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Introduction  1 

Introduction 
We live in a constantly changing world where we see, hear, touch, smell, taste, and move 

more or less continuously. Until the past few years, however, functional brain imaging has 

relied on, or even been chained to, very simplistic artificial laboratory environments that only 

weakly resemble the real environment we live in. During a conventional functional magnetic 

resonance imaging (fMRI) experiment, stimulus blocks of several seconds in duration 

alternate with rest or baseline periods. Although these simple stimulation setups still have 

their firm place in the study of different brain systems, we are not able to fully understand 

human brain function in isolation from its real environment. That is why one of the current 

challenges of functional brain imaging is to move towards more naturalistic experimental 

setups. Moreover, naturalistic stimuli can activate, in a specific manner, more brain areas than 

conventional stimulus settings (Bartels and Zeki, 2004). 

Naturalistic conditions introduce, however, enormous challenges for brain research. 

First, how to create in a laboratory a stimulus environment that sufficiently resembles real-life 

situations? Second, how to analyze the complex brain responses elicited by naturalistic and 

continuously-varying stimulation? 

In laboratory, the improvements of scanner environments have been essential for the 

collection of high-quality functional-brain-imaging data, since the inherent signal-to-noise 

ratio of fMRI signal is rather poor. Scanners with high magnetic field strengths (typically 3–7 

T in research use) now allow the collection of fine-resolution functional images rather rapidly 

or with better signal-to-noise ratio compared with lower magnetic field strengths. 

The fMRI scanner, however, imposes limitations on stimulus presentation, and it is 

difficult to create real-life-like conditions in the narrow scanner bore. It is, however, possible 

to mimic reality by, for example, using video stimuli that provide a replicable and nearly 

realistic presentation of our natural environment. 

From the data-analysis point of view, a video stimulus is very complex compared 

with conventional simplistic stimuli presented in blocks of several seconds in an on–off 

manner. Data analysis of such “block-design fMRI” typically relies on pre-determined models 

of brain responses, time-locked to discrete stimulus presentation. During naturalistic and 

continuous stimulation, however, brain responses are much more complex, and this difficulty 

compels data analysis away from the traditional model-based approaches towards more data-

driven methods. 

This Thesis concentrates on certain aspects of data-analysis methods required in the 

analysis of brain responses under naturalistic stimulation conditions. The performed fMRI 

experiments proceed gradually from conventional fMRI block designs towards more complex 

and continuous stimulus set-ups. In Study 1, tactile stimulation was presented in a traditional 
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block design. In Studies 2 and 3, more complex multi-sensory stimulation was presented; in 

Study 2, videos, as well as tactile and auditory stimuli, were presented in separate blocks, but 

the unimodal stimulation was always on, with no separate rest periods between the blocks. 

Continuous audio-visual speech, with simultaneous auditory and visual information, was 

presented in Study 3. In Study 4, subjects were measured during resting state without external 

stimulation; one group of subjects suffered from chronic pain, and thus their “stimuli” 

emerged intrinsically because of the continuous pain they experienced. 

The data-analysis methods of this Thesis extend from general-linear-model (GLM) 

based statistical parametric mapping (SPM) to data-driven independent component analysis 

(ICA) and correlation methods. In Study 1, only GLM was utilized to analyze the simple 

block design. Study 2 demonstrated the superiority of ICA compared with GLM in separating 

signals related to, e.g., speech vs. tone pips, or processing of visual motion vs. more static 

images. 

ICA conveniently depicts those functionally connected brain areas that show common 

temporal variation. One challenge in ICA is, however, to separate the stimulus-related 

independent components (ICs) from ICs related to, e.g., intrinsic brain activity that does not 

depend on external stimulation or various types of artifacts. Study 3 presents a new approach, 

which facilitates the IC sorting by pre-mapping all activated brain areas in the form of an 

inter-subject correlation map. In Study 4, both ICA and seed-point correlations were used to 

demonstrate altered functional connectivity of the affective pain matrix in patients suffering 

from chronic pain. 

Some physiological factors that can affect the measured blood oxygen level 

dependent (BOLD) signal are also discussed in this Thesis. In Study 1, the effect of cardiac 

pulsation was eliminated from the measured signal, and in Study 4, the discussion about 

possible effects of cardiac pulsations was revisited. Importantly, the frequency analysis of 

spontaneous fluctuations of brain activity in Study 4 provides insights into fMRI data 

filtering, suggesting that reducing physiological contamination by filtering the data may 

sometimes mask or remove effects of interest. 

This Thesis summary consists of five parts. Chapter 1 presents the methodological 

background: the basic principles of functional magnetic resonance imaging and, more 

importantly, the analysis methods required to obtain statistically significant results from the 

measured fMRI data. Chapter 2 describes the aims of Studies 1–4 constituting this Thesis, and 

Chapter 3 explains the details and parameters of the particular methods applied. Chapter 4 

presents the individual studies in more detail, their main findings, and conclusions. Finally, 

the discussion in Chapter 5 summarizes the general findings and provides some 

considerations on data-analysis methods as well as brief insights into future fMRI research 

involving naturalistic stimuli. 
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1 Background 
1.1 Magnetic resonance imaging 

Magnetic resonance imaging (MRI) is a technique to obtain high-resolution images from an 

object of interest by utilizing the magnetic properties of the sample and its interactions with 

external magnetic fields. MRI is based on the physical phenomenon called nuclear magnetic 

resonance (NMR). 

The first NMR experiments were carried out in 1946 by two research groups, those of 

Felix Bloch (1946) and Edward Purcell (1946). Later, Raymond Damadian (1971) found out 

that NMR signal properties are specific for different types of tissues. Important advances in 

MR image collection were presented by Paul Lauterbur (1973), who introduced the field 

gradients for formation of magnetic resonance (MR) images, and by Peter Mansfield (1977), 

who developed echo planar imaging (EPI) as a technique for rapid image acquisition. 

In the beginning of the 1990s, Seiji Ogawa and coworkers (1990) discovered the 

blood oxygen level dependent (BOLD) signal, thereby launching the era of fMRI. The 

discovery of the BOLD effect enabled studies on brain function. Compared with injected 

contrast agents, such as gadolinium (Belliveau et al., 1990, 1991), BOLD effect can be 

considered as an inherent contrast mechanism of the brain. BOLD was first observed in 

anesthetized rodents and was soon demonstrated also in humans (Bandettini et al., 1992; 

Frahm et al., 1992; Kwong et al., 1992; Ogawa et al., 1992). 

Nowadays, MRI is a widely-used technique both in clinical use and in several 

branches of research. Its popularity is based on good spatial resolution and the versatility of 

the technique: a multitude of contrasts between different tissues can be obtained by an 

appropriate manipulation of certain imaging parameters. 

Nuclear magnetic resonance 

Nuclei with a non-zero spin quantum number, i.e., with a net spin, interact with external 

magnetic fields. In a magnetic field of strength B0 (here along z axis), the nuclei precess about 

the field at the Larmor frequency ω0, which is proportional to the external magnetic field 

strength: ω0 = γB0, where γ is the nucleus-specific gyromagnetic ratio (Haacke et al., 1999). 

The most commonly used nucleus in MRI is hydrogen (a single proton) due to its abundance 

in living tissues. For hydrogen protons, γ/2π = 42.58 MHz/T, and at 3-T magnetic field, ω0 = 

127.74 MHz, which is in the radio-frequency (RF) range of the electromagnetic spectrum. 

Since the spin quantum number of a proton is ½, the energy levels of protons split in 

the external magnetic field into two states (Zeeman effect), and protons are then slightly more 

likely to populate the lower-energy state. The population difference of spins in the two energy 

states leads to an equilibrium magnetization M0, which can also be considered as a classical 

 



4   Background  

magnetization vector. The total energy difference between the two states of the proton is ΔE 

= γB0ћ = ω0ћ, where ћ is the Planck’s constant h/2π. Hence, a system of protons can absorb 

and emit energy at the Larmor frequency ω0. 

Because protons in the lower energy state can absorb energy ΔE, magnetization M0 

can be deviated from equilibrium by an additional magnetic field BB1 that is an RF pulse at the 

Larmor frequency. The deviation form the original orientation is described with flip angle α, 

modulated both by the amplitude and duration of B1 (Buxton, 2009). 

After RF excitation, magnetization gradually returns back to equilibrium, while a 

measurable NMR signal is emitted. 

Relaxation and time constants 

The dynamics of the relaxation of magnetization is characterized by the set of Bloch 

equations that in constant magnetic field can be written separately for the transverse Mx and 

My and longitudinal Mz (along the main field B0) components of magnetization (Haacke et al., 

1999) 
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where T1 and T2 denote the longitudinal spin–lattice and transverse spin–spin relaxation time 

constants, respectively. Longitudinal relaxation results from the energy exchange between the 

spins and lattice, and T1 relaxation evolves in time according to the exponential equation Mz(t) 

= M0(1– e–t/T1). The transverse relaxation T2, related to the decay of transverse magnetization 

Mxy, occurs due to spin–spin interactions and is characterized by , 

where the term denotes the precession about field B
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The third important time constant is the apparent transverse relaxation time T2
*, which 

accounts for both the thermodynamic T2 effects and magnetic field inhomogeneities: 1/ T2
* = 

1/T2 + γπΔBB0, where ΔB0B  are the field variations across the sample. Thus, T2
* is always shorter 

than T2. T2
* relaxation is important in BOLD imaging (discussed below), in which local field 

variations of intra- and extravascular spaces related to blood oxygenation are measured. 
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Field gradients and image acquisition 

Spatial information is coded into the magnetic resonance signal by an additional magnetic 

field BBg, whose z-component varies along the gradient direction: the x-gradient field BgB  = Gxx, 

y-gradient field BBg = Gyy and z-gradient field BgB  = Gzz. 

The gradient along the main field axis, Gz, is used for slice selection. Gz causes linear 

variations in the Larmor frequency of the protons and their excitation energies in nearby 

locations. For a specified Gz, the center frequency and the bandwidth of the excitation RF 

pulse determine the location and the thickness of the imaging slice. 

After the slice selection, frequency and phase information is encoded into the signal. 

In the presence of frequency-encoding gradient Gx, Larmor frequencies vary linearly as a 

function of x according to ω(x) = ω0 + γGxx. When the field gradient Gy has been on for a time 

Ty, the different phase angles accumulate, and the signals collected after Ty will have y-

dependent phase φ(y) = γGyyTy, i.e., the signal is phase-encoded. These alternations in the 

local resonant frequencies and phases are unique for each spatial location within the imaged 

sample. Therefore, it is possible with field gradients to divide the object into three-

dimensional volume elements called voxels. 

Generally, MRI can be considered as a collection of frequency-space data matrix 

(axes frequency and phase) points in so-called k-space (Ljunggren, 1983; Twieg, 1983). A 

spatial image is obtained by Fourier transformation of the k-space data. The way the k-space 

is sampled determines the image field of view (FOV) and resolution. 

Signal echo 

After the initial excitation, spins gradually loose their phase coherence. However, the signal 

can be re-intensified by generating a “signal echo”. Two main ways to produce the echo are 

either to apply a refocusing RF pulse (spin echo, SE), or perform certain gradient operations 

(gradient echo, GRE). In spin-echo imaging, a refocusing 180º RF pulse is applied after the 

excitation RF pulse to rephase the spins. The signal echo is generated at echo time (TE) after 

the initial excitation RF pulse, when the refocusing RF pulse is sent at t = TE/2. The time 

between successive excitation RF pulses is called the repetition time (TR). 

In GRE imaging, no refocusing RF pulses are applied, but the echo is generated by 

de- and rephasing the signal with the frequency-encoding gradient. A negative gradient 

introduces a spatially linear variation in the precession frequencies of the spins, thus 

dispersing their phase coherence. A subsequent positive gradient then reverses the spin phase 

dispersion and generates an echo. 
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GRE imaging is sensitive to T2
* effects. Starting from the Bloch equations, and 

assuming that transverse magnetization is totally dephased after the preceding excitation 

pulse, the echo amplitude A in GRE imaging can be derived (Liang and Lauterbur, 2000) 
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Generally, the measured MR signal depends both on the intrinsic properties of the 

tissues, such as proton density and relaxation time constants, as well as the parameters of the 

pulse sequence (such as TR, TE, and α), with which the magnetic resonance image is 

collected. 

1.1.1 Functional imaging based on the BOLD effect 

The magnetic properties of hemoglobin form the basis of the BOLD contrast in fMRI: 

oxygenated hemoglobin is diamagnetic and deoxygenated paramagnetic, and the changes in 

their relative amounts in an activated brain area can be seen in T2
*-weighted MR images. 

Deoxygenated hemoglobin distorts the local field around the vessels, leading to a loss of the 

MR signal. In activated brain areas, the local oxygen metabolism slightly increases. However, 

more oxygen is available in the activated brain area than is consumed, and thus venous blood 

becomes more oxygenated. This leads to signal increase in fMRI images (Huettel et al., 2005; 

Buxton, 2009). 

The BOLD effect is affected by changes related to neuronal activation, such as blood 

flow, blood volume, and the rate of O2 metabolism. Thus, the BOLD signal is not a direct 

measure of neural activity, but correlates with it (Logothetis et al., 2001, 2002). The BOLD 

response reflects activity of a large group of adjacent neurons. With optical imaging it has 

been shown that the spread of oxygenated hemoglobin is wider than the spatial extent of the 

initial increase of deoxyhemoglobin, which more closely matches the location of neuronal 

activity at the onset of neuronal activity (Malonek and Grinvald, 1996). 

Hemodynamic response function 

Temporally, the BOLD response to a single stimulus event is rather slow compared with the 

electrical responses of neurons. After a stimulus event at t = 0, the BOLD response starts to 

increase after 2 s and peaks typically 5–6 s after the stimulus onset. The response vanishes 

completely after 25–30 s (Friston et al., 1998a). Sometimes the BOLD response also shows an 

initial dip (Menon et al., 1995; Malonek and Grinvald, 1996), which is seen particularly at 

higher field strengths. 

The BOLD impulse response for a single stimulus event can be characterized by a 

hemodynamic response function (HRF), which can be modeled, e.g., with gamma functions 
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(Friston et al., 1994; Boynton et al., 1996). Currently, the most commonly used model is the 

sum of two gamma functions (Friston et al., 1998a), which can be completed with temporal 

derivatives of the HRF (canonical HRF) (Friston et al., 1998b). Figure 1 presents the default 

shape of the HRF inbuilt in SPM2 software (http://www.fil.ion.ucl.ac.uk/spm/). 

 
Figure 1. Hemodynamic response function (or BOLD impulse response) is a sum of two 
gamma functions (SPM2 default). 

1.1.2 Physiological noise and its removal from fMRI signals 

BOLD signals measured with fMRI can have several other sources of variation in addition to 

the hemodynamic changes related to neuronal activation. The main sources of noise in fMRI 

signal are (i) thermal noise, (ii) system noise arising from imaging hardware, and (iii) subject-

related noise. Major components of the subject-related noise derive from head motion during 

the scanning and physiological pulsations, e.g., due to cardiac and respiratory function. 

Physiological noise dominates the signal noise at 3 T (Krüger and Glover, 2001). 

Head-motion correction is a standard preprocessing step in fMRI analysis (see 

Realignment in section 1.2.1). Other types of physiological noise can be suppressed, e.g., with 

proper data filtering (Biswal et al., 1996), or by estimating and correcting for noise either in k-

space (Hu et al., 1995) or in spatial images (Glover et al., 2000; Chuang and Chen, 2001). 

Artifacts have also been detected and removed with ICA (Thomas et al., 2002; Perlbarg et al., 

2007). Moreover, physiological noise can be reduced by adapting the timing of image 

acquisition with the heart (or respiration) rate, and thereby removing the effects of pulsations 

from the functional images. Such an approach was used in Study 1 of this Thesis. 

Cardiac-triggered imaging 

To eliminate the effect of heart pulsations, fMRI image acquisition can be synchronized with 

the heart rate (cardiac-triggered fMRI). In these acquisitions, successive functional images are 

always collected in the same phase of the cardiac cycle. Cardiac-triggered image acquisition 
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has been used, e.g., in studies of cortical and subcortical auditory areas (Guimaraes et al., 

1998; Griffiths et al., 2001; Krumbholz et al., 2005; Zhang et al., 2006). 

In cardiac-triggered imaging, an effective TR is determined by the time of the R–R 

interval and the number of successive R-peaks, during which one volume is collected (R 

refers to the most prominent electrocardiogram deflection, indicating contraction of the heart 

muscle). Before the collection of each volume can start, the fMRI scanner waits for the trigger 

signal (R peak) during a pre-set trigger window (TW), which is a user-defined percentage of 

the cardiac cycle time. After the trigger detection, the scanner waits for a trigger-delay (TD) 

time before the data collection starts. 
 In cardiac-triggered imaging, the TR is not constant, which leads to varying levels of 

T1 relaxation of signals. These variations need to be corrected in post-acquisition image 

processing. The correction method (DuBois and Cohen, 2000) applied in this Thesis is based 

on a theoretical assumption of the GRE signal magnitude S, which is proportional to the 

signal echo presented in Equation (2). When signals from corresponding voxels are measured 

at two different TR values, TR1 and TR2,, the ratio of the corresponding signal magnitudes S1 

and S2 at α = 90º, is 
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If the signal is totally recovered during the second acquisition, i.e., TR2 ≈ ∞, the T1-value for a 

given voxel i can be obtained as 

 
)1ln(

TR

,2,1

1
,1

ii
i SS

T
−

−= , (4) 

and the corrected voxel intensity value at volume n 
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where TR is the constant repetition time and Si,n is the original signal value at time tn. 

1.2 FMRI data analysis 

The fundamental division between the data analysis methods applied in this Thesis is their 

classification as model- or data-based approaches. The model-based analysis, in which 

temporal covariates are used to model the expected brain responses, represents the 

conventional way to determine brain activations from the fMRI data. Specifically, the user 

predicts the brain responses on the basis of the known stimulus timing but may also include 

other covariates into the model. The general lineal model is fitted to the data, and estimated 

parameters are then statistically tested. The final results are represented as statistical 

parametric maps. 
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In data-based methods, brain activity is determined from the data, without 

assumptions about the temporal behaviors of the signals. In data-based correlation analyses, 

signals from a certain brain area, or even from other subjects, can be used as a model to 

determine common activations within brain areas or between individuals. 

ICA requires no a priori temporal information. Instead, it searches for spatially 

independent components, which add linearly. ICA, voxel-by-voxel and seed-point correlation 

analyses are the data-based methods discussed further below, after the basic preprocessing 

steps and GLM fitting of fMRI data are introduced. 

1.2.1 Preprocessing of data 

Movement or shape distortions in fMRI images can induce undesired variance in the 

functional image series, and thereby conceal the effects of interest or introduce false positive 

findings in statistical analysis. Voxel-based analysis methods assume that the voxel in a 

certain location represents the same part of the brain in a time series of successive functional 

images. The preprocessing of the fMRI data corrects for possible violations in spatial 

alignment with a set of spatial transformations. Preprocessing typically includes the 

realignment of the fMRI images, coregistration, normalization of images into a standard space 

(Friston et al., 1995; Ashburner and Friston, 1999), and spatial smoothing. 

Realignment: Subject’s head movement during fMRI scanning can lead to 

misalignments of successive functional images. Consequently, the same voxel in successive 

images of an imaging series may not represent the same brain area. The realignment 

procedure corrects for these misalignments by a six-parameter least-squares transformation 

(with three orthogonal directions and three rotations). 

Coregistration: Individual functional and anatomical images are aligned by rigid-

body transformations in the coregistration process. The mean functional image, for example, 

can serve as a reference image into which the anatomical image is coregistered. 

Spatial normalization: The prerequisite for group analysis or inter-subject averaging 

of fMRI data is that the images are transformed into the same space. The Montreal 

Neurological Institute (MNI) provides one such standard brain space in terms of a template 

formed by 512 individual brains. Normalization algorithm (in SPM2) minimizes the sum of 

squared differences between the images that will be normalized and the template image (or a 

linear combination of several templates). The procedure starts with a 12-parameter affine 

transformation; first the whole head is matched, and then only the brains are co-registered by 

weighting the template voxels in a proper way. After initial transformations, nonlinear 

deformations are determined as a linear combination of low-frequency basis functions (three-

dimensional discrete cosine transform set). The parameter estimates can be found within a 
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Bayesian framework, maximizing the posterior probabilities of deformation parameters for 

the given data. 

Smoothing: Spatial smoothing further suppresses noise, as well as anatomical and 

functional differences between subjects thereby allowing better inter-subject averaging 

(Frackowiak et al., 2004). After smoothing, the errors are more normally distributed, which is 

required for inferences in statistical parametric tests. Typically, spatial smoothing is carried 

out by convolving functional images with a Gaussian kernel. 

1.2.2 Statistical parametric mapping based on the general linear model 

The conventional approach to analyze fMRI data is to model the time behavior of the 

measured brain responses and linearly fit the predicted model to the measured data. The 

general linear model is 

 ,  (6) I)eeGβx 20~, ,σN(+=

where x is a column vector that contains the measured voxel signal (a time series of voxel 

values), G is the design matrix, where columns g(t) contain the temporal covariates to model 

the measured signal, and β are the parameters to be estimated.  The error e is assumed to 

comprise independent and identically distributed normal variables with mean zero and 

variance σ2; I denotes the identity matrix. The design matrix G can include both explanatory 

variables, e.g., knowledge about the stimulation timing s convolved with the HRF 

h: , and pre-known confounds, such as movement parameters. The 

estimated parameters β  are obtained as a maximum likelihood solution, which equals the 

ordinary least-squares solution under the above error assumptions 
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 The BOLD signal contains considerable amounts of low-frequency noise, which can 

occur at the same frequencies as the hemodynamic effects of interest. These serial correlations 

with the fMRI data violate the assumptions of the GLM noise model (Zarahn et al., 1997), 

and they can be handled utilizing auto-regressive (AR) models (Bassett and Bullmore, 2006). 

Serial correlations and other filtering can be included in the GLM (6) by matrix 

multiplications, which lead to a generalized linear model. In practice, restricted-maximum-

likelihood estimation is often used, since it allows the estimation of both model and 

autocorrelation parameters simultaneously (Friston et al., 2002). 

After parameter estimation, the statistical significance of the estimates can be tested 

with t-statistics 
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where tdf is the t-value from the Student’s distribution with degrees of freedom df,  c is 

contrast vector defining the effects of interest by weighting the parameter estimates in an 

appropriate way, and STD denotes standard deviation. 

Results can be generalized to the population from which the subjects are drawn by 

testing the individual contrast images (defined by parameter estimates  and their weights in 

c) in the second-level random-effects analysis. In this Thesis contrast images were subjected 

either to one- or two-sample, or paired t-test for group-level comparisons. 

β̂

1.2.3 Data-driven correlation analyses 

Seed-point correlations 

A simple way to determine the functional connectivity of certain region of interest (ROI) with 

other brain areas is to extract the signal from the ROI and correlate it with the rest of the 

voxels within the volume. 

This kind of “seed-point” correlations have been effective in revealing functional 

connectivities between motor regions (Biswal et al., 1995), language-related areas (Hampson 

et al., 2002), or within visual areas (Hampson et al., 2004), as well as during complex 

cognitive tasks (Goebel et al., 1998). 

Seed-point approaches have been also applied in the analysis of resting-state 

networks, referring to the brain areas which are active during rest or in the absence of external 

stimulation (Lowe et al., 1998; Fox et al., 2005, 2006). Moreover, alterations in functional 

connectivities obtained with seed-point correlations have been considered as indications of 

diseases, such as Alzheimer’s disease, multiple sclerosis, epilepsy, and schizophrenia (Rogers 

et al., 2007; Auer, 2008), and recently also of diabetic neuropathic pain (Cauda et al., 2009). 

The drawback of seed-point analysis is that it requires strong a priori hypotheses 

regarding the selection of the seed. Often the resulting connectivity maps depend strongly on 

the selected seed (Ma et al., 2007), which can be alleviated, e.g., by conjunctions of several 

seed-point correlation networks (Fox et al., 2005). 

Voxel-by-voxel correlations 

Another quite recent approach in fMRI data analysis is to correlate the signal from one voxel 

with the signal from a corresponding voxel of another image series (Hasson et al., 2004). 

Such voxel-by-voxel correlations can be used to reveal both intra-subject  (two imaging runs 

of the same subject are correlated; Golland et al., 2007) and inter-subject similarity, with 

respect to the external stimulation. 

 



12   Background  

In this Thesis, the capability of voxel-by-voxel correlations to reveal networks related 

to extrinsic and intrinsic processing (Golland et al., 2007) is utilized. Extrinsic refers here to a 

network which is activated due to external stimulation, contrary to brain circuitries related to 

intrinsic processing. This fundamental division of brain activity into extrinsic and intrinsic 

networks is also supported by the clustering of posterior cortex activity into two large systems 

(Golland et al., 2008). 

1.2.4 Independent component analysis 

Basic principles 

ICA is a method to estimate the signal sources and their linear mixing from the measured data 

by assuming that source signals are statistically independent. 

The linear ICA model is 

 Asx = , (9) 

where x denotes the multivariate or measured data, s represents independent source signals, 

i.e., independent components, and matrix A includes the coefficients of the linear mixing and 

is therefore called a mixing matrix. 

ICA algorithms solve simultaneously both A and s. In practical calculations the 

inverse matrix W = A–1 is estimated, and then, independent components are obtained by 

 Wxs = .  (10) 

The measured signal x is a linear mixture of source signals from which ICA estimates 

the original sources by requiring statistical independence of the components (Hyvärinen and 

Oja, 2000). The underlying principle for ICA is the maximization of non-gaussianity of the 

linear combination y = wTx, by finding a suitable vector w that is a row of W.

 Examples of mathematical measures for non-gaussianity are kurtosis that is 

calculated from the fourth statistical moment, or negentropy. Negentropy is defined as 

, where )()()( gauss yyy HHJ −= y is a random vector, y gauss  is a Gaussian random variable 

with the same covariance matrix as y, and H(y) is the differential entropy. Entropy describes 

the information content of the variable; the more unstructured the variable is, the larger its 

entropy. Among all random variables of equal covariance matrix, Gaussian variables have the 

largest entropy. Therefore, negentropy always equals, or is greater than, zero. In practical 

calculations, approximations of negentropy are used. 

Several ICA algorithms have been introduced to solve the ICA estimation problem. 

They all share two common properties: a measure of non-gaussianity and an optimization 

algorithm, which in this study was FastICA (Hyvärinen and Oja, 1997; Hyvärinen, 1999). 
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Before the ICA estimation, the data are preprocessed by mean removal and 

whitening. The components of whitened data are uncorrelated and their variances equal unity. 

Whitening can be done using the eigenvalue decomposition of the covariance matrix. Then, 

the linear whitening transformation is V = D–1/2ET
, where E is the orthogonal matrix of 

eigenvectors and D the diagonal matrix of eigenvalues. For the mean-removed data x, 

whitened data x~  are given by 

 sAAsEDxEDx 1/2T1/2 ~~ T === −− , (11) 

where  is the new mixing matrix. The whitening process results in an orthogonal mixing 

matrix, which reduces the number of parameters to be estimated. 

A~

The dimension of the original data m can be reduced in the whitening process by 

discarding the smallest eigenvalues and eigenvectors from the eigenvalue decomposition 

(Pearson, 1901; Hyvärinen and Oja, 2000). Then, data are projected from the m-dimensional 

data space onto an n-dimensional subspace =x~ Vnx. Dimension reduction is typically a 

reasonable preprocessing step in ICA of fMRI data, since the amount of statistically 

independent signal sources (typically few tens) is often less than amount of measured 

volumes (typically few hundreds). 

ICA and fMRI data 

Spatial, rather than temporal, ICA is usually applied for fMRI data, which means that ICs 

comprise spatially independent, not systematically overlapping brain regions or networks. In 

spatial ICA model X = AS, one volume of fMRI data comprises one row in data matrix X, 

and, correspondingly, one row of S is an independent component. Columns of the mixing 

matrix A represent the estimated time course for each spatial IC. 

ICs, the statistically independent signal sources which are related to brain activation, 

can be either task-related or transiently task-related (the signal vanishes before the stimulation 

ends or changes over time during stimulus repetition). ICs can also represent physiology-, 

scanner- or motion-related signals or noise components (McKeown et al., 1998; Calhoun and 

Adali, 2006). McKeown and Sejnowski (1998) have shown that activity-dependent fMRI 

signals and noise typically have non-gaussian distributions, and thereby ICA suits well for 

fMRI data analysis. 

Group ICA 

Similarities across several subjects can be studied by group ICA methods. Group comparisons 

in ICA, however, are not as straightforward as in GLM analysis, where the same model is 

fitted to the data of every single subject, and contrast images of individual responses are then 

statistically tested at group level. In ICA, the signals of individual subjects can have different 
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time courses, and after the ICA estimation the individual components are neither sorted nor 

ordered, and thus cannot be straightforwardly subjected to group analysis. 

At least three approaches for basic group-ICA analysis have been suggested. Calhoun 

et al. (2001a) proposed a method which is applied in this Thesis. In this method, data from 

each subject are concatenated into the same aggregate data set, assuming that the data from 

different individuals are statistically independent observations. Data reduction is performed in 

two or three steps, beginning with individual-level reduction and followed by reduction of the 

aggregate data set (Calhoun et al., 2001a) 
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1−
iF

R  can 

be divided to  according to individuals. YiR i represent individual preprocessed data, one row 

of which is one volume of fMRI data. N is the total number of subjects. 

The ICA model is then 
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from which the ICA algorithm searches for activations common to the whole group, 

producing a single set of group ICs. Further, individual responses can be traced by back-

reconstructing the group data into individual ICs . Subject-wise 

concatenation of data requires good spatial normalization of individual images into the 

standard space. 

iiii YFARS 11)ˆ(ˆ −−=

Another option for group ICA is to concatenate the data row-wise 

, in which case spatial normalization is not needed (Svensen et 

al., 2002). This approach estimates a common time course for all subjects, as well as 

individual spatial maps. However, subject-wise concatenation of data (Calhoun et al., 2001a) 

appears superior to this type of row-wise concatenation, especially when unique sources are 

present (Schmithorst and Holland, 2004). 
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Esposito et al. (2005) suggested a third group-ICA method, in which the ICs are first 

estimated separately for each subject and then the corresponding ICs across subjects are found 

by utilizing similarity measures and self-organizing clustering. 
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Component sorting 

After the IC analysis is completed, the components do not appear in any specific order. In 

mathematical terms this means that inserting a permutation matrix and its inverse into the 

model does not change the estimated sources, but it can change their order (Hyvärinen and 

Oja, 2000). 

In the earliest fMRI studies involving ICA, ICs were ranked by their contribution to 

the original data, i.e., by the root mean square of data comprised by a certain component, or 

alternatively the root-mean-square error, when data were reconstructed without the 

contribution of certain component (McKeown et al., 1998). 

Often the goal in the fMRI analysis is, however, to differentiate among the set of 

components those that arise from neuronal sources and are related to the presented task or 

stimuli from those that are artifact or noise. One classical method is to sort the components 

using temporal criteria, such as the known stimulus timing (McKeown et al., 1998; Calhoun 

et al., 2002; Kansaku et al., 2005; Moritz et al., 2005), or by utilizing the design matrix 

defined for GLM analysis (McKeown, 2000; Hu et al., 2005). Ranking that is based on IC 

power spectra can be used if the stimuli are presented with constant periodicity (Moritz et al., 

2003). 

Canonical-correlation analysis applied after ICA is an example of advanced extension 

of methods that utilize temporal criteria in identifying relevant ICs. This approach can take 

into account physical or other measures of the stimuli and use features to concatenate the ICs 

into groups of components that best describe the given set of stimulus features 

(Ylipaavalniemi et al., 2009). 

Similar to sorting according to temporal criteria, correlations can be calculated on a 

spatial basis using, e.g., brain-atlas images for component sorting (van de Ven et al., 2004; 

Calhoun et al., 2008). In this case, ICs are sorted by their spatial consistency with the given 

template. Earlier, Gu et al. (2001) proposed component ordering that accounts only for the 

spatial structure of the activation map, favoring components of large activation clusters and 

suppressing patterns related to motion artifacts. 

Finally, it is also possible to use sorting approaches that do not require information 

about stimulus timing; such methods rely on component reproducibility, or on the 

characteristics of ICs themselves. Component reproducibility across several estimation runs 

can be used both for reliability analysis of the ICs and for ranking the components either on 

an algorithmic level (Himberg et al., 2004; Yang et al., 2008; Zeng et al., 2009) or on data 

level, by varying the input of the algorithm (Himberg et al., 2004; Zeng et al., 2009). 

Intrinsic spatio-temporal properties, such as kurtosis, one-lag autocorrelation or 

degree of spatial clustering of the ICs, have also been utilized both for component ranking 
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(Formisano et al., 2002) and classification (De Martino et al., 2007). Utilizing these properties 

complemented with other measures, such as skewness, temporal entropy and spectral power at 

certain frequency bands, it is possible to construct a multidimensional IC fingerprint 

separately for each IC. The pattern of the fingerprint then indicates to which class (either 

BOLD signal or specific types of artifact) the IC most likely belongs. Thus, the classification 

based on IC fingerprints can effectively segregate the BOLD-related components from other 

types of signal sources (De Martino et al., 2007). 
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2 Aims of the study 
The overall aim of this Thesis was to gradually move from conventional block fMRI designs 

to more naturalistic experimental setups. The emphasis was on the data analysis methods. The 

specific aims of the individual studies were 

i) to find out whether the reduction and correction of heart-cycle-related artifacts by means of 

cardiac-gated image acquisition would improve the detection of tactile responses in the 

secondary somatosensory cortex (SII), and in the thalamus (Study 1). 

ii) to compare data-driven (ICA) and hypothesis-based (GLM) data analysis methods during 

the presentation of a rather naturalistic stimulus sequence comprising free viewing, hearing, 

and feeling touch (Study 2). 

iii) to introduce a new method for sorting the stimulus-related ICs and to apply it in a study of 

sensorimotor processing of audio-visual speech (Study 3). 

iv) to analyze resting-state fMRI data of chronic pain patients and to compare the spatio-

temporal properties of their affective pain matrix between patients and the healthy control 

subjects (Study 4). 
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3 Methods 
3.1 Subjects 

Altogether 42 subjects (31 males and 11 females) participated in the fMRI experiments; two 

of these subjects were scanned in more than one experiment. Most subjects were university 

students, except in Study 4, where chronic pain patients were recruited from the Pain Clinic of 

the Helsinki University Central Hospital. The Ethics Committee of the Helsinki and Uusimaa 

Hospital District had approved all experiments and each subject signed an informed consent 

prior the scanning. Table 1 lists the number of subjects and their mean ± STD of the age. 

Table 1. The number (N) and age distribution (in years) of subjects in Studies 1–4. 

Experiment N Mean ± STD age 
Study 1 10 23.6 ± 3.5 
Study 2 6 27.6 ± 2.9 
Study 3 10 26.7 ± 4.3 
Study 4 20 50.7 ± 8.9 

3.2 FMRI measurements 

The fMRI data were measured at the Advanced Magnetic Imaging Centre of Helsinki 

University of Technology (currently Aalto University School of Science and Technology) 

using Signa VH/I 3.0 T MRI scanner (GE Healthcare). 

Functional images were collected with following parameters: TR = 3 s (Studies 1–3) 

or 4 s (Study 4), TE = 32 s, matrix = 64 × 64, voxel size = 3 × 3 × 3 mm3 (Studies 1–3) or 3 × 

3 × 4 mm3 (Study 4) with no gap in-between the slices, FOV = 20 x 20 cm2, flip angle α = 90º 

(Studies 1–3) or 75º (Study 4). The number of slices was 15 in Study 1, 44 in Studies 2 and 3, 

and 33 in Study 4. 

Structural images were obtained with a T1-weighted 3-D spoiled gradient sequence 

using TR = 9 ms, TE = 1.9 ms, α = 15º, preparation time = 300 ms, number of excitations = 2, 

slice thickness 1.4 mm, and FOV 24–26 cm depending on the subject’s head size. 

Cardiac-triggered image acquisition 

Cardiac pulsations were monitored with a pulse oximeter that was attached to the subjects’ 

left index finger. Fifteen slices were collected, evenly-spaced in time within 3 successive R–R 

intervals, which led to an effective TR of 2.5–3.16 s. The TW was set to 20% of the cardiac 

cycle, and TD lasted for 300 ms to ensure that image collection did not start before the end of 

the systole. For signal-intensity correction, two additional image series were collected with 

TR1 = 1.5 s and TR2 = 10 s (see Equation 3). 
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3.3 Data analysis 

Preprocessing 

The standard tools of SPM2 software were used for preprocessing of the fMRI data: 

realignment, normalization into MNI space, and smoothing with a 6-mm (3-mm in Study 1) 

full-width-at-half-maximum Gaussian filter. The group-ICA approach requires especially 

accurate spatial normalization. Therefore, to achieve the best possible anatomical consistency 

across subjects, in Studies 2–4 the skulls were removed from the images prior to 

normalization. 

GLM-based analysis (Studies 1–3) 

GLM-based analysis was carried out with SPM2. Table 2 lists the regressors and statistical 

thresholds applied in the group-level analysis. Serial autocorrelations were handled with 

AR(1)-model in each design. 

Table 2. Details of the temporal regressors included in the GLM, and the applied statistical 
threshold at group level (p-value from t-test, and the extent defined as the minimum number 
of statistically significant voxels in a cluster) in Studies 1–3. 

Experiment Regressors based on stimulation 
Stat. threshold 

p / extent 

Study 1 Tactile: lip, fingers and toes + 6 realignment 
parameters (tot. 3 + 6 nuisance covariates) 0.005 / 20 

Study 2 Video: faces, hands, houses; audio: tone pips, 
instructions, history; tactile: fingers (tot. 7) 0.0005 / 20 

Study 3 Normal speech loud, soft and mute; reversed speech 
loud, soft and mute; tone pips loud and soft  (tot. 8) 0.001 / 10 

ICA (Studies 2–4) 

Common ICs for the whole group of subjects were estimated with the group-ICA approach 

(GIFT software, http://icatb.sourceforge.net) using the FastICA algorithm. Before the ICA, 

the number of components (76, 41, and 48 in Studies 2, 3, and 4, respectively) was estimated 

with a minimum-description length algorithm (Li et al., 2007), inbuilt in GIFT. 

Component ordering 

Only a subset of the estimated ICs was selected for closer examination. In Study 2, the 

properties of the task-related components, which temporally correlated most with the different 

stimulation categories, were studied. In addition, several ICs, whose activation patterns 

spatially resembled the so-called resting-state networks (Fox et al., 2005; Damoiseaux et al., 

2006), were reported. A priori knowledge was also utilized in Study 4 by focusing on ICs that 
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covered the rather well-characterized affective pain matrix (Apkarian et al., 2005); the 

reference IC comprised the precuneus and early visual cortices. 

In Study 3, a new approach was proposed and applied for sorting the ICs according to 

their stimulus-relatedness. This approach combines two data-driven methods, namely ISC and 

ICA. First, the brain areas, which were related to the external stimulation, were defined in 

terms of ISC (described in more detail below), and then ICs were sorted according their 

spatial overlap with the ISC map. The sorting parameter SP for the ith IC is defined as 
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where r(.) denotes the spatial Pearson’s correlation coefficient between the thresholded ISC 

map and ICi (first term), which is combined with relative amount of overlapping voxels 

(second term); λ is a weighting parameter. 

Spatial overlap was determined from binarized images in which voxels exceeding the 

given statistical threshold were set to 1 and others to 0. SP thus takes into account both the 

similarity in activation distributions of ISC and IC as well as the extent of common activated 

areas. In Study 3, both terms were equally weighted (λ = 0.5) and 10 ICs with the highest SP 

values were selected for further analysis. The result of the spatial sorting was compared with 

sorting based on temporal similarity of IC time courses between subjects. 

Inter-subject correlation (Study 3) 

The inter-subject correlation map was determined by first calculating the pair-wise voxel-by-

voxel correlation images (N = 45 from 10 subjects). The Fisher transformation was applied to 

convert the pair-wise correlation coefficients to the normally-distributed variables. 

Correlation maps were then subjected to group analysis to test, in each individual voxel, 

whether the correlations deviated statistically significantly from zero (one-sample t-test: false-

discovery rate p < 0.01, extent of activation at least 10 voxels). 

Prior to these calculations, the realignment parameters and the global mean (whole 

volume average) signal were fitted to the data of each individual using GLM, and then, their 

effect was removed from the gray-matter voxels. Gray matter voxels were obtained with 

Freesurfer (http://surfer.nmr.mgh.harvard.edu/) segmentation (Fischl et al., 2004).  

Seed-point correlations (Study 4) 

Six sub-areas from the affective pain matrix (right and left anterior insula, right medial insula, 

left posterior insula, anterior medial cingulate cortex, and posterior ACC), and one from the 

visual cortex, served as seed regions for scrutinization of functional connectivity of the 

affective pain matrix. Seeds were selected on the basis of ICA results; for example, the right-
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anterior-insula (RAI) seed was defined on the basis of spatial group difference (two-sample t-

test showed decreased anterior insular activity in the patients compared with control subjects; 

see Figure 10 in Section 4.4), or they were other local t-test maxima within the ICs tested at 

the group level. 

The seeds were spheres of 6-mm radius and an average fMRI-signal (preprocessed 

individual data) from them was fitted to the rest of the brain voxels to obtain individual 

connectivity maps. Group analysis was performed separately for patients and control subjects 

(one-sample t-tests, p < 0.0001; extent of 20 voxels), and the groups were then compared 

(two-sample t-test, p < 0.001; extent of 20 voxels). 
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4 Experiments 
4.1 Cardiac-cycle-synchronized image acquisition improves 

activation detection in SII and thalamus (Study 1) 

Experimental setup 

We collected two cardiac-triggered and two conventional image series (148 volumes in each 

including four dummy scans). In addition, two 12-volume image series were measured to 

obtain data for correcting the signal variations caused by variable TR in cardiac-triggered 

imaging. 

Subjects received 4-Hz pneumatic tactile stimuli to the right side of their body; two 

distinct sites on their lower lip, second and third fingers, and second and third toes. Stimuli 

were delivered to each location in blocks, which lasted nine volumes and were followed by 

seven-volume rest periods. 

Results 

Figure 2 compares signal-corrected data obtained by cardiac-triggered image acquisition (left) 

with the result of conventional analysis (right). Cardiac triggering with the related analysis 

improved the detection of tactile activations in the thalamus and SII. At group level, only 

cardiac-triggered images revealed thalamic activations and bilateral SII activations (for finger 

stimulation). Moreover, at individual level, activations were seen in more subjects during 

cardiac triggering than conventional imaging; 5 vs. 2 individuals in thalamus, and 6 vs. 3 in 

the medial SII cortex. 

 
Figure 2. Brain activations in the SII and the thalamus related to tactile stimulation of right-
hand fingers during cardiac-triggered image acquisition (left) and conventional imaging (right). 
One-sample t-test, thresholded with p < 0.005 and extent of activation ≥ 15 voxels. Modified 
from Study 1. 

Both signal change and variance affect the statistical significance of the fMRI 

activations. Since signal change did not differ between conventional and cardiac-triggered 

image acquisitions, the improvement in activation detection was based on decreased variance 

due to the cardiac-triggering and post-acquisition signal correction. 
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Conclusion 

Cardiac-triggered imaging can improve the detection of (touch-related) brain activations, both 

in the cortex and subcortical structures. The drawback of the method is, however, that fewer 

slices can be imaged within the same TR. 

4.2 ICA is superior to GLM during complex stimulation (Study 2) 

Experimental setup 

Subjects followed a stimulation sequence, in which one of the unimodal auditory, visual, or 

tactile stimuli was always present, with no specific baseline or rest periods. Auditory 

stimulation consisted of either 0.1-s tone pips of different pitches, or continuous speech of a 

male reading either a story about the local university’s history or guitar fingering instructions. 

Visual stimuli comprised silent videos which in different clips presented mainly faces, hands, 

or buildings in everyday environments. Pneumatic tactile pulses were delivered at 4 Hz to the 

second, third and fourth fingers of both hands. Each subject experienced the stimulation 

sequence twice during the 165-volume (8.25 min) functional imaging. 

Results 

ICA separated the sensory areas into spatially distinct networks according to the different 

sensory modalities or individual stimulus properties. Figure 3 shows an example of two ICs 

related to visual processing and two ICs related to auditory processing. The V1/V2 

representation of lower visual field reacted to every type of visual stimuli. Signal in V5/MT 

responded similarly as V1/V2 to the videos containing faces and hands, but only weakly to 

the building videos, which contained less foveal movement. The lower panel in Figure 3 

shows that the auditory cortex (ACx) reacts to every type of auditory stimulus, whereas 

superior temporal sulcus / middle temporal gyrus (STS/MTG) responds only to speech. 

Altogether, brain areas that responded to visual stimuli, and were separated by ICA, 

comprised representations of the central upper and lower visual fields in V1/V2, of the 

peripheral visual field in V1/V2, posterior convexial cortex, V5/MT, and four other ICs near 

or within the parieto-occipital sulcus (POS). 

Figure 4 compares the ICA and GLM-based analysis. The sub-areas of auditory and 

visual cortex activations revealed with GLM-based analysis were less extensive than those 

obtained by ICA. GLM-analysis also failed to show activations in the POS area and in the 

somatosensory cortices. 
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Figure 3. Average ICs and individual time courses from V1/V2 and V5/MT (red and blue ICs 
in the upper image) and from the auditory cortex (ACx) and the STS/MTG (red and blue ICs in 
the lower image). The arrows indicate differences in modality-specific responses, related 
either to visual or auditory processing (z-normalized values). Abbreviations: videos containing 
mainly F = faces, Ha = hands or B = buildings; auditory stimulus was either P = tone pips, I = 
guitar playing instructions, or Hi = local university history. Modified from Study 2. 

Time courses in Figure  4 show that ICA-estimated BOLD responses (red) fit well to 

the predicted HRF model (black line) in early visual and auditory areas. In the primary 

somatosensory cortex (SI), however, the IC time course showed clear dependence on tactile 

stimulus presentation in the beginning of the stimulus series but it deviated from the predicted 

signal when the time between the stimulus blocks was shortest (6 s). 

 

 
Figure 4. Comparison of ICA and GLM results. Black traces show the predicted 
hemodynamic models for visual, auditory, and tactile (from top to bottom) stimulation. The red 
time courses are the ICA estimates for the visual, auditory, and tactile components, 
respectively, related to the red ICs in spatial maps on the left. R2 is the coefficient of 
determination between the HRF and IC time course. Colored areas behind the traces show 
when the certain unimodal stimulation was on; gray bars denote times of tactile stimulation, 
and other colors are the same as in Figure 3. Modified from Study 2. 
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Figure 5 illustrates that the time courses of stimulus-related ICs were very similar 

across subjects in early sensory areas and more variable in higher processing areas, except in 

SI, where individual signal variation was considerable already in the early processing areas. 

 

 
Figure 5. Individual signal variation in areas related to early sensory processing (V1/V2, ACx, 
and SI) and in areas related to higher-order processing (POS and STS/MTG). The mean ± 
STD inter-subject temporal correlation coefficients are given on the right; the upper values 
refer to the first and lower values to the second imaging session. Modified from Study 2. 

Conclusion 

Group ICA turned out to be a sensitive method to study brain responses elicited by complex 

naturalistic stimuli. It extracted functionally meaningful composites of activated brain areas 

even though only six subjects were studied, thereby showing superior performance compared 

with the GLM-based analysis. Results also indicated increased individual variability of the 

hemodynamic response in higher processing areas compared with early sensory cortices. 

4.3 ISC–ICA sorts ICs related to audiovisual speech (Study 3) 

Experimental setup 

The loudness of continuous (8.5-min) audiovisual stimulation was varied between clearly-

audible (loud), just audible (soft), and silent. Twice during the experiment, the stimulation 

was reversed in time or interrupted with tone pips, both having similar variation in stimulus as 

normal speech. Ten subjects were scanned twice during the experiment and 170 volumes were 

included in the analysis from both runs. 
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Results 

Figure 6 presents the inter-subject correlation map, which was used in the IC ordering. 

Statistically significant similarity across subjects was evident in the temporal, occipital, and 

parietal areas, as well as in frontal areas (including Brodmann area 10). 

 

 
Figure 6. ISC map obtained by stimulation containing audiovisual speech, reversed speech, 
and tone pips. Modified from Study 3. 

Combined ISC–ICA analysis revealed the most stimulus-related ICs. Among them were both 

sensory-processing areas and default-mode components, whose activity was modified 

similarly across subjects due to the external stimuli. Sorting based on the ISC map provided a 

physiologically reasonable order at least for the first ten ICs. Figure 7a shows the six most 

stimulus-related components based on ISC-map sorting. The first IC covers the auditory 

cortex in both hemispheres, the next four ICs cover different parts of visual cortices, IC6 

agrees with the sensorimotor network of normal speech processing (described in more detail 

below), and IC7 is the default-mode component modified by the stimulation. 

 

 
Figure 7. ICs sorted according to a) ISC-map and b) inter-subject temporal correlations (own 
unpublished result). 

A comparable method to sort the ICs is to look for maximum correlations of IC time 

courses across subjects. Figure 7b presents the component order according to the statistically 

most significant temporal correlations. Up to the first six components, the order is the same as 

in the ISC-based sorting, whereas the spatial pattern of the seventh IC does not look 

physiologically meaningful. 

In addition to activations in the auditory and visual cortices, ISC–ICA picked up a 

left-lateralized sensorimotor network (IC6) comprising the left STS, left anterior superior 
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temporal gyrus, left inferior frontal gyrus (IFG, including Broca’s area), left premotor cortex 

(BA6), and the right inferior parietal lobule (IPL). IC6 reacted for normal speech, 

occasionally even more strongly for soft than loud speech. Contrary to the left-lateralized 

sensorimotor network, the right-lateralized MTG–IFG–IPL circuitry was activated more 

strongly for reverse than normal speech. This network showed transiently increased activity 

during every block, possibly related to the update of the content of the auditory working 

memory. 

 

 
Figure 8. Left: ICs from auditory cortex (blue) and insula (red). Right: time courses for 
auditory cortex (blue) and insula (red) related to ICs presented on the left. Colors on the 
background show stimulation duration and type: shades of blue = normal speech, yellow = 
time reversed speech and gray = tone pips. The darker the color, the louder the stimulus. 
Modified from Study 3 (data from insula are own unpublished results). 

Among the 10 most task-related components was also an IC, presented in red in 

Figure 8, that covered the insula in both hemispheres and showed, in general, rather similar 

task-dependence as the auditory cortex component (blue), but containing more high-

frequency variation. 

Conclusion 

ISC maps first identified brain areas that were most strictly related to external stimuli. ICs, 

which were sorted by their spatial overlap with the ISC map, revealed detailed spatio-

temporal properties of the independent sub-networks related to processing of audiovisual 

speech. Most importantly, the ISC analysis revealed the involvement of left-lateralized 

sensorimotor network during comprehension of speech of diminished intelligibility. The ISC–

ICA approach therefore seems valid for various fMRI experiments applying naturalistic and 

continuous stimuli. 

4.4 Spatio-temporal properties of resting-state networks are altered in 
chronic pain (Study 4)  

Experimental setup 

Resting-state brain activity was measured during four ten-minute fMRI scanning runs in 

chronic pain patients and in sex- and age-matched healthy control subjects. For a later control 
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analysis, heart and respiration rates of two patients and two control subjects were correlated 

with fMRI signals from selected seed areas. 

Results 

Two ICs belonging to the affective pain matrix—the bilateral lower insular cortices and the 

anterior cingulate cortex (ACC)—were selected for closer examination. 

 

 
Figure 9. Individual power spectral densities in patient and control groups (upper and lower 
panels, respectively). The red area shows the frequency range typically examined in resting-
state fMRI analysis. Modified from Study 4. 

Figure 9 illustrates the power spectral densities of both groups. ICs covering the 

lower insula and ACC showed stronger spectral power at 0.12–0.25 Hz in patients than in 

control subjects; the difference was largest at 0.16 Hz. Precuneus/VisCx, used as a control 

site, did not show such an effect. 

Figure 10 (left) shows that the right anterior insula (RAI) activation was suppressed 

in patients compared with healthy control subjects. Figure 10 (right) presents an example of 

statistically significant differences in functional connectivity between the groups, when 

posterior ACC served as a seed. In the control group, the anterior insula, posterior insula, and 

ACC were functionally connected, whereas in the pain patients, insula and ACC connections 

were disturbed. 
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Figure 10. Statistically significant differences (control subjects vs. patients) both in activity 
(left) observed by comparing individual ICs comprising bilateral insula (own unpublished 
result), and in connectivity (right) for ACC as the seed-area (two-sample t-test; p < 0.001, 
extent 10 voxels at MNI z-coordinate 0). 

In the control analysis with 4 subjects, fMRI signals did not correlate with respiration 

rate and correlated only weakly (~0.1) with the R–R interval time series. Neither 

measurement revealed differences between the two pain patients and two control subjects. 

Conclusion 

Spatio-temporal properties of resting-state activity were altered in patients suffering from 

chronic pain compared with healthy control subjects. Since heart-rate correlations with fMRI 

signals were small in all seed areas, the cardiac pulsations can be considered unlikely causes 

for the patients’ faster fluctuations. The exact reason for aberrant temporal behavior in the 

patient group thus remains unknown, but it could be related to altered autonomic nervous 

system (ANS) activity. 

The altered spectral content between the groups was observed since we did not apply 

conventional low-pass filtering of resting-state data with cut-off around 0.1 Hz. The results 

suggest that opening the frequency band beyond the conventional filtering may be 

occasionally beneficial in revealing differences in some patient groups where the neural 

and/or hemodynamic activity is altered. To better understand the mechanisms of accentuated 

fluctuations and their relation to altered functional connectivity, the ANS activity during 

fMRI (resting-state) experiments should also be monitored. 
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5 General discussion 
The fMRI studies of this Thesis evolved gradually from discrete on–off stimulus presentation 

to more continuous and complex stimulation. Comparison between the ICA and ISC data-

based techniques with the model-based GLM approach was possible in studies containing 

stimulus blocks, even though the complexity (from unimodal to multimodal) and continuity 

(from block presentation to continuous stimulation) were increased. Although previous 

comparisons of the methods have yielded comparable results, or favored the sensitivity of 

GLM-based approach (Calhoun et al., 2001b, 2001a), the results obtained in this Thesis 

indicated that during naturalistic stimulation data-driven methods can offer more extensive 

and detailed information about brain activations than do temporal covariates in GLM-based 

analysis. In future fMRI experiments, the methods studied in this Thesis can fairly reliably be 

applied to truly continuous stimulus conditions, in which it is difficult, if not impossible to 

use stimulus-related temporal covariates as will be discussed below. 

5.1 Assumptions and outcomes of the analysis methods  

Human brain is active all the time. Fluctuations of brain’s signaling and hemodynamic 

activity occur even in the absence of any sensory stimulation, as has been shown by studies of 

resting-state or default-mode activity (Fox and Raichle, 2007). Even during rest, the brain is 

organized into functionally connected networks, whose activity and connectivity may be 

altered by stimulation or cognitive demands (Gusnard et al., 2001; Greicius et al., 2003; 

Fransson, 2006; Hasson et al., 2009a). By means of fMRI, it is possible to probe these resting-

state fluctuations and functional organization of the human brain, as was done in Study 4 of 

this Thesis. Typically, stimulus-induced brain activations have been examined by presenting 

discrete sensory stimuli to subjects and thereafter analyzing responses time-locked to the 

stimuli. However, when continuous stimulation is presented with no rest periods in between, 

it is more complicated to find out which of the observed fluctuations are related to the 

external stimuli or tasks and which just reflect intrinsic or resting-state activity. 

What is task-related? 

Definition of task-relatedness is an obvious matter of consideration when naturalistic stimuli 

lead to increasingly complex behavior of the hemodynamic signal. In GLM analysis, task 

relatedness is an inbuilt property and the basic assumption of the analysis method itself. The 

applied temporal covariates or models precisely define which phenomena (either brain 

response or confound) are assumed to occur at certain time instances and thereby be 

detectable in statistical testing. The temporal covariates are typically convolved with the HRF, 
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which often serves as a proper model for BOLD impulse response, but which also may vary 

depending on the subject, brain area or be modified by disease. 

Most likely, the best signal fits with the HRF-convolved covariates are obtained in the 

visual cortices, from which the HRF model has originally been estimated (Boynton et al., 

1996) and similar HRF characteristics have also been found in the early auditory-processing 

areas (Josephs et al., 1997). However, HRF may depend on brain area and the stimulus. For 

example ICA has revealed that even simplistic flickering checkerboard stimuli can induce 

variable hemodynamic responses in primary visual areas (Duann et al., 2002). In this Thesis, 

Study 2 showed that a striking deviance from the expected BOLD behavior in the primary 

somatosensory projection areas: the SI response deviated significantly from the predicted 

model for short inter-block intervals and was the likely reason for the invisibility of SI 

activation in the conventional GLM-based analysis. 

If the research question focuses only on a certain restricted brain area, instead of the 

whole brain volume, it would be reasonable to estimate the shape of the HRF for that 

particular region. Both the estimation efficiency and the detection power cannot, however, be 

maximized simultaneously. In naturalistic stimulus settings, in which large networks 

consisting of nodes in several brain areas can be simultaneously active, the estimation of the 

HRF shape may thus not be reasonable. 

To avoid the difficulty of defining a temporal model for brain responses, the brain 

activity of one individual can be predicted with the data from another person who was 

subjected to the same stimulation. This approach was taken in the ISC analysis, in which the 

task-relatedness was defined as similarly modulated brain responses across subjects in terms 

of statistically significant correlations. 

Whereas both GLM and ISC rely on temporal models—GLM in a user- and ISC in a 

data-driven manner—ICA does not require any information about temporal behavior of the 

signals. The underlying assumption of ICA in fMRI analysis is the spatial independence of 

estimated components and, therefore, ICA provides information about the signal’s temporal 

behavior beyond any predefined temporal models. ICA, as such, does not identify which of 

the estimated ICs are task-related and this information needs, therefore, to be achieved by 

other means as discussed in more detail below. 

Properties of the ISC map 

Correlations of brain responses of one individual with the responses of another individual 

have revealed that large brain areas can be activated in unison between different people 

(Hasson et al., 2004).  In Study 2, the hemodynamic signals were relatively similar in the 

early projection areas but the signals became more variable in areas related to higher-order 

processing. Despite this variability, the ISC map in Study 3 demonstrated activations beyond 
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the early sensory areas. The ISC map included brain areas related to cognitive processes, such 

as the frontal cortex, and brain areas of the default-mode network. These findings imply that 

the activations even in non-sensory brain areas can be modulated by external stimuli rather 

similarly across individuals. These observations are in line with the first ISC studies: During 

free viewing, inter-subject synchronization was especially strong in early sensory cortices, but 

significant similarity occurred also in association cortices (Hasson et al., 2004). 

Recently, voxel-by-voxel correlation analysis has been applied for the study of the 

hierarchy of time scales of cortical processing during free viewing (Hasson et al., 2008). In 

autistic subjects, ISC showed diminished similarity between individuals and intra-subject 

correlations further demonstrated idiosyncratic activation patterns (Hasson et al., 2009b). 

Although both of these examples convincingly show that voxel-by-voxel correlations provide 

an effective analysis tool as such, in this Thesis ISC was primarily used to facilitate the 

selection of stimulus-related components in ICA. 

ISC map in the selection of stimulus-related ICs 

Temporal criteria have dominated the segregation of stimulus-related ICs (see Component 

sorting in section 1.2.4): either temporal covariates similar to those in GLM or other stimulus-

related features have been correlated with IC time courses. In Study 2, ICs were selected on 

the basis of a priori information of activated brain areas and according to their temporal 

dependence on the external stimulation. Study 3 provided a slightly more sophisticated 

approach: ICs were sorted with the help of the ISC map. Since ISC illustrates brain areas 

related to processing of external stimuli in the form of a spatial map, no temporal models of 

signal behavior were needed after ICA. 

One difficulty in ISC-map-based IC sorting is that the user needs to determine how 

many of the ordered components are truly stimulus-related and of interest. In fact, we could 

have used the ISC map to constrain the estimation of the ICs into active voxels of the map. 

Then, only areas that are known to be modified by the external stimulation would have been 

included and sub-partitioned in ICA, and consequently, all ICs could have been considered to 

be stimulus-related. This approach, however, may not be the most desirable, since ICs 

obtained with the statistical independence criterion can also unravel connections among brain 

areas that are not strongly temporally correlated between subjects and, thus, would remain 

invisible in the ISC map. 

In Study 4, (seed-point based) correlation analysis yielded comparable, but still 

distinct results compared with ICA, which separated the areas of interest—insula and ACC—

into two different components. The applied group analysis, based on individual ICs, revealed 

weakened activity in the patients’ RAI, and seed-point correlations further confirmed that the 

connections within the affective pain matrix were disturbed in the patient group. Correlations, 
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which measure dependence between random variables using second-order statistical moments 

most often provide distinct, but complementary, information about functional connectivity or 

stimulus-related brain networks compared with ICA that is based on higher-order statistics. 

Therefore, the ISC map is most likely best applied when it facilitates, rather than defines or 

constricts, the selection of stimulus-related ICs. 

A method related to ISC mapping involves determining the most similar IC time 

courses between individuals (Bartels and Zeki, 2004). Among the most significant ICs in 

Study 3, the temporal-correlation approach revealed the first six components in a similar 

order, but the following components were spatially more unlikely candidates for the most 

stimulus-related ICs. Importantly, the default-mode component did not survive IC-time-

course correlations, although it was clearly visible in voxel-by-voxel correlations in the ISC 

map. Thus, among the existing methods, ISC–ICA has two advantages: (i) ranking the 

components according to their stimulus-relatedness does not impose prerequisites for the 

stimulation or task, or their timing, and (ii) revealing even sensitivity of default-mode or 

intrinsic networks to external stimulation. 

In future fMRI studies, ISC-based IC sorting combined with finger-print (see Section 

1.2.4) classification and selection of BOLD-related ICs (in contrast to noise or artifacts) could 

possibly provide more detailed insights for the selection of stimulus-related ICs. This could 

confirm that sorted components are related to BOLD signal changes, or alternatively, only ICs 

related to BOLD signal changes could be sorted. 

5.2 Individual signal variations and group inferences 

In Studies 2 and 4, we made observations on the individual IC time courses. Study 2 showed 

that stimulus-related signals are very similar in early visual and auditory processing areas and 

become more variable in brain areas related to higher processing. In Study 4, the individual 

time courses indicated differences in temporal dynamics between pain patients and healthy 

control subjects, and these differences were also confirmed with statistical testing. This type 

of closer scrutinization of individual time courses is still rather rare in fMRI studies that 

typically visualize results as statistical maps depicting spatial distribution of statistically 

significantly activated brain areas. 

In group ICA that applies subject-wise concatenation of the data, the individual ICs 

and corresponding time courses are obtained by back-projecting data from aggregate 

components into single-subject level. Although individual subjects are initially considered as 

statistically independent observations, the resulting back-projected ICs can be tuned and 

constrained by the initial aggregate ICs. However, this procedure did not seem to have any 

major effect, because the individual IC time courses reported in this Thesis strongly 

resembled the true signal behavior within the brain areas covered by the spatial component. 
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In Studies 2 and 3, we compared the group-level inferences obtained with GLM and 

ICA. Both studies indicated that in almost continuous stimulus presentations, ICA can provide 

more detailed information about brain processes related to the stimulation. In group ICA, 

however, one or several individual back-projected ICs are known to carry information from 

the aggregate components, whereas in GLM-based group analysis, such a priori information 

does not exist. These conceptual differences between group-inference testing in ICA and 

GLM may have an effect on the conclusions made of the sensitivities of the methods to detect 

brain activations. How severe these possible confounds are in practice remains to be studied. 

Langers (2009) recently proposed an alternative framework for ICA group-level 

testing to overcome these limitations: individual ICs are matched with aggregate components 

and selection bias is also accounted for. 

5.3 FMRI activity in the presence of physiological pulsations 

Besides reflecting neuronal activity, the fMRI signal includes, or can be disturbed by, several 

non-neuronal factors, such as other physiological signals, scanner-related artifacts and other 

types of noise. This Thesis paid attention to the elimination of physiological noise from fMRI 

signal, specifically noise related to cardiovascular pulsations and its possible contamination of 

ICs. 

Elimination of cardiac pulsations by cardiac-triggered imaging 

In Study 1, the effects of cardiac pulsations were successfully eliminated both from the deep 

brain areas and the cortex by synchronizing the image acquisition with cardiac function. This 

method, despite its benefits, is rather time-inefficient since it would have been possible to 

collect 2.4–3 times more volumes within the same total imaging time by using conventional 

image acquisition without cardiac triggering. The increased number of time points would 

have improved the statistical inference, theoretically approximately 1.6–1.7-fold, which could 

compensate for the inferior performance of conventional imaging compared with cardiac 

triggering. Moreover, the constant TR of 3 s would have enabled whole-brain coverage in the 

functional images, whereas with cardiac triggering, only a third of the slices could be 

collected within one volume, leading to severely limited spatial coverage. 

For these reasons, cardiac-triggered image acquisition should be applied only after 

careful consideration. Results shown here are in line with the common understanding that 

cardiac-triggered fMRI is most useful for analysis of signals originating from deep brain 

areas, where the pulsations are strong and the smaller spatial coverage of functional images is 

not a problem. 
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FMRI signals carry information of several signal sources 

Study 1 further implied that the effect of pulsations can be significant even in the cortex, 

especially in the proximity of big vessels. Both the second somatosensory cortex SII, 

examined in Study 1, and the insula reported in Studies 2–4, lie close to vessels of the internal 

carotid artery. The obvious need to control for the contribution of cardiac pulsations in the 

fMRI signal was therefore revisited in Study 4, in which the connection between higher 

insular frequencies and heart rate was studied in post-hoc analyses. The weak (~0.1) positive 

correlation between the hemodynamic variability and heart rate explains only a minor part of 

the signals and does not give support for pulsation-related difference between the groups; 

however, these analyses were carried out only in two patients and two control subjects. 

In Study 2, the IC covering the insula was classified as one of the components related 

to intrinsic processing, but in Study 3, the insular IC turned out to be stimulus-related. Also, 

the temporal behavior of the insular IC supported this classification in Study 3: the activity 

followed stimulus presentation in a similar manner as in the auditory cortex, but the insula 

contained more spectral power at higher frequencies. Along similar lines, in Study 4, the 

insular IC contained more power in higher frequencies than the other ICs. In chronic pain 

patients, RAI activity appeared diminished compared with healthy control subjects; the reason 

could be related to changes in the pain patients’ interoceptive processing (that is of stimuli, 

which originate inside of the body; Craig, 2009) in pain patients. 

Study 4 (showing negligible signal correlation with the ECG signal and with no 

difference between patients and control subjects) supports the view that insular fMRI activity 

recorded in this study most likely reflects neuronal activation. One possible, albeit 

unconfirmed, suggestion would be that the insular neuronal signals are modulated by ANS 

function. Another option is that the insular fMRI signals have contributions both from 

neuronal processes and from physiological pulsations. If these sources add nonlinearly, they 

may not be separated by linear methods such as ICA. 

Issues of temporal filtering of fMRI data 

From the methodological viewpoint, Study 4 has two implications for future fMRI studies. 

The first is the necessity to monitor ANS function (Gray et al., 2009), either to reveal possible 

correlates between ANS function and fMRI signal, or to exclude those signal sources which 

could hypothetically affect the signal behavior, but in reality do not. 

The second implication is that the conventional filtering of fMRI data may in some 

cases be too conservative. Resting-state fMRI studies typically focus on frequencies below 

0.08–0.1 Hz, where most of the BOLD-signal power is concentrated, whereas heart rate 

effects and respiratory fluctuation are typically seen at 0.6–1.2 Hz and 0.1–0.5 Hz, 
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respectively (Cordes et al., 2001). These potential artifacts should of course be avoided as 

much as possible, but too strict filtering may hinder the visibility of altered brain activity, 

especially changes in hemodynamic behavior in some pathological conditions. The biggest 

difference between healthy control subjects and pain patients occurred around 0.16 Hz. 

Hence, in certain cases, a more appropriate limit for low-pass filtering would be above this 

value. These low-frequency BOLD signal oscillations are still within the 0.16 Hz limit below 

which, according to Logothetis (2003), neuronal responses can be estimated. 

5.4 Future perspectives 

Future neuroimaging studies will increasingly exploit continuous and complex stimulus 

conditions to study human brain function in naturalistic settings. Neurocinematics (Hasson et 

al., 2008), for example, has already established a firm ground for utilizing cinema as a 

controllable presentation of naturalistic environments to study, e.g., inter-individual 

similarity. Studies in social neuroscience will increasingly concentrate on on-line 

communication between individuals, and the long-term aim in these studies is understanding 

the neural basis of social interaction involving at least two people (Hari and Kujala, 2009). 

Common to these studies is that they mimic continuous real-life-like situations and 

phenomena which evolve only during long periods of time and cannot be effectively 

characterized with static stimuli presented discretely in time. 

Necessity of additional measures 

Increasing stimulus complexity and continuity can consequently mean less controllability of 

stimulation sequences compared with traditional simplistic stimulation. To compensate for 

this, additional measures may be needed. One possibility, with increasing popularity, is to 

follow the subject’s gaze during the experiment with an MR-compatible eye-tracking camera. 

Eye-gaze monitoring can reliably reveal which features the subject really looks at during the 

continuous stimulus flow, and consequently, most likely pays attention to. Another potentially 

useful measure obtainable with the eye-tracking camera is the pupil diameter (Critchley et al., 

2005), which can serve as an indicator of arousal or other ANS-mediated mechanisms. More 

generally, as mentioned in the previous chapter, monitoring ANS function, such as heart rate  

(Critchley et al., 2003; Yang et al., 2007; Napadow et al., 2008), respiration or electrodermal 

activity (Critchley et al., 2002), will be of increasing importance in future fMRI experiments 

assessing either external stimulus-related processes or intrinsic brain function. What is more, 

the advantages of additional monitoring may not be constrained to control purposes only, but 

most likely would be beneficial for fMRI data analysis: the more complementary data are 

available for analysis purposes, the more profound and detailed becomes the understanding of 

the underlying phenomena. 
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New ways to analyze fMRI data 

In this Thesis, data-based methods, ICA and ISC, were considered to be especially useful in 

the analysis of naturalistic stimulus conditions. However, other new ways to analyze fMRI 

data have been introduced, such as multi-voxel-pattern analysis techniques (Haynes and Rees, 

2005; Kamitani and Tong, 2005; Norman et al., 2006) and analysis of cortical hubs (Bassett 

and Bullmore, 2006; Buckner et al., 2009). 

Multi-voxel-pattern analysis reveals fMRI activation patterns that represent certain 

stimuli or mental states. Trained classifiers can then search for or “decode” these patterns 

from novel and untrained data sets. Recent remarkable advances in utilizing multi-voxel-

pattern analysis include, e.g., decoding of the speaker identity and the speech content 

(Formisano et al., 2008), or recognition of the novel scene images viewed by the subject (Kay 

et al., 2008). 

Hub analysis reveals connectedness of brain networks. The advantage of the method 

is that, similar to ICA, no user-defined seed regions are needed for determining the 

connectivity. We have obtained promising preliminary hub analyses that complement the 

results of Study 4 on the reduced functional connectivity of insulae in chronic pain patients 

(Ramkumar et al., 2010). 

Studies on human brain activity during naturalistic stimulation are still in their 

infancy. In this Thesis, the stimulation became gradually more continuous and complex, 

which allowed controllability with conventional analysis methods. The results and 

observations seem potentially useful for future fMRI research of naturalistic stimuli, either as 

such, or in combination with other more advanced analysis methods. 
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