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32.2 A 1.5μW 1V 2nd-Order ΔΣ Sensor Front-End with 
Signal Boosting and Offset Compensation for a 
Capacitive 3-Axis Micro-Accelerometer

Mika Kämäräinen, Matti Paavola, Mikko Saukoski, Erkka Laulainen,
Lauri Koskinen, Marko Kosunen, Kari Halonen

Helsinki University of Technology, Espoo, Finland

The advantages of capacitive accelerometers [1], such as zero stat-
ic bias current and the capability of achieving high sensitivity, are
emphasized in ultra-low-power applications. In [1], representing
the current state-of-the-art in low-power 3-axis micro-accelerome-
ters, capacitance-to-voltage and A/D conversions were performed
separately. In this paper, an ultra-low-power 2nd-order ΔΣ sensor
front-end with inherent capacitance-to-digital conversion [2] for a
capacitive 3-axis micro-accelerometer is presented. The front-end
is designed for 1V operation and 12b accuracy with a 1Hz BW
using a 0.25μm CMOS technology.

The schematic of the ΔΣ sensor front-end with the sensor element
is shown in Fig. 32.2.1. The capacitive acceleration information
from each proof mass is first converted to a charge and then to a
bit stream. In order to achieve sufficient (>20dB) mechanical
attenuation of folding out-of-band interferers, a minimum fs of
2kHz per mass was chosen. Chopper stabilization (CS) and CDS
are implemented in order to reduce the offset voltage and noise of
the front-end. The 1st integrator stage has to use time-multiplexing
because of the common middle electrode of the proof masses. The
use of six parallel integrators (one for each mass and chop phase)
in the 2nd stage makes possible the use of longer settling times,
thus reducing power dissipation. To keep the implementation sim-
pler, one comparator is multiplexed between the outputs of the 2nd

integrators.

The ΔΣ front-end balances charge (i.e., ensures an equal average
charge in both positive and negative detection capacitances) and
thus reduces the distorting effects of the nonlinear electrostatic
forces. Additionally, the transfer function is of the form (CDP -
CDN)/(CDP + CDN), which cancels the nonlinearity of the displace-
ment-to-capacitance conversion to the first order. The front-end
uses two main clock phases, A and B, and three main mass selec-
tion phases, Mn, n being the index of the proof mass. In phase A,
the mass being read is charged to a proper reference voltage and
the 1st integrator samples the offset and flicker noise of the opera-
tional amplifier. Simultaneously, the 2nd integrator feeds the sam-
pling capacitor of the comparator. In phase B, the charge of the
mass being read is integrated in the 1st integrator and the 2nd inte-
grator samples the new output voltage of the 1st integrator.
Additionally, the comparator resolves a new output bit and the
DAC capacitor of the 2nd integrator is charged to either reference
voltage as determined by the new output bit. The 2nd integrator
performs the charge transfer while the other masses are read.

The positive and negative reference voltages (REFP/N) are equal
to the supply and ground. Because of the low supply voltage of 1V,
the input and output common-mode levels (CM_IN/OUT) of the
operational amplifiers are separated to 0.1 and 0.5V, respectively.
The capacitor sizes in the 1st integrator are programmed to yield a
gain of 0.5. To minimize power dissipation, a tail-current-boosted
Class-AB operational amplifier (Fig. 32.2.2(a)) [3] is used in the 1st

integrator. The DC gain is increased by using the current sources
IL [4]. The required feedback amplifiers are one-stage amplifiers
with NMOS input pairs. The operational amplifier used in the 2nd

integrators is a basic current mirror OTA, whose DC gain is
increased with the same technique. The amplifiers were designed
so that their biasing currents can be increased to enable a maxi-
mum fs of 51.2kS/s per mass. The simulated DC gains of the ampli-
fiers of the 1st and 2nd integrators are approximately 50dB and
45dB, respectively. The dynamic latch with zero static power dissi-
pation (Fig. 32.2.2(b)) [5] is used as a comparator.

A method to boost the available signal and to compensate for the
offsets of the sensor capacitors was developed. The operating prin-
ciple is shown in Fig. 32.2.3. The programmable capacitor matrix
CCB can be used to either source or sink charge from the sensor

middle electrode DMID. A single matrix is used for all three mass-
es, with different programming. If charge is removed from both
sides of the differential sensor capacitor pair, the denominator of
the ratiometric transfer function is reduced and the signal is boost-
ed. At the same time, the signal swing at the output of the 1st inte-
grator is reduced, making low-voltage operation easier to achieve.
If charge is sourced or sunk from only one side, the system com-
pensates for any offset in the sensor capacitors. The signal boost-
ing and offset compensation can also be used simultaneously.

Because of the low supply voltage, the use of floating switches is
not possible without boosting the gate voltages. Therefore, the gate
voltage of an NMOS device in a floating transmission gate is
increased to 2·VDD using charge pumps (Fig. 32.2.2(c)) [6]. To min-
imize the silicon area, the number of gate-voltage-boosted floating
switches was kept as low as possible. Other switches were imple-
mented as single N- or P-MOS devices. The symbol 2× is used to
indicate the gate-voltage-boosted switches in Fig. 32.2.1. The area
required by the charge pumps is minimized by driving all the
switches operating on the same clock phase with a single pump,
and by sizing C1<<C2 in each pump.

As the sampling frequency is low, the leakage currents of off-state
switches must be minimized in order to prevent signal distortion
and temperature-dependent offset. The primary source of leakage
is the subthreshold current, which was minimized by using a non-
minimum channel length to increase the threshold voltage when-
ever there is a voltage drop over an off-state switch. Additionally,
the sensor middle electrode DMID was identified as being especial-
ly sensitive to leakage currents. To minimize the leakage into this
node, a special ultra-low-leakage switch (Fig. 32.2.2(d), denoted by
ULL in Fig. 32.2.1) similar to that in [7] was developed. When
CLK=0, then in the case of an NMOS switch, MN1 and MN2 are
off, while MP3 pulls the middle node to the positive supply rail.
The bulk effect increases the threshold voltage of MN1, signifi-
cantly reducing the leakage current.

The prototype was fabricated with a 0.25μm CMOS technology
with MIM capacitors. The silicon area of the front-end (Fig. 32.2.6)
is 0.49mm2. The chip was combined with an external ±2g capaci-
tive 3-axis accelerometer on a PCB. The measurements were per-
formed with off-chip references. An FFT of the measured z-direc-
tional data is shown in Fig. 32.2.4(a). The measured noise in the x,
y and z directions with fs = 2.048kS/s per mass and chop phase is
917μg/√Hz, 791μg/√Hz and 704μg/√Hz, respectively. These results
yield a DR of 72dB at a 1Hz BW. Figure 32.2.4(b) shows the ±2g
acceleration ramps, and Fig. 32.2.4(c) an x-direction acceleration
pulse, both measured using a rotating rate table. Because of small-
er parasitic capacitances, the results are expected to improve when
the front-end is bonded directly to the sensor.

This ΔΣ sensor front-end IC draws 1.5μA from a 1V supply while
sampling three proof masses, each at 4.096kS/s. The overall per-
formance is summarized in Fig. 32.2.5.
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Figure 32.2.1: Schematic of the ΔΣ sensor front-end with an SEM photograph of a 3-axis capacitive micro-accelerometer. (SEM image courtesy of VTI
Technologies, Vantaa, Finland)

Figure 32.2.2: Schematics of: (a) a tail-current-boosted Class-AB operational
amplifier; (b) a dynamic latch; (c) charge pumps, and (d) an ultra-low-leakage
NMOS (left) / PMOS (right) switch.

Figure 32.2.4: (a) FFT of measured z-directional data, (b) ±2g acceleration
ramps, and (c) an x-directional acceleration pulse. Figure 32.2.5: Summary of measured performance.

Figure 32.2.3: Operating principle of (a) signal boosting and (b) offset com-
pensation.
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Figure 32.2.6: Chip micrograph.
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