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Dependent Linear Approximations: The Algorithm of
Biryukov and Others Revisited

Miia Hermelin1 and Kaisa Nyberg1,2

1 Aalto University, School of Science and Technology
2 Nokia, Finland

Abstract. Biryukov, et al., showed how it is possible to extend Matsui’s Algo-
rithm 1 to find several bits of information about the secret key of a block cipher.
Instead of just one linear approximation, they used several linearly independent
approximations that were assumed to be statistically independent. Biryukov, et
al., also suggested a heuristic enhancement to their method by adding more lin-
early and statistically dependent approximations.

We study this enhancement and show that if all linearly dependent approxima-
tions with non-negligible correlations are used, the method of Biryukov, et al., is
the same as the convolution method presented in this paper. The data complexity
of the convolution method can be derived without the assumption of statistical
independence. Moreover, we compare the convolution method with the optimal
ranking statistic log-likelihood ratio, and show that their data complexities have
the same order of magnitude in practice. On the other hand, we show that the time
complexity of the convolution method is smaller than for the other two methods.

Keywords: Matsui’s Algorithm 1, linear cryptanalysis, multidimensional crypt-
analysis, method of Biryukov, convolution method.

1 Introduction

Linear cryptanalysis of block ciphers makes use of probabilistic relations between the
plaintext and ciphertext data and the secret key. Such a relation is called a linear approx-
imation of the block cipher. Given a sufficient amount of data derived from the cipher,
Matsui’s Algorithm 1 [1] can be used in recovering one bit of information about the
secret key.

First, Kaliski and Robshaw [2] showed that by using multiple linear approximations,
the data complexity can be reduced and later, Biryukov, et al., [3] that multiple bits of
information about the secret key can be obtained. However, these methods rely on the
assumption that the linear approximations used in the attack are statistically indepen-
dent. Murphy noted that this is not true in general [4]. Hermelin, et al., investigated
this problem in practice using a reduced round Serpent and showed that strong linear
approximations are not usually statistically independent [5].

It was observed already in [3] that including more strong linear approximations seemed
only to improve the results even if the used approximations were neither linearly nor sta-
tistically independent.The practical experiments performed in [5] also showed that when
using multiple linear approximations the larger the number of strong approximations was
in the method of Biryukov, et al., the closer the observed data complexity became to the
data complexities of the methods based on χ2 and the Kullback-Leibler distance [5].
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These observations suggest that the assumption about statistical independence of
the linear approximations could and should be relaxed when applying in practice the
method presented Biryukov, et al., which we will call the Biryukov method, for brevity.
In this paper we give theoretical justification that this is really the case. For this purpose,
we investigate the Biryukov method in the case, where the set of linear approximations
is the full linear span of the given set of linear approximations. Completed in this man-
ner the method can be shown to be equivalent to a new method, which we will call
the convolution method. The convolution method is interesting, first because it does
not rely on the assumption about statistical independence. Secondly, it has the same
time complexity as the Biryukov method would have if only the linearly independent
approximations are used. Thirdly, the data complexity of the convolution method is at
most the same as the data complexity of the Biryukov method.

Previously, the log-likelihood ratio (LLR) was used in [6] for realising another Algo-
rithm 1 type linear attack. In this work we also compare the convolution method and the
LLR-method in theory by modelling the problem of finding the correct key information
bit as a multiple hypothesis testing problem. While the LLR is the optimal solution with
the smallest data complexity, the data complexity of the convolution method is of the
same order of magnitude. The key ranking problem in the Algorithm 1 type attacks is
also investigated and the existing approaches are compared.

The structure of this paper is as follows: In Sect. 2, some basic notation is given.
The linear approximation of a block cipher and the basic Biryukov method is studied in
Sect. 3. Section 3.3 studies the completed Biryukov method and presents the convolu-
tion method. Statistical analysis of the convolution method is done in Sect. 5. It is shown
that the convolution method or the completed Biryukov method do not require the as-
sumption about statistical independence. Section 6 studies the data, time and memory
complexities for convolution method, the completed Biryukov method Biryukov and
LLR-method.

2 Probability Distributions and Boolean Functions

The space of n-dimensional binary vectors is denoted by Z
n
2 . The sum modulo 2 is

denoted by ⊕. The inner product for a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Z
n
2 is

defined as a·b = a1b1⊕· · ·⊕anbn. Then the vector a is called the (linear) mask of b. The
Hamming weight wH of a binary vector a ∈ Z

n
2 is wH(a) = #{i = 1, . . . , n : ai = 1},

the number of non-zero components in a.
A function f : Z

n
2 �→ Z2 is called a Boolean function. A linear Boolean function

is a mapping x �→ u · x. A function f : Z
n
2 �→ Z

m
2 with f = (f1, . . . , fm), where

fi are Boolean functions, is called a vector Boolean function of dimension m. A linear
Boolean function from Z

n
2 to Z

m
2 is represented by an m × n binary matrix U . The m

rows of U are denoted by u1, . . . , um, where each ui is a linear mask.
The correlation between a Boolean function f : Z

n
2 �→ Z2 and zero is

c(f) = c(f, 0) = 2−n (#{x ∈ Z
n
2 : f(x) = 0} − #{x ∈ Z

n
2 : f(x) �= 0})

and it is also called the correlation of f.
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We denote random variables X,Y, . . . by capital boldface letters, their domains by
X ,Y, . . . and their realisations x ∈ X , y ∈ Y, . . . by small letters. Let X be a random
variable taking on values in X = {0, 1, . . . , M}. The discrete probability distribution
(p.d.) of X is vector a p = (p0, . . . , pM ) if Pr(X = η) = pη, for all η ∈ X . Then we
denote X ∼ p. We denote the uniform p.d. by θ.

Let f : Z
n
2 �→ Z

m
2 and X ∼ θ, where X takes on values in Z

n
2 . If Y = f(X),

then the p.d. of Y is called the p.d. of f and we say that the random variable Y is
associated with f . Let f1, . . . , fm : Z

n
2 �→ Z

m
2 be Boolean functions and for each fi the

associated random variable is Yi. Then we say that the Boolean functions f1, . . . , fm,
are statistically independent (s.i.), if the random variables Y1, . . .Ym, are s.i.

3 Multidimensional Matsui’s Algorithm 1

3.1 Linear Approximation of a Block Cipher

Let f be an encryption function of a block cipher with block size n. We denote by x the
plaintext, by K the expanded key, that is, a vector consisting of all (fixed) round key
bits and by y = f(x, K) the ciphertext. Then an m-dimensional linear approximation
of the block cipher is a vector Boolean function

Z
n
2 × Z

n
2 → Z

m
2 , (x, y) �→ Ux ⊕ Wy ⊕ V K, (1)

where U and W are m × n binary matrices and the modulo 2 addition ⊕ is calculated
component-wise for the vectors. The matrix V has also m rows and it divides the ex-
panded keys, and therefore also the keys, to 2m equivalence classes z = V K ∈ Z

m
2 .

The task is to find the right inner key class, denoted by z0.
The most complex task in linear cryptanalysis is to determine the p.d. p of the

Boolean function (1). A method for determining an approximation p given the biases of
2m − 1 one-dimensional linear approximations related to (1) was presented in [5]. We
will henceforth assume that a good approximation of the p.d. p of (1) is available.

We make the usual assumption that the plaintexts x1, . . . , xN , are the realised values
of N independent and identically distributed (i.i.d.) random variables, each following
the uniform distribution. Then for all t = 1, . . . , N, the observed values Uxt ⊕ Wyt ⊕
z, z ∈ Z

m
2 , are realisations of i.i.d. random variables following p. Hence, for each

z ∈ Z
m
2 , the values Uxt ⊕ Wyt, t = 1, . . . , N, are the realisations of i.i.d. random

variables following pz, a fixed permutation of p determined by z. Then all the p.d.’s
pz, z ∈ Z

m
2 , are each other’s permutations, and in particular,

pz
η⊕a = pz⊕a

η , for all z, η, a ∈ Z
m
2 . (2)

The goal of Alg. 1. is to determine z0 using the empirical data of N plaintext-ciphertext
pairs (xt, yt), t = 1, . . . , N. For each key z ∈ Z

m
2 we give a mark defined by F (z) =

T ((x1, y1), . . . , (xN , yN); z), where T is a suitable ranking statistics with data as the
variable [7] [8]. The key z is a parameter of T . Given the data, the keys are ordered
in increasing or decreasing order according to their marks F (z). The key z′ with the
highest mark is chosen to be the right key candidate. The error probability Pr(z′ �= z0)
should decrease if the amount of data N is increased. The best statistics gives the small-
est error for a given N . The ranking statistic proposed by Biryukov, et al., is described
in the next section.
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3.2 Method of Biryukov, et al.

The basic version of the Biryukov method uses m linearly independent approximations
ui · x⊕wi · y ⊕ vi ·K, i = 1, . . . , m, where the ith approximation has a non-negligible
correlation ci. Biryukov, et al., assumed that the approximations are s.i., that is, if Xi is
a binary random variable associated with the ith approximation ui ·x⊕wi · y ⊕ z, then
the random variables X1, . . . ,Xm, are s.i.

For each i = 1, . . . , m, let ρi denote the empirical correlation of the ith approxima-
tion calculated using the data (xt, yt), t = 1, . . . , N as follows:

ρi = 2N−1{t = 1, . . . , N : ui · xt ⊕ wi · yt = 0} − 1.

Denote z = (z1, . . . , zm) such that zi is the ith bit of the key z. Denote the the-
oretical and empirical correlation vectors by cz = ((−1)z1

c1, . . . , (−1)zm

cm) and
ρ = (ρ1, . . . , ρm), respectively. The mark for each z ∈ Z

m
2 is given by the �2 dis-

tance between the two correlation vectors:

b(z) = ||cz − ρ||22 .

The key z′ minimising b(z) is chosen to be the right key.
Later Murphy noted that the assumption about statistical independence of the linear

approximations does not hold in general [4]. In particular, linearly dependent approx-
imations are also statistically dependent. Murphy also suggested to use the traditional
measure of covariance of two linear approximations in verifying the assumption about
linear independence. This method has been subsequently used by other researchers, for
example in [9]. The most natural way is to use the converse of the Piling Up lemma [1],
which we give in the Appendix 7.

Biryukov, et al., proposed a heuristic enhancement to their method [3]. They added
approximations that were linearly dependent of the m original approximations. Ulti-
mately, they could use all 2m − 1 one-dimensional approximations in the span of the
original approximations. We call this method the full Biryukov method and we will
study it in the next section.

3.3 The Full Biryukov Method

In this method, the empirical correlation ρ(a) for each a ∈ Z
m
2 is calculated using the

data (xt, yt), t = 1, . . . N as follows:

ρ(a) = 2N−1{t = 1, . . . , N : Uxt ⊕ Wyt⊕ = 0} − 1

The ηth component of the theoretical correlation vector cz is now (−1)η·zc(η) and the
vector of empirical correlations is ρ = (ρ(0), . . . , ρ(2m − 1)). Similarly to the basic
version, the mark is given by

B(z) = ||cz − ρ||22 =
∑

a∈Z
m
2

((−1)a·zc(a) − ρ(a))2

and the key z′ that minimises B(z) is chosen to be the right key.
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Next we analyse this full method. Our analysis is based on the observation that there
exists another statistic which is equivalent to the B(z) statistic, in the sense that both
will produce exactly the same key ranking. Moreover, this equivalent statistic gives a
more efficient way of ranking the candidate keys, and in particular, to determine the
most likely key candidate.

4 Convolution Method

We now show how to make the full Biryukov method more efficient in practice. We
obtain the empirical distribution q = (q0, . . . , q2m−1) of the multidimensional approx-
imation Ux ⊕ Wy ⊕ V K by computing

qη = N−1#{t = 1, . . . , N : Uxt ⊕ Wyt = η}, for all η ∈ Z
m
2 . (3)

The mark B(z) of the full Biryukov method can also be written as

B(z) = −2
∑

a∈Z
m
2

(−1)a·zc(a)ρ(a) +
∑

a∈Z
m
2

(ρ(a)2 + c(a)2),

where the latter sum does not depend on z. On the other hand, by equation (3) in [10],
we have

c(a) =
∑

η∈Z
m
2

(−1)a·ηpη and ρ(a) =
∑

η∈Z
m
2

(−1)a·ηqη.

Using the previous formulas for correlations we have

∑

a∈Z
m
2

(−1)a·zc(a)ρ(a) = 2m
∑

η∈Z
m
2

qηpη⊕z . (4)

But the sum is just the zth component of the convolution q ∗ p of the p.d.’s p and q.
Hence, finding the minimum of B(z) is equivalent to finding the maximum of the zth
component of the convolution of q and p, that is, z is the mode of the p.d. q ∗p. We now
propose the following mark

G(z) = (p ∗ q)z, (5)

and the key z′ that maximises G(z) is chosen to be the right key. We call this new
method based on G(z) the convolution method. We have the following result.

Theorem 1. The key z′ minimises B(z) if and only if it maximises G(z). Hence, the
full Biryukov method and the convolution method are equivalent.

Both methods are also equivalent to the maximum likelihood decoding. The problem
is to decode the code where the channel has error probability distribution p and the
original message is z ∈ Z

m
2 . The message is sent N times over the channel with noise

Uxt ⊕Wyt ∼ pz, at each time t = 1, . . . , N . The receiver obtains sequence z⊕Uxt ⊕
Wyt, t = 1, . . . , N, with observed empirical p.d. q that should approximate p. Then
q ∗ pz gives an empirical p.d. for z = (Uxt ⊕ Wyt) ⊕ (Uxt ⊕ Wyt ⊕ z) and the key
candidate z is given as the mode of the p.d. q ∗ pz .
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While the two methods have the same data complexities, the convolution method has
smaller time complexity. The basic and full Biryukov methods have time complexities
m2m and 22m, respectively. This is because we have to compute the rank b(z) or B(z),
respectively, for each z ∈ Z

m
2 . In the convolution method we do not have to consider

each key or p.d. pz separately. It suffices to compute only one convolution p ∗ q and de-
termine its mode. The convolution is computed using FFT with time complexity m2m.
Hence, with the same data the convolution method outputs the same key class as the
full Biryukov method, but the time complexity for the convolution method is the same
as for the basic Biryukov method. In [6] Hermelin, et al., studied the optimal method
based on the LLR-statistic. We prove in the next section that the data complexities of
the convolution method and the LLR-method are approximately equal.

More accurate descriptions for the algorithms for the different methods are given in
Section 6.2. In the next section, we study the statistical properties of the convolution
method.

5 Statistical Analysis

Finding the right key z0 is actually a multiple hypothesis testing problem. Section 5.2
studies the problem and how to solve it. The next section gives some necessary theory
about discrete random variables and multinomial probability distributions needed in
multiple hypothesis testing problems.

5.1 Multinomial Distribution

Let X1, . . . ,XN , be i.i.d. random variables drawn from space X = {0, 1, . . . , M}
by a discrete p.d. s = (s0, . . . , sM ), where M is some positive integer. Let Q =
(Q0, . . . ,QM ) be a vector of random variables where for each η ∈ X ,

Qη = N−1#{i = 1, . . . , N : Xi = η}. (6)

Hence, Q is a vector of relative frequencies of the elements of the sample space X .
The sample space Q of Q consists of vectors q = (q0, . . . , qM ), where q0, . . . , qM ∈
N−1{0, 1, . . . , N} and q0 + · · ·+ qM = 1. The random vector Q follows the multino-
mial distribution Multi(N, s), with probabilities

Pr(Q = q) =
N !

∏M
η=0(qηN)!

M∏

η=0

sNqη
η , for all q ∈ Q. (7)

Since for each z ∈ Z
m
2 , the observed values Uxt ⊕ Wyt, t = 1, . . . , N are realisa-

tions of i.i.d. random variables following pz, the empirical p.d. q calculated using (3)
is a realisation of a random vector Q that has multinomial distribution Multi(N, pz).
Using (2), we have for all z ∈ Z

m
2 ,

(p ∗ Q)z =
∑

η∈Z
m
2

pη⊕zQη =
∑

η∈Z
m
2

pz
ηQη. (8)
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Hence, maximising G(z) in (5) is equivalent to finding z′ ∈ Z
m
2 that maximises

∑

η∈Z
m
2

pz
ηqη. (9)

By (8) the convolution method has the same statistical behaviour as the method us-
ing (9). The next lemma gives the distribution of (8).

Lemma 1. Let λ0, . . . , λM be any real numbers and Q = (Q0, . . . ,QM ) be a multi-
nomially distributed random vector with distribution Multi(N, s). Then the linear com-
bination N

∑M
η=0 ληQη is asymptotically normal with mean and variance given by

μ = N

M∑

η=0

ληsη σ2 = N

M∑

η=0

λ2
ηsη − μ2.

The proof is given in Appendix 7. Since the lemma does not require the assump-
tion about statistical independence, the assumption is also not needed when using full
Biryukov or convolution method.

The concept of capacity was introduced in [5] and it was used in simplifying the
formulas of the data complexities:

Definition 1. The capacity between two p.d.’s p = (p0, . . . , pM ) and q = (q0,
. . . , qM ) is defined by

C(p, q) =
M∑

η=0

(pη − qη)2q−1
η .

If q is the uniform distribution, we denote C(p, q) = C(p).

5.2 Multiple Hypothesis Testing Problems

Let X1, . . . ,XN , be a sequence of i.i.d. random variables drawn from sample space
X = {0, 1, . . . , M}, where M is a positive integer, and let x1, . . . , xN , be the corre-
sponding realisations. Assume d ≥ 2 simple hypotheses, where each hypothesis Hi

states that the sample is drawn according to a p.d. pi = (pi
0, . . . , p

i
M ), i = 1, . . . , d,

and pi �= pj , if i �= j. Equivalently, each hypothesis Hi states that the vector Q defined
by (6) is multinomial distributed as Multi(N, pi).

The simple d-ary hypothesis testing problem is to determine which hypothesis is
correct. Hence, one hypothesis is accepted and the others are rejected. In Bayesian
statistics, each hypothesis is given an a priori probability Pr(Hi) for all i = 1, . . . , d.
We assume that the a priori probabilities are equal.

Let q = (q0, . . . , qM ) be the empirical p.d. calculated from the observed values
x1, . . . , xN , by

qη = N−1#{t = 1, . . . , N : xt = η}, for all η ∈ X .

A distinguisher is a rule that based on the observed data x1, . . . , xN , or, equivalently,
q, outputs which hypotheses is accepted:

δ(x1, . . . , xN ) = δ(q) = i, if Hi is accepted, for i = 1, . . . , d
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The distinguisher is defined using a suitable test statistic T (q; pi), where pi (or i) is
considered as the parameter and q is the variable.

Let f(i) = T (q; pi) be a function of the parameter i for given empirical data q. The
distinguisher outputs j if it gives the maximum (or minimum) of f(i), for given q. The
statistic T should be easy to compute in practice and accurate such that the total error

Pe =
d∑

i=1

Pr(Hi) Pr(δ(Q) �= i | Hi) (10)

is as small as possible. An optimal distinguisher minimising the error probability exists
for simple hypotheses testing problems.

Consider first the simple binary hypothesis testing problem with d = 2. By Neyman-
Pearson lemma in classical statistics and Chernoff’s theorem in Bayesian statistics [11],
the optimal distinguisher for distinguishing between H1 and H2, or p1 and p2 �= p1,
equivalently, is given by the log-likelihood ratio (LLR) test statistic

LLR(q; p1, p2) =
∑

η∈X
Nqη log

p1
η

p2
η

.

The distinguisher accepts H1, that is, outputs p1 (or accepts H2 and outputs p2, re-
spectively) if LLR(q; p1, p2) ≥ τ (< τ ) where τ is the threshold that depends on Pe.
Obviously, using LLR is the same as finding for given q the maximum of the function

l(i) =
∑

η∈X
qη log pi

η, i = 1, 2.

If p1, p2 �= θ this is equivalent to finding the maximum of

L(i) = l(i) + log(M + 1) = LLR(q, pi, θ), i = 1, 2.

In Bayesian theory Chernoff’s theorem [11] states that Pe = O
(
2−ND∗(p1,p2)

)
, where

D∗(p1, p2) is the Chernoff information between p1 and p2 given by

D∗(p1, p2) = − min
0≤λ≤1

log

(
M∑

η=0

(p1
η)λ(p2

η)1−λ

)
. (11)

Assume now a d-ary hypothesis testing problem with d ≥ 3 simple hypotheses. More-
over, assume that pi �= θ for all i = 1, . . . , d. The optimal distinguisher that minimises
Pe chooses the hypothesis with the largest conditional probability Pr(Hi | Q = q),
see [12]. Equivalently, by Bayes’ theorem, the distinguisher chooses the hypothesis that
maximises Pr(Q = q | Hi).

Consider the likelihood function L(pi) = Pr(Q = q | Hi) that should reach its
maximum for the right p.d. pi, given data q. Using the formula (7) of the p.d. of the
multinomial distribution the likelihood function can be written as

L(pi) =
N !

∏M
η=0(qηN)!

M∏

η=0

(pi
η)Nqη .
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Taking logarithm and omitting the terms not depending on pi gives an equivalent test
statistics

L(i) =
∑

η∈X
qη log pi

η + log(M + 1) = N−1 LLR(q, pi, θ). (12)

Hence, LLR-statistics gives the optimal distinguisher for a multiple hypothesis testing
problem for d ≥ 3, also. The LLR measures whether the data is drawn from pi or the
uniform distribution. High values imply that the data q is closer to pi than θ. Hence, we
have a theoretical justification for the heuristic LLR-method presented in [6].

Both convolution method and the LLR have the form of a general linear method [7]
using the statistic

T (Q; z) = N
∑

η∈X
λz

ηQη,

where the coefficients λz
0, . . . , λM , depend on the parameter z. Comparing the coeffi-

cients in the formulas (9) and (12) shows that the LLR-method and convolution method
are not equivalent. Hence, the convolution method is not optimal in theory.

Consider the definition (10) of the error probability when distinguishing d ≥ 3 hy-
pothesis. Each term Pr(δ(Q) �= i | Hi) in the sum is equal to

Pr(δ(Q) �= i | Hi) =
∑

j �=i,j=1,...,d

Pr(δ(Q) = j | Hi).

But each probability Pr(δ(Q) = j | Hi) corresponds to the binary hypothesis testing
problem of distinguishing parameter i from j �= i. Hence, if for given Pe two distin-
guishers have same data complexity for the binary hypothesis testing problem, then they
are also equally efficient in the multiple hypothesis testing setting.

It remains to show that for a given error probability, if the p.d. p is nearly uniform (but
not uniform), then the data complexity of the convolution method is of the same order
of magnitude as the data complexity of the LLR-method. We study the complexities in
the next section.

6 Complexity Analysis

6.1 Data Complexity

To compare the LLR and convolution methods, we have to calculate the data complexity
N for given error probability Pe. We know by Sect. 5.2 that the LLR-method is optimal,
i.e., for given Pe it has the smallest data complexity. However, based on the tests made
in [5] and [13], we suspect that the data complexities of the convolution method and the
LLR-method are practically the same as long as the p.d.’s do not variate much from the
uniform distribution. More accurately, we assume that there exists ε, 0 < ε < 0.5 such
that each p.d. pz, z ∈ Z

m
2 , satisfies the following conditions:

|pz
η − 2−m| ≤ ε2−m for all z, η ∈ Z

m
2 and

|pz1
η − pz2

η | ≤ εpz2
η for all z1 �= z2 and z1, z2, η ∈ Z

m
2 .

(13)
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Then for all z, z1, z2 ∈ Z
m
2 the capacities C(pz) = C(p) = ε2 < 1 and C(pz1 , pz2) =

ε2 < 1, if z1 �= z2. The condition (13) holds for all practical ciphers. For exam-
ple the experiments with reduced round Serpent in [8] showed that for m ≤ 12, the
condition held with the parameter value ε ≈ 1/150. In general, the value ε should
be so small that it is possible to approximate the Chernoff information D∗(pz1 , pz1)
between two distinct distributions pz1 and pz2 using their capacity: D∗(pz1 , pz2) ≈
(8 ln 2)−1C(pz1 , pz2), see Theorem 7 in [14].

As noted in the previous section, we only have to consider the distinguishing between
two keys z1 and z2 �= z1. Denote for simplicity p = pz1 and s = pz2 . If the p.d.’s
satisfy condition (13), then by definition (11), the data complexity of the LLR-method
is proportional to

N = C(p, s)−1. (14)

See also [15] for another proof. We now show that (14) holds also for the convolution
method, provided that the distributions p and s satisfy condition (13).

The cumulative distribution function of the normed, normal distribution is

Φ(x) =
∫ x

−∞

1√
2π

e−t2/2 dt .

By Lemma 1 we obtain that the probability of choosing z2 �= z1 when Hz1 is true is

Pr(δ(Q) = y | Hz1) = Pr(T (Q; y) > T (Q; z) | Hz1) = Φ
(√

N
μ

σ

)
,

where the expected value μ and variance σ2 are given by

μ =
∑

η∈Z
m
2

(pη − sη)pη σ2 =
∑

η∈Z
m
2

(pη − sη)2pη − μ2.

The mean μ can be approximated by

μ ≈ 2−m
∑

η∈Z
m
2

(pη−sη)
pη

sη
= 2−m

∑

η∈Z
m
2

(
(pη − sη)

pη

sη
− (pη − sη)

)
= 2−mC(p, s).

Moreover,

∑

η∈Z
m
2

(pη − sη)2pη =
∑

η∈Z
m
2

(pη − sη)2

sη
pηsη ≈ 2−2mC(p, s). (15)

As C(p, s) < 1, the dominating term of σ2 is given by (15). Hence, σ2 ≈ 2−2mC(p, s)
and the data complexity is proportional to

N =
2−2mC(p, s)
2−2mC(p, s)2

= C(p, s)−1.

As the number of hypotheses grows, the data complexity N is increased in both cases [5].
For d = 2m it is proportional to m/Cmin(p), where Cmin(p) = minz1 �=z2 C(pz1 , pz2).
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In [3] efficiency of key ranking was also discussed and the measure gain to quan-
tify success in key ranking as a function of data complexity was introduced. Later,
in [6] it was proposed to use the measure advantage. While Biryukov, et al., need the
assumption about statistical independence of the linear approximations in all their the-
oretical derivations, Hermelin, et al., can do without it, but instead, must make another
unrealistic assumption that the ranking statistics for each key candidate are statistically
independent. This assumption can be fulfilled if, for each key candidate value, new
fresh data is generated to compute the ranking statistic, which will result in overesti-
mating the data complexity. Hence, it is not known exactly in the general case, what
the success probabilities of key ranking are for Algorithm 1. Nevertheless, the above
analysis applies to key ranking also, and we can conclude that the LLR method and the
convolution method have practically the same advantage.

6.2 Time and Memory Complexities

In [8] the Alg. 2 was divided to two phases: the on-line phase and the off-line phase. We
follow the division in this paper. The on-line phase is independent of the statistics used
in the attack and its sole purpose is to obtain the empirical p.d. q from the N plaintext-
ciphertext pairs. The time complexity is Nm and memory complexity is 2m. We now
assume that given data N , we have obtained the empirical p.d. q.

Figures 1, 2 and 3 depict the off-line phase for the full Biryukov method, LLR-
method and convolution method, respectively.

Input: empirical correlation vector ρ = (ρ(0), . . . , ρ(2m − 1)) and theoretical
correlations c(0), . . . , c(2m − 1), of the linear approximation (1) ;

Output: the best key candidate;
for z = 0, . . . , 2m − 1 do

compute B(z) =
∑

a∈Zm
2

((−1)a·zc(a) − ρ(a))2;

end
find z′ that maximises B(z);
output z′;

Fig. 1. Off-line phase of Alg. 1 using full Biryukov method

Input: empirical p.d. q and theoretical p.d. p of the linear approximation (1) ;
Output: the best key candidate;
for z = 0, . . . , 2m − 1 do

compute pz, a permutation of p;
compute L(z) = LLR(q, pz, θ);

end
find z′ that maximises L(z);
output z′;

Fig. 2. Off-line phase of Alg. 1 using LLR-method
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Input: empirical p.d. q and theoretical p.d. p of the linear approximation (1) ;
Output: the best key candidate;
compute p ∗ q using FFT;
find mode z′ of p ∗ q;
output z′;

Fig. 3. Off-line phase of Alg. 1 using convolution method

For each z ∈ Z
m
2 , both full Biryukov method and LLR-method take time 2m to

evaluate. Hence, the time complexity of both the full Biryukov and the LLR-method is
22m.

In the convolution method the computation of the convolution p∗q is done only once.
Using FFT, that is, left hand side of (4), it takes time m2m. Hence, the convolution
method is much faster than the LLR or the full Biryukov, while all three methods have
the same data complexities.

If all the correlations c(a), a ∈ Z
m
2 , are non-negligible, then all three methods have

the same memory complexity 2m. In practice the full linear span of the linear approx-
imations contains many approximations with zero or negligible correlations. Such ap-
proximations do not contribute to the capacity and hence are discarded. This has certain
effect to the complexities of the algorithms.

Let l be the number of linear approximations used, m ≤ l ≤ 2m. Then the memory
requirement of the off-line phase of the Biryukov method will be reduced from 2m to
l and the time complexity becomes 2ml. Since the convolution is computed using the
correlations by (4), the same reduction of memory is possible also for the convolution
method if we use the correlations instead of the distribution in evaluating the statistic.

We run some experiments on the four-round Serpent, see [16] for an accurate de-
scription for the cipher. The test settings were the same as in [6]. To compare the LLR
and convolution method in practice, we measured the advantage by Selçuk [17]. In
Figure 4 we have plotted the empirical advantage as a function of the data complexity,
for m = 7. The curves are indistinguishable.
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ta
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Fig. 4. The empirical advantage as a function of data complexity using LLR and convolution
method with m = 7 for 4-round Serpent. The curves are equal.
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(a) m = 7
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(b) m = 10

Fig. 5. The theoretical and empirical advantage as a function of data complexity using LLR-
method for the 4-round Serpent

Figure 5 shows the empirical and theoretical advantage of the LLR-method for m =
7 and m = 10. The convolution method gives exactly the same results. The theoretical
prediction is slightly more pessimistic than the empirical results. However, they are still
consistent.

7 Conclusions

We proposed a new method, which we call the convolution method, to perform multi-
dimensional linear attacks. The convolution method is expected to give the same result
with the same data complexity as the Biryukov method in case the set of linear approx-
imations is completed to contain all approximations with significant correlations within
the linear span of the set.

In the convolution method we form the convolution between the empirical and the
theoretical p.d related to the multidimensional linear approximation of a block cipher.
The right key class is determined as the mode of the resulting p.d. The data complexities
of both LLR and the convolution method are of the same magnitude. Moreover, the
LLR-method and full Biryukov method require time 22m, where m is the dimension of
the approximation, whereas the convolution method only needs time m2m. Hence, the
convolution method is the most efficient in practice. Also, there is no need to assume
statistical independence.

In [3] the measure gain and in [6] the measure advantage was used in studying the
success of key ranking. The gain requires the assumption of statistical independence of
base approximations whereas the advantage requires that the ranking statistics corre-
sponding to different keys should be statistically independent. The latter condition can
be satisfied for Alg. 2 [8] but seems to result in an unrealistic and unnecessary increase
of the data complexity for Alg. 1. However, the efficiency of the convolution or LLR-
methods is not affected by the assumption that is needed in calculating the advantage. If
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needed, the advantage can be determined approximately also for the Alg.1. The calcu-
lations in that case are the same as in [6] and the convolution method remains the most
efficient method in practice.
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Appendix

A Proof of Theorem 2

The Piling Up lemma [1] that has traditionally been used in calculating correlations of
linear combinations of statistically independent linear approximations has a converse.
This converse of the Piling Up lemma offers a natural criterion for verifying statistical
independence of linear approximations. Given a set of linear approximations it is not
sufficient to verify that all linear approximations in the set are pairwise statistically
independent. We must also verify that the correlations (or imbalances [3] [4])

c(a) = c(a · (Ux ⊕ Wy ⊕ V K)), a ∈ Z
m
2 .

of all linear combinations of the linear approximations must be of certain small magni-
tude as given by the following theorem.

Theorem 2. Let m ≥ 2 be an integer. The binary random variables X1,X2,
. . . ,Xm, with correlations ci = c(Xi), i = 1, . . . , m are statistically independent,
if and only if for all index sets I ⊂ {1, 2, . . . , m},

c(
⊕

i∈I

Xi) =
∏

i∈I

ci. (16)

The only if part follows from the Piling Up lemma. The proof of the if part, that is, the
converse of the Piling Up lemma, is given below, using the Xiao-Massey lemma [18]:

Lemma 2 (Xiao-Massey lemma). The discrete random variable Z is independent of
the m independent binary random variables X1, . . . ,Xm if and only if Z is independent
of the sum b1X1 ⊕ · · · ⊕ bmXm, for every choice of b1, . . . , bm ∈ {0, 1}, and not all
coefficient bi is zero.

Proof (Converse of the Piling Up lemma). We assume that the random variables
X1, . . . ,Xm satisfy condition (16). We do the proof with induction on m. Let m = 2.
We assume c(X1 ⊕ X2) = c1c2 and we have to prove that for all pairs t = (t1, t2) ∈
{0, 1} × {0, 1}, the probability Pr(X1 = t1,X2 = t2) = Pr(X1 = t1) Pr(X2 = t2).
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Denote X = (X1,X2). Using the definition of the correlation we have

Pr(X1 = t1) Pr(X2 = t2)

= (1/2 + (−1)t1c1)(1/2 + (−1)t2c2)

= 1/4 + (−1)(0,1)·tc1 + (−1)(1,0)·tc2 + (−1)(1,1)·tc1c2

= c((0, 0) · X) + (−1)(0,1)·tc((1, 0) · X)+(−1)(1,0)·tc((1, 0) · X)+(−1)(1,1)·tc((1, 1) · X)

=
∑

a∈Z2
2

(−1)a·tc(a · X).

But by Lemma 2.1 in [10], the last sum is equal to Pr(X = t) = Pr(X1 = t1,X2 =
t2).

Assume now that the claim holds for 2, . . . , m − 1 binary random variables and
let X1, . . . ,Xm, satisfy condition (16). By the induction assumption random variables
X2, . . . ,Xm, are s.i. Hence, it suffices to show that X1 is s.i. of the m − 1 random
variables X2, . . . ,Xm.

Choose any binary coefficients b2, . . . , bm ∈ {0, 1}, not all zero, and let I = {i =
2, . . . , m : bi = 1} be the index set of non-zero coefficients bi. Denote ZI = b2X2 ⊕
· · · ⊕ bmXm. By the Xiao-Massey lemma, we must show that the random variable
X1 is s.i. of ZI for all index sets I ⊂ {2, 3, . . . , m}. By the induction assumption
and Xiao-Massey lemma, the claim holds already for all I �= {2, 3, . . . , m} and we
only have to consider the set J = {2, 3, . . . , m}. By the condition (16), the correlation
c(ZJ ) =

∏m
i=2 ci and c(X1 ⊕ · · · ⊕Xm) =

∏m
i=1 ci. Hence, the random variables X1

and ZJ satisfy

c(X1 ⊕ ZJ ) =
m∏

i=1

ci = c1c(ZJ ).

But since the theorem holds for m = 2, the random variables X1 and ZJ must be s.i.
��

B Proof of Lemma 1

Proof. The expected values, variances and covariances of elements of Q are [19]

E(Qη) = sη Var(Qη) = sη(1 − sη) Cov(Qη,Qν) = −sηsν , (17)

for all η, ν = 0, 1, . . . , M and ν �= η. The normality follows from the law of large
numbers. The expected value follows from linearity and (17). The variance is obtained
by

σ2 =
M∑

η=0

Var(ληQη) +
M∑

η,ν=0,ν �=η

Cov(ληQη, λνQν)

=
∑

η=0

λ2
ηsη(1 − sη) −

∑

η,ν=0,ν �=η

ληλνsηsν =
M∑

η=0

λ2
ηsη − μ2.

��
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