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1 INTRODUCTION 
 

Chlorine dioxide is the most utilized chemical in pulp bleaching. The first mills started to 

use chlorine dioxide as early as 1945 and it replaced chlorine as the most common 

bleaching chemical in the production of chemical pulp at the end of the 1980s [Sixta et al. 

2006]. Nowadays at least 75 % of all bleached chemical pulp produced in the world is 

bleached with chlorine dioxide [Hamzeh et al. 2007].  In addition to pulp bleaching, 

chlorine dioxide is also used in many other applications such as water treatment, textile 

bleaching, bleaching of some food products (flour, fats, sugar) and as a disinfectant agent 

[Masschelein 1979, Katz and Narkis 2001]. 

 

Chlorine dioxide has a much smaller environmental impact than chlorine since ClO2 forms 

considerably less chlorinated organic compounds than Cl2 does. It has been stated that the 

formation of chlorinated organics was reduced by 80 % when chlorine was replaced by 

chlorine dioxide [Germgård and Larsson 1983, Lachenal et al. 1998, Sixta et al. 2006]. In 

addition, the use of chlorine dioxide has totally eliminated the formation of the most 

harmful polychlorinated organic compounds [Bright et al. 2000, Sixta et al. 2006]. Even 

though the environmental aspects of chlorine dioxide bleaching have lately been an issue in 

the media, ECF bleaching is still considered the best available technology (BAT) in pulp 

production [European IPPC Bureau, BREF (12.2001)]. Thus chlorine dioxide is 

recommended to be used in all new and old kraft pulp bleaching plants. 

 

Although the chemistry of chlorine dioxide bleaching has been a research subject for over 

three decades, the chemistry that takes place in chlorine dioxide bleaching is not yet fully 

understood. In particular the kinetics of the individual reactions has not been studied to any 

large extent. This information is required in order to be able to understand which reactions 

have significance in chlorine dioxide bleaching and which are too slow to be important. In 

addition, the information on the reactions of different inorganic chlorine compounds formed 

in chlorine dioxide bleaching is, in part, inconsistent and indefinite. 

 

 

 

 1



1.1 Chemistry of chlorine dioxide bleaching 
 

Chlorine dioxide bleaching involves a complex mixture of organic and inorganic 

compounds. These compounds react with each other in numerous ways making the 

chemistry of chlorine dioxide bleaching difficult to investigate and understand. 

 

Chlorine dioxide bleaching starts with a fast reaction between chlorine dioxide (ClO2) and 

phenolic lignin structures [Lindgren 1971, Hoigné and Bader 1994]. This reaction produces 

chlorite (ClO2
-) and hypochlorous acid (HOCl) in a molar ratio 1:1 [Kolar et al. 1983].  

These compounds can react together very rapidly forming an intermediate Cl2O2, which 

reacts further forming chlorate and chlorine dioxide [Taube and Dodgen 1949, Kieffer and 

Gordon 1968a, Schmitz and Rooze 1981, Peintler et al. 1990, Nicoson and Margerum 2002, 

Horváth et al. 2003]. The chlorite formed can also self-decompose in acidic conditions and 

form hypochlorous acid and chlorate (ClO3
-) [Hong and Rapson 1968, Kieffer and Gordon 

1968a, Downs and Adams 1973, Horváth et al. 2003, Taube and Dodgen 1949]. 

Hypochlorous acid is in equilibrium with chlorine (Cl2) [Kolar et al. 1983, Deborde and von 

Gunten 2008]. Both of these species (HOCl and Cl2) are able to oxidize and chlorinate 

various organic structures [Gierer 1986], resulting in chlorinated organic compounds that 

can be harmful for the environment [de la Mare et al 1954, Brage et al 1991b, Joncourt et al. 

2000].  Figure 1 presents a simplified scheme of the reactions taking place in chlorine 

dioxide bleaching. 

 

ClO2 Cl2
+ ClO2

ClO2
- + L.

+ L
Lox + HClO

(LCl)

+ L

LCl

+ L

Lox

HClO2

ClO3
-

(Lox)ClO3
-  

Figure 1. A simplified scheme of the reactions in chlorine dioxide bleaching. L = 

lignin, L. = lignin radical, Lox = oxidized lignin and LCl = chlorinated lignin 
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In reality, carbohydrates, hexenuronic acid, extractives and non-process elements also 

contribute to the reactions of various chlorine compounds. In addition, the reactions are 

affected by the heterogeneous nature of lignin. Lignin is a complex netpolymer containing 

various functional groups that can react in different ways during ClO2 bleaching. The 

different oxidation products of lignin are numerous as are their further reactions with 

different chlorine species during ClO2 bleaching.  

 

1.2 Modeling of chlorine dioxide bleaching 
 

Several approaches have been utilized in previous chlorine dioxide bleaching models. Since 

this work was conducted as a part of a project where a phenomenon-based model for pulp 

beaching was developed, modeling is discussed briefly in this chapter.  

 

So far most models of chlorine dioxide bleaching have been based on correlations to predict 

the kappa number development [Germgård 1982b, Savoie and Tessier 1997, Chandranupap 

and Nguyen 2000, Barroca et al. 2001, Tessier and Savoie 1997]. An extended version by 

Mortha et al. [2001] is capable of predicting the development of pH and the concentration 

of different inorganic chlorine species in addition to the kappa number. The advantage of 

these models is their easy usability and that they give some information on how changes in 

process conditions affect the resulting kappa number. However, due to their simple nature, 

the models are usable only in very restricted conditions. The models are also rather case-

sensitive, meaning that they are valid only for the pulp and mill that they were designed for. 

 

A more advanced model has been reported by Gu and Edwards [2003]. It includes several 

chemical reactions of chlorine dioxide and chlorine with different organic pseudo-

compounds either in the pulp or in the surrounding liquor. Yet the reactions are very limited 

in number and the effects of diffusion and two separate liquid phases are excluded. The 

model also involves some inorganic reactions but their stoichiometries and rates are fitted to 

give the desired outcome disregarding the reactions and kinetics that have been reported in 

literature.  Thus, although possessing a better ability than the previous models to predict 

different parameters in bleaching, the model is still rather simplified. 
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In our approach the real chemistry and other essential phenomena taking place in chlorine 

dioxide bleaching are implemented in the model at molecular level. This approach means 

that the various reactions taking place in bleaching need to be included in the model in a 

much more comprehensive and accurate manner than in any of the previous bleaching 

models [Tarvo et al. 2008, Tarvo et al 2010]. When considering the complexity of chlorine 

dioxide bleaching it may be understood that, in order to obtain a good prediction, the model 

must include a large number of reactions that are chosen carefully to make sure that they 

really are the most relevant for chlorine dioxide bleaching conditions. 
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2 OBJECTIVES AND OUTLINE OF THE STUDY 
 

This work consists of several attempts to resolve further the role of different inorganic 

chlorine compounds, especially of Cl(III), in chlorine dioxide bleaching. Because it is not a 

delignifying or bleaching agent as such, the reactions of Cl(III) have only been considered 

in rather general terms so far. However, Cl(III) reacts in chlorine dioxide bleaching with 

various organic and inorganic structures and compounds, resulting in the formation of 

various chlorine compounds, including the very reactive hypochlorous acid.  

 

This work was realized as a part of a project, which aimed at developing a phenomenon-

based molecular level computer model for pulp bleaching. The model describes 

quantitatively the reactions of various inorganic chlorine compounds and includes a very 

extensive library of the reactions between these inorganic chlorine compounds and pseudo-

lignin and carbohydrate structures [Tarvo et al 2010]. During this project an extensive 

amount of literature was surveyed and the information found was implemented in the 

model. The research work reported here has been conducted to fill the gaps of knowledge in 

the literature or to solve topics that have been reported in conflicting ways. The main 

objective of this thesis was to clarify the reactions of Cl(III) and their relative importance in 

chlorine dioxide beaching. 
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3 EXPERIMENTAL 
 

3.1 Inorganic reactions of Cl(III) 
 

The experiments on the self-decomposition of Cl(III) (Paper I) and its reaction with HOCl 

(Paper II) were carried out in a double wall, thermostated 200 ml glass reactor equipped 

with a Teflon lid. A magnetic stirrer was used for mixing. In Paper I the reaction medium 

included DMSO and EDTA to prevent hypochlorous acid and metal ions from causing 

undesired side reactions. Sampling from the reactor was conducted with a glass pipette at 

selected time intervals. In Paper II the samples withdrawn were treated immediately with 

DMSO to terminate the reaction (immediate trapping of residual HOCl) and to prevent 

hypochlorous acid from interfering with the titration. The amounts of residual chlorine 

compounds were determined by iodometric titration as described by Wartiovaara [1982]. 

The measurement uncertainty of the titration was estimated to be ± 8 × 10-2 mM for 

chlorine dioxide and ± 2 × 10-2 mM for both chlorite and chlorate. 

 

3.2 Organic reactions of Cl(III) 
 

The treatment of organic compounds with Cl(III) (Papers III and IV) was carried out with 

the same equipment as described above for the inorganic reactions of Cl(III). In these 

experiments also the reaction medium included DMSO and EDTA to prevent undesired side 

reactions with hypochlorous acid and metal ions. The organic compounds studied were 

formaldehyde, acetone, 4-ethylguaiacol, vanillin, veratraldehyde, benzaldehyde, D-glucose, 

glycolaldehyde, 5-formyl-2-furancarboxylic acid and 2,4,6-trimethylphenol (Figure 2). The 

residual Cl(III) concentration was determined by iodometric titration as described by 

Wartiovaara [1982]. The measurement uncertainty of the titration was estimated to be ± 2 × 

10-2 mM. 
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Figure 2. The structures of I. formaldehyde, II. acetone, III. ethylguaiacol, IV. 

vanillin, V. veratraldehyde, VI. benzaldehyde, VII. glucose in the aldehyde form (a) 

and cyclic form (b), VIII. glycolaldehyde, IX. 5-formyl-2-furancarboxylic acid and 

X. 2,4,6-trimethylphenol. 

 

3.3 Pulp treatments with Cl(III) 
 

The pulps used in the Cl(III) experiments (Paper IV) were obtained from Finnish pulp mills. 

Prior to the experiments some of the pulps were bleached with varying chlorine dioxide 

dosages using 20 g o.d. pulp in plastic bags at 11% pulp consistency at 50°C. After 

bleaching, the pulps were immersed in an ice water bath to stop all reactions. Then they 

were washed with de-ionized water and homogenized. The kappa numbers of the pulps 

were determined according to standard SCAN-C 1:00.  

 

The reactivity of the pulps with Cl(III) was tested as described in chapter 3.2 for organic 

compounds. The pulp consistency of the reaction medium was 1 % and included 12 mM 

DMSO and 0.2 mM EDTA to prevent undesired side reactions.  
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3.4 Chlorine dioxide bleaching  
 

The oxygen-delignified kraft pulp used (Papers V and VI) was obtained from a Finnish pulp 

mill producing fully bleached birch pulp. The pulp was subjected to chlorine dioxide 

bleaching using different chlorine dioxide dosages (15, 20, and 30 kg act. Cl/Adt) at 10 % 

pulp consistency in plastic bags. In addition, the effect of an acidic treatment (A-stage) prior 

to chlorine dioxide bleaching was tested with a dosage of 20 kg act. Cl/Adt. The A-stage 

was performed in a plastic bag at 90°C, pH 2.5 and 11% pulp consistency for three hours. 

The pulp was not washed before the following chlorine dioxide stage in order to simulate 

the carryover of reaction products from the A-stage to the D0-stage. For each series 1-, 5-, 

10-, 20-, and 30-minute reaction times were carried out in separate batches. 

 

After bleaching, the pulp was immersed in an ice water bath to terminate all reactions. The 

pulp was then washed with de-ionized water and homogenized. The kappa number was 

determined according to standard SCAN-C 1:00. The aromatic lignin and hexenuronic acid 

(HexA) contents were determined using UV resonance Raman (UVRR) spectroscopy as 

described by Jääskeläinen et al. [2005]. The measurement uncertainty of this method for 

these samples was calculated to be ± 1.7 meq/kg for HexA and ± 4 % for the removal of 

aromatic lignin. The phenolic lignin content of the pulp was measured according to Warsta 

et al. [2006]. The measurement uncertainty of this method was calculated to be 0.3 

mmol/kg pulp for the analyzed sample. 

 

The amount of organically bound chlorine in the filtrate (AOX) and pulp (OX) was 

measured with an AOX-analyzer (Thermo Electron, Dextar) as described in standards SFS-

EN 1485 and SCAN-CM 52:94, respectively. The concentrations of chlorine dioxide, 

chlorite + chlorous acid (Cl(III)), and chlorate in the filtrate were determined by iodometric 

titration according to Wartiovaara [1982] (the measurement uncertainty was ± 0.08 mM for 

chlorine dioxide and ± 0.02 mM for chlorite and chlorate). The amount of chloride was 

measured by ion chromatography (Dionex ICS-1500) according to SFS-EN ISO 10304-4.  
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3.5 Calculation of kinetic parameters 
 

The kinetic parameters (Papers I-III) were optimized using KinFit software [Jakobsson and 

Aittamaa 2009a]. The Levenberg-Marquardt method [Press et al. 1989] was applied with 

uniform weighting. In Papers I and III the rate coefficients (k) and their temperature 

dependencies (Ea – energy of activation) were fitted against the Cl(III) concentration data 

recorded in the experiments. In Paper II the observed time dependencies of the 

concentrations of chlorine dioxide and chlorate were utilized in addition to the Cl(III) 

concentration data. Confidence limits of 95 % were obtained from a statistical analysis 

using Student T -distribution. Computational repetitions of the laboratory experiments were 

carried out with Flowbat software [Jakobsson and Aittamaa 2009b]. 
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4 RESULTS AND DISCUSSION 
 

4.1 Self-decomposition of Cl(III) 
 

In an aqueous solution chlorite is in equilibrium with its acidic form, chlorous acid (HClO2) 

according to Reaction 1. Together they form the total amount of chlorine (III) [Gordon et al. 

1972]. The Ka value of this equilibrium has been reported to be (at room temperature) 1.1 × 

10-2 M [Gordon et al. 1972, Downs and Adams 1973]. Several papers have been published 

on the self-decomposition of Cl(III). It is evident that the numerous reactions are complex 

and involve many different inorganic chlorine compounds [Emmenegger and Gordon 1967, 

Gordon et al. 1972, Aieta and Roberts 1986, Peintler et al. 1990, Ni et al. 1993b]. The 

literature published so far gives conflicting information on the kinetics as well as on the 

reactions included in the decomposition of chlorite. Sometimes the decomposition of Cl(III) 

is referred to as net reactions such as those presented in Reactions 2-4 [Gordon et al. 1972, 

Downs and Adams 1973, Ni et al.1992, Deshwal et al. 2004]. However, these net reactions, 

producing chlorine dioxide and chlorate, are composed of a series of elementary reactions 

[Taube and Dodgen 1949, Hong and Rapson 1968, Kieffer and Gordon 1968a, Kieffer and 

Gordon 1968b]. In addition to the initial Cl(III) decomposition, they include several follow-

up reactions of the formed reactive species. The stoichiometries of the subsequent reactions 

are dependent on the reaction conditions and therefore Reactions 2-4 do not describe the 

decomposition properly other than for the conditions in which they were defined. 

 

HClO2  ClO2
- + H+         (1) 

5 HClO2 → 4 ClO2 + Cl- + 2 H2O + H+     (2) 

5 ClO2
- + 4 H+ → 4 ClO2 + Cl- + 2 H2O          (3) 

3 HClO2 → 3 H+ + 2 ClO3
- + Cl-            (4) 

 

Only a limited number of studies have been carried out on the decomposition of Cl(III) in 

the absence of the reactive intermediates that are formed during the decomposition. [Hong 

and Rapson 1968, Kieffer and Gordon 1968a, Schmitz and Rooze 1981, Horváth et al 

2003]. At least the following reaction routes (Reactions 5-15) have been postulated to be 

involved in the decomposition of Cl(III) without the participation of intermediate 

components [Taube and Dodgen 1949, Hong and Rapson 1968, Kieffer and Gordon 1968a, 

 10



Kieffer and Gordon 1968b, Downs and Adams 1973, Schmitz and Rooze 1981, Horváth et 

al. 2003].  

 

2 HClO2 → HOCl + H+ + ClO3
-      (5) 

HClO2 + ClO2
- → HOCl + ClO3

-      (6) 

HClO2 + Cl- + H+ → 2 HOCl       (7) 

HClO2 + Cl- + H+ → Cl2O + H2O      (8) 

Cl2O + H2O → 2 HOCl       (9) 

HClO2 + Cl-  [HCl2O2
-]        (10) 

[HCl2O2
-] + Cl- → products (rate-determining)    (11) 

2 HClO2  Cl2O3 + H2O        (12) 

Cl2O3 + H2O → H+ + HOCl + ClO3
-       (13) 

Cl2O3 + Cl- + H+ → Cl2O2 + HOCl      (14) 

Cl2O3 + HClO2 + H2O → 3 H+ + Cl- + 2 ClO3
-    (15) 

 

In our experiments DMSO was used to trap the intermediately formed hypochlorous acid 

and chlorine. Thus their participation in the reactions was prevented which made the 

monitoring of the pure self-decomposition of Cl(III) possible The results presented in this 

chapter can be found in Paper I.   

 

4.1.1 Effect of metals 

 

The disproportionation of Cl(III) has been reported to be fastest at pH 2-3 and extremely 

slow at pH 4 [Kieffer and Gordon 1968b]. This trend differs from our observations when 

chelation was used to trap the metal ions present in the reagents as impurities. However, 

when these metal ions were not trapped with EDTA, the maximum reaction rate was indeed 

seen at pH 2. Chlorine dioxide formation was also apparent in this case. At pH 1 and 3.5 the 

decomposition rate was practically unaffected by chelation. This indicates that the presence 

of metal ions has a significant effect only at around pH 2.  

 

The catalyzing effect of Fe3+ ions on the self-decomposition of Cl(III) was discovered over 

three decades ago [Ondrus and Gordon 1972]. It has been reported that the rate of the Fe3+ 

ion catalyzed reaction increases with increasing pH in the pH range of 0.3-2.5 [Ondrus and 
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Gordon 1972, Fábián and Gordon 1991b, Fábián and van Eldik 1993, Fábián 2001, Wang et 

al. 2004] and that the catalyzed reaction is about 500 times faster than uncatalyzed self-

decomposition.  The effect of Fe3+ ions is not seen at higher pH values due to their 

hydroxylation and the formation of polynuclear iron compounds [Fábián and Gordon 

1991a, Fábián and Gordon 1991b].  

 

4.1.2 Cl(III) decomposition in the absence of metals 

 

When EDTA was used to prevent the possible catalysis of metal ions, chlorine dioxide was 

not formed in the decomposition of Cl(III) in the presence of DMSO. Without DMSO, 

chlorine dioxide formation was apparent. Since DMSO traps hypochlorous acid and 

elemental chlorine, blocking their further reactions [Imazuimi et al. 1995, Lachenal et al. 

1998, Yoon and Wang 2002], chlorine dioxide formation must involve the intermediately 

formed HOCl. Since chlorine dioxide formation was not observed in the presence of excess 

DMSO, it can be concluded that chlorine dioxide is not a product of the pure decomposition 

of chlorous acid or chlorite. Thus hypochlorous acid, chlorate and chloride are the only 

possible stable chlorine containing products originating from Cl(III) self-decomposition. 

This leads to the conclusion that Reactions 2 and 3 are not valid as such. Also the formation 

of the Cl2O2 intermediate through Reactions 12+14 can be considered irrelevant since Cl2O2 

is known to produce chlorine dioxide in its follow-up reactions [Peintler et al. 1990, 

Nicoson and Margerum 2002, Horváth et al. 2003]. 

 

The decomposition rate of Cl(III) decreased rapidly as the pH increased from 1 to 3 (Figure 

3). Neutral Cl(III) solutions are known to be practically stable [Gordon et al. 1972]. As the 

pKa value of HClO2 (Reaction 1) is 2.0 [Gordon et al. 1972, Downs and Adams 1973], at 

pH 3 over 90 % of Cl(III) is present as chlorite. Reaction 6 would require the 

decomposition of Cl(III) to occur at all pH levels where both chlorous acid and chlorite are 

present in considerable quantities. However, the decomposition rate was practically 

negligible even at pH 3. Thus it was concluded that chlorous acid is responsible for the 

decomposition of Cl(III) while chlorite is stable and that Reaction 6 can be disregarded. 
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Figure 3. The decomposition of Cl(III) as a function of time at 60°C at pH 1 (�), pH  

2 (o) and pH  3 (∆) with [Cl(III)]0 = 0.6 mM, [DMSO]0 = 12 mM, [NaCl]0 = 5.16 

mM, and [EDTA]0 = 10 mM. The lines show the prediction with the rate parameters 

obtained. 

Chlorate formation was observed in all the experiments where Cl(III) decomposition 

occurred (Figure 4). Lowering the pH from 2 to 1 increased chlorate formation. However, 

the increase was not as substantial as the increase in Cl(III) decomposition. Reaction 5 has 

been suggested to depict the self-decomposition of Cl(III) in the absence of chloride ions 

[Hong and Rapson 1968, Kieffer and Gordon 1968a, Downs and Adams 1973, Taube and 

Dodgen 1949]. Our experimental results support this route; the chlorate formation 

corresponded to the stoichiometry of Reaction 5. Reaction 4 was considered inappropriate 

because it predicts more chlorate to be formed than what was observed. Reactions 12 and 

13 are kinetically and by stoichiometry equivalent to Reaction 5. On the basis of the results 

obtained, the possible role of the Cl2O3 intermediate cannot be commented upon. Thus it is 

only stated that if these very fast intermediate reactions are left out of consideration, the 

decomposition of Cl(III) in the absence of chloride ions can be represented with Reaction 5. 
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Figure 4. Conversion of Cl(III) (�) to chlorate (ClO3
-) (o) as a function of time 

with [Cl(III)]0 = 3.0 mM in the presence of DMSO (c0 = 0.24 M) at pH 2 and T = 

60°C. ([NaCl]0 = 5.16 mM, [EDTA]0 = 10 mM). The lines show the prediction with 

the rate parameters obtained. 

The effect of chloride ion concentration on the decomposition of Cl(III) was studied at pH 1 

and 2. At pH 2, the chloride concentration (0.5-50 mM) had only a small effect whereas at 

pH 1 chloride clearly catalyzed the decomposition; the more chloride present, the faster the 

decomposition (Figure 5).  

 

Reactions 7-11 have been suggested earlier to describe the chloride-catalyzed 

decomposition of Cl(III). Reactions 10 and 11 were disregarded as the observed effect of 

pH was more pronounced than would derive only from the Cl(III) equilibrium (Reaction 1). 

Reaction 7 as well as Reactions 8+9 present the hydronium and chloride ion catalyzed 

decomposition of HClO2. This stoichiometry of the catalysis is in accordance with the 

experimental results; chloride ion concentration affects the decomposition substantially 

only at low pH values where the hydronium ion concentration is high and therefore the rate 

of Reaction 7 becomes important.  Whether Reaction 7 or Reaction 8 followed by Reaction 

9 is the more appropriate representation for this decomposition cannot be judged on the 

basis of our measurements. Since both routes result in the same overall equation, it can be 

stated that Reaction 7 describes the chloride-catalyzed decomposition if the very short-lived 

intermediates are ignored. 
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Figure 5. Cl(III) decomposition as a function of time with different added chloride 

concentrations, 0 mM (�), 50 mM (∆), and 100 mM (◊), at pH 1 and 60°C with 

[Cl(III)]0 = 0.6 mM, [DMSO]0 = 12 mM and [EDTA]0 = 10 mM. The lines show the 

prediction with the rate parameters obtained. 

 

4.1.3 Kinetics of Cl(III) decomposition in absence of metals 

 

The rate parameters (k – rate coefficient, Ea – activation energy) were determined for 

Reactions 5, 7 and 12+15, which were found plausible based on reaction stoichiometry. The 

reactions were assumed to obey elementary kinetics (Eqs. 16 - 18). As Reaction 12 has been 

introduced only on a speculative level, Reactions 12 and 15 were combined to give an 

apparent third order reaction with respect to HClO2 for r15. 

 

2
5 5

[ ( )] [d Cl IIIr k
dt

= − = 2 ]HClO       (16) 

7 7 2
[ ( )] [ ][ ][d Cl IIIr k HClO C

dt
]l H− += − =     (17) 

'
15 15 2 3 2 15 2

[ ( )] [ ][ ] [d Cl IIIr k Cl O HClO k HClO
dt

= − = = 3]   (18) 
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The rate coefficient for Reaction 15 could not be identified, i.e. statistical analysis gave 

large confidence limits for the parameters. Omitting Reaction 15 from the model and 

refitting the reaction parameters had no effect on the values obtained for Reactions 5 and 7. 

Thus, Reaction 15 was considered insignificant in our experimental conditions. The rate 

parameters obtained for Reactions 5 and 7 are shown in Table 1 along with their 95 % 

confidence limits. The modeled and experimentally observed Cl(III) concentrations are 

shown in Figures 3-5. As can be seen from the figures, these reactions and the reaction 

parameters obtained predicted the decomposition of Cl(III) well. Thus it can be concluded 

that among the large group of suggested reactions, Reactions 5 and 7 are adequate to 

describe Cl(III) decomposition in the absence of metals and HOCl. 

Table 1. The rate constants and activation energies of Reactions 5 and 7. Parameter 

intervals represent 95 % confidence limits. 

Reaction k (25°C) Ea (kJ/mol) 

5 2 HClO2 → HOCl + H+ + ClO3
- 0.0021 ± 0.0002 M-1s-1 84 ±9  

7 HClO2 + Cl- + H+ → 2 HOCl 0.0027 ± 0.0001 M-2s-1 70 ±3  

 

 

4.2 Reaction of Cl(III) with HOCl 
 

The literature does not provide a clear consensus on the reactions between Cl(III) and 

HOCl. The reported rate constants in particular are far from consistent. Therefore 

experiments were conducted to resolve the valid reactions and their kinetics in chlorine 

dioxide bleaching conditions. The results presented in this chapter can be found in more 

detail in Paper II. 

The formation of a dichlorine dioxide intermediate (Cl2O2) has been reported to occur 

through Reactions 19 [Taube and Dodgen 1949, Emmenegger and Gordon 1967, Hong and 

Rapson 1968, Kieffer and Gordon 1968a, Kieffer and Gordon 1968b, Schmitz and Rooze 

1981, Peintler et al. 1990, Gordon and Tachiyashiki 1991, Fabian and Gordon 1992, Jia et 

al. 2000,  Horvath et al. 2003] and 20 [Taube and Dodgen 1949, Emmenegger and Gordon 

1967, Aieta and Roberts 1986, Peintler et al. 1990, Nicoson and Margerum 2002]. Cl2O2 is 

a short-lived intermediate that reacts further very rapidly [Peintler et al. 1990, Jia et al. 

2000, Nicoson and Margerum 2002, Horvath et al. 2003]. The rate coefficients proposed by 
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various authors for the formation of Cl2O2 vary within 5 orders of magnitude [Peintler et al. 

1990, Hong and Rapson 1968, Jia et al. 2000, Gordon and Tachiyashiki 1991] and the rate 

expressions involve either chlorous acid or chlorite ion as the reactive species [Jia et al. 

2000]. The proposed Cl2O2 consuming reaction schemes differ even more and produce 

deviating overall stoichiometries. The essential mechanistic alternatives for the follow-up 

reactions of Cl2O2 are presented in Reactions 21-25 [Taube and Dodgen 1949, Hong and 

Rapson 1968, Nicoson and Margerum 2002, Schmitz and Rooze 1981, Peintler et al. 1990, 

Horvath et al. 2003, Jia et al. 2000, Fabian and Gordon 1992].  
 

HClO2 + HOCl  Cl2O2 + H2O      (19)  

Cl2 + ClO2
-  Cl2O2 + Cl-       (20) 

Cl2O2 + H2O  2 H+ + Cl- + ClO3
-      (21) 

Cl2O2 + OH-  H+ + Cl- + ClO3
-      (22) 

2 Cl2O2  2 ClO2 + Cl2       (23) 

Cl2O2 + ClO2
-   2 ClO2 + Cl-      (24) 

Cl2O2 + ClO2
- + H2O  2 HOCl + ClO3

-     (25) 

 

4.2.1 Testing of reported reaction models  

 

First, the validity of the models reported earlier in literature [Hong and Rapson 1968, 

Peintler et al. 1990, Horvath et al. 2003, Jia et al. 2000] was tested in the pH region used in 

experiments. The experimental Cl(III) decomposition results were compared against the 

predictions (Figure 6). The predicted rates were either substantially too low or too high. It 

was also checked whether Cl(III) depletion could result from the reaction between chlorine 

and chlorite (Reaction 20) alone. The rate constant of this reaction was obtained from Aieta 

and Roberts [1986]. From Figure 6 it is evident that Reaction 20 is not fast enough to 

explain the observed Cl(III) decay, and Reaction 19 must contribute in the rate determining 

step.  
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Figure 6. Cl(III) depletion predictions (lines) using previously reported kinetic models 

[Hong & Rapson 1968, Peintler et al. 1990, Horvath et al. 2003, Jia et al. 2000] and a case 

where Reaction 19 is fully omitted (r19 = 0) as well as the experimentally observed Cl(III) 

decay (�) at 25 °C with initial pH 3.0 and [Cl(III)]0 = 0.6 mM, [HOCl]0 = 0.17 mM.  

4.2.2 Reaction stoichiometry and kinetic parameters  

 

An example of the development of chlorine dioxide, chlorite and chlorate concentrations 

during the reaction between Cl(III) and HOCl is shown in Figure 7. Chlorine dioxide was 

the main product among the compounds monitored. The Cl(III) depletion and chlorate 

formation increased with temperature (Figure 7). The results indicate that an increasing 

temperature slightly favors chlorate production over chlorine dioxide.  

 

The reaction proceeded faster at lower pH (Figure 8). Chlorine dioxide and chlorate were 

formed in constant proportions independent of pH indicating that pH had a negligible effect 

on the overall stoichiometry. 
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Figure 7. The effect of temperature on (a) Cl(III) depletion (filled symbols), 

chlorine dioxide formation (empty symbols) and (b) chlorate formation at 6°C (□), 

16°C (Δ) and 25°C (o) at initial pH0 3.0, [Cl(III)]0 = 0.6 mM, [HOCl]0 ≈ 0.18 mM 

and [ClO3
-]0 = 0.05 mM. The lines illustrate the predictions according to the kinetic 

parameters obtained in this study. 

Chlorate may be formed according to Reactions 21, 22, and 25. The majority of the chlorate 

formation occurred at the beginning of the reaction, where the chlorite concentration is 

notable. Since the rate of Reaction 25 is first order with respect to Cl2O2 and chlorite 

whereas the other possible chlorate forming reaction, Reactions 21 and 22, do not involve 

chlorite, it was concluded that Reaction 25 is the primary chlorate forming reaction. 

Furthermore, Reaction 25 generates hypochlorous acid and leads to the high Cl(III) 

conversions associated with chlorate formation. If Reaction 22 between Cl2O2 and the 

hydroxide ion was important, the overall stoichiometry should change with pH. This was 

not observed in the pH range studied. This conclusion was verified with parameter 

regression. Rate coefficients k21 and k22 could not be properly identified while k25 was well 

identified, indicating that the chlorate formation can be adequately predicted without the 

Reactions 21 and 22. 
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Figure 8. Cl(III) depletion at initial pH 2.5 (�), 3.0 (o) and 3.5 (∆) at 6°C with 

[Cl(III)]0 = 0.6 mM, [HOCl]0 = 0.16 mM and [ClO3
-]0 = 0.05 mM. The lines 

illustrate the predictions according to the kinetic parameters obtained in this study. 

Chlorine dioxide could be formed through Reactions 23, 24, or both. As Reaction 23 is a 

second order process with regards to Cl2O2 it should be important whenever Cl2O2 is 

formed, i.e. Cl(III) is consumed rapidly. Thus the relative chlorine dioxide production 

should increase with temperature and acidity if Reaction 23 was meaningful. However, the 

experimental results showed that pH had an insignificant stoichiometric effect and that high 

temperature instead of increasing actually suppressed chlorine dioxide production. 

Therefore the minor importance of Reaction 23 is evident from the experimental results. 

Parameter regression supported this conclusion as rate coefficient k23 could not be identified 

well. This suggests that it is not a meaningful reaction. 

 

Successful reproduction of the experimental results required the inclusion of Reaction 26, 

the equilibrium between elemental chlorine, hypochlorous acid and chloride, in the 

regression procedure. It was observed that between the consecutive Reactions 26 and 20, 

the first one was rate limiting, meaning that the formation of chlorine from hypochlorous 

acid was slower than its reaction with chlorite. Thus all chlorine formed is almost 

instantaneously consumed in a reaction with chlorite.  

 

Cl2 + H2O  HOCl + Cl- + H+      (26) 
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The kinetic parameters for Reactions 19, 20, 24 and 25 are given in Table 2. The kinetic 

parameters for Reaction 20 were obtained from the literature while others were determined 

using parameter regression. Additionally, the equilibria between hypochlorous acid and 

chlorine (Reaction 26) and chlorous acid and chlorite (Reaction 1) as well as the self-

protolysis of water were included in the regression procedure. Model predictions were 

found to coincide well with the experimental results (Figures 7-8). The obtained k19 value is 

more than one order of magnitude smaller than the literature value for k20 (Table 2). In 

accordance with this, Cl(III) is reported to react faster with elemental chlorine than with 

hypochlorous acid [Emmenegger and Gordon 1967]. Among the product stoichiometry 

determining routes, rate coefficients were identified for Reactions 24 and 25. The Cl2O2 

consuming reactions are known to be extremely fast [Peintler et al. 1990, Horvath et al. 

2003], and consequently only the ratio of rates r24 and r25 could be determined. The rate 

parameters for Reaction 25 were well identified after fixing k24 = 8.4⋅1011 [Cl-] M-2s-1 

(according to Horvath et al. [2003]) and Ea,24
 = 50 kJ/mol. Reaction 19 is considerably 

slower than the subsequent Cl2O2 consuming reactions. Hence, Reaction 19 is rate limiting 

in the overall reaction and the relative rates of the Cl2O2 consuming paths 24-25 dictate the 

stoichiometry observed.  

Table 2. Rate parameters for the essential reactions participating in the HOCl-

HClO2 reaction. Parameter intervals represent 95 % confidence limits.  

Reaction 
k (12°C) Ea (kJ/mol) 

19 HOCl + HClO2  Cl2O2 + H2O 406 ± 93  M-1s-1   54 ± 13  

20 Cl2 + ClO2
-  Cl2O2 + Cl- a 1.0⋅104 M-1s-1  a 39.9  

24 Cl2O2 + ClO2
-   2 ClO2 + Cl-  b 8.4⋅109⋅[Cl-] M-2s-1 b 50 

25 Cl2O2 + ClO2
- + H2O  2 HOCl  + ClO3

- 5.3 (± 0.7) × 105  M-1s-1 78 ± 6  

a Obtained from Aieta and Roberts [1986] 
b a fixed value, k obtained from Horvath et al. [2003] 
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4.3 Reaction of Cl(III) with aldehydes 
 

When the reactions discussed in chapters 4.1 and 4.2 and their rate parameters were 

implemented in our chlorine dioxide bleaching model, it was noticed that the Cl(III) 

consumption observed was inadequately predicted [Tarvo et al. 2010]. Therefore, attention 

was paid to the reaction between chlorous acid and pulp related aldehydes in order to 

resolve whether this reaction contributes substantially to Cl(III) consumption in chlorine 

dioxide bleaching. The results in this chapter can be found in more detail in Papers III and 

IV. 

 

4.3.1 Monomeric aldehydes 

 

Aldehydes have been shown to react with Cl(III) [Jeanes and Isbell 1941]. The reaction 

mechanism adopted from Isbell and Sniegoski [1964] is presented in Reaction 27. The 

literature does not give a clear picture on whether chlorous acid or chlorite ion is the 

reacting species with the aldehydes. Our kinetic experiments showed that chlorous acid is 

responsible for the oxidation of aldehydes as has been presented previously by Jeanes and 

Isbell [1941]. In addition, the observation on the selectivity of chlorous acid towards 

aldehydes [Jeanes and Isbell 1941] was confirmed. Alcohols and ketones were found to be 

unreactive while all the compounds containing an aldehyde group reacted with chlorous 

acid. The consumption of Cl(III) in the presence of formaldehyde, vanillin and glucose is 

presented in Figure 9.  The reaction parameters for all the aldehydes used were determined 

based on Cl(III) consumption at several temperature levels. The decomposition reactions of 

chlorous acid (Reactions 5 and 7) were taken into account in the fitting, their kinetic 

parameters were obtained from Paper I. Reactions of Cl(III) and aldehydes with the HOCl 

formed (Reaction 27) were prevented by means of DMSO. The kinetic parameters obtained 

are given in Table 3 along with their 95% confidence limits. The calculated Cl(III) 

depletion at 25°C based on the kinetic constants for glucose, vanillin and formaldehyde is 

shown as lines in Figure 9. As can be seen from the 95% confidence limits in Table 3 and 

the Cl(III) decomposition predictions in Figure 9, the rate parameter fittings were 

successful. The reactions can be modeled accurately with the rate parameters obtained.  
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Figure 9. Oxidation of glucose (�), vanillin (O) and formaldehyde (Δ) by Cl(III) at 

pH 2.0 at 25°C. Initial concentrations of the reagents were [aldehyde]0 = 6.0 mM 

and [Cl(III)]0 = 0.6 mM.The lines illustrate the fit according to the rate parameters 

in Table 3. 

 

Table 3. Rate constants (at 25°C) and activation energies as well as their 95 % 

confidence limits for the reaction of chlorous acid with aldehydes.  

Reactant k (25°C) (M-1s-1) Ea (kJ/mol) 

Formaldehyde 11.0 ± 0.8 54 ± 5 

Unhydrated formaldehyde 1.2 × 104 - 

Vanillin 0.59 ± 0.02 44 ± 4 

Veratraldehyde 1.00 ± 0.03 42 ± 2 

Benzaldehyde 5. 6 ± 0.3 26 ± 3 

Glucose 3.39 (± 0.08) × 10-3 63 ± 2 

Free aldehydes of glucose1 104 ± 2 32 ± 1 

Glycolaldehyde 39.0 ± 1.9 45 ± 3 

Unhydrated glycolaldehyde 4.5 × 102 - 

5-formyl-2-furancarboxylicacid 5.2 ±0.2 37 ± 2 
1) The effect of mutarotation was taken into account. 
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Angyal [1984] has reported that at 20°C only 0.002 % of glucose is in the aldehyde form 

(VIIa in Figure 2) while the rest is in cyclic form (VIIb). This mutarotation explains the 

clearly different reaction rate obtained for the oxidation of glucose compared with the other 

aldehydes (Table 3). The rate parameters for the oxidation of the free aldehyde groups in 

glucose by chlorous acid were calculated by implementing the kinetics of the mutarotation 

of glucose in the fitting. The rate constants for the mutarotation were obtained from Pigman 

and Isbell [1968] and the activation energies were estimated so that the temperature 

dependency of the amount of free aldehydes corresponded to the data reported by Hayward 

and Angyal [1977]. The kinetic parameters obtained (Table 3) can be considered to 

represent the oxidation of the free aldehyde groups (reducing ends) in cellulose. 

 

The rate determining step in the oxidation of aldehydes by chlorous acid was investigated 

with deuteriated benzaldehyde (α-d1). It is known that carbon-deuterium (C-D) bonds are 

broken down more slowly than the corresponding carbon-hydrogen (C-H) bonds [Sykes 

1972]. The ratio kC-H/kC-D has been shown to be ~3-8 [Sykes 1972]. Thus if the detachment 

of the proton in the aldehyde group (step 2 in Reaction 27) was the rate determining step, 

the reaction rate should be 3-8 times slower with the α-d1-benzaldehyde than with the 

undeuteriated one. The Cl(III) depletion with both the unlabeled and labeled benzaldehyde 

is presented in Figure 10. It can clearly be seen that the reaction proceeded at a similar rate 

at all temperatures irrespective of the presence of deuterium. For example, at 25°C the rate 

coefficients were 5.0 and 5.6 M-1s-1 for the deuteriated and the undeuteriated benzaldehyde, 

respectively. Thus it was concluded that the addition of chlorous acid to the aldehyde (step 

1 in Reaction 27) is the rate determining-step in this reaction.  

 

Some aldehydes like formaldehyde are easily hydrated [Bell 1966]. In an aqueous solution 

less than 0.05% of formaldehyde is in the aldehyde form, the rest is hydrated [Guthrie 

1975]. In addition, glycolaldehyde is hydrated fairly easily, only 10% is in the aldehyde 

form in aqueous solution at room temperature [Sørensen 1972]. Hydration might be a 

restricting factor in the reaction between chlorous acid and aldehyde since chlorous acid is 

known to react only with the aldehyde [Jeanes and Isbell 1941]. Rate constants for the 

oxidation of the unhydrated formaldehyde and glycolaldehyde by chlorous acid were 

calculated while taking into account the kinetics of the hydration [Guthrie 1975, Bell and 
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Evans 1966, Sørensen 1972]. These values are given in Table 3. The hydration clearly 

affects the oxidation rate of aldehydes by chlorous acid. In the cases where the aldehyde in 

question is easily hydrated, the dehydration reaction may become the rate determining step 

depending on the concentration of HClO2.  

 

 

Figure 10. Oxidation of benzaldehyde (open symbols) and deuteriated 

benzaldehyde (filled symbols) by Cl(III) at pH 2.0 at 5 (�) 15 (O), 25 (Δ) and 40°C 

(◊). Initial concentrations of the reagents were [benzaldehyde]0 = 1.2 mM and 

[Cl(III)]0 = 0.6 mM. Lines illustrate the fit according to the rate parameters in 

Table 3. 

Based on the results with aromatic aldehydes (vanillin, veratraldehyde and benzaldehyde), 

it was concluded that lignin structures possessing an aldehyde group react with chlorous 

acid in chlorine dioxide bleaching to form hypochlorous acid. Their reaction rates (0.59, 

1.00, and 5.6 M-1s-1, respectively at 25°C) are high enough to compete with other Cl(III) 

consuming reactions in chlorine dioxide bleaching. The reaction rates of free aldehyde 

groups in carbohydrates (104 and 450 M-1s-1 at 25°C for glucose and glycolaldehyde) are 

also high enough to contribute to the Cl(III) consumption. In addition, it was discovered 

that a degradation product of hexenuronic acid, 5-formyl-2-furancarboxylic acid, can 

contribute to the consumption of Cl(III) in an A/D-prebleaching stage.  
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4.3.2 Aldehyde groups in pulp 

 

When treated with Cl(III) in the presence of EDTA and DMSO, different pulps consumed 

varying amounts of Cl(III). This consumption was regarded as an indication of the amount 

of aldehyde structures present in the pulp. According to Paper III and Jeanes and Isbell 

[1941], Cl(III) is selectively reactive with aldehyde structures. Brown softwood kraft pulp, 

that had not been oxygen delignified, consumed the highest amount of Cl(III) while the 

least Cl(III) was consumed by the pulps that had the lowest kappa numbers. The 

consumption of Cl(III) by brown softwood kraft pulp (SW) and oxygen delignified 

softwood kraft pulp (O-SW) are presented in Figure 11.  

 

Figure 11. Cl(III) consumption by brown softwood kraft pulp (kappa 31) (O) and 

O2-delignified softwood kraft pulp (kappa 12.8) (�) before (empty symbols) and 

after (filled symbols) 1 minute chlorine dioxide treatments at 50°C at 10 % pulp 

pulp consistency. The ClO2 dosages were 42 kg act Cl/Adt and 13 kg act Cl/Adt for 

the SW and the O-SW pulps, respectively. The Cl(III) treatments were carried out at 

1 % pulp consistency at pH 2 and 60°C in the presence of DMSO and EDTA. 

Chlorine dioxide bleaching increased the consumption of Cl(III) considerably, as shown in 

Figure 11. The impact that chlorine dioxide bleaching had on Cl(III) consumption was 

almost linearly dependent on the chlorine dioxide charge (Figure 12) or the consumption of 

active bleaching chemical (not shown). The pulp composition seemed to have a small 

effect. If the pulp was O2-delignified prior to the chlorine dioxide treatment, the Cl(III) 
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consumption was not as extensive. These results show that aldehyde groups are formed in 

the pulp during chlorine dioxide bleaching. 

 

 

Figure 12. The amount of Cl(III) consumed by kraft pulps in 30 minutes after 1 min 

treatments with varying charges of ClO2 at 50°C at 10 % pulp consistency for 

brown softwood (kappa 31) (�), D0-EO bleached softwood (kappa 5.7) (O), O2-

delignified softwood  (kappa 12.8) (Δ) and O2-delignified hardwood kraft pulp 

(kappa 15) (◊). For SW, different bleaching times (5, 10 and 30 min) are also shown 

(×). The Cl(III) treatments were carried out at 1 % pulp consistency at pH 2 and 

60°C in the presence of DMSO and EDTA . 

At least part of the aldehydes formed in chlorine dioxide bleaching originates from 

carbohydrates. It is known that aldehyde groups can be formed through oxidation of 

primary alcohol groups at C-6 of glucose units of cellulose by the hypochlorous acid (or 

chlorine) formed in situ [Croon and Dillén 1968]. To find out whether lignin also 

contributes to the aldehyde formation observed, a phenolic compound, 2,4,6-

trimethylphenol, was treated with chlorine dioxide in the presence of DMSO. As DMSO is 

known to capture HOCl effectively, as discussed previously, Cl(III) can only react with the 

aldehydes or undergo self-decomposition (Reactions 6-7). In the experiment an 

instantaneous consumption of chlorine dioxide was observed accompanied by a rapid 

formation of Cl(III) similar to what has been reported in chlorine dioxide bleaching [Kolar 

et al. 1983, Svenson et al 2005]. After the rapid formation of Cl(III), it was consumed at a 

rate that was much higher than the rate of self-decomposition of Cl(III). Since the fast 

 27



reaction of Cl(III) with HOCl was prevented by DMSO and as chlorous acid is known to be 

selectively reactive with aldehyde structures, this result indicates that some aldehyde 

structures are formed during the oxidation of 2,4,6-trimethylphenol by chlorine dioxide.  

 

4.3.3 Practical significance in chlorine dioxide bleaching 

 

In addition to Cl(III), the aldehyde structures present in pulp can react with hypochlorous 

acid (HOCl) [Jeanes and Isbell 1941]. This reaction is known to be fast (6.0 × 104 M-1s-1 at 

25°C for formaldehyde) [Chinake et al. 1998], although HOCl also reacts very rapidly with 

many other structures [Anbar and Ginsburg 1954, Gierer 1986, Spickett et al. 2000]. It has 

been stated that due to its rapid reactions HOCl is not present in measurable quantities 

during chlorine dioxide bleaching [Ni et al. 1992]. This leads to the conclusion that the 

majority of the aldehydes are oxidized by chlorous acid since its concentration is several 

times higher than the concentration of HOCl.  

 

Among the various Cl(III) reactions during chlorine dioxide bleaching, the reaction with 

hypochlorous acid (Reaction 19) is clearly the fastest one. Chlorous acid reacts with 

hypochlorous acid at a rate (1.1 × 103 M-1s-1 at 25°C, from Paper II) that is over 25 times 

higher than with any of the aldehydes used in the experiments reported in Paper III. 

However, since the concentration of HOCl is almost non-existent during ClO2 bleaching as 

discussed above, not all chlorous acid can react with it and thus the reactions with 

aldehydes become possible. The reaction rates obtained for vanillin, veratraldehyde and 

benzaldehyde in Paper III (0.59, 1.00, and 5.6 M-1s-1, respectively) show that lignin 

structures possessing an aldehyde group may react with chlorous acid in chlorine dioxide 

bleaching. Also, the oxidation of free aldehyde groups in carbohydrates by chlorous acid 

will contribute to Cl(III) consumption. Thus the oxidation of aldehyde groups in cellulose 

by chlorous acid can have a real significance in maintaining the strength properties of pulp, 

as has been suggested before by Croon and Dillén [1968]. According to the results, it is 

concluded that the reaction between Cl(III) and aldehydes may contribute substantially to 

the overall Cl(III) consumption during chlorine dioxide bleaching.  
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4.4 Chlorine dioxide bleaching 
 

So far only a few studies have been published on the progress of chlorine dioxide 

prebleaching (D0-stage) as a function of time. Even in these studies, only a few variables 

have been monitored [Germgård 1982a, Kolar et al. 1983, Ni et al. 1992, Reeve et al.1995, 

Svenson et al. 2005]. In order to gain more knowledge on the rate of different reactions and 

on the time-dependent behavior of various components, several prebleaching experiments 

were executed with hardwood pulp. In these experiments, the charge of chlorine dioxide 

was varied and the effect of a preceding A-stage was studied. The results presented in this 

chapter are taken from Papers V-VI. 

 

4.4.1 Kappa number and hexenuronic acid content 

 

At the beginning of a chlorine dioxide prebleaching stage, the kappa number is reduced 

very rapidly (Figure 13). This is due to the fast reaction between chlorine dioxide and 

phenolic lignin [Lindgren 1971, Hoigné and Bader 1994].  

  

 

Figure 13. The development of kappa number with different dosages of active 

chlorine, 15 kg act. Cl/Adt (�), 20 kg act. Cl/Adt (o) and 30 kg act. Cl/Adt (∆) as a 

function of time at 45°C. 
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Higher ClO2 charges are known to result in lower kappa numbers. In our experiments this 

was seen especially in the slower part of the bleaching (Figure 13). Also the removal of 

aromatic lignin was enhanced as expected with higher dosages of chlorine dioxide (40 % 

with 15 kg, 49 % with 20 kg and 52 % with 30 kg of ClO2). This is illustrated in Figure 14 

where the UVRR spectra of the bleached pulps with different chlorine dioxide dosages are 

presented. With higher chlorine dioxide charges the heights of the aromatic lignin band 

(1605 cm-1) and the HexA band (1655 cm-1) were reduced.  

 

 

Figure 14. UVRR spectra of D0 pulps (45°C, 30 minutes) with different dosages of 

active chlorine, 15 kg act. Cl/Adt, 20 kg act. Cl/Adt and 30 kg act. Cl/Adt. The 

height of the spectra were normalized to the cellulose band at 1094 cm-1. 

Hypochlorous acid is formed in the fast reaction between chlorine dioxide and phenols 

[Kolar et al. 1983]. It reacts rapidly with organic compounds such as hexenuronic acid 

[Vuorinen et al. 2007]. Higher chlorine dioxide charges resulted in increased hexenuronic 

acid removal (Figures 14-15). This is consistent with the amount of ClO2 consumed. The 

more ClO2 is consumed, the more HOCl is formed and is available to react with HexA. The 

effect was not so pronounced with the 30 kg dosage, which is most likely due to the fact 

that ClO2 was not fully consumed with this, the largest, dosage and thus no excess HOCl 

was formed. 
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Figure 15. The removal of hexenuronic acid with different dosages of active 

chlorine, 15 kg act. Cl/Adt (�), 20 kg act. Cl/Adt (o) and 30 kg act. Cl/Adt (∆)as a 

function of time at 45°C. 

When approximately 45 % (20 meq/kg) of the hexenuronic acid in the pulp was removed in 

an A-stage prior to the D0-stage, the kappa number was reduced by four units (Table 4). 

According to Li and Gellerstedt [1997] 10 meq of hexenuronic acid in 1 kg of pulp 

corresponds to 0.84-0.86 kappa number units. In our case this would mean that the removal 

of HexA reduced the kappa number by only 1.7 units. The rest of the kappa number 

decrease (2.3 units) must be due to altered lignin structures and the dissolution of residual 

lignin. This was supported by the change observed in the aromatic lignin content (Table 4, 

Δ arom. lignin). This effect has been examined in more detail by Furtado et al. [2001] who 

noticed that an A-stage also removes lignin from the pulp.  

 

The amount of ClO2 consumed stayed unchanged after an A-stage verifying that ClO2 itself 

reacts only very slowly with hexenuronic acid [Costa and Colodette 2007, Törngren and 

Ragnar 2002]. As ClO2 reacts primarily with phenolic lignin structures, it seems that they 

are mostly unaffected by the A-stage. Even if these phenolic structures are dissolved during 

the A-stage as reported by Furtado et al [2001], they are still able to react with ClO2, since 

no washing is performed between the A- and D0- stages. 
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Table 4. The decrease of kappa number, hexenuronic acid content and percentage 

of aromatic lignin removed in a D0-stage (20 kg act. Cl / Adt, 45°C) with and 

without a preceding A-stage.  

 Time, 

min 

Kappa 

number 

Δ Kappa HexA, 

meq/kg 

Δ HexA, 

meq/kg 

Δ arom. 

lignin  

D0 0 

1 

5 

10 

20 

30 

12.5 

9.8 

9.4 

8.9 

8.1 

8 

0 

2.7 

3.1 

3.6 

4.4 

4.5 

44.6 

30.2 

26.8 

25.4 

23.6 

23.6 

0 

14.4 

17.8 

19.2. 

21.0 

21.0 

0 

43 % 

48 % 

47 % 

48 % 

49 % 

A+D0 0 

1 

5 

10 

20 

30 

8.6 

6.6 

5.9 

5.2 

4.8 

4.5 

0 

2.0 

2.7 

3.4 

3.8 

4.1 

25.0 

18.2 

16.8 

16.0 

14.4 

11.5 

0 

6.8 

8.2 

9.0 

8.9 

10.6 

17 % 

50 % 

53 % 

54 % 

53 % 

56 % 

 

 

4.4.2 Chlorination of organic structures 

 

Chlorinated organic compounds (AOX and OX) are formed in chlorine dioxide bleaching 

when intermediately formed hypochlorous acid (HOCl) and chlorine (Cl2) react with 

organic structures present in the filtrate (AOX) or in the fibers (OX) [Wajon et al. 1982, 

Gunnarsson and Ljunggren 1996b]. Hypochlorous acid and chlorine are in equilibrium 

according to Reaction 26 [Kolar et al. 1983, Deborde and von Gunten 2008]. Both HOCl 

and Cl2 react rapidly with lignin and hexenuronic acid [Ni et al 1995a, Vuorinen et al. 

2007]. Both of them also chlorinate various structures in pulp [de la Mare et al. 1954, Brage 

et al. 1991b, Gunnarsson and Ljunggren 1996b, Joncourt et al. 2000, Costa and Colodette 

2007, Deborde and von Gunten 2008].  

 

The chlorination of organic compounds was observed to be very fast at the beginning of the 

D0-stage, but the rate decreased as the bleaching continued (Figures 16-17). This is in 
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agreement with previous studies [Ni et al. 1992, Ni and van Heiningen 1993a, Reeve et 

al.1995]. Hypochlorous acid is produced in the reactions of chlorine dioxide [Kolar et al. 

1983, Ni et al. 1992]. Since the consumption of chlorine dioxide is known to be very fast at 

the beginning of bleaching [Kolar et al. 1983], a relatively high amount of HOCl (and Cl2) 

is present during this initial stage. This leads to the rapid chlorination observed [Kolar et al. 

1983].  

 

AOX formation, though rather rapid during the initial phase, was much more moderate than 

OX formation (Figure 16). 20-50% of AOX was formed during the first minute. This result 

is in agreement with earlier publications, where 30-50 % of AOX was formed at the 

beginning of the D0-stage [Ni et al. 1992, Ni and van Heiningen 1993a, Reeve et al. 1995, 

Joncourt et al. 2000]. AOX is usually considered to be formed as organic compounds in the 

filtrate are chlorinated, but part of the AOX may be derived from the dissolution of OX [Ni 

and van Heiningen 1993a].  

 

Previously it has been shown that higher chlorine dioxide dosages lead to increased AOX 

formation [Reeve et al.1995, Gunnarsson and Ljunggren 1996a, Ljunggren et al. 1996]. At 

the beginning of the D0-stage, AOX formation was quite independent of the chlorine 

dioxide charge (Figure 16). At longer delays, the amount of AOX formed was lower with 

the 15 kg dosage. No clear differences were observed between the 20 and 30 kg dosages. 

This could be due to overdosing because not all of the ClO2 was consumed during 

bleaching with the 30 kg dosage.  

 

Higher chlorine dioxide dosages produced more OX (Figure 16). The differences in OX 

levels were notable as early as the first minute and stayed fairly constant throughout the 

bleaching. This is in agreement with the results of Ragnar and Törngren [2002], who stated 

that OX is formed in relation to the chlorine dioxide charge. Others [Gunnarsson and 

Ljunggren 1996a, Ljunggren et al. 1996] have claimed that only a slight or no increase of 

OX was observed when the chlorine dioxide charge was increased. 
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Figure 16. The formation of AOX and OX with different dosages of active chlorine, 

15 kg act. Cl/Adt (�) 20 kg act. Cl/Adt (o) and 30 kg act. Cl/Adt (∆) as a function 

of time at 45°C. 

After the D0-stage, 14-21 mol-% of chlorine dioxide had ended up as AOX or OX (Table 

5). This is consistent with the results of Björklund et al. [2004], who reported that after 

bleaching O2-delignified birch 16-21 mol-% of the chlorine dioxide charged ended up either 

as AOX or OX. For Ni et al. [1992] this figure was only ~ 7% when bleaching softwood 

kraft pulp. Even though the total amount of organic chlorine (AOX+OX) was higher with 

the bigger dosages (3.2 kg/Adt with 15 kg/Adt dosage and 4.2 kg/Adt with 30 kg/Adt 

dosage) the fraction of Cl bound to organic compounds was lower with bigger chlorine 

dioxide dosages (Table 5). It seems that rather than chlorinating, the additional ClO2 was 

mainly consumed in other reactions and ended up as chloride or chlorate, as will be 

discussed later. 

 

The results obtained on the chlorination of pulp led to the conclusion that there is some 

other phenomenon besides chlorine dioxide dosage that restricts the extent of chlorination. 

Two possibilities were considered. One was that the amount of HOCl/Cl2 that is formed 

mainly from the reaction between chlorine dioxide and phenols would remain fairly 

constant. As the extent of this reaction is almost solely dependent on the amount of phenols 

that are available for oxidation by chlorine dioxide (assuming that the chlorine dioxide 

dosage is sufficient for their oxidation), this explanation seems plausible. 
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Table 5. The amount of organic chlorine (AOX and OX) as a percentage of 

consumed ClO2. 

ClO2 (kg/Adt) 1 min 5 min 10 min 20 min 30 min 

15 10 % 13 % 12 % 15 % 21 % 

20 8 % 11 % 13 % 18 % 18 % 

30 9 % 9 % 10 % 11 % 14 % 

  20 1 9 % 11 % 10 % 11 % 14 % 
1 The D0-stage was preceded by an A-stage. 

 

The other possibility originates from previous studies on the chlorination of natural organic 

matter with chlorine by Gallard and von Gunten [2002a, 2002b]. They observed a rapid 

initial phase after which the amount of chlorinated compounds increased more slowly. They 

attributed the fast initial phase to the reactions of HOCl with dihydroxybenzenes and the 

slower phase to the reactions between monohydroxybenzenes and HOCl. The same 

phenomenon could partly explain the trend observed in pulp bleaching: structures that are 

susceptible to chlorination would react fast with HOCl/Cl2 in the initial phase and structures 

that are chlorinated more slowly would account for the slower phase. In that case, the extent 

of chlorination would be mostly dependent on the amount of reactive structures in the pulp. 

This is also supported by a previous study on the chlorination of oxygen-delignified 

softwood kraft pulp [Lehtimaa et al. 2009].  

 

Different structures were considered as possible substrates for the rapid chlorination. The 

presence of polyphenolic compounds in the pulp, especially after O2-delignification, is 

highly improbable and thus the structures that Gallard and von Gunten [2002a, 2002b] 

suggested as responsible for the rapid chlorination, can not be responsible for the rapid 

chlorination in pulp. The possible role of phenols was considered next but when comparing 

the reaction rates of phenolic structures with chlorine dioxide and hypochlorous acid, it 

became obvious that the reaction rates were much lower with HOCl. It seems probable that 

almost all of the available phenols present in the pulp would react with ClO2 rather than 

with HOCl, and thus phenols are unlikely to be responsible for the chlorination observed. 

Larson and Rockwell [1979] have shown that HOCl chlorinates certain carboxylic acid 

structures. The reaction rates of carboxylic acids with HOCl seem to be much faster [Zhou 

et al. 2008] than with chlorine dioxide [Hoigné and Bader 1994]. However, carboxylic acids 
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are found so abundantly in chlorine dioxide bleaching (e.g. hexenuronic acid and muconic 

acids) [Gellerstedt and Lindfors 1987, Gierer 1990, Buchert et al. 1995, Ragauskas et al. 

1998] that it seems unlikely that their availability would be the restricting factor for 

chlorination. Whether chlorination is more restricted by the pulp composition or the 

HOCl/Cl2 formation or both cannot be resolved here.  

 

The AOX originating from the D0-stage consists partly of the chlorination products of 

HexA [Björklund et al. 2002, Freire et al. 2003a, Björklund et al. 2004, Freire et al. 2004]. 

When part of the HexA was removed from the pulp with hot acidic treatment (A-stage) 

before the D0-stage, the final amount of AOX decreased drastically, by approximately 40 % 

(Figure 17). The proportion of AOX originating from HexA has been suggested as anything 

between 27 % up to as much as 80 % of the total amount of AOX [Freire et al. 2003a, 

Björklund et al. 2004, Freire et al. 2004]. Their inconsistent results may be at least partly 

explained by the unstable nature of HexA-originated AOX. It has been stated that this AOX 

can be degraded easily (Björklund et al. 2004, Lehtimaa et al. 2008). The initial rate of 

AOX formation was unaffected by the A-stage. This implies that the majority of AOX 

formation at the beginning would be due to chlorination of the dissolved lignin rather than 

HexA.  

 

 

Figure 17. The formation of AOX and OX with (o) and without (�) acid treatment 

as a function of time at 45°C. 

The amount of OX formed augmented slightly when the pulp was subjected to an acidic 

treatment prior to the D0-stage. Similar behavior has been noted by Björklund et al. [2004]. 

It has been found that most OX appears to be attached to lignin, and that HexA is not a 
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source of OX [Ragnar and Törngren 2002, Björklund et al. 2004]. Thus the elevated amount 

of OX formation is due to the more extensive chlorination of lignin that arises from the 

higher amount of HOCl/Cl2 present. This is caused by the constant ClO2 consumption 

regardless of the A-stage. This should lead to unvarying chlorite and hypochlorous acid 

formation irrespective of the preceding A-stage. Since the pulp contains less HexA after an 

A-stage, there is more HOCl available to chlorinate lignin.    

 

4.4.3 Inorganic chlorine compounds 

 

The majority of the chlorine dioxide is consumed at the very beginning of the bleaching 

stage (Figure 18). This is due to the fast reaction between chlorine dioxide and phenolic 

lignin [Lindgren 1971, Hoigné and Bader 1994]. As a result of this reaction both chlorite 

and hypochlorous acid are formed [Kolar et al. 1983]. With 20 and 30 kg act. Cl/Adt the 

same amount of chlorine dioxide was consumed during the first minute (10.7 and 10.8 mM, 

respectively). This constant consumption implies that this was the amount of ClO2 required 

to oxidize the available phenols and therefore the initial ClO2 consumption was not higher 

with the 30 kg dosage.  

 

The phenol content of the residual lignin was 0.79 mol/kg lignin in the pulp used. Using the 

total lignin content of the pulp (calculated from the kappa number and hexenuronic acid 

content), the phenol content of the pulp was calculated to be 10.3 mmol/kg pulp. According 

to a widely presented reaction scheme [Lindgren 1971, Kolar et al. 1983, Brage et al. 

1991a] two ClO2 equivalents should be consumed in the initial reaction with a phenolic 

structure. This would correspond to 2.3 mM consumption of ClO2 in the fast initial reaction 

at the pulp consistency used. Yet the consumption observed at the beginning of bleaching 

was three times higher. This merely indicates that the primary reaction products are 

oxidized further by chlorine dioxide as has been discussed earlier [Chirat et al. 2000, 

Hamzeh et al. 2007]. It has also been suggested that there would be multiple parallel 

reactions occurring during the ClO2 oxidation of phenols [Brogdon et al. 2004]. Other 

reactions, such as reactions with extractives [Björklund Jansson et al. 1995, Freire et al. 

2003b] and reactions with new phenolic groups formed by the action of HOCl [Ni et al. 

1995b, Joncourt et al. 2000], may also contribute to the initial ClO2 consumption. 
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Similarly to the observations of Gunnarsson and Ljunggren [1996a], higher ClO2 dosages 

increased the formation of chlorate and chloride, which are the final products in ClO2 

bleaching (Figure 18). However, the proportion of chlorine dioxide converted to ClO3
- and 

Cl- stayed constant even though the dosage was varied indicating that the stoichiometries of 

the different reactions producing chlorate and chloride stayed unchanged irrespective of the 

amount of ClO2.  

 

According to the results of Svenson et al. [2005], half of all chlorate and chloride is formed 

during the first 5 minutes. This was also observed in our experiments. Ni et al. [1992] 

reported that in their experiments 10-18 % of ClO2 was turned into chlorate and 63-75 % 

into chloride. In our experiments on average 12 % and 48 % of ClO2 was turned into 

chlorate and chloride, respectively. The results are comparable, when taking into account 

the different experimental conditions used.  

 

The amount of Cl(III) (chlorite + chlorous acid) increased at the beginning of bleaching and 

then decreased slowly (Figures 18-19), which is similar to what has been reported earlier 

[Kolar et al. 1983, Svenson et al. 2005]. Cl(III) is formed in the reaction between chlorine 

dioxide and phenolic lignin structures as discussed above. An equal amount of Cl(III) was 

formed with 20 and 30 kg act. Cl/Adt (Figure 18). This is consistent with the fact that the 

same amount of ClO2 was consumed independent of whether the charge was 20 or 30 

kg/Adt. With the 15 kg/Adt dosage less Cl(III) was formed, but the ratio was similar to the 

larger dosages: approximately one third of the consumed ClO2 was turned into Cl(III). It is 

known that ClO2 should be converted into chlorite (ClO2
-) and hypochlorous acid (HOCl) in 

this initial reaction at a molar ratio of 1:1 [Kolar et al. 1983]. This means that roughly 5.3 

mM of Cl(III) should be formed when 10.7 mM of ClO2 is consumed. However, the amount 

was only 3.0 mM. It is assumed that this difference results from chlorous acid reacting 

rapidly with the HOCl formed. A clear indication of this is the fast chlorate and chloride 

formation (Figure 18) caused mainly by Reactions 24 and 25.  
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Figure 18. The effect of different dosages of active chlorine, 15 kg act. Cl/Adt (�), 

20 kg act. Cl/Adt (o) and 30 kg act. Cl/Adt (∆) to a) chlorine dioxide, b) Cl(III) 

(=chlorite + chlorous acid), c) chlorate and d) chloride as a function of time at 

45°C. 

The consumption of Cl(III) is due to several simultaneous reactions. The fastest reaction of 

Cl(III) seems to be its reaction with HOCl. This reaction and its kinetics were discussed in 

chapter 4.2 (Paper II). The reaction rate was found to be 1.1× 103 at 25°C. Even though this 

reaction is fast, it is not able to consume all the Cl(III) formed, as HOCl is consumed in 

large amounts also in rapid reactions with organic structures. The reaction rate of HOCl has 

been determined to be 400 M-1s-1 with HexA and 40 M-1s-1 with lignin at 25°C [Vuorinen et 

al. 2007]. Even though the reaction rate with HexA is lower than with chlorous acid, HOCl 

reacts more extensively with HexA, since the amount of HexA present in pulp during 

prebleaching is higher than the amount of chlorous acid. Also, a reaction with lignin takes 

place because the amount of lignin can be much higher than the amount of HexA or 
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chlorous acid. Due to its fast reactions, the amount of HOCl is practically unmeasurable 

during a D0-stage; it is consumed instantaneously after its formation [Ni et al. 1992]. 

 

Another indication of the fact that the reaction between HOCl and Cl(III) is not solely 

sufficient to describe the Cl(III) decay comes from the stoichiometries of Reactions 19 + 24 

and 19 + 25. These stoichiometries show that one hypochlorous acid molecule should 

consume multiple Cl(III) molecules. However, the depletion of Cl(III) is very slow and thus 

other reactions of HOCl seem to be consuming the majority of the hypochlorous acid 

formed in-situ.  

 

The self-decomposition reactions of chlorous acid were discussed in detail in chapter 4.1 

(Paper I). They are rather slow reactions and do not contribute significantly to the 

consumption of Cl(III) even in a chlorine dioxide prebleaching stage. The metal catalysis of 

Cl(III) decomposition [Schmitz and Rooze 1984, Joncourt et al. 1998] should not contribute 

to the Cl(III) depletion in our results, since the pH during bleaching was always above 2.7 

where the Fe3+ ions are incapable of reacting with ClO2
- [Fábián and Gordon 1991a, Fábián 

and Gordon 1991b]. However, it has been stated that if the pH during ClO2 bleaching is too 

low, the presence of iron will lead to increased cellulose degradation as well as increased 

AOX and chlorate formation [Joncourt et al. 1998].  

 

The reaction between chlorous acid and aldehydes seems to contribute significantly to 

Cl(III) consumption as discussed in chapter 4.3. The HOCl formed through these reactions 

contributes to the overall degree of oxidation in chlorine dioxide bleaching, but the majority 

of the hypochlorous acid is produced in the reaction between phenolic lignin and chlorine 

dioxide [Kolar et al. 1983, Ni et al. 1992].  

 

The inorganic chlorine compound that was mostly affected by the implementation of an A-

stage was Cl(III) (Figure 19). After the A-stage, the amount of Cl(III) formed was halved in 

the following D0-stage. This is logical, since after the A-stage the pulp contains less 

hexenuronic acid to react with HOCl. This “left-over” HOCl is free to react more 

extensively with chlorous acid (according to Reaction 19), lowering the amount of Cl(III)  

observed. Another contributing factor is that during the A-stage ~10% of HexA is converted 

into 5-formyl-2-furoic acid [Teleman et al. 1996, Vuorinen et al. 1997]. In Paper III this 

aldehyde structure was shown to be reactive with chlorous acid. Since the A-stage in our 

 40



case removed 20 meq/kg of HexA, the amount of 5-formyl-2-furoic acid formed should be 

approximately 2 meq/kg. Taking into consideration the pulp consistency in the bleaching 

experiments this amount can account for only 0.22 mM Cl(III) consumption. Since the 

reduction in Cl(III) was over 1.5 mM, it can be concluded that the 5-formyl-2-furoic acid 

contributed only very slightly to the increased Cl(III) consumption. The main reason 

leading to the lower Cl(III) concentration seems to be the higher amount of HOCl that is 

available to react with Cl(III). This led also to a slightly faster formation of chloride and 

chlorate as they are the final products in this reaction. 

 

 

Figure 19. The development of a) chlorine dioxide, b) Cl(III) (=chlorite + chlorous 

acid), c) chlorate and d) chloride in a D0-stage with (o) and without (�) a preceding 

A-stage as a function of time with 20 kg act. Cl/Adt at 45°C. 

 41



5 CONCLUDING REMARKS 
 

The role of chlorine (III) in chlorine dioxide bleaching was clarified by investigating the 

kinetics of its reactions and their importance during chlorine dioxide bleaching. It was 

discovered that the self-decomposition of Cl(III) has practically no significance in 

bleaching conditions and that the fastest reaction consuming Cl(III) is the reaction between 

Cl(III) and HOCl/Cl2. Aldehydes were shown to contribute substantially to Cl(III) 

depletion. Through the oxidation of aldehyde groups in cellulose, Cl(III) may have a 

positive effect on the viscosity of the pulp. In the future, the presence of these aldehydes 

should be verified with another method and their origin and amount should be clarified.  

 

Even though Cl(III) is not a delignifying or bleaching agent as such, its reactions partly 

determine how much chlorine dioxide, hypochlorous acid, and chlorate are formed during a 

chlorine dioxide bleaching stage. These compounds dictate how much chlorination and 

delignification take place during a chlorine dioxide stage and are thus important in 

bleaching.   

 

This work clarified the overall chemistry during chlorine dioxide bleaching and enabled its 

modeling more precisely. Through the knowledge of Cl(III) chemistry gained, the accuracy 

of the model has been improved. The simplified scheme of the reactions taking place in 

chlorine dioxide bleaching that was presented in Figure 1 can now be modified according to 

our results to give the revised scheme, although still simplified, presented in Figure 20.  

 

ClO2

Cl2

+ ClO2

ClO2
- 

+ L

Lox + HClO

(LCl)

+ L

LCl

+ L

Lox

HClO2
ClO3

-

(Lox)

L. +
ClO2

+ Aldeh.

Cl-

 

Figure 20. An updated simplified scheme of the reactions in chlorine dioxide 

bleaching.  
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