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MULTIDIMENSIONAL LINEAR DISTINGUISHING
ATTACKS AND BOOLEAN FUNCTIONS

Miia Hermelin! and Kaisa Nyberg?

Abstract. In this paper theoretical aspects of multidimensional
linear distinguishing attacks are investigated. Usingwkmexam-
ples of highly nonlinear Boolean functions we demonstraie/ h
multidimensional linear approximationsfer significant reduction

in data complexity in distinguishing attacks. We also getarete
examples where one-dimensional linear approximationsaver
statistically independent.

1. Introduction

Linear cryptanalysis method was introduced by Matsui inghgre
two statistical key-recovery attacks on the DES, Algorithrand Al-
gorithm 2, were presented. Later linear approximationsfzso been
used for distinguishing an output sequence of a key streamargtor
from a truly random sequence.

Enhancements of the linear cryptanalysis method usingpteulin-
ear approximations were presented by Kaliski and Robshd@] iand
Biryukov, et al., in [3]. Truly multidimensional linear diaguishing at-
tack was presented by Englund and Maximov in [4], and thedations
of the statistical analysis were presented by Baignétesd,,en [5].

The goal of this paper is to investigate theoretical aspefctistin-
guishing attacks based on multidimensional linear appmakon. For
this purpose, we interpret a linear approximation as a Bwofanction,
and show that its strength can be measured using#uistance be-
tween the related probability distribution and the unifadistribution.
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2 MIIA HERMELIN, KAISA NYBERG

We call this measure capacity due to its similarity to theéoroof capac-
ity used by Biryukov, et al., in [3]. We show that the probabitistribu-
tion of a multidimensional linear distinguisher can be deiaed based
on the one-dimensional linear approximations. This apgraalows
us to select the strongest linear approximations and is atatipnally
more flexible compared to the approach of handling the fubpbility
distributions in [4].

We also explore the limits of multidimensional linear digtilishing
attacks. We show that the vector bent functiofierathe best resistance,
but also that the gain of multidimensional approximatioampared to
one-dimensional approximations is the largest for benttions. We
investigate the probability distribution of the basic ndithensional lin-
ear distinguisher of the filter generator, see [6], and dalelits capac-
ity for some highly nonlinear filter functions. In all theseaenples, we
can observe significant reduction in data complexity comgbdo the
one-dimensional linear approximation. We also see con@eamples
where the assumption of statistical independence of linpproxima-
tions, which is the basis of the theory in [2] and [3], does maid.

Finally, we investigate how multidimensional linear appnoations
can be chained for composition of independent cipher lagadshow
the probability distribution of the chained approximaticen be deter-
mined. We present the multidimensional form of the Pilifglemma
and prove an upper bound to the capacity of chained or pbagiprox-
imations.

The outline of this paper is as follows. In Section 2 the basitcepts
of vector Boolean functions and related probability disitions are in-
troduced. The theory of multidimensional linear distirgning attacks
is presented in Section 3. The properties of highly nonlirgaolean
functions are studied in Section 4, and they are examinedefuin the
context of a filter key stream generator in Section 5. Thelt®sn com-
positions of multidimensional approximations are presénih Section
6, and we conclude in Section 7.

2. Probability Distribution of a Boolean Function

We will denote the space ofdimensional binary vectors by,. The
inner product is defined fan = (az,...,an),b = (by,...,bn) € Vyas
a-b = ab; +--- + ayby, where+ is sum modulo 2. If necessary,
@i":‘l g; is used to notate the suam + - - - + a,; modulo 2.
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MULTIDIMENSIONAL DISTINGUISHING ATTACKS 3

A function f : V, — V; is called a Boolean function. A function
f:Vh—oVy f=(f,..., fn), wheref; are Boolean functions is called
a vector Boolean function of dimension A linear Boolean function
from V,, — Vs represented by amx n binary matrixW. Themrows
of W are denoted byv, ..., Wn, Where eactw; is a binary vector of
lengthn.

Let f,g: V, — V be Boolean functions. The correlation between
andgis c(f,g) = 27" (¢ € V| F(£) = 9(é)} — #E € Vnl £(6) # 9())) -

If g =0, thenc(f,0) = ¢(f) is called the correlation of.

Let f : Vi, = V. We will call the vectomp(f) = (po(f),..., pom_1(f)),
wherep,(f) = 27"#¢ € V| f(£) = i}, the probability distribution (p.d.)
of f. We may also denotg,(f) by p, if the function f is clear from
the context. The vectat, = 27™(1,...,1) € R2" is used to denote the
2"M-valued uniform p.d.

Let¢ : V, — R be a real-valued function. The Walsh-Hadamard
transformé of ¢ is defined as

B = > PE)(1FY, ue V.

£eVn

Then¢(§) = 2‘”$(§),§ € Vp, using the inverse of Walsh-Hadamard
transform. The convolution of two functiogs: V, — R andy : V,, —
R is defined as

@+ 9)m) = > SEWE +n), n € Vi

€€V

It is straightforward to verify that then

(@ *¥)(U) = H(Ud(U), u e Vp. (1)

If $(&) = (-1)'® for a Boolean functionf : V,, — V, then(u) is
denoted byf(u). The set{f(u) |u € Vi) is called the Walsh spectrum of
f. Parseval's theorem states th&2: ¢(¢)? = ¥, #(u)?. For a Boolean
function f : V, — V it then follows that

2% ) W= ) cf@.u-9?=1 @)
ueVy ueVy
Fora € Vi, we use notatiop(a) = c(a - f). Then we have
p@)=2" > (1710 = 3" (-17*"p, = p(a). (3)
eV n€Vm
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4 MIIA HERMELIN, KAISA NYBERG

Using the inverse Walsh-Hadamard transform we get thevialig lemma.

Lemma 2.1. Suppose that f V, — Vi, is a Boolean function with p.d.
p and with one-dimensional correlatiop$a) of a- f. Then

Py =2" > (-1)*"p(a), for all 5 € Vi,

acVm

3. Multidimensional Linear Distinguishing Attacks

Linear cryptanalysis can be significantly enhanced by usialjiple
linear approximations as shown most notably in [2] and [3pwever,
these approaches are restricted by the assumption thadikielual lin-
ear approximations are statistically independent. Thesiaption was
also studied by S. Murphy in [7]. Baignéres, et al., devetbihe statisti-
cal theory of general multidimensional distinguishing. [Recently, we
presented in [8] a truly multidimensional generalisatidiatsui's Al-
gorithm 1, which does not assume statistical independehtte dinear
approximations and also performs in practice better tharalfjorithms
of [2] and [3]. In this section, we will give the theoreticalindations of
the multidimensional linear distinguishing attack. Finst will define
a multidimensional linear approximation as a vector Baol&action
and then consider the statistical properties of the p.dhisfBoolean
function.

3.1. Multidimensional Approximation of Boolean Functions

Let f : V, — V| be a vector Boolean function and binary vectors
w; € Vjandu € V,, i = 1,2,...,,m be linear masks such that the
paired masksy(, w;) are linearly independent. Let us define functions
g by

gi(€) =wi- f(&)+u-é& (4)

and denote their correlations py= c(gi), i = 1,2,...,m. We will call
these correlations the base correlations, and the comdsyp linear
approximations of the base approximations. We investigate the p.d. of
the m-dimensional vector Boolean functigt¢) := W f(¢) + U&, where
W= (Wg,...,Wy),U =(Ug,...,Uun)andg = (ds, ..., gm). Let the p.d. of
g be p and that the componengsg have correlationg(a) = c(a-g), a €
V. If & = (0...010...0) with 1 at theith place, them(g) = pi,i =
1,...,m. Given the one-dimensional correlatign®) = c(a-g), a € Vpm,
the probability distributiorp(g) can be determined using Lemma 2.1.
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MULTIDIMENSIONAL DISTINGUISHING ATTACKS 5

3.2. Capacity of a Multidimensional Linear Distinguisher

The strength of a linear multidimensional approximatiordéter-
mined by the nonuniformity of its p.d., which is measurecdgsis ca-
pacity to be defined next.

Definition 3.1. Letp = (po, ..., pm) andqg = (o, ..., qm) be two p.d.’s.
Their (mutual) capacity is

M _ 2
C(p.q) :Z (Py — 9y) .

If M = 2™~ 1 andq = 6, is uniform thenC(p, 6m) = 2M||p — Omll3
will be called the capacity ob and we will denote it byC(p). It is also
called the Squared Euclidean Imbalance [5p i the p.d. of a Boolean
functiong, then we se€(p) = C(g) and callC(g) the capacity ofy.

The following corollary of Lemma 2.1 is obtained using Paeads
theorem. An equivalent form of it can be found in [5], where groof
was based on the inverse Walsh-Hadamard transform of thedimeén-
sional biaseg, (g) — 27™.

Corollary 3.2. Let g be a Boolean function with p.d. p. Then

C@ = ) p@?

a#0

A distinguishing attack can be described as a hypothesiaggsob-
lem. Null hypothesidHy states that the empirical dat8 of N words is
derived from p.d.p and the alternative hypothedi, states thazN is
derived from p.dg # p (see [9]).

The following theorem was proved in [5] where the log-likelbd-
ratio was used as the distinguisher of the multidimensitwabthesis
testing problem. Note that the theorem makes no assumpgibost
statistical independence of the base approximations.

Theorem 3.3. Assume that the p.d’s p and g are close to each other:
o, — pyl < q, for all n € V. Then the amount of data needed to
distinguish between ¢and H; is

_ Y
N= C(p,a)’ ®)

wherey depends on the level and the power of the test.
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6 MIIA HERMELIN, KAISA NYBERG

Hence, if we want to distinguish whethgl comes from a cipher
with p.d. p or from a random source with uniform p.d., the amount of
data needed using linear approximations is

_ Y _ Y
"D T Teor@? ©

wherey depends on the level and the power of the test. In the one-
dimensional case, we have a linear approximation such a&é¢4) be

the correlation of the approximation. The number of biisneeded to
distinguishzN from a random sequencejigp?.

We can see that multidimensional approximatidfers significant
reduction in data complexity, in particular, for functiongh one-dimensional
linear approximations with uniformly small correlations Section 5,
we will see examples where all the correlatigrifa) are equal or their
absolute values are equal. Theg = N1/(2M - 1).

4. Optimal and Near Optimal Capacity of Boolean Func-
tions

In this section, we determine the capacities of some knovamgikes
of highly nonlinear vector Boolean functions, whicfiey strong resis-
tance against basic one-dimensional linear attacks. waswill show
that vector bent functions are optimal against multidiniema linear
cryptanalysis and determine its capacity.

4.1. Bent Functions
Multidimensional Walsh transform was introduced in [10].

Definition 4.1. Let f : V,, = V., be a Boolean function. Then we define

Wi S, [0

eV, i=1

where the sum is taken in the $&tx, ..., Xm] /(X — 1,..., %3 — 1) of
multivariate polynomials over integers where the indeteatesx; sat-
isfy x? = 1. The transform that magsto the mapping) — Wr.u(X),U =
(U1, ..., um) € VI, is called the multi-Walsh transform.
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MULTIDIMENSIONAL DISTINGUISHING ATTACKS 7

Letthe p.d. off bep. If U = 0, we can give the transform as follows:

Wi = o[ ] )

1n€Vm i=1

The polynomial®n(x) = 27" 3, .y, [Ti X" corresponds to the uniform
distribution 8y, The following theorem is the multidimensional equiva-
lent of Parseval's theorem, and its proof can be found in.[10]

Theorem 4.2. For any vector-valued Boolean function: ¥/, — Vp, the
following holds:

Z W2, () = 2™ (14 (2" - 1)Om(X)) .
Uevy

In the one-dimensional case, bent functions are definednasidns
which have equally small correlations, in absolute valoealt linear
functions, see (2). Analogically, the multi-bent funcsosre defined as
functions with uniform multi-Walsh spectrum as follows.

Definition 4.3. A vector valued Boolean functiof : V,, — Vp, is multi-
bent if

WE (9 =21+ (2" - 1)Om(X)
forallU e V.

It was shown in [10] thaff is multi-bent if and only if it is bent in
the classical sense (i.e., its component$(x), a # 0, are bent). Hence,
f is multi-bent if and only ifW o f o T + U is multi-bent for all linear
transformationdV andU and linear bijection§. We have the following
theorem considering the capacity of bent functions.

Theorem 4.4. The capacity of a multi-bent Boolean function ¥, —
Vm, satisfies

C(fy=2""-2" (8)
Proof. By (7), it is straightforward to verify that the ponnomi@V?(x)
corresponds to the p.h + p. The constant term in the polynomial is
¥, P2 =27"(1+ (2"-1)2"™). By Definition 3.1C(f) = 2™||p — 6ll5 =
2", pg — 1, from where the claim follows. m|

If fis multi-bent, thenf + U is multi-bent andC(f + U) = 2™" —
2" forall U : V, —- Vqylinear. It follows that multi-bent functions
are optimal against multidimensional linear cryptanaysi is an open
question whether there are functions other than multi-tieait satisfy

).
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8 MIIA HERMELIN, KAISA NYBERG

4.2. Power Functions

We will next study functiond : V, — V, that are of the fornf(x) =
x4, d > 1. We denote the approximations bgx) = W f(x) + Ux, and
restrict to cases whel is invertible andJ x = ux, for someu € Fon.

The trace is denoted by T\ = a + a2+ - +a2" ", for @ € Fon. For
all a € V,, there exists a unique € V,, such thaia - x = Tr(ax). Now
we can replace(a) in Corollary 3.2 withp’(@) = Y yey, (-1)T@90).
Similarly, we introduce the following notation

(Wr/.l(a) — Z (_l)h(x)+Tr(aX) — Z (_1)h(x)+a~x — (Wh(a.),

XeVn XeVn

whereh : V,, - V is a Boolean function. We can now state the following
lemma that gives a connection between the modified comelatnd
Walsh transform of a power function:

Lemma 4.5. Let f(x) = x4, d > 1and gx) = f(X) + ux, u e Vp. Then
p'(@%) = (W/Tr(f)(ad_lu)- 9)

Proof. We use the definitions ¢f (o) andW/ (a) to get

’ d d d
o (ad) = Z(_l)Tr(d ax) — Z(_l)Tr((ozx) Y+ Tr(a%ux)

XeVy XeVh
d-1 , _
= Z(_l)TI’(yd)+Tr(a uy) — (WTr(f)(a/d 1U).
yeVn

O

Theorem 4.6. If gcdd, 2" — 1) = gcdd — 1, 2" — 1) = 1 then the linear
approximation ¢x) = x4 + ux, u € V, has capacity @g) = 1, ifu # 0

and g) =0, ifu=0.

Proof. If gcd(d, 2" — 1) = gcdd — 1,2" - 1) = 1 thena® 1 is a bijection.
Using the lemma we can write the capacitygas

CE) = Y p@? =223 Wi (@ u)?

az0 a0

a#0 @€V

where we used the one-to-one correspondence betmaeda, the fact

that’W’Tr(f)(O) = 0 and Parseval’s theorem. m|
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MULTIDIMENSIONAL DISTINGUISHING ATTACKS 9

Let us now consider the known examples of highly nonlineacfu
tions f(x) = x* and f(X) = x°. The former satisfies the conditions of
Theorem 4.6 always, while the latter satisfies them only & @ We
get the following corollary.

Corollary 4.7. Let f(x) = x4 in Fon, where d= —1 and n is arbitrary,
ord = 3and nis odd. Then the linear approximatiofxjy= x4 + ux
has capacity @) = 1, ifu# 0and g) =0, ifu=0.

Hence, increasing dimensiarwill make x~! more resistant against
one-dimensional linear attacks. However, if one useguations the ca-
pacity does not depend arand the resistance against multidimensional
linear cryptanalysis is the same for alb 1.

5. Capacities of Distributions from Simple Filter Genera-
tors

Let us study a simple example of a key stream generator (K&Q-
sisting of an LFSR wittk state blocks of sizé bits each, and a filter
function f : V; —» Vi, wheren is a multiple ofl andm < n. Let the
LFSR recursion b@'j(zo bjs+j = 0, wherebj € V andbg = by = 1.
Attimet, letz = f(S;), where the inpuS; is some fixed subset of the
LFSR state blocks. The@'j‘:0 bjSt+j = 0. Our goal is to determine the
distribution ofz = @'j‘zo bjz.;. Let the indices of the non-zero diie
cientsb; be 0= j1 < --- < jg = k, whered is the number of non-zero

codficients. Denote; = St..j;. Then@id:1 X = 0. ASSUMEXq, ..., Xd—1

are statistically independent and uniformly distribute@iven a one-
dimensional mask € Vy,,, then the correlation(w) betweenw - zand 0
can be calculated by

k d-1 d-1
cw- (P bjzj) = cfw- (] F00) + F(EP %)
j=0 i=1 i=1

2—(d-1)n Z (_1)W'(f(X1)+“'+f(Xd71)+f(X1+'-~+Xd71)) (10)

c(w)

X1,...,X4-1€Vn
= 92dn (_1)W'(f(X1)+"'+f(Xd)) (_1)U~(X1+~~~+Xd)
xl,.§evn l;n
= 270 % wo (e (11)
ueVy

J-F. Michon, P. Valarcher, J-B. Yunés (Eds.): BFCA'08



10 MIIA HERMELIN, KAISA NYBERG

Formula (11) was proved in [6]. It can also be considered aari@a-v
tion of general correlation theorems given in [11]. The dimaensional
masksw; will be used to construct am x m mask matrixW. Using the
Boolean function

d-1 d-1
(Xt Xdo1) = W [@ fo4) + f(ED xi)] (12)
1 i=1

one can launch a distinguishing attack, where the data @oitylis
inversely proportional to the capacity of this key strearpragimation.
We are going to study three exampldg¢x) = x 1, f(x) = x> andf is
any bent function. Formula (11) is not useful for functiorigfmeomplex
Walsh spectrum. Therefore, we will use (10) directly, aririet to the
special case whem = 3 for the first two examples. Then the recursion
eguation becomes + s + s = 0, for some O< i < k. We will denote
x1 andxz by x andy, respectively. Then (10) becomes

c(w) = 2-2n Z (_l)w-(f(x)+f(y)+f(x+y))). (13)
X,YeVn

5.1. Filter Function based on the S-box of AES

It is sufficient to studyx~! instead of the actual S-box as making a
linear transformation of full rank of a function does néfeat its statis-
tical properties.

Theorem 5.1. Let f : V, — Vq, be the filter function of the k.s.g. de-
scribed above obtained from the function' xn Fon by truncating its
output to m bits. Then the correlationéag are the same for all w O.
Moreover, for any invertible nmx m output mask Whe capacity of dis-
tinguisher(12)is

_ @M -1)2", ifneven
(@M -1)222 ifnodd

Proof. We extendw € Vp, to V,, by appending zeros to it if necessary.
We can write (13) as®2c(w) = 3,(-1)*N,, whereN, = #(x )|
x1+ytl+ (x+y)t = 5. We divide the sum oven to two parts
depending on whether= 0 orn # 0. Let us calculatdy first. If x=0
ory=0orx+y=0thenn = 0. Hence, assume thatz 0,y # 0 and

J-F. Michon, P. Valarcher, J-B. Yunés (Eds.): BFCA'08



MULTIDIMENSIONAL DISTINGUISHING ATTACKS 11

X+ Yy # 0. Then the following equivalences hold:

2
n=0©1+}+i:0®(§) +1(+1=0.
Xy X+y y y

The last equation has either 0 or 2 solutiogdor everyy # 0, and it
has two solutions if and only if Tr(13 O that is, whem is even. Hence,

2(2"-1), if neven

No=#(XY)X#0,y£0, Xx+y#0,n=0} = .
0 ()l y *y 7 } {0, otherwise

ThenNp is given by
No = #(X, Y)Ix= 0,7 = O} + #{(X, y)Ix # 0,y = 0,7 = O}
+# Yy # 0,x =y, =0} + No

5.2"— 4, if neven
3.2" -2, otherwise

Now we calculate théN, for  # 0. Thenx # 0,y # 0 andx # y, and
consequentlyy # % We have thaf (X)+ f(y)+ f(x+y) = nif and only if

2 . . . .
(’—;) + %+ L= = 0. This has two solutions for eachy # 0if and only if

Tr(ﬁ,) = 0. Note that the solutions must also satigfy 0 andx # y.
The functiony — 1/(1 + ny) defined fromFx \ {771, 0} — Fx \ {0, 1}
is a bijection. Trace is a linear mapping sy/#r(y) = 0} = 21, We
obtainiN, = #y # 0,y # 71| Tr(1/(1 + ny)) = O}.

If nis odd, therlN,, = 2" -2, since the function Tr(A(1+ny)) # O for
y = L. If nis even, then both values which this function never takes,
have trace equal to zero, and we obtiin= 2" - 4.

Combining the results we get that the correlation for all-zero
one-dimensional output masksis c(w) = 227", if nis even ana(w) =
211 if nis odd. The claim follows now from Corollary 3.2. ]

By choosing any linearly independent one-dimensional masks, for
example,g,i = 1,...,n, as the base masks, we can make an opti-
mal multidimensional distinguisher. This example alsovahthat the
assumption about statistically independent base appatikins cannot
hold even though the selected masi3 &re linearly independent. This
follows since the combination correlations are of the saragnitude as
the base correlations.

J-F. Michon, P. Valarcher, J-B. Yunés (Eds.): BFCA'08



12 MIIA HERMELIN, KAISA NYBERG

5.2. Function x3 as a Filter Function

Theorem 5.2. Let f : V,, —» Vq, be the filter function of the k.s.g. de-
scribed above obtained from functiod i Fon by truncating its output
to m bits. Then the correlationgw) are the same for all we 0 and the
capacity of the distinguishgfl2)is C = (2™ - 1)22-2" for any invertible
mask W.

Proof. We extendw € Vi, to V,, by appending zeroes to it if necessary.
Using (13) we get

o(W) = 2721 ) (-0 < oy g BN g ywbey),

Xy y#0 X

For ally # 0, X%y + y?x is linear. It goes twice through the values of
ann — 1-dimensional vector subspabg_1(y) = {X°y + y°X|X € Vy}.
SinceV,_1(y) is a vector subspace, there exists= 0, such that1z
for all z € V_1(y). Moreover, ify; # y», thenc; # c,. Then for any
w # 0 there exists a uniqug, such thaw - (x?yy, + y2X) = 0. If y # Vi,

w - (X%y + y?x) takes the values 0 and 1 equally many times. Hence,

o(w) = 274272 Z Z(_l)W-(Xzyﬂ/ZX) " Z Z(_l)W-(x2y+y2x) _ ol

Y=Yw X y#yw,0 X

By Corollary 3.2, we get the claim. m|

5.3. A Bent Function as a Filter Function

In this case we can study the general case of an LFSRawith3.
Suppose that : V, — Vpis bent.

Theorem 5.3. Let f(X) be a bent filter function of the k.s.g. described
above. Then, for any fixed even>d4, the correlations (w) are the
same, for all w# 0, and for any fixed odd & 3 the absolute values of
the correlations/c(w)| are the same, for all wt 0. The capacity of the
distinguisher(12)is C = Y,.02™2" = (2™ - 1)2°2" for any invertible
mask W.

Proof. Denote the right hand side of (10) loy. If d = 3, then using
(13) we get

C3 = 2—2n Z (_ 1)w- f(x) Z (_ 1)w-(f(y)+ f(x+Y)) )
X y

J-F. Michon, P. Valarcher, J-B. Yunés (Eds.): BFCA'08



MULTIDIMENSIONAL DISTINGUISHING ATTACKS 13

Since f is bent we know that the sum ovgris 2" if x = 0 and zero
otherwise. Hencegz = 27"(-1)" 1O, If d = 4, we obtain similarly that
Cs = 27" Y (1T = 27N Finally, ford > 5, we get

cg = 27(@-1n Z (_1)W‘(f(xl)+“'+f(xd—2»Z(_1)W'(f(Xd—l)+f(xl+"'+xd—1))

X1, Xg—2 Xd-1
— o~(d-2)n Z (—1)FOa et FOaal fOarxa-a)) — gy o
X1,...,Xd-3

Therefore,cq = (-1)* @21 if d is odd and 2" if d is even. Since
c(w)? = c3 = 272" for all w # 0, we get the claim. O

In all three examples, the amount of data needed for thekaitsac
approximately 2™, If n = 2m, a multidimensional distinguishing
attack takes ¥" words of data whereas the one-dimensional attack needs
24" words of data.

6. Constructing Multidimensional Linear Approximations

One approach to constructing multidimensional linear axpna-
tions is to search for strong one-dimensional linear agpratkons over
the whole system and use Lemma 2.1 to construct the multidiroeal
approximations. Since many linear distinguishing attattikee already
concentrated on finding the best one-dimensional mask;ainive seen
as a practical way to apply the theory, in particular, whemessd approx-
imations about equally large correlation have been fouad,esg. [8].
A second approach, taken in [4], is to consider p.d. of lireggsroxi-
mation of each part of the system separately and then uselation to
obtain the p.d. of the entire linear approximation.

We say that two Boolean functions are statistically indeleen if
they do not share common inputs. The generalisation of tliegRip
lemma can be stated as follows:

Lemma 6.1. Suppose that g and h are statistically independent. Then
p(g +h) = p(g) * p(h).

In the one-dimensional case, the capacity of the convailsahe
product of the original capacities. Unfortunately, thigfus fact cannot
be generalised to multiple dimensions, where only the Wilig result
holds in general.
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Theorem 6.2. Let g and h be statistically independent. Then
C(g + h) < C(g)C(h). (14)

Proof. Denote the correlatiop(a) = c¢(a- g) corresponding to function

g by pg(@). Using (3) and (1) we geig.h(a) = pg(a)pn(a), for all a # 0.
To compute the capacity of+ h we use Corollary 3.2 to get

CE+h) = pen(@? < > pg(@? > pr(@)? = CEC(H).

az0 az0 az0

O

If the inputs of the two functions to be combined are statihy
independent, we can use tlredimensional Piling-up lemma 6.1 to cal-
culate the p.d. over the whole system. The inputs are ofteumnaesd to
be statistically independent, for example, when combimownds of a
block cipher. However, due to the linear huffext [12], this is just an
approximation. In the following theorem, we give the distition of a
linear approximation over a composition of two Boolean tiows f;
and f, in terms of the distributions of the linear approximatiorisfp
and f, thus generalising the basic correlation formula of [13].

Theorem 6.3(Correlation theorem)Let f; : V| —» V,, f2 1 V3 = Vi
andletgs =Vfi+Uand hy = WH + V, where Ue V", V € V"and
We V. Let f = W(f20 f1) + U. Then for all matrices U and W

p(f) =27™" 3" plov) * phy) - (2" = 1)fm. (15)

VeV

Proof. Let us start by studying the sum owérusing the multi-Walsh
transform as follows:

Z ng(X)WhV(X) — 2—n—| Z Z n Xiui.feawi.fz({) Z 1_[ X;/i-(fl(g)@g).

Vev eV eV, i VeV i

The sum is now divided to two part§; and Sy, whereS; is the sum

with ¢ = f1(¢) and S, is the sum whereg # f1(¢). If a = 0, then

Swvevn [T X"® = 2™ On the other hand, i& # 0, then the sum is
2"M@(X). Using this we get

Sy =2"! Z l_[ Xiui sow- f2(f2(€)) onm _ - ()
R

S=2 ) >, [ X HO2Men(9 = 2" (2" - ) On(¥).
& C#h(E) i
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Solving ‘Ws(x) from these equations and using (7) gives the desired
result. i

Similarly to the proof of Theorem 6.2, by using (15), we caaver

that
C(f) < 272mm2mm %" C(gy)C(hv). (16)
Vevjn

In Sections 4 and 5 we saw that functions that are consideredgs
against one-dimensional cryptanalysis can actually bie gueak against
multidimensional cryptanalysis. On the other hand, we dd&now how
much the capacities are weakened when such strong multidioral
approximations are combined over multiple rounds as (14)48) give
just upper bounds.

7. Conclusions

We investigated theoretical aspects of multidimensiomedar dis-
tinguishing attacks on concrete examples of Boolean fansti First,
we showed how the probability distribution of a multidimiemsl lin-
ear approximation can be determined based on the corredatibthe
one-dimensional linear approximations. Secondly, we $&aw gignif-
icant reduction in data complexity compared to one-dinaradilinear
distinguishers can be achieved. Thirdly, we presented @euof con-
crete, albeit theoretical examples where one cannot find avangle
pair of statistically independent one-dimensional lireggproximations,
which shows that the presumptions adopted in [2], [3] andafg] not
valid in general.
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