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Abstract—In this paper, a multidimensional Walsh transform The rest of the paper is organized as follows. First we

is used to obtain a characterization of vector-valued bent function jntroduce notation and recall known facts of bent functions
in terms of the value distributions of the translates of the function ;. geaction 1. In Section 11l we give a brief overview of the

by linear functions. . . . .
y basic methods in component-wise analysis of vector-valued

Boolean functions. In Section IV we present the multidimen-
|. INTRODUCTION sional Walsh transform and prove the equivalent of Parseval's
S-boxes are fundamental building blocks in contemporatiyeorem for it. Then the definition of multi-bent function is
cryptography and typically the only source of nonlinearitgiven in Section V and its equivalence with the definitions of
in ciphers. Several cryptanalytic methods exploiting linearitgent and perfect nonlinear functions are given in the next two
properties have been developed, most prominently differesections. In Section VIII we conclude.
tial and linear cryptanalysis and their variations. Therefore
research on nonlinearity criteria of S-boxes is an important [I. BOOLEAN FUNCTIONS
area of contemporary cryptology. Letn be a positive integer. We denote By the vector space
When analyzed mathematically, S-boxes are consideredf@sned by binary vector§ = (€1,&,...,&,) of n coordinates
vector-valued functions the components of which are Booleane {0,1},i=1,...,n. A function f : V,, — V; is called a
functions. The nonlinearity criteria of S-boxes have bee&Boolean function. Given two vectogs= (£1, &, ..., &) € Vi,
investigated by means of the nonlinearity properties of theihd v = (u1,us,...,u,) € V,, we denoteu - & = uy - & +
Boolean components. For example, a vector-valued functions. ¢, + ... + u,, - &, € V4. The Walsh transfornd(f) maps
called bent if all its components (non-zero linear combinationsto an integer and is defined as
of its coordinate functions) are bent. Similarly, a vector- 1O
valued function is perfect nonlinear is all its components are F(f) = Z (=17, @)
perfect nonlinear [1]. When studying correlation with linear LeVn
functions, autocorrelation properties, propagation charactengiere the sum is taken in the set of integers. A Boolean
tics and value distributions of Boolean functions, the Waldlinction is balanced ifF(f) = 0. Given f : V,, —
transform is a fundamental tool. In particular it is very effectivand w € V,, we denote byf + w the Boolean function
in handling interaction between different nonlinearity criterid,f + w)(&) = f(§) + w - £. Parseval’s theorem states that
see for example [2], [3], [4]. n
In this pap?er, [f(])r [tr]1e[ f]irst time to our knowledge, we Z FAf +w) =2 @
investigate nonlinearity criteria for vector-valued Boolean weVn
functions without making use of properties of componenté Boolean functionf : v, — V1 is called bent if 7(f +w)| =
We introduce, for this purpose, a tool which we call multi2#, for all w € V,,. Hence bent functions exist only if is
Walsh transform. This tool is very effective in computatio®ven. A Boolean function is called perfect nonlinear, if for all
and analysis of value distributions of vector-valued Boolean € V., @ # 0, the functionD, f : { — f(§ +a) + f(§) is
functions. One area of app”cation of multi-Walsh transforrhajanced. It is known since the invention of bent functions by
is in linear cryptanalysis when multiple linear approximation@scar Rothaus [5] that a Boolean function is bent if and only
are used simultaneously. In this paper, we focus on vectdris perfect nonlinear.
valued bent functions and show that for a bent function, the

maximum variance of the value distribution of the sum of the Ill. V ECTOR-VALUED BOOLEAN FUNCTIONS
function and a linear function is the least possible, where theLet f : V,, — V,, be a vector-valued Boolean function.
maximum is taken over all linear functions. We denote its coordinate functions by, i = 1,2,...,m.

For simplicity, we restrict to the binary case. It is straightSiven v € V,,, u # 0, the Boolean function: - f defined
forward to generalize the results given in this paper to ts v - f(£) = u1f1(§) + ... umfm (&) is called a (non-zero)
p-ary case, for any odd primg component off.



We begin by recalling a fundamental fact about the value IV. MULTIDIMENSIONAL WALSH TRANSFORM
distribution of f. Let f : V;, — V;, be a vector-valued Boolean  vjaripus types of Fourier transforms are known to exist.
function andy € V,,,. We make the following notation In cryptography and coding, the discrete Fourier transform,

an(f) = #{E € Vo |£() = n}. see for exa_mplq [6], is cpmr_nonly used. The t_ransform to.be
introduced in this paper is different from the discrete Fourier

Lemma l:Let f : V,, — V,, be a vector-valued Booleantransform and particularly suitable for analysis of vector-

function. Then valued Boolean functions.
_g-m _qyuf©+un 3 qu a pos_|t|ve integen, we denote by, the _Il_nea_r space
an(f) u; g‘; (=1) 3) of binary strings of lengtn. Let n andm be positive integers
Proof: e and letf : V,, — V,, be a vector valued Boolean function of
' ’ n variables. The** component off is denoted byf;. Then
>0 (mye @t we define
u€EVym EEV, m
= 3 Y (cpyrd@ W(f)(@) = W(F) (1, am) = > [[,
&f(€)=nueVm £ev, i=1
+ Z Z (=1)w(F©Fn) where the sum is taken in the s&[zy,...,z,]/(x3 —
€:F(€)#n UE Vi 1,...,22, — 1) of multivariate polynomials over integers,
where the indeterminates; satisfyz? = 1, i = 1,...,m.
=2"a,(f). We call W(f) the multi-Walsh transformof f. Clearly, for
m = 1 andz; = —1, we get the usual Walsh transform for

Boolean functions (1).

The multi-Walsh transform off is a polynomial ofm
indeterminates and with non-negative integer coefficients. It
gives the value distribution of. Indeed, we can write

We say that a vector-valued Boolean functipnV,, — V,,
is balanced ifa,(f) = 2", for all n € V,,,. By Lemma 1
we have the following known fact.

Corollary 1: A vector-valued Boolean functiorfi : V,, —

V.. is balanced if and only if the Boolean functions f are "o
balanced, for alk # 0. W(f)(x) = Z tn Hx:]
We recall the following definitions from [1]. n&Vm =l
Definition 1: A vector-valued Boolean functiorf : V;, — wherea, = a,(f) for n = (n1,m2, ..., 1m) € Vi If [ :
Vi is bent if its components - f are bent, for alk: = 0. V, — Vi, is uniformly distributed, thenn < n, and
Definition 2: A vector-valued Boolean functioif : V,, — m
Vin is perfect nonlinear if the function W) (@) = 2"um (z), whereu,,(z) =2-™ H(1 + ;).
=1

Do : &= f(E+ ) + f(E) , : R
For multi-Walsh transform the uniform distribution plays
is balanced, for albv € V,, o 7 0. the same role as zero for the onedimensional Walsh transform
By Corollary 1 a vector-valued Boolean function is perfeGiith -, = —1. In particular, for any normalized distribution
nonlinear if and only if its non-zero components are perfeg;n(x) of values inV,,, we haveu,, (z)dy (z) = um(z). In
nonlinear. Hence a vector-valued Boolean function is bentjjhat follows we identify them-tuple M = (M, ..., My,)
and only if it is perfect nonlinear, and this fact is proved byt vectorsM; € V, and the linear functiolVf : V,, — V,,,

means of the components of the function. M¢ = (M - €,..., M, - &) and denote the set of suchl
To conclude this survey of vector-valued bent functions wg, /= Next we state a multidimensional form of Parseval’s

n

recall the following result from [1] and give a new short proofhegrem. We omit the proof as it is a special case of the proof

of it based on Lemma 1. of Theorem 5 witha = 0.
Theorem 1:If f:V,, — V,, is bent them,(f) = 0,22"™  Theorem 2:For any vector-valued Boolean functiofi :
whereb, is odd, for allz) € V. V,, — V,, the following holds:
Proof: Using (3) Z ) (s 1)
_ W2(f + M) () = 277" (14 (2" = Dum (7).
“n(f)ZQ’"Zf(“'fﬂ'ﬁ) Mevm
uEV,
_ 2—7n(]:(0) + 2% Z S|gr(_',t'(u . f +u- 7]))) V. MULTI-BENT FUNCTIONS
u70 Analogous to the one-dimensional definition of bent func-
=2"TTM 4 25 e, tions we define thenulti-bentfunctions as functions for which

. . n . . the squared distributiongY M) are equal, for allM ¢
wherec, is an odd integer. Theb, = ¢, + 22 is an integer ym q (f + M) q

as bent Boolean functions exist only for evenand it is odd. Definition 3: A vector-valued Boolean functioff : V,, —

. . V,, is multi-bent if
One corollary of Theorem 1 is that bent functions fréi

to V,, exist only whenm < 2. WA(f + M)(z) = 2"(1 4 (2" — Dum(x)), (4)



for all linear functionsM € V™.
The following property of multi-bent functions follows o il

directly from the definition when we observe that the constant m

term of the polynomiaWV?(f + M)(z) is the sum of the + Z H Z xyi~(a+g+w)+fi(£)+fi(w)

squares of the frequencies(f + M). €EV,, v Rtaiml MyEVy
Theorem 3:For f : V,, — V,,, and M € V* we denote

Hl,lfi(f)-*'fi(ﬁ-ﬁ-a)Qnm

o

an(f+ M) = #{& € V,, | f(€) + ME = n}. If f is multi-bent = 2""W(Dof)(x) + 2"(2" — 1)2" ™ uy, ().

then
> an(f+M)>=2"(1+ (2" - 1)27™) and u
NEVin If £ is multi-bent, thenW?(f + M)(z) = 2"(1 + (2" —
Z (an(f + M) — 27"m)2 = gn _ gn=m, l)um(x). By substltut:?g this to the left hand S|de_ of Eq. (5)
e givesW(D,, f)(x) = 2"u,,(z), for all a« # 0 as desired.

for all M € V™.

To summarize, the least maximum of quadratic deviation
of the distributions off + M from the uniform distribution, VIl. BENT IS MULTI-BENT

where the maximum is taken ovéd € V., is achieved by
multi-bent functions, and for multi-bent functions the quadratic The following theorem completes the proof of Theorem 4.

deviations are equally small for alM € V. ) L
The main result of this paper is a proof of the fact that 'Theorem 6:1f a vector-valued Boolean function is bent then

a vector-valued Boolean function is bent if and only if it iét is multi-bent.

multi-bent. We state the following theorem. Proof: Let f : V,, — V,, be a function andM =
Theorem 4:Let f : V,, — V;, be a vector-valued Boolean (M1, ..., M) anm-tuple of vectors in/,. We start by using

function. Then the following are equivalent: Lemma 1 and writing

(i) f is multi-bent;

(i) f is perfect nonlinear; and W(f+ M)(x)
(i) f is bent. m
The equivalence of (i) and (iii) is known, see Section IlI. In =Y ay(f+ M) [[=F
the next section, a relation between the multi-Walsh transform NEVm i=1

of f and the multi-Walsh transform db,, (f) is proved. Using
this relation we obtain the implication from (i) to (ii). Finally,

= Z 9—m Z Z (_1)U'(f(§)+M§+n)ﬁx;7i.

in Section VII we prove that (iii) implies (i). nEVn u€Vm €V =1
VI. MULTI-BENT IS PERFECTNONLINEAR Then
The result stated in the title of this section is a corollary
of the following theorem which gives the general relationship 2> W?(f + M)(z)
between the multidimensional auto-correlation property and _ Z Z Z (_1)u<(f(£)+M£+n)+v-(f(v)+Mv+<)

the multi-Walsh transform.
Theorem 5:Let M = (M, ...

> WAL+ M) [ =

,My,) € V. Then

Mevy
Qan(Do{f)(I) + 2n(m+1)(2n - 1)“771(56)’
forall « € V,,.
Proof:
Mevm i=1
SOl CR 98 | ELE
Mevmi=1 €€V, i=1
~ Z Hxlfi("/)-i-Mi"Y
~yEV, =1

Yy ﬁxmmﬂ(w)ﬁ T gelater)

£eVy, vev, i=1 i=1 M; eV,

17,0E€EVim u, €V, §,7EV,

« H x?i+<i

S = Z (—1)ywntv< ﬁx?wci.

7,CEVin i=1

Substitutingn by n + ¢ we obtain

S= Y (=ntre - (—1)"'"ﬁx?i

CEVm NEVm

_ [ 2 ey, GO 2 i u =,
0, if u # v.



Then [4] X.-M. Zhang and Y. Zheng, “GAC - the criterion for global avalanche

characteristics of cryptographic functionslpurnal of Universal Com-
puter Sciencevol. 1, no. 5, pp. 320-337, 1995.

[5] O. S. Rothaus, “On “bent” functionsJournal of Combinatorial Theory

vol. A 20, pp. 300-305, 1976.

m

__o9—m 2 . _1\um i

=2 Z F (u (f + M)) Z ( 1) sz [6] J. L. Massey, “The discrete Fourier transform in coding and cryptogra-
i=1

W2(f + M)(x)
UEVy, neVm
— 9—m92n Z H‘L:h 4 9—mon Z Z (_1)u-77 Hx:h
nEVy, 1=1 u#0nNEVy, i=1

m

_ 22num(x) 4 gn—m Z Hx;h Z(_l)um
neEVp =1 u#0
m

_ 22num(x) + 277,—m(27n 1+ Z szh Z(_l)u-fl)
n#0i=1 u#0

—_ 22num(x) + 2n,—m(2m _ 2mum(x))

=2"(14 (2" — Dup(x)),

as desired. u
We conlude by giving a small example.
Example. Let n = 4 andm = 2. We set

J1(61,82,83,64) = &1&o+ 838
f2(&1, 62,83, &) &&3 + (&1 + &3)&.

Thenf = (f1, f2) is bent. The value distributions of the func-
tions f+ M are either (7,3,3,3) or (1,5,5,5) (in various orders).
Their variance is 76. Absolute values of the differences from
the uniform distribution are (3,1,1,1) (where the order varies)
and the quadratic sum of the differences is equal to 12.
These distributions follow the pattern that one value is taken
27 4(2™—1) times and the othe?™ —1 values are taked?s
1 times each. Forn > 2m, these frequencies are multiplied
by 2% =™ as shown in Theorem 1. Do other patterns exist?
A second interesting question is what is the smallest pos-
sible maximum variance of the distributions ¢f+ A for
n < 2m and how to identify such functions.

VIII. CONCLUSION

We have introduced a multidimensional Walsh transform to
be used in the analysis of value distribution. In particular, we
proved that the maximum variance of the value distribution of
a vector-valued bent function, and all its translates by a linear
function, is the smallest possible.
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