
TKK Dissertations in Information and Computer Science

Espoo 2010 TKK-ICS-D16

MULTIDIMENSIONAL LINEAR CRYPTANALYSIS

Miia Hermelin

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI





TKK Dissertations in Information and Computer Science

Espoo 2010 TKK-ICS-D16

MULTIDIMENSIONAL LINEAR CRYPTANALYSIS

Miia Hermelin

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of
the Faculty of Information and Natural Sciences for public examination and debate in Auditorium T2
at the Aalto University School of Science and Technology (Espoo, Finland) on the 11th of June, 2010,
at 12 noon.

Aalto University School of Science and Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Aalto yliopiston teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos



Distribution:

Aalto University School of Science and Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

P.O.Box 15400

00076 Aalto

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 470 01

Fax +358 9 470 23369

E-mail: series@ics.tkk.fi

©c Miia Hermelin

ISBN 978-952-60-3189-7 (Print)

ISBN 978-952-60-3190-3 (Online)

ISSN 1797-5050 (Print)

ISSN 1797-5069 (Online)

URL: http://lib.tkk.fi/Diss/2010/isbn9789526031903/

Multiprint

Espoo 2010



ABSTRACT: Linear cryptanalysis is an important tool for studying the secu-
rity of symmetric ciphers. In 1993 Matsui proposed two algorithms, called
Algorithm 1 and Algorithm 2, for recovering information about the secret
key of a block cipher. The algorithms exploit a biased probabilistic relation
between the input and output of the cipher. This relation is called the (one-
dimensional) linear approximation of the cipher. Mathematically, the prob-
lem of key recovery is a binary hypothesis testing problem that can be solved
with appropriate statistical tools.

The same mathematical tools can be used for realising a distinguishing at-
tack against a stream cipher. The distinguisher outputs whether the given se-
quence of keystream bits is derived from a cipher or a random source. Some-
times, it is even possible to recover a part of the initial state of the LFSR used
in a key stream generator.

Several authors considered using many one-dimensional linear approxi-
mations simultaneously in a key recovery attack and various solutions have
been proposed. In this thesis a unified methodology for using multiple lin-
ear approximations in distinguishing and key recovery attacks is presented.
This methodology, which we call multidimensional linear cryptanalysis, al-
lows removing unnecessary and restrictive assumptions. We model the key
recovery problems mathematically as hypothesis testing problems and show
how to use standard statistical tools for solving them. We also show how the
data complexity of linear cryptanalysis on stream ciphers and block ciphers
can be reduced by using multiple approximations.

We use well-known mathematical theory for comparing different statisti-
cal methods for solving the key recovery problems. We also test the theory in
practice with reduced round Serpent. Based on our results, we give recom-
mendations on how multidimensional linear cryptanalysis should be used.

KEYWORDS: multidimensional cryptanalysis, Matsui’s algorithm, linear crypt-
analysis, block cipher, stream cipher





TIIVISTELMÄ: Lineaarinen kryptoanalyysi on tärkeä työkalu symmetristen
salainten turvallisuuden tutkimisessa. Matsui ehdotti 1993 kahta algoritmia,
Algoritmit 1 ja 2, tiedon saamiseen lohkosalaimessa käytetystä salausavaimesta.
Menetelmässä käytetään hyväksi salaimen selväkielen ja salakielen välistä
tilastollista riippuvuutta, jota kutsutaan (yksiulotteiseksi) lineaarikseksi ap-
proksimaatioksi. Matemaattisesti avaimen paljastaminen tällä tavoin on mal-
linnettavissa binaariseksi hypoteesin testausongelmaksi, joka voidaan ratkaista
sopivilla tilastollisilla menetelmillä.

Samaa menetelmää voidaan käyttää myös jonosalainta vastaan tehtävään
erotteluhyökkäykseen. Tilastollinen erottelija kertoo onko annettu bittijono
saatu salaimesta vai satunnaisesta lähteestä. Joissain tapauksissa on myös
mahdollista selvittää osa avaingeneraattorissa käytettävän lineaarisen siirto-
rekisterin alkutilasta.

Monissa aiemmissa tutkimuksissa on pohdittu miten useampaa yksiulot-
teista lineaarista approksimaatiota voitaisiin käyttää samanaikaisesti ja on eh-
dotettu useita eri lähestymistapoja. Tässä työssä esitetään moniulotteiseksi
lineaariseksi kryptoanalyysiksi kutsuttu yhtenäinen metodologia usean ap-
proksimaation samanaikaiseen käyttämiseen. Tämä metodologia mahdollis-
taa tarpeettomien ja rajoittavien oletuksien poistamisen. Työssä mallinnetaan
avaimen paljastuksen ongelma matemaattisesti hypoteesin testausongelmana
ja selvitetään oikeat tilastolliset menetelmät näiden ongelmien ratkaisemiseen.
Lisäksi näytetään, että lineaariseen kryptoanalyysiin liittyvä datavaativuus piene-
nee, kun käytetään useampaa approksimaatioita yhtäaikaa.

Ongelman ratkaisemisessa käytettyjen tilastollisten menetelmien vertailussa
sovelletaan tunnettua matemaattista teoriaa. Työssä kokeillaan myös teoriaa
käytännössä supistetulla Serpent-salaimella. Saatujen tulosten perusteella
voidaan suositella tehokkainta tapaa moniulotteisen lineaarisen kryptoana-
lyysin käyttämiseen.

AVAINSANAT: moniulotteinen kryptoanalyysi, Matsuin algoritmi, lineaari-
nen kryptoanalyysi, lohkosalain, jonosalain
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1 INTRODUCTION

1.1 BACKGROUND AND PREVIOUS WORK

Linear cryptanalysis exploits the statistical dependence between the input
and output of a cipher. A one-dimensional linear approximation of a cipher
is a linear combination of its input and output bits. The approximation can
be interpreted as a binary random variable. The goal is to find a linear ap-
proximation with a large correlation in absolute value. It is then possible
to find information about the cipher using statistical methods. The goal of
this work is to create a theoretically sound framework for using multiple one-
dimensional approximations simultaneously. We call this new methodology
multidimensional linear cryptanalysis.

Matsui invented linear cryptanalysis in 1993 [31]. He presented two al-
gorithms, Algorithm 1 (Alg. 1) and Algorithm 2 (Alg. 2) that can be used
for finding one bit of information about the secret key of a block cipher, pro-
vided that the attacker has enough plaintext-ciphertext pairs. Alg. 2 can also
be used for determining several bits of the last round key of a block cipher.
The amount of data needed for successfully realising the attack is called the
data complexity of the attack. Matsui showed that the data complexity is
determined by the correlation of the approximation.

Matsui’s algorithms were designed for block ciphers. It is sometimes pos-
sible to realise a key or initial state recovery attack against a stream cipher,
but in most cases only distinguishing attacks are possible to realise. The out-
put of a keystream generator, used in a stream cipher, should look random.
In distinguishing attacks the goal is to determine whether a given sequence
is produced by a cipher or a random source. While distinguishing attacks
are not as strong as key recovery attacks, finding a good distinguisher implies
a weakness in the cipher. At present, one of the most important security
criteria for a symmetric encryption algorithm is its resistance against linear
cryptanalysis.

Matsui suggested using two approximations simultaneously in 1994 [30].
In the same year, Kaliski and Robshaw used several approximations in an at-
tempt to reduce the data complexities of Matsui’s algorithms [8]. Biryukov, et
al., [6] used multiple approximations for finding several bits of the secret key
with reduced data complexity in 2004. However, the theoretical foundations
of the methods by Kaliski and Robshaw and Biryukov, et al., both depend
on assumptions about the statistical properties of the one-dimensional linear
approximations. In particular, they assumed that the one-dimensional linear
approximations are statistically independent. Murphy pointed out that the
assumption may not hold in a general case [33].

Baignères, et al., presented in 2004 a linear distinguisher that does not
suffer from this limitation [1]. The distinguisher has also another advantage
over the previous approaches: it is based on a well established statistical the-
ory of log-likelihood ratio (LLR). Unfortunately, the authors did not provide
an efficient way for determining the probability distribution that is needed in
their method. Englund and Maximov presented computational methods for
determining the distribution directly [21], but they are in general not feasible
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for handling distributions of larger than 32-bit values.
In the articles I–VII we consider the following problems and attempt to

solve them:

• How can we realise the multidimensional distinguisher in practice?

• How is key recovery realised using multidimensional methods?

• How can we measure the efficiency of different methods?

• Is there an optimal way for exploiting multiple approximations and
what is it?

• What kind of theoretical restrictions we get for ciphers?

• Other than distinguishing attack, can we use multiple approximations
for attacking a stream cipher?

• The method by Biryukov, et al., which we call the Biryukov method
for simplicity, relies on the assumption of statistical independence. If
the assumption is true, can we verify it?

• Biryukov, et al., also proposed an enhancement to their method [6].
What is the mathematical justification for this enhancement and how
is it related to the assumption of statistical independence?

• What is the difference between the multidimensional method and the
previous methods, especially, is the multidimensional method better
than the one-dimensional or the Biryukov method?

To answer these questions, we have to find a proper statistical model for the
key recovery problem. While the mathematical tools used in the papers I–
VII are well-known in statistics, many of them have not been applied to linear
cryptanalysis before.

The Alg.1 type of key recovery is related to coding theory and pattern
recognition theory. In coding theory we send a message, a codeword, over
a noisy channel. The noise can distort the message to some other codeword
with some probability. The same message is sent several times in order to
recover the original message with high probability of success. The number
of required repetitions is the data complexity.

In coding theory and pattern recognition, the error induced by the noise
is small and the data complexity is relatively small. Therefore, the methods
can be tested on real systems. The main interest is in efficiently recovering
the original message or classifying the observed data.

In cryptanalysis, the error probability is large and the data complexity is
the main criterion for measuring the success of an attack. The data complex-
ities of ciphers currently considered safe are so large that true attacks against
them are not feasible. Consequently, only parts of the ciphers can be anal-
ysed in practice. However, attacks that are unfeasible now can be feasible
later and the cipher designers must consider the future and the development
of computing power. The emphasis in linear cryptanalysis is in determining
the data complexity and finding methods for which the data complexity is
minimised. Therefore, while linear cryptanalysis, coding theory and pattern
recognition use similar statistical tools, their goals and interests are different.
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1.2 RESULTS OF THE THESIS AND AUTHOR’S CONTRIBUTION

In this section we briefly describe the main results of the articles I– VII and
the contributions of the author of this thesis.

Publication I: We present a new concept of multi-bent functions and show
that they are equivalent to vector bent functions defined in the classical way.
Using this new definition of bent functions we can show that these functions
are optimal against multidimensional linear cryptanalysis.

The multi-Walsh transform was developed as a theoretical tool for han-
dling multidimensional probability distributions. The author helped in de-
veloping the theory. The co-author was the main author of this paper.

Publication II: We show how one-dimensional approximations can be used
for determining the multidimensional probability distribution. Baignères, et
al., showed that the efficiency of a multidimensional distinguisher is deter-
mined by its distance from the uniform distribution. We call this distance the
capacity, due to Biryukov, et al., [6] and we show how the one-dimensional
correlations determine the capacity.

We calculate the capacities for some multidimensional approximations of
Boolean functions and keystream generators. We show concrete examples
where the approximations are statistically dependent while being linearly in-
dependent. Moreover, we show how using multiple approximations increases
the efficiency of linear cryptanalysis. We also consider the problem of chain-
ing the multidimensional linear approximations.

The author did practical experiments on the filter generator example pre-
sented in Section 5.1 and made the interesting observation that all the one-
dimensional correlations are equal in absolute value. This remark prompted
the theoretical results in the paper. The paper was written together with the
co-author.

Publication III: We consider Matsui’s Alg. 1 and propose a truly multidi-
mensional approach where we measure the distance between the empirical
and theoretical distributions. Collard, et al., studied the Biryukov method
and made practical experiments on reduced round block cipher Serpent [11].
We use this setting to compare the multidimensional method to the Biryukov
method. The experiments show that the multidimensional method is more
certain to yield the correct key with given amount of data.

The author was responsible for writing most of the article and develop-
ing the statistical theory and method proposed in the paper. Cho did the
practical experiments with Serpent.

Publication IV: Next we consider extending Matsui’s Alg. 2 to multiple
dimensions. We study two statistical settings, one based on goodness-of-fit
tests and one based on parametric hypothesis testing problems, which can be
solved with the log-likelihood ratio (LLR). We show that the enhancement
of the Biryukov method can be regarded as a goodness-of-fit test.

Selçuk presented the concept of advantage for measuring the efficiency of
one-dimensional Alg. 2 [40]. We extend the theory to multiple dimensions

1. INTRODUCTION 19



to compare the different methods. We derive the advantage as a function
of the data complexity in theory and in practice using the reduced round
Serpent. The results show that the LLR-based method is more efficient than
the goodness-of-fit test.

The author developed the statistical framework, did the theoretical cal-
culations and had the main responsibility in the writing of the article. The
experiments were designed and implemented by Cho.

Publication V: Similarly as for Alg. 2, we consider two different statistical
settings for Alg. 1: the goodness-of-fit problem and a parametric hypothesis
problem, solved with LLR. We show that the method in III is equivalent to
the goodness-of-fit solution.

We propose extending the concept of advantage to multidimensional Alg.
1 for comparing the methods. However, the use of advantage with Alg. 1
requires an artificially strong assumption. Due to this assumption, the theo-
retical predictions about the LLR, which in theory gives the optimal method,
seem to be slightly pessimistic when compared to the empirical results. For
the goodness-of-fit setting, the difference between the empirical results and
theoretical predictions is notably larger. We clarify this disagreement in Sec-
tion 7.4 of the summary part of this thesis.

The author is responsible for the statistical derivations and had the main
responsibility in the writing of the article. Cho made the practical experi-
ments.

Publication VI: Berbain, et al., presented a method where one one-dimen-
sional linear approximation of the stream cipher Grain could be used for the
initial state recovery of the linear feedback shift register used in the cipher [4].
We extend the idea in this paper by showing how multiple one-dimensional
approximations can be used for making a similar attack against the stream
cipher SOSEMANUK more efficient.

The author’s contribution is in the theoretical part of the paper, in devel-
oping the attack and refining Section 3.3. The main author is Cho, who also
did the experiments.

Publication VII: We propose yet another Alg. 1. method, called the con-
volution method. We show that the Biryukov method can be enhanced to
what we call a full Biryukov method and that this enhancement is equivalent
to the convolution method. Therefore, the assumption about statistical inde-
pendence is not required for the full Biryukov method. On the other hand,
we show how it is possible to verify the assumption of statistical independence
when necessary.

We also give a proper statistical framework for Alg. 1 and show how dif-
ferent methods can be compared. We show that under certain conditions,
which hold for practical ciphers, the convolution method, the full Biryukov
method and all the other Alg. 1 methods we consider in III and V have
the same data complexities. The empirical tests done on Serpent verified the
theoretical results. Since the convolution method has the smallest time com-
plexity, we conclude that it is the most efficient of these methods in practice.
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The relationship between the full Biryukov method and convolution method
and also all the statistical derivations are due to the author. The author was
responsible for writing the article.

1.3 THESIS OUTLINE

This thesis consists of a summary and seven publications, which are ap-
pended to this thesis. The summary gives a unified view to the methodol-
ogy of multidimensional linear cryptanalysis. The main new results of this
thesis are presented in Chapters 7 and 8. The remainder of this summary is
structured as follows:

Chapter 2 presents an overview of cryptography and cryptanalysis.

Chapter 3 introduces the basic notations, definitions and theory about finite
fields, probability theory and Boolean functions.

Chapter 4 studies stream and block ciphers.

Chapter 5 presents the statistical tools used in the thesis. Although the the-
ory is well-known, many of the tools have not been used in linear crypt-
analysis before.

Chapter 6 recalls the different methods used in one-dimensional linear crypt-
analysis, including distinguishing attacks and Matsui’s algorithms .

Chapter 7 discusses the multidimensional linear cryptanalysis attacks. The
chapter concludes the results of the articles III- VII. In addition, it con-
siders some practical aspects of implementing the Matsui’s algorithms.

Chapter 8 considers some applications of multidimensional linear cryptanal-
ysis and its theoretical bounds. It is based on articles I- II.

Chapter 9 draws conclusions and suggests future work.
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2 CRYPTOGRAPHY

This chapter introduces the basic concepts used in cryptography. In Sec-
tion 2.1, we define cryptosystems and symmetric cryptography. Cryptanalysis
is the theory of security analysis of cryptographic systems [44]. We consider
different methods for cryptanalysis, the outcomes, assumptions and measur-
ing the efficiency of the methods in Section 2.2.

2.1 CRYPTOSYSTEMS

Cryptography enables two parties, called the sender and receiver, to transmit
messages over an insecure channel without a third party, called the attacker,
being able to understand the messages. The sender encrypts the message
using an encryption algorithm and some predetermined data called the en-
cryption key. The original and encrypted messages are called the plaintext
and ciphertext, respectively. The receiver deciphers the ciphertext using a
decryption algorithm and a secret decryption key. A cryptographic system, or
a cryptosystem, can be defined as follows:

Definition 2.1. A cryptosystem consists of the following:

• The message spaceM : a set of strings over some alphabet. An element
ofM is called a plaintext message.

• The ciphertext space C : a set of strings over some alphabet that maybe
different from the message space alphabet. An element of C is called a
ciphertext.

• Sets K and K′ : the encryption and decryption key space consisting of
possible encryption and decryption keys, respectively.

• A set {EK : K ∈ K} of encryption algorithms or encryption functions:
For each key K ∈ K there is a unique bijection EK fromM to C.
• A set {DK′ : K ′ ∈ K′} of decryption algorithms or decryption func-

tions: For each key K ′ ∈ K′ the function DK′ is a bijection from C to
M.

For each encryption key K ∈ K there is a unique decryption key K ′ ∈ K′
such that DK′(EK(x)) = x for all plaintexts x ∈M.

The Kerchoff’s principle states that the security of the system should reside
only in the secret key. Hence, the attacker knows the message space M,
ciphertext space C, the encryption key space K, the decryption key space K′
and the sets {EK : K ∈ K} and {DK′ : K ′ ∈ K′}. If the encryption key K
is also public, the cryptosystem is called asymmetric or public. The security
of the system depends only on the decryption key K ′, known only to the
receiver.

In a symmetric cryptosystem the encryption and decryption keys are equal
or can be easily derived from each other. Hence, only the sender and the
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receiver should know the key. There are two types of symmetric encryp-
tion schemes: block ciphers and stream ciphers. They will be studied more
closely in Chapter 4. We will next study different concepts about cryptanaly-
sis.

2.2 CRYPTANALYSIS

2.2.1 Attack Scenarios

Different attack scenarios can be realised depending on the information avail-
able to the attacker. Some scenarios are listed below. The goal is to recover
the plaintext or to find information about the secret key.

Ciphertext-only attack: the attacker has only access to the ciphertext. If a
cipher is vulnerable to this type of attack, it is considered insecure.

Known-plaintext attack: the attacker has a quantity of plaintext and corre-
sponding ciphertext.

Chosen-plaintext attack: the attacker can choose the plaintext and is given
the corresponding ciphertext.

Chosen-ciphertext attack: the attacker selects the ciphertext and is then given
the corresponding plaintext. The objective of this scenario is to deduce
the plaintext from different ciphertext or to find information about the
secret key.

2.2.2 Outcomes of an Attack

In a ciphertext-only attack, the attacker tries to determine the plaintext cor-
responding to the ciphertext. However, once the plaintext is known, there is
other information available for the attack. In the worst case, the attacker can
recover the secret key of the cipher and find all the information sent using
the corrupted key. Even if it is not possible to find the whole key, some in-
formation may still be revealed to the attacker. Different levels of breaking a
cipher are listed below:

Total break: attacker finds the secret key

Instance deduction: attacker gets a clone of DK′ . Hence, while K ′ remains
unknown, the attacker can decrypt any message.

Key information deduction: attacker gets partial information about the key.

Distinguishing: attacker can distinguish the cipher from a purely random
function.

The list is hierarchical: total break means that the attacker can also realise
any of the other attack levels etc.

2. CRYPTOGRAPHY 23



2.2.3 Attack Methods

There are several different attack methods that can be used against symmetric
ciphers. The exhaustive search assumes no knowledge of the inner structure
of the cipher. The attacker tries each key exhaustively, until the right key
is found. All stream and block ciphers except the one-time pad, see Sec-
tion 4.2.1, can in theory be attacked by exhaustive search but in practice, the
key space is too large.

In algebraic attacks the whole cipher is expressed as a large system of mul-
tivariate algebraic equations, which have to be solved in order to recover the
secret key [13]. Obviously, solving such large systems is difficult.

A good cipher should imitate the behaviour of a perfectly random func-
tion. If the cipher has detectable non-random behaviour, the attacker can
use statistical cryptanalysis in realising a distinguishing attack. Sometimes
key information deduction is also possible. Examples of different attack types
used in statistical cryptanalysis include for example differential, linear, inte-
gral and correlation attacks.

2.2.4 Attack Parameters

When realising the attack, the attacker must also consider the cost of the at-
tack. If the cost of breaking the cipher on some level is too high, the attack is
not considered successful. The cost consists of the amount of memory, time
and data that are needed for successfully realising the attack. The different
parameters, some of which may depend on the other parameters, are given
below:

Time complexity: the amount of computation time (in given units) required
to perform the attack successfully. Often the time complexity of an
attack is compared to that of the exhaustive search.

Data complexity: the amount of data (ciphertext, keystream, plaintext-ciphertext
pairs etc.) needed for attack

Memory complexity: the amount of memory units needed to store for the
attack

Success probability: the probability of successfully breaking the cipher. This
parameter is needed in statistical cryptanalysis.

The total complexity of the attack is not easy to define. It can be the sum of
the time, memory and data complexities (with a given success probability) or
the largest of them. There is usually some trade-off between the parameters.
For example, an attempt to decrease the time complexity may increase the
data complexity or decrease the success probability. A formula describing the
trade-off makes it easier to compare the complexities of different attacking
methods.

There is no general definition for when a cipher is broken. The average
time needed for finding an l-bit key with exhaustive search is O(2l). There-
fore, the desired strength of the cipher gives a lower bound to the size of the
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key space. For contemporary ciphers l is usually at least 100. A general crite-
rion for ciphers is that there should not be an attack that has lower complexity
than the exhaustive search or other known generic attacks, that is, an attack is
successful if it has lower complexity than the exhaustive search. This applies
to all levels of break, including the distinguishing attack, though for exam-
ple Rose and Hawkes criticised that distinguishing attacks are not a practical
threat [38].

In this thesis, we consider different ways for applying linear cryptanalysis to
symmetric ciphers. We assume that we are given a large number of plaintext-
ciphertext pairs. Using proper statistical tools, we aim at distinguishing or key
information deduction.
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3 MATHEMATICAL PRELIMINARIES

In this chapter the basic notation and definitions needed in the rest of the the-
sis are given. The reader is assumed to be familiar with basic mathematical
theory about statistics and finite fields. First, we recall facts about finite fields
in Section 3.1. Then, in Section 3.2 we study briefly the Walsh-Hadamard
transform. Section 3.3 is devoted to probability theory and statistics. The
necessary information about Boolean functions is given in Section 3.4.

3.1 SOME PROPERTIES OF FINITE FIELDS

General theory of finite fields GF (pn) with pn elements, where p is prime,
is covered in [29]. The finite field GF (2n) can be identified the with space
of n-dimensional binary vectors Fn2 . If a = (a1, . . . , an) ∈ Fn2 and b =
(b1, . . . , bn) ∈ Fn2 , the operation ⊕ is the component-wise modulo 2 sum
(XOR): a⊕ b = (a1⊕ b1, . . . , an⊕ bn). We denote

⊕m
i=1 ai = a1⊕ · · · ⊕ am.

The inner product for a = (a1, . . . an), b = (b1, . . . , bn) ∈ Fn2 is defined as
a · b = a1b1 ⊕ · · · ⊕ anbn. Then the vector a is called the (linear) mask of b.

Let L be a linear mapping from Fn2 to Fn2 . Then for all linear masks b ∈ Fn2
it holds that

b · Lx = LT b · x, for all x ∈ Fn2 ,

where LT is the transpose of the linear mapping L. Hence, we obtain for
each L and b a unique mask bL ∈ Fn2 that satisfies

b · Lx = bL · x, for all x ∈ Fn2 . (3.1)

This linear transformation property is needed for example in Section 6.2.3.
The multiplication by a fixed element in Fn2 is a linear operation. For all

a ∈ Fn2 there exists a unique n× n binary matrix Ua such that

ax = Uax, for all x ∈ Fn2 .

Hence, by (3.1), for all a, b ∈ Fn2 there is a unique mask ba such that

b · ax = b · Uax = UT
a b · x = ba · x, for all x ∈ Fn2 . (3.2)

The binary vector a = (a1, . . . , an) ∈ Fn2 can be identified with a unique
integer b ∈ N using the formula

b =
n∑
i=1

ai2i−1.

Hence, a is used interchangeably to notate both a binary vector and the cor-
responding integer.
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3.2 WALSH TRANSFORMS

We recall the following facts about Walsh transforms. Let ϕ : Fm2 7→ R be a
real-valued function. The Walsh-Hadamard transform ϕ̂ of ϕ is defined as

ϕ̂(a) =
∑
η∈Fm2

ϕ(η)(−1)η·a, a ∈ Fm2 . (3.3)

Then ϕ(η) = 2−m ˆ̂ϕ(η), η ∈ Fm2 , using the inverse of Walsh-Hadamard trans-
form. The convolution of two functions ϕ : Fm2 7→ R and ψ : Fm2 7→ R is
defined as

(ϕ ∗ ψ)(η) =
∑
ζ∈Fm2

ϕ(ζ)ψ(η ⊕ ζ), η ∈ Fm2 . (3.4)

It is straightforward to verify that then

(̂ϕ ∗ ψ)(a) = ϕ̂(a)ψ̂(a), a ∈ Fm2 . (3.5)

Parseval’s theorem states that

2m
∑
η∈Fm2

ϕ(η)2 =
∑
a∈Fm2

ϕ̂(a)2. (3.6)

3.3 STATISTICS

This section introduces the notation and main concepts used in statistics.

3.3.1 Probability Theory

We denote random variables X,Y, . . . by capital boldface letters and their
sample spaces by X ,Y , . . . . The realisations x ∈ X , y ∈ Y , . . . of random
variables X,Y, . . . are denoted by small letters.

Let X be a random variable with sample space X . If X follows probabil-
ity distribution (p.d.) D, we denote X ∼ D. The cumulative distribution
function (c.d.f.) of X, denoted by FX(x), is given by

FX = PrD(X ≤ x), for all x ∈ X .

We omit the subscripts X and D, if they are clear from the context.
The probability density function (p.d.f.) of a discrete random variable

X ∼ D is given by

fX(x) = PrD(X = x), for all x ∈ X .

We denote f(x) and Pr(x), if X and D are clear from the context
Let X be a discrete random variable with sample spaceX = {0, 1, . . . ,M}

for some integer M ≥ 0. In this thesis, we denote the p.d.f. of X by the vec-
tor p = (p0, . . . , pM), whose components satisfy px = Pr(x) for all x ∈ X .
Moreover, we identify the p.d. and p.d.f. of X and call p the p.d. of X.
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If X is a continuous random variable with a continuous c.d.f. FX(x), the
p.d.f. of X is the function denoted by fX(x) that satisfies

FX(x) =

∫ x

−∞
fX(t) dt, for all x ∈ X .

We use notation F (x) and f(x), if X is clear from the context.
If the p.d.f. of X depends on the parameter ω, we denote fX(x;ω), f(x;ω)

or pω. The uniform distribution is denoted by θ.

3.3.2 Statistical Independence

Let X1, . . . ,XN , be random variables and x1, . . . , xN , be the corresponding
observations, where each xt ∈ X . Let each Xt have p.d.f. fXt(xt). The joint
sample space and joint p.d.f. of the random vector (X1, . . . ,XN) is denoted
by XN and fX1,...,XN

(x1, . . . , xN), respectively. We define the statistical in-
dependence of random variables as usual:

Definition 3.1. Let X1, . . . ,XN be random variables with joint p.d.f.
fX1,...,XN

(x1, . . . , xN). For each t = 1, . . . , N, let fXt(xt) be the (marginal)
p.d.f. of Xt. Then the random variables are (mutually) statistically indepen-
dent (s.i.), if for every realisation (x1, . . . , xN) ∈ XN ,

fX1,...,XN
(x1, . . . , xN) =

n∏
t=1

fXt(xt).

If random variables X1, . . . ,XN are s.i., then each pair (Xi,Xj), where
i, j ∈ {1, . . . , N} and i 6= j, are s.i. However, the converse does not hold:
pairwise statistical independence does not imply that the random variables
X1, . . . ,XN are s.i.

If random variables X1, . . . ,XN are independent and identically distributed
(i.i.d.) with the same p.d.f. f , they form a random sample from the popula-
tion f . Their joint p.d.f. is then

fX1,...,XN
(x1, . . . , xN) =

N∏
t=1

f(xt). (3.7)

A statistic is a function of a random sample X1, . . . ,XN :

Definition 3.2. Let X1, . . . ,XN , be i.i.d. random variables and g(x1, . . . , xN),
be a real- or vector-valued function defined on their joint sample space. Then
the random variable or random vector g(X1, . . . ,XN) is called a statistic.

3.3.3 Some Continuous Distributions

The normed normal distribution with mean 0 and variance 1 is denoted by
N (0, 1). Its p.d.f. is

φ(x) =
1√
2π
e−x

2/2.

The c.d.f. of a normally distributed random variable is denoted by Φ(x). The
normal distribution with mean µ and variance σ2 is denoted byN (µ, σ2) and
its p.d.f. and c.d.f. are φµ,σ2 and Φµ,σ2 , respectively.
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If X ∼ N (ν, σ2), then the absolute value |X| has the folded normal dis-
tribution, denoted by FN (µ, σ). Its p.d.f. f|X| is given by

f|X|(x) =
1

σ
√

2π

(
e−

(x−µ)2

2σ2 + e−
(x+µ)2

2σ2

)
, x ≥ 0.

The mean and variance of |X| are

E(|X|) = µ(1− 2Φ(−µ/σ)) + 2σφ(µ/σ)

Var(|X|) = µ2 + σ2 − E(|X|)2.

The χ2
M -distribution with M degrees of freedom has mean M and variance

2M . The non-central χ2
M(λ)-distribution with M degrees of freedom has

mean λ + M and variance 2(M + 2λ). If M > 30, we may approximate
χ2
M(λ) ≈ N (λ+M, 2(M + 2λ)) [16].

3.3.4 Discrete Random Variables and Their Probability Distributions

Binary Random Variables
A binary random variable X taking on values in {0, 1} is Bernoulli(p)-distributed,
if Pr(X = 0) = p. The correlation of X is

c(X) = 2 Pr(X = 0)− 1 = 2p− 1. (3.8)

We denote c if X is clear from context. The bias of X is ε = 1
2
c.

Let X1, . . . ,XN be a binary random sample from population Bernoulli(p).
Then the statistic

Y =
N∑
t=1

Xt, (3.9)

follows the binomial distribution Bin(N, p) with mean Np and variance
Np(1 − p). If N is large, then Bin(N, p) ≈ N (Np,Np(1 − p)). The re-
alisation of the statistic N−1(Y, 1 − Y) is the vector q = (q0, q1) defined
by

q0 = N−1#{t = 1, . . . , N : Xt = 0} and q1 = 1− q0. (3.10)

We say that q is the empirical p.d. of the random sample X1, . . . ,XN . Re-
spectively, we call the realisation ρ = 2q0−1 of the statistic T = 2N−1Y−1
the empirical correlation of the random sample. If |c| is small andN is large,
then T is asymptotically normal with mean c and variance (1−c2)/N ≈ 1/N.
Moreover, |T| ∼ FN (c, 1/

√
N).

Consider now m binary random variables X1, . . . ,Xm. The Piling Up
lemma [31] has traditionally been used in calculating correlations of linear
combinations of statistically independent random variables. The Piling Up
lemma has also a converse that offers a natural criterion for verifying statisti-
cal independence of binary random variables. We give the Piling Up lemma
and its converse as the following theorem:

Theorem 3.3. Let m ≥ 2 be an integer. The binary random variables
X1, . . . ,Xm, with correlations ci = c(Xi), i = 1, . . . ,m are s.i., if and only
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if for all index sets I ⊂ {1, 2, . . . ,m}, the correlation of the sum over indexes
in I satisfies

c(
⊕
i∈I

Xi) =
∏
i∈I

ci. (3.11)

The proof is given in Appendix A in VII.

Multinomial Distribution
Consider a discrete random sample X1, . . . ,XN taken from a sample space
X = {0, 1, . . . ,M} using p.d. p = (p0, . . . , pM), and let x1, . . . , xN , be the
corresponding observations. Denote the joint sample space of (X1, . . . ,XN)
by XN .

Let Q = (Q0, . . . ,QM) be a random vector, whose components

Qη = N−1#{t = 1, . . . , N : Xt = η}, for all η ∈ X , (3.12)

are the relative frequencies of η’s in the sequence X1, . . . ,XN . The vector
q = (q0, . . . , qM), where

qη = N−1#{t = 1, . . . , N : xt = η}, for all η ∈ X , (3.13)

is a realisation of Q. Similarly as for binary random variables, we call q the
empirical p.d. of the random sample. All possible empirical p.d.’s, whose
components satisfy Nqη ∈ X , for each η ∈ X and

∑
η∈X qη = 1, form the

sample space Q of Q.
The random vector Q has multinomial distribution, denoted by multi(N, p),

with probabilities

Pr(Q = q) =
N !∏

η∈X (qηN)!

∏
η∈X

pNqηη , for all q ∈ Q. (3.14)

The following lemma gives the asymptotic distribution of any linear combi-
nation of the components of Q [43].

Lemma 3.4. Let Q ∼ multi(N, p). Let Λη, η = 0, . . . ,M be any real num-
bers. Then the linear combination N

∑
η=0 ΛηQη is asymptotically normal

with mean and variance

µ = N

M∑
η=0

Ληpη and σ2 = N

M∑
η=0

Λ2
ηpη − µ2.

The proof is given in Appendix B in VII.

Some Definitions about Discrete Probability Distributions
This section gives some definitions and properties of discrete p.d.’s. Let p =
(p0, . . . , pM) and q = (q0, . . . , qM) be p.d.’s of random variables with sample
space X = {0, 1, . . . ,M}. The Kullback-Leibler distance between p and q is
defined as follows:

Definition 3.5. The relative entropy or Kullback-Leibler distance between p
and q is

D(p‖q) =
∑
η∈X

pη log
pη
qη
,

with the conventions 0 log 0/b = 0, b 6= 0 and b log b/0 =∞.
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Note that the Kullback-Leibler distance is not a norm. However, in many
situations (see for example [14] and Chapter 7) it is descriptive to interpret it
as a norm. A similar concept is the Chernoff-information between p and q:

Definition 3.6. The Chernoff-information between p and q is

D∗(p, q) = − min
0≤λ≤1

log

(∑
η∈X

(pη)
λ(qη)

1−λ
)
.

We say that p is is close to q, if there exists ε, 0 < ε < 1/2, such that

|pη − qη| ≤ εqη, for all η ∈ X . (3.15)

This definition implies that all the components of p and q satisfy the following
condition: If pηqη = 0, then pη = qη = 0. We show later that this condition
is not restrictive to our analysis.

If p is close to q, their Kullback-Leibler distance can be approximated
using Taylor series [1] such that

D(p‖q) = C(p, q)/2 +O(ε3),

where ε is the parameter in (3.15) and the capacity C(p, q) of p and q is
defined as follows:

Definition 3.7. The capacity between two p.d.’s p and q is

C(p, q) =
∑
η∈X

(pη − qη)2q−1
η .

If q is the uniform distribution, then C(p, q) will be denoted by C(p) and
called the capacity of p.

It follows that if p is close to q, then C(p, q) < ε2 < 1, where ε is the
parameter in the definition (3.15). In practical cryptanalysis it is possible to
assume ε < 0.01. This assumption can be verified in practice for each cipher.
The capacity given by Definition 3.7 can be considered as a generalisation of
the capacity introduced in [6].

Similarly, if p is close to q the Chernoff-information between p and q can
also be approximated using the capacity [2]:

D∗(p, q) ≈ (8 ln 2)−1C(p, q). (3.16)

The divergence of p and q is defined as

Iλ(p : q) =
1

λ(1 + λ)

M∑
η=0

pη
(
(pη/qη)

λ − 1
)
, (3.17)

for real λ 6= 0,−1 and by continuity in λ when λ = 0,−1. For λ = 1 the
divergence is

I1(p : q) =
1

2
C(p, q). (3.18)

For λ = 0 it is the Kullback-Leibler distance between p and q [17]:

I0(p : q) = D(p‖q). (3.19)
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Walsh Transforms and Discrete Probability Distributions
Let m ≥ 1 be an integer. Let p be the p.d. of an m-bit random variable X
and let a ∈ Fm2 . By the definition of correlation (3.8), we have c(a · X) =
Pr(a ·X = 0)− Pr(a ·X = 1). The first probability can be written as

Pr(a ·X = 0) =
∑
η∈Fm2

Pr(a ·X = 0 | X = η)pη

=
∑

η,a·η=0

pη =
∑

η,a·η=0

(−1)a·ηpη.

Similarly Pr(a ·X = 1) =
∑

η,a·η=1−(−1)a·ηpη. Hence, by the definition of
Walsh transform (3.3) we get that

c(a ·X) =
∑
η∈Fm2

(−1)a·ηpη = p̂(a). (3.20)

The following lemma presented in III then follows by using the inverse
Walsh-Hadamard transform :

Lemma 3.8. Let X ∼ p be a discrete m-bit random variable taking on values
in Fm2 . Then

pη = 2−m
∑
a∈Fm2

(−1)a·ηc(a ·X), for all η ∈ Fm2 .

In other words, the lemma says that the p.d. p of random variable X tak-
ing on values in {0, 1, . . . , 2m − 1} is determined by the correlations of the
projections a · X, a ∈ Fm2 , in the subspace F2. This result is also known as
the Cramér-Wold theorem [15]. The c.d.f. of a random variable is uniquely
determined by its Fourier-Stieltjes transforms known as the characteristic
functions. For discrete random variables, the transformation is the Walsh-
transform and the characteristic function at a ∈ Fm2 is the correlation c(a·X).

Applying Parseval’s theorem (3.6) to Lemma 3.8 we have the following
result about the capacity of a p.d.

Lemma 3.9. Let p be a p.d. of an m-bit random variable X taking on values
in Fm2 . Then the capacity of p is

C(p) =
∑

a∈Fm2 \{0}
c(a ·X)2.

Let X and Y be discrete m-bit random variables with sample space Fm2 .
Let p and q be the p.d.’s of X and Y, respectively. By (3.5) and (3.20) the zth
component of the convolution of p and q is

(q ∗ p)z =
∑
η∈Fm2

qηpz⊕η = 2−m
∑
a∈Fm2

(−1)a·zc(a ·X)c(a ·Y). (3.21)

We have the following result that can be seen as a generalisation of the Piling
Up lemma (if -part of Theorem 3.3):

32 3. MATHEMATICAL PRELIMINARIES



Lemma 3.10. Let X and Y be s.i. m-bit random variables with sample space
Fm2 and p.d.’s p and q, respectively. Then the sum X ⊕ Y is distributed as
p ∗ q.
Proof. Let s be the p.d. of X⊕Y, such that sz = Pr(X⊕Y = z). Then

sη =
∑
η∈Fm2

Pr(X⊕Y = z | X = η)pη =
∑
η∈Fm2

Pr(Y = z ⊕ η | X = η)pη.

Since X and Y are s.i. the conditional probability Pr(Y = z ⊕ η | X =
η) = qz⊕η for all η ∈ Fm2 .

We prove in II that the capacity of the p.d. p ∗ q capacity satisfies the
inequality

C(p ∗ q) ≤ C(p)C(q). (3.22)

Compare this to the one-dimensional case where m = 1. By Piling Up
lemma, the correlation of the sum of two independent random variables is
the product of their correlation. However, for m ≥ 2 we have only inequality
for the capacities. One open question is whether there is a non-trivial in-
equality of the form C(p ∗ q) ≥ AC(p)C(q) for some constant A > 0. In
Chapter 8 we see why it would be advantageous to find a lower bound for the
combined capacity.

3.3.5 Order Statistics

Let X1, . . . ,Xd be continuous random variables and arrange them in de-
creasing order such that the ordered values are X(1),X(2), . . . ,X(d), where
X(1) ≥ X(2) ≥ · · · ≥ X(d). The vector (X(1), . . . ,X(d)) is the order statis-
tics of the sample and X(r) is called the rth order statistic. In literature, the
ordering is usually done in increasing order [23], [18], but in this thesis the
opposite ordering is more convenient.

If X1, . . . ,Xd are i.i.d., the following asymptotic result holds for the rth
order statistic [23], [18].

Theorem 3.11. Let X(1), . . . ,X(d) be the order statistics of i.i.d. random
variables X1, . . . ,Xd. Let the c.d.f. and p.d.f. of each Xt be F and f, re-
spectively. When d approaches infinity and r/d remains fixed, the rth order
statistic is asymptotically normally distributed with mean and variance

µ = F−1(1− r/d) and σ2 =
(1− r/d)r/d

df(µ)2
.

If the random variables X1, . . . ,Xd are not statistically independent, we
do not have a general result similar to Theorem 3.11. However, for the maxi-
mum order statistic X(1) of dependent random variables X1, . . . ,Xd the fol-
lowing holds:

Lemma 3.12. Let the continuous random variables X1, . . . ,Xd be identi-
cally distributed with c.d.f. F (x) and p.d.f. f(x) such that

1. F (x) < 1 for all x ∈ R
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2. There exists x0 ∈ R such that F (x) is twice differentiable at least for
all x > x0

3.

lim
x→∞

d
dx

(
1− F (x)

f(x)

)
= 0.

Then the following holds uniformly for all y ∈ R:

lim
d→∞

Pr
(
(X(1) − ld)Nf(ld) ≤ y

)
= Λ3(y),

where Λ3(y) is
Λ3(y) = exp

(−e−y) ,
and ld is given by

F (ld) =
d− 1

d
.

The proof is given in [18] with the following corollary:

Corollary 3.13. If X1, . . . ,Xd are normed normally distributed with p.d.f. φ
and c.d.f. Φ, then their maximum is asymptotically distributed as

lim
d→∞

Pr
(
(2 log d)1/2

(
X(1) − (2 log d)1/2

) ≤ y
)

= Λ3(y), y ∈ R.

3.4 BOOLEAN FUNCTIONS

A function f : Fn2 7→ F2 is called a Boolean function. A linear Boolean func-
tion is a mapping x 7→ u ·x. A function f : Fn2 7→ Fm2 with f = (f1, . . . , fm),
where fi are Boolean functions is called a vector Boolean function of dimen-
sion m. A linear Boolean function from Fn2 to Fm2 is represented by an m×n
binary matrix U . Hence, x 7→ Ux is a linear mapping and U is called a (mul-
tidimensional) linear mask of x. Them rows of U are denoted by u1, . . . , um,
where each ui is a linear mask.

The correlation between a Boolean function f : Fn2 7→ F2 and zero is

c(f, 0) = 2−n (#{ξ ∈ Fn2 | f(ξ) = 0} −#{ξ ∈ Fn2 | f(ξ) 6= 0}) ,

and it is also called the correlation of f. Similarly, the p.d. of a vector Boolean
function f : Fn2 7→ F2 is defined to be the p.d. of the random variable f(X),
where X ∼ θ. Hence, we can identify any m-dimensional Boolean function
f with a random variable Y = f(X), X ∼ θ. We say that Y is associated
with the Boolean function f. Therefore, we can define many concepts and
derive many results aboutm-dimensional vector Boolean functions using dis-
crete p.d.’s. We give some results below.

We have the following natural definition of statistical independence of
Boolean functions: We say that the Boolean functions f : Fn2 7→ F2 and
g : Fn2 7→ F2 are statistically independent, if the associated binary random
variables are s.i. Hence, two Boolean functions are s.i. if they have no com-
mon input bits. Similarly, m Boolean functions f1, . . . , fm : Fn2 7→ F2 are
s.i. if the associated random variables are s.i. Moreover, the test provided by
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the converse of Piling Up lemma 3.3 can be applied to Boolean functions to
determine if they are s.i.

We define the capacity of a vector Boolean function f to be the capacity
of its p.d. and we denote C(f). Lemma 3.8 and Lemma 3.9 also hold for the
correlations c(a · f, 0), a ∈ Fm2 and the p.d. of f .

The Walsh-transform f̂ of a Boolean function f : Fn2 7→ F2 is defined as
follows: We replace ϕ(η) by (−1)f(η) in (3.3). Then ϕ̂(a) is replaced by f̂(a)
and

f̂(a) =
∑
η∈Fn2

(−1)a·η⊕f(η).

The set {f̂(a) | a ∈ Fn2} is called the Walsh spectrum of f . It follows that the
correlation and the Walsh transform of a Boolean function f are related by
c(f, 0) = 2−nf̂(0).
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4 SYMMETRIC CRYPTOGRAPHY

In this section we present the two basic primitives used in symmetric cryp-
tography: the block ciphers and the stream ciphers. We study block ciphers
in Section 4.1 and stream ciphers in Section 4.2.

4.1 BLOCK CIPHERS

Some examples of block ciphers are the Data Encryption Standard (DES,
FIPS 46-3), the Advanced Encryption Standard (AES, FIPS PUB 197) and
Serpent [5]. DES was adopted as the encryption standard for US government
in 1976. It was used worldwide for two decades. However, the development
in technology and cryptology made it necessary to find a new and more se-
cure block cipher standard, called AES. There was an open competition to
choose the algorithm for AES. Among the candidates were Rijndael, which
won the competition, and Serpent, which is the testbed in most of the prac-
tical experiments of this thesis.

A block cipher cuts the plaintext messages into strings or blocks of n bits
x1, . . . , xN ∈ Fn2 . It then uses a keyK ∈ K for encrypting one block at a time
to obtain an n-bit ciphertext. For example, for DES n = 64 and for AES and
Serpent n = 128.

In an iterated block cipher the same non-linear function f(·, k) : Fn2 7→
Fn2 , dependent on the parameter k ∈ Fl2, is applied repeatedly. Each map-
ping with f is called a round and f is called the round function. Let R ≥ 1
be the number of rounds and let K be the encryption key. Then the encryp-
tion function EK is given by

EK(x) = f(. . . f(f(x, k1), k2), . . . kR).

For each i = 1, . . . , R, the parameter ki is called the ith round key and it is
obtained from the original secret key K by using a key-schedule algorithm.
See also Fig. 4.1. The last round key kR is called the outer key and the keys
k1, . . . , kR−1 are called inner keys [6]. Iterated block ciphers are efficient and
small to implement, since the same round function f is used in each round.
If f is properly chosen, the security of the cipher increases with the number
of rounds R.

DES, AES and Serpent are all iterated block ciphers. The initial key K of
DES has only 56 bits whereas for AES and Serpent the key has 128, 192 or
256 bits. Each round key has l = 48 bits for DES and l = n = 128 bits for
AES and Serpent. The number of rounds R is 16 for DES, 10, 12 or 14 for
AES and 32 for Serpent.

Shannon stated that a good cipher should have the diffusion and con-
fusion properties [41]. Diffusion ensures that the statistical redundancy or
non-randomness should be spread out over the whole ciphertext. Hence, a
large amount of ciphertext is required for finding non-random behaviour for
the cipher. Diffusion can be obtained by permuting the symbols of each
block.
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Figure 4.1: An R-round iterated block cipher

Confusion makes the relationship between the key and ciphertext as com-
plex as possible such that the attacker should not be able to determine the
key from a given ciphertext. Confusion is often achieved by using S-boxes
that are non-linear multidimensional Boolean functions.

Confusion and diffusion can then be obtained by combining consecu-
tive permutations and substitutions. Such a cipher is called a substitution-
permutation network (SPN). An iterated cipher is an SPN, if the round func-
tion f(·, k) is defined by

f(x, k) = πP (πS(x))⊕ k, for all x ∈ Fn2 ,

where πS : Fn2 7→ Fn2 is a non-linear substitution function consisting of one
or more S-boxes and πP : Fn2 7→ Fn2 is a permutation of the bits.

The permutation in AES is not a simple bit permutation but a slightly
more general mapping. It uses the S-box defined by Ax−1 + b calculated
in the finite field F8

2. Here A is a constant matrix and b is a constant vector
defined in F8

2. The 128 bit block is divided to 16 blocks of 8 bits and then
each smaller block is mapped using the S-box. Since the S-box is the only
non-linear part in the cipher, it is crucial to the security of AES.

As an example, we give a short description of the block cipher Serpent we
use in our experiments.

Example 4.1 (Serpent). Serpent has block size 128 and it supports key lengths
128, 192 and 256 bits. It consists of 32 similar rounds. We use the notation
of [5]. Each intermediate value of round i is denoted by B̂i (a 128-bit value).
Each B̂i is treated as four 32-bit words X0, X1, X2, X3 where the jth bit of
Xi is the 4 ∗ i+ jth bit of B̂i. Serpent has a set of eight 4-bit to 4-bit S-boxes
S0, . . . , S7 and a 128-bit to 128-bit linear transformation LT. Each round
function Ri uses a single S-box 32 times in parallel.
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Let the plaintext be x and ciphertext y. Then B̂0 = IP(x), B̂i+1 = Ri(B̂i)

for i = 0, . . . , 31 and y = IP−1(B̂32). Here IP is a permutation and the
round function is

Ri(X) = LT(Si(X ⊕ K̂i)), i = 0, . . . , 30

Ri(X) = Si(X ⊕ K̂i)⊕ K̂32, i = 31,

A more detailed description of can be found in [5].

Block ciphers can be analysed with Matsui’s linear cryptanalysis by finding
a biased linear relation between the plaintext and ciphertext words. We study
the attacks in Chapters 6 and 7.

4.2 STREAM CIPHERS

Stream ciphers are fast and suit well light-weight applications such as mobile
telephones. Hence, the eSTREAM-project was launched in 2004 in hope to
finding some good stream cipher candidates that could be regarded as a stan-
dard. The final portfolio contains for example SOSEMANUK [3], Rabbit [7]
and Grain [24]. Another commonly used stream cipher is SNOW [20].

In a stream cipher each plaintext message symbol xt ∈ Fn2 , where t =
1, . . . , N, is encrypted with a different n′-bit key zt such that the ciphertext is
yt = Ezt(xt). The sequence z1, . . . , zN , is called the keystream. Originally,
the message symbols had just one bit. Nowadays, n is usually the word-size
of the computer system, for example 32 or 64.

4.2.1 Additive Stream Ciphers and Key Stream Generators

In additive stream ciphers the encryption function Ez is simply the XOR: for
each t = 1, . . . , N ,

yt = xt ⊕ zt,
and n′ = n. If the words z1, . . . , zN , correspond to i.i.d. and uniformly dis-
tributed random variables, the additive cipher is called the one-time pad,
which Shannon showed to provide perfect secrecy [41]. However, if we
want to cipher N plaintexts x1, . . . , xN , we must also create a keystream
z1, . . . , zN , of Nn bits that are i.i.d. and uniformly distributed. In ordinary
applications N is so large that this is not feasible. Instead, we use a keystream
generator (k.s.g.) to extend a smaller secret random number K ∈ Fl2 to the
keystream z1 . . . zN . Typically, l is 128 or 256.

The security of the stream cipher lies then on the properties of the k.s.g.
It should be difficult to determine the original secret key from a given key
sequence and the key sequence should be indistinguishable from a random
sequence. The output sequence z0, z1, . . . should also have a long period.
The sequence zt, t = 0, 1, . . . has period p if p is the smallest non-zero num-
ber such that for all t ≥ 0,

zt = zt+p.

A common way to produce sequences of long periods is to use linear feedback
shift registers. They are studied in the next section.
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Figure 4.2: An LFSR with 3 taps

4.2.2 Linear Feedback Shift Registers

Figure 4.2 shows an example of a linear feedback shift register (LFSR). Its
output at time t = 0, 1, 2, . . . is st ∈ Fn2 , where n is called the block size of
the LFSR. The vector (st, st+1, . . . , st+L−1) is the state of the LFSR at time
t and L is called the length of the LFSR. The LFSR is updated using the
linear recursion

st+L =
L−1⊕
i=0

bist+i, for all t = 0, 1, . . . , (4.1)

where the multipliers b0, . . . , bL−1 ∈ Fn2 and b0 6= 0. The number of non-zero
coefficients b0, . . . , bL−1 is called the number of taps.

Denote the whole internal state of the LFSR at time t ≥ 0 by Yt =
(st, . . . , st+L−1). The update recursion (4.1) can then be written as Yt+1 =
AYt, for all t ≥ 0. Here A is a matrix of the form

A =

[
0 I
b0 b1 . . . bL−1

]
, (4.2)

where 0 is an (L− 1)× 1 zero-vector and I is an (L− 1)× (L− 1) identity
matrix. Then, for given initial state Y0, any state Yt is given by Yt = AYt−1 =
AtY0.

4.2.3 Some K.S.G. Constructions for Additive Synchronous Stream Ciphers

LFSRs have several nice properties as they are fast to implement and produce
sequences with long periods. However, since they are linear, they can be
analysed algebraicly. The solution is to add some non-linearity to the k.s.g.
This section studies some such constructions.

Non-Linear Combiner Generator
Figure 4.3 shows a classical k.s.g. construction called a non-linear combina-
tion generator. It consists of m LFSRs, whose outputs are used as an input to
the non-linear combination function f . The output of f is the key sequence
zt, t ≥ 0. The non-linear part may also have an internal state. It is called
memory or carry. The E0 cipher used in Bluetooth devices is a combination
generator with four LFSRs and four bits of memory. Siegenthaler showed
how this type of k.s.g. can be attacked using a correlation attack [42].

Non-Linear Filter Generator
A different approach is to use one LFSR and take several of its state blocks,
denoted by St, as an input to a non-linear vector Boolean function f called
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Figure 4.3: Non-linear combination generator withm LFSRs and non-linear output func-
tion f . The output of the ith LFSR at time t is sit.
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Figure 4.4: A non-linear filter generator with filtering function f .

a filtering function. This construction is called a non-linear filter generator
and it is depicted in Figure 4.4. The filtering function can have an internal
state called memory. The output zt, t ≥ 0 of the k.s.g. is then

zt = f(St), for all t ≥ 0. (4.3)

The SNOW2.0 -cipher is an example of a non-linear filter generator with
memory. The SOSEMANUK-stream cipher we analyse in VI inherits the
design structure of SNOW2.0.

Example 4.2 (SNOW2.0). The linear part is an LFSR with L = 16 words
of n = 32 bits. The LFSR is updated independently of the non-linear part
using the update function

st+16 = α−1st+11 ⊕ st+2 ⊕ αst,
where α ∈ F32

2 is a root of a primitive polynomial of degree 4 in F8
2. The

non-linear part is called a finite state machine consisting of two registers R1t
and R2t updated by

R1t+1 = st+5 �R2t and R2t+1 = πS(R1t), for t ≥ 0, (4.4)

where � is addition modulo 32 and πS is a non-linear permutation in F32
2

based on the AES S-box. The registers R1t and R2t are the memory of the
cipher.

The output is generated using the registers R1t and R2t and LFSR words
st and st+15 as follows:

zt = st ⊕ (st+15 �R1t)⊕R2t, t ≥ 1.
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Non-linear filter generators can be attacked using linear cryptanalysis.
The attacker must find a biased linear relation between the certain keystream
words. We study the attack more closely in Chapters 6 and 7.
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5 STATISTICAL INFERENCE

Statistical inference is used in finding information about a population. In
parametric hypothesis testing problems (HTP) there are two or more distinct
hypotheses about a population parameter, one of which is true. The task is to
distinguish the right hypotheses from the other hypotheses, i.e, to determine
the right value for the parameter. In Section 5.1 we study some parametric
hypothesis testing problems.

In a goodness-of-fit problem we have to decide whether a given random
sample is drawn from a given p.d. or not. This problem and its solution under
some special conditions is studied in Section 5.2.

In a general d-sample problem we have d random samples. The task is to
determine whether all samples follow the same population or not. However,
it is also possible to find more information about the underlying populations,
provided we have some additional information. Specifically, if exactly one
population is different from the other populations, order statistics can be used
for determining the distinct population. This problem and its solution is
studied in Section 5.3.

5.1 PARAMETRIC HYPOTHESIS TESTING

In parametric hypothesis testing problems there are two possible approaches:
the classical or Neyman-Pearson tests and the Bayesian tests. In a classical
HTP, one hypothesis is a null hypothesis that is either accepted or rejected.
If it is rejected, an alternative hypothesis is concluded.

In Bayesian statistic, all the hypotheses are equal: One hypothesis is ac-
cepted and the others are rejected. Each hypothesis has an a priori prob-
ability to be true. There has been some dispute which test type should be
preferred [10]. In statistical cryptanalysis there is no practical difference be-
tween the two approaches when solving a binary HTP. On the other hand,
when more than two hypotheses are to be tested, Bayesian statistic is the nat-
ural choice.

A distinguisher decides, which hypothesis should be accepted with the
given data. The next section gives an accurate description for a parametric
HTP and studies distinguishers in general and the cost related to a distin-
guisher.

5.1.1 Distinguisher and Cost

Let the population parameter and parameter space be ω and Ω, respectively.
Let Ωi, i = 1, . . . , d, be d ≥ 2 distinct, non-empty subsets of Ω. In a d-
ary hypotheses testing problem each hypotheses Hi, i = 1, . . . , d states that
ω ∈ Ωi. If the hypothesis specifies the population distribution completely,
i.e., if Ωi consists of just one point in the parameter space, the hypothesis is
called simple. Otherwise, it is called composite.

The random sample drawn from the population is X1, . . . ,XN , its real-
isation is x1, . . . , xN , and joint sample space is XN . A distinguisher δ is a
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function that using (x1, . . . , xN) ∈ XN outputs which hypothesis is true:

δ(x1, . . . , xN) = i, if Hi is accepted, i = 1, . . . , d.

The distinguisher is defined using a suitable test statistic g(X1, . . . ,XN ;ω)
that depends on the parameter ω. Using the statistic we define function
g′(ω; x1, . . . ,xN) = g(x1, . . . , xN ;ω), where ω is the variable and the obser-
vations x1, . . . , xN are the parameter. Given the data x1, . . . , xN , the distin-
guisher outputs i, if g′(ω;x1, . . . , xN) is maximised in the set Ωi.

The choice of a proper statistic is the main problem in statistical hypothe-
sis testing. It should be both efficient to evaluate and accurate when making
the decision. There is no unique measure for the accuracy of a distinguisher.
One possibility is to use the concept of lost [45] or cost [32]: If the distin-
guisher outputs j when hypothesis Hi is true, the cost (or lost) is Cij . The
total cost is then

C =
∑
i,j∈X

Cij Pr(Hi) Pr(δ(X1, . . . ,XN) = j | Hi), (5.1)

where Pr(Hi), i = 1, . . . , d, are the a priori probabilities of the hypotheses
[45] [32]. A distinguisher should have as small cost as possible, for given
amount N of observed data. An optimal distinguisher minimises the cost.
All HTP’s do not have an optimal distinguisher. However, we consider now a
simple d-ary HTP, for which an optimal solution exists. Since the hypotheses
are simple, each hypothesis Hi states that the population has p.d.f. f(x;ωi).
The joint p.d.f. fX1,...,XN

of the sample is then given by (3.7).
Consider the case where choosing the right hypothesis has zero cost, that

is, Cii = 0 for all i = 1, . . . , d and the cost of choosing a wrong hypothesis
is always one, such that Cij = 1, for all i 6= j. To minimise the cost (5.1),
we choose the hypothesis Hi that has the maximum a posteriori probability
Pr(Hi | x1, . . . , xN) [32]. Using Bayes’s formula, we have

Pr(Hi | x1, . . . , xN) = Pr(Hi)fX1,...,XN
(x1, . . . , xN ;ωi)/Pr(x1, . . . , xN).

Hence, the optimal distinguisher outputs i if i gives the maximum of

Pr(Hi)L(i;x1, . . . , xN),

where

L(i;x1, . . . , xN) = L(ωi;x1, . . . , xN)

= fX1,...,XN
(x1, . . . , xN ;ωi)

=
N∏
t=1

f(xt;ωi)

(5.2)

is the likelihood function of the p.d.f. f(x;ωi). Hence, the joint p.d.f.∏N
t=1 f(xt;ωi) weighted with the a priori probability Pr(Hi) is the optimal

test statistic.
The logarithm of the likelihood function, called the log-likelihood func-

tion, gives an equivalent distinguisher. It is often more convenient to use in
practice than the likelihood function.
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The cost of the optimal distinguisher is equal to the total error probability
given by

Pe =
d∑
i=1

Pr(Hi)
d∑
j 6=i

Pr(δ(X1, . . . ,XN) = j | Hi). (5.3)

In the next sections the simple binary and d-ary hypothesis testing problems
are studied in more detail. We show that the optimal distinguisher for those
tests is based on a test statistic called the log-likelihood ratio (LLR).

5.1.2 Simple Binary Hypothesis Testing Problem and LLR

A simple binary HTPconsists of hypotheses

H0 : ω = ω0

H1 : ω = ω1 6= ω0.

We denote the p.d.f.’s corresponding to H0 and H1 by f(x1, . . . , xN ;ω0) and
f(x1, . . . , xN ;ω1), respectively. In classical statistics the null hypothesis H0

is either accepted or rejected. If H0 is accepted, then H1 is concurred. In
the Bayesian approach one hypothesis is accepted and the other is rejected -
neither hypothesis has a “special” status.

In a binary HTP there are two error probabilities α = Pr(δ(X1, . . . ,XN) =
1 | H0) and β = Pr(δ(X1, . . . ,XN) = 0 | H1), called the Type I and Type
II Error of test, respectively. In classical statistics α is also referred to as the
level or size of the test and 1 − β interpreted as a function of the parameter
ω is called the power function of the test. The total error used in Bayesian
statistics is Pe = Pr(H0)α + Pr(H1)β.

Consider the optimal distinguisher for the binary HTP that outputs 0 if
Pr(H0)L(x1, . . . , xN ; 0) > Pr(H1)L(x1, . . . , xN ; 1). An equivalent distin-
guisher is given by the likelihood ratio, defined by

LR(x1, . . . , xN) =
L(x1, . . . , xN ; 0)

L(x1, . . . , xN ; 1)
=

N∏
t=1

f(xt;ω0)

f(xt;ω1)
. (5.4)

According to the Neyman-Pearson lemma in classical statistics [14], the opti-
mal distinguisher outputs H0, if LR(x1, . . . , xN) ≥ τ , where τ is a threshold
that depends on α and β. Taking logarithm of LR(x1, . . . , xN) gives another
equivalent test statistic, the log-likelihood ratio (LLR):

LLR(x1, . . . , xN) =
N∑
t=1

log
f(xt;ω0)

f(xt;ω1)
.

The optimal distinguisher outputs 0 (1) if LLR(x1, . . . , xN) ≥ τ (< τ ) for a
threshold τ . If α = β then τ ≈ 0 and we set τ = 0 for the inference.

Assume now that the random variables X1, . . . ,XN are discrete such that
X = {0, 1, . . . ,M}.Denote the p.d.’s determined by p.d.f.’s f(x1, . . . , xN ;ω0)
and f(x1, . . . , xN ;ω1) by p0 and p1, respectively. For distinguishing between
H0 and H1, or equivalently between p0 and p1, it is not necessary to know the
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order in which the sample values appear in the sequence x1, . . . , xN . Rather,
it is enough to consider their relative frequencies given by the random vector
Q defined in (3.12). Then H0 states that Q ∼ multi(N, p0) and H1 states
that Q ∼ multi(N, p1).

Let q be the empirical p.d. defined in (3.13). The LLR can be written as

LLR(x1, . . . , xN) = LLR(q) =
∑
η∈X

Nqη log
p0
η

p1
η

. (5.5)

We use notation LLR(q; p0, p1) if it is necessary to emphasise the depen-
dence of the LLR on p0 and p1.

We consider now the special cases where p0 or p1 or both have zero com-
ponents. This problem was also considered in [2]. If for some η ∈ X the
components p0

η = p1
η = 0, we simply omit the ηth component from the LLR.

Assume next that p0
η = 0 and p1

η 6= 0. If qη = 0, we define similarly as for the
Kullback-Leibler distance that 0 log(0/p1

η) = 0. On the other hand, if qη 6= 0,
the data cannot be drawn from p0 and hence, we define qη log(0/p1

η) = −∞
to ensure that H1 is accepted. Similar deduction goes for p0

η 6= 0 and p1
η = 0.

Hence, we can restrict to situations where p0 and p1 have only positive com-
ponents. Then the capacity and the condition (3.15) for closeness of two
distributions are well-defined.

Our main goal is to determine the data complexity of the optimal distin-
guisher that is, the amount of data needed to have a given level and power
of test (with classical approach) or total error probability (with Bayesian ap-
proach). The data complexities are the same for both approaches in linear
cryptanalysis. Therefore, we only give the proof in the classical case.

In order to find a formula for the data complexity, we have to determine
the p.d. of the test statistic. By Lemma 3.4, the LLR-statistic has the following
property:

Proposition 5.1. Let p0 and p1 6= p0 be two distinct p.d.’s. Let Q be the
vector of relative frequencies of a random sample that is drawn from p0 or p1.
The LLR test statistic LLR(Q; p0, p1) given by (5.5) is asymptotically normal
with mean and varianceNµi andNσ2

i , respectively, if the data is drawn from
pi, for i = 0, 1. The means and variances are given by

µ0 = D(p0‖p1) µ1 = −D(p1‖p0)

σ2
0 =

M∑
η=0

p0
η log2

p0
η

p1
η

− µ2
0 σ2

1 =
M∑
η=0

p1
η log2

p0
η

p1
η

− µ2
1.

Moreover, if p0 is close to p1 in the sense of definition (3.15), the following
estimates hold

µ0 ≈ −µ1 ≈ 1

2
C(p0, p1) σ2

0 ≈ σ2
1 ≈ C(p0, p1). (5.6)

Baignères, et al., presented the same result in [1].
The data complexity can now be determined using Proposition 5.1. The

idea is to fix the level and the power of the test and then determine the
threshold τ and data complexity N from the resulting equations. In [1] the
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calculations where simplified by assuming α = β and, therefore, we can set
τ = 0. The result is also known as the Chernoff-Stein lemma [14]. We give
it as the following theorem:

Theorem 5.2. Assume that p0 is close to p1. Let the level and the power of
the test be α and 1 − β, respectively. The data complexity of distinguishing
p0 from p1 is proportional to

N =
(zα − zβ)2

C(p0, p1)
,

where zα = Φ−1(α) and zβ = Φ−1(1− β).

Proof. Using its definition, the Type I Error is

α = Pr(δ(Q) = 1 | H0)

= Pr
(
LLR(Q; p0, p1) < τ | LLR(Q; p0, p1) ∼ N (µ0, σ

2
0)
)

= Φ

(√
N
τ − µ0

σ0

)
.

Hence, N and τ must satisfy

√
N
τ − µ0

σ0

= zα. (5.7)

Similarly, for Type II Error, we get the condition

√
N
τ − µ1

σ1

= zβ. (5.8)

Using approximations (5.6) we have the result.

We have the same result in Bayesian theory: Chernoff’s theorem states
that Pe = O(2−ND

∗
), where D∗ is the Chernoff information in Defini-

tion 3.6. If p0 is close to p1, approximation (3.16) gives that the data com-
plexity is again inversely proportional to the capacity C(p0, p1).

In the next section we generalise this theory of two discrete, simple hy-
potheses to a general d-ary HTP, where d ≥ 2.

5.1.3 Simple d-ary Hypothesis Testing Problem

As we stated earlier, the Bayesian approach is natural for testing multiple
hypotheses. For simplicity, we assume equal a priori probabilities. Moreover,
we consider only the discrete setting with sample space X = {0, 1, . . . ,M},
for some M ≥ 1. Then each hypothesis Hi, i = 1, . . . , d, states that the
sample population is pi = (pi0, . . . , p

i
M). We assume pi 6= pj , if i 6= j. Let

X1, . . . ,XN be the random sample and x1, . . . , xN be the corresponding
observations. Similarly as for the case d = 2, we can state the hypotheses
using the multinomially distributed Q defined in (3.12): Each hypothesis
Hi, i = 1, . . . , d, states that Q ∼ multi(N, pi).

Consider the likelihood function L(i;x1, . . . , xN) = L(i; q), where q is
the empirical p.d. given by (3.13). Given q, the function L(i; q) should reach

46 5. STATISTICAL INFERENCE



its maximum for the right p.d. pi. Using the formula (3.14) of the p.d. of the
multinomial distribution, the likelihood function can be written as

L(i; q) =
N !∏

η∈X (qηN)!

∏
η∈X

(piη)
Nqη .

Assume now that each pi 6= θ. We can define an equivalent distinguisher
using a new test statistic l(i) that is obtained from the likelihood function by
taking logarithm and omitting terms that do not depend on i:

l(i) = l(i; q) = N
∑
η∈X

qη log piη −N
∑
η∈X

qη logM−1 = LLR(q; pi, θ). (5.9)

The distinguisher outputs i that maximises l(i). Hence, the LLR-statistics
gives the optimal distinguisher for a multiple HTP for d > 2, also. The LLR
measures whether the data is drawn from pi or the uniform distribution. High
values imply that the empirical p.d. q is “closer” in Kullback-Leibler distance
to pi than θ.

The data complexity of LLR for solving a simple d-ary hypothesis testing
problem with equal prior probabilities is given in the following lemma.

Lemma 5.3. Assume equal prior probabilities in a simple d-ary HTP, and
pi 6= θ for all i = 1, . . . , d. The optimal distinguisher minimising the er-
ror probability Pe in (5.3) is given by the LLR test statistic defined by the
function (5.9). Moreover, if the p.d.’s pi are all close to each other and θ
in the sense of definition (3.15), the upper bound of the data complexity is
proportional to

N = log(d(d− 1)/Pe)(min
i 6=j

C(pi, pj))−1.

Proof. The optimality follows from the previous calculations and it suffices
to prove the formula for the data complexity. Fix Pe. Assume first two hy-
potheses Hi and Hj with p.d.’s pi and pj . The data complexity of successfully
distinguishing between these distributions is by Chernoff’s theorem propor-
tional to

Nij =
logP−1

ij

C(pi, pj)
,

where Pij ≤ Pe is the error probability. For d ≥ 3 hypothesis the total error
probability is

Pe = d−1

d∑
i=1

Pr(δ(Q) 6= i | Hi) = d−1

d∑
i=1

∑
j 6=i

Pij.

Each probability Pij = Pr(δ(Q) = j | Hi) corresponds to a binary HTP. Fix
the largest of the probabilities Pij, i 6= j, to be Pe/(d(d− 1)). Then the total
error probability is ≤ Pe and the total data complexity is given by

N = max
i 6=j

Nij = log(d(d− 1)/Pe)(min
i 6=j

C(pi, pj))−1.
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The proof of the lemma is independent of the given statistic. Only the
data complexity of the binary HTP is counted. Hence, we have the following
result:

Lemma 5.4. If for any test statistic, the data complexity for distinguishing
between p0 and p1 is inversely proportional to C(p0, p1), then the data com-
plexity for solving the d-ary HTP is given by Lemma 5.3.

The LLR belongs to a wider class of linear test statistics, where the statistic
is of the form ∑

η∈X
Λi
ηQη, (5.10)

where Λi
η, η ∈ X , are some properly chosen non-zero, real coefficients that

depend on the parameter i. The distinguisher outputs i if i maximises (or,
depending on the choice of the coefficients, minimises) g(i; q) =

∑
η∈X Λi

ηqη
for given q.

Each linear test statistic has the distribution given by Lemma 3.4. The
strength of the statistic depends on the coefficients Λi

η. We know that the
optimal choice is Λi

η = log piη, for η ∈ X and i = 1, . . . , d. However, we
show in VII that another possibility Λi

η = piη for η ∈ X and i = 1, . . . , d has
practically the same data complexity for two hypotheses, if the p.d’s are close
to each other. By Lemma 5.4, they are practically equivalent with the same
data complexities for multiple HTP also.

5.1.4 Binary Hypothesis Testing Problem with Alternative of Multiple P.D.’s

Consider the following HTP: The simple null hypothesis H0 states that the
data is drawn from a discrete p.d. p. The composite alternative hypothesis
H1 states that the data is drawn according to one p.d. in a set P of discrete
p.d.’s and p /∈ P . Let pmin be the element p′ of P that is closest to p in
Kullback-Leibler distance D(p′‖p).

Baignères and Vaudenay argued that the problem of distinguishing H0

from H1 is equivalent to distinguishing p from pmin [2] and the problem re-
duces to a simple binary HTP that can be solved with LLR, with data com-
plexity proportional to

N = C(p, pmin)−1.

This turns out to be an optimistic estimate of the true data complexity. In
reality, distinguishing p from the whole set P requires running the test for
all p′ ∈ P separately. Hence, applying Lemma 5.3, the data complexity of
distinguishing H0 from H1 using LLR is given by

N = log |P|C(p, pmin)−1.
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5.2 GOODNESS-OF-FIT PROBLEMS

5.2.1 Problem Statement

Consider a situation where the problem is to determine whether the popula-
tion sample is a given p.d. D or not. The hypotheses are then

H0 : Xt ∼ D, for all t = 1, . . . , N

H1 : Xt � D, for all t = 1, . . . , N.

This is called a goodness-of-fit problem belonging to the class of non-parametric
or distribution free statistics, see for example [23] and [28]. Since H1 is a
composite hypothesis, there is no distinguisher that is optimal for all goodness-
of-fit problems. Some test statistics suit better some problems than others.

Assume now that X = {0, 1, . . . ,M} and that the p.d. corresponding to
null hypothesis is p = (p0, . . . , pM). Let Q defined by (3.12) be the random
vector of relative frequencies in the random sample. The null hypothesis H0

of goodness-of-fit problem states that Q ∼ multi(N, p). The alternative hy-
pothesis H1 states that Q � multi(N, p), in other words, Q ∼ multi(N, p′),
where p′ 6= p is an unknown p.d. Let P denote the set of p.d.’s corresponding
to the alternative hypothesis. In the general case, P = {p′ = (p′0, . . . , p

′
M) :

p′ 6= p}.
Cressie and Read [17] considered a class of test statisticsRλ defined by the

divergence (3.17) between the empirical p.d. q and the p.d. p corresponding
to H0:

Rλ(q : p) = 2NIλ(q : p). (5.11)

The divergence Iλ(q : p) between q and p increases if the data q does not
fit with the p.d. p, that is, if the sample is drawn from p′ ∈ P . Hence, the
distinguisher outputs H0 if Rλ(q : p) ≤ τ, where τ is a properly chosen
threshold, and otherwise it outputs H1.

We may assume that pη > 0 for all η ∈ X . As we noted in Section 5.1.2,
this assumption is not restrictive to the analysis: if for some η ∈ X we have
pη = 0, then if qη 6= 0, we immediately know that the null hypothesis cannot
be true. On the other hand, if pη = qη = 0, we set qη

(
(qη/pη)

λ − 1
)

= 0 in
the definition (3.17) of divergence. Hence, the zero components of p can be
omitted in this theory.

If H0 is true, then Rλ(Q : p) is χ2
M -distributed with M -degrees of free-

dom [17]. For a given level α of the test, we have

α = Pr(H1 | H0) = Pr(Rλ(Q : p) > τ | H0) = 1− χ2
M(τ), (5.12)

and we can determine the threshold τ for given α.
SinceH1 is composite, we have no representation for the power of the test

in the general case and the data complexity remains undetermined. There-
fore, we cannot compare the efficiency of the different test statistics in gen-
eral.

In the case of our application in linear cryptanalysis this problem can be
solved, since the set P has the property that each element in P has the same
divergence Iλ with the p.d. p. Also all the components of each p.d. in P are
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positive. Now the set of alternative p.d.’s to be considered is

P =
{
p′ 6= p : Iλ(p′, p) = Iλ, p′η > 0 for all η ∈ X} . (5.13)

Provided that each p′ ∈ P also satisfies condition

max
η∈X

(p′η − pη) = O(N−1/2), (5.14)

when N → ∞, Drost, et al., calculated a series expansions for the power of
the test for all λ [19]. We are interested in the parameter values λ = 1 (the
χ2-test) and λ = 0 (the G-test).

5.2.2 Solving Goodness-of-Fit with χ2

If λ = 1, the test statistic R1(Q : p) reduces to the Pearson’s χ2-statistic:

χ2(x1, . . . , xN) = χ2(q) = N
∑
η∈X

(qη − pη)2

pη
. (5.15)

We denote χ2(q; p), if we want to emphasise the null p.d. p.
The asymptotic distribution of χ2(Q; p) is [19]

χ2(Q; p) ∼ χ2
M(ν), (5.16)

where ν = 2NI1(p : p) = NC(p, p) = 0, for H0 and ν = 2NI1(p′ : p) =
2NI1 > 0 for H1. Hence, for fixed power 1− β, we have

β = Φ

(
τ −M − 2NI1

√
2M + 8NI1

)
,

provided that M ≥ 50 such that we can approximate χ2 with normal distri-
bution. Then by (5.12) the threshold τ ≈ √2MΦ−1(1 − α) + M . Since
α ≈ β, we have

2NI1 ≈ Φ−1(1− α)
√

2M.

Hence, we have the following result:

Lemma 5.5. Consider a discrete goodness-of-fit problem whereH0 states that
the sample population is p and H1 states that the population is in the set P ,
given as in (5.13) with capacity 2I1 = C(p′, p), for all p′ ∈ P . Assume that
each p′ ∈ P satisfies (5.14). If the χ2-test given by statistic (5.15) is used
for solving this problem and the degree of freedom M ≥ 50, then the data
complexity of distinguishing between hypotheses H0 and H1 is proportional
to

N = M1/2/I1.

The problem of distinguishing p from the setP is similar to the problem in
Section 5.1.4, where each element p′ of the alternative hypothesis was given.
If in the latter case each p′ ∈ P has the same capacity C(p′, p) = 2I1 with p,
then the data complexity is log |P|/I1. If |P| = M , the expected data com-
plexity of the χ2-test is significantly larger than for the binary HTP. This is
because in the latter setting each p′ is known, whereas in the goodness-of-fit
problem we only know the capacity. If the set P is unambiguously deter-
mined such that we know each p′ ∈ P , it is better to use LLR to distinguish
p from P , see Section 5.1.4. On the other hand, if we only know that P is
given by (5.13), then we must use a goodness-of-fit test, such as χ2.
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5.2.3 Solving Goodness-of-Fit with G-test

If λ = 0, the statisticR0(Q : p) is equivalent to the Kullback-Leibler distance
between q and p:

R0(q : p) = D(q‖p). (5.17)

The statistic is called, for example, the G-test, the log-likelihood test and G2-
test. Again, if D(q‖p) is larger than some threshold value, the null hypothesis
is rejected.

Drost, et al., showed that

R0(Q : p) ∼ χ2
M(ν) + ξ. (5.18)

If H0 is true, then the parameters are ν = ξ = 0. If H1 true, then

ν = N
∑
η∈X

p′η log2
p′η
pη
−ND(p′‖p)2 and ξ = 2ND(p′‖p)− ν.

If p′ is close to p in the sense of definition (3.15) then ν ≈ NC(p′, p) and
ξ ≈ 0. Hence, the χ2-statistic and G-statistic are equal, which is also noted
in [19].

Assume now that M = 2m − 1 for some positive m such that X = Fm2 .
We now show that when we have the data complexity N at most proportional
to 2m/2/I1, as suggested by Lemma 5.5, then the condition (5.14) follows
from condition (3.15). The latter condition is easy to verify and holds in the
practical situations we are considering. Hence, the condition (5.14) holds
for data complexities that do not significantly exceed the limit 2m/I1 and
we can safely use the theory given by Drost, et al. [19]. On the other hand,
practical experiments done for example in IV show that we can successfully
distinguish between H0 and H1 with (at most) the predicted data complexity,
and it is not necessary to consider N larger than 2m/2/I1.

Assume now that p′ is close to p in the sense of definition (3.15). Then
maxη∈X |p′η − pη| ≤ εζ, for some positive ε < 0.5 and ζ = maxη pη. Let
A = ζ2m/4−1/C(p′, p)1/2. Then

max
η∈X
|p′η − pη| ≤ εζ < 0.5ζ = AC(p′, p)1/22−m/4 = AN−1/2,

and condition (5.14) is satisfied and the approximate formulas (5.16) and
(5.18) for the power of χ2-test and log-likelihood can be used.

5.3 THE d-SAMPLE PROBLEM AND RANKING STATISTICS

In a basic d-sample problem we have d distributions D1, . . . ,Dd and the goal
is to determine whether they are all equal or not [23]. In a non-parametric
setting we know nothing about the distributions and we can only solve the
hypothesis testing problem, where H0 states that D1 = · · · = Dd and H1

states that at least oneDi is different. In a parametric setting we have a model
for the distributions, for example, all D1, . . . ,Dd are normal distributions
with equal variances and we may find information about their means.
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In either case, the problem is solved by drawing from each distribution Di
a random sample Xi,1, . . . ,Xi,Ni of size Ni. Assume for simplicity that Ni =
N for all i = 1, . . . , d. Each random sample is statistically independent of
the other samples. A statistic Mi = g(Xi,1, . . . ,Xi,N) is calculated for each
sample. The realised value Mi of the random variable Mi is called a mark
[43]. The statistics should be chosen such that Mi has a distribution D′i that
depends on the sample distribution Di. The distributions Di or equivalently,
the parameters i, are ranked by sorting them according to their marks.

Consider the order statistics M(1), . . . ,M(d) of the d independent random
variables M1, . . . ,Md. If Mi is the realised value of the jth order statistic
M(j) for some j, then we call j the rank of i. The statistics g is called the
ranking statistics. The resulting order statistics depends on the distributions
D1, . . . ,Dd and hence, the order statistics can be used in recovering infor-
mation about D1, . . . ,Dd.

In this thesis, we consider the following special case, which we call the
d-sample distinction problem. For an unknown ω ∈ {1, . . . , d}, one p.d.
Dω = DR, a possibly unknown p.d. The other d − 1 distributions Di, i 6= ω
are equal to a given p.d. DW 6= DR. Then we have d independent random
variables M1, . . . ,Md, one of which follows distribution D′R and the others
are drawn fromD′W . The goal is to determine the parameter ω, that is, to state
which sample is taken from population DR. The ranking statistic g gives the
solution if it gives the highest rank to the parameter ω, such that Mω =
maxi=1,...,dMi = M(1). We will later consider how to properly choose g.

The d-sample distinction problem resembles the simple d-ary HTP in
Section 5.1.3 since in both cases we have d possible parameter values among
which we have to find the correct one. However, the two problems are dif-
ferent. In the simple d-ary HTP the same data is used in calculating the
test statistics for each parameter value and the random variables X1, . . . ,XN

are i.i.d., whereas different data is drawn from each distribution to calculate
M1, . . . ,Md and the independent random variables M1, . . . ,Md do not fol-
low the same distribution in a d-sample distinction problem.

Key ranking studied in Section 6.2.2 is an application of the d-sample
distinction problem.
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6 LINEAR CRYPTANALYSIS IN ONE DIMENSION

This chapter discusses the one-dimensional linear cryptanalysis, proposed by
Matsui 1993 [31]. We start by defining what we mean by a one-dimensional
linear approximations in Section 6.1. We also give a general framework
for finding these approximations. In Section 6.2 we show how the one-
dimensional approximation and the results of Chapter 5 can be used for real-
ising different kinds of statistical attacks. We consider distinguishing attacks,
key recovery attacks for block ciphers and initial state recovery for stream
ciphers, proposed by Berbain, et al., in [4].

6.1 ONE-DIMENSIONAL LINEAR APPROXIMATIONS

6.1.1 Linear Approximation of a Vector Boolean Function

Let the input of a multidimensional Boolean function f : Fn′2 7→ Fn2 be
x ∈ Fn′2 . The one-dimensional linear approximation of f with input mask u
and output mask w is then the Boolean function

x 7→ u · x⊕ w · f(x), (6.1)

and its correlation c(u · x ⊕ w · f(x), 0) is denoted by cf (u;w) or c(u;w),
if f is clear from the context. If there are two inputs x1 and x2 to f with
corresponding input masks u1 and u2, the correlation c(u1 ·x1⊕u2 ·x2⊕w ·
f(x1, x2), 0) is denoted by cf (u1, u2;w).

We say that the approximation (6.1) is strong if it has a correlation that
is non-negligible, i.e., the absolute value of the correlation is large enough
to be exploited in a statistical attack. The next section studies some special
functions that are often used in symmetric ciphers.

6.1.2 Approximations for Some Special Functions

Let f(x1, x2) = x1 ⊕ x2, where x1, x2 ∈ Fn2 . Then the only linear approxi-
mation of f with non-zero correlation is w ·f⊕w · (x1⊕x2) that is, the input
and output masks must be equal.

Let f be some Boolean function with linear approximation given by

u · x⊕ w · f(x),

and correlation cf (u;w). Let f = L ◦ g, where L is a linear mapping and g
is a Boolean function. By (3.1), there is a mask wL = LTw such that g has
linear approximation

u · x⊕ wL · g(x), (6.2)

with correlation cg(u;wL) = cf (u;w). Hence, if it is straightforward to find
the output mask and correlation for g given the output mask and correlation
for f .

In [37] Wallén and Nyberg found a formula for determining the correla-
tions cf (u1, u2;w), if f is sum modulo 2n of its n-bit inputs. The result can
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be generalised for more than two inputs. This result is needed from exam-
ple when linearising the stream ciphers SOSEMANUK and SNOW2.0, see
Example 4.2.

6.1.3 Combining Approximations over Consecutive Functions

Non-linear filter functions and round functions of iterated block ciphers
consist typically of several consecutive non-linear functions. Moreover, the
round function of an iterated block cipher is used repeatedly. We now show
how we can determine the correlation over the whole cipher by determining
the correlations over parts of the cipher. The different approximations are
combined to a “trail” through the cipher.

Assume two multidimensional Boolean functions f : Fn′2 7→ Fk2 and g :
Fk2 7→ Fn2 with inputs x and y. Let the linear approximation of each function
be u ·x⊕ a · f(x) and a · y⊕w · g(y) with correlations cf (u; a) and cg(a;w),
respectively. Recall that we can associate random variables with Boolean
functions and their inputs.

f

g

x

y

z

u

a

a

a

w

f(x)

output

(a) Piling Up lemma: since z is s.i. of
x and y, the functions f and g are s.i.
Note that a must be the mask of z and
y, also.

f

g

x

y

u

a

w output

(b) Correlation theorem: The func-
tions f and g are statistically depen-
dent

Figure 6.1: Obtaining correlation over several consecutive functions. The input to f and
g are x and y, respectively. The input and output masks are u and w, respectively, and a is
called the middle-mask.

First we study the case where f and g are s.i., see Fig. 6.1(a) for an example
of such a situation. A third variable z is used as an input to the system such
that y = z ⊕ f(x). If z is uniformly distributed and independent of x, then
x and y are s.i. Hence, f(x) and g(y) are s.i. For example, in a non-linear
filter generator z can be a block taken from the LFSR and x is another block
such that z has no common bits with x.

Consider the s.i. binary random variables X and Y, associated with u ·
x ⊕ a · f(x) and a · y ⊕ w · g(y), respectively. By Piling up Lemma 3.3 the
correlation cg◦f (u, a;w) = c(u · x ⊕ a · z ⊕ w · g(f(x)), 0) = c(X ⊕Y) =
c(X)c(Y). Hence, the correlation over the two functions is

cg◦f (u, a;w) = cf (u, a)cg(a, w). (6.3)

54 6. LINEAR CRYPTANALYSIS IN ONE DIMENSION



Sometimes there is no “randomising” input z between f and g, see Fig-
ure 6.1(b). Then the consecutive functions are not s.i. For example Nyberg
studied this problem in [36] and proved the following result:

Theorem 6.1 (Correlation Theorem). Let f : Fn′2 7→ Fk2 and g : Fk2 7→ Fn2 be
Boolean functions. Let u · x⊕ a · f(x) and a · y ⊕ w · g(y) be the linear ap-
proximations of f and g with correlations cf (u; a) and cg(a;w), respectively.
Then the correlation of u · x⊕ w · g(f(x)) is given by the sum

cg◦f (u;w) =
∑
a∈Fk2

cf (u; a)cg(a;w). (6.4)

When using Correlation theorem, all the correlations over all the “middle-
masks” a need to be considered. If there are several non-negligible linear
trails through the cipher, they are called the linear hull of the cipher [35].

Often the cipher has several consecutive functions. This holds for exam-
ple for block ciphers, where the approximations have to be done over dozens
of rounds. Therefore, it is not feasible to calculate the accurate correlation
using Theorem 6.1. Instead, the cryptanalyst assumes that the round keys
are statistically independent of each other and the input x. The total corre-
lation of the cipher is then approximated by the Piling Up lemma. If there
is only one strong linear trail through the cipher, the Piling Up lemma gives
an accurate result.

If there are more than one strong linear trail the actual correlation maybe
smaller or larger than the Piling Up lemma states. Since some of the corre-
lations in the sum (6.4) may be negative, there is no equality similar to (6.3).
The following inequality holds when the Correlation theorem is used:

|cg◦f (u,w)| ≤
∑
a∈Fk2

|cf (u; a)||cg(a;w)|. (6.5)

Hence, the absolute value of the total correlation is only upperbounded by
the absolute values of the correlations over parts of the system.

6.1.4 Linear Approximation of a K.S.G

Let us study a simple example of a key stream generator (k.s.g.) consisting
of an LFSR with L state blocks of size n bits each, and a filter function
f : Fl2 7→ Fn2 , where l is a multiple of n. See also Figure 4.4. The LFSR
recursion coefficients in (4.1) are b0, . . . , bL−1 ∈ Fn2 , where b0 6= 0.

At time t, the output of the k.s.g. is zt = f(St), where the input St ∈ Fl2 is
some fixed subset of the LFSR state blocks st, . . . , st+L−1. The analyst tries
to find a strong approximation

w · zt ⊕ v · St, for all t ≥ 0 (6.6)

for some masks w ∈ Fn2 and v ∈ Fl2. The correlation is c(v;w). Approx-
imation (6.6) is applicable to some stream ciphers directly, see Sect. 6.2.3.
However, usually the analyst has to cancel the internal state words st, t ≥ 0
from (6.6) using the linear recursion (4.1).
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Assume for simplicity that each bi ∈ {0, 1}, since the theoretical bounds
presented in II are derived for binary coefficients only. Define the set of
indices corresponding to non-zero coefficients by J = {i = 0, . . . , L − 1 :
bi 6= 0}. We obtained in II the linear approximation containing only the
keystream words

w ·
⊕
j∈J

zt+j, for all t ≥ 0, (6.7)

with correlation c(w) given by

c(w) =
∑
v∈Fn2

c(v;w)|J |. (6.8)

The formula (6.8) shows that all the input masks v should be considered to
find the correct value of the correlation. However, the correlation (6.8) is
often approximated by

c(w) ≈ c(v;w)|J |,

for some chosen input mask v ∈ Fl2 for which the correlation c(v;w) of
(6.6) is large. The simple examples studied in Section 8.2 show that this
approximation can be severely flawed.

6.1.5 Linear Approximation of a Block Cipher

Consider an iterated block cipher with plaintext x and ciphertext y after R
rounds, see also Figure 4.1. We denote by KR the expanded (inner) key,
that is, a vector consisting of all (fixed) round key bits used in R rounds, see
Section 4.1. A linear approximation of this block cipher over R rounds is
given by the Boolean function

u · x⊕ w · y ⊕ v ·KR. (6.9)

The vectors u and w are the input and output mask, respectively. The vector
v is called the key mask.

We can determine the correlation c of the approximation (6.9) using the
methods of Sect. 6.1. We assume that each round key is independent of
the other keys. Then we can use the Piling Up lemma (6.3) to obtain an
approximation for the correlation. The trail through the block cipher given
by the masks is called its linear trail. The Correlation theorem 6.1 gives a
more accurate result, however, it is usually unfeasible to use in practice.

Since the ciphertext y = EKR(x) depends on the key, the actual correla-
tion c depends on the key, also, and Piling Up lemma gives just an approx-
imation for the correlation. Hence, it is possible that some keys cannot be
recovered using linear cryptanalysis, because the corresponding correlation
is too small. On the other hand, for some keys the approximative correlation
c is a lower bound for the true correlation [35], and linear cryptanalysis is
stronger than predicted. For the rest of this thesis, we assume that we have a
good approximation c of the true correlation of (6.9) and c is independent of
the key.
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6.2 ATTACKS IN ONE DIMENSION

6.2.1 Distinguishing Attack

The output of a cipher should be pseudorandom, that is, it should not be
possible to distinguish it the from the output of a random source. Hence,
while a distinguisher is only able to determine whether a given sequence
is produced by the cipher or not, resistance against linear distinguishers is
considered an integral property of contemporary ciphers. The amount of data
needed to realize the attack (with certain probability of success, say, 95%) is
called the data complexity of the attack. A distinguisher is considered to be
successful against a cipher if the data complexity is less than the complexity
of an exhaustive search.

In practice, distinguishing attacks are applied only on stream ciphers. Al-
though it is possible to realise a distinguishing attack against a block cipher
the same statistical methods can be used in realising key recovery attacks,
which we shall study in the next sections.

We now show how we can use approximation (6.7) for realising a dis-
tinguishing attack against a non-linear filter generator. We assume that the
keystream words z1, . . . , zN are i.i.d. with uniform population. Let J be the
set of non-zero indices defined in Section 6.1.4 and consider the linear ap-
proximation (6.7). If the sequence z1, . . . , zN is drawn from the cipher, then
the observations w ·⊕j∈J zt+j, t = 1, . . . , N, are the realisation of a random
sample from population Bernoulli(1/2 + c/2), where c is the correlation
of (6.7) given in (6.8). On the other hand, if z1, . . . , zN are taken from a ran-
dom source, the terms in the sequence w ·⊕L

j∈J zt+j, t = 1, . . . , N, are the
realisations of a random sample from population Bernoulli(1/2). Hence, the
problem of distinguishing the cipher from a random source is a HTP, where
the correlation is the parameter.

The null hypothesis H0 states that the random sample is drawn from a
random source with correlation 0. If we know the correlation c 6= 0, we
have a simple binary HTP, where the alternative hypothesis H1 states that
the random sample is drawn from the cipher with correlation c.On the other
hand, if c is unknown, we have a goodness-of-fit problem, with H1 states that
the correlation of the sample is not 0.

In cryptanalysis, the attacker has to prove that the data is not random.
Therefore, the goal is to reject the null hypothesis. The more data the an-
alyst needs to successfully reject H0, the stronger the cipher is against the
distinguishing attack.

For known c, it is natural to use the Neyman-Pearson philosophy in the
distinguisher, since the null hypothesis can be considered to have a special
status. Recall that q = (q0, q1) is the empirical p.d. defined by (3.10). By
Section 5.1.2, the optimal distinguisher rejects H0 if LLR(q; θ, p) is smaller
than some threshold. Junod [26] considered an equivalent method using the
empirical correlation ρ = 2q0 − 1. The null hypothesis is rejected, if ρ is
bound from above (below) by a threshold that depends on c, when c ≥ 0
(c < 0).

The data complexity of the distinguisher with given power and level of test
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is given by Theorem 5.2 to be proportional to

N =
1

c2
. (6.10)

Matsui gave this result in [31].
For an unknown c, the problem is solved using the χ2-test statistics de-

fined in (5.15). The realised value of χ2-statistic is ρ2. Hence, we reject H0

if ρ2 is too large. If we use the power approximation on Section 5.2 by as-
suming that we know the value c2 but not the sign of c, the data complexity
is given by Lemma 5.5 to proportional to 1/c2. The constant coefficient of
N for χ2 can be larger than for the LLR but the tests are practically equal
in this case. Obviously, if c2 is not known, we have no knowledge about the
data complexity and we have to collect data until we are satisfied with the
level of the χ2-test. Hence, the data complexity can only be determined by
experiments.

6.2.2 Key Recovery for Block Ciphers

Matsui’s Algorithm 1
Assume that we have found a one-dimensional approximation (6.9) with non-
negligible, constant correlation c. The output y is the ciphertext obtained
from the cipher by encrypting plaintext x over R rounds. We denote z =
V KR. Our goal is to find the one bit of information of the key.

We draw N plaintext-ciphertext pairs (xt, yt), t = 1, . . . , N, from the ci-
pher and compute the empirical correlation ρ by

ρ = 2N−1#{t : u · xt ⊕ w · yt = 0}.
We assume that the plaintexts x1, . . . , xN are i.i.d. with uniform population.
Then the values u · xt ⊕ w · yt ⊕ z, t = 1, . . . , N, are the realised values of a
random sample from Bernoulli(1/2 + c/2) and the observations u · xt ⊕ w ·
yt, t = 1, . . . , N are the realised values of a random sample from population
Bernoulli(1/2 + (−1)zc). We can then determine z using ρ: The key bit z is
chosen to be 0 if cρ > 0. Otherwise, z = 1. Equivalently, we find the z that
minimises ((−1)zc− ρ)2 or −(−1)zcρ.

We can also consider finding z as a simple binary HTP. We have to de-
cide using the empirical p.d. q = (1

2
(1 + ρ), 1

2
(1 − ρ), whether the sample

population is p0 = (1
2
(1 + c), 1

2
(1 − c)) or p1 = (1

2
(1 − c), 1

2
(1 + c)). We

can solve this problem for example with LLR, which is the same as using the
decision algorithm above. The data complexity is obtained for example by
Theorem 5.2, but already Matsui showed that it is proportional to 1/c2 [31].

Before considering Matsui’s Algorithm 2, we define key ranking and the
quantity that is used in measuring the efficiency of key ranking, the advan-
tage.

Key Ranking
In key ranking we have a set of key candidates and the problem is to deter-
mine which key κ is the right one. Usually the keys are searched from the set
Fn2 of all 2n strings of n bits. In linear cryptanalysis, we make the following
assumption:
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Assumption 6.2 (Wrong-key Hypothesis). There are two p.d.’sDR andDW 6=
DR such that for the right key κ0, the sample population is DR and for a
wrong key κ 6= κ0 the population is DW .

Hence, the problem of finding κ0 is the d-sample distinction problem
with d = 2n, given in Section 5.3. The problem can be solved by choosing a
proper ranking statistic g for the keys. For each κ, the statistic g corresponds
to a random variable Mκ. The realised value Mκ of Mκ is called the mark of
κ.

Vaudenay divides that attack to four phases: the distillation phase, the
analysis phase, the sorting phase and the search phase [43]. The distilla-
tion phase is done on-line. We collect data from the cipher, for example,
plaintext-ciphertext pairs and store it in a suitable way. In the analysis phase,
for each key candidate κ, the mark Mκ is computed using g. The sorting
phase is independent of g: we rank the candidates κ using their marks. Opti-
mally, the right key, denoted by κ0, should be at the top of the list. If this is
not the case, then we must also run through a search phase, testing the keys
in the list until κ0 is found.

Biryukov, et al., measured the time complexity of the search phase given
amountN of data using a special purpose quantity “gain” [6]. Selçuk defined
a similar but more generally applicable concept of “advantage” in [40] as
follows:

Definition 6.3. We say that a key recovery attack for an n-bit key achieves an
advantage of a bits over exhaustive search, if the correct key is ranked among
the top r = 2n−a out of all 2n key candidates.

Hence, the time complexity of the search phase is 2n−a. We can now de-
rive a relationship between the data complexity N and advantage a. Assume
that g ranks the keys is increasing order such that we expect Mκ0 to be the
largest mark. Then we have for a fixed probability PS and r = 2n−a that

PS = Pr(Mκ0 > Y), (6.11)

where Y is the rth order statistic among the i.i.d. random variables Mκ, κ 6=
κ0.

Assume that the ranking statistics g is normally distributed such that Mκ0 ∼
D′R = N (µR, σ

2
R) and Mκ ∼ D′W = N (µW , σ

2
W ) for all κ 6= κ0. Assume that

µR > µW and σ2
R ≈ σ2

W such that σ2
R ≥ σ2

W . Then κ should have the
highest rank among the parameters and the probability of success is given
by (6.11). If 2n is large, say, n ≥ 7, by Theorem 3.11 the rth order statistic Y
is normally distributed with mean

µ = Φ−1
µW ,σ2

W
(1− r/d) = µW + σWΦ−1((1− r/d),

and variance

σ2 =
(1− r/d)r/d

dφµW ,σ2
W

(µ)2
=

(1− r/d)r/d2

φ2(b)
σ2
W ,

where b = Φ−1((1− r/d). Hence, 1− Φ(b) = r/d. If r/d is small, then b is
large and we may approximate r/d = 1− Φ(b) ≈ φ(b). Hence, the variance
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becomes

σ2 ≈ (1− r/d)r/d2

(r/d)2
σ2
W =

1

r

(
1− r

d

)
σ2
W ≈ σ2

W/r.

Since the random variables Mk and Y are s.i. and normally distributed, we
have

PS = Φ

(
µR − µ√
σ2
R + σ2

)
.

Note that this is slightly different from formula (9) in IV, since the variance
σ2 was directly approximated by zero. However, this affects the final results
by only a constant coefficient that can be omitted.

The parameters µR, µW , σ2
R and σ2

W must satisfy

µR − µW − σW b√
σ2
R + σ2

W/r
= Φ−1(PS). (6.12)

The equation simplifies further if r is large and for small r if σ2
W ≈ σ2

R. All
the means and variances depend on the data complexity N and hence, it
is possible to find a relationship between the data complexity and PS , for
given advantage. Similarly, for fixed PS , we can find a one-to-one mapping
between the advantage and N . This lets us compare different ranking statis-
tics, since the for fixed advantage and PS the data complexity N should be
as small as possible. On the other hand, we also know the trade-off between
time complexity of the search phase and the data complexity.

Matsui’s Algorithm 2
Selçuk considered key ranking for one-dimensional Alg. 2 in [40]. We study
it here for completeness. Consider a block cipher withR+1 rounds, depicted
in Figure 6.2. Let x be the plaintext and y′ be the ciphertext after R +
1 rounds. Let the round function and the (R + 1)th round key be f and
k ∈ Fl2, respectively. Then the output after R rounds is y = f−1(y′, k) =
EKR(x), where KR is the key data over R rounds. Alg. 2 uses a strong linear
approximation over R rounds given by (6.9) for finding the right last round
key k0 and possibly the right inner key bit z0 = V KR. Let the correlation be
c 6= 0.

Consider first the straightforward Alg. 2 proposed in [31]. In the distilla-
tion phase we draw N plaintext-ciphertext pairs (xt, y

′
t), t = 1, . . . , N . In the

analysis phase, for each last round key k, we compute ykt = f−1(y′t, k), t =
1, . . . , N and obtain the empirical correlation

ρk = 2N−1#{t : u · xt ⊕ w · ykt = 0}. (6.13)

The empirical correlations are the marks for the keys. This straightforward
computing of empirical correlations takes time N2l. In practice, this is not
feasible. In [30] Matsui proposed a way to make the attack more efficient in
practice for any SPN-cipher, whose round function is y′ = f(y) ⊕ k, where
f consists of permutations and substitutions, see Section 4.1. Vaudenay fol-
lowed this division in [43].

Since y = f−1(y′ ⊕ k), we only have to consider the l bits of y′ corre-
sponding to k. Let us denote these l bits by y′(l) for simplicity. Hence, in
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Figure 6.2: The linear approximation of an R + 1-round block cipher for Algorithm 2.
Notation: plaintext x, ciphertext y′, round function f , last round key k, input to the last
round y, key data in R-rounds KR.

the distillation phase we collect the data and store it in a 2l× 1 table TD. For
each plaintext-ciphertext pair (xt, y

′
t) we compute the parity u · xt and store

it such that the ith element in the table is

TD(i) = 2N−1#{t = 1, . . . , N, y′t(l) = i : u · xt = 0} − 1.

This process takes time N .
In the analysis phase we run through the 2l possible values of y′(l), com-

pute the decryption for key k = 0 by y0 = f−1(y′(l)) and obtain the parity bit
w · y0. We store them in a table TA. We can then obtain the other parity bits
w ·yk by simply permuting the rows of TA. It is then straightforward to obtain
the bias for each k in time 22l, and the whole algorithm takes time N + 22l.
Collard, et al., use FFT to reduce the time complexity to N + l2l [12]. Note
that usually N � 22l. The data complexity of the attack does not depend on
how we derive the empirical correlation ρk. Hence, we now assume that we
are given the marks ρk and we show how they can be used for ranking the
last round keys.

Let us now study the statistical model behind the Alg. 2 attack. Assume
for simplicity that c > 0. If we use the wrong key k 6= k0 to decrypt the
ciphertext it means we essentially encrypt over one more round and the re-
sulting data will be more uniformly distributed. This heuristics is behind the
original Wrong-key Randomization Hypothesis, [31], [26], which we stated
as Assumption 6.2. For each κ 6= κ0, the observations u · xt ⊕ w · ykt ), t =
1, . . . , N, are realised values of a random sample from population DW =
Bernoulli(1/2). Consider now the ranking statistic whose realised value is
the absolute value of the empirical correlation. By Section 3.3.4, it follows
that D′W = FN (0, 1/N).

On the other hand, when decrypting with the correct key k0, the obser-
vations u · xt ⊕ w · yk0t , t = 1, . . . , N are the realised values of the random
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sample with population DR = Bernoulli(1/2 + c/2). Hence, the right key
k0 should have the highest mark and by Section 3.3.4, D′R = N (c, 1/N).
Using (6.11) with given success probability PS and advantage a, the data
complexity is [40]

N =
(Φ−1(PS) + Φ−1(1− 2−a−1))2

c2
.

After solving k0 we have the empirical correlation ρk0 . It is then possible to
use Alg. 1 for recovering the key parity bit z0. The data complexity of Alg. 1 is
less than the data complexity of ranking k0 reasonably high. Hence, finding
the key parity bit information is “free”.

6.2.3 Initial State Recovery for Stream Ciphers

Berbain, et al., used a linear approximation (6.6) for finding part of the initial
state of the Grain stream cipher [4]. We describe the basic idea first. Let L
and n be the length and the block size of the LFSR, respectively. Then the
LFSR has 2Ln possible initial states. Let z1, . . . , zN be the key stream output
from the cipher and denote by Yt the state of the LFSR at time t ≥ 0. The
linear approximation (6.6) can be written as

w · zt ⊕ v · Yt, for all t ≥ 0, (6.14)

where v is padded with zeros if necessary. It has correlation c = c(v;w).
Recall from Section 4.2.2 that Yt = AtY0, t ≥ 0 where Y0 = Y is the initial
state and A is given by (4.2). Using (3.1) we can write v · Yt = (At)Tv · y,
where T denotes transposition. Denote v(t) = (At)Tu. We can rewrite the
approximation (6.14) as

w · zt ⊕ v(t) · Y,
and it still holds with the same correlation c for all t ≥ 0. We assume as usual
that the keystream words zt, t ≥ 0 are statistically independent. Hence, for
given Y , we can draw N statistically independent samples from the popu-
lation Bernoulli(1/2 + c/2) by computing (6.14) for N consecutive times
t.

We proceed by guessing the initial state Y.We obtain a sequence zY1 , . . . , zYN
from the cipher and we compute the empirical correlation by ρY = 2N−1#{t :
w · zYt ⊕ v(t) · Y }. If the guess is correct, then the sample population is
Bernoulli(1/2 + c/2). On the other hand, for any wrong guess, the LFSR
state v(t)·Y and the keystream zt should not have any correlation, that is, the
sample population is Bernoulli(1/2). This is again the Wrong-key Hypothe-
sis, Assumption 6.2.

We must find the empirical correlation for all possible initial states Y .
Then we have 2Ln statistically independent random variables with realised
values ρY , Y ∈ FLn2 . Moreover, since the sample population is the Bernoulli
distribution (with either correlation c or 0), we have by Section 3.3.4 that
each sample is normally distributed. For the right guess, the mean is µR = c
and variance is σ2

R = 1/N . For all the wrong guesses, the mean is µW = 0
and the variance is σ2

W = 1/N .
The problem of determining the right initial state is then the d-sample

distinction problem studied in Section 5.3 and we can apply Selçuk’s key
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ranking theory described in Section 6.2.2. The mark for each initial state Y
is the empirical correlation ρY .We can find the data complexity using (6.12).
If we wish to find the right initial state, we have r = 1, and obtain that the
data complexity is proportional to

N =

(√
2Φ−1(PS) + b

c

)2

,

where PS is a fixed success probability and b = Φ−1(1− 2−nL).
The problem with this straightforward approach is that the initial state is

so large that it is not possible to run through the whole space FLn2 . Instead,
Berbain, et al., proposed the following method they called the second LFSR
derivation technique. The purpose is to restrict the initial state Y to some
sub-state of only, say, M bits. For simplicity, we may assume that we want
to determine the M first bits in the LFSR. Then we only have to consider
2M different Y . We denote the set of Ln-bit vectors, whose Ln − M last
components are zero, by ∆M . We now show how to find many masks v(t) ∈
∆M .

First, we sort the masks v(t) according to their last Ln −M bits. Then
it is easy to divide the masks v(t) to groups, where the Ln −M last bits of
the masks are the same. Let v(t1) and v(t2), where t1 6= t2, belong to the
same group. Then their XOR is in the set ∆M . By Piling Up lemma, this
approximation has correlation c2. The number of pairs among N different
v(t) is

(
N
2

) ≈ N2. The number of pairs, whose XOR is in ∆M is on average
2m−LnN2. The number of masks v(t) ∈ ∆M corresponding to correlation c
is negligible when compared to the number of masks obtained by XOR. We
may then omit them from the analysis.

The data complexity is proportional to [4]

N = 2(Ln−m)/2/c2.

After the M bits of the initial state are found, we may repeat the same proce-
dure for some other initial state bits, provided that we find suitable approxi-
mations.
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7 MULTIDIMENSIONAL LINEAR CRYPTANALYSIS

7.1 BACKGROUND

In one-dimensional linear cryptanalysis, the analyst tries to find a strong lin-
ear approximation such as (6.9) or (6.7). Sometimes it is possible to find
several other approximations. That is, the analyst has, say m, approximations
of the form

ui · x⊕ wi · f(x), i = 1, . . . ,m, (7.1)

at disposal and each approximation has a non-negligible correlation ci. The
natural question is then if the analyst can somehow use all these approxima-
tions for either reducing the data complexity or for finding more information
about the cipher. It is also important to know what is the best possible method
for using all the approximations.

First Matsui in [30] and then Junod and Vaudenay in [26] used two ap-
proximations for key ranking in Alg.2. In [8], Kaliski and Robshaw considered
m approximations of the form (6.9). They presented new versions of Matsui’s
Algorithms 1 and 2 assuming the same key mask for all approximations. They
showed that the data complexity of finding one key parity bit is reduced when
multiple approximations are used. However, they assumed that the approx-
imations are statistically independent. As a different approach, Johansson
and Maximov presented an idea of a multidimensional distinguishing attack
against the stream cipher Scream [25].

Similarly as Kaliski and Robshaw, Biryukov, et al., used also the assump-
tion about statistical independence, but they let the key mask vary [6]. Using
their version of Alg. 1, they could determine m key parity bits with reduced
data complexity. With a new version of Alg. 2, they could also determine the
last round key. They measured the efficiency of their method using “gain”.
The method by Kaliski and Robshaw can be regarded as a special case of the
method by Biryukov, et al., which we call the Biryukov method, for brevity.

In 2004, Baignères, et al., presented a true multidimensional distinguisher
that did not rely on the assumption of statistical independence [1]. However,
they did not provide a way to determine the p.d. that was needed in the
attack. Englund and Maximov tried to solve this problem by determining
the p.d. over a whole stream cipher for example in [21]. However, it is
unfeasible to compute the p.d. directly if the word-size of the cipher is more
than 32 bits. The problem of finding the multidimensional approximation
in practice remained unsolved. Another open question was how Matsui’s
algorithms could be generalised to multiple dimensions.

The next sections give the answers to all these questions. Section 7.2
defines the multidimensional linear approximation. We show how the p.d.
can be found efficiently and with no need to consider the whole wordsize or
blocksize of the cipher. Only the necessary information, i.e., non-uniform
behaviour of the cipher, has to be considered.

In Section 7.3 we study the distinguishing attack of Baignères, et al. Sec-
tions 7.4 and 7.5 give the generalisations for Matsui’s algorithms. We give
also the data, time and memory complexities for the algorithms in multiple
dimensions. We conclude our findings of multidimensional Alg. 1 and Alg. 2
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in Section 7.6. Finally, we show in Section 7.7, how multiple approximations
can be used for making the one-dimensional initial state recovery attack of
Section 6.2.3 more efficient.

7.2 MULTIDIMENSIONAL LINEAR APPROXIMATION

The m-dimensional linear approximation of a vector Boolean function f :
Fn′2 7→ Fn2 is

Ux⊕Wf(x), (7.2)

where U : Fn′2 7→ Fm2 and W : Fn2 7→ Fm2 are linear mappings. If we
have m linearly independent linear approximations (7.1), called base ap-
proximations, the multidimensional masks in approximation (7.2) are U =
(u1, . . . , um)T and W = (w1, . . . , wm)T . The task is to find the p.d. p of the
approximation.

By Lemma 3.8, the one-dimensional correlations c(a) = c(a · (Ux ⊕
Wf(x)), 0), a ∈ Fm2 of all the one-dimensional approximations of f de-
termine p. We search first for strong one-dimensional approximations over
the whole cipher, where the correlations are given by the methods of Sec-
tion 6.1. From the set of given strong approximations, we choose a suitable
number m of linearly independent approximations and fix the multidimen-
sional output masks. Then we determine the necessary correlations c(a) and
use Lemma 3.8 to find the p.d. p. Hence, we may omit negligible approxi-
mations and we can only consider information that is essential for the attack.
If the correlations c(a) are approximations of the true correlations, then p is
also an approximation for the true p.d.

The most difficult task in linear cryptanalysis is finding the set of m strong
base approximations. Moreover, it is not always easy to determine the corre-
lations c(a), a ∈ Fm2 , even though the input and output masks are given. In
this thesis we do not concentrate on the problem of finding the masks or the
correlations. We assume that we have the approximations and our goal is to
show the most efficient way to exploit the given information. We measure
the efficiency of each method using the data complexity and if needed, also
the time and memory complexities.

In practice, the p.d. p does not vary much from the uniform distribution θ.
Hence, we assume that p is close to θ in the sense of the definition (3.15)
and we can give the data complexities of the attacks using the capacity of p.
Therefore, we should choose the base approximations such that the capacity
C(p) of the linear approximation (7.2) is as large as possible. We confirm the
assumption about closeness in IV for the reduced round Serpent.

7.3 MULTIDIMENSIONAL LINEAR DISTINGUISHER

Consider a k.s.g. with the multidimensional approximation

W
⊕
j∈J

zt+j, for all t ≥ 0, (7.3)
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with p.d. p 6= θ and J the set of non-zero coefficients in the LFSR recursion,
see Section 6.1.4. We assume that the keystream zt, . . . , zt+N is i.i.d. with
uniform population. Then the corresponding approximations (7.3) for t =
1, . . . , N are the realisations of a random sample from the population p.

The distinguishing attack is equivalent to solving the binary HTP, where
we have a random sample drawn from a discrete population and H0 states
that the population is θ [1]. The alternative hypothesis H1 states that the
population is p 6= θ.

By Section 5.1.2, the optimal distinguisher for p and θ is given by the
LLR test statistic LLR(q; θ, p). The empirical p.d. q is computed from the
keystream by

qη = N−1#{t : W
⊕
j∈J

zt+j = η}.

By Theorem 5.2, the data complexity is proportional to

N = 1/C(p).

Baignères, et al., obtained this result in [1]. However, they did not notice the
relationship between p and the correlations c(a). Hence, the distinguisher
could not be used in practice.

By Lemma 3.9, the capacity is given by C(p) =
∑

a6=0 c(a)2, where c(a)
is the correlation of a · (W⊕

j∈J zt+j). Hence, in an optimal case, the data
complexity of using just one equation is reduced by the factor 1/(2m − 1)
when m equally strong approximations are used. If only one strong approx-
imation is available, then it is not advantageous to use multiple approxima-
tions.

Vaudenay considered also the setting, where p is unknown [43]. The alter-
native hypothesis H1 states that the sample population is not θ. The problem
is solved using the χ2-statistic defined in (5.15). By Lemma 5.5, the data
complexity is upperbound by 2m/2/C(p), which is significantly more than
for the LLR-method. On the other hand, the capacity C(p) ≤ (2m − 1)c2,
where c is the correlation of strongest one-dimensional approximation, and
in practice for large m the capacity increases slower than 2m/2c2 when m in-
creases. Hence, usually the χ2-test does not benefit for using a large number
m of approximations. If p is unknown, the most efficient method is based on
the χ2-test with a small number of linear approximations and if p is known,
we should use LLR.

7.4 MULTIDIMENSIONAL EXTENSION OF MATSUI’S ALGORITHM 1

In this section we study Matsui’s Alg. 1 in multiple dimensions. We show
how the algorithm can be used for finding several parity key bits of the secret
key used in a block cipher. We consider several different methods, proposed
in III, V and VII. We also compare the methods and the Biryukov method in
theory and in practice. We show that under certain conditions all the meth-
ods have equal data complexities. However, one method, the convolution
method, is the most efficient in practice.

Section 7.4.1 defines the key recovery problem as a multiple HTP. We
explain the Biryukov method in 7.4.2. In Section 7.4.3 we consider two
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multidimensional methods: the log-likelihood test or G-test from III and
the χ2-test from V. The optimal LLR-method proposed in V is studied in
Section 7.4.4 and the convolution method, originally presented in VII, is
studied in Section 7.4.5. Section 7.4.6 considers key ranking in Alg. 1 and
Section 7.4.7 summarises the empirical tests done in III, V and VII.

7.4.1 Algorithm 1 as a Hypothesis Testing Problem

We use the same notation as in Section 6.2.2. The multidimensional Alg. 1
uses a linear approximation

Ux⊕Wy ⊕ V KR, (7.4)

where x and y are the plaintext and ciphertext and KR is the expanded key
data over R rounds. The matrix V divides the expanded keys to 2m equiva-
lence classes z = V KR ∈ Fm2 . The task is to find the right inner key class,
denoted by z0.

If Ux ⊕Wy ⊕ z ∼ p, then Ux ⊕Wy ∼ pz, a fixed permutation of p de-
termined by z. Then all the p.d.’s pz, z ∈ Fm2 , are each other’s permutations,
and in particular,

pzη⊕a = pz⊕aη , for all z, η, a ∈ Fm2 . (7.5)

It then follows that

C(pz) = C(p), for all z ∈ Fm2 . (7.6)

Since p is close to θ, then also each pz is close to θ, in the sense of defi-
nition (3.15). We showed in V that minz 6=z′ C(pz, pz

′
) = minz 6=0C(pz, p),

which is a positive constant, denoted by Cmin(p). Moreover, at least for block
cipher Serpent, Cmin(p) ≈ C(p).

Consider N plaintext-cipher pairs taken from the cipher. We make the
usual assumption that the plaintexts x1, . . . , xN , are i.i.d., with uniform dis-
tribution. Then the values Uxt ⊕Wyt, t = 1, . . . , N, are the realisations of
the random sample from pz.

Using the theory of Section 5.1.3, we can state the problem of finding z
as a 2m-ary HTP. Let Q be the random vector of relative frequencies in the
random sample with population pz, see definition (3.12). Each hypothesis
Hz, z ∈ Fm2 states that Q ∼ multi(N, pz). If all the keys KR are uniformly
distributed and the key classes z have an equal number of elements, the hy-
pothesis have equal a priori probabilities. If this is not the case, the chosen
test statistic must be modified accordingly. We assume equal a priori proba-
bilities, for simplicity, since the assumption holds in our experiments.

The realisation of Q is the empirical p.d q, given by

qη = N−1#{t = 1, . . . , N : Uxt ⊕Wyt = η}.
In IV and V, we call this part of the algorithm the on-line phase, see Fig-
ure 7.1.

The data complexity of the on-line phase is N and it depends on the cho-
sen test statistic g. The time and memory complexities are Nm and 2m, re-
spectively. After finding q, we compute the values of the realisations g(q; pi)
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Output: empirical p.d. q
initialise 2m counters qη, η ∈ Fm2 ;
for t = 1, . . . , N do

draw (xt, yt) from cipher ;
for i = 1, . . . ,m do

calculate bit ηi = ui · xt ⊕ wi · yt;
end
increment counter qη = #{t : Uxt ⊕Wyt = η}, where η is the
vector (η1, . . . , ηm) interpreted as an integer;

end
output q/N ;

Figure 7.1: On-line phase for Alg. 1: Computing empirical p.d q

of the test statistic in off-line phase. The time and memory complexities of
the off-line phase depend on g. Our division to on-line and off-line phases is
natural in Alg. 1, since it is most efficient to compute q and then the marks.
Before studying the different statistics we used in III, V and VII, we describe
the Alg. 1 by Biryukov, et al.

7.4.2 Biryukov method for Algorithm 1

Biryukov, et al., proposed using the m linearly independent base approxi-
mations (7.1), by assuming them to be statistically independent [6]. For each
approximation, they computed the empirical correlation ρi. Then they chose
z that minimises

b(z) =
m∑
i=0

((−1)zici − ρi)2.

We call this the basic Biryukov method.
The function b(z) can be considered as an `2-distance between two vec-

tors, whose components are given by the theoretical and empirical corre-
lations. Each bit is determined independently of the other bits using the
original Matsui’s Alg. 1 [31] studied in Section 6.2.2.

The time and memory complexities of the attack in on-line phase aremN
and m, respectively. Time and memory complexities in the off-line phase
are 2mm and m, respectively. Biryukov, et al., claimed that the data com-
plexity of their method is proportional to 1/(c21 + · · · + c2m). However, this
is not an accurate result. Murphy noted that the assumption about statisti-
cal independence of the base approximations does not hold in general [33].
In particular, linearly dependent approximations are also statistically depen-
dent. Murphy also suggested to use the traditional measure of covariance of
two linear approximations in verifying the assumption about linear indepen-
dence. This method has been subsequently used by other researchers, for
example in [22]. We noted in VII that the most natural way is to use the
converse of the Piling Up lemma, see Theorem 3.3.

Biryukov, et al., also proposed an enhancement, where they added more
linearly and statistically dependent one-dimensional approximations. We
called in VII the method where all non-negligible correlations c(a) = c(a ·
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Input: empirical p.d. q and theoretical p.d.’s pz

Output: key class z′

for key classes z = 0, . . . , 2m − 1 do
compute h(z) =

∑2m−1
η=0 qη log qη

pzη
;

end
find z′ that minimises h(z);
output z′;

Figure 7.2: Off-line for Alg. 1: Using log-likelihood method

(Ux ⊕ Wy ⊕ z), 0), a ∈ Fm2 are used the full Biryukov method. For all
a ∈ Fm2 , we denote by ρ(a) the empirical correlation corresponding to the
Boolean function a · (Ux⊕Wy). The full Biryukov outputs z if z minimises

bF (z) =
∑
a∈Fm2

((−1)a·zc(a)− ρ(a))2. (7.7)

If the combined approximations were statistically independent, the data com-
plexity would be proportional to 1/C(p), see Lemma 3.9. The time and
memory complexity in the on-line phase are mN and 2m, respectively, and
in the off-line phase 22m and 2m, respectively.

Since the linear combinations of base approximations cannot be statisti-
cally independent, we have no statistical proof for the validity of the method.
Still, the experiments by Collard, et al., in [11] and our experiments in III
show that the Biryukov method benefits from the use of linearly dependent
approximations. It seems that the full Biryukov is as efficient as our multi-
dimensional method that does not require the assumption about statistical
independence. In VII we show that full Biryukov is actually just another
version of a multidimensional method. Hence, the assumption of statistical
independence is not necessary.

In the next sections we consider the different statistics we have used for
solving the Alg. 1 key recovery problem.

7.4.3 Log-likelihood Method and χ2-Method

In III we propose using a method that outputs z ∈ Fm2 minimising

h(z) = D(q‖pz). (7.8)

Hence, we test which p.d. pz is closest to the empirical distribution in the
Kullback-Leibler distance. We call the method the log-likelihood or G-
method. The off-line phase of the log-likelihood method is given in Fig-
ure 7.2. Our calculations in III propose that the data complexity is propor-
tional to

N = m/Cmin(p). (7.9)

In V, we consider another approach to the problem, depicted in Figure 7.3:
For each z ∈ Fm2 , we test whether the sample population is pz or not. Hence,
for each z we have a goodness-of-fit problem that we solve using χ2-statistic
of Section 5.2. We call the method, where we choose the z that minimises
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q

pz0

pz1

pz2

pz3

Figure 7.3: Alg. 1: The setting for goodness-of-fit when m = 2. The empirical p.d. q is
near pz0 and far away from pz, z 6= z0

s(z) = χ2(q; pz) =
∑
η∈Fm2

(qη − pzη)2

pη
, (7.10)

the χ2-method. The off-line phase for χ2-method is the same as for the log-
likelihood method given in Figure 7.2, with h replaced by χ2.

We regard the problem of finding z0 as distinguishing pz0 from a set P
of unknown alternative distributions. By property (7.6), the set P is given
by (5.13) and we can use the power approximations by Drost, et al., [19].
Hence, the data complexity is given by Lemma 5.5 to be proportional to

N = 2m/2/C(p). (7.11)

Since each p.d. pz is close to θ in the sense of (3.15), χ2-statistic given
in (5.15) is equivalent to the G-test. On the other hand, the log-likelihood
method is equivalent to solving the goodness-of-fit problem using the G-test
given in Section 5.2.3. Hence, we obtain in V that the log-likelihood and
χ2-method should have the data complexity

N = 2m/2/Cmin(p). (7.12)

Recall that Cmin(p) ≈ C(p).
The difference between the formulas (7.9), (7.11) and (7.12) can be ex-

plained as follows: We do not distinguish one distribution pz0 from a set of
p.d.’s P . Instead, both log-likelihood method and χ2-method given by (7.8)
and (7.10), respectively, solve the multiple HTP of Section 5.1.3. This prob-
lem does not affect the power approximations of Section 5.2 and the χ2-test
has the same data complexity as the log likelihood test.

Consider first the data complexity for the binary HTP between two keys,
z0 and z 6= z0 using h(z) = D(q‖pz). By Proposition 5.1, the error probabil-
ity of choosing z instead of z0 is

Pe = Pr(LLR(Q; pz0 , pz) < 0) = Φ
(
−
√
NC(pz0 , pz)/2

)
.

We obtain that the data complexity is proportional to N = C(pz0 , pz)−1.
Hence, by Lemma 5.4, the total data complexity using h(z) or s(z) is given

70 7. MULTIDIMENSIONAL LINEAR CRYPTANALYSIS



q

pz0

pz1

pz2

pz3 θ

Figure 7.4: Alg. 1: The setting for LLR when m = 2. The empirical p.d. q is near pz0
and far away from pz, z 6= z0 and θ

by (7.9). Note, that this result uses the definition (5.3) of the error probability
and requires the closeness of the distributions.

From the description of the off-line phase in Figure 7.2 we can derive that
the time and memory complexities for both log-likelihood and χ2-method
are 22m and 2m, respectively.

7.4.4 The Optimal Test Statistic for Alg. 1

The optimal test statistic proposed in V is given by the LLR-statistic defined
in (5.9). The distinguisher outputs z if l(z) = LLR(q; pz, θ) is maximised
for z. We used the following heuristics to justify the LLR-method: For each
z ∈ Fm2 , we measure whether the data agrees better with pz or θ. For the right
key, denoted by z0, the corresponding p.d. pz0 should be easy to distinguish
from θ and l(z0) should be large. On the other hand, for all the wrong keys
z 6= z0, the p.d.’s pz and θ are indistinguishable and l(z) = 0 and for the
“most wrong” key, namely, z̄0 = argmaxzD(pz‖pz0), the mark is negative.
The heuristic is depicted in Figure 7.4. The data complexity is by Lemma 5.3
proportional to N = m/Cmin(p)

The off-line phase is again depicted in Figure 7.2, with h(z) replaced by
l(z). Hence, the time and memory complexities for the off-line phase for
both LLR-method are 22m and 2m, respectively and the G-test, the χ2-test
and LLR are practically equal methods.

7.4.5 The Convolution Method

In VII we propose another method. It computes the convolution between
the empirical p.d. q and the theoretical p.d. p. Hence, we call the method
the convolution method.

The idea behind the method can be described as follows: The convolution
P = p ∗ p is a p.d. of some r.v. The mode of the convolution is 0, that is,
the largest probability P0 = maxz Pz. Similarly, for any z ∈ Fm2 , the mode
of pz ∗ p is z. Hence, we consider the following approach: we find z that
maximises

G(z) = (p ∗ q)z.
Rewriting G(z) using (7.5) shows that it is a linear test with coefficients Λz

η =
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Input: empirical p.d. q and theoretical p.d. p of the linear
approximation (7.4)

Output: key class z
compute p ∗ q using FFT;
find mode z′ of p ∗ q;
output z′;

Figure 7.5: Off-line phase of Alg. 1: Using convolution method

pzη mentioned in Section 5.1.3. Therefore, the convolution method has the
same data complexity as the LLR-method.

On the other hand, the mark used in full Biryukov method can be rewrit-
ten using (3.20) that states that c(a) = p̂(a) and ρ(a) = q̂(a) and (3.21).
In VII we obtain the following result:

Theorem 7.1. The key z′ minimises bF (z) if and only if it maximises G(z).
Hence, the full Biryukov method and the convolution method are equiva-
lent.

Since the convolution method does not need the assumption about statis-
tical independence of the one-dimensional approximations, the assumption
is also unnecessary for the full Biryukov method.

Now all the multidimensional Alg. 1 methods—the log-likelihood test
(G-test), χ2-test, LLR, full Biryukov and convolution—have the same data
complexities given by Lemma 5.3. There is no difference in the on-line
phases of the methods: The data, time and memory complexities are N,mN
and 2m, respectively. The memory complexity of both full Biryukov and
convolution method can be reduced if we only use the strong approximations
with non-negligible correlations c(a), a ∈ Fm2 . However, the same reduction
works for both methods.

The off-line phase of the convolution method is depicted in Figure 7.5.
Recall, that the time and memory complexities for the off-line phase of

the full Biryukov, LLR and all the other multidimensional methods are 22m

and 2m, respectively. This is because we have to evaluate the statistic g(q; z)
separately for each z. In the convolution method, only one convolution is
computed with Fast Fourier Transform (FFT). This takes time m2m. The
key is then directly given by the mode of the convolution. Hence, the total
time complexity of the convolution method is also m2m, which is the same
as for the basic Biryukov method and significantly less than the time com-
plexity 22m of the other methods. On the other hand, the data complexity
of basic Biryukov is larger than the data complexities of the other methods.
Therefore, of all the possible realisations of Alg. 1., the convolution method
is most efficient in practice.

7.4.6 Ranking in Alg. 1

Similarly as in the d-sample problem in Section 5.3, we call in V the realised
value of the test statistic g(Q; z) the mark of z. However, in Alg. 1 the
r.v.’s g(Q; z) are not statistically independent. Hence, while there are several
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possible keys in multidimensional Alg. 1., the idea of ranking in Section 6.2.2
is not straightforward to generalise.

We assume in V that the r.v.’s LLR(Q; pz, θ) used for ranking are indepen-
dent and we obtain the following result about the advantage of LLR-based
key ranking:

Theorem 7.2. Assume that the r.v.’s LLR(Q; pz, θ) are s.i. If the p.d.’s pz, z ∈
Fm2 and θ are close to each other, in the sense of definition (3.15), the advan-
tage of the LLR-method using statistic (5.5) can be approximated by

a ≈
(

1

2

√
NC(p)− Φ−1(PS)

)2

, (7.13)

where PS(≥ 0.5) is the probability of success, N is the amount of data used
in the attack andC(p) andm are the capacity and the dimension of the linear
approximation (7.4), respectively.

The same holds for the other multidimensional Alg. 1 methods too, since
they are equivalent for a binary HTP.

The assumption about statistical independence is needed in the deriva-
tion of (6.12), where we use Theorem 3.11. We are not aware of any general
method of calculating the c.d.f. of the rth order statistic statistically depen-
dent random variables. The asymptotic c.d.f. of the maximum of normal,
identically distributed but dependent random variables for large 2m−1, m ≥
7 is given in Corollary 3.13. However, the problem still remains that the ran-
dom variables g(Q; z0) and maxz 6=z0 g(Q; z) are statistically dependent.

Denote by N(z) the data complexity of ranking z with advantage a, if
z is the right key. The assumption of statistical independence of g(Q; z)’s
could be avoided by drawing

∑
z∈Fm2

N(z) ≈ 2m maxz N(z) words of data,
as then the right key class z0 would be ranked with advantage a and each
mark g(q; z), z ∈ Fm2 could be calculated from different data. However, the
resulting complexity estimate is far too large to be of practical value.

In the next section we consider all the practical experiments presented
in III, V and IV and compare the results with the given theoretical predic-
tions.

7.4.7 Experiments with Alg. 1

The practical experiments are done on four-round Serpent, see Example 4.1.
We use Serpent mainly because Collard, et al., used it as a test-bed for their
experiments with the Biryukov method [11]. Moreover, due to Serpent’s
structure, it is possible to find several strong one-dimensional approximations
that can be used in a multidimensional attack.

In III we compare the log-likelihood method to the Biryukov method, us-
ing quantity “gain” defined in [6]. We used m = 10 linearly independent
base approximations computed over four-round Serpent. The results are de-
picted in Figure 1 in III. It shows that the gain of the log-likelihood method is
larger than the gain of the Biryukov method for given data complexity. The
tests also show that many linear combinations of the base approximations
have large correlations and the linearly independent base approximations
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are statistically dependent. Thus, we confirm the claims by Murphy [33].
A more accurate description of the experiments, including the masks and
correlations, is given in III.

In the experiments of V we use the advantage proposed by Selçuk in [40]
instead of the gain. The two concepts are similar and the experimental re-
sults using either measure are consistent. The experiments confirm the claim
in Section 7.4.3 that the two formulas (7.11) and (7.12) for the complexities
of log-likelihood method and χ2-method are over-estimations. The best ap-
proximation for the data complexity is given in (7.9), which is also the data
complexity of the LLR-method of Section 7.4.4. Figures 1 and 2 in V depict
the empirical and theoretical advantage for m = 7 and m = 10, respectively.
Since the LLR-method is in practice the same as log-likelihood method and
χ2-method, the figures only depict the LLR-method.

The results show that the assumption about statistical independence of the
r.v.’s LLR(Q; pz, θ) has an effect: The method is in practice more efficient
than the theory predicts. Hence, the theory gives too pessimistic results. On
the other hand, the predictions are consistent and reasonably close to the
empirical values.

7.5 MULTIDIMENSIONAL EXTENSION OF MATSUI’S ALGORITHM 2

In this section we study different ways to generalise Matsui’s Alg. 2 to multiple
dimensions. Most of the theory is presented in IV. In Section 7.5.1 we
show how the theory of key ranking is applied to multidimensional Alg. 2.
The Biryukov method is studied in Section 7.5.3. We consider two different
approaches for solving the key recovery of Alg. 2: goodness-of-fit problem
in Section 7.5.4 and a parametric distinguishing problem in Section 7.5.5.
Section 7.5.6 studies how the convolution method can be used in Alg. 2.
The experimental results of IV are described in Section 7.5.7.

7.5.1 Statistical Formalisation of Alg. 2

Recall the setting for the one-dimensional Alg. 2 in Section 6.2.2. The cipher
has R + 1 rounds and x and y′ are the plaintext and ciphertext, respectively.
The round function and the (R+1)th round key (outer key) are f and k ∈ Fl2,
respectively. The output after R rounds is y = f−1(y′, k). Alg. 2 uses a linear
approximation over R rounds given by (7.4) with p.d. p. We denote by k0

and z0 the right round key and right inner key class, respectively. The main
goal of Alg. 2 is to find k0 but it is also possible to find z0.

Let us now consider the SPN-cipher, similarly in Section 6.2.2 and gen-
eralise Matsui’s idea for the multidimensional algorithm. In the distillation
phase we collect N plaintext-ciphertext pairs (x1, y

′
1), . . . , (xN , y

′
N), where

the plaintexts are independent and uniformly distributed. Let d be the num-
ber of different values of Ux such that d ≤ 2m. In one dimension, we com-
puted one table TD of the biases of u · x. Now we compute d tables TUxD of
size 1 × 2l corresponding to each value of Ux. In each table, we store the
frequencies of the different values of the l bits of y′, denoted by y′(l).

In the analysis phase we compute the decryption y0 = f−1(y′(l)) with key
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k = 0 and store Wy0 in a 1 × 2l table TA. Then for each Ux we combine
the tables TUxD and TA and obtain the p.d. q0 for k = 0. Permuting TA lets
us compute the other empirical p.d.’s qk, k ∈ Fl2. The time complexity is
then N + 22l+m. It is not clear if the trick proposed by Collard, et al., in [12],
see Section 6.2.2, can be used in multiple dimensions. Nevertheless, usually
N � 22l+m and the time complexity is dominated by N .

In IV, we divide the algorithm to the on-line and off-line phases, similarly
as in multidimensional Alg. 1. We compute all the empirical p.d.’s in the
on-line phase and give the marks in the off-line phase. Our on-line phase
has time complexity N2m, which is infeasible. Therefore, in practice, we
must divide the on-line phase to distillation phase (done on-line) and analysis
phase (done off-line) as described above. The off-line phase consists of the
marking phase, sorting phase and search phase.

In one-dimension the marks are simply the empirical biases and the marks
are given in the analysis phase. In multiple dimensions we have to determine
the marks after the empirical p.d.’s have been computed. This is the reason
behind our original division to on-line phase and off-line phase: the com-
plexities of the on-line phase are the same for all the statistical methods and
the differences of the used statistics appear only in the off-line phase.

We now assume that we have computed the empirical p.d.’s qk such that

qkη = N−1#{t : Uxt ⊕Wf−1(y′t, k) = η}, for all η ∈ Fm2 .

The remaining task is to give the marks for the keys in the marking phase.
We concentrate on determining the most efficient way of using the acquired
information for key ranking, that is, finding the best ranking statistic. For
that, we need to consider the statistical model of the problem.

Similarly as in one-dimension, the Wrong-key Randomisation Hypothesis
states that for each wrong round key candidate, deciphering with the wrong
key produces uniformly distributed data that is statistically independent for
different keys. Then Assumption 6.2 holds for DW = θ. In other words, if
Qk denotes the vector of relative frequencies in the sample corresponding to
the kth key, then Qk’s are s.i. for different k and Qk ∼ multi(N, θ), for all
k 6= k0.

On the other hand, deciphering with the right key k0 produces non-
uniformly distributed data such that Qk0 ∼ multi(N, pz0), where DR = pz0

is a fixed permutation of p that depends on the right key class z0. The permu-
tations have the properties (7.5) and (7.6) mentioned in Section 7.4. Both
k0 and z0 are unknown, but in general, the test statistic g(qk; z) depends on
both parameters. The problem now is determining k0 without knowing z0.
If we are only interested in k, we can use a statistic that is independent of z.
On the other hand, we can also try to find a unique z for each key k such that
k0 gets paired with z0 and the right pair gets the highest mark. We consider
the two options in the next section.

7.5.2 Different Scenarios in Multiple Dimensions

In IV we consider two different HTP settings for determining the last round
key:
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qk0

qk, k 6= k0

(a) Alg. 2 and χ2-method: The wrong
keys k 6= k0 give empirical distribu-
tions qk that are close to θ. The right
key k0 gives empirical distribution qk0
that is further away from θ.

pz0

pz1

pz2

pz3

qk0

qk, k 6= k0

(b) Alg. 2 and LLR-method: The right
key gives distribution that is close to
pz0 whereas the wrong keys are closer
to θ than any pz .

Figure 7.6: Alg. 2: Wrong-key Hypothesis for χ2 and LLR when m = 2.

• Goodness-of-fit problem (usually solved with χ2-statistic, see also [33]
and [43]) and

• Distinguishing of an unknown p.d. from a given set of p.d.’s (Sec-
tion 5.1.4)

The goodness-of-fit approach is a straightforward generalisation of the one-
dimensional Alg. 2 of Section 6.2.2. It can be used for searching for the
last round key. If we consider DW = θ as a given distribution and DR =
pz0 as an unknown distribution, we have a goodness-of-fit setting: For each
key candidate k we test between the null hypothesis H0 stating that Qk ∼
multi(N, θ) and alternative hypothesis H1 stating that Qk � multi(N, θ).
The idea behind the goodness-of-fit approach is described in Figure 7.6(a).

By the symmetry properties (7.5) and (7.6), the set P of alternative p.d.’s
is given by (5.13). Since the p.d.’s pz are close to each other and the uniform
distribution, we can use the power approximations by Drost, et al., given in
Section 5.2. Therefore, we can restrict to using one divergence statistic, the
χ2-test and we call the method the χ2-method. The method and mark in the
goodness-of-fit approach do not depend on the inner key class z. Information
about p.d. p is required only for measuring the strength of the test. After the
right round key k is found, the data derived in Alg. 2 can be used in any
form of Alg. 1 for finding the inner key class z. In this manner, this approach
allows separating between Alg. 1 and Alg. 2. We study the χ2-method in
Section 7.5.4.

By Section 5.1.3, the LLR-statistic is the optimal distinguisher between
two known p.d.’s. If we knew the right inner key class z0, we could simply
use the empirical p.d.’s qk for distinguishing pz0 and the uniform distribution
and then choose the k for which this distinguisher is strongest [1]. In practice,
the correct inner key class z0 is unknown when running Alg. 2 for finding
the last round key.

Our approach is the following. Recall that for each wrong key k 6= k0,
the random vector Qk ∼ multi(N, θ). On the other hand, for the right
key, Qk0 ∼ multi(N, pz0), where pz0 ∈ P = {pz : z ∈ Fm2 }. Hence, for
each key we consider the problem of distinguishing one known p.d. DW = θ
from a given set P of p.d.’s. This is the HTP studied in Section 5.1.4. By
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Baignères and Vaudenay, the optimal distinguisher for the problem is the
LLR-statistic [2]. We call this LLR-based key ranking the LLR-method. The
idea is described in Fig. 7.6(b).

In this case, we find the mark by fixing a unique inner key class z for each
round key candidate k: We determine for each k the key class z, for which the
LLR-statistic is the largest with the given data. The right key k0 is expected to
have z0 such that the LLR-statistic with this pair (k0, z0) is larger than for any
other pair (k, z) 6= (k0, z0). Consequently, we also recover z0 in addition to
k0. In this sense, the LLR-method is similar to the method presented in [6],
where the Alg. 1 and Alg. 2 were combined together for finding both the
outer and inner round keys. We study the LLR-method in Section 7.5.5.

We can use some other distinguishers for solving the HTP of Section 5.1.4.
We consider the convolution method in Section 7.5.6, since it was the most
efficient method for solving Alg. 1. Next we describe briefly the full Biryukov
method for Alg. 2.

7.5.3 Biryukov method for Algorithm 2

Biryukov, et al., considered also Alg. 2 in [6], assuming that the one-dimen-
sional approximations are statistically independent. Let us consider the full
Biryukov method, where all the non-negligible one-dimensional approxima-
tions are used.

Draw N plaintext-ciphertext pairs. For each key candidate k and approx-
imation a · (U · x ⊕W · y) with theoretical correlation c(a), compute the
empirical correlation ρk(a). Consider the statistic with two parameters, z
and k:

b(k, z) =
∑
a∈Fm2

((−1)a·zc(a)− ρk(a))2 +
∑
k′ 6=k

∑
η∈Fm2

(ρk
′
(a))2. (7.14)

By the Assumption 6.2, the right round key should minimise the latter sum.
On the other hand, given the right round key k0, the first sum should be
minimised for the right z0. Hence, we use mark bk = minz b(k, z) and we
choose the k with the smallest mark. The method gives also the class key z.
The time and memory complexities of the analysis phase (see Section 6.2.2)
are 2l+m and 2m+l, provided that l ≥ m, which is usually the case.

7.5.4 Goodness-of-Fit Solution to Alg. 2

The mark for each key is given by the χ2-statistic:

Sk = χ2(qk; θ) = 2mN
∑
η∈Fm2

(qkη − 2−m)2. (7.15)

The mark can be interpreted as the `2-distance between the empirical p.d.
and the uniform distribution. By Assumption 6.2, the right round key should
produce data that is farthest away from the uniform distribution and we choose
the round key k for which the mark Sk is largest. Obviously, if m = 1, we get
the Sk = (ρk)2, where ρk is the empirical correlation given by (6.13). The
marking phase for χ2-method is given in Figure 4.
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Input: table of empirical p.d.’s qkη , k = 0, . . . , 2l − 1, η = 0, . . . , 2m − 1
Output: store marks Sk and possibly the corresponding p.d.’s qk

for k = 0, . . . , 2l − 1 do
compute Sk =

∑2m−1
η=0 (qkη − 2−m)2;

if wish to recover z0 then
store (Sk, q

k);
else

store Sk;
end

end

Figure 7.7: Marking phase of Alg. 2 using χ2-method. Determine the mark Sk for
each k and store them. Store also qk with the mark, if z0 needs to be recovered.

The time complexity of the marking phase is 2l+m. If we only store the
marks Sk, the memory complexity is 2l + 2m and since usually l > m, the
complexity is 2l. If we want to determine z0 using k0, the memory complexity
is 2l+m. We do this in Alg. 1, using for example the convolution method of
Section 7.4.5. Next we determine the advantage of the method as a function
of the data complexity.

Formula (5.16) gives the distributions of the χ2(Qk; θ)-statistic for the right
and wrong keys. For all k 6= k0, the statistic χ2(Qk; θ) ∼ χ2

2m−1. By symme-
try property (7.6), for the right key we have χ2(Qk0 ; θ) ∼ χ2

2m−1(NC(p)). We
can then use the normal approximations of χ2-distribution and formula (6.12)
to obtain the following result:

Theorem 7.3. Suppose the cipher satisfies Assumption 6.2 where DW = θ
and the p.d.’s pz, z ∈ Fm2 and θ are close to each other. Then the advantage
of the χ2-method using mark (7.15) is given by

aχ2 =
(NC(p)− 4ϕ)2

2m+2
, ϕ = Φ−2(2PS − 1), (7.16)

where PS (> 0.5) is the probability of success, N is the amount of data used
in the attack and C(p) and m (> 5) are the capacity and the dimension of
the linear approximation (7.4), respectively.

We have to assume that m > 5, since for small m the χ2-distribution does
not have a simple asymptotic form.

For m = 1, the mark Sk reduces to the square of |ρk| used by Selçuk.
Hence, his theoretical derivations differ from our calculations and we get a
slightly different formula for the advantage. Nevertheless, the methods are
equivalent for m = 1.

Theorem 7.3 implies that the data complexity for given advantage is pro-
portional to

N =
√

2ma/C(p). (7.17)

Hence, in order to strengthen the attack, the capacity should increase faster
than 2m/2 when m is increased. This is a very strong condition and it suggests
that in applications, only approximations with small m should be used with
χ2-attack.
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While (7.16) and (7.17) depend on the theoretical distribution p, the ac-
tual method using (7.15) is independent of p. Hence, we do not need to
know p accurately to realise the attack, we only need to find an approxima-
tion (7.4) that deviates as much as possible from the uniform distribution. On
the other hand, if we use time and effort for computing an approximation of
the theoretical p.d. and if we may assume that the approximation is accurate,
we would also like to exploit this knowledge for finding the right inner key
class with Alg. 1.

Recall the mark bk = minz b(k, z) used in the full Biryukov method in
Section 7.5.3. For each k, the last sum in (7.14) corresponds to a goodness-
of-fit test. If the sum is large, then one k′ 6= k produces a non-uniform
distribution. On the other hand, if the sum is small, all k′ 6= k produce an
output that is practically uniform. Hence, the right key k0 should have the
smallest value for the sum. By minimising the first sum over z, we determine
for each k a unique key class z. This corresponds to a multiple HTP.

We can use Parseval’s theorem to b(k, z) and obtain

B(k, z) = ‖qk − pz‖2 +
∑
k′ 6=k
‖qk′ − θ‖2. (7.18)

Then Bk = minz B(k, z) is an equivalent mark with bk and they both out-
put the same key. Hence, we have shown that the assumption of statistical
independence of base approximations is not necessary for Alg. 2.

We approximate B(k, z) by

B′(k, z) = χ2(qk; pz) +
∑
k 6=k′

Sk′ . (7.19)

Hence, the full Biryukov method joins the χ2-tests for Alg. 2 and Alg. 1. It is
not necessary to have the same coefficient for the sums in (7.19). Since the
method is based on χ2-statistic the full Biryukov has the advantage given by
Theorem 7.3. Let us now consider the optimal method given by the LLR-
statistic.

7.5.5 The Optimal Method for Alg. 2

The method is based on using the LLR-statistic defined in (5.5). We use the
mark

Lk = max
z∈Fm2

LLR(qk; pz, θ). (7.20)

Now k0 should be the key for which this maximum over z’s is the largest and
ideally, the maximum should be achieved when z = z0. While the symmetry
property (7.5) allows one to develop statistical theory without knowing z0, in
practice we must search through Fl2 for k0 and Fm2 for z0 even if we are only
interested in determining k0.

The memory complexity of the marking phase is 2m+l, which is the same
as for the χ2-method when z is determined. The time complexity for the
marking phase is 2l+2m (cf. Table 1 in IV, where it is 2m+l). This is larger
than for the χ2-method. Next we determine the time complexity of the search
phase, that is, the advantage for given data complexity.

We use Proposition 5.1 and obtain the following result in IV.
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Input: table of empirical p.d.’s qkη , k = 0, . . . , 2l − 1, η = 0, . . . , 2m − 1
and the theoretical p.d.’s p

Output: store mark Gk and key class z for each key candidate k ∈ Fl2
for k = 0, . . . , 2l − 1 do

compute qk ∗ p using FFT;
store z(k) = mode(qk ∗ p) and mark Gk = (qk ∗ p)z(k);

end

Figure 7.8: Marking phase of Alg. 2 using the convolution method: We store one
p.d. p and use it to determine the mark Gk. We can determine k0 and z0 simultane-
ously.

Theorem 7.4. Suppose the cipher satisfies Assumption 6.2 where DW = θ
and the p.d.’s pz, z ∈ Fm2 and θ are close to each other. Then the advantage
of the LLR-method for finding the last round key k0 is given by

aLLR = (
√
NC(p)− Φ−1(PS))2/2−m ≈ NC(p)−m. (7.21)

HereN is the amount of data used in the attack, PS (> 0.5) is the probability
of success and C(p) and m are the capacity and the dimensions of the linear
approximation (7.4), respectively.

In the proof we assume that we pair the right key class z0 with k0. The data
complexity of ranking k0 paired with z0 is according to (7.21) proportional to

N = (a+m)/C(p), (7.22)

where a is a fixed advantage. On the other hand, the data complexity of Alg.
1 is proportional to N = m/C(p), which is at most the data complexity of
Alg. 2. Hence, Theorem 7.4 gives the advantage of ranking the key k0 paired
with z0 and it describes the trade-off between the search phase and the data
complexity of the algorithm. With fixed N and capacity C(p), the advantage
decreases linearly with m whereas in (7.16) the logarithm of advantage de-
creases linearly withm. For fixedm and p, the advantage of the LLR-method
is larger than the advantage of the χ2-method.

7.5.6 The Convolution Method

Consider the convolution method of Section 7.4.5 used in multidimensional
Alg. 1. We now show how the method can be applied to Alg. 2. We define
the mark

Gk = mode(qk ∗ p). (7.23)

Hence, for each k we determine a unique z and the right round key k0 should
be paired with the right key class z0. The marking phase is depicted in Fig-
ure 7.8.

The time complexity is 2l+mm, which is less than for the LLR-method and
slightly more than for the χ2-method. The memory complexity is the same as
for LLR, 2m+l. Note that we can also find z(k) for each k using convolution
method (in timem2m) and then compute the markLk = LLR(qk; pz(k), θ) in
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time 2m. Empirical tests with different ciphers would show which approach
is most efficient in practice.

We use the same approximations as in VII, where we prove that the con-
volution method in Alg. 1 has the same data complexity as the LLR-method.
We get the following result:

Theorem 7.5. Under the conditions of Theorem 7.4, the advantage of the
convolution method is the same as for the LLR-method, given in Theo-
rem 7.4.

Hence, the LLR and convolution method have the same data complex-
ities, whereas the χ2-method has a significantly larger data complexity. On
the other hand, the time complexity of the convolution method is slightly
larger than for the χ2-method and smaller than for the LLR-method.

In the next section we study the experimental results of IV.

7.5.7 Experiments with Alg. 2

Similarly as for Alg. 1, the experiments in IV are done on reduced round
Serpent. We use a linear approximation over 4 rounds and obtain 12 bits of
the 5th round key. The efficiency of the methods is compared in theory and
practice by measuring the advantage for given amount of data. The results
are presented in Figure 5 in IV.

We notice that the theoretical predictions agree with the empirical results.
For χ2-method, the optimal number of base equations is m = 4. Increasing
m ≥ 5 decreases the advantage. This agrees with Theorem 7.3. For m < 5,
the theorem cannot be used and the results depend on the cipher. In general,
we claim that m = 4 or m = 5 is the optimal number of approximations for
χ2. The full advantage of 12 bits is obtained at around logN = 28 in both
theory and practice.

For the LLR we see an increase in the advantage until m = 12. Af-
ter that, the increase in capacity becomes negligible with the increase in
m. This is consistent with Theorem 7.4. In general, the LLR-method gets
stronger, when more approximations are used. Moreover, for given m, the
LLR-method has a larger advantage than the χ2-method both in theory and
in practice. Both the empirical and theoretical curves show that the full
advantage of 12 bits is obtained at logN = 26 for LLR, using m = 12 ap-
proximations.

There are no empirical results about the convolution method for Alg. 2.
We expect the results to be similar to those of Alg. 1.

7.6 CONCLUSIONS AND RECOMMENDATIONS FOR ALGORITHMS 1 AND 2

In Alg. 1 one method is obviously more efficient than any other method:
the convolution method. It has the same data complexity, as all the other
multidimensional methods, but the time complexity is significantly smaller
than for the other methods. The empirical results confirm these predictions.
Therefore, we suggest using the convolution method for multidimensional
Alg. 1.
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Table 7.1: Data and time complexities of the χ2-method, the convolution method and
the LLR-method for Alg. 2. We assume we recover z0 after k0 in the χ2-method. The data
complexities Nχ2 and NLLR are given (7.17) and (7.22), respectively.

Distillation Marking
χ2 conv LLR χ2 conv LLR

Data Nχ2 NLLR NLLR – – –
Time Nχ2 NLLR NLLR 2l+m m2l+m 2l+2m

For Alg. 2 we do not have empirical results about the convolution method
and we have to rely on the theoretical predictions and the results of Alg. 1.
The time and data complexities of the different methods are given in Ta-
ble 7.1. We only consider the distillation and marking phases as their com-
plexities depend on the used statistic. For all the methods, the memory com-
plexity of the marking phase is 2m+l, if we wish to recover z0.

The data complexities for the χ2-method and LLR-method in Alg. 2 are
given in (7.17) and (7.22), respectively. According to the theory, the convo-
lution method is more efficient than the LLR-method. On the other hand,
the χ2 is slightly faster than the convolution method, but it has a signifi-
cantly larger data complexity. Therefore, if a good approximation of the p.d.
p of (7.4) is available, we suggest using the convolution method. Otherwise,
χ2 with at most m = 4 approximations must be used.

7.7 MULTIDIMENSIONAL INITIAL STATE RECOVERY FOR A K.S.G

We considered the one-dimensional LFSR initial state recovery attack in Sec-
tion 6.2.3. It is tempting to try to generalise the method to multiple dimen-
sions. However, this is not feasible in practice because the second LFSR
derivation technique works only for one-dimensional masks. For multidi-
mensional masks, there is no efficient way to generate an adequate number
of input masks, whose rows belong to the set ∆M . Since it is not feasible
to consider the whole space of possible initial states Y , we cannot use the
multidimensional approach. However, we can still exploit multiple approxi-
mations. We do this in VI and apply the results to the stream cipher SOSE-
MANUK.

Assume we have m approximations wi · zt ⊕ vi · xt, i = 1, . . . ,m, which
hold at each time t ≥ 0 with correlation c. Similarly as with one approx-
imation, we find the time dependent input masks vi(t) = (At)Tvi, for all
i = 1, . . . ,m. Here A is the matrix given by the linear recursion of the
LFSR (4.2). In Section 6.2.3 we had only one v, which generated all the
other input masks v(t). Now, we have m masks vi, i = 1, . . . ,m, each
of which generates N masks vi(t). We proceed similarly as in the one-
dimensional case. We sort the masks according to their Ln − M last bits
to groups. Then we XOR masks pairwise in a group to obtain input masks
belonging to the set ∆M .

Practical experiments showed that the number of masks in the same group
is small, at most 3 and usually 0, 1 or 2. This is because the space of all pos-
sible masks is much larger than the space of generated masks vi(t). Consider
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two input masks in the same group. Due to the size of the input mask space
FnL2 , the number of mask pairs in the same group for which t1 = t2 is neg-
ligible. Therefore, the XOR’s have correlations c2 and the output key words
zt1 and zt2 give non-trivial data. The data complexity is proportional to

N =
2(nL−M)/2

mc2
.

Hence, we can reduce the data complexity by the factor 1/m. The time
complexity for recovering M bits of the LFSR is M2M +mN log(mN). The
memory complexity is nmN + 2M(M − n− 1 + 2 log(Nm)).

Lee, et al., found a linear approximation for stream cipher SOSEMANUK
with correlation |c| = 2−21.4 [27]. Their data, time and memory complexities
were 2145.5, 2147.9 and 2147.1. The structure of SOSEMANUK makes it possi-
ble to derive several strong approximations using one strong approximation.
Therefore, we could reduce the complexities of the attack by using multiple
approximations with correlations between 2−25.5 2−21.4. The data, time and
memory complexities of the new attack are 2135.7, 2147.4 and 2146.8.
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8 MULTIDIMENSIONAL LINEARITY PROPERTIES OF BOOLEAN
FUNCTIONS

In this chapter we consider some applications of multidimensional linear
cryptanalysis and draw some theoretical bounds for the multidimensional at-
tacks. In Section 8.1 we study the resistance of certain Boolean functions
against linear cryptanalysis. Rothaus showed that bent functions—and only
them—are optimal against one-dimensional linear cryptanalysis [39]. We
give in I a new concept of multi-bent functions that are optimal in mul-
tidimensional linear cryptanalysis, since they achieve the smallest possible
capacity. We also show that multi bent functions are the vector bent func-
tions, defined in the classical way. We determine the capacities for some
other functions, too.

Section 6.1.4 studies simple examples of a k.s.g. with some highly non-
linear filter functions. We see that the multidimensional method has a signif-
icantly smaller data complexity than the one-dimensional method. In Sec-
tion 8.3 we consider the effect of combining functions in multidimensional
linear cryptanalysis. We give multidimensional versions of the Piling Up
lemma and the Correlation Theorem.

8.1 PROPERTIES OF SOME BOOLEAN FUNCTIONS UNDER MULTIDIMEN-
SIONAL LINEAR APPROXIMATION

The results of Chapter 7 show that the data complexity of the multidimen-
sional attack is inversely proportional to the capacity of the linear approxima-
tion. In this section, we determine the capacities for some Boolean functions
that have high resistance against one-dimensional linear cryptanalysis.

In one dimension, bent function offer optimal resistance against linear
cryptanalysis, that is, all the non-trivial linear approximations of bent func-
tions have the same correlations in absolute value. We use the multi-Walsh
transform in I to define resistance against multidimensional linear cryptanal-
ysis. We define multi-bent functions and prove the following result:

Theorem 8.1. The capacity of a multi-bent Boolean function f : Fn2 → Fm2
satisfies

C(f) = 2m−n − 2−n. (8.1)

On the other hand, (8.1) is the smallest capacity that holds for all linear
approximations Wf ⊕ U of f . In I we also show that f is multi-bent if and
only if it is bent. Therefore, bent functions are optimal against multidimen-
sional linear cryptanalysis. However, it remains an open question if there
are other functions than bent functions that are optimal against multidimen-
sional linear cryptanalysis.

Consider a multidimensional power function f : Fn2 7→ Fn2 of the form
f(x) = xd, where d ≥ 1. Our goal is to determine the capacity of the
linear approximation of the form Wf(x) ⊕ Ux. To simplify the derivations,
we assume that W is invertible and Ux = ux, for some u ∈ Fn2 . Note that ux
denotes multiplication in Fn2 . We obtain the following result in II:
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Theorem 8.2. If gcd(d, 2n − 1) = gcd(d− 1, 2n − 1) = 1 then the capacity
C(xd ⊕ ux) = 1, if u 6= 0 and C(xd ⊕ ux) = 0, if u = 0.

Consider two special cases, with d = 3 and d = −1, of non-bent functions
that are highly non-linear and offer strong resistance against one-dimensional
linear cryptanalysis. We have the following corollary:

Corollary 8.3. Let f(x) = xd in Fn2 , where d = −1 and n is arbitrary, or d =
3 and n is odd. Then capacity C(xd⊕ux) = 1, if u 6= 0 and C(xd⊕ux) = 0,
if u = 0.

Hence, increasing dimension n will make x−1 more resistant against one-
dimensional linear attacks. If one uses n approximations the capacity does
not depend on n and the resistance against multidimensional linear crypt-
analysis is the same for all n > 1.

8.2 EXAMPLES OF KEY STREAM GENERATORS

We consider the k.s.g. represented in Section 6.1.4, with binary coefficient
bi for the LFSR recursion and filter function f . The goal is to determine the
capacity C(W ) of the approximation (7.3).

The first example is a filter function that is based on the AES S-box [34].
The non-linearity of the AES is obtained by using the function Ax−1 + b,
where A and b are some constant matrix and vector, respectively. It suffices
to consider the function x−1, since the linear transformations do not affect
the statistical properties of the S-box. Recall that J is the set of indices cor-
responding to the non-zero coefficients in the LFSR recursion equation. For
|J | = 3 we have the following result in II:

Theorem 8.4. Let |J | = 3 and f : Fn2 7→ Fm2 be the filter function of the
k.s.g. described above obtained from the function x−1 in Fn2 by truncating
its output to m bits. Then the correlations c(w) in (6.8) are the same for all
w 6= 0. Moreover, for any invertible m ×m output mask W, the capacity of
the multidimensional approximation is

C(W ) =

{
(2m − 1)24−2n, if n even
(2m − 1)22−2n, if n odd.

Now any n linearly independent one-dimensional masks can be chosen to
be the base masks and W ·⊕j∈J zt+j is an optimal multidimensional linear
approximation, i.e., it has the largest possible capacity. Note also that since
the correlations c(w) are the same for all w 6= 0, then by Theorem 3.3 the
base approximations cannot be statistically independent.

For another filter function x3 we have a similar result for |J | = 3:

Theorem 8.5. Let |J | = 3 and let f : Fn2 7→ Fm2 be the filter function of
the k.s.g. described above obtained from function x3 in Fn2 by truncating its
output to m bits. Then the correlations c(w) in (6.8) are the same for all
w 6= 0 and the capacity is C(W ) = (2m − 1)22−2n for any invertible mask
W .
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Finally, we consider the bent functions. The result applies for any |J | ≥ 3:

Theorem 8.6. Let f(x) be a bent filter function of the k.s.g. described above.
Then, for any fixed even |J | ≥ 4, the correlations c(w) in (6.8) are the same,
for all w 6= 0, and for any fixed odd |J | ≥ 3 the absolute values of the
correlations |c(w)| are the same, for all w 6= 0. The capacity is C(W ) =∑

a6=0 2−2n = (2m − 1)2−2n for any invertible mask W .

We note that in all the cases, if n = 2m, the data complexity of a multidi-
mensional attack is 23m, whereas for a one-dimensional attack it is 24m.

8.3 COMBINING APPROXIMATIONS

We know that in one-dimension, if consecutive functions used in the cipher
are s.i., their combined correlation is given by (6.3) and the correlation de-
creases when more functions are used. Now we want to know how combining
non-linear functions affects the resistance of a cipher against multidimen-
sional linear cryptanalysis. In other words, we consider a “road” through the
cipher instead of a one-dimensional trail.

By Lemma 3.10 we have the following result about combining multidi-
mensional approximations:

Lemma 8.7 (Piling Up Lemma in Multiple Dimensions). Let f : Fn′2 7→ Fk2
and g : Fk2 7→ Fn2 be consecutive but s.i. Boolean functions, where the
output of f is used as an input to g. Let p and q be the p.d.’s of the linear
approximations of f and g, respectively, such that the output mask of f is
the input mask of g. Then the p.d. of the approximation of g ◦ f is the
convolution p ∗ q.

In one-dimension we have an equality between the combined correlation
over f and g and the product of the partial correlations. Hence, the same
holds for the absolute values of the correlations and we know that the power
of the linear distinguisher is reduced for each round, provided that the func-
tions are properly chosen. As we noted in Section 3.3.4, we do not have such
a strong result in multiple dimensions. Unfortunately, we only have an upper
bound for the combined capacity (3.22), which gives only a lower bound for
the data complexity.

In II we are also interested in generalising the Correlation theorem 6.1 to
multiple dimensions. The proof uses the multi-Walsh transform. Actually,
the need for a tool for studying the combination of multidimensional p.d.’s
was the original motivation for multi-Walsh transform. We have the following
result in II:

Theorem 8.8 (Correlation Theorem in Multiple Dimensions). Let f : Fl2 →
Fn2 , g : Fn2 → Fk2. Let U, V and W be binary matrices of size m × l, m × n
and m × k, respectively. Let the p.d.’s of the m-dimensional approxima-
tions V f(x) ⊕ U(x), x ∈ Fl2 and Wg(y) + V (y), y ∈ Fn2 be pf (U ;V ) and
pg(V ;W ), respectively and denote the p.d. ofW (g◦f)(x)⊕Ux by q(U ;W ).
For all matrices U and W

q(U ;W ) = 2−mn+n
∑

V ∈(Fn2 )m

pf (U ;V ) ∗ pg(V ;W )− (2n − 1)θ, (8.2)
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where θ is the uniform distribution with 2m components.

Similarly as in one-dimension in (6.5), we have just an upper bound for
the combined capacity. Therefore, we only have a lower bound for the data
complexity and we do not know how the combining of functions affects the
resistance against multidimensional linear cryptanalysis. An open question is
to find a non-trivial lower bound for the combined correlations either for the
multidimensional Piling Up lemma 8.7 or Correlation Theorem 8.8.

In the previous examples we saw how the efficiency of linear cryptanal-
ysis increases with the number of approximations. If the one-dimensional
approximation through a cipher is a trail, then the multidimensional approx-
imation over the whole block-size of the cipher is a “highway”. In these
theoretical examples the capacity through a highway does not even depend
on the block-size. However, in practice we cannot compute the p.d.’s for the
highway. Even computing directly through roads of smaller dimension using
Lemma 8.7 or Theorem 8.8 is usually infeasible. Instead, we determine the
p.d. through a road by finding several strong one-dimensional approxima-
tions and combining them using Lemma 3.8.
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9 CONCLUSIONS

9.1 RESULTS

In this thesis we studied multidimensional linear cryptanalysis and its appli-
cation to symmetric cryptography. We showed how multiple linear approx-
imations can be used for making linear cryptanalysis attacks more efficient.
We studied different ways of realising the attacks and compared them using
well-known statistical tools. We did also practical experiments, mainly with
the block cipher Serpent.

In the introduction, Chapter 1, we introduced the basic problems when
using multiple approximations. We described the solutions provided by the
publications I– VII and also the contribution of the author of this thesis.
Chapters 2– 6 were mostly a repetition of known theory about ciphers, statis-
tics and related concepts, essential for this thesis.

Most of the new results were described in Chapters 7 and 8. The multi-
dimensional linear distinguisher was already proposed by Baignères, et al.,
in [1] but there was no practical way of using the distinguisher until we
proposed in II to use one-dimensional approximations for constructing the
multidimensional distribution.

Baignères, et al., showed how the data complexity of the distinguishing at-
tack is determined by the deviation of the p.d. from the uniform distribution.
Following Biryukov, et al., we called this measure the capacity and gener-
alised it to non-uniform distributions. Then we were able to obtain simple
formulas for the data complexities for other than distinguishing attacks. We
could derive theoretical bounds for multidimensional linear cryptanalysis as
discussed in Chapter 8.

We considered a straightforward generalisation of the multidimensional
method for the LFSR initial state recovery attack presented by Berbain, et
al., in [4]. However, we noticed that this is not feasible. Rather, we showed
in VI how multiple approximations can be used in a one-dimensional attack.

We discovered that while in one-dimension there is essentially only one
way of realising Matsui’s Alg. 1 or Alg. 2, both algorithms have several gener-
alisations in multiple dimensions. We discussed the algorithms in Chapter 7
using statistical methods and analysing the empirical results with reduced
round Serpent, presented in III, V, IV and VII. In Section 7.4 we explained
the different results between the theories presented in III, V and VII about
multidimensional Alg. 1. We showed the proper way of interpreting the
problem using statistics.

We showed that if we know the p.d. of the multidimensional approxi-
mation, the theoretically optimal way for realising both methods is to use
the LLR-statistic. However, the convolution method, presented in VII, is in
practise the most efficient method, if the p.d. is given. On the other hand,
if the p.d. is unknown, we should use the χ2-method. In fact, Cho studied
in [9] a situation where the p.d. varies significantly with the key and the best
option is to use the multidimensional χ2-method.
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9.2 FUTURE WORK

While most of our experiments were consistent with the theory, we noticed
that the experimental results were better than expected. For Alg. 1, we pro-
posed using key ranking in V, although Alg. 1 is not the same statistical
problem as Alg. 2. This “abuse” of key ranking theory can explain part of the
results for Alg. 1, but not for Alg. 2.

We suggest that there is an underlying property in the cipher that makes
the attacks more efficient than expected. For example, the basic assumption
used in the linear cryptanalysis is that the correlation or p.d. of the linear
approximation is independent of the key. If this is not the case, there may be
keys for which the capacity of the approximation is significantly larger than
the average capacity over all keys, hence making the data complexity smaller
than expected. This could explain the results at least for Alg. 2. We propose
studying more closely the dependence of the capacity (or correlation) of the
used key and how this supposed dependence affects linear cryptanalysis.

We suggested using convolution method for Alg. 2 in Section 7.5.6 of this
thesis. Practical experiments should also be performed.

The theoretical results in Chapter 8 leave some open questions. In one-
dimensional linear cryptanalysis bent functions—and only them—are opti-
mal. While we showed that multi-bent functions are optimal against multidi-
mensional linear cryptanalysis, we do not know whether there are other opti-
mal functions. It would also be interesting to find a non-trivial lower bound
for the joint capacity of two multidimensional approximations. However, we
assume that in a general case, such an inequality does not exist.

Finally, some ciphers may have properties that make them particularly
vulnerable to multidimensional linear cryptanalysis. For example, symme-
try in the cipher’s structure can make it easier to find many strong linear
approximations. Hence, there are many ciphers that can be attacked with
multidimensional linear cryptanalysis.
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