.2.2 The High-level PFSS Algorithm

Based on the above, the main algorithm for computing the probabilities of document

relevance in relation to user’s facet selections is outlined in Algorithm 4.

Data: Semantic knowledge base skb, Search Category || facetSelections
Result: Probability of document relevance [] documentRelevances
documentRelevances = () ;
foreach Document d € skb do
Probability of document relevance docRel = 1 ;
foreach Search Category sc € facetSelections do
docRel * = compute document relevance for the search category sc using

Algorithm 5 with input skb, sc, and d;

end

add docRel to documentRelevances;

end

Algorithm 4: The main algorithm for computing probabilities of document rele-

vances in PFSS
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As input the algorithm gets the semantic knowledge base and the facet selections
made by the user. As a result the algorithm returns the probability of document
relevance for each document in the knowledge base. Between lines 2 and 8 the
algorithm loops through all the documents in the semantic knowledge base. The
probability of relevance docRel of the current document is first set to 1. Then the
algorithm loops through the facet selections done by the user and multiplies the
current value of docRel by the probability of relevance of that document to the
current selected search category sc. The probability of relevance of the document to
each search category is computed using Algorithm 5, which is explained below. After
the probability of document relevance docRel is computed for the facet selections of
the user, docRel is added to the set of returned probabilities of document relevance

documentRelevances.

Algorithm 5 outlines the high-level recursive algorithm for computing the proba-
bility of relevance of a document in relation to a conceptual entity. In PFSS a
conceptual entity is either an annotation concept, a Boolean combination of anno-
tation concepts, or a search category. Algorithm 5 is a general "template algorithm”
which applies to all types of conceptual entities found in the semantic knowledge

base presented in Section 11.1.

As input the algorithm takes the semantic knowledge base skb, a conceptual entity
ce, and a document d. The algorithm returns the probability of relevance docRel of
document d in relation to the conceptual entity ce. The algorithm is composed of
one if-then-else statement. The base case—i.e., the computation of probability of
document relevance for an annotation concept—of the algorithm is presented in line
2 in the then clause of the if-then-else statement. The details of how the annotation
concept specific probability of a document relevance is computed will be presented

in Section 11.3.

The recursive step of the algorithm is presented in the else clause on lines 3 - 11.
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[Data: Semantic knowledge base skb, Conceptual Entity ce, Document d
[Result: Probability of document relevance docRel specific to the conceptual entity ce
if ce is an annotation concept then
docRel = compute the probability of d for the annotation concept ce
else
Conceptual Entity [] compCes = the conceptual entities that according to skb are to
be used to compute the probability of document relevance specific to ce ;
Probability of document relevance [| compRels = (J;
foreach Conceptual Entity compCe € compCes do
Probability of document relevance compRel = call this algorithm (5) with input
skb, compCe, and d;
add compRel to compRels;
end

docRel = compute the relevance of d specific to ce based on compRels according to

type of ce and the type of each compCe € compCes ;

end
docRel = compute the weighted average of docRel and relevance of d according to other

possibly provided ranking schemes.
Algorithm 5: The general recursive algorithm for computing relevance of document

in relation to a conceptual entity (an annotation concept, Boolean concept, or a

search category).

On line 5, the set of conceptual entities compCes (component conceptual entities)
that according to the knowledge base skb should be used to infer document’s d
probability of relevance docRel for ce are extracted from skb. This set is defined
by the type of the conceptual entity ce. The types were presented in Section 11.1,
and will be described in detail in Sections 11.3-11.4. For each conceptual entity
compCle in compCles the algorithm recursively calls itself to compute the probability
of relevance of document d to compCe. After the probability of relevance of d to
each conceptual entity in compCles is computed and saved in the set compRels the

algorithm uses these probabilities to compute the probability of relevance docRel of
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d to ce on line 10. This computation is also dependent on the type of ce and each
compCle of the used conceptual entities in compC'e, and will be described in detail

in the following sections.

If other ranking schemes in addition to PFSS are in use and they provide rankings
for the conceptual entity ce, line 12 computes the final probability of document
relevance docRel specific to ce by averaging over these competing ranking schemes.
The averaging can essentially happen for any conceptual entity, however, it will be
discussed and evaluated only on the search category level. Combining of ranking

schemes will be discussed in Section 11.6 and evaluated in Chapter 13.

Similarly as in CFSS, where the documents can be projected onto the search cat-
egories in a batch process when the search system is constructed, also in PFSS
the probabilities of document relevance specific to search categories can be precom-
puted. Thus, the only online processing remains the operation where the different
facet selections are combined to compute the final probabilities of document rele-
vance, i.e. Algorithm 4. In this sense PFSS does not add to the computational
complexity of CFSS. Thus, the online computation cost of in terms of running time
O(n(D) * n(F)), where n(D), and n(F') are the number of documents and facets
respectively. The amount of facets is typically low, so the cost is in practice linear
with respect to the amount of documents. In real world situation, the documents
are efficiently indexed in a database, so the running time would be less than linear.

As for memory consumption, The algorithm requires a document — search category

matrix, the cost of which is O(n(D) x n(SC)).

11.2.3 The PFSS Probability Model

We create a probability model for the base case, such that each annotation concept

is represented by a binary random variable ACx, where AC% means that the user
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is interested in the annotation concept X. In other words, documents relevant to
X are also relevant for the user. AC% has the opposite meaning. Each document is
represented by a binary random variable D;, where D} means that the document Di
is relevant to the user, and DY has the opposite meaning. The annotations of Di to
the annotation concept Y with weight w is interpreted as the conditional probability

specification

P(D}ACY) =w
P(DJ|ACY) = 1 — P(D}|ACYy)
The handling of multiply annotated documents will be described in Section 11.3.

(11.1)

In our simple example case the annotation of D2 to F40 Phobias with weight 0.9 in

Figure 11.2 is interpreted in the base case as the conditional probability specification

P(D%|A011?40 Phobias) = 0.9 (11.2)
P(D8|AC}?40 Phobias) = 0-1
Probabilistically, the task of the base case, i.e., line 2 of Algorithm 5 is to compute
the conditional probability P(D}|ACY) for each document in the knowledge base,
s.t. X is conceptual entity ce in question. To do that the conditional probabilities
that are defined according to Equation 11.1 are used. If the document Di is anno-
tated only to concept Y, then the conditional probability P(D}|AC,) is defined as
follows:
P(D}|ACx) = P(ACy|ACx) * P(D3|ACY,) (11.3)
Where P(ACy|ACY) indicates how relevant documents that match the concept Y
are to a user interested in X. The computation of P(ACy|ACx) as well as the case

of multiply annotated documents will be described in Section 11.3.

A search category Cat is represented by binary random variable SC¢,;, where SCL,,
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represents the event that the user is interested in Cat, and SC2,, represents the
opposite event. Facets are interpreted as collections of search categories and are
not represented by random variables in PFSS. Notice, that this is similar to FEFSS

where facets are not explicitly included in the model.

A mapping between the search category Cat and the target concept X with weight
w is interpreted as the probability

P(D;|SCy) = w* P(D}ACK)

(11.4)
P(Dzo|50é'at) =1- P(D7,1|Soé'at)

for all documents in the semantic knowledge base. In our simple example, the search
category is mapped directly to an annotation concept. It can be, however, mapped
also to a Boolean combination of annotation concepts, which will be discussed in
Section 11.4. Equation 11.4 applies to the situation that the search category Cat
does not have any child categories. In Section 11.5 we will present the generalization
of this equation to the situation that C'at does have child categories. PFSS also
contains a facility to combine evidence of relevance from external ranking schemes,
The generalization of Equation 11.4 to the situation that multiple ranking schemes

are used will be presented in Section 11.6.

For example, according to the mapping of the search category Fear to the annotation

concept F40 Phobias with weight 1.0,

P(D3|SCL,..) = 1.0 P(D3ACE40 phobias) = 1.0% 0.9 = 0.9

(11.5)
P(DY|SChey) = 0.1

The final probability of document relevance to a multifaceted search is then defined

as the conditional probability:

P(Dil‘Sd) = HVSCCatESelP(DHSCé’at)

(11.6)
P(D?|Sel) = 1 — P(D}|Sel)



154

where Sel is the set random variables representing the selected search categories.
Thus, the final probability of document relevance is the product of the search cate-

gory specific relevances of the selected search categories.

11.3 Simple Search Category

Here we present a detailed treatment of the situation where the user has selected
one search category that is mapped to a simple annotation concept (not a Boolean
combination). Figure 11.3 presents this situation from GUI point-of-view. Currently
we also "forget” the fact that the system contains other search categories that are
organized to facets. So in effect in this case our system consists only of one search
category that has a one-to-one mapping to a simple annotation concept. In the
example of Figure 11.3, the user has selected the only existing search category Fear
of Social Situations as the symptom of interest, and the matching documents D5
and D2 are shown in the result list in the center of the GUI. Figure 11.4 presents

the part of the conceptual model of Figure 11.2 that is relevant to this example case.

As in the example case used in the previous Section (11.2) our recursive compu-
tation consists of the base case, and a simple recursion step. In the base case we
have to compute the probability of relevance of the documents to the annotation
concept onto which the search category is mapped. In the recursion step we use the
annotation concept specific probabilities to compute the probability of relevance of

the documents to the search category.

11.3.1 The Base Case for Documents with a Single Annotation

In this example the documents are D5 and D2, and the annotation concept onto

which the search category Fear of Social is mapped is F40.1 Social Phobia. We
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Figure 11.3: An example screenshot of a simple single faceted search.

see, that the document D5 is annotated only to F/0.1 Social Phobia with weight
0.6, and D2 is annotated only to F40 Phobias with weight 0.9. Thus, according to

Equation 11.1 we can define the conditional probabilities

P(DEI)|AC}7401 Social Phobia) =0.6
P(Dg|ACI:'L7‘401 Social Phobia) =04

(11.7)

and
P(D%|AC}74O Phobias) =09

P(D(Z)‘AC}*—%O Phobias) =0.1

(11.8)

Because, the search category Fear of Social Situations is mapped to F/0.1 So-
cial Phobia the task of the base case is to compute the probability of rele-

vance of documents to F0.1 Social Phobia, i.e., P(D}|ACFa01 Social Phobia), and
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Figure 11.4: The conceptual model of the simple scenario for probabilistic faceted
search.

P(D3|ACF40.1 Social Phobia)- According to Equation 11.3 the conditional probability
P(D|ACF40.1 Social Phobia) i

1 _
P(D5|ACF4O.1 Social Phobia) —
P (ACF40.1 Social Phobia|ACF40.1 Social Phobia)*

P(P(DEHACF401 Social Phobia)) =
1.0%x0.6 =0.6

(11.9)

To compute the marginal probability for Dy we have to be able to specify the
conditional probability P(ACFi0 phobias| ACF10.1 Social Phobia)- Intuitively, we have to
be able to specify the probability that a document matching F40 Phobias is relevant
to a user who is known to be interested in F40.1 Social Phobia. Recall, that the
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method for computing overlap between concepts from Chapter 10 computes exactly
probabilities of this kind. Thus, the PFSS algorithm uses the method of Chapter
10 to compute the probabilities of relevance of documents that are not annotated

directly to the annotation concept that a search category is mapped to.

According to the method of Chapter 10, the concepts have to be given masses. In
this case we compute the concept masses based on the annotations. Recall that
quantification of concepts according to annotations was one of the options to create
concept masses presented in Chapter 10. According to the annotation data the
mass of F40.1 Social Phobia is 0.6, and the mass of F40 Phobias is 0.6 + 0.9 = 1.5.
PFSS does not expect the concept taxonomies to be represented using the Ouverlap
Graph notation, but instead applies the solid path semantics to the crisp taxonomies.
According to this, two concepts A and B intersect either if one is the subconcept
of the other, or if A and B share one or more subconcepts. In the latter case
the amount of overlap is based on the aggregated mass of the shared subconcepts.

Otherwise, the concepts are interpreted to be disjoint.

After the concepts are massified the mneeded conditional probability

P(AC40 Phobias ACF10.1 Social Phovia) €21 be computed using the formula:

P(AOII*—'4O Phobias|AC}1740.1 Social Phobia) =
m(F40 Phobias N F40.1 Social Phobias)/m(F40 Phobias) = (11.10)

0.6/1.5 = 0.4

Now we can compute P(D3|AC Y101 social Phobia) USINE Equation 11.3:

P(D%|AC}7401 Social Phobia) =
P(ACF40 Phobias‘ACF4O.1 Social Phobias) * P(D%‘ACF4O Phobias) = (1111)
0.4%0.9=0.36
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Figure 11.5: Multiply annotated document.

11.3.2 The Base Case for Documents with Multiple Annotations

Often documents are multiply annotated, as is exemplified in Figure 11.5. In the
case of a multiply annotated document, we use the noisy OR-Gate [83] to combine

the evidence from the individual annotations.

The noisy OR-gate is typically used when modeling relationships between variables
each of which has only two values. In our case the variables are the document
variable D;, and the variables representing the concepts that Di is annotated to,
ie, ACpur, ... ACper, . We will call these variables the parents of D;. In noisy OR-

Gate terminology D; could be called the effect variable, and the parent variables
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Table 11.1: The conditional probability table for the document variable Dy, ac-
cording to the annotation of Figure 11.5.

1 1 1 — _
P(DSIACFSO.I Schizoid Personality’ACFALO.l Social Phobia)_l_(l_0'3)(1_0'6)_0'727

0 1 1 — —
P(D5|ACF6()41 Schizoid Personality’AcFél()J Social Phobia)_1_0'72_0'28

1 1 0 — _
P(DSIACFGOJ Schizoid Personality’ACFél()J Social Phobia)_l_(l_o'g)_o‘?’?

0 1 0 — —
P(D5|ACF6()41 Schizoid Personality’AcFél()J Social Phobia)_1_0'3_0'7

1 0 1 _ —
P(D5|ACF6()41 Schizoid Personality’AcFél()J Social Phobia)_l_(l_o'ﬁ)_o'ﬁ?

0 0 1 1.0 A
P(D5|ACF60.1 Schizoid Personality’ACFALO.l Social Phobia)_1 0.6=0.4

1 0 0 —
P(D5|ACF60.1 Schizoid Personality’ACFALO.l Social Phobia)_o’

0 — _
ACF40. 1 Social Phobia)_l_o_l

0 0
P(D5|ACF60.1 Schizoid Personality’

could be called the cause variables. When using the noisy OR-Gate, the following

three assumptions are made in the model [83]:

Inhibition There is some mechanism that inhibits a parent event from bringing
about its effect, and the presence of the parent event bring about the effect
only if this inhibition mechanism is disabled. In our case the parent event is
the interest of the user in an annotation concept, which we know based on
the search that the user specified, and the effect is the relevance of D; to the
user. The inhibiting mechanism is the possible situation that for some reason
D; does not contain useful information for the user that is interested in the
annotation concept even though the document is annotated to that concept.

This is why the gate is called noisy.

Exception independence This assumption entails that the mechanism that in-
hibits one parent event is independent of the mechanism that inhibits other
parents. In our case, the case that Di is not relevant to ACp,,, does not

mean that Di is also not relevant to ACp,,.,.

Accountability This assumptions entails that an effect can happen—Di is rel-
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evant for the user—if at least one of its parent events is present and is not
being inhibited. This is why the gate is called an OR-Gate, and it complies
well with the functioning of CFSS where a document is considered relevant
if at least one of its annotations matches the query. In the case of PFSS the
annotation weight is interpreted as the probability that the inhibition is not

present for the annotated concept.

Let wp;_~ s represent the annotation weight of D¢ to annotation concept J, let
Parp, denote the parents of D;, and let Par}ji denote those parents AC'; that are
in state AC}. Based on the above assumptions, the noisy OR-Gate for document

variables is then computed as:

P(D{|Parp)=1— ] (1 —wpi—ss) (11.12)

VAC’JEP(M’})_
1

for all documents Di in the knowledge base. Table 11.1 presents the conditional
probabilities for the conceptual model of Figure 11.5 given the different combinations
of assignments to the annotation concept variables. The conditional probability

P(D}|ACx) for the base case is then:

P(D/|ACx)=1— ] (1—P(AC|ACx)*wpi—>s) (11.13)

VAC’JEP(M’DZ.

for all documents Di in the knowledge base.

Notice, that Equation 11.3 is a special case of Equation 11.13, in the situation that
Di is annotated only to one concept. Thus, Equation 11.13 can be used instead of
11.3 also in the case of a document with a single annotation. This concludes the

presentation of the probability model for the base case of our algorithm.
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11.3.3 The Recursion Step

The recursion step uses the probabilities of document relevance computed in the
base case to compute the search category specific probabilities. In the case of sim-
ple search category definitions, the probability of relevance of documents can be
computed simply using Equation 11.4. Notice, that the weight w of the mapping
of Fear of Social Situations to F40.1 Social Phobia is 1.0. Thus, the probability of

relevance of D5 for the search category Fear of Social Situations is

P(D%‘SCI{"ear of Social Situations) =
w * P(D3|ACF10.1 Social Phobia) = (11.14)
1.0%x0.6 =0.6

and the probability of relevance of D2 is

P(D%‘Sclgear of Social Situations) =
w % P(D3|ACFa01 Sociat Phobia) = (11.15)
1.0%0.36 = 0.36

Because, Fear of Social Situation is the only selected search category, the search
category specific probability of document relevance is also the final probability of

relevance for the search according to Equation 11.6.

11.3.4 The Algorithm

This section presents the specialization of Algorithm 5 according to the case treated
in this section; i.e., how the base case (line 2 of Algorithm 5) is computed, and then
how this annotation concept specific probability of document relevance is used to

compute the search category specific probability (line 10 of Algorithm 5):
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1. The Base Case (line 2 of Algorithm 5):

e For each ac € SKB compute P(ac|ce) according to the method de-
scribed in Chapter 10.

e Compute the probability of relevance of d based on the conditional prob-
abilities computed in the above step, and the annotation weights of d

according to the noisy OR-Gate as in Equation 11.13.
2. The Recursion Step (line 10 of Algorithm 5):

e docRel = annotation concept specific probability of relevance of d—as
computed in the base case above—multiplied by the mapping weight

between the selected search category and the annotation concept.

11.4 Search Categories Mapped to Boolean Combinations of

Annotation Concepts

In this section we will show, how Boolean combinations of annotation concepts are
handled in PFSS. The Boolean combinations of concepts that are supported by
PFSS are OR, AND, and NOT.

11.41 OR

In Figure 11.6 the search category Social Problems is mapped to a Boolean combi-
nation OR of the annotation concepts F/0.1 Social Phobia and F60-69 Personality
Disorders. This is an example of a search category that is defined using a Boolean
combination of annotation concepts. According to the semantics of Boolean combi-
nation concepts given in Section 11.1, documents that are relevant to either F/0.1

Social Phobia, F60-69 Personality Disorders, or both are also relevant to the Boolean
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combination F'40.1 U F'60 — 69. To compute the probability of relevance of docu-
ment D2 to the selected search category Social Problems it should first compute
the probability of relevance of the document to F40.1 Social Phobia, and to F60-
69 Personality Disorders, after this determine the probability of relevance of D2
to F40.1 U F'60 — 69, as a probabilistic OR combination of the component specific
probabilities, and then, finally, compute the probability of relevance of D2 to Social
Problems based on the F'40.1 U F'60 — 69 specific probability.

Annotation Concepts & i Problem/

Documents \  Symptom

FB0.1 Schizoid
Fersanality
; FEOEY Personality
disorders
- 0.9

FRi-59
1
Far 1
4 s
OB
¥ F40.1 Social
! phobia

g ' i
FAD Phobias

B

Social
problems

Figure 11.6: The search category Social Problems is defined using the Boolean
combination OR of annotation concepts F40.1 Social Phobia and F60-69 Personality
Disorders.

Notice, that the arrow from the Boolean combination F60-69 U F40.1 to the annota-
tion concept F'60-69 Personality Disorders has a weight 0.9. The intuitive meaning

of this, in terms of probability of document relevance, is that we trust with proba-
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bility 0.9 that documents relevant to F'60-69 Personality Disorders are also relevant
to F60-69 U F40.1. We can see, that the noisy OR-Gate used in combining evidence
about multiple annotations is suitable to be applied to this situation to compute
the OR combination specific probabilities of document relevance. D; is still the
effect variable, but now the inferred relevance of D; to the component concepts are
the parent events—instead of the interest of the user in an annotation concept as
in Equation 11.13—and instead of an annotation weight we have the weight of the
component concept in the OR combination. Thus, the OR combination is proba-

bilistically interpreted as follows:

P(D;|ORE ) =

1 = vsecomp (1 = P(D;|Comp}) W comp->) (11.16)

P(D?|ORlc'omp) =1- P(D21|OR1C'omp>

where

e UComp is the OR combination under inspection,

® ORcomp is the binary random variable representing U Comp, s.t. ORgq,,,
represents the situation that the user is interested in the OR combination,

and OR, represents the opposite,

0
Comp

e (Comp is the set of component concepts that form | Comp,

e (Compy is a random variable representing the component concept J of
UComp. J might be an annotation concept or a Boolean combination of

annotation concepts.

o P(D}|ORg,,,,) is the probability of relevance of document Di to a user that

is interested in J C'omp, and



165

® W Comp—>s 18 the weight of the concept J in JComp.

In the example of 11.6 the OR concept has only annotation concepts as its com-
ponents. However, as will be shown in Section 11.4.3, the Boolean combination

concepts can also have other Boolean combinations as components.

For example, Using Equation 11.16 we can compute the probability of relevance of

documents D2 to the OR concept F60-69 U F40.1 according to Figure 11.6:

P(D% |OR}?60—69UF4O.1) =

1—(1- P(D%|A011740.1 Social Phobia) ¥ WF60—69UF40.1—>F40.1)%

(11.17)
(1 - P(D%|AC}760—69 Personality Disorders) * wF60—69UF40.1—>F60—69) =
1= (1-036%1)%(1—0%0.9) =1 — 0.64 = 0.36
Notice, that the value P(D3|ACEi01 social Phovia) = 0-36 was computed in

Equation 11.11, and D2 is not annotated to F60-69 Personality Disorders, so
P(D3|ACt60_69 personatity Disorders) = 0. The probability of relevance for D5 can

be computed similarly, but this computation is not explicitly shown here.

After P (D}|OR}Jomp) is computed, it is used to compute the search category specific
probability as shown in Equation 11.4, such that the concept X of that equation is
the OR combination concept which the search category is mapped to. For example

the probability of D2 to the search category Social Problems is:

P(D%|Scé’ocial Problems) = 1.0 % P(D%|OR11F‘60—69UF40.1) =1.0%0.36 = 0.36 (11.18)

11.4.2 AND

In Figure 11.7 the search category Finnish Fears is mapped to the AND combination

of the annotation concepts Finland and F/0 Phobias. According to the semantics
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Figure 11.7: The search category Finnish Fears is defined using the Boolean com-
bination AND of annotation concepts Finland and F/0 Phobias.

given in Section 11.1, a document is relevant to the combination F40 N Finland, if
it is relevant both to Finland and F40 Phobias. This correspond probabilistically to
the product operation, which is used to compute the co-occurrence of two or more

mutually independent events. Thus, the AND combination is interpreted as follows:

P(D21|ANDé'omp) = HVJEComp P(D3|Compb)
(11.19)
P(DY|ANDL,, ) =1— P(D!|ANDL,, )

Comp Comp
where P(D}|AND¢,,,,) is the probability of relevance of document Di to a user that
is interested in the AND combination concept () Comp, and Comp is the set of com-
ponent concepts that form N Comp. As in the OR combination, each combination

concept might be an annotation concept or a Boolean combination.
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The probabilities of relevance for D2 and D5 to F40 N Finland are thus:

P(D%|AND}74OOFinland) =
P(D%‘ACI{MO Phobias) * P(D%‘Acll:'znland) = (1120)
0.9%0.5=045

and
P(Dé‘AND}MOmleand) =
P(D}ACEg phobias) * P(DSIACE p1and) = (11.21)
0.6x0=0

The computation of the annotation concept specific probabilities is done according

to Equation 11.13, but is not explicitly shown here.

As discussed in Section 11.4.1 the search category specific probabilities are computed
using Equation 11.4. For example, the probability of relevance of D2 to the search

category Finnish Fears is:
P(D%‘SC}?znnzsh Fears) = 0.8 P(D%‘AND}MOﬂFinland) =0.8%0.45=10.36 (1122)

Notice the effect of the mapping weight, which is 0.8. For D5 the search category
specific probability is naturally 0 because P(D|AN D} yonriniand) = 0-

11.43 NOT

The NOT operator is used in the definition of the search category Slight Problems.
According to semantics of Section 11.1 a document is relevant to (Stepl U Step2) N
—Stepd if it is relevant to Step 1, or Step 2, but not Step 3. This definition of
Slight Problems shows that the Boolean combinations of concepts can themselves
be components of other Boolean combinations. Search category definitions can have
a recursive structure, i.e., they can be defined using Boolean combinations of Boolean

combinations and so forth.
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Figure 11.8: The search category Slight Problems uses OR, AND, and NOT
Boolean combinations of annotation concepts in its definition.

Probabilistically the NOT concept is interpreted as:
P(D{|NOT;) = P(D?|ACY) (11.23)

i.e., the probability that Di is relevant to the negation of concept J equals the
probability that Di is not relevant to the concept J. Again, J might be an annotation

concept or a Boolean combination concept.

For example, the probability of relevance of D2 to —Step3 is:

P(D}|Notg;.,s) = P(DJ|ACS;0,5) =1 — 0.8 =0.2 (11.24)

To compute the relevance of D2 and D5 to the search category Slight Problems we
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would do the following:

1. Compute the relevance of D2 and D5 to all three annotation concepts in

Figure 11.8.

2. Use the annotation concept specific probabilities to compute the —Step3 and

Step1 U Step?2 specific probabilities.

3. Use the —=Step3 and Stepl U Step2 specific probabilities to compute the
(Stepl U Step2) N —Step2 specific probability.

4. Finally, use the (Stepl U Step2) N—Step2 specific probability to compute the

Slight Problems specific probability.

Notice, that the Boolean combinations OR, AND, and NOT as interpreted in PFSS
are different from Union, Intersection, and Complement concepts, respectively, as
defined e.g. in OWL. In PFSS one can define a search category as the AND of
two disjoint concepts, e.g. Finland and Russia, in the example of Chapter 10, and
this will yield valid search results, but the Intersection of Finland, and Russia does
not exist. This is because the search category definitions refer to sets of relevant
documents, which can be discovered using the annotation concepts, but OWL refers

to the concepts as such.

11.4.4 The Algorithm

Based on the above, line 10 (the recursive step) of Algorithm 5 is extended in the

case of a Boolean combination as follows:
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1. If the conceptual entity ce is an OR combinations:

e docRel = the noisy OR computed from the probabilities of document

relevance compRels of the component conceptual entities compCe of ce.
2. If the conceptual entity ce is an AN D combination:

e docRel = the product of the probabilities of document relevance

compRels to the component conceptual entities compCle of ce.
3. If the conceptual entity ce is a NOT' combination:

e docRel = 1—compRel, i.e. probability of relevance of d is the probability
of relevance compRel of d specific to the component conceptual entity

compC'e subtracted from 1.

11.5 Hierarchical Search Categories

Figure 11.9 presents a hierarchy of search categories. The search category Fears
is the parent of the search categories Fear of Social Situations, and Finnish Fears.
According to crisp faceted semantic search, if a document matches a search category
then it also matches all the ancestor search categories. The opposite, however, is
not true, i.e., if a document matches a search category it does not by default match
the descendant search categories. This intuition is followed in PFSS in the following

way:

1. The fact that a document matches a descendant of the selected search cat-
egory is seen as evidence that the document is relevant. However, in PEFSS
a direct match to the selected search category is considered better evidence.
The longer the path between the selected and the matching search category

the less certain PFSS is about the relevance.
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2. Also in PFSS a match to an ancestor of the selected search category is not

seen as evidence that the document is relevant to the user.

D& }
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Geographical /
Location

: FA0.1 Social

| phobia

2 : [ —
i ' 10
h F40 Phobias ™

Fear of
——— Social
Situations
Fears
08 T—‘
< Finnish
Fears

Figure 11.9: Hierarchical organization of search categories.

Thus, if a search category has subcategories, the probability of document relevance
is computed based on the mapped concept (or combination of concepts) as defined

in Equation 11.4 and the child search categories using the noisy OR-Gate:

P(D}SCh,) =1~
VChild;eChildcat

where

1. Childgg is the set of child categories of Clat,

(1= sn* P(D;i|SCeypaa))) * (1 — w* P(D;] X))
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Child; represents one child search category of C'at, and SC’éhildj is the ran-

dom variable representing its interestingness to the user,
X is the concept that Clat is mapped to with weight w, and

sn is the probability that a document is relevant to the selected search cate-
gory, if the document is relevant to its child category. In our implementation
we have set it manually to 0.8. This reflects the intuition that a direct match
to a search category is better evidence than a match to a subcategory, and

the longer the hierarchical path the less certainty about the evidence,

As can be seen, Equation 11.4 is a special case of Equation 11.25 in the situation

that Sc does not have any child categories.

Based on the above, the recursion step (line 10 of Algorithm 5) is handled in the

case of a search category that might contain child categories as follows:

docRel = noisy OR of the probability of relevance of document d specific to
the conceptual entity that the search category ce is mapped to and each of
the sub categories of ce such that firstly, the trust in the mapped conceptual
entity is set according to the mapping weight and secondly, the trust in each

of the child categories is 0.8.

11.6 Combining Evidence of Multiple Ranking Schemes

We will now extend PFSS by combining multiple ranking schemes to the model.

We want to be able to combine different ranking schemes, because it has been

shown that combining evidence about relevance improves ranking [70]. In addition,

we aknowledge the fact that there are many—and sometimes contradicting—ways
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to utilize the conceptual knowledge in the semantic knowledge base for ranking
of search results. Any ranking schemes can be combined to PFSS as long as the
relevance values are normalized to the range [0, 1] so that they can be interpreted
as probabilities. In chapter 13 we will evaluate the effect of combining evidence by
combining the rankings provided by CFSS, FFSS, and a heuristic ranking method
to PFSS using the method described in this section.

Our aim is to combine the probabilities of relevance computed by the different
ranking schemes in a probabilistically sound way. The probabilistic way to combine
competing distributions is by creating a mixture distribution, i.e., a weighted average
of the competing distributions as follows:

P(D}|SCy) = 3 wes, % P(D}|SClyprs) (11.26)
Vrs;€RS

where

1. RS is the set of ranking schemes that are used,
2. rs; is one of those ranking schemes,

3. wys; is the weight of the ranking scheme rs;. The sum of the weights of all

ranking schemes equals 1,

4. P(D}|S C’éat:mj) is the probability of relevance of document Di to the search

category Cat according to the ranking scheme 7s;.

The weight of each scheme can be configured in the PFSS system, but if we lack
better knowledge we can set each value the probability of 1/n(RS), where n(RS)
is the number of ranking schemes, according to the principle of indifference. This
probability could also be learned, however, currently PFSS does not contain a facility

for learning probabilities.
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Thus, the averaging of ranking schemes (line 12 of Algorithm 5) is done as follows:

e docRel = the weighted average of docRel according to pfss and other possibly

provided ranking schemes computed according to Equation 11.26.

11.7 Performing the Search

We have now presented the complete algorithm and probability model for computing
the probabilities of document relevance in relation to a search facet. After these
search category specific probabilities are computed, they are combined to answer to

a multifaceted search given by the user.

Recall from Section 11.2, that in PF'SS the probabilities of relevance of documents
in relation to the facet selections of the user are computed as the product of the
probabilities in relation to each selected search category. This is, in fact, similar to
the AND operator that was described on Section 11.4. Algorithm 4 presented the
computation of probabilities of relevance of documents in relation to a multi-facet
search given by the user, and Equation 11.6 presented the probabistic interpretation

of this computation.

11.8 Summary

This chapter presented the probabilistic faceted semantic search (PFSS) framework,
including its intuitive, principles, the probability model, and the algorithms for
constructing the model and computing the documents of relevance in response for
searches specified by the user. The recursive structure of the model enables efficient

performance, because it enables us to precompute most of the model. In effect, the
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only online operation is the combination of facet specific relevances in the multi-

faceted search scenario.

The next Chapter (12) will summarize the lessons learned of the development of
the framework, and the contributions of the probabilistic approach to the faceted
semantic search developed in this part of the dissertation. Chapter 13 will then
present an empirical comparison and evaluation of CFSS, FFSS, and PFSS, and
will draw conclusions based on the comparison. Appendix A presents the technical
design of a reference implementation of the PFSS framework, which contains an
RDF-based language for representing the search facets, the Boolean combinations
of concepts, and the weighted annotations. The system is implemented in the Java?*
programming language. The implementation described in Appendix A was used in

the evaluation that will be presented in Chapter 13.

Zhttp:/ /java.sun.com/
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12 Contributions and Lessons Learned

This chapter will summarize the contributions of the Probabilistic Approach. After
the contributions are present lessons learned are discussed. The next section will

then provide an empirical comparison of CFSS, FFSS and PFSS.

12.1 Contributions

The main contributions of the probabilistic approach presented in this part of the

dissertation are the following:

1. Modeling of Uncertainty in Semantic Web Taxonomies
Chapter 10 presented a graph notation for representing uncertainty and con-
ceptual overlap in Semantic Web taxonomies, and a Bayesian method for
computing degrees of overlap between any two concepts of such a taxonomy.
This method could be then utilized in the ranking of search results in PFSS.
This method was later further developed for modeling geo-spatial changes

over time [63].

2. Creating User-centric Facets for Search
The PFSS framework presented in Chapter 11 contains a facility to define
search facets separately from annotation ontologies and probabilistically map
the former to the latter. Boolean combinations of annotation concepts can be
used in the mappings. PFSS defines clear probabilistic semantics for these
facets, the mappings, and the Boolean combinations of concepts. Appendix

A presents an implementation of this formalism using RDF.

3. Ranking of Search Results

The PFSS framework, provides efficient ranking of documents based on the
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probability of relevance of each document computed based on weighted an-
notations, ontology structure, and mappings of end-user search facets to an-
notation ontologies. Clear probabilistic semantics are defined to all of these

constructs.

4. Combining Evidence of Document Relevance from Multiple Rank-
ing Schemes
PFSS supports the probabilistic combination of evidence from multiple rank-

ing schemes to reach the final probability of relevance of a document.

5. An Implementation of PFSS
Appendix A describes the technical design of a complete reference implemen-

tation of PFSS.

12.2 Lessons Learned

The probabilistic approach proved to be appropriate for solving the problems of
CFSS summarized in Chapter 4, and the deficiencies noticed with the fuzzy ap-
proach. Bayesian probability theory provides a good framework for reasoning under
uncertainty, because the agent’s rational degrees of belief follow the rules of prob-
ability [111, 29]. Probability theory provides also good mechanisms for evidence

combination.

The method for modeling uncertainty in Semantic Web taxonomies provides a simple
extension to Semantic Web ontology languages by which conceptual overlap between
concepts can be computed. This extension is simple and can be represented in
RDF easily. Using the notation does not require deep knowledge of probability or
set theory. The concepts can be quantified automatically, based on data records

annotated according to the ontology, for example.
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The notation of PFSS for representing the search categories, their mappings to an-
notation ontologies that might use Boolean combinations of concepts, and weighted
annotations are also implemented using RDF, and can be easily used without exten-
sive knowledge of probability theory. The use of these constructs is not mandatory
for PFSS. In fact, a probabilistic faceted semantic search application can be created
from any ontological knowledge base. In this case, of course, the more sophisticated
features of PFSS, such as the Boolean combinations of concepts, separate end-user
facet definitions etc. would not be used. However, usable rankings would still be

provided.

Although substantial amount of work around probabilistic search has been done
[88, 20, 104, 91, 24], a probabilistic framework for faceted search and faceted se-
mantic search was missing. This part presented such a framework. Compared to
previous probabilistic information retrieval systems, some of which use Bayesian net-
works such as the Inference Network Model for Information Retrieval [104] and the
Belief Network Model [91], the PFSS has the following benefits: First, in PFSS, the
content of documents and queries are modeled using ontological concepts. This cap-
tures the semantics of the documents better than the index-term based bag-of-words
representation in [104, 91]. For example, the homonym and synonym problems
that plague the term-based information retrieval systems are mostly non-existent in
concept-based systems. Second, in PFSS we also model the relationships between
the concepts, which allows for more realistic modeling of the documents and the
searches than was possible in the previous approaches, where the words, or top-
ics [24], are modeled as conditionally independent or mutually exclusive quantities.
Third, we utilize semantics representable in an ontological notation such as RDF,
to create conceptually complex search categories that can be composed for exam-
ple as Boolean combinations of more simple search categories. Recall that Boolean
queries are shown to be highly effective, but—due to the relative difficulty of their
definition—underused types of queries [43]. PFSS solves the problem by defining

these queries beforehand, and presenting them to the user in an easily graspable
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manner in the search GUIL. The previous approaches still are only prepared to re-
spond to free-term searches entered by the user. The next part will present evidence
based on empirical evaluation using realistic data that the framework provides good

search results for real-world data.
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Part 1V

EVALUATION AND CONCLUSIONS
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Empirical Comparison of Ranking Methods

This chapter presents a comparative evaluation of the PFSS, FFSS, CFSS, and a

heuristic ranking method currently used in the HealthFinland. The evaluation is

conducted using a real-world dataset taken from the HealthFinland [60] information

portal.

In the evaluation we compare the following ranking methods:

Crisp Faceted Semantic Search (CFSS)

The method presented in Chapters 2-4. CFSS is considered the baseline
in this evaluation, because it still is the most widely used faceted semantic
search method. The evaluation presented in this chapter is in fact the first

one to be published.

Heuristic Ranking Method (HRM)
The heuristic ranking method experimentally used in the HealthFinland por-
tal.

Fuzzy Faceted Semantic Search (FFSS)
The method presented in Chapters 5-8.

Probabilistic Faceted Semantic Search (PFSS)
The method presented in Chapters 9-12.

In addition to the comparison of the above ranking methods we evaluate also the

effects

of combining ranking schemes. Recall that PFSS contains a facility to com-

bine multiple ranking schemes. We will use the above ranking methods as individual

ranking schemes, combine them pairwise, into groups of three, and finally combining
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all four schemes. The ranking performance of each combination will be evaluated,

to learn how combining ranking schemes influences ranking performance.

The rest of the chapter is organized as follows: First, the HealthFinland health
portal is briefly introduced. Then the dataset used in the evaluation, which is taken
from the HealthFinland portal is outlined. After this we describe, how the dataset
was interpreted in each of the compared ranking methods. And finally, we present
the results of the evaluation. We evaluate the methods using a statistical comparison

of ranking results.

The next chapter (14) will summarize and discuss the results of this dissertation

work.

13.1 HealthFinland — A Semantic Health Portal for the General
Public

HealthFinland is a prototype of a national semantic health information portal cre-
ated for the general public. It utilizes the faceted semantic search paradigm and
it provides citizens with intelligent searching and browsing services to reliable and
up-to-date health information created by various health organizations in Finland.
The system is based on a shared semantic metadata schema and ontologies. The
content includes metadata of thousands of Web documents such as webpages, arti-
cles, reports, campaign information, news, services, and other information related

to health. The ontologies used in HealthFinland include the following:

1. FinMeSH?*—the Finnish translation of MeSH?® by Duodecim?’. FinMeSH is

Zhttp://194.89.160.67/codeserver TES /distribution-action.do?action=find&type=1&key=1172
26http: //www.nlm.nih.gov/mesh/
2Thttp://www.duodecim.fi
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used in SKOS/RDF format.

2. The national Finnish upper-ontology (YSO)?® [56]. YSO is used in
RDF/OWL format.

3. The European Multilingual Health Thesaurus (HPMULTI)*. HPMULTI is
used in SKOS/RDF format.

A major idea of HealthFinland is to provide the end-user with intelligent services for
finding the right information based on his/her own conceptual view to health, and
for browsing the contents based on their semantic relations. The views and vocab-
ularies used in the end-user interface may be independent of the content providers
organizational perspective, and are based on a layman’s vocabulary that is different
from the medical expert vocabularies used by the content providers in indexing the
content. This layman’s vocabulary has been created using a card sorting method
to elicit how users tacitly group and organize concepts in the health domain. These
end-user search facets are then mapped to the ontologies used in annotation using

the properties from the SKOS Extension ontology [11]. [60]

13.2 The Dataset

As a dataset we used the following sample from the HealthFinland portal contents:

1. The HealthFinland annotation ontologies (FinMesh, YSO, HPMULTT) which
are mapped onto each other in the project to form in essence one large crisp

concept taxonomy.

2. The end-user facets of HealthFinland with their mappings to the annotation

ontologies.

Zhttp://www.seco.tkk.fi/ontologies /yso/
Phttp://www.hpmulti.net/
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3. The Nettineuvola® repository of 133 documents containing pregnancy and
infant support information. This document set was created as part of a
regional Finnish health project, entitled Healthy Kuopio®'. In order to in-
clude this document repository in the HealthFinland portal, the documents
were annotated according to the HealthFinland ontologies by an information
scientist using the semantic metadata schema [102] of HealthFinland. The
annotation of the document set took about 2 working days. The annotations
made by the information scientist were crisp. As part of the evaluation they

were weighted automatically, as described in Section 13.3.1.

13.3 Interpreting the Data

This section explains the principles by which the data was interpreted and processed
by the compared ranking methods. First the annotations and annotation concepts

will be described and then the end-user facet definitions.

13.3.1 Annotations and Annotation Concepts

The property used for annotating the documents with annotation ontology concepts
was healthFinland : subject [102]. This metadata property is intended to be used

to describe the subject matter of the annotated document.

The document relevances in relation to the annotation concepts were computed in

the following way for the different compared ranking methods:

CFSS The relevance is either 1.0, if the document is annotated to the annotation

30http://www.nettineuvola.fi
3 http:/ /www.tervekuopio.fi/
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concept or any of the concepts in the transitive closure of the subconcept

relationship, or 0 otherwise.

HRM The annotation weight was computed using the formula: Wp o = 1/ VN
where Wp ¢ is the annotation weight of the document D in relation to con-
cept C' and N is the total number of annotations of D. Annotation concept
relevance was computed based on semantic distance, such that in the subcon-
cept hierarchy passing an arrow reduces the relevance by a factor of 0.8. For
example, if Di is annotated to concept A with weight 1.0, and A is a direct
subconcept of B, and B is a direct subconcept of C, then the relevance of Di
to C'is 1.0%0.8%0.8 = 0.64. In the case of multiple relevances for a document
specific to one annotation concept—resulting, e.g. from multiple inheritance

or multiple annotations—the maximum relevance value is chosen.

FFSS Annotation concept specific relevance—i.e., degree of membership of the
document in the fuzzy set modeling the annotation concept—was computed
according to the FFSS method described in Chapter 6. Annotation weights

were determined similarly as in HRM above.

PFSS The annotation weight was determined similarly as in the above two meth-

ods.

13.3.2 End-user Facets

The end-user search categories which constitute the end-user facets were represented
as instances of the healthFinland:Category class. The category hierarchies were

represented using the skos:broader property.

The end-user categories were mapped to the annotation concepts using two prop-
erties. These were skosext:narrowMatch and skosext:exactMatch. These properties

were used in the compared ranking methods as follows:
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CFSS The mappings were interpreted in the same way as the subconcept rela-
tionship between annotation concepts above. Thus, a document matches the

search category, if it matches the mapped annotation concept.

HRM In HRM the mapping properties were interpreted as follows:

o skos:narrowMatch was interpreted in the same way as the subconcept re-
lationship in the annotation ontologies. In effect, if a document matched
an annotation concept with weight 1, and this annotation concept was
mapped to a search category with narrow match then the document

matched the search category with weight 0.8.
o skos:exactMatch In exact match the weight of the mapping was 1.0, i.e.,

the relevance of the document was not reduced by skos:exactMatch.

FFSS Following the intuition presented above for HRM, for which these properties

were initially defined, in FFSS the properties were interpreted as follows:
o skosext:narrowMatch was interpreted as fuzzy subsumption with fuzzy-
ness value of 0.8.
o skosext:eractmatch was taken as implication between fuzzy sets.

PFSS Following the intuition of the above method, in PFSS the properties were

interpreted as follows:

o skosext:narrowMatch was interpreted as a search category mapping with

weight 0.8.

o skosext:eractmatch was interpreted as a search category mapping with

weight 1.0.

Using this information a HealthFinland specific facet mapper was imple-
mented which precomputed the relevance of each document in relation to

each end-user search category.
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In this dataset all the categories were mapped to simple annotation concepts, and

Boolean concepts were not used. This, of course, leaves much of the power of FFSS,

and PFSS unused.

13.4 Evaluation

For the evaluation test we chose 10 search categories from the dataset described
in the previous subsection. We used each of these search categories as a separate
search, and asked a subject domain expert to define the relevant documents for each
search. These categorizations made by the subject domain expert are called the gold
standard in the following text. The search categories were chosen mainly based on

the amount of matching documents (between 10 and 60 matches for each).

To compare the quality of the rankings produced by the different individual methods
and the combinations statistically, we compared the ranking methods pairwise using

Bayesian data analysis for multinomial data [38] as follows:

1. For each of the ranking methods we counted the number of errors made in
the ranking of each document. A ranking method received an error point for

a document ranking if one of the following was true:

e A document was ranked by the studied ranking method among the R
most relevant documents for a search category—where R is the total
number of relevant documents for the current search according to the
gold standard [20]—but this document was not among the relevant doc-

uments according to the gold standard.

e A document was not ranked by the studied ranking method among the
R most relevant documents for a search category, but this document

was among the relevant documents according to the gold standard.
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2. Then for the compared pair of ranking methods A and B we classified each

document Di in one of the following classes:

e Di“ if the the ranking method A produced less errors in the ranking of

the document Di than ranking method B.

e Di®, if the ranking method B produced less errors in the ranking of the

document Di than ranking method A.

e Di° if the amount of errors for the document Di was equal according

to both ranking methods.

Thus, for each compared pair of ranking methods the evaluation consisted
of n(D) = 133 units of test data, such that (n(Di?), n(Di?),n(Di%)) follows
the multinomial distribution with parameters (64,63, 6y), the proportions of
the values of the above classification. Our estimand of interest here is 4 —0p
the difference in the proportion of classifications where A performed better

when compared to B.

3. We set a non informative prior distribution on 6, ay = agp = ag = 0. The

posterior distribution for (64,03, 6y) is Dirichlet(n(Di?), n(Di?), n(Di°)).

4. Then—to estimate the statistical significance of the difference in the classi-
fication performance—we sample 1000 points (64, 0p, 6y) from the posterior
Dirichlet distribution and compute 84 — 6 for each point. The number 1000
of samples was chosen because it is a rather standard amount of samples in

Bayesian data analysis.

5. Our confidence that ranking method A produces better ranking results than
B is n(04 — 0 > 0)/1000, where n(64 — 05 > 0) is the number of points

where 04 > 0p.

The results of this evaluation are presented in Table 13.1. The table present the

statistically at least marginally significant results. To visualize the difference in
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ranking performance between the individual ranking methods, Figure 13.1 presents
the R-precision values averaged over the 10 compared searches for the four compared
algorithms. Recall, that R-precision evaluation generates a single-value summary of
the ranking by computing the precision at the R position in the ranking, where R
is the total number of relevant documents for the current search according to the

gold standard [20].

R-Precision

0,92 -

0,9

0,88 ——

0,86

Precision

0,84

0,82

0, 8 T T 1
PFSS HRM FFSS CF3S

Algorithm

Figure 13.1: The average R-Precision values for the four algorithms compared.

Based on the comparison of the individual ranking methods presented in Table 13.1

and visualized in Figure 13.1, the following observations can be made:

1. Both PFSS, and FFSS significantly outperform the baseline CFSS.

2. PFSS outperforms HRM. This result is marginally significant, i.e.



Table 13.1: Results of the Bayesian Statistical Comparison of Ranking Methods.
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A B Dirichlet(A,B,0) | P(A > B)
PFSS CFSS (46,20,71) 0.999
PFSS HRM (31,20,82) 0.942
PFSS CFSS&HRM (34,19,80) 0.983
FFSS CFSS (44,17,79) 0.999
FFSS CFSS&HRM (34,21,78) 0.963
HRM CFSS (38,22,73) 0.987
PFSS&FFSS CFSS (45,18,70) 0.999
PFSS&FFSS HRM (31,19,83) 0.961
PFSS&FFSS CFSS&HRM (31,16,86) 0.980
PFSS&HRM CFSS (42,20,71) 0.999
PFSS&HRM CFSS&HRM (29,18,86) 0.942
PFSS&CFSS CFSS (42,20,71) 0.999
PFSS&CFSS CFSS&HRM (31,20,82) 0.942
FFSS&HRM CFSS (43,15,75) 0.999
FFSS&HRM HRM (33,20,830) 0.962
FFSS&HRM CFSS&HRM (32,14,87) 0.993
CFSS&HRM CFSS (48,35,50) 0.917
FFSS&CFSS CFSS (42,19,71) 0.999
PFSS&FFSS&HRM CFSS (45,20,68) 0.999
PFSS&FFSS&HRM CFSS&HRM (27,14,92) 0.985
PFSS&FFSS&CFSS CFSS (45,18,70) 0.999
PFSS&FFSS&CFSS HRM (31,19,83) 0.961
PFSS&FFSS&CFSS CFSS&HRM (31,16,86) 0.980
PFSS&CFSS&HRM CFSS (42,20,71) 0.997
PFSS&CFSS&HRM CFSS&HRM (29,18,86) 0.942
FFSS&CFSS&HRM CFSS (43,15,75) 0.999
FFSS&CFSS&HRM HRM (33,20,80) 0.962
FFSS&CFSS&HRM CFSS&HRM (32,14,87) 0.993
FFSS&CFSS&HRM FFSS&CFSS (10,2,121) 0.990
PFSS&FFSS&CFSS&HRM | CFSS (45,19,69) 0.999
PFSS&FFSS&CFSS&HRM | HRM (31,19,83) 0.961
PFSS&FFSS&CFSS&HRM | CFSS&HRM (29,14,90) 0.992
PFSS&FFSS&CFSS&HRM | PFSS&CFSS&HRM | (6,2,125) 0.928
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P(PFSS > HRM) = 0.942 > 0.9.

3. FFSS shows tendency to outperform HRM—as shown in Figure 13.1—but
this tendency did not reach statistical significance, i.e., P(FFSS > HRM) =

0.872, which is a little bit below the limit of marginal significance.

4. According to Figure 13.1 PFSS seems to outperform FFSS, however the
difference is not statistically significant P(PFSS > FFSS) = 0.628.

Notice, that the more advanced features of PFSS and FFSS, such as mappings of
search categories to Boolean combinations of annotation concepts were not used.
This probably handicapped the ranking results of PFSS, and FFSS when compared
to HRM and CFSS.

Based on the evaluation, the following observations can be made regarding the effects

of combining ranking schemes:

1. At each level of combinations—i.e., individuals, pairs, triples, all four
schemes—the worst combination was outperformed by the worst on the
the next level. Specifically, The worst individual ranking method CFSS
was outperformed by the worst pairwise combination of ranking schemes
CFSSE6HRM. CFSSEHRM was then outperformed by the worst combina-
tion of three schemes PFSSECFSSEHRM, which was outperformed by the
combination of all four ranking methods PFSSEFFSSECFSSEHRM.

2. There were no significant differences between the ranking performances of

the best combinations of each layer.

3. In terms of number of outperformed combinations, the best combination of
each layer outperformed at least as many combinations as the best combina-

tion on a level directly beneath it. Specifically, the best individual ranking
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method PFSS outperformed three combinations. The best pairwise combina-
tion FFSSE6/HRM also outperformed three combinations. The best combina-
tion of three schemes outperformed four combinations, as did the combination

of all four schemes.

4. The combinations PFSSE&CFSS, and FFSS6CESS significantly outper-
formed CFSS, but neither PFSS nor FFSS outperformed either of these

combinations.

5. Interestingly, in some situations it seemed that adding a bad ranking scheme
to a combination improved rather than impaired the ranking performance.
For example, FFSS¢&CEFSSEHRM outperformed more combinations than
FESSEHRM. In this sense, the combination seems in some situations to
be more than the sum of its parts, possibly because the different ranking

schemes eliminate the errors of each other.

6. There were no cases in which a combination performed significantly worse

than any of its components.

As the overall conclusion of the above points regarding the effects of combining
ranking schemes, it could be said that on average combining ranking schemes has
a positive effect on ranking performance. It seems that the combination usually

performs more like the best individual scheme included rather than the worst.
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Results and Discussion

This chapter presents a concluding summary of this dissertation. It contains a

compilation of the results of this work, and summarizes the discussion of these

results.

14.1

Results

The central results presented in this dissertation are the following:

Rule-based Projection of Facets from Annotation Ontologies
Chapter 3 presented a method and an algorithm to create facets algorith-
mically from Semantic Web ontologies, using logical rules implemented in

SWI-Prolog [13].

Rule-based Creation of Recommendation Links based on Ontology
Structure

Chapter 3 also contained a method to create recommendation links for search
items. As in the case of facet projection, these recommendations where cre-
ated using logical rules based on the annotation ontologies, and where imple-

mented as SWI-Prolog predicates.

Semantic Web HTML Generator (SWeHG) Tool

SWeHG is a tool to create static HTML websites from semantic knowledge
bases. Sites created with SWeHG consist from the following main ingredients:
First, content pages, entitled resource pages, that are linked to other resources
pages by recommendation links using the above rule-based recommendation

link creation method. Second, indices to the resource pages that are projected
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from the annotation ontologies using the rule-based facet projection method
presented. Thus, a website created with SWeHG is a single-faceted search

application.

Modeling of Annotation Related Uncertainty

Chapter 6 introduced the notion of weighted annotations. The annotation
weight is a real number in the range [0, 1], and it represents the degree of
relevance of a document or search item to the concept that it is annotated
to. Weighted annotations are utilized both in FFSS and PFSS to provide

ranking of search results.

Ontological Extension to TF-IDF for Weighting Document Anno-
tations

Chapter 7 presented a method by which crisp annotations can be algorithmi-
cally weighted. This method is an ontological extension of the widely used

TF-IDF term weighting method.

Fuzzy Set based Method for Ranking Faceted Semantic Search Re-
sults

In Chapter 6, we extended the set theoretic basis of faceted search from crisp
to fuzzy sets, such that a search item can have degrees of membership in
search categories instead of either belonging or not in these categories. This
degree of membership is then used as a criterion for ranking search results.
The weighted annotations are used to represent the degree of membership of

search items in annotation concepts.

Fuzzy Set based Method for Mapping Separate End-user Facets to
Annotation Ontologies

Chapter 6 also contained a fuzzy set based method to map separate end-
user facets to annotation ontologies. In this method search facets can be
fuzzily mapped to annotation concepts, and this mapping is interpreted as

fuzzy implication—i.e., fuzzy inclusion—of the fuzzy set corresponding to the
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annotation concept in the fuzzy set that corresponds to the search category.
In addition to simple annotation concepts, search categories can be mapped

also to Boolean combinations of annotation concepts.

Fuzzy Faceted Semantic Search (FFSS) Framework

FFSS combines Results 4-7 to accomplish a fuzzy set based extension to
crisp faceted semantic search. This framework provides mapping of separate
end-user facets to annotation ontologies, and ranking of search results. The
framework includes the required formalisms to represent weighted annota-
tions, taxonomies and Boolean combinations of annotation concepts, hierar-
chies of search categories, and mappings of search categories onto annotation
concepts. These representations are provided with a fuzzy set interpretation.
The framework also provides the algorithms to compute the ranked result

sets for faceted search queries.

Probabilistic Method for Modeling Uncertainty in Semantic Web
Taxonomies

Chapter 10 presented a graph notation for representing uncertainty based on
conceptual overlap in Semantic Web taxonomies, and a probabilistic method

for computing degrees of overlap between the concepts of such a taxonomy.

Probabilistic Method for Ranking Faceted Semantic Search Results
Section 11.3 presented a probabilistic method to compute the probabilities
of search item relevance to an annotation concept, and how this probability
can be used to compute search category specific probability of relevance.
The method incorporates the probabilistic model of Chapter 10 originally

developed for modeling uncertainty in Semantic Web taxonomies.

Probabilistic Method for Combining Evidence for Ranking of
Search Results
Section 11.6 presented an extension to the above probabilistic method to

rank search result, which enables combination probabilities of search item
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relevance computed using multiple ranking schemes.

Probabilistic Method for Mapping Separate End-user Facets to An-
notation Ontologies

Chapter 11 presents various ways to map separately created end-user facets
to annotation ontologies. Search categories can be mapped onto simple anno-
tation concepts as well as Boolean combinations of concepts. A probabilistic

interpretation for these mappings was developed.

Probabilistic Faceted Semantic Search (PFSS) Framework

Results 9-12 above were compiled to create the PFSS framework. Thus,
PFSS provides sophisticated mapping of separate end-user facets onto anno-
tation ontologies, ranking of search results, and combination of evidence from

multiple ranking schemes to compute probabilities of search item relevance.

Probabilistic Faceted Semantic Search Tool

A complete implementation of PFSS is presented in appendix A. The im-
plementation contains an OWL schema to be used in the implementation of
the semantic knowledge base, a Jena-based implementation of the semantic
knowledge base, and a Java Spring®? implementation of the required algo-
rithms for the model creation and the computation of the document rele-

vances.

Comparative Evaluation of CFSS, FFSS and PFSS

Chapter 13 presented an extensive evaluation of quality of rankings produced
by PFSS and FFSS, to CFSS and HRM. As a summary PFSS proved to
produce best ranking quality, but also FFSS significantly outperformed CFSS
and showed tendency to outperform also HRM.

32http: //www.springsource.org/
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16. Comparative Evaluation of the Effects of Combining Ranking
Schemes
Chapter 13 presented an extensive evaluation of the effects of combining rank-
ing schemes. According to the evaluation combining ranking has a positive
effect on ranking, and it seems that the combination usually performs more

like the best individual scheme.

14.2 Discussion

The rule-based facet projection and recommendation link generation solutions de-
veloped for SWeHG [49] were later utilized as part of the recommendation and facet
projection engine of OntoViews, which is the faceted semantic search tool developed
by the Semantic Computing (SeCo) research group®® [108, 72]. This technology is
the basis of such F'SS applications as MuseumFinland [52], Orava [65], HealthF'in-
land [60], Veturi [81], and SW-Suomi.fi [95]. Although the algorithmic projection of
facets from ontologies was already implemented before SWeHG in the Promoottori
[57] application, the rule-based projection, which enables more flexible and intelli-
gent definition of facets and recommendations was first developed for SWeHG. The
SWeHG tool was also important in realizing the limitations of the CFSS paradigm,
namely, the inability to model uncertainty, the inability to rank search results ac-
cording to relevance, and the usability problems resulting from presenting annotation

ontology concepts as search categories.

The FFSS framework provided a solution to the problems of CFSS, essentially, by
extending the crisp set basis of FSS to fuzzy sets. FFSS proved to be a rather
straight forward framework to design and implement. According to evaluation pre-
sented in Chapter 13 this method provides good search results. The FFSS frame-

work did get some inspiration from fuzzy versions of description logics, such as [97].

33http://www.seco.tkk.fi/
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However, in FFSS we concentrated on faceted search, which according to our knowl-
edge, has not been extended to fuzzy sets before. However, the fuzzy set approach
to uncertainty has been criticized because of its heuristic nature when compared to

probability theory [26].

The ontological extension to TF-IDF by which annotations can be weighted is a
partial solution to the lack of uncertainty modeling capabilities of Semantic Web
ontologies. It provides a way to algorithmically weight hand-made crisp annotations,
which increases the applicability of both FFSS and PFSS. Because the weights
created by the extended TF-IDF method fall in the range [0, 1] the weights can be
interpreted as probabilities of relevance as well, so this method can be used also
in weighting annotations for PFSS. The ontological extension to TF-IDF provides
also some benefits when compared to traditional TF-IDF weighting: First, terms
that are expressions of the same concept can be represented using a single concept
identifier which results in a compressed document representation, and second the

concept hierarchies of the ontologies can be utilized to enable better query answering.

We developed also a Bayesian probabilistic extension to CFSS, namely the PFSS
framework. As opposite to the heuristic nature of the fuzzy approach, it has been
shown that agent’s rational degrees of belief follow the rules of probability. Thus,
probability theory is more than a heuristic for uncertainty modeling, but the only
approach that is proved to answer for consistency requirements for reasoning under
uncertainty [29, 111]. This also means, that fuzzy logic, which has a different set of
axioms, necessarily violates these consistency requirements. In addition, combina-

tion of evidence from multiple sources is at the core of probabilistic reasoning.

When compared to probabilistic models for information retrieval found in the liter-
ature [88, 20, 104, 91, 24|, PFSS provides the following benefits: First, none of the
earlier models is developed for, or supports, faceted search. For example, they lack

the means to represent search category hierarchies, or methods to compute rank-
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ing over a combination of search category selections. Second, in PFSS the content
of documents and searches are modeled using ontological concepts, whereas pre-
vious models, such as [104, 91], represent documents and queries as bags-of-words.
Ontological concept representation is more compressed, and also usually solves prob-
lems of synonyms and homonyms encountered in term-based information retrieval.
Third, PFSS also models the relationships between concepts, which allows for more
realistic representation of the documents than is possible in approaches found in
the literature. The usual explanation for the lack of modeling of the relationships
between terms is the computational cost of such a modeling. However, the faceted
search paradigm allows us to precompute all search category specific probabilities,
which largely solves the potential performance problems of sophisticated probability
models. Fourth, PFSS utilizes semantics representable in an ontological notation
to create conceptually sophisticated search categories, that can be composed from
Boolean combinations of more simple search category definitions. This means, that
PFSS enables us to offer the user sophisticated Boolean queries, packaged and served
as intuitive search categories. Recall, that Boolean queries have been shown to be
highly effective queries that are underused, due to the fact that their construction
requires substantial amount of expertize in search [43]. Other probabilistic models

still are only prepared to respond to free-term searches entered by the user.

The methods developed in this thesis require a fair amount of human modeling
and knowledge engineering work, which could be seen as a possible limitation of
these methods. A large parts of the methods are devoted to handling Boolean
combinations of concepts. These are still rather rarely used in real-world Semantic
Web ontologies. This is manifested in the empirical evaluation conducted for the
thesis: A dataset that utilizes Boolean concepts in the definition of search categories
was not available. This shortcoming most probably handicapped the performance
of FFSS and PFSS in comparison to the heuristic ranking method. Due to this
deficiency, the rather small size of the used dataset, and the fact that the gold

standard was constructed on based on relevance evaluation of a single person, the
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empirical evaluation still has to be considered preliminary.

In the future, we would like to develop PFSS further by adding a mechanism to learn
and improve ranking performance based on user feedback, or other data gathered

from the usage of the system.
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Appendix A PFSS Implementation

The logical view on the architecture of the PFSS framework can be seen Figure A.1.
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Figure A.1: The logical architecture of the PFSS framework

The framework is divided into two main parts. The first is the PFSSCreator, which
is responsible for creating the PFSS knowledge base from the semantic knowledge
base. The second part of the model is the SearchInterface, which returns the relevant

documents ranked according to relevance for a search by a user. We will now discuss
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the different modules of the PFSS architecture starting with the knowledge bases.

A.1 Semantic Knowledge Base

The semantic knowledge base (SKB) is implemented using RDF, and it contains at

the following parts:

Annotation Ontologies The annotation ontologies can be expressed in RDFS
or OWL. They contain the concept hierarchies to which the documents are
annotated. The number of ontologies is not bounded, however there should

be at least one ontology.

Annotation Schemas The annotation schemas are the ontologies which define
how the documents are annotated. For example, they contain the definitions

of the used annotation properties.

Document Annotation Instances The document annotation instances contain
the actual annotatoins of the documents in the system. The documents are

annotated according to the schemas. The annotations may be weighted.

End-user Facet Definitions End-user facet definitions are taxonomies that con-
tain the concepts that are used as search categories. These facet definitions
may have one-to-one mapping to the annotation ontologies or they may be
mapped to the annotation ontologies using Boolean operators OR, AND, or
NOT. These mappings are then handled probabilistically using the corre-
sponding probabilistic function as described in Chapter 11. A PFSS Facet
Definition Ontology (PFDO) has been defined to enable the smooth defini-
tion of end-user facets with the mappings to the annotation ontologies with

an ontology editor such as Protege®!.

34http:/ /protege.stanford.edu/
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Figure A.2: PFDO with simple instance examples

PFDO defines a metaclass FacetClass which is a subclass of owl

Class. The facets are instances of FacetClass. In addition the on-
tology defines the property hasProbabilisticFacetMapping which is in
the domain of FacetClass. The range of the property is the class

ProbabilisticFacet Mapping which has two properties in its domain:

refersToConcept This property points to an rdfs:Class. This class might
be a class from the annotation ontology or it might be a class defined
based on the annotation ontology classes using the owl : intersectionO f
which represents the and operator, owl : unionO f which represents the

or operator, or owl : complementO f which represents the not operator.

hasWeight This property has the range double. This property expresses

the importance of the mapping for the facet.

Figure A.2 presents a simple example graph that adheres to this ontology.



For acquiring the annotation concept masses the SKB may contain an ontology
and instance data from which the concept masses can be acquired, or they may

be acquired solely based on the annotation ontology structures and the annotation

instances.

A4

A.2 PFSS Knowledge Base

The PFSS Knowledge base is created from the semantic knowledge base and it
contains the translation of the SKB into a form suitable for the probabilistic com-

putations according to the model presented in Chapter 11. The PFSS Knowledge

consists of the following parts:

Concepts

aggregated mass of each concept. The direct mass is the mass of a concept

Concept
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Figure A.3: The PFSS Knowledge base structure

The Concept representation contains the URI as well as the direct and
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that is not shared with any of its subconcepts. The aggregated mass is the
sum of the direct masses of all the subconcepts of the concepts in question

plus the direct mass of the concept itself.

Concept overlap matrix The concept overlap matrix is a concept - concept ma-
trix where each concept has a row and a column. Each row tells how much
the concept covers the other concepts and the column tells how much the
concept is covered by the other concepts. Each row also contains the infor-
mation whether the covered concept is subconcept, superconcept, or partially

overlapped concept.

Documents Each document representation contains simply the URI of the doc-

ument.

Annotations The knowledge base contains a representation of each annotation
in the system. Each annotation is represented by the annotated document,

the annotation concept and the annotated weight.

Precomputed document relevances for each annotation concept These
precomputed document relevances contain the relevance of each document to
each annotation concept within a facet, computed according to the recursive

Bayesian network model presented in Chapter 11.

Search Categories FEach search category representation contains the uri, the in-
formation whether that search category is root, and references to parent and

child search categories in the facet hierarchy.

Precomputed document relevances for each search category These pre-
computed document relevances contain the probability of relevance of each
document to each search category. This relevance is computed based on
the annotation concept relevances and the facet mappings according to the

probabilistic model presented in Chapter 11.
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Figure A.3 presents the structure of the PFSS knowledge base. As can be seen the
only parts of the probability model presented in Chapter 11 that are not precom-
puted here are the multifacet-probabilities. These are easily computed on-line based
on the PFSS knowledge base, and obviously the amount of combinations is so big

that the precomputation would be unfeasible.

A.3 PFSS Creator

PFSS creator is the main interface for creating the PFSS KB. It has one method:
createFacets which creates the PFSS KB.

A.4 Facet Producer

Facet Producer is responsible for creating a single facet into the PFSS KB. It con-

tains four methods:

createConceptMatrix Creates the concept representations and concept matrix

into the PFSS KB for this facet.

persist Annotations Creates the document and document annotation represen-

tatins into the PFSS KB for this facet.

createConceptRelevances Dreates the representations of document relevance

regarding each annotation concept in this facet.

createEUSearchCategories Creates the end-user search category representa-

tions with the relevances of each document regarding each search concept.



A.5 Matrix Conceptor

Matrix Conceptor is responsible for creating the concept representations and the
concept matrix. The creation of these representations is very simple for overlap
graphs. The overlap graph is transformed to a Bayesian network as described in
Chapter 10 and selecting one after the other the node that represent each concept
in the taxonomy and writing down in the table the posterior probabilities of the
Bayesian network. The coverage matrice already is in the right representation so it

will just have to be parsed.

A.6 Mass Calculator

The mass calculator is responsible for computing the direct and aggregated masses
of each concept, and it also saves the computed masses in the PFSS KB. This can
be done based on some ontological property or based on annotations as described in
Chapter 10. The mass calculator offers one method: calculateConceptMass, which
takes as an input the concept and a rule for finding the masses. This rule might
be the property which points to the direct mass of each concept or a sparql rule.
Basically each user of the system can implement their on masses calculator, and

massify the concepts according to their wishes.

A.7 Annotation Persister

Annotation persister is responsible for creating the document and document an-
notation representations in PFSS KB. Annotation persister has one method:
persist Annotations. It goes through the concepts in PFSS KB and finds the anno-

tations for each concept using an annotation rule that can be a single property or a
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sparql rule and based on that creates document representations and the annotation

representations.

A.8 Document Relevance Computer

The document relevance computer pre-computes the probabilities of relevance
for documents in relation to annotation concepts and saves these relevances in
PFSS KB. Each document relevance computer contains a list of ranking schemes
which are used to achieve this. Document relevance computer offers one method:
preCompute Document Relevances, and it computes the relevance of each document

to each annotation concept according to the algorithms presented in Chapter 11.

A.9 Ranking Scheme

A ranking scheme implements the computations required to compute the rele-
vance of a document according to this scheme. The ranking scheme where dis-
cussed in Chapter 11. A ranking scheme offers to methods: compute Relevance and
getSchemeW eight. The first method takes as input the conceptual entity and the
document under inspection and computes the relevance and the second method is

used to get the weight of this scheme.

A.10 End-user Facet Creator

End-user facet creator is responsible for creating the search category representa-
tions into the PFSS KB. It also uses FacetMapper to precompute the probabili-

ties of document relevance in relation to each end-user search category. It exposes
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two methods: create EndUserCategories, and mapEndU serCategories. The first
method goes through the facet definitions in the SKB, and creates the search cat-
egory representations. The second method goes through the search categories and
precomputes the probabilities of relevance of documents in relation to each search

category. It uses the FacetMapper to achieve this.

A.11 Facet Mapper

The facet mapper is responsible for precomputing the probabilities of document
relevance in relation to each end-user category. This is done based on the facet

definitions, i.e. mappings of search categories to annotation concepts in the SKB.

A.12 Query Interface

The query interface is responsible for returning documents to a selection of search
categories from the user. The module offers one method: getRelevantDocs. The
module makes a simple database query which returns the relevant documents. After
this the system computes the combined relevances which is a product of relevance

to each component search and orders the documents according to relevance.

A.13 The PFSS Container

The PFSS system has been implemented on Spring framework, because the IoC
container offers smooth configurability and makes it very easy to plug in new com-
ponents. By smooth configurability it is meant that the required input data, such

as the SKB, annotation, massifying rules can be easily specified and changed.
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