
TKK Dissertations 234
Espoo 2010

ENERGY-BASED MAGNETO-MECHANICAL MODEL
FOR ELECTRICAL STEEL SHEETS
Doctoral Dissertation

Katarzyna Anna Fonteyn

Aalto University
School of Science and Technology
Faculty of Electronics, Communications and Automation
Department of Electrical Engineering





TKK Dissertations 234
Espoo 2010

ENERGY-BASED MAGNETO-MECHANICAL MODEL
FOR ELECTRICAL STEEL SHEETS
Doctoral Dissertation

Katarzyna Anna Fonteyn

Doctoral dissertation for the degree of Doctor of Science in Technology to be presented with due 
permission of the Faculty of Electronics, Communications and Automation for public examination 
and debate in Auditorium S4 at the Aalto University School of Science and Technology (Espoo, 
Finland) on the 20th of August 2010 at 12 noon.

Aalto University
School of Science and Technology
Faculty of Electronics, Communications and Automation
Department of Electrical Engineering

Aalto-yliopisto
Teknillinen korkeakoulu
Elektroniikan, tietoliikenteen ja automaation tiedekunta
Sähkötekniikan laitos



Distribution:
Aalto University
School of Science and Technology
Faculty of Electronics, Communications and Automation
Department of Electrical Engineering
P.O. Box 13000 (Otakaari 5)
FI - 00076 Aalto
FINLAND
URL: http://sahkotekniikka.tkk.fi/en/
Tel.  +358-9-470 22394
Fax  +358-9-470 22991
E-mail: katarzyna.fonteyn@tkk.fi

© 2010 Katarzyna Anna Fonteyn

ISBN 978-952-60-3287-0
ISBN 978-952-60-3288-7 (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)
URL: http://lib.tkk.fi/Diss/2010/isbn9789526032887/

TKK-DISS-2791

Picaset Oy
Helsinki 2010



 

ABSTRACT OF DOCTORAL DISSERTATION AALTO UNIVERSITY 
SCHOOL OF SCIENCE AND TECHNOLOGY 
P.O. BOX 11000, FI-00076 AALTO 
http://www.aalto.fi 

Author: Katarzyna Anna Fonteyn 

Name of the dissertation: 
Energy-Based Magneto-Mechanical Model for Electrical Steel Sheets 
Manuscript submitted: 26.03.2010 Manuscript revised: 10.06.2010 
Date of the defence: 20.08.2010 

 Monograph  Article dissertation (summary + original articles) 

Faculty:                  Faculty of Electronics, Communications and Automation  
Department:           Department of Electrical Engineering 
Field of research:   Electromechanics 
Opponent(s):          Prof. dr. ir. Lieven Vandevelde 
Supervisor:             Prof. Antero Arkkio 
Instructor:               D.Sc. (Tech.) Anouar Belahcen 

Abstract: 
Within this dissertation an energy-based model for magneto-mechanical coupling in electrical steels has been developed, 
studied and implemented in finite element software. The method introduces a novel way of explicitly solving magnetic and 
mechanical fields. Starting from the knowledge of the dependence of magnetostriction on stress and magnetic field, and of 
the dependence of the magnetic field on the stress, a Helmholtz free energy is presented. The material constitutive equations 
are explicitly written. The parameters of the model are identified experimentally from a modified Epstein frame. This setup 
allows stressing a pack of electrical steel sheets and measuring the magnetostriction and B-H curves under pre-stresses. The 
resulting strains are acquired with a piezo-electric force transducer. The measurements are compared with data obtained 
from a vertical yoke system at no pre-stress with strain gauges and discussed.  
      The method is then applied to study magneto-mechanical coupling in radial-flux rotating electrical machines. A test 
device is studied; it consists of a stack of round electrical steel sheets assembled with windings wound to obtain a magnetic 
flux density as in real electrical machines. This one enables the coupled method to be verified when there is no air gap. The 
last device is a sample machine wound in the same way as an asynchronous machine used for studying losses. Its advantage 
is that there is no outer frame that would prevent the placement of accelerometers for measuring the acceleration of the iron 
yoke when excited. The validity of the model for real electrical machines is verified by the good agreement between those 
measurements show good agreement with the computed results 
 The method appeared to be suitable and robust for the computation of displacements in rotating electrical machines. The 
tangential and radial displacements on the teeth of stators are obtained from the method. The influences of magnetic forces 
on the structures are studied and quantified. 

Keywords: Magneto-mechanical coupling, magnetostriction, stress, single sheet testers, Epstein frame, finite element 
modelling, electrical steel sheets, rotating electrical machines. 

ISBN (printed) 978-952-60-3287-0 ISSN (printed) 1795-2239 

ISBN (pdf) 978-952-60-3288-7 ISSN (pdf) 1795-4584 

Language: English Number of pages: 134 

Publisher:  Department of Electrical Engineering, Aalto University 

Print distribution:  Department of Electrical Engineering, P.O. Box 13000 FI-02015 Aalto, Finland  

 The dissertation can be read at http://lib.tkk.fi/Diss/2010/isbn9789526032887/ 



 

 

  



5 

 

Acknowledgments 

“Life is not easy for any of us. But what of that? We must have perseverance and above all 

confidence in ourselves. We must believe that we are gifted for something and that this thing 

must be attained.” 

Quote attributed to Marie Skłodowska-Curie, 

Nobel Prize in Physics (1903) and in Chemistry (1910) 

This work has been completed in the Department of Electrical Engineering at Aalto 

University. I am indebted to Prof. Antero Arkkio, D.Sc. Anouar Belahcen and D.Sc. 

Reijo Kouhia for the supervision and guidance offered during my research. I am 

grateful to D.Sc. Stefania Fortino who contributed, in the early stage of this research 

to the theoretical definition of the problem. Besides my advisors, I acknowledge the 

past and present managerial, administrative and technical staff of the Department of 

Electrical Engineering and in general at Aalto University who provided me with 

quick and efficient assistance for experimental apparatuses, for organizing my 

research stays abroad and for supporting me in various matters since the very 

beginning. I send my special thanks to D.Sc. Jarmo Perho, Eero Pyharanta and M.Sc. 

Ari Haavisto among others, for their contribution to the design and construction of 

the test devices. Finally, thanks to Emeritus Prof. Tapani Jokinen who has always 

been a constant source of encouragement for creative and innovative thinking during 

my post-graduate studies. I would like to emphasize that the trust and freedom I 

enjoyed, allowing me to develop my talents in various fields besides my research has 

a valuable significance and impact on my life.  

 I gratefully acknowledge the financial support of the major players within this 

project: TEKES (KOMASI) project under grant 210543, the Graduate School of 

Electrical and Communications Engineering, Academy of Finland (DYCOLO) 

project under grant 125819 and the research group of Electromechanics at the Aalto 

University. Being additionally rewarded for one’s achievements is essential for 

increasing motivation. For this reason, I particularly acknowledge the generous yearly 

extra support from Fortum Foundation. Furthermore, the scholarships of Emil Aalto, 

Walter Ahlstrom and the Association of Electrical Engineers in Finland foundations 

are extremely appreciated. Without the funding provided by all these bodies, my 

thesis and ambition to study and work abroad could not have been realized. 

 Knowledge has no real value if not shared. Special thanks go to my peers, past 

and present colleagues at Aalto University, students from around the world for a 

multitude of random work-related conversations and extra-curricular activities. Their 

experiences, questions and shared discussions contributed to build my knowledge and 



6 

 

motivation through my research. I also thank the researchers and professors I met 

during conferences, courses and research stays for having exchanged their views, 

listened, read and commented on my work. I am indebted to the research team at the 

Laboratory of Electrical Engineering in Paris (LGEP), where I worked from October 

2007 to January 2008; particularly to Dr. Laurent Daniel, Prof. Alain Bossavit, Prof. 

Adel Razek and Prof. Frederic Bouillaut who shared interest and knowledge on 

material modeling. My regards go to Prof. Amalyia Ivany who discussed 

experimental setups during my stay in Hungary in October 2005. Prof. Joe Zhu and 

Prof. Peter Watterson made my stay in UTS, Sydney possible in 2010 and I wish to 

thank them for their fruitful discussions and feedback. Finally, I am indebted to the 

pre-examiners of this thesis, Prof. Herbert De Gersem and Prof. Göran Engdhal, for 

their time to review this work and their precious technical feedback. 

 I would like to give distinctive acknowledgements to Prof. Philippe Lataire, from 

the Vrije Universiteit in Brussels who awakened my real interest in the field of 

electrical engineering. I am thankful to Christine Manet, teaching assistant at the 

Université Libre de Bruxelles who was confident in my capabilities and provided me 

with the right supervision and motivation in my first and second years of studies.  

 Every single life- and work- related experience during my post-graduate studies I 

was granted is a precious gift. They mould me, building my skills, responsibility, 

strengths and self-awareness. I made amazing acquaintances in Finland. Thanks to all 

for the get-together’s and great parties and for letting me into your lives. My deepest 

thanks go to every single person whose road has crossed mine, leading my journey to 

its next destination. Although I could not cite you directly here, I value your presence 

in my life from the bottom of my heart. Finally, special thanks go to a dear friend, 

Gaelle Cohen, who has the unique talent to bring joy to our conversations. I could not 

have imagined those years without her spontaneity, flexibility and openness to 

adventure. 

 I turn to the love of my dearest and closest ones whom I carry within me every 

day of my life. For that, I am deeply grateful to my mother, Janina Zuchora who takes 

so much care of me and thank her for her friendship, respect and understanding for 

my choices and support throughout my studies, and life. She is a model of strength 

and perseverance. Next, my gratitude flows to my grandmother, Agata Zuchora, who 

is my source of inspiration and trust. She lives within my heart, fills it with courage, 

hope and kindness. Both of them taught me to follow my dreams, never give up and 

taught me to think out of the box. Finally, I would like to thank Paavo Rasilo for 

standing by my side, for his patience, strength, moral support, sharing of knowledge 

and unconditional trust through this work and in life.  

Sydney, June the 10
th

 2010.  

Katarzyna Anna Fonteyn  



7 

 

 

Contents 

ACKNOWLEDGMENTS .......................................................................................... 5 

CONTENTS ................................................................................................................ 7 

LIST OF SYMBOLS ................................................................................................ 10 

INTRODUCTION .................................................................................................... 14 

1.1 General considerations ................................................................................ 14 

1.2 Aim .............................................................................................................. 15 

1.3 Scientific contributions ............................................................................... 16 

1.4 Terminology ................................................................................................ 17 

1.4.1 Ferromagnetism ................................................................................. 17 
1.4.2 Magnetostriction ................................................................................ 18 
1.4.3 Effects related to magnetostriction .................................................... 18 

1.4.4 Magnetic forces .................................................................................. 19 

1.4.5 Elasticity tensor .................................................................................. 19 
1.4.6 Thermodynamic potentials................................................................. 20 

1.5 Outline ......................................................................................................... 21 

OVERVIEW OF PREVIOUS RELEVANT RESEARCH ................................... 22 

2.1 Importance of the study of the magneto-mechanical properties of electrical 

steel sheets ................................................................................................... 22 

2.2 Coupled magneto-mechanical problems ..................................................... 24 

2.2.1 Magneto-mechanical coupling methods ............................................ 25 
2.2.2 Finite element method for rotating electrical machines ..................... 26 

2.2.3 Finite element methods for magneto-mechanical problems .............. 27 
2.2.4 Energy-based models of magneto-elastic materials ........................... 30 

2.3 Measurement of magnetic and mechanical properties of electrical steel 

sheets ........................................................................................................... 32 

2.3.1 Measurement of magnetic properties for modelling .......................... 33 

2.3.2 Effect of applied stress on microstructure and power losses ............. 34 
2.3.3 Techniques for magneto-mechanical measurements ......................... 35 
2.3.4 Conclusion ......................................................................................... 37 

2.4 Summary ..................................................................................................... 37 



8 

 

ENERGY-BASED MAGNETO-MECHANICAL MODEL ................................. 39 

3.1 Modelling the magneto-mechanical properties of electrical steel sheets .... 39 

3.1.1 Magnetic field equations .................................................................... 40 
3.1.2 Balance equations for a magneto-elastic solid ................................... 41 
3.1.3 Derivation of the energy function ...................................................... 43 
3.1.4 Summary ............................................................................................ 47 

3.2 Magneto-mechanical finite element method ............................................... 48 

3.2.1 Introduction ........................................................................................ 48 
3.2.2 Variational formulation ...................................................................... 49 
3.2.3 Solution by the finite element method in 2-D .................................... 50 

3.2.4 Overall system of equations ............................................................... 53 

3.3 Dynamic case .............................................................................................. 56 

3.4 Importance of the electromagnetic stress tensor in air ................................ 57 

3.5 Summary ..................................................................................................... 59 

MEASUREMENTS AND IDENTIFICATION OF MAGNETO-MECHANICAL 

PROPERTIES OF MATERIALS ........................................................................... 60 

4.1 The modified Epstein frame ........................................................................ 61 

4.1.1 Measurements and data treatment ...................................................... 61 

4.1.2 Identification of the parameters ......................................................... 64 
4.1.3 Dependence of magnetostriction on the frequency ............................ 67 

4.2 The vertical yoke system ............................................................................. 67 

4.2.1 Introduction ........................................................................................ 68 

4.2.2 Dependence of the magnetostriction on the supply frequency. ......... 70 
4.2.3 Measurements of dynamic magnetostriction at zero stress under 

rotating field. ...................................................................................... 72 

4.3 Comparisons and discussions ...................................................................... 75 

4.4 Summary ..................................................................................................... 76 

VERIFICATION AND ANALYSIS OF THE COUPLED MODEL ................... 78 

5.1 Verification with a test device ..................................................................... 78 

5.1.1 Structure of the new device................................................................ 79 
5.1.2 Experimental results........................................................................... 80 
5.1.3 Computed results and discussion ....................................................... 84 

5.2 Verification with an asynchronous machine ............................................... 86 

5.2.1 Implementation of the method to a simple square geometry ............. 87 
5.2.2 Experimental results for the machine ................................................ 89 
5.2.3 Computed results and discussion ....................................................... 92 



9 

 

5.3 Analysis of the energy-based model ........................................................... 96 

5.3.1 Introduction ........................................................................................ 96 

5.3.2 Application to two- and four-pole electrical machines ...................... 98 
5.3.3 Simple study for the dynamic case .................................................. 105 

5.4 Summary ................................................................................................... 108 

DISCUSSION .......................................................................................................... 109 

6.1 Summary ................................................................................................... 109 

6.1.1 Energy-based coupled model ........................................................... 109 
6.1.2 Magneto-mechanical coupled finite element method ...................... 110 

6.1.3 Importance of measurements ........................................................... 110 

6.2 Further work .............................................................................................. 112 

6.2.1 Bi-axial stress and rotating magnetic flux density ........................... 112 
6.2.2 Other stresses acting on the iron core of the machine ..................... 112 

6.2.3 Study of the vibration modes of electrical machines ....................... 113 
6.2.4 From 2-D problem to 3-D problem .................................................. 114 

6.3 Final word ................................................................................................. 114 

REFERENCES ........................................................................................................ 115 

APPENDIX A .......................................................................................................... 127 

APPENDIX B .......................................................................................................... 128 

APPENDIX C .......................................................................................................... 129 

APPENDIX D .......................................................................................................... 132 



10 

 

 

List of Symbols 

         SI based units 

i  Material dependent parameter i    dimensionless  

 Magnetic vector potential   m·kg·s
-2

·A
-1

  

a
k
 Column vector of nodal values of A   m·kg·s

-2
·A

-1
 

a*, u*, v* Initial values for the boundary conditions  varying 

  Magnetic flux density    kg·s
-2

·A
-1

 

b  Body force     m·kg·s
-2

 

  Parameter for the recurrence scheme   dimensionless  

Cr Matrix that couple the circuit equations   not predefined 

C  Elasticity tensor      m
-1

·kg·s
-2

 

C  Viscous damping coefficient matrix   m
-1

·kg·s
-1

 

Cijkl  Entries of the elasticity tensor   m
-1

·kg·s
-2

  

c1, c2 Coefficients     dimensionless  

D  Electric displacement     A·s·m
-2

  

ij Kronecker delta     dimensionless  

l  Length variation      m 

lms Equivalent magnetostrictive elongation  m 

x Iterative change of quantity x    not predefined  

  Electric field      kg·m·s
−3

·A
−1

 

E  Modulus of elasticity     m
-1

·kg·s
-2

 

 Total strain tensor     dimensionless  

ij  Entries of the strain tensor    dimensionless 

  Concatenated form of , vector    dimensionless  

  Permittivity of free space    m
-3

·kg
-1

·s
4
·A

2


  Scalar potential      m
2
·kg·s

-1
·A

-1
 

 Matrix for the magneto-mechanical coupling not predefined 

fmag Electromagnetic body force    m·kg·s
-2

 

fmec  Mechanical body force     m·kg·s
-2

 

finert  Inertial force      m·kg·s
-2

 

f Frequency      s
-1 

Gs  Matrix that couple the circuit equations   not predefined 



11 

 

G Shear modulus      m
-1

·kg·s
-2

 

g Specific Gibbs energy    m
2
·s

−2 

  Electrical conductivity    m
-3

·kg
-1

·s
3
·A

2
 

  Parameter for the recurrence scheme   dimensionless 

gi Functions      dimensionless  

H Magnetic flux      A·m
-1 

H0 Vector of initial values of H    A·m
-1

 

h  Specific enthalpy     m
2
·s

−2 

s

k
i  Column vector of stator currents   A 

I  Identity tensor     dimensionless 

Ii Invariant i      dimensionless  

J  Electric current density    A·m
−2

 

Jf  Free current density    A·m
−2 

K  Bulk modulus      m
-1

·kg·s
-2 

k when used as a superscript, time step   dimensionless  

l  Final length      m 

l0  Initial length      m 

 First lamé parameter     dimensionless 

e,c Total elongation/ contraction   dimensionless  

 x, y Deformation in x-or y-direction   dimensionless  

M Magnetisation      A·m
-1

 

 Magnetic permeability tensor    m·kg·s
-2

·A
-2

 

  Permeability of free space   m·kg·s
-2

·A
-2 

M  Mass matrix      kg 

Ni  Basis functions     dimensionless  

  Poisson’s ratio     dimensionless  

p Pressure        m
-1

·kg·s
-2

 

q, p Vector quantities     not predefined  

q
k
  Column vector      not predefined 

Q, P  Parameters      dimensionless  

 Mass density      m
-3

·kg 

ij  Entries of the stress tensor    m
-1

·kg·s
-2


 Stress tensor     m
-1

·kg·s
-2

 

S Entropy        m
2
·kg·s

−2
·K

−1
 

S  Surface        m
2
 

s  Specific entropy      m
2
·s

−2
·K

−1
s 

T  Temperature      K 



12 

 

t Time        s 

0 Tensor of initial values of     m
-1

· kg·s
−2


m  Electromagnetic stress tensor in iron   m
-1

· kg·s
−2

 

air

mτ  Electromagnetic stress tensor in air   m
-1

· kg·s
−2 

  Angle         m·m
-1

u Displacement vector     m 

u
k 

Column vector of displacements   m 

u  Specific internal energy     m
2
·s

−2 

U Internal energy     m
2
· kg·s

−2 

r

k
v  Column vector of bar potential differences  m

2
·kg·s

-2
·A

-2 

v  Volume per unit mass     m
3
·kg

-1 

v  Velocity        m
2
 

V  Volume       m
3
 

W  Matrix for connection of the stator winding  dimensionless 

w   Vector of weight functions    dimensionless 

X , X mag, X mec  Matrixes        not predefined  

  Magnetic susceptibility     dimensionless  

  Helmholtz free energy     m
2
·s

−2
 

Y Matrix         not predefined  

 

Remark: the units for the vectors and tensors are given for their coefficients. 

Operators 

L , L  Linear operators      

X
T
 Transpose of X      

  Divergence operator 

   Rotational operator 

  Gradient operator 

tr(X) Trace of X        

: Tensor product between two tensors 

   Product of two vector fields resulting into a tensor 

Notes on font types and subscripts 

 Vectors, vector fields, tensors and matrixes are all typed in bold, e.g. B, , etc… 



13 

 

 Scalar functions, varying parameters are all typed in italic, e.g. ,, etc… 

 Constants are all typed in normal font, e.g. 0. 

 Subscripts x and y used within a vector quantity refer respectively to the x and y 

component of that quantity in a Cartesian coordinate system. 

 Subscripts r and  used within a vector quantity refer respectively to the radial 

and tangential component of that quantity in a polar coordinate system. 

 Subscripts r and s within a matrix quantity refer respectively to the rotor and the 

stator. 

Trademarks and abbreviations 

COMSOL Multiphysics® is a registered trademark of COMSOL, Inc. 

MATLAB® is a registered trademark of MathWorks, Inc. 

LabVIEW® is a registered trademark of National Instruments, Inc. 

MAXWELL®is a registered trademark of Ansoft Corportation. 

FCSMEK is a program for analysing synchronous and asynchronous radial-flux 

machines developed at the Department of Electrical Engineering, Aalto University 

School of Science and Technology. 

1-D, 2-D and 3-D stand for one-, two- and three-dimensional. 

 

 



14 

 

Chapter 1  

Introduction 

This chapter outlines the field of study and presents the purpose and scientific 

contributions of the energy-based magneto-mechanical model for electrical steel 

sheets. As an introduction to the subject, general definitions are established.  

1.1 General considerations  

In the industrial design of rotating electrical machines and transformers, noise and 

vibrations are difficult to deal with. Electrical machines consist mainly of a stationary 

stator and a rotor rotating around its axis. They convert electrical energy into 

magnetic energy, which itself is transformed into mechanical energy or vice-versa. 

When the challenges in the design of these machines are being formulated, three main 

factors come into consideration: loss and noise reduction and reliability. The first 

point lies beyond the direct scope of this research. The latter two are indirectly 

covered within this work. That is, reliability is considered trivial when designing 

codes to assess the accuracy of an electrical machine. Noise is a consequence not 

only of vibrations but also of magnetostrictive effects in electrical steel sheets. It has 

been ascertained for example that noise in transformers, built of grain-oriented 

electrical steel sheets is related to magnetostriction. 

 Nowadays, the numerical analysis of the behaviour of complex time-dependent 

systems within a short simulation time is achievable as a result of improvements in 

the speed of computers.  

 Magnetostriction and its related effects have attracted the attention of scientists for 

more than 150 years. Existing in most known magnetic materials, this phenomenon is 

observed at a grain level and depends on the studied material. Since such research has 

high interdisciplinary characteristics, it has been on the borderline between 

thermodynamics, mechanics, measuring techniques, and magnetism. Each work has 
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been unique and brought further insights into magneto-mechanical coupling methods, 

measurements, and constitutive equations.  

 Moreover, magnetostriction has been extensively treated as a force acting inside 

the iron core. In electrical machines, forces of magnetic origin include 

electromagnetic forces inside the iron core and at the iron-air boundary. They act, for 

example, in the air gap between the rotor and the stator. 

 Addressing the shortages in previous studies, this thesis provides a model for 

coupling the magnetic and mechanical constitutive equations with the aim of studying 

the behaviour of the 2-D cross-sectional geometries of electrical machines. The 

model is developed within the frame of the research and integrated into finite element 

software. Its validity is examined with results from experimental machines. 

Furthermore, the robustness of the method resides in its ability to simulate rotating 

electrical machines, with the knowledge of seven parameters characterising the 

magneto-mechanical behaviour of the electrical sheets they are composed of. 

Measurements to identify these parameters are performed.   

1.2 Aim  

The purpose of this study is to model magneto-mechanical coupling in ferromagnetic 

materials. This thesis examines the influence of strains attributed to magnetic fields 

and stresses on the mechanical and magnetic behaviour of electrical steel sheets. 

Within this framework, four major questions, which will be answered in the final 

Chapter 6, are considered. 

(1) Can an energy-based magneto-mechanical model be fully implemented and 

operational for the computation of electrical machines?  

(2) How can we account for the effects of magnetostriction and magnetic stress 

tensors in iron, as well as the electromagnetic stress tensor in air? Can these 

effects be separated? What is the contribution of each of these? 

(3) How can we compare measurement techniques and verify the validity of the 

study with appropriate devices? 

(4) Is it possible to produce a solid computational-based and measurement-based 

tool for the further investigation of magneto-mechanical problems in 

electrical machines? 
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1.3 Scientific contributions 

The scientific contributions are divided into seven distinctive parts. 

 

(1) An energy-based magneto-mechanical model is derived. The coupling takes 

place through magneto-mechanical constitutive equations. The model was 

established in collaboration with the Department of Structural Engineering 

and Building Technology at Aalto University. 

(2) A finite element procedure to couple non-linear mechanical to non-linear 

magnetic problems for the application of rotating machinery is developed.  

(3) The influence of the effect of electromagnetic stress and magnetostriction 

within the iron is studied and extended to the computation within the air gap 

of electrical machines in order to evaluate their importance.  

(4) A measurement system for predicting dynamic hysteresis loops within a 

magnetic material is designed and built and magnetostrictive curves are 

measured with strain gauges under rotating magnetic field at zero external 

stress. The results are compared with measurements on a modified Epstein 

frame. 

(5) A dynamic recurrence scheme is implemented, which studies the 

displacements caused by the different components of the total stress in 

electrical machines. 

(6) Simulated results are verified on a test device that accounts for stresses of 

magnetic origin only; no air gap is present. The measurements of 

displacements on the outer surface caused by internal forces in iron are 

compared with computed results.  

(7) Verifications for the inclusion of the effect of electromagnetic stress in the air 

gap are performed on a test electrical machine. The displacements on the 

outer surface of the stator of this experimental asynchronous machine are 

measured. The existing additive contribution of the electromagnetic stresses 

in the air gap is thus considered. 
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1.4 Terminology 

This section summarises the main concepts and defines the general terms that will be 

used through the work.  

 The focus is on modelling the effect of magnetostriction and electromagnetic 

stress in ferromagnetic materials. Accordingly, the definition of an energy function 

based on a thermo-dynamical potential is fundamental. The constitutive equations are 

coupled magneto-mechanically in Chapter 3. The material is considered not to be 

linear from the magnetic and mechanical points of view and the Cauchy stress tensor 

or elasticity tensor is rewritten because of its dependence on the magnetic field. An 

extensive discussion regarding the coupling methods for magneto-mechanical 

problems is given later in this work. 

1.4.1 Ferromagnetism 

Ferromagnetism is a property of materials such as iron that enables interaction with 

magnets to take place. Ferromagnetic materials have a crystal structure. Hence, they 

are subdivided into grains with a uniform crystal structure but with possible different 

magnetic orientations.  

 At equilibrium, the magnetic dipoles are not necessarily aligned and form 

different areas within each grain. These areas are called the magnetic domains. The 

region where the magnetisation flips is the domain wall or the Bloch wall, after the 

name of the researcher, Bloch (1932), who first observed that a ferromagnetic crystal 

consists magnetically of elementary regions. In Figure 1.1, the walls separating the 

grains are shown with dotted lines. Landau (1935) pointed out that the elementary 

regions should be considered as elementary layers. 

 

Figure 1.1: Structure of a grain with different orientations of the magnetic domains. 
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These alignments occur only below the Curie temperature, which for pure iron is 

1043 K. The domain theory was developed in an extensive paper by Kittel (1949) that 

also introduces experiments, common at that time to underline his arguments. 

1.4.2 Magnetostriction 

In 1842, Joule discovered that ferromagnetic materials have the property of changing 

their shapes when subjected to a magnetic field (Joule, 1847). When an external 

magnetic field is applied to a piece of iron, the walls between the domains tend to 

move. The domains with a magnetic orientation in the same direction as the one of 

the magnetic field tend to grow at the expense of the others, as in Figure 1.2 (b). At 

saturation, 90
o
 domains disappear and there is a rotation of the self-magnetisation. 

These microscopic movements tend to change the shape of the material, thus 

introducing internal strains.  

 When some materials are magnetised, an increase or decrease in their length may 

be observed. The first type of materials thus has a positive magnetostriction, and the 

second type a negative magnetostriction. This increase in length is depicted in Figure 

1.2 (b). There, l0 is the initial length of the specimen, l is the final length, and l is 

called the elongation. It should be noted that materials such as Terfenol-D have the 

property of being giant magnetostrictive materials. This means that they are severely 

deformed under an external magnetic field. 

 

(a) Orientation of the magnetic dipoles 

in a piece of iron. 

(b) Reorientation of the magnetic dipoles under 

external magnetic field, H. 

Figure 1.2: Process of magnetisation in a ferromagnetic material. 

1.4.3 Effects related to magnetostriction  

Here, the effects related to magnetostriction are enumerated.  
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 The inverse effect of the Joule magnetostriction is the Villari effect. 

Ferromagnetic materials have crystal symmetries. Therefore, theoretically an external 

stress will never by itself magnetise such a material in the absence of an external 

magnetic field (Lee 1955). However, anti-ferromagnetic materials being non-

symmetric have the property of piezo-magnetism. When submitted to mechanical 

stress and not magnetised beforehand, this particular type of material produces a non-

zero piezo-electric moment. Examples of anti-ferromagnetic materials are, for 

instance, Fe-Mn alloys. 

 In 1862, Wiedemann noticed that a torsion effect happens in a cylindrical shaft as 

a result of a helicoidal magnetic flux density when it was magnetised along the axis. 

This effect is commonly known as the Wiedemann effect. Its inverse is the Matteucci 

effect. These effects are widely discussed in the literature; see for example the book 

by du Trémolet de Lacheisserie (1993). 

1.4.4 Magnetic forces 

According to The IEEE Standard Dictionary of Electrical and Electronics Terms, a 

force is defined as “any physical cause that is capable of modifying the motion of a 

body” (Radatz, 1996). As it runs, a rotating electrical machine will be subjected to 

forces with various origins such as mechanical and magnetic ones.  

 Magnetic forces are classified in three groups. The first group gathers the 

predominant forces acting on the boundary regions from the air side onto the iron and 

which are commonly known as the reluctance forces or Maxwell forces. The second 

group contains the forces that find their source in the microscopic magnetic properties 

of the ferromagnetic material. Chapter 3 will focus primarily widely on these ones. 

The third group gathers the forces, called the Lorentz forces that act on currents in the 

magnetic field. This latter group will be omitted in this thesis. 

1.4.5 Elasticity tensor 

Tensors are understood throughout this work as a mathematical framework for 

formulating physical problems, such as the problem of elasticity. Tensors, Q x P, are 

mathematical objects in Q dimensions with P indices.  

 In the case of linear elasticity,  being the Cauchy stress tensor, the strain 

tensor, and C the elasticity tensor, Hooke’s law (e.g. in Zienkiewicz, 1967) is 

defined, generally as 

 :C    (1) 

 ij ijkl klC  . (2) 
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Under the hypothesis of isotropy, the elasticity tensor becomes: 

 
2

3
ijkl ij kl ik jl il jk ij klC G       

 
    

 
K . (3) 

In this definition, ij is the Kronecker delta, K is the elastic bulk modulus, and Gis the 

shear modulus. K gives a measure of the size of the external force that will be needed 

to modify the volume of the sample by a certain percentage. G gives a measure of the 

response of the material to external shearing strains. 

1.4.6 Thermodynamic potentials 

For deriving phenomenological non-linear constitutive laws of magnetostrictive 

materials, the need to derive an energy function is fundamental. For this reason, the 

major thermodynamic equalities are presented here in summary. Books such as Van 

Wylen (1981) describe the basic theory of thermodynamics and its applications in 

detail. 

 For a transformation that is reversible and quasi-static, the first and second laws 

of thermodynamics together stipulate that 

 d Td pdV U S . (4) 

In other words, the infinitesimal energy added by heating the system, here TdS, equals 

the sum of the infinitesimal work pdV and the internal energy dU.  

 Two types of energy are introduced under specific conditions. The first one is the 

Helmholtz free energy, which measures the process-initiated work that is obtained 

from a closed isothermal and isochoric system and is defined as 

 T  u s , (5) 

where u is the internal energy per unit mass and, s is the entropy per unit mass. The 

second one is the Gibbs free energy, which measures the process initiated work that is 

obtained from a closed isobaric and isothermal system and which is defined as 

 T g sh  (6) 

where the enthalpy per unit mass is: 

 pu vh = . (7) 

Specific conceptual terminology that has not been defined here will be presented as 

the thesis develops. In fact, the purpose of this section was to be precise and concise 

and to give the main tools for reading the work. 
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1.5 Outline  

The thesis is divided into six chapters. 

Chapter 1 puts the topic of the study by presenting general information regarding the 

main issues. The motive for this work is described, as are the scientific contributions 

of the research. 

Chapter 2 details the background of the essential research in interdisciplinary topics 

that are needed to cover this research topic. The chapter reviews previous work, 

analysing, among others, different approaches to modelling magneto-mechanical 

coupling and ways to measure magnetostriction. 

Chapter 3 concentrates on the local magneto-mechanically coupled model, the 

approach used for its derivation, the method used for finite element implementation 

and general results from basic geometries to intricate 2-D rotating electrical 

machines. 

Chapter 4 focuses on the measurement of the magneto-mechanical properties of 

electrical steel sheets. Experimental setups designed and built within the scope of the 

research are described and their major results are presented and analysed. The chapter 

concentrates on extracting the required data from the measurements in order to obtain 

the parameters needed for the model presented in Chapter 3. 

Chapter 5 aims at justifying the research presented in Chapters 3 and 4 by describing 

a novel test device and its design, building, and results, as a verification method for 

the theory and hypothesis used in the previous chapters. In addition, measurements 

conducted on a test induction machine are analysed. All the measurements are 

compared with numerical calculations. 

Chapter 6 summarises the achievements of the research. The work presented 

throughout the thesis is assessed and concluded. The discussion includes the insights 

gained in the literature review in Chapter 2 and questions that arose in the thesis and 

are left open for further study. Additional attention is paid to three topics, which are 

the supplementary developments in measuring systems and in finite element 

modelling, and the further investigation of theoretical models for coupled problems. 
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Chapter 2  

Overview of previous relevant research 

The study of coupled problems has evolved not only into an essential aspect of 

modelling the behaviour of electro-sensitive components but also into understanding 

complex effects arising in electrical machines. Coupled problems include the 

treatment of two or more interconnected phenomena in two manners: simultaneously 

or by post-processing. This will be discussed in more detail later in this literature 

review. The major coupled problems solve thermal, mechanical, fluid dynamics 

and/or magnetic field equations. This literature review is primarily concerned with 

the coupling of magnetic and mechanical fields. 

 Section 2.1 presents specific problematic matters related to the stresses occurring 

or existing in electrical steel sheets. The noise arising from magnetostriction and 

intrinsic electromagnetic forces and the vibrations are briefly surveyed. Section 2.2 

examines the established major theories on how to model the coupled magneto- and 

electro-mechanical phenomena. In parallel, the next section explores the methods 

associated with these models on computing non-linear coupled problems through an 

appropriate finite element procedure.  

 Physical models commonly require extensive measurements to extract the needed 

parameters characterising the studied material. Therefore, Section 2.3 introduces the 

problem of 1-D and 2-D magnetic measurements before casting a glance at “coupled” 

experimental setups. These setups aim at evaluating the effect of strain and/or stress 

on magnetic fields and vice versa.  

2.1 Importance of the study of the magneto-

mechanical properties of electrical steel sheets 

This section provides the reason for this dissertation. The phenomenon of 

magnetostriction is clarified based on the definition in Chapter 1. Factors influencing 
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the properties of electrical steels guaranteeing the good functioning of rotating 

electrical machines are presented. A central concern in those machines and 

transformers is the study of vibrations and noise, which are reviewed. 

 The first studies on magnetostriction date back to the middle of the 19
th

 century. 

Joule (1847) investigated the influence of magnetic fields on the dimensions of steel 

bars. An examination of the excellent reviews presented in Kittel (1949) and Lee 

(1955) offers an exhaustive introduction and detailed definitions. Specifically, 

magnetostriction is a property of ferrites and alloys and has been analysed 

extensively, for instance by Bozorth (1951) and Kikuchi (1968).  

 Focusing on some of the first attempts to characterise the phenomenon, Bozorth 

(1945) applied cyclic stresses to samples of iron-nickel alloys and stated that the 

change in induction can be attributed to the stress dependence on saturation 

magnetostriction; saturation magnetisation and the crystal anisotropy constant. Brown 

(1949) derived theoretical magnetisation-stress curves based on equivalent fields 

acting in the same way as small stresses on domain walls. Later, in the ’70s, studies 

suggested taking into account a possible discontinuous change in domain structure 

under stress (Craik et al., 1970 and Briss et al., 1971). 

 Stress and temperature are the main factors affecting the magnetic properties of 

ferromagnetic materials. The degradation of the steel is obvious in a region affected 

by punching, welding, pressing and cutting. Local plastic strains and residual stresses 

modify the magnetic properties and increase the losses. 

 Takezawa et al. (2006) studied the domain structure of Fe-Si electrical steel 

sheets for motor applications before and after the punching process. Their 

experimental results indicated that the shear stress accounted for by the punching 

process reduces the in-plane permeability to a distance equal to the thickness of the 

sheet. 

 Ossart et al. (2000) measured the magnetic properties of an annealed and non-

annealed quarter of a stator and observed a clear difference in the average induction 

for a given feeding current. Their measurements were in accordance with the finite 

element analysis where a refined mesh on the critical regions was used.  

 Meanwhile, Schoppa et al. (2000a) investigated the influence of different grades 

of non-oriented electrical steels on the manufacturing of electrical machines. High Si-

alloyed grades are more sensitive to the processing steps. The study concluded that 

the cutting process is the most critical and increases the losses by up to 35% in some 

cases (Schoppa et al., 2000b). Later on, experiments were conducted on a toroïdal 

core in Schoppa et al. (2003). Losses resulting from the different assembling 

processes were sequentially evaluated and this time the welding process increased the 
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losses by 20% to 27% and the cutting only by 17% as the toroïd had fewer 

deteriorated areas as a result of this last process. 

 Moses et al. (1989) determined the loss repartition on an annealed (stator 1) and 

non-annealed (stator 2) stator core geometry through measurements using thermal 

probes. The set of data obtained by applying a compressive stress to the outer surface 

of stator 1 experiences an increase in the losses with increasing stress. The same 

observations were made with stator 2; however, the losses are about 2.5 times higher 

at 0 MPa in this case. 

 These studies were conducted with the aim of understanding not only losses but 

also vibrations in electrical machines. Vibrations have various sources; they may be 

aerodynamic, electronic, mechanical, and magnetic (Vijayrghavan et al., 1998). A 

large amount of research work has been conducted in the field of vibrations 

originating from mechanical and magnetic problems, which have been studied and 

discussed intensively. Among others, Verma et al. (1987a, b) offer extensive 

theoretical and experimental approaches.  

 As it is directly related to the vibrations, it is essential to consider noise when 

designing electrical machines. Reyne (1987) stated that “a numerical tool allowing 

the quantitative determination of noise and vibration levels of a machine is lacking”. 

Accordingly, Reyne (1987), Låftman (1995), Delaere (2002) and Belahcen (2004) 

studied the topic and concluded that noise originates from the deformation resulting 

from magnetisation in static machines and in the cores of rotating electrical machines.  

 The aim in this dissertation is to review only the vibrations that have their origin 

in the properties of the material, such as the effect of magnetostriction and 

electromagnetic forces within the iron. Knowledge of coupling problems is thus a 

central field of study based on the wide range of literature that discusses the topic. 

The matter of this work focuses on developing a magneto-mechanical model to 

understand the influence of stress in electrical steels, with a thorough discussion of 

the relevant topics being discussed. Thermal problems and loss-related matters are 

left aside, as are external stresses on the structure. 

2.2 Coupled magneto-mechanical problems 

Here, a discussion of the different ways to solve magnetic and mechanical field 

problems is presented. Because of their complexity and dependence on the structure 

that is being analysed, numerical methods are usually preferred to analytical ones. A 

review of finite element methods, especially those for rotating electrical machines is 
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provided. Finally, for the purpose of this dissertation, models for describing magneto-

or electro-elastic materials are challenged. 

2.2.1 Magneto-mechanical coupling methods 

Different methods for coupling the mechanical and magnetic problems in electrical 

machines have been defined and used in previous research. A quick review of the 

understanding of different authors on the subject is investigated; and the terminology 

used depends on the researchers. 

 The coupling methods can be divided into phenomenological and computational 

couplings. First, phenomenological coupling is local or global. Local coupling means 

a coupling that physically describes the material by means of constitutive equations 

interacting with each other. Global coupling in the case of a magneto-mechanical 

problem is understood as the calculation of the new variables in the deformed 

geometry (Vandevelde et al., 2001 and Belahcen, 2004). Second, computational 

coupling, which is achieved by iterative schemes, can be explicit or implicit 

depending on the intricacy of the problem and the way the system of equations is 

formulated. The terms direct and indirect coupling are often used in this latter case 

and are understood differently by the authors. 

 

Figure 2.1: Schematic views of two different types of coupling methods. 
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The left-hand flowchart in Figure 2.1 presents a so-called indirect strong coupling 

according, for example, to Gros et al. (1998). This coupling is strong because the new 

magnetic input quantities are evaluated from the previous output mechanical 

quantities, through, for instance a set of curves setting the dependence. The iteration 

for solving mechanical quantities is generally not necessary when a linear problem is 

considered. In the case of an indirectly weakly coupled problem, the computation of 

the magnetic quantities and mechanical quantities is performed separately, often with 

different software such as in Låftmann (1995), Reyne et al. (1988) or Javadi et al. 

(1995). The right-hand flowchart in Figure (2.1) describes a direct coupling to solve 

the magnetic and mechanical equations simultaneously through suitable 

dependencies, such as the expression of the magnetostriction as a set of forces. 

 Belahcen (2004) proposed a hybrid method based, according to the author on a 

directly strong coupling method. The constitutive equations were coupled within the 

solver and forces were derived to account for the phenomenon of magnetostriction. 

The effect of the magnetostriction on the magnetic field was taken into account 

through the dependence of the reluctivity on the stress tensor (Fonteyn et al., 2006).  

 All methods are numerically acceptable. However, post-processing the 

mechanical quantities to calculate the new magnetic quantities does not describe the 

problem accurately. In fact, the magnetic and mechanical fields are inter-correlated 

and the solution of each is complementary. 

2.2.2 Finite element method for rotating electrical machines 

In the case of rotating electrical machines the use of 2-D or 3-D finite element tools is 

crucial, whether for the design process or purely research interest, as it gives an 

approximate overview of the operation of the machine. Those devices are genuinely 

complex and require the simultaneous computation of the thermal, mechanical and 

magnetic fields to create an accurate picture of the mechanisms. However, these 

coupling methods in 3-D or even in 2-D require a long period of computational time 

and a large amount of memory. In order to establish a historical background to the 

finite element method for rotating electrical machines, an introductory overview is 

given next. 

 In the finite element method, the partial differential equations of the magnetic 

field are formulated using the variational principle. The study region is divided into 

elements where the minimisation of the functional gives the required solution. The 

iron has nonlinear properties requiring an iterative solution process that is achieved 

through the fixed point method or the Newton-Raphson method as an example 

(Zienkiewicz, 1967). Chari (1980) applied the variational method to electrical 



 

 

27 

machinery and devices, feeding the coils directly with current. Some years later, Shen 

et al. (1985) and Strangas (1985) suggested a coupled method for simultaneously 

solving the circuit equations and the field equations and applied it to induction 

machines. They were followed by Arkkio (1987, 1988), Preston et al. (1988) and 

Vassent et al. (1990), who proposed in addition time-stepping schemes such as the 

Crank-Nicolson method with a changing mesh for representing the rotation of the 

rotor. Starting from the ’90s, coupled field analysis became an important topic of 

research. Finite element schemes were developed to solve magnetic, thermal or 

mechanical problems simultaneously or in a post-processing way (Zienkiewicz, 

1967). 

 Within this work, a FORTRAN-based software that couples the magnetic field 

and circuit equations for analysing synchronous and asynchronous radial-flux 

machines is modified to include the mechanical effects on the magnetic field and vice 

versa. 

 The next section focuses on a coupled field problem that was addressed by 

numerous researchers, cited later in the text, in the last century: magneto-mechanical 

coupling. The complexity of the behaviour of iron subjected to an external magnetic 

field, and the numerous mechanical processes affecting the building and functioning 

of electrical machines, led research teams to focus on magneto-mechanical coupling 

methods. 

2.2.3 Finite element methods for magneto-mechanical problems 

The advances in coupling the magnetic and mechanical field problems are presented 

next. Here again, a large amount of work has been published regarding finite element 

models for magneto-elastic or mechanical coupled problems. The purpose is to 

summarise the major lines of research that are of interest for this thesis. 

 When dealing with forces inside an electrical machine, the literature is confusing, 

and different approaches exist. One may consider magnetostriction as a force acting 

on a piece of iron and define it as part of the magnetic forces. 

 Mainly, there are five distinctive formulations for calculating the force 

distribution in magnetic media: three methods of equivalent sources (equivalent 

currents, equivalent magnetic charges, and equivalent surface charges and currents), 

the method of the derivative of the energy or the virtual work method, and, finally, 

the electromagnetic stress tensor method. These are considered and compared by 

Sadowski et al. (1992) and Ren et al. (1994). These studies emphasised the 

differences in the force density evaluation resulting from the different methods. For 

the global force calculation, all methods give similar results when the mesh is fine 
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enough. For the local force calculation, Ren et al. (1994) conclude that the principle 

of virtual work is the most accurate one. 

 Reyne et al. (1987) presented a survey on the computation of magnetic forces and 

on the different ways to solve magneto-mechanical coupled models with finite 

elements. It was concluded that energy methods are beneficial for the modelling and 

challenges were set regarding the experimental setups for the determination of the 

parameters in the models that were developed. Later, in Reyne et al. (1988a, b), the 

authors suggested a simplified model implemented in finite element software, based 

on the principle of virtual work. Although limited to the linearity of the magnetic and 

mechanical properties, the study is supported by measurements on an Epstein frame. 

The calculations of the magnetic forces on the stator and rotor of a DC machine are 

plotted roughly but these attempts are nevertheless incomplete as a quantitative 

evaluation of the deformation is lacking. 

 Delince et al. (1991) took the Joule magnetostriction into account in the post-

processing of the computation of the magnetic field. This effect was included into a 

force vector. Benbouzid et al. (1995) developed a computational method based on the 

“typical” dependence of B on H and on the mechanical stress and which expresses 

the magnetic field and mechanical strain using the “Surface Spline Method”. Both 

sets of findings are incomplete as there were no measurements to corroborate the 

methods and model presented. 

 Meanwhile, Låftman (1995) concluded that the effect of magnetostriction in the 

iron cores of electrical machines has a relevant influence on the noise emitted. The 

method consisted of solving the field equations, and subsequently the elastic 

equations, with two distinctive pieces of software. A novel setup made of a pile of 

disks, where a hole was extracted and with slots to insert the windings into, was 

developed to validate the finite element analysis. However, the results of this device 

are questionable as the author failed to consider a leakage flux circulating in the air 

that introduces forces, due to the electromagnetic stress tensor in air on the inner 

boundary of the machine. 

 Following the definition of the authors, Body et al. (1997) suggested strongly 

coupled finite element method formulations to solve nonlinear magneto-mechanical 

problems for giant magnetostrictive materials. The first method was called the 

indirect strong coupling. The authors derived an analytical exponential formula to 

express H as a function of the stress tensor,  and B and  as a function of H and the 

strain tensor, . In the second method, the direct strong coupling, the unidirectional 

magnetostrictive coefficient x as a function of Hx is directly used. Hence the terms 

coupling the mechanical and magnetic quantities are directly introduced into the 

stiffness matrix. In fact, this approach solves the magnetic and mechanical quantities 
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explicitly, which is attractive for the purpose of this dissertation. However, at the time 

of the work, the authors had no material parameters from experimental work and the 

approach is not clearly justified physically. Gros et al. (1998) applied the latter 

method for modelling rods. 

 Besbes et al. (1996) define weakly coupled modelling as first solving the 

magnetic field equations, then extracting the magnetic forces that serve as an input 

for solving the mechanical equations. The permeability as a function of the stress is 

used to update the value of the magnetic field. A strong coupling method, where the 

computation of magnetic forces and mechanical stiffness matrix is needed, has been 

presented and applied to a 2-D magnetic field and elastic stress problem. This latter 

method, introduced in the papers of Ren et al. (1995) and Besbes et al. (1996), has the 

major advantage of converging more quickly. 

 In the same way as Body et al. (1997) did for giant magnetostriction materials, 

Mohammed et al. (1999) used a simple magnetostriction curve for a non-oriented Fe-

Si sample. The same type of exponential formula was derived. The data were taken 

directly from the manufacturer. The numerical methods consisted of processing 

stress-dependent permeability curves and including them into the system of equations 

within the iteration process. This method was applied to permanent magnet motors 

(Mohammed et al., 2001). Later, a 1-D measurement setup was developed that 

enables magnetisation curves under several stress levels to be used as an input in the 

model described above (Mohammed et al., 2003). Here, no clear physical justification 

of the model is given, but measurements are used to support the work. 

 De Medeiros et al. (1998) compared different methods of calculating the global 

force on permanent magnets. The study claims that for 3-D finite element problems, 

methods based on volume integration, such as the virtual work method and the 

electromagnetic stress tensor, are the most precise ones. The electromagnetic stress 

tensor integrated over a surface is, however, faster. 

 Delaere et al. (2001a) computed magnetostrictive forces in a stator core with a 

similar approach but, additionally, investigated the influence of coupling terms. One 

coupling term is the variation in the elastic energy with respect to the variation in the 

magnetic vector potential. The significance of this term, related to magnetostriction is 

developed in Delaere et al. (2001b). Another term is related to magnetic forces. 

However, these terms tend to vanish as the authors express the contribution of 

magnetostriction and magnetic forces as extra terms added to the external forces. The 

authors model the strain caused by the magnetostriction as a set of forces, which 

gives an easy way to model this complicated effect but is inaccurate. Indeed, even if 

the relative elongation is modelled correctly, the magnetostrictive stress is null for a 

piece of iron with fixed boundaries, which does not describe the actual behaviour. 
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The same observation was made for free boundaries, where the total magnetostrictive 

stress is then different from the real case. The method described was applied to 

different types of electrical machines and transformers to get the displacements of the 

structure caused by each modelled force (Delaere, 2002). Similar observations as in 

previous research studies (Låftman, 1995 and Mohammed et al., 2002) were 

discussed, such as the positive effect of the magnetostriction on the noise of the 

electrical machines. 

 Vandevelde et al. (2001) challenged the usual way of treating magnetic forces 

and magnetostriction as two distinct phenomena. They introduced a free energy 

density, which was divided into a magneto-static energy, a magnetostrictive energy 

and an elastic energy (Vandevelde et al., 2002). In Vandevelde et al. (2008), the 

authors discussed the inclusion of a magnetic couple density originating, according to 

them, from anisotropy or magnetic hysteresis, for example. They also added a term 

that provides the magneto-elastic interaction to account for the magnetostrictive 

deformation resulting from a magnetic field on a body with mechanically fixed 

boundaries. 

 This latter approach gives a transition to the next subsection where energy-based 

models are discussed. 

2.2.4 Energy-based models of magneto-elastic materials 

Works by Toupin (1956) and later, Maugin (1988) were a great inspiration for further 

investigations in the field of magneto-mechanical coupling. The difficulty in this area 

of research resides mainly in getting a deep knowledge in interdisciplinary fields such 

as mechanics, thermodynamics, and magneto-dynamics to construct physically 

consistent, mathematically prevalent and numerically efficient models. 

 Previous researches focused on modelling the nonlinear constitutive equations for 

giant magnetostrictive materials. Different models were developed such as the 

standard square (SS) constitutive model, hyperbolic tangent (HT) constitutive model, 

and density of domain switching (DDS) constitutive model. The SS model, 

introduced by Carman (1995), involves writing the Gibbs energy function in a series 

form. The chosen independent variables are  and B. The dependence of the strain on 

the magnetic flux density for different pre-stresses is modelled correctly for low to 

moderate magnetic fields, where the strain is small or moderate too. However, for 

higher magnetic fields, the model does not approximate at all the saturation effect 

observed through experimental results. To overcome this limitation, the HT model 

was developed by Duenas et al. (1996). It expresses the Gibbs energy using the 

hyperbolic tangent function. Although the saturation effect could be represented, the 
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error between the modelled and experimental curves is large enough for this model 

not to be taken into consideration. The DDS model, suggesting that magnetic domain 

switching underlies magnetostrictive deformations, was published by Wan et al. 

(2003). The piezo-electric coefficient, i.e. the partial derivative of the strain tensor 

with respect to the magnetic field strength when the stress tensor is kept constant, is 

expressed by means of an exponential function that depends on the magnetic flux 

density and external stress. This function is the density function related to the domain 

switching density. The DDS model, similarly to the HT model does not approximate 

the phenomenon correctly. 

 Fang et al. (2004) derived a nonlinear constitutive model for the deformation of 

ferromagnetic materials. The independent variables chosen in this case are the stress 

tensor and the magnetic flux density and the Helmholtz free energy is expressed by 

use of the remanent stress and remanent magnetisation. The model fits the theoretical 

results and the experimental data for the magnetostrictive curve poorly. 

 The so-called “D-H model” was advanced by Liu et al. (2005); here, the internal 

energy density function is expressed as a function of M, and the entropy, S . Here, 

the total strain was expressed as the sum of the elastic strain produced by a pre-stress 

and a component depending on both M and The model appeared to present 

accurate results for a Terfenol-D rod up to a certain magnetisation level. In Zheng et 

al. (2006), the same model was extended to  the case of magneto-thermo-mechanical 

problems, so that the Gibbs energy density function is dependent on M, , and the 

temperature, T. The dependence of M on T was extracted from the theory of 

ferromagnetic materials. 

 A clearer perspective on the modelling of magneto-sensitive elastic solids (i.e. 

elastomers, and later piezo-electric materials) is provided by Dorfmann et al. (2003) 

and Dorfmann et al. (2004). They defined a Helmholtz free energy that accounts for 

the dependence of the magnetic field on the stress tensor and vice versa by 

introducing the dependence of parameters within the constitutive equations on an 

appropriately chosen set of invariants (Spencer, 1971), to represent the required 

behaviours. They adopted the formulation of the magneto-static Maxwell stress 

tensor following Tiersten (1964) and later Collet et al. (1974) and decomposed the 

total stress tensor into its symmetric and asymmetric parts. The symmetric part is 

known in classical mechanics as the Cauchy stress tensor, but is rewritten to take into 

account the coupling and the asymmetric part, also called the electromagnetic stress 

tensor. This asymmetry is discussed in Espinosa (2003). The equations were 

presented in the Lagrangian space, as well as in the Eulerian space, as the material 

deformations studied are not always negligible, especially in the case of piezo 
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materials. The stability of a half-space under constant deformation and an electric 

field is discussed in Dorfmann et al. (2008). 

 Recently, Zhou et al. (2009) presented a fulfilling non-linear coupled constitutive 

model. The theoretical model is developed with a similar approach as in Liu et al. 

(2004). The parameters needed are the maximum magnetostrictive strain, the 

saturation magnetisation, which is supposed to be equal to the saturation domain wall 

motion magnetisation, and the maximum susceptibility. The model was verified with 

measurements from Kururaz et al. (1973). The model, however, does not predict the 

experimental results accurately. 

 It should be noted that all these theories do not model the butterfly hysteresis 

behaviour of magnetostrictive materials. To overcome this shortage, Dapino et al. 

(1999) and later Linnemann et al. (2009), among others, developed simplified 

models. The first group of researchers introduced the effect of stress into the 

formulation of Jiles-Atherton to model the phenomenon of hysteresis in 

magnetostrictive transducers. The second authors defined a free energy function and a 

switching criterion, decomposed the stresses into a reversible and irreversible part 

and applied the model to ferromagnetic materials, including their hysteretic 

behaviour. 

 Within this dissertation, the energy-based approaches are privileged above the 

magnetic force methods for the reasons cited in Section 2.2.3. From this review it can 

be concludes that little research has been conducted on coupling the magnetic and 

mechanic constitutive equations for soft magnetic materials. Restricted studies 

attempted to justify these models. In particular, the implementation of such models 

turned out to be tediously lengthy. Nevertheless, they are the most rigorous and 

physically admissible approaches. Moreover, even less has been done on coupling 

magnetic fields and magnetostrictive strain through constitutive equations under 

different pre-stresses. Two major challenges arise from this review. The first is the 

need for measurements of magnetostrictive strain under pre-stresses, in the case of 

the study. The second is the definition of a suitable free energy to deduce the 

constitutive equations. 

2.3 Measurement of magnetic and mechanical 

properties of electrical steel sheets 

This section depicts the different measurement apparatuses used to determine the 

properties of magneto-elastic materials. First, methods for quantifying the hysteresis 
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curves and the first magnetisation curves of ferromagnetic materials are reviewed. 

Then the setups extended to the application of mechanical stress onto the samples are 

surveyed. Each time, the sensors used or developed for acquiring the desired 

quantities are evaluated. 

2.3.1 Measurement of magnetic properties for modelling 

Considerable research has been focused on the measurement of the magnetic 

properties of electrical steel sheets, not only from a computational but also from a 

measuring point of view. Indeed, almost all existing models require parameter 

identification on 1-D or 2-D measurement setups, such as single sheet testers; good 

examples combining 2-D measurements and computations can be found in Bergqvist 

et al. (1996) and Bergqvist (1994). 

 In electrical rotating machines, losses are divided into four main study areas: 

losses in iron, copper losses, field winding losses, and losses resulting from the 

mechanical friction. In the last three cases, there exist some well-established 

calculation methods. Energy is dissipated when a material is magnetised. The total 

amount of energy lost during the process depends on many internal and external 

factors, such as the microstructure of the material, the supply frequency, the direction 

of the magnetisation, and the geometry of the sheets. In statistical loss theory, the 

total losses in the iron are separated into three components: the hysteresis loss 

component, the classical loss component, and the excess loss component (Bertotti, 

1998). All components are frequency- and magnetic flux density-dependent. Loss 

models such as the Jiles-Atherton model offer a phenomenological definition of 

hysteresis within electrical steel sheets. Other models, such as the Preisach model, try 

to approximate the phenomenon mathematically. Lately, tendencies to join both the 

mathematical approach and physical approach have been proved to be successful for 

modelling electrical machinery (Dlala, 2008). 

 Rotational single sheet testers (RSST) reproduce the magnetic flux patterns in an 

electrical steel sheet in the x-and y-directions. The dimensions of such devices are 

usually small, between 50 mm and 150 mm (e.g. Nakata et al., 1993 and Tumanski et 

al. 2001). Nencib et al. (1995) tested a larger vertical yoke system and concluded that 

the larger the yoke, the greater the uniformity in the sample. Two types of RSST are 

suggested for the measurements of magnetic properties: the horizontal type and the 

vertical type. As demonstrated by Nakata et al. (1993), with the vertical yoke type, 

higher magnetic flux densities are achieved and this yoke type reproduces the 

material properties with more accuracy. For this reason this configuration will be 

used later in this work. Further details regarding these setups are discussed, for 
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example, in Krismanic (1995) and in Sievert (1996), where the authors emphasised 

different methods to measure magnetic material properties with the aim of obtaining 

rotational power losses. 

 Models that characterise the magnetic properties of materials create suitable and 

efficient measurement setups. The subject is, however, vague and further literature 

discussion is found, for example, in Ivanyi (1997) and Berttotti (1998). The aim of 

this dissertation is to measure magneto-mechanical properties, mainly 

magnetostriction under pre-stresses. 

2.3.2 Effect of applied stress on microstructure and power losses  

Dijkstra (1953) first observed the changes in domain patterns under an applied stress 

up to plasticity on grain-oriented silicon steel. This research was inspiring for Corner 

(1964), who detailed a mechanism for the changes in the domains and successfully 

compared a theoretical approach and measurements made by applying tensile stress 

along the [110] and [100] directions on a microscopic domain level.  

 Yamamoto et al. (1972) studied the effect of tensile stress on losses on a single 

sheet tester. They measured and analysed the effect of applying external tensile stress 

in the rolling direction of a specimen and concluded that a similar tensile stress 

induced by surface coating might reduce losses. Later, Banks (1976) discussed the 

influence of normal stresses on magnetostriction. 

 Foster et al. (1984) investigated the dependence of the Steinmetz coefficient on 

small applied tensile stresses up to 8 MPa through measurements of oriented and non-

oriented steels on an Epstein frame. How the stress was applied remains unclear; 

however, the results present an increase in the Steinmetz coefficient with increasing 

stress. In the case of non-oriented steels, the hysteresis losses decreased with 

increasing tensile stress. 

 Dąbrowski et al. (1989) applied longitudinal stress to a magnetised Fe-Si sample 

and observed that a compressive stress of 5 N/mm
2
 or more affected the 

magnetisation curve significantly, increasing the total power losses. However, tensile 

stresses up to 15 N/mm
2
 had the opposite effect.  

 Pitman et al. (1990) described the behaviour of B-H characteristics under stress 

by measuring B-H loops with a permeameter system. They presented the B-H 

characteristics under different stresses. For large compressive stresses, the saturation 

of the material occurs at lower magnetic fields than for null stresses. 

 These observations were later verified by LoBue et al. (1999), LoBue et al. 

(2000), and Pulnikov et al. (2004). Those works indicated a significant 

correspondence between the power losses and the stress applied. The loss increase 



 

 

35 

was noted as being around 50% for an increase in compressive stress of 20 MPa. 

Furthermore, Pulnikov et al. (2004) considered hysteresis losses under higher tensile 

stresses. The measurement presented a decrease of those losses until 50 MPa and then 

an increase. The 1-D measurement setup used for this purpose is described in detail in 

Pulnikov et al. (2004), Permiakov et al. (2005), and Permiakov et al. (2006). 

 It was established that under uni-axial stress loading, the properties of electrical 

steels deteriorate more under rotating than under alternating fields. Additionally, the 

calculated power losses from the measured B-H loops were much higher (Permiakov 

et al., 2004). 

2.3.3 Techniques for magneto-mechanical measurements  

Several techniques have been used to measure magnetostriction in electrical steel 

sheets. A brief overview is presented below.  

 Among those techniques, the strain gauge method, the capacitance method, the 

piezo-electric pick-up, and differential transformers are the most common ones in the 

case of a direct or semi-direct contact between the test specimen and the sensor. 

Optical techniques, such as the laser Doppler vibrometer, have also been developed. 

All these techniques are reviewed, for example, in Yastrebov et al. (1987) and, later, 

in Yabumoto (2009). The choice of one against another depends on the type of yoke 

preferred in the measurements, the sensitivity to magnetostriction, the specimen size, 

and the appropriate accuracy. In ribbons and wires, the field dependence of the shear 

modulus is usually measured by the pendulum method and the field dependence of 

the Young’s modulus is measured by the magneto-mechanical resonance method or 

the vibrating reed method (Squire et al., 1996). Bozorth (1953) explored 

experimentally the phenomenon of magnetostriction for a Ni-Fe alloy. The strain 

gauge method was used to obtain the parameters for the simple model of 

magnetostriction described in detail in du Trémolet de Lachaisserie (1993). Because 

they are commonly accepted as accurate methods for measuring force, and hence 

magnetostriction, the strain gauge and the piezo-electric methods are adopted in this 

work. Another advantage of both is that they are easily accessible and can be put into 

place almost effortlessly. 

 As no standard is available yet, the different measurement setups that were 

developed to apply stress to a magnetised material are described below. Moreover, 

the techniques used to acquire the different quantities are presented. 

 In order to measure magnetostriction in 1-D with and without pre-stress, several 

setups have been recommended. Anderson et al. (2000) designed a system that allows 

cut samples to be inserted into a Tufnol former, closing the magnetic path by an 
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appropriate yoke, and applying external uni-axial stress with a cylinder whose 

pressure is controlled by electro-pneumatic valves. Mohammed et al. (2004a, b) 

measured the direct and inverse magnetostriction effect of electrical steel sheets with 

a specially designed setup that was inserted into a magnet and the sample was 

stressed. However, the application of the external stress remained vague. Belahcen 

(2004) modified the traditional Epstein frame to apply stress onto the samples and 

added load cells and used a force transducer to sense the magnetostriction. Hilgert et 

al. (2005) used a single sheet tester to magnetise the sample and applied external uni-

axial stress by means of force cells. They measured the resulting deformation with 

strain gauges. For now, both methods to acquire the deformation in electrical steel 

sheets cannot be compared and critically analysed because of their inherent 

differences. In both cases, the authors depicted their measuring procedures carefully. 

 Measurement setups for characterising the properties of electrical steel sheets 

under biaxial stress have been discussed by many research studies. Among others, 

Utsunomiya et al. (1991) and Kashiwaya (1991) used cruciform specimens and 

developed non-destructive techniques to evaluate the stress in steels. The first authors 

acquired the magnetic field with a search coil placed around the magnetising yoke 

and magnetic field strength with a hall sensor. Kashiwaya (1991) designed a special 

procedure to measure additionally the magnetisation perpendicular to the surface. 

Previously, Langman (1990) applied stress by bending specimens of a similar shape 

held between two crosses made of Bakelite. Holes were drilled in the centre of the 

sheet to acquire the magnetic flux density. Langman et al. (2003) put forward a 

method to magnetise a specimen in the z-direction while stressing it in the x-and y-

directions. The setup was composed of a magnetic circuit, a stressing rig, vanes, and 

coils placed at the desired positions. Hubert et al. (2005) conducted experiments on a 

redesigned cruciform sample placed into a tri-axial tensile and compressive machine 

and magnetised. 

 Under no applied external stress, researchers investigated the influence of a 

rotating magnetic field on the magnetostriction. Enokizono et al. (1990) and 

Enokizono et al. (1995) built a horizontal yoke system and measured the so-called 

“dynamic rotating magnetostriction”. From these, Enokinozo et al. (1995) and, later, 

Pfützner et al. (1996) concluded that the magnetostriction in non-oriented steel sheets 

is higher under a rotating magnetic field, and also depends on the axis ratio.  

 In 1999, Lundgren measured 2-D magnetostriction responses from the excitation 

of a vertical yoke system. In his work, he used a laser interferometer, which gave 

acceptable results. Recently, measurements under a rotational flux have been 

investigated more carefully by Somkun et al. (2010). Their conclusions were similar 

to the previous ones. 
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2.3.4 Conclusion  

Although much research has been conducted in the field of measuring the magnetic 

properties of magnetic materials, little is known regarding the accuracy of the results. 

Within this dissertation, attempts will be made to compare two measuring devices, 

the Epstein frame and the vertical yoke system, and two measuring methods, the 

strain gauge method and the force transducer. The need for measurements is a natural 

outcome of the formulation of the coupled model. Thus, the Epstein frame as 

modified by Belahcen (2004) is adopted for the measurements. 

 Following the idea of Lundgren (1999), measurements will be compared on a 

vertical yoke system built for the purposes of the study, based on the design and 

conclusions on a similar setup by Krah (2004). 

2.4 Summary 

The literature study presented above intended to provide a concise survey of the 

previous research. The first section reviewed the importance of the study of stress on 

iron. The second one examined the main achievements in the field of modelling the 

magneto-mechanical effect from a theoretical point of view. The third one explored 

research works regarding the computation of the phenomenon for electrical 

machinery. Finally, the fourth part enumerated the different approaches to force 

calculations. 

 Following the previous research described in this chapter, the topic of magneto-

mechanical coupling has drawn a lot of attention from researchers all around the 

world for more than 100 years. The phenomenon of magnetostriction is due to the 

movement of domain walls and has a proven influence on the noise within the iron 

cores of transformers. Various measurement setups have been developed for 1-D 

magnetisation and uni-axial or bi-axial stresses; however, at the time of writing of 

this thesis, no standards are yet available. A clear lack of measurements of the 

behaviour of the properties of electrical steels sheets under 2-D magnetisation and 

biaxial stress has been noted. Such measurements would enable researchers to model 

the phenomena physically as accurately as possible. 

 Additionally, numerical schemes accounting for magneto-mechanical coupling 

are extensively available in the literature. Weakly coupled models offer the comfort 

of not requiring detailed constitutive equations. The approach of using 

magnetostrictive forces has been developed in a strong coupling scheme; however, 

they do not model the phenomenon accurately. Locally coupled magneto-mechanical 
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models for accounting for the phenomenon in electrical steel sheets, supported by the 

physical laws, are rarely presented. 

 On the basis of the literature review, this work will consider an original energy-

based model for coupling the magnetic and mechanical quantities. This model will 

originate from the qualitative knowledge of the single-valued magnetisation curve on 

different pre-stresses and of the magnetostrictive strains on the pre-stress and 

magnetic field. The model should be identified from the experimental work and 

inserted into suitable finite element software. 

 Subsequently, such a method applied to the computation of the deformation of 

electrical machines requires verification using special devices. These verifications are 

usually inconsistent or even omitted in the literature. This is why, within this 

dissertation, the model is reinforced by experimental results on specifically built 

devices. 
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Chapter 3   

Energy-based magneto-mechanical 

model 

This chapter puts forward a way of modelling the magneto-mechanical properties of 

the material of steel laminations. In Section 3.1, the basic equations for the magnetic 

field, the electromagnetic stress tensor, and the equation of equilibrium of a magneto-

elastic body are introduced. These will enable the model that is developed to be 

understood. The energy of the electromechanical system or the Helmholtz free energy 

is then derived. Consequently, the determination of the quantities needed, the 

magnetisation vector, and the Cauchy stress tensor is achieved. Section 3.2 describes 

how the model is implemented into a finite element scheme. FORTRAN-based 

software, which is primarily intended for the research and modelling of field 

problems in electrical machines, is used for this purpose.  

 Sections 3.3 and 3.4 supplement the work. In Section 3.3, the influence of the 

electromagnetic stress tensor in the air gap of electrical machines is added. In Section 

3.4, the dynamic magneto-mechanical problem is formulated in such a way that the 

mass and damping of the mechanical system are considered. 

3.1 Modelling the magneto-mechanical properties of 

electrical steel sheets 

Among the approaches cited in Chapter 2, most of the constitutive relations were not 

coupled. Recently, Wan (2003) and Dorfmann (2005), for example, have introduced 

coupled models for solving general non-linear magneto-elastic solids. Dorfmann 

(2005) presented universal relations for coupling the magnetic field and the electrical 

field. Wan (2003) expressed a general non-linear constitutive model for piezo-
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magnetism. In both cases, the approaches were interesting from a structural 

mechanics and computational point of view. The purpose here is to couple the 

magnetic and mechanical equations explicitly. 

 This section includes the development of the magneto-mechanical coupled model 

for finite element implementation. The balance equations for a magneto-elastic solid 

are derived, starting from the formulation of the Maxwell equations. The balance of 

linear momentum in continuum mechanics is then recalled. The constitutive 

equations of isotropic ferromagnetic materials are written on the basis of the 

Helmholtz free energy. 

3.1.1 Magnetic field equations 

The Maxwell equations govern the electric field and magnetic flux density and are 

expressed below for magnetic systems. In its differential form, Faraday’s law of 

induction is 

 
t






B
E    (8) 

and Ampere’s circuit law 

 f
t


 



D
H J  . (9) 

E is the electric field, D is the electric displacement, and Jf is the free current density. 

The right-hand term of (9) can be written with the help of J, which is the total current 

density, as 

 f
t





D
J J . (10) 

In this work, electromagnetic wave propagation is neglected. For this reason, in (9) 

the displacement current, 0t D . In addition, Jf is significantly larger than t D  

in good conductors. The quasi-static approach of (9) is thus preferred. 

 In a vacuum, the electrical displacement is related to the electrical field through 

the permittivity of the vacuum, and the magnetic flux density is related to the 

strength of the magnetic field through the magnetic permeability of the vacuum,  

 0 D E   (11) 

   0 B H . (12) 

In a magnetised material the previous relation is not satisfied any more. The 

constitutive equations of the material are 
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 B H  (13) 

 = J E , (14) 

where is the magnetic permeability tensor and is the conductivity of the material. 

In general,  is expressed with the magnetic susceptibility  

  0 +  I  . (15) 

 is positive for paramagnetic materials and negative for diamagnetic materials. It 

serves as the relationship between the magnetisation M, which is the quantity of 

magnetic moment per unit volume, and H, such that 

 M H . (16) 

In ferromagnetic materials M is a nonlinear function of H. In addition, the 

phenomenon of hysteresis complicates (16). Here, a single-valued curve approach 

will be preferred because of its simplicity. 

 Finally, 

  0  B H M , (17) 

is obtained by injecting Equation (15) into (13) and taking (16) into account.  

 The Maxwell equations imply the existence of a vector potential A, and a scalar 

potential, , such that 

 B A   (18) 

 
t




  


A
E  . (19) 

A gauge convention is needed to assure the uniqueness of the potentials; a 

satisfactory one is the Coulomb gauge defined by 

 A   . (20) 

3.1.2 Balance equations for a magneto-elastic solid 

To deal with a magneto-mechanical problem, mechanical equations need to be 

coupled with the magnetic equations.  

 Omitting magnetic dependency for the moment, the general expression for the 

balance of linear momentum in continuum mechanics is  

 0
t

 
 

    
 

v
v v b   ,  (21) 
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where (x,t) is the mass density, v(x,t) is the velocity, (x,t) is the Cauchy stress, and 

 b is the body force density. In the case of a magneto-mechanical problem, the latter 

term is 

 mag mec inert   b f f f , (22) 

where fmag is the electromagnetic body force, fmec is the mechanical body force, and 

finert is the total inertial force. All three forces are expressed per unit volume in a 

domain V delimited by its boundary surface S. 

 In a stationary case, (21) becomes 

 0 b  ,  (23) 

which is the system of equations of equilibrium for a magneto-mechanical material.  

 The electromagnetic body force is expressible as the divergence of the 

electromagnetic stress tensor, m, in magnetised matter, under the hypothesis of a 

magneto-static problem such that 

 mag m f  . (24) 

Besides its mathematical definition of being a second-order tensor, m is understood 

as being the stress tensor of an electromagnetic field. This brings us back to the 

definition of a stress tensor in Chapter 1. This tensor appears when the Lorentz force 

for an unknown charge distribution is written in terms of the electrical field, magnetic 

field, and strength of the magnetic field. This equation, defined for example in 

Kovetz, 2000, is  

    1

m 0

1

2
  

        
 
B B B B I M B I B M . (25) 

The dyadic symbol   refers to the product of two vector fields resulting in a tensor. I 

is the identity tensor. 

 An essential point to emphasise is that neither the Cauchy nor the electromagnetic 

stress tensors within the material are symmetric. However, by summing both 

components, a symmetric total stress tensor, first defined by Tiersten (1960) is 

obtained: 

 m    . (26) 

According to (24), Equation (23) is expressed as 

  m mec inert    f f     .  (27) 

Considering the additive property of the divergence operator, the equation of 

equilibrium becomes 
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 mec inert  f f  . (28) 

Next, a formulation for  and M will be sought. 

3.1.3 Derivation of the energy function 

Independent variables ought to be chosen in order to formulate the scalar energy 

density function per unit mass, . In thermodynamics, this energy is the Helmholtz 

free energy. The chosen independent state variables are  and B.  Stress  and 

magnetization M are obtained from the local form of the Clausius-Duhem inequality 

by using the Coleman-Noll approach (Kovetz, 2000 -Chapter 15, section 53-), giving 

the expressions: 

 =









 (29) 

 =








M
B

. (30) 

 For isotropic solid the most general form of the free energy function depending 

on a second order tensor and a vector can be expressed by using the following six 

invariants: 

 1 trI    (31) 

  
2

2

1
tr

2
I    (32) 

   
3

3

1
tr

3
I   . (33) 

The fourth invariant is chosen to represent the single-valued magnetisation curve. The 

fifth and sixth invariants account for the magnetostrictive curves as a function of the 

magnetic flux density 

 4I  B B  (34) 

  5I   B B  (35) 

 6I   B B . (36) 

which form the integrity basis. The specific functional form in terms of these 

invariants is dictated by experimental results. The fourth invariant is crucial for 

describing the magnetization curve correctly; dependency from the fifth and sixth 

invariants determines the magnetostriction response. Assuming linear elastic 

behaviour, the energy should not depend on the third invariant I3 



 

 

44 

 1 2 4 5 6( , , , , )I I I I I  . (37) 

 The expressions for the Cauchy stress tensor (29) and the magnetisation vector 

(30) are 
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= i

i i i
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 
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
 (38) 
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B
. (39) 

After some manipulations the partial derivatives of the invariants are 

 1I 


I


 (40) 

 2I






  (41) 
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B B
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 (42) 
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  (43) 
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 5I
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  (45) 

 6I 
 


B

B
 . (46) 

The following notation is used in later developments: 

 i

iI








. (47) 

Accounting for the derived partial derivatives, the Cauchy-like stress tensor and the 

magnetisation are 

  1 2 5 6=   



        I B B B B B B     (48) 

and 

 2

4 5 62  



     M B B B  . (49) 
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The expression for the energy takes into account the hypothesis that, under no 

mechanical loading, the single-valued magnetisation curve is still obtained. Let us 

now substitute expressions (48) and (49) into (26) and (17) in order to obtain the 

expressions of the magnetic field strength  

  1 2

0 4 5 62        H B B B   (50) 

and the total stress tensor 
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  (51) 

The calculation of the trace of the total stress tensor  

   1

1 2 1 0 4 5 4 5 5 6 6 6 5

1
tr 4 2 2 2

2
I I I I I        

         
 

    (52) 

sets constraints on the energy function. 

 Within this research, Fortino et al. (2007) and Belahcen et al. (2006) established a 

first version for the free energy, which has been finally slightly modified to get more 

accurate results. The chosen suitable form of the Helmholtz free energy function 

presented in (37) is (Belahcen et al. 2008) 
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The functions gi(I1) with i= 1,...4 are obtained after some assumptions that will be 

discussed below. They are given in Equations (67) and (68). Bref is a reference value 

for the magnetic flux density. The parameters 5 and 6 are material-dependent. 

Their values will be provided in the next chapter. The expressions for 5 and 6 are 
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 (54) 

Under the hypothesis of a purely elastic material with no magnetic loading, the matrix 

of elasticity should be recovered. The first Lamé parameter is 

 
   1 1 2

E


 


 
, (55) 
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and the shear modulus is 

 
 2 1

E
G





. (56) 

They are defined in the case of plane strain in (55) and (56) with the use of the 

material-dependent parameters E and. The modulus of elasticity E of an isotropic 

material is a measure of the stiffness of the material and  is called the Poisson’s 

ratio. Knowing the expression fora set of constraints on this energy is 

  1 1 1 4

1
I I  


   (57) 

and 

 2 2G  . (58) 

1 is such that the Maxwell reciprocal condition is verified 

 1 4

4 1I I

  


 
.  

Hence, 4 is 
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i I
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








 
  (59) 

and 1  is  
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1 1

2 1

ii

i

g
I

i I











 
 . (60) 

Small deformations are supposed throughout this work. Quadratic terms in the 

volumetric deformation (61) are thus omitted; (52) becomes 

   1

1 1 0 4 5 4 5 5 6 5

1
tr 2 4 2 2

2
I I I I       

           
 

  .  (61) 

Under the same conditions of volume-preserving deformation in pure magnetic 

loading, the two set of constraints are extracted from (61) 

 1

1 0 4 5 4

1
4 0

2
I    

     
 

  (62) 

and 

 5 5 6 52 2 0I I    . (63) 

Inserting (59) and (60) into (62),  the identity 
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   
   

    
  , (64) 

is obtained and the set of two simple differential equations is extracted 

 10
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1

1

3 2 3

g
g

I
    

   
  

 (65) 

  1
3

i
i

i

g
i g

I

 
 


, where 1,...4i  . (66) 

These enable the solution of each of them to be written as 

 1

0 0 1 0 5

1
exp( )

4 3 3 2
g I      

   
 

 (67) 

 
   

1

1 1
exp( )

4 3
i i

i i
g I

   
 , where 1,...4i  , (68) 

i with i= 0,...4, are five parameters depending on the properties of the material being 

studied. 

 The free energy is thus now fully defined.  

3.1.4 Summary 

The expressions of the total stress tensor and magnetic field strength have been 

derived. They are  
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 (69) 

and 

 1 2

0 4 5 6

1 1
( , ) 2

2 2
          H B B B B B    (70) 

with the definitions of 4 in (59) and 1 in (60). 
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 The complexity of these equations and the interdependency of the strain tensor 

and magnetic flux density make it logical to use the finite element method to solve 

them. 

3.2 Magneto-mechanical finite element method 

The primary purpose of this work is to discuss the coupled phenomenon for rotating 

electrical machines. When considering an uncoupled case, the finite element analysis 

of such devices is based on the approximation of the field solution. It is coherent to 

formulate the derived equations with the help of a numerical method based on the 

solution of the discrete system of equations. 

3.2.1 Introduction 

The Maxwell equations are recalled under the condition of quasi-static systems 

 
t


 



B
E   (71) 

 H J  . (72) 

 The constitutive equations are non-linear; for this reason, the Newton-Raphson 

iteration is preferred so that (69) and (70) are written in the linear form 

   0( , ) o
 

     
 

H H
H B H B H

B
 


 (73) 

  0( , ) o
 

     
 

B B
B

  


 
  . (74)  

H0 and 0 are the initial values, B and  are the iterative changes of the magnetic 

flux density and strain tensor, respectively, and ( , ) x y z y  is the partial derivative of 

quantity x with respect to y, assuming z to be constant. Finally, o(*) stands for the 

higher-order terms of the quantity *. 

 The solved nodal quantities for the finite element method are chosen to be the 

displacements in Cartesian coordinates (x and y-directions) or in polar coordinates (r- 

and -directions) and the magnetic vector potential. Hence, expressions (73) and (74) 

need to be expressed in the desired reference frame.  

 Those quantities are obtained from basic definitions from continuum mechanics 

and electromagnetics. First, the tensor field for a rigid deformation  
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  T1

2
 u u    (75) 

is called the infinitesimal strain. u  is the displacement gradient and is assumed to 

be small. A complete demonstration is found in Gurtin (1981). Second, the magnetic 

flux density is expressed as the rotational of a vector potential A, as discussed in 

Section 3.1.1: 

  B A . (76) 

3.2.2 Variational formulation 

The variational formulation of the coupled problem for the solution in the finite 

element method is now presented.  

 In magnetism, the weighted residual expression is obtained by multiplying 

Equation (72) by a weight function w and integrating it over a domain : 

    d 0


     w H . (77) 

Denoting p and q as vectors, the identity  

             p q p q q p    (78) 

is applied to the integrand of (77), so that 

       d  d 0
 

       H w w H  . (79) 

Using the theorem of Gauss, (79) becomes 

      d  d 0
 

      w H w H s . (80) 

This is the variational formulation of a field problem that has been derived 

extensively, for example in Silvester et al. (1983). 

 In mechanics, the principle of virtual displacements states that for any small 

virtual displacement on the body in equilibrium, the total internal virtual work equals 

the total external virtual work (e.g. Bathe, 1996). This is written in the following 

form: 

  T T T

mec inert surf
ˆ ˆ ˆd  + d dS

  
   u f f u f  .  (81) 

Replacing and H by their linear expressions, (80) and (81) become  
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 

 
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w B w

B

w H w H s

  




 (82) 

and 
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T T T
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ˆ ˆd d

ˆ ˆ ˆ                                     d + d dS 

 


  

 
   

 

   

 

  

B
B

u f f u f

 
  

 

  (83) 

These formulations are ready to be discretised.  

3.2.3 Solution by the finite element method in 2-D 

In Voigt notation, the strain tensor is simplified to a vector and in this work is named 

 , such that 

 
T

2x y xy      . (84) 

x and y are the normal strains in the x-and y-directions, respectively, and xy is the 

shear strain. 

 Accordingly, (75) is rewritten in 2-D as 

  u L  (85) 

with the differential operator 

  

T

0

0

x y

y x

  
  
 

  
   

L . (86) 

Positioning the problem at an element level, the displacement vector has its two 

components in the x-direction (ux) and y-direction (uy) 

 
T

x yu u   u . (87) 

The approximate solution k u u  of the displacements in one element is a linear 

combination of the matrix containing n basis functions Ni: 

 
1

n

k i i

i

u N u , (88) 
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where 
T

, ,i x i y iu u   u  are the nodal values of the displacement corresponding to the 

nodal point i. The basis functions are composed of polynomials in a piecewise 

fashion. In matrix notation, (88) is similar to 

  
T

k u Nu , (89) 

where N and u  are:  

  1 2 nN N NN  (90)  

 

T

1 2

1 1

x x xn

y y yn

u u u

u u u

 
  
 

u . (91)  

The approximated strain tensor becomes 

  
T

k  Nu L . (92) 

A comparable approach is adopted for the magnetic vector potential. In 2-D, A is 

reduced to its z component. The following notation will be used: za A a e .  

 With the help of an operator L  defined as 

 

T

y x

  
    
=L , (93) 

Equation (76) becomes 

 aB L . (94) 

Likewise, the approximated solution of the magnetic vector potential in one element 

is a linear combination of the matrix containing n basis functions Ni: 

 
1

n

k i i

i

a N a


 . (95) 

In matrix notation, Equation (95) is 

 ka  Na . (96) 

where ia are the nodal values of the magnetic vector potential corresponding to the 

nodal point i 

  
T

1 2 na a aa . (97) 

The approximated magnetic flux density is such that 

 B NaL . (98) 
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The Galerkin method is convenient for the solution of such variational problems; see, 

for instance, Bastos et al. (2003). Therefore, the basis functions are used as the weight 

functions, such that in 2-D 

  
T

= w NL . (99) 

Following these notations, (82) and (83) are handled. Under the hypothesis that the 

surface integrals vanish, they become 

       0 d  d
 

    
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
 (100) 

and 

 T T
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 

  
       

  
 B

B

 
   


. (101) 

Rewriting those equations according to the previously defined notations, these 

equations are 

       T T T
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 
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 (102) 

and 

    
T T

0d d
 

     
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 N N a N N u N
B

 



L L L L L . (103) 

In the basic theory of numerical methods, a discretised non-linear system is 

expressed, in the general form, as  

 ( ) 0xY . (104) 

This may be solved only iteratively. In this work, the Newton-Raphson method is 

adopted. The principle of this method is to correct the nodal values vector ix  

 
d ( )

( ) ( )
d

i i i i

i

 
     

 

x
x x x x

x

Y
Y Y , (105) 

where 
d ( )

d

x

x

Y
 represents a tangential matrix. Hence, the improved value “ i i x x ” 

is obtained by evaluating 
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In the problem being considered, the tangential matrix can be straightforwardly 

expressed as 

 

T
0 0d ( )

 d
0 0d 

  
      
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B


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

L LY

L L
.  (107) 

The solved quantitiesx  and the residual vector ( )ixY are 

  
T

   x a u  (108) 

  
T 0

0

( )  di


 
    

 


H
x N N


Y L L . (109) 

The system is now fully discretised. However, this model is considered in iron only. 

Parts of electrical machines are made of materials such as copper, solid steels, 

aluminium and air. Other issues to be included are presented in the next section. 

3.2.4 Overall system of equations 

In the case of rotating electrical machines, the system of equations to be solved 

appears to be rather more intricate. Circuit equations are solved together with the 

magnetic and mechanical equations. A Crank-Nicolson time-stepping scheme is 

adopted to discretise the system, which is solved iteratively with the Newton-

Raphson method (Figure 3.1). This system of equations is in matrix form 
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r s
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. (110) 


k+1

 is the column vector of nodal values of the magnetic vector potential and nodal 

values of the displacements in x ( +1k

xu ) and in y (
+1k

yu ) direction at time step k+1, such 

that 
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+1 +1

+1

k

k k

x

k

y

 
 

  
 
 

a

u

u

 . (111) 
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+1

r

k
v is the column vector of the bar potential differences and +1

s

k
i is the column vector 

of the stator currents. Finally, h is the column vector that contains quantities from 

time step k and source terms from time step k+1. Matrices Cr, Gs, Dr, and Ds couple 

the magnetic vector potential and the voltages and currents in the windings (Arkkio, 

1987). Matrices Dr and Ds are extended with zeros in appropriate locations. W 

describes the type of connection of the stator winding. Indices r and s refer to the 

rotor and stator reference frames, respectively. The formulation of matrix   cannot 

be expressed explicitly. In Section 3.2.3, this matrix has been indirectly discussed for 

elements in iron and in Section 3.2.4 for elements with nodes connecting air and iron. 

For elements in any other kind of material, the conventional assembly matrix S 

(Bastos et al., 2003), is included in . Its expression at element level is 

 1

0 dij i jS N N


       S   . (112) 

 Geometrical boundary conditions for the problem and the variables to be solved 

should be specified. They will be used to initialise the finite element procedure shown 

in Figure 3.1. The nodes with no degrees of freedom, which are the three nodal values 

(magnetic vector potential, and displacements in the x- and y-directions), are not 

going to be solved. These prescribed boundary conditions respectively, a*, u* and v* 

are set in each of the examples presented later in the work and handled as in Bathe, 

1996.  

 Finally, it should be specified that a switch between polar and Cartesian 

coordinates with the rotational matrix is enforced because the boundary conditions 

for the displacements are commonly specified in the radial and tangential or 

circumferential directions. This change is usual in mechanical problems and the 

procedures are discussed thoroughly for example in Bathe (1996) and Zienkiewicz 

(1967). Following this change in coordinates and considering a rotating electrical 

machine, an acceptable way to set the boundary conditions is to allow the outer edge 

of the stator to move in the radial direction and prevent it from rotating around the 

centre of the machine (Belahcen, 2004). In addition, it can be assumed that the rotor 

shaft is fixed in any direction. 
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Figure 3.1: Flowchart of the finite element procedure. 



 

 

56 

3.3 Dynamic case 

Under dynamic conditions, the displacements depend on the mass and damping of the 

system, which are trivially time-dependent. The matrices, M and C, are, respectively, 

the total system mass matrix and the total system viscous damping matrix. The 

system of equations is 

 
2

tot2

d d

d dt t
   

u u
u fM C X   (113) 

with the initial conditions 
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u v
 (114) 

Particularly, M is the sum of integrations over the volume of all finite elements: 

  
#

di j

elements

N N


 M = , (115) 

  is the mass density of one element,  is the volume of one element. From 

Zienkiewicz (1967), the total damping matrix is written as  

 1 2c c C M X , (116) 

of which the parameters c1 and c2 have been discussed in Belahcen (2004), for 

instance. X was discussed in Section 3.2.  

    Applying the weighted residual method to Equation (113) and assuming that the 

working domain is that of one element, defining suitable shape functions normalised 

to a time interval, the recurrence formulation, derived by Newmark and rewritten in 

Zienkiewicz (1967) 
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u f
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 (117) 

is obtained. The superscripts k–1, k, and k+1 refer to the second-to-previous, 

previous, and current time step, respectively. The parameters  and   are chosen 

such that 
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 , (119) 

where W are the weight functions for a three-point recurrence formula and t t   . 

Details of the calculations are presented in Zienkiewicz (1967). Symmetric weight 

functions are preferred, so that 1.5  . Backward formulation is adopted (by 

definition, 1  It should, however, be noticed that this formulation is numerically 

damped. With this formulation it is possible to study the dynamic behaviour of steel 

plates and electrical machines. 

 The overall system of equations is similar to the one presented in Section 3.2.4, 

except for vector h that contains terms related to the second-to-previous time step. In 

addition, matrix   includes M and C. 

3.4 Importance of the electromagnetic stress tensor in 

air 

From the literature review in Chapter 2, reluctance forces translated in terms of 

surface stresses acting at the iron-air boundary are known to be preponderant in 

electrical machines. These forces are usually taken into account at the early stage of 

the development of a model. Because they are the major ones, other side effects such 

as magnetic forces and magetostriction are sometimes omitted. The approach through 

this work does not aim at minimizing the importance of the resulting forces due to the 

transition from air to iron, however the treatment of this effect does not require a 

complex approach. For this reason, it is considered only at this stage of the study.  

 Until now, the focus of the thesis was the modelling of the magneto-mechanical 

behaviour in the material. Indeed, in Section 3.2, the finite element method mainly 

took into account elements in iron. However as presented in the overall system of 

equations in Section 3.2.4, electrical machines present several parts that are not filled 

with magnetic material. Examples of these are the slots, which contain copper 

windings, and the air gap between the rotor and the stator, where the elements are 

thus in air.  
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 This section briefly presents the methodology followed to take into account the 

forces acting between air and iron. Indeed, the electromagnetic stress tensor defined 

in (69) is recalled: 

    1

m 0

1

2

  
         

 
B B B B I M B I B M . (120) 

In air M = 0, so that this tensor becomes trivially 

  air 1

m 0

1

2

  
     

 
B B B B I . (121) 

The previously defined total stress tensor in Equation (69) is used only in iron. Since 

the magnetic flux density penetrates into the air in the air-gap region, the 

electromagnetic stress tensor defined in (121) is added to this total stress tensor in the 

total stiffness matrix for those elements with a common air-iron boundary. The total 

stress tensor for these nodes is 

 air

m m      . (122) 

The areas to be considered are illustrated in Figure 3.2. In Figure 3.2 (a), the bold 

lines delimit the slots in the stator and rotor and the air-gap region is in grey. In this 

case there is only one layer of elements. Figure 3.2 (b) is a zoom on the air-gap 

elements and iron elements close to the air gap, where, “Fe,i” is the element i in iron 

and “Air,i” is the element i in air. The total stress tensor in (122), is evaluated in those 

nodes only. 

  

(a) (b) 

Figure 3.2: Zoom of the mesh of the air gap of an electrical machine. 
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3.5 Summary 

This chapter dealt with the energy-based magneto-mechanical model, integrated into 

a 2-D finite element analysis, for simulating electrical machines. The model has been 

theoretically presented through a suitable form of the Helmholtz free energy and the 

material constitutive equations have been derived. Additionally, the insertion of the 

electromagnetic stress tensor for elements close to the air gap has been discussed. To 

account for the mass and damping of a structure, the overall system of equations is 

derived following Zienkiewicz (1967). The results from the implementation of the 

finite element method are analysed later, in Chapter 5, where the method is suitably 

verified.  

 In Chapter 4, the parameters for the model are identified and the present and next 

chapter are consequently conjoined. Indeed, the derived Helmholtz free energy is 

straightforwardly established on the measured stress-dependent magnetostrictive and 

single-valued magnetisation curves.  
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Chapter 4   

Measurements and identification of 

magneto-mechanical properties of 

materials  

Inside electrical machines, the magnetic flux density can be either rotating, for 

example in the yoke of the stator, or alternating, in the teeth of the machine. As 

precise local measurements inside these machines are difficult to perform, rotational 

single sheet testers are mostly used to identify the properties of one electrical steel 

sheet and extrapolate the results for larger devices. 

 1-D and 2-D measurements are covered in this chapter through single sheet 

testers. The first one is a modified Epstein frame, the second one, a vertical yoke 

system. The latter one was designed and built for an introductory study of 

magnetostriction at no stress from which uni-axial measurements are compared with 

those from the Epstein frame. From the literature review conducted earlier, many 

uncertainties have been spotted regarding suitable methods for measuring stress and 

strains in electrical steel sheets under applied pre-stresses. 

 Different types of methods are commonly used to measure the effect of 

magnetostriction in electrical steels, among others strain gauges, piezo-electric 

sensors, lasers, and accelerometers. The first two methods are chosen in this work for 

acquiring the magnetostrictive strains resulting from the applied magnetic field and 

stress. 

 The model for magneto-mechanically coupled problems presented previously 

requires parameter identification. Therefore, magnetostriction is measured under 

different pre-stresses and magnetic flux densities on the modified Epstein frame. The 

model in Chapter 3 is identified from the obtained beam of curves. 
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4.1 The modified Epstein frame  

4.1.1 Measurements and data treatment 

The device in Figure 4.1 was built following the IEC 60404-2 standard, and modified 

to apply a mechanical pre-stress to the iron strips (Belahcen, 2004). The square-

shaped frame comprises two types of windings: a primary winding and a secondary 

winding. The first one consists of the feeding coils, and the second one serves to 

acquire the voltage to evaluate the magnetic flux density. Parameters for the setup 

and sample sheets are given in Appendix A. Four load cells are attached to four 

corners of the frame, while the other corners are fixed. The load cells are connected 

by means of screws on the strips to a measuring device that acquires the force that is 

applied. At equilibrium, the strips are magnetically excited and the resulting force is 

acquired with a piezo-electric sensor directly connected to the data acquisition card.  

    

(a) Schematic view and picture of the Epstein frame. 

 

 

(b) Zoom of the piezo-electric sensor. 

1-4: load cells, 5: piezo-electric sensor, 6: feeding coils and B coils,  

7: test samples, 8: PC, 9: force meters, 10: air-flux compensating coil. 

Figure 4.1: Views of the modified Epstein frame. 
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The spring constants of the iron strip, the force transducer, the load cell, and the 

support in Figure 4.2 (a and b) are, respectively, kiron =1.7E+8 N/m, kFT =1E+8 N/m, 

kLC =5E+8 N/m, and ksupport =5E+6 N/m. The constants have been evaluated in 

Belahcen (2004). The piezo-electric force transducer is connected to a charge pre-

amplifier. 

 

  

(a) Lateral schematic view of one limb of the setup, 

where the piezo-electric sensor is put into place. 

1: load cell (actuator), 2: piezo-electric force 

transducer (sensor), 3: sample, 4: support, 5: screws.  

(b) Equivalent representation. 

Figure 4.2: Details of the lateral view of the setup for the calculation of the magnetostrictive 

elongation (Belahcen 2004). 

The piezo-electric force transducer measures the force Fpiezo, parallel to the applied 

magnetic flux in the sample sheets at equilibrium 
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The displacement, lms is the equivalent magnetostrictive elongation resulting from 

the presence of the external magnetic field and pre-stress. The measurements were 

conducted at a supply frequency of 5 Hz.  

 In Figure 4.3 the magnetostrictive hysteresis loops, also called butterfly loops, are 

illustrated before the data treatment. Similar measurements have been observed in 

previous studies, such as in Lundgren (1999). Only the DC component was added, so 

that the loops originate from zero. In fact, the phenomenon of magnetostriction is 

non-linear, testifying to the change of sign that is influenced by the magnetic field 

and pre-stress. Hence, for fitting the data, a single-valued curve is calculated by a 

least-squares procedure from these double-valued strain curves. Figure 4.4 shows the 

corresponding measured hysteresis loops at different pre-stresses, where a region of 

the loop is zoomed to observe the effect better. However, for the range of pre-stresses 

applied, the differences are very small. Examining the measurements in Figure 4.3, it 

could be deduced that magnetostrictive strain varies in a quadratic way with the 

magnetic flux density, omitting the behaviour at saturation (over 1.5 T). The model 
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presented in Chapter 3 accounts for this phenomenon and the importance of each of 

the parameters is discussed in the next section. 

 

Figure 4.3: Measured magnetostriction curves at different values of the applied tensile and 

compressive stress. 

 

Figure 4.4: Hysteresis loops at different values of applied stress. 
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4.1.2 Identification of the parameters 

The measurements were performed on a modified Epstein frame. The calculated 

single-valued curves are presented in Figure 4.5 and Figure 4.6. The experimental 

results are used to identify the model derived in Chapter 3 for a magnetised sample 

under magnetic stress. 

 The Helmholtz free energy function, and hence the constitutive equations, 

depends on the set of five invariants (1, 2, 4, 5, and 6), which depend on the 

magnetic and mechanical fields. The six dimensionless parameters to be identified are 

immerged within the expression of , (124), and M, (125). 
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The parameters are evaluated by fitting the experimental data of magnetisation and 

magnetostriction obtained with the described modified Epstein device. 

 
Figure 4.5: Experimental and fitted average magnetostrictive strains as function of the magnetic flux 

density under compressive (negative sign) and tensile pre-stresses (positive sign). 
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 The identification is performed using the MATLAB® solver for non-linear least-

squares problems. Initial guesses and manual adjustment of the parameters are of 

great help. Table 1 presents the values of the dimensionless parameters of the model 

that were identified from the measurements on the modified Epstein frame.  

 Moreover, the two additional mechanical parameters required for the model are 

the modulus of elasticity E and the Poisson’s coefficient, set to 183 GPa and 0.34 

respectively. These were not obtained experimentally but were assumed to be 

acceptable within this framework. 

 To identify the magnetic material model, the static hysteresis loops were 

measured at different values of pre-stresses (Figure 4.4). Two methods are commonly 

adopted to obtain a single-valued curve (Ivanyi, 1997). The first one is the evaluation 

of the fundamental magnetisation curve. This curve is obtained by connecting the tips 

of the hysteresis loops at different amplitudes of the alternating field. The second 

method involves calculating numerically the average between the ascending and 

descending parts of the hysteresis loop. The latter approach seems appropriate in this 

case, as measurements are performed at 5 Hz. At that frequency, the area of the 

hysteresis loop is small enough for it to be considered that both methods would 

provide similar results. The resulting experimental and fitted curves at zero stress are 

plotted in Figure 4.6. 

 

Figure 4.6: Experimental and fitted single-valued magnetisation curve. 

The estimation of invariant 4 through the polynomial expansion gives an approximate 

description of the single-valued magnetisation curve. The saturating part is fitted 
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approximately correctly; however, the model fails to give a correct approximation of 

the linear part of the single-valued curve. This is due to the fact that this curve is 

approximated by a polynomial. This fitted curve will induce instability in the 

Newton-Raphson method. To circumvent convergence problems within this area, an 

approximated linearisation is thus considered, as in Figure 4.6, for the 

implementation into the finite element code.  

 From the model that is derived, coefficients 0, 1, 2 and 3 are those of a 

polynomial expansion such as defined in Chapter 3. Coefficient 4 characterises the 

effect of magnetostrictive strain saturation when the magnetic saturation is reached. 

Invariant 5 is necessary in order to account for the positive and negative 

magnetostriction in electrical steel. Invariant 6 gives a measure of the distance 

between the maximum of the upper magnetostrictive curve and the minimum of the 

lower magnetostrictive curve, as in Figure 4.7. The estimated parameters for the 

model are reported in Table 1. These results show that the energy-based model 

defined in Chapter 3 is accurate enough to account for the phenomenon of 

magnetostriction. 

 

Figure 4.7: Explanation of the parameters. 

Table 1 Values of the dimensionless parameters identified from the measurements. 

Parameter       

Values -1.99 -1.21·10
-3

 4.09·10
-4

 8.82·10
-5

 -0.38 -0.71 
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4.1.3 Dependence of magnetostriction on the frequency 

The purpose here is to show that magnetostriction is a frequency-dependent 

phenomenon. Measurements were conducted on the described setup at 20 Hz and 50 

Hz and at zero applied stress. At higher supply frequencies, the hysteretic behaviour 

is more dominant, as illustrated in Figure 4.8. However, the average peak-to-peak 

magnetostrictive strain remains constant, regardless of whether the measurements 

were conducted at 5 Hz, 20 Hz, or 50 Hz.  

 The extrapolated single-valued curves for the dependence of the magnetostrictive 

strain as a function of the magnetic flux density are, however, more difficult to obtain 

from measurements at 20 Hz or 50 Hz. This is the reason why the identification of the 

parameters was performed on the set of curves presented in Figure 4.3, which were 

treated simply by taking an average over five measured butterfly curves. 

 

Figure 4.8: Butterfly loops. 

4.2 The vertical yoke system 

As presented in Chapter 2, various setups for a rotational magnetic field in electrical 

steel sheets have been developed over the years. The design within this work was 

pioneered by Bergqvist (1994), modified and adapted by Krah (2004), and again 

rethought in the frame of this research. The experimental setup for acquiring the 2-D 

magnetic flux density and field strength inside an electrical steel sheet is detailed 

first. The measurements of the magnetostrictive curves are then described. 
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4.2.1 Introduction 

In Figure 4.9, the symmetric yoke system is composed of two similar geometries 

superposed onto each other, the upper yoke and the lower yoke. The test electrical 

steel sheet is placed between them. In order to prevent leakage fluxes though 

perpendicular yokes, they were laminated and approximately 50 % of the sheets are 

steel sheets and 50% are a non-magnetic material such as “Mylar” polyester. More 

information regarding this device can be found in Krah (2004) and Fonteyn et al. 

(2008, 2009a). 

 

1: exciting coils, 2: upper yoke, 3: steel sheet, 4: lower yoke. 

Figure 4.9: Design of the vertical yoke system 

The assembled sheets have been impregnated into resin to guarantee the solidity and 

durability of the system. The limbs, which are touching the electrical steel sheets to 

be tested, have been polished to obtain the best possible surface. The upper copper 

windings and the lower copper windings are using almost all the available volume 

between the inner and outer yokes and are fed from a sinusoidal waveform generator.  

 The vertical yoke system in its symmetric and non-symmetric configurations was 

first simulated by means of the MAXWELL® software. The results are discussed in 

Fonteyn et al. (2008). In that research, six simulations were performed with a 

symmetric yoke system and a non-symmetric yoke system. The results were achieved 

as part of the design of the measuring setup to confirm that the configuration and 

geometry of the yoke that are presented bring acceptable results. Figures 4.10 and 

4.11 present the numerical results obtained with the MAXWELL® software when the 

lower yokes were excited.  
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Figure 4.10: Simulated magnetic flux density distribution in the yoke and in the sheet (arrow plot). 

 

 

 

(a) Magnetic flux density in the sheet and in the 

yoke. 

 

(b) B-H curve of the sheet used for the 

simulations from MAXWELL®. 

Figure 4.11: Simulations for the vertical yoke system. 
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 The maximum flux density inside the sheet is nicely uniform only over 

approximately 5% of the total area of the sheet, as shown in Figure 4.11 (a). The 

uniformity of the magnetic flux density in the electrical steel sheet is fundamental not 

only for the positioning of the field sensors, but also for the strain gauges. The single-

valued B-H curve for the steel type of the simulated sheet is as in Figure 4.11 (b). The 

data treatment software used is LabVIEW®. Data are acquired with an NI PCI-7831R 

card from National Instruments, using four analogue inputs for the signals from the 

coils and two analogue outputs for sending the input waveform to the exciting coils. 

The signals from the sensors are sent to the DAQ card, which memorises the input 

and sends it back to the computer. From there, the different analyses are processed. 

 Additional information about the measurement procedures and extended results 

are provided in Alkar (2007), Fonteyn et al. (2008, 2009a), Belkasim (2008), Dlala 

(2008) and Dlala et al. (2009). Additional data for the vertical yoke system are 

presented in Appendix B. 

4.2.2 Dependence of the magnetostriction on the supply frequency. 

The described experimental apparatus was adopted for the measurements of 

magnetostrictive strain resulting from 1-D and 2-D magnetic fields under three 

supply frequencies. A view of this setup is provided in Figure 4.12. 

 Two strain gauges are glued to both sides of the electrical steel sheet in the centre, 

as can be seen in Figure 4.13. The strain gauges were chosen to be as insensitive as 

possible to external magnetic fields varying in the range of the measurements and 

they were connected to a Wheatstone bridge. The change of resistance induced by a 

change of length within the specimen is measured. The temperature effect is 

minimised thanks to a dummy resistance. Strains parallel and perpendicular to the 

magnetic field are acquired.  

 First, 1-D measurements at three different frequencies were obtained at different 

peak magnetic flux densities. Although the study in this work is limited to the single-

valued dependence of magnetostriction on the magnetic field, it seemed essential to 

remember that, like many other physical problems, magnetostriction is a hysteretic 

phenomenon that depends on the supply frequency. Some attempts to account for this 

behaviour in the models have recently been investigated in Hilgert (2008). 
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1: wires for H-coils, 2: wires for B-coils, 3: wires for strain gauge,  

4: bridge connection for the strain gauge, 5: electrical steel sheet. 

Figure 4.12: Vertical yoke system.  

 

1: B-coils, 2: strain gauge.  

Figure 4.13: Schematic view of the setup.  

 

(a) Bpeak= 1.25 T    (b) Bpeak= 1.5 T 

Figure 4.14: Magnetostrictive strain in the direction parallel to the excitation at different frequencies. 
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Figure 4.15: Time-dependent magnetic flux density in the centre of the device and corresponding 

magnetostrictive strains. 

The measurements, over three frequencies (20 Hz, 50 Hz and 100 Hz) are presented 

for constant peak magnetic flux densities of 1.25 T and 1.5 T. Therefore, the 

frequency dependence of the butterfly loops is shown in Figure 4.14.  

 The peak-to-peak magnetostriction has a range of about 6 m. As expected, the 

area of the loop grows with higher frequencies. The time dependence of the measured 

magnetic flux density and magnetostriction is presented in Figure 4.15 for a supply 

frequency of 50 Hz. 

4.2.3 Measurements of dynamic magnetostriction at zero stress under rotating 

field. 

Among others, Enokizono et al. (1990), Pfützner et al. (1996), and Hilgert (2008) 

have discussed the influence of the rotating field on magnetostriction. The term 

“rotational magnetostriction” is defined as “the magnetostrictive behaviour of a soft 

magnetic sheet which is subject to rotational magnetisation, characterised by 

arbitrary rotations of the induction B” (Pfützner et al., 1996). Both the setups and the 

measurements presented here are challenging as regards the topic of the thesis. The 

purpose is to present limitations to the developed model and discuss accuracy in 

measurements. The purpose is to present the limitations of the model that was 

developed and discuss the accuracy of the measurements.  

 Displacements under magnetic loading are directly measured on the electrical 

steel sheet and the magnetic flux density is acquired in the same region. Those results 
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should have a higher precision, regardless of the sensitivity of the strain gauge. 

However, strain gauges are known to be sensitive to external magnetic fields. 

 In Figure 4.16 and Figure 4.17, the measured magnetostriction as a function of 

time under a rotating magnetic flux density is illustrated. Measurements were 

performed under a supply frequency of 50 Hz. The B-coil and the strain gauges 

acquire the signals at exactly the same time. Symmetry is somehow present in the 

butterfly loop measurements in Figure 4.17. Although the field was the same in both 

directions, the butterfly loops are not identical in the x-and y-directions. This is due to 

a possible privilege direction of grain orientation. 

 

Figure 4.16: Measured time-dependent magnetic flux density in the centre of the device and 

corresponding magnetostrictive strains. 

 

Figure 4.17: Butterfly loops. Measured signal (dotted) and filtered signal (plain). 
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Figure 4.18: Measured rotating magnetic flux density in the centre of the sheet. 

 When Bx = By or Bx = -By in Figure 4.16, the corresponding strains reach their 

maximum and minimum values respectively. Under the condition that the 

derivative d dxB t  reaches its maximum over the time period and d d 0yB t   or vice 

versa, both measured x and y are equal to zero. 

  

Figure 4.19: Placements of the strain gauge. 

The deformations in the x-, y- and ‘xy-’ directions are known to be  

 x x   (126) 

 y y   (127) 

  
1

4
xy x y xy        (128) 

The total elongation, e, and contraction,c, are obtained from 
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Within this work, the total elongation as a function of time cannot be known because 

the shear strain, the strain in the xy direction, has not been measured. A schematic 

view of the rotating magnetic flux density and placement of the strain gauge is shown 

in Figure 4.19. 

 The measurements gathered in this section were conducted as critical attempts to 

assess the validity of the work. Notwithstanding the accuracy in the measuring 

methods and setups, the experimental results from both the setups require special 

attention, and thus they are discussed below.  

4.3 Comparisons and discussions 

Comparisons of the results in Section 4.1 and 4.2 are obtained for both cases at zero 

stress under uni-axial magnetisation in the direction of magnetisation, because there 

is no mechanical loading of the sample in the vertical yoke. The advantages and 

drawbacks of the piezo-electric force transducer method are compared to the strain 

gauge method. The advantages and drawbacks of both setups, the modified Epstein 

frame (setup 1) and the vertical yoke system (setup 2), are also discussed.  

 The measurements at supply frequencies of 20 Hz and 50 Hz and after the 

filtering process are illustrated in Figure 4.20. The positioning of the curves with 

respect to each other is random, as the differences needed to be stressed out at best. 

The measurements from the Epstein frame are 10 times smaller than the results from 

the vertical yoke system for both cases. The magnetostrictive strain from the Epstein 

frame has been magnified for a better comparative view.  

 In the case of setup 2, the internal strains on one sheet only were considered. The 

placement of the strain gauge in the centre of the sample covers a wide range of 

magnetic domains, as its diameter is 0.5 mm. The first and main reason for the 

anticipated overestimation of the strain gauges is their sensitivity to external magnetic 

fields. Another drawback of the vertical yoke system is the pressure introduced when 

the magnetic circuit is closed by pressing the upper yoke onto the plate. The sheet is 

then unable to move totally freely, although a tiny air gap is naturally present because 

of the roughness of the yoke limbs. The same problem is present in setup 1 because 

the screws and the support, although freed from any loading, produce pressure on the 

stack of samples. The repeatability of the measurements for setup 1 is challenging. 



 

 

76 

The four screws should be manually adjusted before each measurement. The load 

cells have to be calibrated and zero stress is difficult to achieve.  

 

Figure 4.20: Comparison of the two measurement techniques. 

 Recently, Somkun et al. (2010) measured rotational magnetostriction in non-

oriented electrical steels. Their experimental results showed that the peak-to-peak 

magnetostriction at 50 Hz, with a circular magnetic field of peak value, 1.3 T equals 

approximately 10 m/m. The area of the butterfly loop was, however, smaller, which 

leads us to suppose that the material that was studied was different.   

 Regarding the acceptability of the strain gauge method, identical measurements 

presented in Hilgert (2008) and Ghalamestani (2010) concluded that the strain gauge 

method seems to lead to higher magnetostrictive strains compared to the dual 

heterodyne laser interferometers. The authors measured the displacements on a 

vertical single sheet tester.  

4.4 Summary 

The results presented in this chapter are essential for the investigation of magneto-

mechanical properties in electrical steel sheets. Two measuring devices have been 

presented: a vertical rotational single sheet tester and a modified Epstein frame. The 

first one provided an insight into the study of the internal stresses induced by a 2-D 

magnetisation of electrical steel. The theoretical model was compared with the 

measurements. Taking into account external noise problems and the inadequate 
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magnetic insulation of the strain gauges, the results were satisfactory at zero stress. 

The coupled model defined in Chapter 3 was identified from the same electrical steel 

sheets as will be used later on to build a test device. The comparison of the 

measurements from the two different types of devices at zero stress and the 

discussion of similar results obtained from previous researchers establish that it is the 

measuring technique, and not the measurement setup, that causes a large difference in 

the magnetostrictive strain. However, the results from the strain gauge technique are 

relatively too high. 

 Reducing the phenomena of magnetostriction to a single-valued curve is 

acceptable. The general behaviour is a good approximation within the present 

research work. Nevertheless, some extra measurements are presented to depict the 

full idea of the phenomena and suggest possible further investigations.  

 This comparative study obviously necessitates a deeper investigation of the 

measurement techniques of magnetostriction, measurement setups and their 

standardization. These measurements show the difficulties arising when modelling 

the magnetostrictive effect in electrical steel sheets.  

 



 

 

78 

Chapter 5  

Verification and analysis of the coupled 

model  

This chapter presents the verification and results of the developed model. In the past, 

very few test devices accounting for the phenomenon of magnetostriction have been 

proposed. Models may be verified on the RSST or SST, but, as the parameters for the 

models have been identified on those, the use of the same setup for verification is not 

acceptable.  

 First, the different steps from the design to the final building of a test device for 

the verification part are illustrated. The aim is to observe the displacements of the 

outer boundary of the machine under a rotating magnetic field. The measured values 

are therefore compared with the simulated ones and discussed. Second, as shown in 

Section 3.3, a discussion based on experimental results on a test asynchronous 

machine is provided to account for the displacements originating from the penetration 

of the magnetic flux into the air gap of electrical machines. Third, simulated results 

from two rotating electrical machines are approached. Finally, the dynamic model, 

including damping and mass effects is studied briefly. 

5.1 Verification with a test device 

This section provides the different steps from the design to the final constructed test 

device. The aim is to focus on the measurements of the displacements of the machine 

outer boundary under a rotating magnetic field. Test devices for the same purpose 

have been developed earlier. Låftmann (1995) worked with a wound hollow cylinder 

made of electrical steel sheets. This stator had the disadvantage of taking into account 

all the forces, including the ones caused by possible leakage fluxes penetrating from 

one tooth to another one. Later, Cester (2002), together with Belahcen (2004), built a 

plain device that offered promising results, even though the magnetic flux density 
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was not well distributed over the geometry. Here the design and measurement results 

from an enhanced version of the latter device are presented. 

 In the present study, the design offers a homogeneous magnetic flux density in 

the 2-D cross-section. Results from the measurements and simulations are discussed.  

More details can be found in Appendix C, Pyhäranta (2009), and Fonteyn (2009). 

5.1.1 Structure of the new device 

In electrical machines the forces acting on the boundaries between the rotor and the 

stator are the reluctance forces. Made of non-oriented Fe-Si discs piled onto each 

other, this device has no air gap through so that only the deformations resulting from 

magnetostriction and the electromagnetic stress tensor in iron are observed. Slots 

were laser-cut at a suitable distance from the centre of the sheets beforehand. The 

sheets were transposed, or more precisely rotated by an angle equal to one over the 

total number of slots, in order to prevent anisotropy and remove the preferred 

direction of magnetisation, also known as the rolling and transverse directions. 

  

(a) Side view of the device.  

1: windings, 2: search coils, 3: accelerometers,  

4: connecting box, 5: wooden support,  

6: vibration absorption plate. 

(b) Positioning of the reference 

accelerometer and sensing coils.  

1: windings, 2: search coils,  

3: reference accelerometer. 

Figure 5.1: Test device ready for measurements. 

 To assist the design stage, numerical simulations were conducted to obtain a 

uniform magnetic flux density in the centre, as well as in the yoke of the machine. 

These helped in the adjustment of the position of the slots. The shape of the slots is 

small in order to avoid unnecessary left-over air, but large enough to insert the 

windings, which were insulated beforehand. Additionally to these, search coils for 

measuring the magnetic flux densities were squeezed into the slots. Five of these 
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were wound around the iron in the central part, as well as on the yoke and the teeth. 

The resistance of the phase windings is similar for three phases. Figure 5.1 (a and b) 

shows the final apparatus, welded and ready for measurements. As can be seen in this 

figure, the device is separated from its wooden support by a rubber plate in order to 

absorb the external vibrations. A fan is used to cool down the structure after each set 

of measurements. Eight accelerometers, in addition to the reference accelerometer, 

are placed on the outer boundary of the device. The reference accelerometer (Ref.), 

positioned in the central part, as shown in Figure 5.2, is necessary in order to get the 

relative displacement of each sensor with respect to it.  

 
Figure 5.2: Schematic view of the placement of the accelerometers. 

5.1.2 Experimental results 

A setup as in Figure 5.3 is introduced for measuring these displacements at a supply 

frequency of 50 Hz. A root mean square value of magnetic flux density varying from 

0.2 T to 1.1 T is reached in the centre of the device.  The accelerometers are 

connected to their control unit. They are fixed using insulated magnets for better 

accuracy in the results on the outer surface. Those magnets do not have an influence 

on the results; they just serve as a support for the accelerometers. The input line 

current and voltage are measured with a power analyser. The input voltage is 

controlled in order to obtain the desired magnetic flux density in the central part. 

 

Figure 5.3: Experimental setup. 
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Case 1, measured for B = 0.4 T. 

 

Case 2, measured for B = 1.1 T. 

Figure 5.4: Measured radial displacements; each dataset represents the displacement from one 

accelerometer, results at 50 Hz. 
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 Displacements from the eight accelerometers are shown in Figure 5.4 for two 

different input voltages. In the first case, “Case 1”, the peak value of the magnetic 

flux density in the centre of the device is 0.4 T. The measured line voltage and line 

current are 85 V and 0.9 A. In Case 2 the peak value of the magnetic flux density is 1 

T. The measured line voltage and line current are 162 V and 17 A. The results are 

discussed below.  

 In Case 1, the radial displacements vary from 0.018 m up to 0.038 m. In Case 

2, the peak-to-peak displacements vary from 0.035 m up to 0.17 m. Four out of the 

eight sensors measured displacements from 0.055 m to 0.078 m. The results show 

a difference between the different sensors. Indeed, in an ideal symmetric case, i.e. a 

symmetric magnetic field, perfect windings, perfectly stacked sheets, and no 

preferred direction of magnetisation in the sheets, there would probably not have 

been such differences. The measured voltages in the perpendicular coils in the centre 

of the device are illustrated in Figure 5.5. As can be seen from the rectangular shape 

in this figure, the material starts to saturate in “Case 2”, while in “Case 1” the 

magnetic flux density is still sinusoidal. 

 

Figure 5.5: Voltage measured in the perpendicular coils in the centre of the device. 

On the basis of these measurements, the following observations are pointed out. 

(1) The device is placed on a wooden structure, which creates the possibility that 

damping may increase. Moreover, the asymmetric positioning of the machine 

can certainly lead to greater stiffness in one direction than in the other one. 

(2) The core is loose because of the lack of axial compression and thus high 

structural damping is evident. The hammer test method was used to get the 
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fundamental frequency of the structure. However, clear results were difficult 

to get because of this high damping. 

(3) The sensors are attached to the boundary with specially insulated magnets. 

Hence two problems arise. First, the influence of the external magnetic field 

on the accelerometers should in theory be weak; anyhow, the measuring 

accuracy of these is known to be influenced by external magnetic fields. In 

particular, the reference accelerometer was positioned in the centre of the 

device, where the magnetic flux density is the highest. This leads us to the 

next point. 

 

Figure 5.6: Differences between the eight sensors.  

(4) Comparisons between the measurements in Case 1 and Case 2 show that the 

outputs of the sensors vary randomly with the magnetic flux density. For this 

reason, the measurements were performed at magnetic flux densities in the 

centre of the device from 0.2 T to 1.1 T with steps of 0.2 T. These results, for 

a supply frequency of 50 Hz, are illustrated in Figure 5.6. The radial 

displacements are the peak-to-peak values. From these, it can be established 

that there is no single sensor that acquires higher displacements than all the 

others for each value of B. The differences between the measurements are 

ostensibly large over 0.8 T.  Besides in most cases the radial displacement 

logically increases with an increasing input B. Considering one value of B, 

higher than 0.2 T, the minimum measured point is always approximately two 

to four times lower than the maximum one. For this specific reason, a clear 

dependency on the accuracy cannot be directly deduced. 
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In the next section, the computed results are compared with the measured ones. 

Conclusions on these results will be drawn, with the previous discussions being kept 

in mind. 

5.1.3 Computed results and discussion 

Simulations with a 50 Hz sinusoidal supply of 160 V and 280 V are performed 

(Figure 5.7). One period of the magnetic flux density is 20 ms, so that 2.5 periods are 

presented. As shown in Figure 5.7, the peak-to-peak radial displacement of one node 

on the outer boundary for Case 1 is 0.02 m, and for Case 2, it is 0.038 m. If the 

magnetic flux density is 2.5 times larger, correspondingly the displacements 

experience an increase by a factor of 1.9. The fundamental harmonic in Figure 5.7 is 

100 Hz, which is twice the supply frequency.  The parameters for the model are those 

identified from the beam of curves in Figure 4.5, on the same type of material as the 

sheets of the device. 

 Figure 5.8 (a) shows the mesh of the test device at zero magnetic flux density. 

The mesh is prepared with COMSOL® and exported into the finite element software, 

which contains the coupled model. Figure 5.8 (b) presents the same mesh at a specific 

time step that corresponds to the magnetic flux density distribution in Figure 5.9. At 

this point it should be noticed that the displacements are always calculated from the 

original mesh. Since the displacements are small enough (less than 10 m), this 

hypothesis is acceptable. 

 

Figure 5.7: Simulated displacements of one node on the outer boundary. 
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(a) Non-deformed case. (b) Deformed case. Scale X 20000. 

Figure 5.8: Mesh of the test device, 5604 nodes, 11064 first-order elements. 

 

 Figure 5.9: Simulated magnetic flux density distribution in the test device. 

On the basis of these figures, it is clear that the structure tends to expand under the 

magnetic loading, especially in its centre. The computed results, compared with the 

experimental ones, are presented in Figure 5.10. They reveal the following points. 

(1) For Case 1, the sensors measure peak-to-peak radial displacements between 

0.03 m and 0.015 m. The simulations predict the value as being 0.019 m. 

For this case, the computed results are within the same range as the measured 

values. 



 

 

86 

(2) For Case 2, the sensors measured a peak-to-peak radial displacement between 

0.175 m and 0.025 m. The simulations predict the value as being 0.039 

m. The computed results are within the same range as the measured ones. 

However, they are much closer to the lower limit. 

(3) The measured displacements in the axial or z-direction were the highest ones. 

They were not presented here because they are not supposed to be due to 

magnetostriction. However, they might have a slight effect on the high values 

obtained by some sensors in both cases.  

 

Figure 5.10: Comparison between the measured values and simulated ones. 

The results displayed here are compared to previous work. Indeed, Låftman (1994) 

assessed displacements as ranging from 0.2 to 0.35 m under a frequency of 50 Hz 

and a magnetic flux density in the yoke of 1.5 T. The measurements were conducted 

on a hollow machine. These values are 10 times higher than those presented above. 

Belahcen (2004) observed, at 50 Hz and 1 T displacements of 0.04 m. In both cases, 

the measurements were performed by acquiring the velocity with a laser, and in both 

cases there was no information about the material type of the electrical steel. 

5.2 Verification with an asynchronous machine 

The method presented in Chapter 3, Section 3.4 accounts for the Maxwell stress in 

air. In this section, results from measurements and simulations are compared.  
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 First, a simple case geometry is examined and the computed results using the 

coupled method are compared with those from commercial software. The second 

verification method consisted in running an asynchronous machine at locked rotor 

operation. This test machine has been built by Hirvonen (1983) in the Unit of 

Electromechanics of the Helsinki University of Technology. Its geometry and the 

absence of a stator outer frame allow placing sensors on the outer boundary, between 

the windings to measure the displacements.  

5.2.1 Implementation of the method to a simple square geometry 

In this section, electrical steel with an air gap is simulated as an example. In Chapter 

3, the approach, albeit not traditional, in the present work has been justified. It is 

known that the stress acting on the air-iron boundary deforms the most the structure. 

Although, the resulting reluctance forces acting on the air-iron boundary have been 

primarily considered in the literature, the major aim in this subsection is to validate 

numerically on a simple case the implementation of the developed model in iron and 

the importance of the Maxwell stress at the boundary. This sample geometry is a way 

of assessing whether the numerical method that was developed can be used for larger 

geometries. Consequently, it will be extended later in this chapter to the case of 

electrical machines. 

 The dimensions of the square sample are 0.6 m x 0.6 m and the air gap is 0.6 m 

long and 0.05 m wide. For the sake of simplicity the outer boundaries of the test 

sample cannot deform. Only the region close to the air gap can experience a 

displacement. In all the simulations a constant magnetic flux density of 2 T is applied 

to the whole geometry, in the y-direction in Figure 5.11 (a, c, and e) and in the x-

direction in Figure 5.11 (b, d, and f). As expected, the displacements in Figure 5.11 

(a, c, and e) and in Figure 5.11 (b, d, and f) are of opposite signs. Results for those 

simulations are divided into three parts.  

 In the first case the coupled magneto-mechanical model defined in Equations (69) 

and (70) was taken into account in iron It should be noticed that this case is not 

physically acceptable. However, these results enable the understanding of the 

influence of the magnetostriction and electromagnetic stress tensor inside iron. In the 

second case, the simulations shown in Figure 5.11 (c and d) take the electromagnetic 

stress tensor in the elements in air into account. All four of these simulations are 

performed within the finite element software where the model is implemented. In the 

third and last case, the geometry is exported into COMSOL and analysed within the 

software.  
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(a) (b) 

 

(c) (d) 

 

(e)  (f) 

Figure 5.11: Deformed meshes of the test geometries, scale X 10
5
 and X 2·10

5
. 
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All the external boundaries are fixed mechanically and the magnetic boundary 

conditions are set in the same fashion so as to reproduce those in the previous 

simulations. A distributed load is added at the iron-air boundary that is equal to the 

electromagnetic stress tensor evaluated in air. This is calculated in the post-

processing. The scales are similar to those in Figure 5.11 (c, d, e, and f). 

 As anticipated, Figure 5.11 (a and b) depicts a smaller displacement than Figure 

5.11 (c, d, e, and f). The configuration in Figure 5.11 (d and f) resembles that of a 

stator and rotor boundary of an electrical machine in the sense that the magnetic flux 

lines traverse the air gap perpendicularly, omitting, by hypothesis, all kinds of 

fringing or flux leakages.  

5.2.2 Experimental results for the machine 

The device in 1: rotor, 2: stator, 3: windings, 4: search coils, 5: supporting grips. 

Figure 5.12 is an asynchronous machine, where only the stator has been wound. The 

machine is directly fed with a sinusoidal voltage from the grid and fixed to a support 

frame by six grips. The windings were connected in a star. The dimensions of the 

machine and the mesh used later for the finite element computation are presented in 

Appendix D. More information regarding the design and building of the device is 

provided by Hirvonen (1983). 

 

1: rotor, 2: stator, 3: windings, 4: search coils, 5: supporting grips. 

Figure 5.12: Side view of the machine.  

The measurements are run in a similar way as in the previous section. The outer stator 

boundary of the machine is more difficult to access because of the windings, and so 
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only three accelerometers are positioned. The magnetic flux density is acquired 

thanks to search coils around the stator yoke and on the teeth. The rotor is kept locked 

during the measurements because of a noticeable eccentricity in the air gap. The 

simulations will not take any eccentricity into account. Measurements were 

conducted at 100 Hz. Indeed, the accelerometers appeared to be sensitive to the 

disturbance from external magnetic flux density at a supply frequency of 50 Hz. The 

input frequencies, currents, and voltages are provided in Table 2. There, the peak 

magnetic flux density in the stator yoke is given as a reference. The three measured 

magnetic flux densities as functions of time are plotted in Figure 5.13. 

 

Figure 5.13: Measured magnetic flux density in the yoke. 

In Figure 5.14, measurements at 100 Hz are presented in the radial and tangential 

directions for each measurement configuration (Meas. 1, 2, and 3).  

 The peak-to-peak radial displacements vary in Meas. 1 from 0.025 to 0.055 m, 

in Meas. 2 from 0.05 to 0.065 m, and in Meas. 3 from 0.06 to 0.088m. On the 

other hand, the tangential displacements are higher. In Meas. 1 they vary from 0.04 to 

0.075 m, in Meas. 2 from 0.06 to 0.1 m, and in Meas. 3 from 0.05 to 0.1 m. The 

latter two results are very close to each other, for no significant understandable 

reason.   

 In general, the radial displacements seem to depend on the position of the 

accelerometer on the stator. It is highly likely that the windings, wound like in a 

toroïd, induce extra stresses and thus higher frequencies in the displacements. The 

rotor, for instance, is not placed perfectly symmetrically. The experimental results 

indicate that the displacements resulting from the magnetic stresses in the stator of an 

asynchronous machine are close to 0.1 m on the outer boundary of the stator for 
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higher magnetic flux densities. Extra measurements could be conducted by putting 

special accelerometers or strain gauges on the inner boundary of the stator. This kind 

of setup could help in acquiring the acceleration of a region on the stator tooth.  

 In the next section, the displacements of the stator teeth as predicted by the model 

are depicted. However, no certainty about those can be established, as discussed 

above. 

Table 2: Inputs for the measurements. 

 Frequency [Hz] Line current [A] Line voltage [V] Bpeak in yoke [T] 

Meas. 1 100 29 100 0.37 

Meas. 2 

Meas. 3 

100 

100 

45 

53 

150 

185 

0.57 

0.75 

 

  

Meas. 1 (a) Meas. 1 (b) 

  

Meas. 2 (a) Meas. 2 (b) 

  

Meas. 3 (a) Meas. 3 (b) 

Figure 5.14: Measured displacements of three sensors. 
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5.2.3 Computed results and discussion 

The computed results use the values from Table 3 as inputs. The number of time steps 

per period is 800, and 3 periods are simulated. Regarding the speed of the calculation, 

it took approximately 2 hours, with a PC to simulate in this specific case the first-

order element geometry. This is fairly acceptable on an industrial level, but for the 

purpose of the study, it is considered to be more than fine. The results are gathered in 

Figure 5.15. The corresponding radial and tangential displacements are denoted as 

Simu. 1 (a) (simulation 1) and Simu. 1 (b). The corresponding input values of Simu. 1 

are gathered in Table 3. The outer stator boundary is free to move in the radial and 

tangential directions, except for six regions that are holding the structure, as shown in 

Figure 5.16 (a). In practice, for the computation, selected nodes and elements close to 

the marked black dots in Figure 5.16 (a) are chosen to be fixed. Figure 5.16 (b) offers 

a zoom of one quarter of the structure, in the normal and deformed cases. The arrows 

illustrate the direction of the displacements and their magnitude with respect to each 

other. The rotor is free to move, except for its shaft, as it is fixed. Figure 5.16 (c and 

d) show the magnetic flux density distribution in the 2-D cross section of the 

machine, in the whole machine, and in one quarter of the machine. 

 The radial displacements of three nodes on the outer boundary are plotted. The 

displacements are five times higher in the second case. The displacements of one 

stator tooth are analysed in Figure 5.17. The results from this latter figure, as well as 

from Figure 5.16 (a and b), show that the structure is pushed towards the air gap. 

Displacements in the teeth have a significant value, which lies between 50% and 

67%, higher than those on the outer boundary. The tangential displacements are high 

too.  

 In the radial direction the computed values are slightly different from the 

measured ones but remain within the range of the measurements. In the simulations, 

the shape of the stator slots was deduced approximately since these data could not be 

found from Hirvonen (1983). Further, the rotor was locked during the measurements. 

Rotating it would have required complicated adjustments because of the condition of 

the machine. These anomalies in the measurements can probably be accounted for by 

errors in the correct data of the electrical machine. Moreover, there is a strong 

possibility that the properties of the electrical steel sheets in the verification induction 

machine are different from those identified. However, as will be discussed later, these 

parameters remain within a similar range because there is a reasonable match 

between the results from the computations and those from the measurements. 

Nevertheless, for a strict scientific approach, the model should be identified with the 

parameters from the same electrical steel sheets as the one used in the machine. 
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Table 3: Inputs for the simulations. 

 Frequency [Hz] Line current [A] Line voltage [V] 

Simu. 1 100 36 100 

Simu. 2 

Simu. 3 

100 

100 

52 

66 

150 

185 

 

  

Simu. 1 (a) Simu. 1 (b) 

  

Simu. 2 (a) Simu. 2 (b) 

  

Simu. 3 (a) Simu. 3 (b) 

Figure 5.15: Simulated displacements of three sensors. 

 



 

 

94 

 

 

 

(a) Deformed stator geometry, when the 

electromagnetic stress tensor in air is taken into 

account. 

 

(b) Zoom (X 10
4
) of the teeth of the stator.  

 

 
 
 
 

 

 

Vline = 150 V, whole machine. Vline = 100 V, one quarter of the machine. 

(c) Magnetic flux density distribution. 

Figure 5.16: Simulated results. 
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Figure 5.17: Radial and tangential displacements of one node on the stator tooth. 

For better comparison, the collected peak-to-peak values of the displacements in the 

radial and tangential directions are presented in Figure 5.18. The maximum and 

minimum over all the accelerometers and the simulated results are remarkably good 

in the radial direction. However in the tangential direction, the model overestimates 

the displacements in 2 and 3. In 1, the results are fairly acceptable. 

 

Figure 5.18: Measurements and simulated results compared for each of the three measurements. 

Figure 5.19 and Figure 5.17 serve as an introduction to Section 5.3, where the 

influence of the electromagnetic stress tensor in air and the displacements of the teeth 
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will be studied thoroughly. From the geometry in Figure 5.19, the deformed shape is 

clearly different from the one in Figure 5.16 (a). 

 

Figure 5.19: Deformed stator geometry when the electromagnetic stress tensor in air is not taken into 

account. 

5.3 Analysis of the energy-based model 

The magneto-mechanical coupled methods described in Chapter 3 and later 

generalised by taking the electromagnetic stress tensor in air into account were 

applied to a simple square geometry with an air gap, as well as to two different 

electrical machines. On the basis of the previous results from Section 5.1 and 5.2, the 

model is assumed to be acceptable for the study. The results of the deformation of the 

structures are presented in the following sub-sections.  

5.3.1 Introduction 

Here, the numerical problem discussed in Chapter 3 is solved in the finite element 

software and analysed. As previously stated, the model requires parameter 

identification, and thus knowledge of the material properties. For the simulated 

machines, these data are unavailable. For this reason, the parameters presented in the 

table below are used as a hypothesis, as these parameters are valid only for one type 

of material.  
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 The necessary parameters, () for the model were identified from 

unidirectional magnetostrictive stress measurements from the modified Epstein frame 

on the samples used in Belahcen (2004) as presented in Chapter 4. The difference 

between Figure 4.5 and Figure 5.20 lies in the type of electrical steel sheet and thus 

the magnetostrictive strain response for those. 

 

Figure 5.20: Magnetostrictive curves at different stress states. 

 The measured magnetostrictive strain that was obtained and the corresponding 

results from the model for both cases of compressive and tensile mechanical pre-

stresses are presented in Figure 5.20. The best-fitted curve corresponds to no 

mechanical pre-stress. The parameters gathered in Table 4 used are those identified 

from the beam of curves in Figure 5.20.   

Table 4: Values of the dimensionless parameters identified from the Epstein frame. 

Parameter       

Values -0.9994 -1.2·10
-3

 4.0857·10
-4

 8.8242·10
-5

 -0.028 -0.052 

 The following results are intended to present an approximate idea of what the 

solution might look like if the material characteristics were correctly identified. 

However, the discussion will be based on relative and not quantitative values of 

displacements. 
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5.3.2 Application to two- and four-pole electrical machines 

This section concentrates on the effects of the different terms within the model. 

Efficient computation is possible because the 2-D magnetic field and displacement 

are solved simultaneously and the different single-valued stress-dependent 

magnetisation curves do not need to be evaluated one by one. Furthermore, the actual 

influence of the electromagnetic stress within iron cores is studied. The simulated 

machines attest to the acceptability of the model for a 2-D mesh of a rotating 

electrical machine.  

 

Machine I 

 

Machine II 

Figure 5.21: Simulated flux density distribution. 
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 The coupled model was applied in the case of two asynchronous machines. Both 

test motors are squirrel-cage induction motors. The first one, referred to as “Machine 

I”, is a 30-kW machine with two stator poles, and the second one, referred to as 

“Machine II”, is a 15-kW machine with four stator poles. Appendix D provides 

detailed data for these machines. The reason for choosing these machines is mainly 

the different numbers of pole pairs and slots in the stator and rotor in order to study 

whether the model can predict displacements in both cases. 

 Six simulations are performed, each of them in a steady state. An initial magnetic 

state for the time-stepping analysis is computed from the results of a time-harmonic 

formulation. This enables the behaviour of the machine to be simulated away from 

any transient phenomena. The machines are supplied with a sinusoidal voltage at the 

rated values. The first set of simulations involves analysing the influence of the 

elastic stress tensor and magnetostriction only on the displacements of the structure. 

The second set of simulations accounts for the previous terms and for the 

electromagnetic stress in iron. The third set takes into account the influence of the 

electromagnetic stress tensor in air. Magnetic flux-density distributions at an 

arbitrary time step are shown in Figure 5.21. The corresponding original and 

displaced 2-D stator and rotor geometries are presented in the following pages, in 

Figures 5.22, 5.24, 5.26, and 5.28. The differences between the last four figures are 

specifically discussed below.  

 As described in the previous sections, the boundary conditions are set to be such 

that the outer boundary of the machine is fixed in the tangential direction but free to 

move in the radial direction. Furthermore, the shaft is fixed in both directions in order 

to fix the boundaries on the rotor. Another assumption is that the welding of the outer 

boundary of the machine is not taken into account in the simulations, but its influence 

is assumed to be small.  

 As explained above, the displacements of each node of the mesh are known at 

every time step, thanks to the numerical method that was developed. The results 

indicate that the magnetostrictive effect is attenuated by the contribution of the 

electromagnetic stress within the simulated electrical steel sheet, as in Figures 5.23 

and 5.27. According to Figures 5.23, 5.25, 5.27, and 5.29, the contribution of 

magnetostriction and magnetic stress in iron tends to expand the shape of the 

machine. The radial and tangential displacements when the electromagnetic stress 

tensor in iron is taken into account (or not) are now discussed. The general 

observation is that the addition of electromagnetic stress to the computation slightly 

reduces the peak-to-peak amplitudes of the displacements. However, the DC 

component is reduced by 20% for Machine I and by 25% for Machine II. The ripples 

in the displacements are more dominant for Machine II. Radial displacements in 



 

 

100 

Machine II are higher than in Machine I because the magnetic flux density is higher. 

The effect of the electromagnetic stress is small with respect to the deformations 

resulting from the magnetostriction. The tangential displacements are three times 

smaller than the radial displacements on the tooth of the stator. 

 On the other hand, the inclusion of the electromagnetic stress tensor in air into the 

computation has a considerable influence on the displacements of the stator and the 

rotor. Figures 5.25 and 5.29 suggest that the displacements are increased 2.5 to 4 

times, depending on the number of pole pairs and the magnitude of the magnetic flux 

density. The deformations resulting from the addition of this stress to the computation 

are shown in Figures 5.24 and 5.26 for both machines. 

 Finally, one node in the centre of the stator tooth is studied in Figures 5.25 (a) and 

5.29 (a). When compared to the displacements on the outer boundary – Figures 5.25 

(b) and 5.29 (b) – it can be established that the displacements on the teeth in the radial 

direction have a higher amplitude than the ones on the outer boundary of the stator. 

The displacements in the tangential directions are also relatively high, as the peak-to-

peak displacements range from 0.4 to 1.2 m. These results are plotted in Figures 

5.25 (c) and 5.29 (c). 

 

According to the computed results the following conclusions are established. 

(1) On the basis of the knowledge of the parameters of the material, the model is 

suitable for predicting the displacements in a radial-flux rotating electrical 

machine. 

(2) The displacements, when accounting for the Maxwell stress tensor in air, are 

significantly high. In Machine II, the outer boundary of the stator undergoes a 

displacement of 0.5 m peak-to-peak.  

(3) The model can predict tangential displacements.  

(4) Displacements on the stator teeth are 15% higher than those on the outer 

boundary of the stator. For small air gaps, for example 1 mm, as a result of 

these deformations, the rotor and the stator come closer by 0.2%. 

(5) As an extrapolation, sudden changes in the magnetic flux density can be 

detected numerically. 

(6) There is a need for measurements of the acceleration, and hence the 

displacements of the outer boundary of rotating electrical machines, for the 

verification of the method. Even better, the measurements of those on the 

teeth of such machines could create even greater trust in this method. 
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Figure 5.22: Machine I: Deformation of stator (left) and rotor (right), the electromagnetic stress tensor 

in the air gap is not taken into account. 

 

Figure 5.23: Machine I: Displacements in radial and tangential directions as function of time of a node 

on the tooth of the stator of Machine I. Subscripts r and  stand for the radial and tangential directions, 

respectively. Number 1 refers to the case when only magnetostriction is considered. Number 2 is the 

case when both magnetostriction and the electromagnetic stress tensor are used in the simulations. 
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 Figure 5.24: Machine I: Deformation of stator (left) and rotor (right); the electromagnetic stress tensor 

in the air gap is taken into account. 

  

(a) Tooth of the stator, radial direction. (b) Outer boundary of the stator, radial direction. 

 

(c) Tooth of the stator, tangential direction. 

Figure 5.25: Machine I: Comparison of the radial and tangential displacements of a single node when 

the stress tensor is not taken into account in air (dotted red) and when the stress tensor is taken into 

account (plain blue). 
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Figure 5.26: Machine II: Deformation of the stator (left) and of the rotor (right) when the 

electromagnetic stress tensor in the air gap is not taken into account. 

 

 

 Figure 5.27: Machine II: Displacements in radial and tangential directions as function of time of a 

node on the tooth of the stator of Machine II. Subscripts r and  stand for the radial and tangential 

directions respectively. Number 1 refers to the case when only magnetostriction is considered. Number 

2 is the case when both magnetostriction and electromagnetic stress in iron are considered. 



 

 

104 

 

Figure 5.28: Machine II: Deformation of the stator (left) and of the rotor (right) when the 

electromagnetic stress tensor in the air gap is taken into account. 

 

(a) Tooth of the stator, radial direction. (b) Outer boundary of the stator, radial direction 

 

(c) Tooth of the stator, tangential direction.  

 Figure 5.29: Machine II: Comparison of the radial and tangential displacements of a single node when 

the stress tensor in air is not taken into account in air (dotted red) and when the stress tensor is taken 

into account (plain blue). 
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5.3.3 Simple study for the dynamic case 

It was not the main concern of this thesis to study the dynamic case in detail. So the 

method is presented for a simple embedded beam made of electrical steel, such as 

that shown in Figure 5.30.  

 The dynamic case was implemented in the finite element software. For this 

reason, a beam under magnetic and mechanical loading is presented, so as to assess 

not only the validity of the implementation but also the influence of the model on the 

dynamic behaviour. 

 

Figure 5.30: Embedded beam structure: general view, d1=30 cm, d2 = 2mm. 

The recurrence schemes are a subject of interest by themselves and attract a lot of 

attention. Here, the backward recurrence scheme is chosen, as discussed in Chapter 3, 

because of its stability, even if it is known to be intrinsically damped numerically. 

This challenging numerical problem is beyond the scope of this work but has been 

addressed, for instance, in Zienkiewicz (1967) and Bathe (1996). It is, however, 

known that to apply the dynamic case a certain time step, which is very small, should 

be used as an input.   

 

Figure 5.31: Comparison of the damped and “undamped” case, mechanical force only. 
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The theory predicts that when no magnetic field is applied, and no damping is 

present, the system should behave as a permanent oscillator. However, there is 

numerical damping as can be seen in Figure 5.31 in the “Undamped” case. When the 

damping matrix is included, the system behaves as in the “Damped” case. In this 

figure, the displacements of node nb from Figure 5.30 are presented. For a better 

understanding of the phenomenon, in Figure 5.32 (2), a force impulse is applied at 

one time step only. 

 

 

 

 

 

(1) Initial mesh. 

 

(2) Force is applied. 

 

(3) Force has been released, 

deformation of the beam. 

Temporary state 1. 

 

(4) Temporary state 2. 

 

 

 

(5) Temporary state 3. 

 

 

(6) Back to original position. 

Temporary state 4. 

 

(7) Temporary state 5. 

 

 

(8) Temporary state 6. 

 

 

(9) Temporary state 7. 

 

 

(10) Temporary state 8. 

 

 

(11) Back to original position. 

Temporary state 9. 

Figure 5.32: Embedded beam structure when an external mechanical force is applied. 



 

 

107 

A constant magnetic flux density of 2 T was applied to the structure, as shown in 

Figure 5.30, at all time steps. The force was input in the same way as in the previous 

study. The displacements of four nodes, na, nb, nc, and nd, in the x- and y-directions 

are illustrated in Figure 5.33. No damping was considered. On one hand, u1 and v1 

correspond to the displacements when no external field is applied; on the other hand 

u2 and v2 suit the displacements when the external field is applied. From these results, 

the following can be concluded: the displacements of node na are not influenced by 

the magnetic field; the displacements of node nb in the direction of the magnetic field, 

i.e. the y-direction, have their average pulled down by 1m. When approaching the 

region where the beam is embedded, nodes nc and, especially, nd have their DC 

components shifted in the direction of the field being applied. Except for this 

observation, the shape of the displacements is similar and seems not to experience 

more numerical damping. 

  

(node na) (node nb) 

  

(node nc) (node nd) 

Figure 5.33: Displacements of four nodes in the structure as a function of time, B applied. 
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5.4 Summary 

In this chapter, a manifest proof is addressed concerning the fact that the magneto-

mechanical coupled model, presented and implemented into a finite element code, is 

suitable for the computation of displacements in electrical machines.  

 The test device described in Section 5.1 accounts for the phenomenon of 

magnetostriction and electromagnetic stress tensor inside the iron. Its design and 

building have been described and the results from the sensors were analysed. The 

general output of the measurements to obtain the displacements in the radial direction 

offers a quantitative value to the stress in iron. The simulated results, however, 

predict the displacements of the outer stator boundary with negligible error.  

 In order not to restrict the findings of the study to a device not practically useful 

in applications, Section 5.2 concentrates on the measurements and simulations of a 

test induction machine. Measurements by accelerometers were adopted to acquire the 

acceleration under a given supply frequency and sinusoidal voltage, correspondingly 

to the previous setup. The overall results indicate that the electromagnetic stress 

acting at the air-iron boundary pulls the stator and rotor towards each other. 

 Section 5.3 offers a deeper insight into the model. However exploratory, the 

research reported discusses the effect of separate terms in the model applied to 

electrical machines. The results from the dynamic model are an attempt to consider 

the effect of including damping and mass components into system matrix. Even 

though the problem was numerically damped, the inclusion of the model did not 

really affect the outcome of the study. 

 According to the measured data available and to the simulated results, the model 

presumably accounts for magnetostriction and the electromagnetic stress tensor with 

a good approximation. However, further verification is needed in the case of 

electrical machines for industrial purposes. 

 Notwithstanding its limitations, this study suggests that with prior knowledge of 

the properties of the material, displacements can be known as a function of time 

within a structure such as a rotating electrical machine. 
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Chapter 6  

Discussion 

The main thrust of the thesis was established in Chapter 1. Correspondingly, this 

chapter shows that the research makes a distinct contribution to the previous 

knowledge in the field of magneto-mechanical coupling. The new methodology is 

presented as an energy-based magneto-mechanical coupled method and implemented 

for time-stepping calculations of 2-D geometries of rotating electrical machines. 

Here, the findings support each research hypothesis according to the present thesis 

and follow previous work regarding the magneto-mechanical coupling, the 

measurement and verification methods. 

 This discussion is organised in such a way that Section 6.1 explains the essential 

results and also the unexpected ones and Section 6.2 considers practical implications 

and further research. 

6.1 Summary 

This work was motivated by the need for an appropriate magneto-mechanically 

coupled method. The developed new procedure accounts for stresses in electrical 

steel sheets that originate from magnetic fields and mechanical stresses.  

6.1.1 Energy-based coupled model 

An energy-based magneto-mechanical model has been derived and solved by the 

finite element method. It is operational for the computation of electrical machines.  

 The magneto-mechanical model that has been presented differs from previous 

research in that the constitutive equations are solved explicitly within a time-stepping 

scheme for electrical machines. Indeed, the chosen variables, the displacements, and 

the magnetic vector potential are solved simultaneously, so that none of these needs 

post-processing.  
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 The model formulated in iron is suitable for evaluating the effect of magnetic 

forces and magnetostriction in electrical steel sheets. After its justification and 

verification, the effect of the electromagnetic stress tensor in the air has been 

accounted for. This approach of considering the latter effect only after the 

development of the model in ion has been adopted not to minimise the importance of 

the resulting reluctance forces which are predominant, but to focus on the energy-

based magneto-mechanical model. 

 Chapter 3, together with Chapter 5, showed how to account for magnetostriction 

and mechanical stress tensor effects in iron, as well as the Maxwell stress tensor in 

air. These effects cannot be separated directly within the iron. However, it has been 

clarified that the chosen free energy coupled the magnetic and mechanical fields.  

6.1.2 Magneto-mechanical coupled finite element method 

In this work, a solid computational-based and measurement-based tool for further 

investigation in magneto-mechanical problems in electrical machines has been 

produced. Simulated results on the two- and four-pole machines have been presented, 

with the electromagnetic stress tensor in air being taken (or not) into account. The 

electromagnetic stress in air and iron has an opposite direction at the boundaries, 

which makes the problem difficult to study. Although this assumption was considered 

by previous researches such as stated in Chapter 2, these investigations have revealed 

objectively that the contribution of the electromagnetic stress tensor in iron is 

negligible, as it increases the displacements by only 5%. However, the addition of the 

same stress tensor to the computation of the displacements on the nodes at the air-iron 

boundary plays an essential role in the final results. These results have been verified 

from measurements on an asynchronous machine. 

 The order of the elements is a drawback in this calculation, as is the meshing, 

which is not optimal for solving a mechanical problem. At the boundary between the 

air and the iron, a larger number of elements could lead to a better calculation of the 

displacements. Besides, mechanical problems commonly require finer meshes and 

higher-order and/or different types of elements. Despite these facts, the results 

throughout the thesis have been positively in good accordance with the 

measurements, as discussed in Chapter 5. 

6.1.3 Importance of measurements 

Various answers can be advanced to the question of how to compare measurement 

techniques and verify the validity of the study with appropriate devices.  
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 Within this work, the measurements of the properties of Fe-Si for electrical 

machinery applications were performed on two different setups. There were striking 

differences between the magnetostrictive curves measured on the Epstein frame and 

on the rotational sheet tester. These differences were also observed in a recent 

publication where the authors compared the laser method and the strain gauge method 

on a single sheet tester. The differences in the results may have various origins; 

anyhow, the strain gauges appear to be heavily influenced by an external magnetic 

field, and their signal is distorted accordingly. The measurements presented in this 

thesis confirm the work by Enokizono (1990) and Anderson (2004) and support the 

idea presented by, among others, Yabumoto (2009) of a standardisation of 

measurements of magnetostriction in electrical steel sheets under stress, as well as at 

zero stress. 

 The simulated results were subsequently compared with the measurements on two 

different verification devices in order to rigorously test the method that was 

developed. In both cases, the measurements are in good accordance with the 

simulations. The theoretical model that was developed and its identification and 

implementation in the finite element software were effective, even under the 

hypothesis of ideal symmetric 2-D geometry.  

 On the grounds of this approach, the following points should be considered when 

taking accuracy problems into account. On one hand, great attention was paid to 

eliminating sources of errors. For instance, to remove any privileged direction of 

magnetisation, the sheets were rotated. Additionally, the design of the device allows a 

more uniform magnetic flux density distribution. Because of the absence of an air 

gap, it takes only the effect of magnetostriction and the magnetic stress tensor in iron 

into account. One valuable advantage in the study is that the parameters of the model 

were identified on exactly the same steel sheet as the ones used for the test device for 

later numerical simulations. On the other hand, some drawbacks associated with the 

building of the device should be noticed. One of them, compared to Belahcen (2004), 

is the roughness of the outer boundary of the device. There are also problems that are 

specifically associated with the positioning of the accelerometers. Possible but 

negligible asymmetries in the windings, the preferred direction of magnetisation of 

the steel sheets, and the damping of the structure as a result of the wooden support 

presumably affect the measurements.  

 The measurements from the test asynchronous machine proved to be more 

complicated. The conclusion from the simulated results was that they complement the 

measurements. The model was not identified on a similar electrical steel sheet as the 

ones used in the machine. Finally, the sensors are sensitive to magnetic fields induced 

by currents in the end-windings.  
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 In conclusion, as discussed in Chapter 5, the peak-to-peak measured 

displacements matched the computed ones. Overall, the investigation reported in this 

study contributes to an in-depth knowledge of the stresses acting on a ferromagnetic 

material with good accuracy. 

6.2 Further work  

The subject of the thesis covered the study of magnetic forces in electrical machines. 

This topic is vague and has been studied extensively. Nevertheless, it is the first time 

that a physically justified energy-based model has been developed for modelling the 

magneto-mechanical coupling within ferromagnetic materials. It was included in 

time-stepping finite element software in order to solve the magnetic and mechanical 

fields in a 2-D cross-section of a rotating electrical machine. Additionally, throughout 

this work, potential research niches have been raised. These are recalled here and 

supplemented by suggestions for future work. 

6.2.1 Bi-axial stress and rotating magnetic flux density 

Relevant research is needed to determine the effect of biaxial stress under a rotating 

magnetic field. Although the single-valued curves presented in this study give 

approximately acceptable results, it has been seen that the magnetostrictive 

phenomenon is a dynamic problem that depends heavily on the frequency. The loops 

obtained from the measurements in Chapter 4 make it clear that a model that accounts 

not only for the hysteresis phenomena but also for the dynamic phenomena is needed. 

Models such as the stress-dependent Preisach or Jiles-Atherton models are already 

available and could be considered in order to compare the results with those 

presented in this work.  

6.2.2 Other stresses acting on the iron core of the machine 

Many other factors affect the magnetic properties of the iron core, such as punching, 

welding, thermal stresses, and residual stresses.  

 Further work could envisage an extension of the current magneto-mechanical 

model to account for the stresses induced by the punching, cutting, and welding 

processes. Punching causes the magnetic properties of the material to deteriorate, not 

only in the punched region but also inside the electrical steel sheet. It has long been 

known that punched regions experience permanent static stresses under plastic 
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deformation. As indicated in the literature review, this leads to high losses in those 

regions. This will require, for example, an extreme mesh refinement of the 

boundaries of electrical steel sheets or other novel approaches, such as better 

homogenisation methods. The welding process induces thermal stress in the region 

near it. The computational procedure easily enables extra constraints to be added to a 

region within the electrical machine that could be both stress- and magnetic field-

dependent. 

 A thermo-magneto-mechanical coupled model is not excluded; its achievement 

would require better processors, which is conceivable in the future, and also a model 

that accounts for this phenomenon in an explicit manner. In addition, the stresses in 

the electrical steel sheets vary with the thermal state of the machine. A magneto-

thermo-mechanical coupled method is a challenging option. 

 Residual stresses are common in almost every electrical machine. Accounting for 

these static stresses, which originate from the construction of the electrical machine, 

such as the shrink-fitting of the rotor shaft or of the outer boundary of the stator, is 

more challenging from a measurement point of view than from a computational point 

of view. Nevertheless, a comprehensive study of these could bring more insight for 

industry when building such devices. 

 Although their influence is supposed to be small, the Lorentz forces acting on the 

slotting regions have a known influence. Their addition to the computation could be 

of help in understanding and quantifying the phenomenon. 

6.2.3 Study of the vibration modes of electrical machines 

The dynamic model in Chapter 3 offers various computational opportunities. The 

study of the time integration for this problem is complicated, as the time-stepping 

scheme requires a short time step to account for the natural resonance frequency of 

such electrical machines, which is usually hundreds of hertz. This high number of 

time steps makes the procedure slightly inefficient, as it increases the computational 

time. A suggestion for further investigation is the design and building of a real small 

electrical machine, with its boundary open and with tiny accelerometers placed on the 

teeth, as well as on the outer boundary of the stator. The parameters of the electrical 

steel sheets identified, for example, from the modified Epstein frame, would give 

approximate parameters for the model. The winding should also be different from the 

one in the asynchronous test machine; a form wound winding would be more 

appropriate. 
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6.2.4 From 2-D problem to 3-D problem 

The problem discussed from the very beginning is a 3-D problem treated as a 2-D- 

magneto- 2-D-mechanical problem. Even if magnetostriction is a 2-D phenomenon, 

there are some 3-D-related effects in the axial direction of rotating electrical 

machines that require further attention. Such an example could be the influence of 

residual stress when the sheets are being punched together.  

6.3 Final word  

As a conclusion to the work, this energy-based method is suitable for the computation 

of displacements within electrical machines. Supported by measurements for the 

identification part and verification devices, the dissertation also offers a tool for 

further developments in the field of magneto-mechanical coupling. 
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Appendix A  

Modified Epstein frame 

The main parameters of the modified Epstein frame (Belahcen, 2004) are presented in 

Table 5. Figure A.1 shows the main dimensions of the setup and sample. 

Table 5: Parameters for modified Epstein frame. 

Parameter Value 

Thickness of the sample 0.5 mm 

Length of the sample 300 mm 

Width of the sample 30 mm 

Cross section area 225 mm
2
 

Primary winding:    Resistance 0.079  

                                 Inductance 138 mH 

                                 Number of turns 700 

Secondary winding: Resistance 1.347  

                                 Inductance 138 mH 

                                 Number of turns 700 

 

 

Figure A.1: Schematics of Epstein frame (left) and upper view of sample sheet (right). 
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Appendix B  

Vertical yoke system 

The main parameters of the vertical yoke are gathered in Table 6.  

Table 6: Parameters for the vertical yoke system. 

Parameter Value 

Height of Yoke 1 90 mm 

Height of Yoke 2 110 mm 

Thickness of Yoke 1 10 mm 

Thickness of Yoke 2 10 mm 

Thickness of one steel lamination 0.2 mm 

Thickness of one polyester sheet 0.19 mm 

Resistivity of the lamination 0.25 10
-3

 m 

Number of turns 800 

Diameter of copper wires 0.6 mm 

Total height of the symmetric yoke system 250 mm 

To determine the local flux density in the sample, B-coils are wound through holes 

drilled in the sheet. For acquiring the magnetic field strength, H-coils were prepared 

and glued in the centre of the test sheets. The parameters for those sensors are 

presented in Table 7. 

Table 7: Parameters for the sensing coils. 

 Parameter Value 

B-coils: Number of turns  2 

 Cross-section area 10 mm
2
 

 Diameter of the copper wire 0.3 mm 

 Diameter of the holes 1 mm 

H-coils: Number of turns 900 

 Cross-section area 47 mm
2
 

 Diameter of the copper wire 0.05 mm 



 

 

129 

 

Appendix C  

Verification Device  

The geometry of the verification device is presented in Figure C.1. Figure C.1 (a) 

shows the division of the periphery of the three-phase machine into positive and 

negative phase belts. Parameters in Figure C.1 (b, c and d) are collected in Table 8.  

  

(a)  (b) Dimensions and geometry of the test device. 

 

 

(c) Dimensions for the end-winding. (d) Shape of one slot and its dimensions. 

Figure C.1 : Dimensions of the different parts of the test device. 
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Table 8: Dimensions of the test device and its winding parameters. 

Definition Parameter Value 

Radius for the shape of the slot  rs1 5.5 mm 

Radius for the shape of the slot  rs2 5 mm 

Height of one slot  hs 20 mm 

Outer diameter of the device  Dout 600 mm 

Inner diameter of the slotting  Din 230 mm 

Axial length of the device  Htot 100 mm 

Number of pole pairs p 1 

Number of phases m 3 

Total number of slots Q 36 

Slots per pole per phase q 6 

Number of parallel wires g 4 

Parallel paths a 4 

Approximated “depth” of end winding  Lew 50 mm 

Approximated coil span Wew 300 mm 

Average length of phase winding ls 550 mm 

Resistivity of copper at 20 C Cu 1.75 10
-5 
mm

 

Diameter of copper wire DCu 1.5 mm 

Minimum effective area of phase winding Aph 14.14 mm
2
 

Approximated filling factor for one slot / 35% 

Weight of the assembled device w 260 kg 

Thickness of one single electrical steel sheet  0.5 mm 

Table 8 is supplemented by the following definitions 

 out
p

π

2

D

p
   ( 130) 

 2Q mpq  ( 131) 

 s s ew lew ew w2l l W    , ( 132) 

where w and lew are the permeance factors of the end-winding, they depend on the 

cross section of the end winding and the lengths and s = 0.25. Detailed calculations 

and explanations are found in Pyrhönen (2009), a picture describing the winding is 

given in Figure C.2. 

 In the case of a diamond winding, the coil pitches are of equal width. Four turns 

of four copper wires each are placed in series in the slots. For the construction, 199, 
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M400-50A- type electrical steel sheets were necessary as in Figure C.3 (a and b). A 

total of 36 slots were cut out to insert the windings.  

 

Figure C.2 : Winding layout. 

  

(a) Placing the sheets. (a) Inserting the copper wires in the slots. 

Figure C.3 : Assembling the device. 
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Appendix D  

Test electrical machines 

Machines I and II are standard cage induction motors. Machine III is an induction 

machine built by Hirvonen (1983). First-order elements were used. The magnetic 

materials of the stator are fully processed non-oriented steel sheets. Data for 

Machines I and II are presented in Table 9. Their respective meshes and geometries 

are shown in Figure D.1. The mesh of Machine III was build within this study. 

Details regarding the mesh are presented in Figure D.2. Specific data is gathered in 

Table 10. 

Table 9: Main parameters used as input for the simulations of Machine I and Machine II. 

Data Machine I Machine II 

Rated voltage 380 V 380 V 

Slip 2 % 3.2 % 

Rated current  60 A 27 A 

Rated power 30 kW 15 kW 

Connection Delta Delta 

Supply frequency 50 Hz 50 Hz 

Temperature of windings 80 ºC 80 ºC 

Number of pole pairs 1 2 

Number of phases 3 3 

Number of parallel paths 2 1 

Number of conductors in a stator slot 26 21 

Number of layers of the stator winding 1 1 

Coil pitch in slot pitches 18 9 

Outer diameter of the stator core 323 mm 235 mm 

Inner diameter of the stator core 

Number of stator slots 

190.2 mm 

36 

145 mm 

36 

Outer diameter of the rotor core 188.37 mm 144.1 mm 

Inner diameter of the rotor core 70 mm 53 mm 

Number of rotor slots 28 34 
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(a) Mesh of Machine I. (b) Machine I, zoom on the 

stator slots, air gap region 

and rotor slots. 

 

 

(c) Mesh of Machine II. (d) Machine II, zoom on the 

stator slots, air gap region 

and rotor slots. 

Figure D.1 : The geometry of the cage induction machines. 
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Table 10: Main parameters for the verification motor. 

Data Machine III 

Number of pole pairs 2 

Number of phases 3 

Number of parallel paths 1 

Number of conductors in a stator slot 4 

Number of layers of the stator winding 1 

Effective length of the machine 0.1 m 

Outer diameter of the stator core 664 mm 

Inner diameter of the stator core 

Number of stator slots 

400 mm 

48 

Outer diameter of the rotor core 399 mm 

Inner diameter of the rotor core 155 mm 

Resistance of a stator phase 0.02 

Stator slot dimensions:  H1 63 mm 

                                       H2 45 mm 

                                       B1 15 mm 

                                       B2 1.25 mm 

                                       B3 16 mm 

 

 

  

(a) Mesh, elements, nodes. (b) A stator slot. 

Figure D.2 : Geometry of Machine III. 
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