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Chapter 1

Introduction

1.1 Background

The main goal of computer vision is to mimic the vision system of humans, and
possibly of other mammals. The goal is far from being reached; despite recogniz-
ing objects in our environment is effortless to us, for artificial computer systems it is
extremely demanding. Evolution has refined the human brain into such that its ca-
pabilities to handle visual information obtained from the three-dimensional world
are outstanding. In every moment, we can easily recognize and locate dozens of
objects surrounding us although the objects may appear in any scale or pose, the
view point can be arbitrary, the objects can be partially obstructed by other objects,
and the internal variability of certain object class may be huge. Humans possess
also a large amount of prior information about objects in general, which help in
learning to recognize new objects.

Images are two-dimensional projections of the three-dimensional world. A
computer ‘sees’ the images as numbers, and using different mathematical algo-
rithms, the computer vision systems aim to find something ’interesting’ in the
images such as edges which would aid in recognizing objects. Basically, this is
similar to how images are processed in the early stages of the mammalian vision
system. It is the less well known deeper structures of our visual system which
enable the recognition of complex objects, and whose behavior is difficult, if not
impossible, to emulate with artificial systems. The recognition of the computer
vision systems is highly dependent on the appearance and shape of the objects.
Also, different invariances — invariance against the location, scale and orientation
of the objects — must be somehow explicitly added in the artificial systems, as
for instance an (asymmetrical) object posing upwards and the same object posing
downwards are basically treated as different objects. Also, unlike with the human
vision system, the object recognition of an artificial system is often dependent on
the lighting conditions of the object.

One aspect of computer vision is object matching. Somewhat different defi-
nitions of object matching in computer vision have been presented. In this thesis,
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object matching means locating corresponding points in the images. The corre-
sponding points between, for instance, two images consist of pairs of points that
correspond to the same points on the physical object (see Figure 1.1). Basically, the
number of corresponding points between objects is infinite; in digital images, the
resolution of the images limits the density of the correspondence mapping. Prac-
tical object matching methods often use a sparse set, consisting of a few dozen
corresponding points. In addition to relying on the visual appearance of the points,
their spatial relationships are also usually considered.

The object matching problem is typically formulated as follows: given a set of
training images, also known as reference images, learn the model, or representa-
tion, of the object and match the object in an unseen test image using the learned
object model. The training images and the test image contain so called instances of
the object. For example, to locate a car in a test image, the artificial system is given
images that contain exemplars of different cars. Because the appearance and shape
of cars can vary a lot, the number of training images should be moderately high in
order to learn a reliable model of a car. Often the corresponding points are manu-
ally pre-annotated in the training images which facilitates the learning process, and
the actual problem is in matching the test image. Possibly the most prominent ob-
ject matching methods are the Elastic Bunch Graph Matching method by Wiskott
et al. (1997), and the Active Appearance Model of Cootes et al. (2001). An ex-
ample of a Bayesian approach to object matching was presented by Tamminen and
Lampinen (2006).

Object detection and recognition are another subfields of computer vision,
which can be related to object matching. Again, different definitions exist, but
usually object detection means answering the question “’does the learned object ap-
pear in the test image”, whilst object recognition tries to refine which of the learned
objects (if any) appears in the test image. Object detection and recognition do not
necessarily require the object to be matched in the test image. A prominent exam-
ple of such an object detection method is the constellation model of Fergus et al.
(2003) which learns the object model from natural, un-annotated training images
by extracting parts in them and inferring with probabilistic methods which of the
parts constitute the object model. Likewise, parts are extracted in the test image and

Figure 1.1: Two images which contain instances of the same object. Four pairs of
corresponding points have been marked with crosses.



1.2. OVERVIEW 3

Figure 1.2: An example image which contains an instance of the same object as
Figures 1.3 and 1.4. See text in Section 1.2 for details.

compared with the object model. As a result, a probability for the object appearing
in the image is achieved without the object being accurately located.

1.2 Overview

This thesis deals with object matching, that is, the problem of locating the corre-
sponding points in images. Learning the object model is taken to be incremental by
nature. This means that the system is given images sequentially, one by one, and
the matching result of the processed images is exploited in matching the next im-
age. Incremental learning (also called online learning) contrasts with batch learn-
ing which handles all the training data simultaneously. Actually, in incremental
learning there is no traditional separation into training set and test set as the na-
ture of the data is dualistic; each image that is fed into the system serves first as
a test image but becomes a training image for the upcoming images after having
being processed. Of course a batch method can similarly expand the training set
one image after another, but this requires that all the processed images are stored in
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Figure 1.3: An example image which contains an instance of the same object as
Figures 1.2 and 1.4. See text in Section 1.2 for details.

memory and that the learning begins again every time a new image is introduced.
On the contrary, incremental methods update the object model recursively. As an
object model is a compressed representation of the whole data, most of the in-
formation in the images is discarded after they have been incrementally processed.
Thus, the performance of an incremental method is expected to be weaker than that
of a batch method which processes all the available data simultaneously. However,
incrementality is a desired property, for several reasons. Incremental learning is
natural for all the living organisms as their way of perceiving the environment is
sequential. A child probably learns a visual representation of a certain object by
updating the representation after each view of the object, instead of first storing
all the views in memory and then processing them simultaneously. Incremental
learning, in principle, is faster and requires less memory than batch learning. Also,
in many practical problems the data (images) arrive sequentially, which calls for
incremental methods. Another nice thing about the incremental approach is that
the learning can be stopped anytime as soon as the object model is 'ready’.

Figures 1.2, 1.3, and 1.4 aim to demonstrate how difficult the incremental ob-
ject matching is for a computer system. Each of the images contains a same fully
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rigid object but in different orientations and scales, and the task is to locate the
object in the images. As the system is incremental, the images appear in differ-
ent pages and should be viewed only once, without watching the previous images
again. Because one has not seen the seemingly meaningless object before, and be-
cause the background of the object differs very little from the object, finding the
corresponding points is surprisingly difficult. Because computers lack prior infor-
mation about objects and backgrounds, matching the presented artificial object or
matching a real object, such as a dog, are equally problematic for a computer vision
system — or actually, matching dogs is more difficult due to the changes in shape
and appearance between different object instances. As a side note, the solution to
the problem is found on page 86 which shows the matching result of the method
that is developed in this thesis.

1.3 Aims of the thesis and author’s contributions

The aim of this thesis is to develop probabilistic models and methods for incremen-
tal object matching. An important and complicating factor is the lack of manual
pre-annotations or pre-segmentations, that is, no prior information about the loca-
tion of the object in the images is utilized. The problem can thus be reformulated
as follows: Given a set of natural images in which instances of the same object
appear, locate the corresponding points of the object by processing the images in-
crementally. To the best knowledge of the author, no other published method has
tried the same. The developed methods are also used for detection purposes. The
object model used in this thesis is a sparse set of feature points. Bayesian method-
ology is adopted as it offers a natural framework for modeling the appearance and
shape of the points separately, and for recursively updating the object model. In
the Bayesian treatment, the uncertainties and lack of knowledge are expressed in
a mathematically consistent way which also makes it an appealing approach. To
approximate the multi-dimensional posterior distributions, particle Monte Carlo
methods are used due to their capabilities to handle multimodal distributions. A
major difficulty in these methods is the initialization of the particles.

The thesis is organized as follows. Chapter 2 reviews several object matching
and detection methods presented in the literature, having an emphasis on Gabor
features as they are used in this thesis. Chapter 3 introduces the Bayesian in-
ference and some numerical sampling methods. The minor contribution in this
chapter is the comparison of the particle Monte Carlo methods. Chapter 4 is the
main contribution of the thesis as it first presents how the Bayesian methodol-
ogy is theoretically applied in the studied problem, and then presents three practi-
cal implementations of the theoretical framework. The methods are published in
(Toivanen and Lampinen, 2009a), (Toivanen and Lampinen, 2009b), (Toivanen and
Lampinen, 2009¢), and (Toivanen and Lampinen, 2010). Chapter 4 also discusses
the differences between the methods and the problem of tuning the parameters.
Experimental results are given in Chapter 5, and Chapter 6 concludes the work.
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Figure 1.4: An example image which contains an instance of the same object as
Figures 1.2 and 1.3. See text in Section 1.2 for details.

The background of this work is on the batch object matching method of Tamminen
and Lampinen (2006), the occlusion model of which was utilized in this work to
match novel objects without training. The idea for this came from Prof. Lampinen,
and the author has thereafter developed the framework and the numerical sampling
methods almost solely. The implementations of the methods and the experiments
were coded by the author.



Chapter 2

A review of object models

2.1 Introduction

This chapter gives a review of different object models that have been used in object
matching and detection. The models differ in their complexities and abilities to
handle different complicating factors which are inherent in computer vision. The
most basic complicating factor is the internal variability of the object class as the
instances of the same object class always look different, a good example being a
human face. A proper object matching method should also be able to cope with the
basic transformations of the object — translation, scale and rotation. This means
that the object instances should be matched despite their location, size and orienta-
tion differing from the training images. A more challenging task is to handle affine
transformation. Robustness against occlusion is also a wanted property, meaning
that the instances should be correctly matched even if parts of them are obscured
by another object.

There are many possibilities to categorize different object models. The lowest
common denominator between different models is probably the use of features.
This means that the images are first somehow pre-processed so as to extract features
with which the object matching or detection task is easier and faster to solve. The
features can be based on the shape of the object, on its visual appearance, or both.
Care must be taken in the feature extraction step, as information is typically wasted.
In a successful case, the extracted features are fast to compute and use, and yet
they are discriminative enough so that the object instance can be separated from
the background in the test image. Perhaps the most meaningful division of the
available models comes from the use of features; either the object of interest is
modeled with one global feature, or with many local features which typically have
spatial relationships. Exemplars of both types of features are presented in this
chapter, the emphasis being in local features as they are used in this thesis. Having
presented the features, the most competent object matching methods and detection
methods — whose aim is not so much to localize the object as to detect whether
it appears in the test image or not — are reviewed. Finally, the Gabor features,

7
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which are used in this thesis, are presented. It should be noted, however, that the
proposed Bayesian framework for the incremental matching is not limited to the
use of Gabor features, or even to the use of the local feature based approach.

2.2 Global features

The global features that are considered here are the shape features and the texture
features. Basically, these features could also be used as local features, but here the
focus is in their use as global features.

2.2.1 Shape features

Shape features are used when the primary interest is on modeling the shape of the
object instead of its appearance. In shape modeling the test image is segmented
into regions whose shape is compared with a model region using different shape
features. This requires the object instance to be correctly segmented in the test
image. For example, if a human face is searched in the image, in a successful case
one of the image segments comprises the human face but nothing else. Hence,
the success of using the shape features is strongly dependent on how the image is
segmented, which is ambiguous. Another drawback of the segmentation approach
is its sensitivity to occlusion, as whole segments are used in comparison and the
segment of an occluded object is always different from the model segment. Also,
scale difference is usually a problem. The shape features can be divided into con-
tour based and region based features.

Of the contour based features, probably the simplest ones consider the length
or curvature of the object boundary. A more advanced choice is to use chain codes,
so that the boundary is coded with indices representing the 4- or 8-connectivity
directions of the boundary at discretized steps (Jain, 1989; Gonzalez and Woods,
1993). Another option is to compute the distance from the centroid of the object to
the boundary as a function of the angle. A more sophisticated option is to use B-
splines, that is, to represent the contour with a piecewise polynomial interpolation
(Sonka et al., 1999). A common choice is B-splines of third order as it is the lowest
order including the change of curvature. The simplest region based approach is
to compare the area of the region while more advanced methods consider also
eccentricity and elongatedness (Sonka et al., 1999). Of the more recent methods,
(Opelt et al., 2006b) combine the boundary and centroid knowledge to perform
object detection, and (Jiang et al., 2009) represent the shape as an oriented edge
map and use the mean of the training shapes for matching. Although being simple,
shape features can be very efficient for certain object matching and detection tasks.

2.2.2 Texture features

A global texture feature refers to the appearance of the whole object. Modeling the
joint appearance of all the pixels of the object can be advantageous compared with
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local feature based methods which model the appearance only around the feature
points. Basically, having a local feature in each pixel of the object does the trick
but this would be computationally unfeasible.

The simplest texture feature based method can be used only for classification:
The test image is classified to the training image with maximum correlation in the
image space whose dimension is the number of pixels in the images (Brunelli and
Poggio, 1993). The method is highly dependent on the lighting conditions and is
computationally expensive. A more sophisticated method is the Eigenfaces method
(Turk and Pentland, 1991; Pentland et al., 1994) in which the object model is built
from the training images by computing the object appearance as a linear sum of the
mean appearance vector and linear basis vectors. The basis vectors are formed with
the principal component analysis (PCA) framework (Chatfield and Collins, 1980;
Bishop, 2006). Before computing the principal components, the images must be
aligned to exclude the background effects from the representation. A test image is
matched by finding the coefficients in the linear expansion so that, e.g., the pixel-
wise squared difference of the intensity values between the model and the image
is minimized. It is also straightforward to use the Eigenfaces method to synthesize
new images. A probabilistic implementation of the Eigenfaces method is given by
Moghaddam et al. (1998). In face classification, Eigenfaces can be problematic in
a sense that much of the visual variation typically stems from the different lighting
conditions and many principal components are *wasted’ in capturing this informa-
tion which is non-essential for the classification purpose. A remedy was suggested
by Belhumeur et al. (1997) in forms of Fisherfaces by maximizing the ratio of
between-class variation to the within-class variation. The traditional Eigenface
models are incapable to separate the appearance and shape of the object as these
are combined into a single model, making it difficult to model objects with larger
morphological changes.

2.3 Local features

In local feature based methods the objects are modeled as a collection of local fea-
tures which are (typically) constrained by their mutual relations. Using a collection
of local object descriptors is more robust against occlusion than comparing glob-
ally the whole object, and yields better results in matching non-rigid objects. Local
methods have become the dominant framework during the last decade in the object
detection community (Zhang et al., 2007).

A typical local feature based object matching method uses training images
where several landmark points of the object instances are manually annotated. If
the object is a human face, for instance, the annotations should cover eyes, mouth,
etc. The reference appearance of the features and reference shape (which is also
formed from the annotations) are learned from the training images. The combined
reference model is then matched in a test image which is assumed to contain an in-
stance of the learned object. This requires a similarity measure to be defined which
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measures the visual similarity between the reference appearance and the pixels in
the test image. A good match is such that all the features have high similarities
in the test image while also being in an approximately similar configuration as the
reference shape. The differences between various feature based methods are, for
instance, on the used features, the shape model, the similarity measure, the match-
ing scheme, and on the use of a probabilistic framework. This section presents
different local features which are divided into low-level and complex features.

2.3.1 Low-level features

The simplest, and probably also the longest-lasting, feature is basically a vector
of the gray scale values in the image around the feature point, called a patch or
a template. The idea is basically the same as in using the global texture feature
except the object model consists of many local templates instead of one global
template. Fitting the template in the test image is usually called template matching
or gray-level matching (Jain, 1989; Cox, 1995). Normalized cross-correlation or
sum of squared differences between the gray-level values of the model template and
the gray-values extracted from the image are conventionally used as a similarity
measure. To make the matching invariant to the absolute brightness, the mean
values of the templates should be subtracted, and to achieve contrast invariance, the
templates should be divided by their variance. Template matching is quite sensitive
to noise in the images as well as to intra-class variation. Also, scale and orientation
changes must be handled separately. Simple gray-level similarities are sensitive to
occlusion if all the pixels under the template are used for the similarity, but template
matching methods that can handle occlusion have been proposed (Nguyen et al.,
2001; Jurie and Dhome, 2002). Despite being an old method, template matching
techniques are still a topic of wide interest (Yoon et al., 2008; Jung et al., 2010).
Another simple approach is to use edges as features. To utilize edge informa-
tion, edges must first be extracted from the image. A number of edge detectors
have been developed (see, for instance, (Sonka et al., 1999)). Using edges as fea-
tures requires a similarity between two edges to be established. There are different
ways to translate the edge information into a similarity measure, such as using the
geometric attributes, like the line length and orientation. Perhaps the most widely
used approach is to utilize the Hausdorff distance (Rucklidge, 1997), which has
the advantage of being invariant to affine transforms and robust against noise and
occlusion. Another edge based similarity is based on the generalized Hough trans-
form (Ballard, 1981; Cho, 2006). A drawback of edge based methods is the neces-
sary binarization of the images, which makes the matching invariant only against a
narrow range of illumination changes, as it depends on the image contrast. Steger
(2002) has proposed an alternative similarity measure which is robust also against
nonlinear illumination changes. The main drawback of edge matching is their non-
specificity as lines occur frequently in natural images. Thus, the method is prone
of false matches when the background in the test image is complex. A rarer feature
is a corner, which is widely used in stereo matching (see, for instance, (Smith et al.,
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1998; Zhao et al., 2008)). From an object matching point of view, a corner might
be even too rare for having a dense feature model.

It is also possible to use color as a feature which is basically more discrimina-
tive due to the two extra dimensions. For instance, the human skin forms a clear
distinct cluster in the color space (even when different races are considered), which
can be modeled with a Gaussian distribution (Yang et al., 1997). However, there
are objects which appear in varying colors, such as cars, making it unfeasible to
use color for generic object modeling. In addition, color matching is highly depen-
dent on the lighting conditions, and moreover, the color information is not always
available.

Histogram features can be used to represent different characteristics of shape
and appearance (Mikolajczyk and Schmid, 2005). The simplest histogram depicts
the distribution of the intensity values on a region of the image (Jain, 1989). Com-
mon features used to describe histograms are the absolute and central moments of
different order and the entropy of the histogram (Gonzalez and Woods, 1993; Jain,
1989). The problem of the histogram approach is that the histogram carries no in-
formation about the relative position of pixels with regard to each other (Gonzalez
and Woods, 1993). Hence, the histograms are rather used for classification than for
accurate matching.

2.3.2 Complex features

The Scale Invariant Feature Transform (SIFT) framework, proposed by Lowe
(1999, 2004), is an efficient and widely used local feature generation method. The
SIFT features are invariant to translation, scale and rotation, and also partially in-
variant to illumination changes and affine or 3D projections. The SIFT method
combines feature detection and description, which is based on the gradient infor-
mation in the detected regions. The rotation invariance is realized by considering
the image gradient in the detected region in (typically eight) discrete orientations,
and likewise for scale invariance. The invariance against noise is achieved by
down-sampling the gradient vector. The SIFT feature can be interpreted as a 4-
dimensional histogram presentation as there are the orientation, scale, and the two
spatial dimensions. A problem with SIFT is that it might be too invariant, and fea-
tures that are more selective might be needed for a generic object recognition task.
SIFT features have been an inspiration for various other features; the publication
(Lowe, 2004) has over 6000 citations.

Lazebnik et al. (2004, 2005) introduced two sophisticated histogram based fea-
tures. A spin feature is a rotation-invariant histogram of image intensities within a
region of interest. The histogram is two-dimensional, dimensions being the inten-
sity and the distance from the center of the region. A Rotation Invariant Feature
Transform resembles the SIFT feature but the region of interest is divided into
rings of equal width and the gradient orientation histogram is computed in each
ring in order to obtain inherent rotation invariance. PCA-SIFT features of Ke and
Sukthankar (2004) use the SIFT procedure, but instead of discretizing the region
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spatially, each pixel is used to compute the histogram which is then reduced with
PCA to lower dimensionality to produce a feature vector which is smaller than the
standard SIFT feature. A Speeded-Up Robust Feature (Bay et al., 2006) describes
the Haar-wavelet responses within the region of interest and is, according to the
authors, faster to use and more robust than the SIFT feature. A Gradient Location
Orientation Histogram (Mikolajczyk and Schmid, 2005) is another extension of the
SIFT feature. The aim is to increase robustness and distinctiveness by computing
the SIFT histograms in a dense log-polar location grid. The size of the features is
reduced, akin to the PCA-SIFT method, with PCA. The Spatial-color Mixture of
Gaussians is a recently proposed feature which improves over the standard color
histogram feature by also considering spatial layout of the colors (Wang et al.,
2007). Ersi and Zelek (2006) use the histograms of Gabor responses as a feature.

Another sophisticated option to describe a local appearance is to use the re-
sponses of various (real or complex valued) filters. In this study, Gabor filter re-
sponses are used, and a succinct introduction of filtering theory is given in Section
2.5 which represents the Gabor filters. Here it should be mentioned that other pos-
sible filters include Gaussian filters (Sullivan et al., 2001), Gaussian derivatives,
and mixtures of a complex exponential term and a Gaussian derivative or polyno-
mial (Mikolajczyk and Schmid, 2005).

2.4 Object matching and detection methods

Previous sections have described several global and local features that can be used
in object modeling, excluding Gabor features that are introduced in greater detail
in Section 2.5. Next, some prominent object matching and detection methods that
utilize the features are briefly reviewed. All the reviewed object matching methods
require pre-annotated or pre-segmented training images whilst the annotations are
not needed for many of the object detection and classification methods.

2.4.1 Object matching methods

Lades et al. (1993) have presented the Elastic Graph Matching algorithm which
they use for face matching and recognition. It applies Gabor features which are
extracted at a rectangular grid that is positioned in the passport photo -like training
images, together with the geometrical relationships of the grid in terms of edges
between them. In matching a test image, a cost function, which is the sum of
quadratic edge distortions and negative similarity term of the Gabor responses, is
minimized. Each face graph of the training images is separately matched in the test
image and the one with the smallest cost function is recognized as being the face in
the test image. The method was extended by (Wiskott et al., 1997) to use manually
annotated feature locations and to stack the reference Gabor responses into some-
thing called bunch graphs; the method is termed Elastic Bunch Graph Matching
(EBGM). The Gabor jet (see Section 2.5) of the bunch that yields the highest sim-
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ilarity is used independently of the other features when matching the test image.
EBGM method was the top performer in recognizing faces in the FERET (Face
Recognition Techonology) evaluation contest (Phillips et al., 2000).

Active Appearance Models (AAM) by Cootes et al. (2001) is another method
that matches test images accurately, given manually annotated training images. In
AAM, the object model is formed from the principal components for the appear-
ance (as in the Eigenfaces method) and shape, and also for the mutual relations
between them. The training images are warped to match each other, and the shapes
in the training images are aligned with Procrustes analysis (Goodall, 1991). In
order to obtain invariance against lighting conditions, the training images are nor-
malized to have zero mean and unit variance.

Tamminen and Lampinen (2006) (see also (Tamminen, 2005)) have proposed
a probabilistic method for matching the object model in a test image. The object
model is learned, again, from annotated training images and consists of Gabor fea-
ture based appearance distribution and a Gaussian distribution for the shape. These
are combined into a Bayesian posterior distribution for the feature locations in the
test image which is matched with Monte Carlo methods. The method, presented in
this thesis, is based on the method of (Tamminen, 2005; Tamminen and Lampinen,
2006).

The EBGM, AAM, and the Bayesian method of (Tamminen and Lampinen,
2006) are the most important ones with respect to this thesis as they represent the
object with a rather dense graph of feature points which is accurately matched in
the test images. Some other object matching methods have also been proposed that
deserve a mention here. Sullivan et al. (2001) match objects with a rigid object
model using the Bayesian framework and factored sampling, Yan et al. (2004)
presented a Bayesian face matching and recognition model which combines global
and local texture features, and (Wiirtz, 1997) uses a hierarchical Gabor feature
based system for face matching and recognition.

2.4.2 Object detection methods

The primary goal of the methods presented in this subsection is to either detect
whether there is an instance of the learned object in the test image or not, or to
classify the content in the test image into one of the learned object classes. Many
of these methods also provide an approximative location of the object. Albeit the
method of this thesis finds a set of corresponding pixels in the images, that is,
matches the feature points of the object, it shares some similarities with certain
object detection methods which are reviewed here.

Perhaps the most important of these methods are the constellation models (Burl
et al., 1998; Weber et al., 2000; Fergus et al., 2003; Fei-Fei et al., 2003, 2007)
which model the object as a flexible constellation of parts, using probabilistic rep-
resentations. In the constellation models, the distributions for the appearance of
the parts and for their mutual positions are learned from a natural, unannotated
training set. In each training image, a set of interesting regions (less than one hun-
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dred) is extracted whose appearance is represented with a PCA reduced gray-scale
template. These vectors can be interpreted as the candidate features of the object.
The object model is learned by finding with Expectation Maximization algorithm
(Bishop, 2006) a maximum likelihood estimate of the model parameters — or by
variational Bayesian methods an estimate of the posterior distribution — , that is,
visually similar features (less than ten) in a similar configuration. In a test image,
regions are extracted again and compared with the learned object model. Each
region whose appearance is similar with the learned features gives a probabilistic
vote for the presence of the object, and similarity of the shape of these regions with
the reference shape gives another probability for the presence of the object. Com-
bining these gives the likelihood ratio (object / no object) which, while exceeding
a threshold, is an indication of the test image containing the object. The constel-
lation models are able to model diverse objects with either tight variance in the
appearance space but loose shape model (e.g. spotted cats), or a rather rigid shape
model but more visual variance for some parts (e.g. faces, motorbikes). Hence,
the models are able to capture the essence of each object, be it the appearance of
features or their shape or both. A problem with the constellation models is the
computational complexity which sets upper limits for the numbers of the extracted
regions and features in the object model. If none of the extracted regions in a test
image corresponds to the object’s features, the object is unlikely to be detected.
Also, the model of (Fergus et al., 2003) requires hundreds of training images, and
it takes more than 24 hours to learn an object model. A partial remedy was sug-
gested by Fei-Fei et al. (2003) who incorporate prior information, gained from
other object categories, in the learning state so as to decrease the number of train-
ing images into few. Fei-Fei et al. (2007) came up with an incremental version of
the constellation model of (Fei-Fei et al., 2003) which uses a recursive version of
the variational Bayesian method. In the incremental method, the training images
can be fed gradually and the object model is updated after each added image, or
group of images. The main difference of the constellation models with the studied
model is the number of possible locations for the features; in constellation models,
it is typically a few dozens, among which the corresponding features are sought,
whereas in this thesis, the posterior probability distribution of the feature locations
is defined for all the image pixels and there are no limits for where to seek the fea-
tures. Naturally this makes it impossible to exhaustively evaluate all the possible
feature combinations, as is done in the constellation models; instead, Monte Carlo
sampling methods are resorted to find probable feature locations.

Many methods have been proposed that resemble the constellation models in
that they also model the object with parts and shape. Mikolajczyk et al. (2006)
presented a part based model with a hierarchical tree structure to detect multiple
classes. Another method for detecting multiple classes is the method of (Murphy-
Chutorian et al., 2005) which uses both color and Gabor features which are shared
between and within different object models. The geometric method of Lazebnik
et al. (2004) uses semi-local affine parts each of which consists of spatially nearby
features. In their method, candidate parts are extracted from pairs of images, and
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another validation set is used to select the best hypothesis to represent the object.
In the object detection method of Lowe (1999, 2004) each detected SIFT feature
votes for the location, scale and orientation of the object, and many nearby fea-
tures voting for the same scale and orientation indicates the presence of the ob-
ject. Fergus et al. (2006) improved the constellation model by having a simpler
star-shaped model for the topology of the object parts and a more efficient feature
model. Histogram features were used in the part based method of (Chum and Zis-
serman, 2007), and Crandall et al. (2005) consider different graphical models and
spatial priors in their part based model.

The part based methods, described above, do not give precise information about
the object location. However, there are some methods that aim to segment the
target in addition to detecting or classifying the image content. Pantofaru et al.
(2006) combine shape based and appearance based descriptors into something
called Region-based Context Feature with which the learned object can be seg-
mented and detected in the test image. Ahuja and Todorovic (2007) represent
images by multiscale segmentation trees which are clustered to model different
object categories. Object segmentation and classification are considered as two
closely collaborating, intertwined processes by (Leibe and Schiele, 2003; Leibe
et al., 2004, 2008) who combine local appearances and a shape model in their
probabilistic framework. Winn and Jojic (2005) combine color and edge informa-
tion with the shape and pose information and learn the object model by assuming a
small within-instance variability and large between-instances variability on the ap-
pearance. Borenstein et al. (2004) combine bottom-up and top-down information
into a single segmentation framework.

The so-called bag-of-features methods (Willamowski et al., 2004; Zhang et al.,
2007; Opelt et al., 2006a) use a collection of features which discard the spatial
layout. They are hence used only for object detection and classification, although,
according to (Zhang et al., 2007), “it is possible to perform localization with a
bag-of-keypoints representation, e.g., by incorporating a probabilistic model that
can report the likelihood of an individual feature for a given image and category”.
The bag-of-features methods may classify images using also the information of the
background; for instance, in a car representation the features might also include
regions extracted from the road as they give further hint of the presence of the
car in the image as opposed to general background images. Like the histogram
methods, the bag-of-features methods have good invariance against occlusion and
they often outperform the parts-and-shape models in pure classification tasks.

Some other methods that are difficult to categorize but should be mentioned
here are the complex biologically inspired hierarchical feature model by (Serre
et al., 2007), the optic flow algorithm that aims at locating the disparity between
two (typically stereo) images by (Koeser et al., 2006), the method of Wolf and
Martin (2005) which learns the object model from a few images with regularization
by using corrupted copies of the training data, and the method of Miao and Rao
(2007) who have taken a different approach in that they use Lie groups to learn the
transformations between images.
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Figure 2.1: Two examples of impulse responses (real part) and transfer functions
of one-dimensional Gabor filters. The frequencies are 0.5 Hz on both cases. The
standard deviation of the Gaussian part of the filter in the upper row is ¢ = 1; in
the lower row itis o = 3.

2.5 Gabor features

The features that are employed in the studied object matching system are Gabor
features, of which this section gives an overview. Gabor features have especially
succeeded in face recognition (for a review, see (Shen and Bai, 2006)). As the main
contribution of the thesis is on the probabilistic formulations, an exhaustive survey
will not be given. The emphasis is on the practicalities instead of theoretical issues.
Those interested on the theoretical background of Gabor filtering are referred to,
for instance, (Lee, 1996).

2.5.1 Gabor filters

A filter can be described as something that changes a signal when applied to it. The
characteristics of the filter imply how the signal changes. For instance, a low-pass
filter attenuates the high frequencies of the signal so that the filtered signal contains
mainly low frequencies. The filtering, that is, the process of the filter acting on the
signal, can be done in two different ways, according to the convolution theorem.
Either the signal is convolved with the impulse response of the filter on the domain
of the signal (be it time or spatial). Another option is to multiply the Fourier trans-
formed signal with the transfer function of the filter, which is the Fourier transform
of the impulse response of the filter, in the frequency domain and inverse transform
the result back to the original domain. The filtered signal is called the response of
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the filter.

The Gabor filters are band pass filters that have certain optimality properties,
described in Subsection 2.5.2. The impulse response of a Gabor filter is a product
of an infinite complex sinusoidal function and a real Gaussian function. The si-
nusoidal part is often called the carrier as it carries the frequency (and orientation
in 2D) information, and the Gaussian part is called the envelope since it controls
the overall shape of the filter. Two filters with different standard deviations in the
Gaussian part are illustrated in Figure 2.1.

Because the signals here — the images — are two-dimensional, the employed
Gabor filters are also two-dimensional. The response of the ordinary 2D Gabor fil-
ter depends on the average grayscale level in the images. This is unwanted because
one of the invariances that a computer vision system should have is the invariance
against brightness. Fortunately, this invariance can be achieved by removing the
DC component of the filter (the abbreviation stems from direct current). The re-
sulting filter is thus DC-free, meaning that the mean value of its impulse response
is zero and at zero frequency its transfer function is zero.

The impulse response of the DC-free Gabor filter is

2 2
h(u,v) = 27‘]:0_2 exp <—%( 2+ 1)2)> X

o2
<exp(i(f cos(f)u + fsin(f)v)) — exp(—?)> , (2.1

where u and v are the horizontal and vertical spatial components, f is the frequency
of the filter, 6 is the orientation of the filter, and o is the standard deviations of the
Gaussian function (o can differ in u and v directions). The transfer function of the
DC-free Gabor filter is the Fourier transform of 2.1:
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from which it can be verified that H(0,0) = 0.

Figure 2.2 gives an example of two different Gabor filters and their responses.
In the filtered images, the lines whose orientation matches the orientation of the
filters are clearly emphasized. Also, the wavelength of the filter affects what lines
are especially amplified: for the vertical filter, the bars on the traffic sign and the
spaces between them happen to fit the wavelength, whereas the skew filter with
higher frequency emphasizes finer details in the image. The phases are related to
the nature of the edges; if the change (from left to right) in brightness is from low
to high, the phase response is + /2 on the edge, and vice versa.



18 CHAPTER 2. A REVIEW OF OBJECT MODELS

Figure 2.2: Top left: the impulse response of a 2D Gabor filter with parameters
{f =0.75,60 = 0,0 = w}. Top right: an example image. The size of the filter
equals the size of the image. Middle left: the amplitude of the filter response.
Middle right: the phase of the filter response. Bottom left: the impulse response of
a 2D Gabor filter with parameter {f = 1.5,0 = 30°,0 = 7}. Bottom right: the
correspondent amplitude of the filtered image.

2.5.2 Properties of the Gabor filter

It can be thought that a Gabor filter acting on certain image pixel is sensitive to,
or ’listens’ to, a signal whose shape corresponds to the filter parameters. The stan-
dard deviation of the Gaussian part controls the extent of the image area which is
being listened to. Hence, the Gabor filter acts as a local edge-like feature detector,
as Figure 2.2 also demonstrates. The amplitude part of the filter response gives
approximate information about the locations of the lines which is further specified
by the phase response.

Figure 2.3 demonstrates the influence of the Gaussian part of the Gabor filter.
Two vertical filters with different values on the standard deviations, o = 7 and
o = 3m, are applied on a binary image. Middle panel reveals how the sharper
filter obtains positive responses only in the very vicinity of the edge whereas with
the broader filter the edge information spreads into a wider range. Due to the
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Figure 2.3: Left panel shows a binary image which is filtered with two different
Gabor filters having different values for o. Frequency and orientation parameters
were set to f = 0.5,6 = 0. The responses of both filters are computed along the
red dashed line. Middle panel shows the amplitudes of the responses as function
of the position along the vertical line (note the limited x axis). Right panel shows
the contour lines along which the values of the transfer functions in the frequency
domain are 0.5.

normalization factor in the Gaussian part, the response on the edge is lower with
the broader filter. Thus, it seems to make sense to use filters that are tight in the
spatial domain. For instance, when using the standard deviation o = , the filter
’sees’ the edge in the area of less than ten pixels in both directions which should
yield good matching accuracy, at least when used with the phase information.

However, the coin has another side as well. The right panel of Figure 2.3
reveals how the transfer function of the filter that is sharper in the spatial domain
is broader in the frequency domain. The same phenomenon can be seen in Figure
2.1 where the one-dimensional filter with larger extent in the impulse response
results in a tighter transfer function, or a smaller width of its band pass. This
is not a property of Gabor filters alone but is a general principle in the filtering
theory, known as the uncertainty principle. It states that the higher the precision
in the spatial domain, the lower it is in the frequency domain. In other words, if
one wants to measure the frequency of a signal with infinite accuracy, it comes
with the cost of losing the spatial (or temporal if the signal is in the time domain)
knowledge. On the contrary, a delta function can be perfectly localized but nothing
can be said about its frequency contents. These extremes correspond to having the
Gaussian width parameter at 0 = oo and o = 0, respectively.

It can be shown that there is a lower bound for the joint uncertainty of a filter
in the two domains:

AuAVAW AWy > —
1672

where (Au, Av) are the normalized second moments of the spatial variables and
(Awy, Aw,) those of the frequency variables. The uncertainty principle is also
familiar from quantum mechanics in which it states that the product of the un-
certainties of any two observables with non-commutative operators has a lower
bound. For instance, both the position and momentum of a particle cannot be
known with arbitrary accuracy. It is not a coincidence that the same phenomenon

(2.3)
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occurs in these two different fields of science. In quantum mechanics, particles are
represented by a wave function whose magnitude can be inferred as a probability
distribution of the location of the particle, and the moments of an observable are
computed by integrating the corresponding operator over the square of the wave
function (Ballentine, 1998). Because the position and momentum operators are
conjugate operators, that is, the Fourier transforms of each other, the situation is
mathematically very similar as in filtering theory.

Despite the joint uncertainty in the two conjugate domains being lower
bounded by equation (2.3), it is possible to derive a filter that achieves this lower
bound. This filter is the Gabor filter (Gabor, 1946; Daugman, 1985, 1988). Ap-
plying Gabor filter yields thus an optimal extraction of the spatial and frequency
information from the signal. Also in quantum mechanics the wave function that
satisfies the minimum uncertainty relation is of the same form as the Gabor im-
pulse response. The widths of the Gabor filter in spatial and frequency domain
are

A’UJ:AU:L Awu:va: f ;
2V 2r0
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from which it can be verified that the Gabor filter indeed achieves the lowest pos-
sible joint uncertainty. Apart from the information theoretical reasons, there are
also psychophysical arguments that favor Gabor filters: the receptive fields in the
mammalian primary visual cortex have been reported to resemble the impulse re-
sponses of the Gabor filter (Daugman, 1988; Palmer, 1999). This indicates that
the cells in the cortex act as local frequency analyzers for the incoming images.
Finally, it should be noted that the Gabor filters do not form an orthogonal basis,
that is, an inner product of the impulse responses of the different Gabor filters is
non-zero. At first sight, this sounds like bad news as orthogonal basis functions
are typically preferred in constructing signals due to their convenience. However,
Daugman (1988) showed that the Gabor filters, while non-orthogonal, are optimal
frequency / spatial analyzers. In quantum mechanics, the consequence of having
a non-orthogonal set of wave functions is that the state of the particle is pure, that
is, a state with just single non-zero term in its spectral representation (Ballentine,
1998).

2.4)

2.5.3 Gabor filter bank

The equations (2.1) and (2.2) define a filter with certain frequency and orientation.
Filters with different frequencies and orientations constitute a filter bank. If an
image is filtered with a filter bank, each filter of the bank is applied in the image,
one at the time. The resultis an N, X N, X N x Ny -sized (complex valued) matrix,
where N, and N, are the dimensions of the image, Ny is the number of different
frequencies in the filter bank, and Ny is the number of different orientations. An
example of a filter bank is given in the spatial domain in figure 2.4 and in the
frequency domain in figure 2.5. The area that the filters cover in the frequency
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Figure 2.4: The real parts of the impulse responses of a Gabor filter bank with three
frequencies f = v/27/{4,8,16} and six orientations § = {0, 7/6, ..., 57/6}. The
Gaussian standard deviation is 0 = w. Red color indicates high values.
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Figure 2.5: The transfer functions of the filter bank of Figure 2.4. The value along
the contours is 0.4.
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Figure 2.6: The amplitudes of Gabor filter bank responses of a binary image, shown
on the left panel. The filter bank contains four differently oriented filters: 6 =
{0,45,90, 135}°. The orientation angle is shown above each panel, as well as in
parentheses the amplitude value (multiplied by 1000 for clarity) at the corner point,
which is marked with a red circle in the binary image.

space is controlled by the number of the filters in the bank and the value of o,
which is related to a band pass of a filter through equation (2.4). Note that only the
upper half of the frequency space needs to be covered as the orientation of any line
is between zero and 180 degrees.

Each filter in the bank detects lines that correspond to its frequency and orien-
tation. Applying a filter bank makes it possible to detect more complex features
than just lines. For example, the filter bank responses of a corner are depicted in
figure 2.6. The absolute values of the responses at the marked point indicate that
the feature consists of vertical and horizontal lines, but not diagonal lines, which
suggests the feature to be a right-angle. Hence, corner points can be represented
by a vector whose elements indicate the responses of differently oriented Gabor
filters. The problem of distinguishing a corner and an intersection of lines with the
filter bank is discussed in the next subsection which introduces a similarity measure
between two Gabor filter bank responses.

2.5.4 Gabor similarities

Having introduced the Gabor filter banks in the previous subsection, a computa-
tional tool which compares the filter bank responses at two different image points
should be derived. Such a tool would enable points that are visually similar with a
given pixel to be located in another image. The vector of the responses of a filter
bank at certain pixel is called a filter jet. Each pixel can thus be transformed into
the Gabor jet space which is NV x Ny x 2 dimensional, as the jets are complex, and
a visual similarity between two pixels can be assessed by comparing their vectors
in the jet space. A natural similarity measure between two vectors is their normal-
ized inner product which reveals the angle between the vectors. The inner product
of the amplitudes of two jets .J and .J, first proposed as a similarity by Lades et al.
(1993), is defined as

Sul, J') = Y o 1, 2.5)

\/ >iai Y a’}
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Figure 2.7: Two different similarity fields between the point, shown as green cross
in the leftmost image, and the image. S, and S), refer to equations (2.5) and (2.6).
In the bottom row, the contours show the top 3% similarity values.

where a; and a} are the amplitudes of the components of the two jets, the number
of which is Ny x Ny. Another option would be to compute the sum of squared
differences of the components which for normalized vectors is, as an optimized
quantity, equivalent to their inner product.

The similarity measure (2.5) ignores the phase of the filter responses which
carries additional information of the images. The phase can be included by com-
puting the inner product of the complex jets and taking the real part of the result.
In terms of amplitudes a; and phases ¢;, the inner product is computed as

_ X aiacos(d; — ¢)

\/ D a’z? > a’?

Wiskott et al. (1997) modify the similarity measure (2.6) by adding a phase dis-
placement into the argument of the cos function. The purpose of this displacement
term is to compensate for the rapid spatial variance of the phase by minimizing the
phase difference. As a result, the widths of the local similarity peaks in the image
are increased which facilitates the optimization of the location, but the similarity
fields also tend to be less smooth and contain discontinuities (Kallioméki, 2007).
Therefore, the complicated estimation of the displacement term is discarded and
the similarity measure (2.6) is used as such.

An illustration of the two similarity measures is given in Figure 2.7, where
the similarities are computed between an image and a point that is extracted from
the same image. Naturally, the similarities are equal to one at the comparison
point. However, multiple local maxima can be seen elsewhere in the image, which
complicate the object matching. The local peaks in the phase-ignoring similarity
S, are broader than in the phase-sensitive similarity S}, which produces multiple
sharp maxima in the image. Having the filter jets normalized makes the similarities
contrast invariant, which causes local maxima also in the image area which seems

Sp(J, J") €[-1,1]. (2.6)
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Figure 2.8: The similarity fields of the points, shown with red circles in the leftmost
panels, within the image. S, and S, refer to equations (2.5) and (2.6). The contours
show only the highest 1% of the values.

to be uniform. The similarity fields in Figure 2.7, as well as in the upcoming
examples, are formed with a Gabor filter bank that was presented in Figures 2.4
and 2.5.

The properties of the two similarity measures become more apparent in Figure
2.8 which shows the similarities for a simple binary image. With phase-sensitive
similarity .5,,, also the phases must match, that is, the signals must be in the same
phase at the pixels being compared. The phase at a transition from low grayscale
values to high values is opposite to a reversed transition and the similarity .S, pos-
sesses high values only when the signal changes in the same direction; the sim-
ilarity .S, ignores the direction as it utilizes only the amplitude information. In
addition, the Gabor filter bank only registers if there are lines whose alignment
corresponds to the orientations in the filter bank; the mutual relations between the
lines are ignored. Hence, a pixel from which a line goes down and another line
goes right is Gabor-wise the same pixel as the one from which a line goes up and
another line goes left (or any other combination of these). As a result, each corner
of the square is equally similar with S, whereas the similarity .S, is high only in the
corner where the changes from white to black are in the correct order. The same
thing happens when the comparison point is near the edge. Although it seems that
Sp is a better measure of visual appearance, problems occur when the features are
on the edge of the object as the background may reverse the direction of the signal.
The similarity S, is invariant to such reversions. However, for the features that are
inside the object the similarity .S}, has been found to outperform S, as it is more
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Figure 2.9: The phase-sensitive similarity field (2.6) of the point, shown with a red
circle in the left panel, within the image. The contours show only the highest 1%
of the values.

Figure 2.10: The phase-sensitive similarity field (2.6) between the point, shown
with a red circle in the left panel, and another image. The contours show only the
highest 1% of the values.

discriminant due to the phase information, and the object matching methods of this
thesis mainly use the phase-sensitive similarity .S5,.

Figure 2.9 gives an example of how also the phase-sensitive similarity has diffi-
culties in separating a corner point from an intersection of two lines that are aligned
similarly than the lines that form the corner. Although the similarities at the con-
fusing points are clearly less than unity, such false local maxima complicate the
matching. Finally, Figure 2.10 shows a real example how well the Gabor similar-
ity generalizes into another object instance. Again, there are multiple fallacious
similarity peaks in the image. This time it happens that the correct location is the
global maximum of the similarity, the value of which is 0.88.

2.5.5 Rotation and scale invariance

The Gabor similarities decrease when the scale and rotation differences between
the object instances increase. This phenomenon is illustrated in Figure 2.11 where
a dog image is rotated in the upper row and rescaled in the bottom row. The more



26 CHAPTER 2. A REVIEW OF OBJECT MODELS

M & }é’ 'b@’ .‘\é" { | [~

Figure 2.11: The phase-sensitive similarity field (2.6) of the point, shown with a
green circle, within the image. The contours show only the highest 0.1% of the
values.

the images are rotated and scaled, the lower is the similarity. Rotation and scale
invariances are — among the almost inherent translation invariance — character-
istics of a proper object matching system. If the orientations and the logarithms
of the frequencies are uniformly distributed in the filter bank, it is possible to ob-
tain some level of invariance by shifting the filters in the jet J’ (see equations
(2.5) and (2.6)) so that all the center frequencies and orientations of the filters are
shifted by the same amount, and using the shift which most closely corresponds
to the scale and rotation. For instance, if the orientation angles in the filter bank
are 0, = k(A6),k = 1,2,..., N, and if the rotation was exactly the same as the
orientation differences in the filter bank (A#), the similarity could be computed
precisely by using filters whose orientations are shifted by one index. That is,
if the reference jet consists of uniformly spaced orientations 61, ..., 0y, the im-
age in which the similarity is to be computed would be filtered with orientations
0, ...,0N11, where the filter with 6 is the complex conjugate of the filter with
6. Likewise, for a rotation angle 65 the filters with orientations 03, ..., 8+ would
obtain an exact similarity, and so on. For a rotation angle that falls between the
orientation differences, the nearest shift would have to be used.

If the differences between the adjacent orientations and frequencies in the filter
bank are small, the shifting approach performs well. This, however, leads to a
large filter bank which increases the computation times. It would be nice to have a
sparse filter bank while also being able to compute the similarities for an arbitrary
rotation and scale. This is possible — at least approximately — by computing the
filter responses as a linear combination of the responses of the filter bank. For
instance, the impulse response for rotation ¢ would be (Kalliomiki, 2007)

=1

where w; () are the weights that depend (only) on the rotation angle. Interpo-
lating the filters according to (2.7) is called steering. Kallioméki (2007) derived
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Figure 2.12: An illustration of interpolating the filter responses. The filter response
at the blue cross can be estimated from the four neighboring filters that are marked
with green circles.

analytical expressions for the coefficients w; so that the square error between the
exact response and the linear combination is minimized. In this thesis, a simpler
approach is taken: Giving a scale and rotation angle, the filter responses are com-
puted from the four neighboring filter responses (see Figure 2.12). The weights
are interpolated linearly for the rotation and logarithmically for the scale (Giinther
and Wiirtz, 2009). In addition, the weights are the same for each new filter so the
whole new filter bank can be computed from the existing filter bank as a weighted
sum. For instance, let us consider a rotation angle 63 + (A#)/2, where A is

0.95
0.9
0.85
0.8
0.75
0.7
0.65

Figure 2.13: An illustration of applying the interpolation scheme into the trans-
formed dog image. The contours show the highest 0.1% of the phase-sensitive
similarity values (2.6) of the point, shown with a green circle, within the image.
Compare with Figure 2.11.
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the gap between two orientations in the filter bank. The weights in equation (2.7)
would be ws = 0.5, wy = 0.5, and other weights zero, so the filter bank would be
first shifted two units (to reach the gap between 63 and 6,) and then interpolated
using 63 and 64. The filter bank must be extended to be able to estimate the re-
sponses. The responses of the lower half plane are complex conjugated from the
upper half, and for the scales, extra frequencies must be added to both ends. An
example of the interpolation approach is given in Figure 2.13 which shows a clear
improvement over the Figure 2.11; the similarities are high at the correct location.
Naturally, the scale and rotation can occur at the same time. The rotation could be
estimated by optimizing it in each pixel so that the similarity is maximized. Instead
of rotating and scaling each feature independently, in this thesis all the features are
transformed with the same scale and rotation that is related to the object instance.



Chapter 3

Bayesian methodology

3.1 Introduction

Thomas Bayes, a reverend and mathematician, has given his name to the statisti-
cal approach called Bayesian inference. What makes Bayesian inference attractive
is its consistent handling of uncertainties which are always inherent in real data.
Bayesian treatment often leads to complex models, needing heavy computer al-
gorithms to solve them and the recent interest in Bayesian modeling can be par-
tially explained with the increase of computational power on personal computers.
Bayesian inference is based on subjective prior probability, which has been criti-
cized. However, in science there usually is some inter-subjective prior knowledge
about the process being measured that can be explicitly incorporated in Bayesian
methodology (Bolstad, 2004; Spiegelhalter et al., 2004). On the other hand, in the
absence of prior beliefs, non-informative prior probabilities can always be used.
In Bayesian inference, the model parameters are considered as random variables
with probability distributions and the inference is based on the actual observed
data. This contrasts with the classical frequentist approach — another statistical
viewpoint — where the model parameters are considered as fixed but unknown
constants and the inference is based on all the possible data sets that might have oc-
curred but did not. Interpreting the uncertainty about the true value of the model pa-
rameters is natural in Bayesian approach (Bernardo and Smith, 1994). In Bayesian
methodology it is also straightforward to handle non-interesting parameters, to find
predictive distributions and to build hierarchical models.

This chapter presents the basic idea behind Bayesian inference, as well as the
sampling methods used in analyzing the complex distributions. For further infor-
mation in Bayesian modeling, the interested reader is referred to (Bolstad, 2004),
(Gelman et al., 2004) and (Bernardo and Smith, 1994).

29
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3.2 Bayesian inference

3.2.1 Bayes’ theorem

Bayes’ theorem is the cornerstone of Bayesian inference. Basically, it is an out-
come of a simple use of the basic laws of probabilities. For (any) events D and 6
it can be written that p(D, ) = p(D|6)p(€). On the other hand, it also holds that
p(D,0) = p(0|D)p(D). This yields

p(DIO)(O)

p(oID) = "2

(3.1)
This formula is known as Bayes’ theorem when we let D denote the data and 6
the (unknown) parameter or parameter vector of the model (there may be one or
more parameters). With such a notation, p(6|D) is the posterior probability of the
model parameters given the data, p(D|6) is the likelihood of the parameters, p(6)
is the prior probability of the parameters and p(D) is a normalization constant, also
called the evidence of the model. This normalization constant is the integral of the
numerator over the model parameters:

p(D) = / p(DI6)p(6)d6 (3.2)

Bayes’ theorem thus says that the prior belief of the parameters turns into poste-
rior probability after observing the data by multiplying the prior probability with
the likelihood and normalizing. This is exactly what intuition would also say; be-
fore experiments, we may have some belief about the parameter values, and the
observations modify the belief. The posterior distribution is often computed only
in unnormalized form, p(0|D) o p(D|0)p(H), as it is usually enough to compare
the relative probabilities for different values of 8, without needing to know the ab-
solute values. Here, the probability distributions are taken to implicitly depend on
the used model assumptions. When comparing different models, which is again
straightforward in the Bayesian approach, model dependencies become explicit.
By using a uniform prior distribution for 6, p(f) o 1, it holds that p(6|D)
p(D|0). Thus, without any prior beliefs the posterior distribution equals (up to a
normalization constant) the likelihood function that is used in the frequentist ap-
proach to make inferences about the parameters. However, there is a philosophical
difference in interpreting the probabilities. Whereas p(D|6) is the probability of
the data, given some parameter value, the posterior distribution is the probability
distribution of the unknown parameter, given the data. The posterior distribution
is the most important tool needed in Bayesian inference. With the posterior dis-
tribution, it is easy to compute, for instance, the probability that the true value of
the unknown parameter is in some range. Frequentists assess this with confidence
intervals, which are based on the idea of having an infinite number of hypothetical
repetitions of an experiment (Bernardo and Smith, 1994). Interpreting the proba-
bilities of the possible values of the parameters is thus more natural in the Bayesian
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Figure 3.1: The panels on the left show two different artificial posterior distribu-
tions of 6, and on the right are the corresponding distributions p(z|D), computed
using the ML method and the Bayesian method. The distribution p(x|6) is taken
to be a Gaussian distribution, with the parameter # as mean value and with unit
variance.

treatment. Furthermore, to make decisions that are based on the model parameters,
Bayesian inference can directly apply the decision theory whereas in the frequen-
tist approach the properties of the used estimators must be considered (Bernardo
and Smith, 1994).

3.2.2 Applying Bayesian inference

Applying Bayesian inference is more than just using Bayes’ theorem. When mak-
ing inferences that are based on the model parameters, the Bayesian framework
offers a natural way to take into account the uncertainty involved in the param-
eters, namely marginalization. Consider a variable x that depends on the model
parameters 6. For instance,  might be future observations. We are interested in
the probability distribution of x, given the observed data, p(x|D). The Bayesian
way to compute the distribution is by integrating over 6, that is, by marginalizing
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the joint distribution:

g9 — 4 Pl0)p(DI0)p(6)d6
[p(DIO)p()do
(3.3)

p(2| D) = / p(, 6| D)d6 = / p(2]0, D)p(6]D)

where z has been assumed independent of DD, when 6 is given.

The frequentist approach would be to compute a point estimate for the model
parameter and plug that into the equation. A widely used point estimate for the
parameter is the one that maximizes the likelihood, called the maximum likelihood
(ML) estimate: 0/, = argmaxg p(D|6). The probability in (3.3) then reduces
to p(z|D) =~ p(x|0prr). This corresponds to having a posterior distribution cen-
tered at 0,7, and having zero variance, i.e. a delta function at 6,;;. According
to the large sample theory, with lots of observed data this assumption approaches
the reality and the approximation holds. If the variance of the posterior distribu-
tion is large, using the point estimate alone is prone to leading to poor results and
confidence intervals which take into account the variance should be used. A multi-
modal likelihood is especially difficult to handle with frequentist methods, but then
again, multimodality causes problems also in Bayesian inference, at least in high
dimensions. To illustrate the differences of Bayesian and ML approaches, Figure
3.1 shows two artificial posterior distributions of # and the distributions p(z|D),
computed using the ML estimate and Bayesian methods. The prior distributions
have been assumed uniform so that the maximum of the likelihood is the same as
the maximum of the posterior. In the upper panels, the variance of the posterior
is fairly low and the two approaches result in similar distributions. In the lower
panels, the posterior is skewed and the ML approach gives too optimistic results
as the uncertainty in x is underestimated. On the contrary, computing p(z|D) with
equation (3.3) takes into account the whole posterior distribution of 6.

Another advantage of the Bayesian approach, worth mentioning here, is the
possibility to build hierarchical models. This is useful, as the structure in real
problems often consists of multiple levels of hierarchies. In hierarchical models,
the parameters, on which the data depends, have prior distributions whose parame-
ters are not fixed but have their own prior distributions. Such parameters are called
hyperparameters and their priors are called hyperpriors. It is thus possible to pass
the selection of some parameter values further up in the hierarchy, away from the
data’ (Gelman et al., 2004). Let us denote with ¢ the hyperparameters. Applying
Bayes’ theorem and the rules of probabilities, the joint posterior distribution is

p(,0|D) o< p(D18, p)p(,0) = p(D]0)p(0]e)p(p) - (3.4)

Note that in the likelihood the data is independent of the hyperparameters. The
marginal posterior distribution is again obtained by marginalizing:

p(6|D) = / p(.61D)dy . (3.5)

Hierarchical modeling is especially useful when the data is divided into groups,
each of which have their own parameters with common hyperparameters.
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A fully Bayesian analysis usually refers to a hierarchical model where the non-
interesting parameters are integrated out. If point estimates are used (for hyper-
parameters), the approach is usually called empirical Bayes. The empirical Bayes
analysis is computationally lighter than the full treatment but with few data may be
inferior as all the uncertainties in the model are not integrated out.

3.2.3 Computational difficulties in using Bayesian inference

There are few distributions, such as Gaussian, for which the posterior distribution
can be analyzed in closed form. In such cases one can compute, for instance, the
mean and variance of the model parameters or the integral in equation (3.3) with
pen and paper. Typically, however, computational algorithms are needed to analyze
the posterior distribution. If the parameter space is of low dimension, that is, if the
parameter vector ¢ has few components, it usually suffices to divide the parameter
space into a dense grid and evaluate the value of the posterior at each grid point,
or to use the traditional quadrature methods, such as Riemann quadrature. With
an increasing number of parameters in the model, these methods become rapidly
unfeasible due to a phenomenon called the curse of dimensionality: the number of
grid points needed for accurate analysis grows exponentially with the dimension
of the parameter space. Even a model with as few as five parameters may be too
complex for the grid method; assuming we wish to divide each component of the
parameter vector into one hundred elements, the matrix containing the posterior
values will have 100° = 10'° elements. In the object matching problems studied
in this thesis, there may be one hundred parameters, which take approximately 200
different values (depending on the number of pixels in the images). The number
of elements in the posterior matrix would thus be 200'%° ~ 10230, which greatly
exceeds the number of elementary particles in the universe! Alternative numerical
methods are thus needed. The two most widely used approaches are to approximate
the posterior with simpler distributions or to sample the posterior with Monte Carlo
sampling methods (Gelman et al., 2004).

There are three main methods for approximating the posterior (Bishop, 2006).
In the variational Bayesian method, the posterior distribution is approximated with
a more tractable distribution that minimizes the Kullback-Leibler divergence be-
tween the two distributions; in Laplace approximation, the posterior distribution is
approximated with a Gaussian distribution centered at the MAP (maximum a pos-
teriori) estimate; and in the expectation propagation algorithm, assumed-density
filtering and loopy belief propagation are combined to obtain an approximation of
the posterior distribution. However, the true posterior might not be easily approx-
imated with simpler distributions. If the posterior distribution is multimodal, one
has to use a mixture distribution as the approximating distribution, which requires
the locations of all the modes to be found.

The Monte Carlo sampling methods, on the other hand, aim to approximate the
posterior distribution with samples. These samples are concentrated in such param-
eter values for which the value of the posterior distribution is large. Theoretically,
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Figure 3.2: An illustrative example of Monte Carlo sampling. Left panel shows a
probability distribution and 200 samples, collected from the probability distribu-
tion, as crosses. Right panel shows a histogram of the samples.

there is no limitation on the form of the posterior or the dimension of the param-
eter space although in practice these have a huge impact on the performance of
different Monte Carlo sampling methods. In the object matching problem studied
in this thesis, the posterior distribution is multimodal and difficult to approximate
with simple functions. Hence, Monte Carlo methods are used, especially particle
Monte Carlo methods, which generally work well also for multimodal distribu-
tions. Monte Carlo methods are dealt more extensively in the next section.

3.3 Monte Carlo methods

3.3.1 Introduction

The idea behind Monte Carlo (MC) sampling methods is to collect samples of
the target distribution, i.e. the distribution one is interested in, and to represent
the target distribution with these samples. Using the sample representation, any
integral that is based on the target distribution can be estimated. An example of
a sample representation is given in Figure 3.2. Luckily, it is adequate to collect
samples of the unnormalized target distribution since the value of the normalization
constant can be ignored. This makes the MC methods appealing for Bayesian
modeling as the normalization constant of the posterior distribution is often difficult
to compute. Let us denote with {z(")} i = 1,..., N a sample set of size N that
represents the target distribution p(x). The mean value of a function f(x) w.r.t. the
distribution p(z) is approximated as

Byl/ @) = [ f@p(e)do~ 3™ a) 36)

Inserting f(x) = x, it holds that the Monte Carlo estimate of the mean value of the
parameter x is the mean value of the samples, in accordance with intuition. By the
strong law of large numbers, the MC estimate converges almost surely to the exact
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Figure 3.3: Left panel: the posterior distribution p(6|D) of the left lower panel in
Figure 3.1 and 100 samples drawn from it, shown as red dots. Middle panel: the
distribution p(x|D) computed with numerical trapezoidal integration method (blue
solid line), and the distribution p(z|D) estimated from the Monte Carlo samples
(red dashed line). Right panel: A Monte Carlo estimate of p(x|D)|,—5 for dif-
ferent number of samples (one realization), and the ’exact’ value, computed with
trapezoidal method, shown as blue dashed line.

value with an increasing number of samples, irrespective of the dimension of the
parameter space (Robert and Casella, 2004; Gelman et al., 2004).

For instance, the integral of equation (3.3) can be estimated with N samples
6@ i =1,...,N, collected from the (normalized or unnormalized) posterior dis-
tribution p(6|D):

fp 37‘9 D‘H (z
PlD) = e NZp 26) (3.7)

In Figure 3.3, the distribution p(x|D) of the example of the lower panels in Figure
3.1 is estimated using MC sampling. First, 100 samples are obtained from the
posterior distribution p(#|D), which are then used in estimating the distribution
p(x| D). The result is close to the *exact’ distribution, which is computed using the
deterministic trapezoidal integration method (’exact’ in a sense that the trapezoidal
integral is also an approximative numerical method, but in one dimension and small
step size it is in practice equal to the exact solution). The rightmost panel shows
how in this experiment the estimate of the value of p(z|D) at z = 5 approaches
the true value with a growing number of samples.

Basically, Monte Carlo sampling can be used to approximate any integral by
suitably factorizing the integrand into a probability function, which is sampled,
and another function whose expectation value is the integral in question, so that
the formula (3.6) can be used. Monte Carlo integration can actually be thought of
as a Riemann sum, with the samples 29 randomly simulated from p(zx) instead of
being deterministically spaced. Hence, a reasonably small number of samples is
often adequate to represent the target distribution, especially if most of the proba-
bility mass is concentrated on a tiny area in the parameter space. Also, when the
dimension grows, the number of MC samples needed for convergence does not
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necessarily scale with the complexity of the other numerical integration methods.
This happens, for instance, if the probability distribution forms a subspace in the
parameter space.

So far we have not considered how the samples are obtained from the target
distribution. This is the most difficult part of using MC methods. The factors that
complicate the collection of a fair sample representation are the number of local
modes, the amount of correlation in the modes and the dimension of the parameter
space. Two Monte Carlo techniques are introduced here. The first one is based on
Markov chains and is among the earliest MC strategies invented. The second one
is a more recent method that is based on weighted particles and in general works
better with multimodal distributions.

3.3.2 Markov chain Monte Carlo methods

In Markov chain Monte Carlo (MCMC) methods, a chain of random steps in the
parameter space is constructed so that it converges to the target distribution. This
Markov chain evolves over time by switching its state through a transition kernel
and has the target distribution as its stationary distribution. The convergence rate
depends on the starting value of the chain, but theoretically, after a sufficient long
time, the chain eventually ’forgets’ its initial state and the samples of the chain
resemble the samples of the target distribution (Gelman et al., 2004; Neal, 1993).

The differences between various MCMC methods lie in how the state of the
chain is updated. The most general MCMC method is the Metropolis-Hastings
algorithm, which uses accept/reject rule for the updating. In Metropolis-Hastings
algorithm with p(z) as the target distribution, at time ¢ a candidate x* is drawn
from a proposal distribution ¢(z|2*~!) and this proposal is accepted as a new state
x! with probability

p(a*) q(wt-wx*)) | s

p(x'=1) g(a*|at=1)

otherwise the state stays unchanged, ! = x!~!. Theoretically, under certain weak
assumptions, this chain is guaranteed to converge to the target distribution (Robert
and Casella, 2004). The transition kernel of the underlying Markov chain consists
of the proposal distribution and the acceptance step. If the proposal distribution is
symmetric, that is, if g(a|b) = q(b|a), the acceptance probability reduces to

¢ = min <1, p@’) ) (3.9)

p(xt=1)

¢ = min (1,

and the name of the algorithm shrinks to Metropolis algorithm, which is actually
the first MCMC algorithm proposed (Metropolis et al., 1953). Such acceptance
probability means that if the value of the target distribution is higher at the can-
didate than at the previous stage, the step is always accepted, and otherwise it is
sometimes accepted, akin to some stochastic optimization algorithms. Because the
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initialization value of the chain, 2!, may be far from (any) mode of the target dis-

tribution, the first values are typically biased and these burn-in samples have to be
removed from the final sample representation. Also, successive samples are not in-
dependent and may even have the same values, if the transition is rejected. Hence,
it might be a good idea to thin the sample set by picking, for instance, only every
fifth sample.

A widely used mutation of the Metropolis-Hastings algorithm is the Gibbs sam-
pler, in which the state vector is updated component by component. The proposal
distribution for updating the ith component at time step ¢ is

q(ilxt; X" = plaglxt_,xi 1) (3.10)

where d is the dimension of the parameter space, and the moves are always ac-
cepted. Hence, in Gibbs sampling the components of the parameter vector are sam-
pled from the conditional target distributions, conditioned on the already sampled
components at the current iteration and the remaining components of the previous
iteration. The advantage of Gibbs algorithm is therefore the avoidance of having
to design a specific proposal distribution. Also in Gibbs sampling, the parameter
vector must be somehow initialized.

Basically, MCMC algorithms are efficient methods for exploring a unimodal
un-correlated target distribution even in high dimensional spaces. If the posterior
is correlated, the convergence is usually slower. However, multimodality of the
posterior is a more serious problem. This is due to the low probability of switching
the mode. Depending on the initial value, the chain will usually converge to the
nearest local mode. In principle, the chain will eventually switch to another mode,
and after a long time the chain has visited all the main modes of the distribution
and represents it with high accuracy. However, in high dimensional problems, this
’long’ time may exceed the remaining age of our solar system, even if all the CPU
time of the earth were in use. The result is thus highly biased by the initialization
of the chain which is an unwanted feature unless the interest is only on the main
mode and prior information about its location is present. Generally, this is not the
case and more efficient methods are needed.

3.3.3 Particle Monte Carlo methods

The particle Monte Carlo methods rest upon the idea of representing the target
distribution as a weighted particle set. A particle consists of a sampled parameter
value and a weight. The parameter values are sampled from a proposal distribution.
By denoting the proposal distribution with ¢(x) and the target distribution with
p(z), the Monte Carlo estimate of the mean value of a function f(z) w.r.t. the
distribution p(x) can be rewritten as

S w fa®)
Zz’]\il w(®

By f0)] = [ f@aas = | f(rv)%q(fﬂ)dw ~

)

3.11)
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where (%) are sampled from ¢(z), N is the number of particles and

(3.12)

The weight w of a particle is thus defined as the ratio of the target distribution and
the proposal distribution at the sampled point. The *ordinary’ Monte Carlo estimate
(3.6) can be considered as a special case of (3.11) with weights w® =1 /N Vi.

Particle methods often utilize the resampling scheme. Resampling means that
the particle indices are sampled again according to their weights. The idea behind
resampling is to prune away the samples that are in practice useless for repre-
senting the posterior and to produce multiple copies of ’good’ particles (Doucet
et al., 2001). Resampling is theoretically correct because, on average, a particle set
{z® w®} represents the target distribution equally well as a particle set {Z (), 1},
where #(Y) have been resampled from z(?) according to w( and the weights have
been replaced by unity. For instance, consider having four (an artificially small
number) particles representing the target distribution, with weights 5, 2, 2 and
1. Hence, the first particle, for example, represents half of the probability mass.
Let us name the particles as a, b, ¢ and d. A resampled particle set could be
{a,a,b, c} with unit weights where the first particle is duplicated and the last par-
ticle eliminated (the probability of having particle d in the resampled particle set
is 1 — 0.9* ~ 0.34). Different resampling strategies exist, but deterministic meth-
ods should be favored as these avoid adding extra variance. Actually, resampling
according to the full’ weight or not resampling at all are just two extremes of re-
sampling according to w®, namely having o = 1 and o = 0, accordingly. The
value of o may be anything between 0 and 1. A low value means that the original
particle set is changed only a little, whereas a value close to unity indicates almost
full resampling. After resampling according to w®, the weights must be replaced
by w!~® to have a properly weighted particle set. Particle methods can be divided
into two groups which are next described.

Sequential Monte Carlo method

Sequential Monte Carlo (SMC) method has been popular in dynamic settings
where new data arrive sequentially, a typical example being the tracking of a mov-
ing object (Robert and Casella, 2004; Doucet et al., 2001). If at time stage ¢ the
observation is denoted as y; and the state of a Markovian system as x, and the ob-
servations depend only on the current state, the weight can be evaluated recursively
as
wy = p(x1:4| y1:4) _ p(xe]x1:-1, y1.0)p(X1-1]y1:0-1)
q(x1:¢|y1:t) q(ze[x1:0-1, Y1:0)g(X1:0-1[Y1:0-1)
p(yelze)p(ze | 21-1)

X W1 , 3.13)
Q($t|X1:t71, Y1;t)
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where the normalization factor p(y;| x;—1) has been omitted. Hence, one only
needs to consider the latest observation for estimating the whole posterior distri-
bution. Another appeal of SMC method is that it can be used with whatever kind
of state-space models. This makes it more applicable than the traditional Kalman
filter which is an analytical method for solving a linear state-space model with
Gaussian process noise (Haykin, 2001). However, more complex models can be
estimated with the extended Kalman filter and the unscented Kalman filter which
are thereby alternatives to using sampling methods. The SMC particles are usually
resampled after each observation although it is not necessary. The SMC algorithm
is also called particle filter, or bootstrap filter when the prior distribution is used as
a proposal.

The SMC algorithm can also be used in static problems although this has not
been very common. Chopin (2002) divides the available data into several blocks
which are incorporated into the system sequentially. The dimension of the parame-
ter space stays constant; the reasoning behind his approach is to decrease the com-
putation times. A similar idea was presented by Berzuini and Gilks (2003). Tam-
minen and Lampinen (2006) presented a different approach in which the whole
data is made available from the beginning and the components of the parameter
vector are updated one by one so that the parameter space expands sequentially.
The particles are thus sampled from conditional distributions, conditioned on the
already sampled components of the parameter vector, and resampling occurs af-
ter updating the components. So, having a ¢-dimensional parameter vector X1,
the weight equation (3.12) can be rewritten as (superscript ¢ has been dropped for
clarity)

— p(x1:t) _ p(@efx1e—1)p(X1:0-1) 1p($t|X1:t71)

3.14
q(x1:4)  q(oe]x1:—1)g(x1:6-1) 19

The SMC algorithm is illustrated in algorithm 1.

As in MCMC methods, the initialization of SMC algorithm is problematic,
since for the first component x; there is no conditional distribution. In a Bayesian
model, z; might be sampled from its marginal likelihood. Another problem with
the basic SMC scheme is that the previous components are never re-simulated, that
is, their value stays the same throughout the procedure. In light of new observa-
tions, the values sampled at the beginning of the algorithm may seem poor. In other
words, the values ngz)k, k < d may represent better the marginal posterior p(x1.1)
than the full posterior p(x1.4). Also, due to the resampling, all the particles at some
stage of the process may share the same ancestor, meaning that for all ¢ there is just
one unique value for x% for some k < d. However, resampling is advantageous as
it prevents the degeneracy, which means that only few particles have non-negligible
weights. This phenomenon is unwanted because it is useless to carry irrelevant par-
ticles in the set. A neat remedy, if only computationally heavy, for these problems
is to add an MCMC step after each resampling stage, which moves the particles

in the parameter space to better represent the current posterior distribution. One
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1. Fori=1,...,N
e Sample :%Ei) ~ q(mﬂx@fl) and set i@ = {x@fl, jgz)}
e Compute the weight:

(

t
(
t

(@)
1:t
(4)
1:t

)

~() (@) p(& i)|x -1
We ™ = W15 .
q(Z; 7 [x14-1)

2. Resample, with replacement, N particles x(lll)t from the igzis according to

values (i) and set wy = @\ .

3.Ift < dsett = t+ 1 and go to step 1. Otherwise, return the set
{Xlzd(i)’ wElZ) }

Algorithm 1: The SMC algorithm for sampling a d-dimensional target distribution
p(x1.4). The number of particles is N.

must also be careful not to assign too large a value to «, at least at the beginning of
the process, because the resampling may eliminate particles representing a strong
posterior mode that is inferior in the marginal posterior.

Population Monte Carlo method

In SMC algorithm the particles interact after updating each parameter, whereas in
the population Monte Carlo (PMC) method the whole parameter vector is sampled
before the particles are resampled (Robert and Casella, 2004; Cappe et al., 2004;
Mengersen and Robert, 2003). Naturally, in dynamic settings where inferences
must be made between the observations the PMC approach is impractical. In static
problems, on the other hand, the whole data is available and it seems reasonable
to compare the particles based on their estimates of the whole parameter vector
instead of their estimates in sub-spaces.

The PMC algorithm is presented as pseudo-code in algorithm 2. A nice prop-
erty about PMC algorithm is that different proposal distributions ¢;; can be com-
posed for each particle ¢ and at each iteration ¢. Hence, heuristics can be applied in
choosing the proposal distributions without jeopardizing the validity of the method.
After each iteration the resampled particles represent the target distribution, and the
procedure can be stopped at anytime. Also the parameter values of previous itera-
tions could be included in the final particle set although this is not usually done. In
a clever implementation, the proposal distributions are chosen so that the variance
in the weights decreases with ¢, and the particles at ¢ = T" give the best repre-
sentation of the target distribution. In addition, when ¢t < T’ the particles can be
resampled according to w®, where o < 1. This does not generate samples of the
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1. Fori=1,....,.N

e Sample XV ~ g;;(x)
e Compute the weight:
) _ pEY)
it (X))
2. Resample, with replacement, /N particles ng’) from the %()’s according to
values wy

(3
wy

3. Ift <Tsett =1+ 1and go to step 1. Otherwise, return the set {xg,f)}.

Algorithm 2: The PMC algorithm for sampling a target distribution p(x). The
number of particles is N and the number of iterations is 7.

Figure 3.4: Two experiments of a Metropolis algorithm sampling the target distri-
bution (3.15). The starting values of the chains are illustrated as cyan circles. Both
the chains have 2000 samples.

target distribution but it prevents the degeneration of the particles. Theoretically, it
is enough to use the ’correct’ resampling only at the last iteration, as the result of
the preceding iterations can be thought of heuristic means to initialize the particles
for the final iteration. The last resampling step can also be omitted and weighted
particle set be used. Basically, an SMC algorithm where resampling is done only
att = N is a special case of the PMC method with just one iteration. The SMC
sampling is actually sometimes called a population Monte Carlo method — the
nomenclature is not very clear with particle methods.

3.3.4 Comparison of the sampling methods

The MCMC and particle methods are compared with an example that is simple
enough to introduce here yet complex enough to show the differences in the perfor-
mance. The target distribution is chosen to be a bivariate mixture of two Gaussian
distributions:

p(x) = 04N (x|my, Cy) + 0.6 (x|my, Cy) . (3.15)
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Figure 3.5: The result of the PMC algorithm with target distribution (3.15). The
number of particles was 2000 and the algorithm was iterated five times, decreasing
the variance of the proposal distribution at each iteration.

The covariances C'; and C have elongations 2:1 and 3:1, and are rotated by 40 and
120 degrees, respectively. The midpoints of the distributions, m; and my, were
chosen so that the modes are clearly separable in the mixture.

First, the distribution was sampled with the Metropolis sampler using a Gaus-
sian proposal distribution with variance 10 (the distance between the midpoints is
100). Two Metropolis chains containing 2000 samples are shown in Figure 3.4,
together with the logarithm of the target distribution. The experiments differ only
in the starting values, which are shown as circles in the panels. In both cases, the
chains are able to explore only the nearest mode. To get a representation of the
whole distribution, the algorithm would have to be run many times with different
starting values.

Figure 3.5 shows the performance of the implementation of the PMC algo-
rithm. 2000 particles were randomly initialized over the support of p(x) and the
algorithm was iterated five times. The proposal distribution was simply a uni-
form distribution, whose mean point was the previous sample and whose range
decreased linearly during the process, being 100 in the first iteration and 10 in the
last iteration. The first iterations are meant to approximately locate the modes and
the last iterations are to give a better estimation of the shapes and the masses of the
modes. As a result, the particles are distributed in both the modes. The percentage
of the particles in the left mode is 34, being relatively close to the true mass ratio
40%.

This simple example thus shows that the particle methods should be favored
at least whenever the target distribution is believed to contain multiple separate
modes. With a unimodal distribution, MCMC methods might perform better due
to their ability to explore a single mode. Basically, the efficiency of the Metropolis
sampler could be improved by using simulated tempering techniques or differing
the variance of the proposal distribution from time to time so that the chain would
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occasionally make bigger jumps, enabling the chain to visit both the modes in a
reasonable computational time. However, this kind of ad hoc solution will gener-
ally fail to work as we can always separate the modes so far apart that the jumps are
not big enough. With PMC method, on the other hand, the distance of the modes is
irrelevant. Also, having to obey the conditions of Markov chains limits the applica-
bility of MCMC methods. PMC method works especially well when the properties
of the model can be utilized, like in the object matching problem studied in this
thesis. As to the computational burden, the implementation of the PMC sampler
is somewhat slower than that of the Metropolis algorithm because basically each
iteration of the PMC sampler corresponds (CPU-wise) to a whole Metropolis al-
gorithm if the number of particles equals the length of the chain. However, the
advantage of the particle methods is the independence of the particles, as they
interact only in the resampling step. This means that the implementation of the
algorithm can be made parallel which can speed up the computations drastically.
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Chapter 4

Incremental object matching
methods

4.1 Introduction

An incremental (or online) object matching method has never been presented in the
literature. However, online learning has been a subject of many studies. For exam-
ple, tracking problems must naturally be approached with online learning (Doucet
et al.,, 2001). Neural networks have been adapted to learn online (Saad, 1998).
A Bayesian approach to online learning was given by Opper (1996) who approx-
imates the posterior with a Gaussian distribution whose parameters are updated
after each observation. Online learning has also been considered in the context of
active learning (Monteleoni and K&dridinen, 2007). Active learning is a kind of
supervised learning scheme in which the aim is to minimize the amount of human
data labelling as it is time consuming and expensive in many problems. Active
learners try to infer which of the unlabelled data is most informative so that having
a label for these data would most facilitate the learning process. If the queried data
is much smaller in size than the available unlabelled data, reductions in time and
cost are achieved. In online active learning, the decision about whether to query for
the data label is made after each observation (Monteleoni and Ké&éridinen, 2007).

Incremental object matching is problematic in a sense that the observations
(images) contain also background; hence, the piece of information that is essential
for the model must first be extracted before updating the model. Matching an
object in a video sequence can be thought of suffering from the same difficulties.
However, while the dynamics of the object can be taken into account when, for
instance, tracking a person in a video, such a dynamical model is absent when
processing images with arbitrary timestamps.

This chapter presents first the theoretical framework for matching the corre-
sponding points recursively using Bayesian methodology. After introducing the
theory, three practical implementations of the ’ideal’ model are given. The meth-
ods differ in their complexities and in their abilities to handle different kinds of

45
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1stimage 2nd image 3rd image

Figure 4.1: An artificial illustration of the Bayesian recursive object matching. The
locations of three node sets are depicted with dots, each with different color. The
size of the dots is proportional to the posterior probability of the node set. After the
first two images, the three hypotheses about the common object are equally likely.
Observing the third image causes the hypothesis of the facial node set to surpass
the other two. In real experiments, the node set sizes are much larger.

object transformations. The most basic method is introduced in Section 4.3 which
is extended in Section 4.4. The most sophisticated implementation, which is named
full method, is presented in Section 4.5. The method of 4.3 was published in
(Toivanen and Lampinen, 2009a), the method of 4.4 was published in (Toivanen
and Lampinen, 2009b) and the method of 4.5 was published in (Toivanen and
Lampinen, 2009¢) and (Toivanen and Lampinen, 2010).

4.2 Bayesian approach to incremental object matching

In this section, a treatment of the incremental object matching problem in Bayesian
terms is given. The problem can be formulated as follows: the model is given a
sequence of images, one at the time, and each image contains an instance of the
same object (or object class). The task is to incrementally learn a representation
of the object, that is, to learn the object model. The used object model is based
on local feature points so the learning requires the feature points to be found. The
problem can thus be reformulated as having to match the feature points in the
images, in other words, to locate the corresponding points. The present object
model, which is learned from the images processed so far, is used in matching the
next image in the sequence after which the object model is updated.

4.2.1 The Bayesian model

In this work, the feature points are called nodes. The nodes form a node set which
is to be matched in the images. The following notation is adopted for images and
node locations in them. The ¢th image in the sequence, which is considered as the
current test image, is denoted with Z; and the locations of the nodes in the image is
denoted with x;. By also adopting a notation x1.; = {X1, X2, ..., X¢ }, the posterior
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distribution of the location of the nodes can be computed recursively:

p(X1:¢|Z1:t) = p(x¢|X1:6-1, 1) P(X1:6—1|L1:t)
_ p(Zilx1a, Tr—1)p(xe X141, T1:0-1)
B P(Ze|x1:4-1,T1:0-1)
o¢ p(Ze|x1:4, Tr:e—1)P(Xe[X1:0-1)p(X1:6 -1 T1:6-1) 4.1)

p(X1:t—11Z1:4)

where p(Z;|x1.¢,Z1.4+—1) is the image likelihood, p(x|x1..—1) is the prior distribu-
tion, and p(x1.4—1|Z1.4+—1) is the posterior distribution of x1.;—1, which is indepen-
dent of Z;. The (unnormalized) posterior distribution is thus the product of the
previous posterior, current prior and current likelihood terms, and is a distribution
over all the possible node sets. Figure 4.1 should clarify the issue. The posterior
distribution is given only in an unnormalized form as the normalization constant
— which scales the distribution so that it integrates to unity — is the integral of the
unnormalized posterior over all the possible node configurations and is clearly im-
possible to compute. The prior distribution p(x¢|x1.t—1) is chosen to be a Gaussian
distribution in a mean free and scale free coordinate system. Depending on the im-
plementation, orientation invariance can be added. It should be noted that although
the likelihood seems to depend on the processed images, Z1.;—1, the dependence
is actually only on the Gabor responses at the matched nodes, as explained in this
section. The explicit dependence on every processed pixel is merely a notational
matter. So, the previous images need not be stored in memory — otherwise we
would have gained nothing compared with the memory requirements of the batch
approach!

The likelihoods of the nodes are assumed to be independent of each other. The
total likelihood is thus a product of the node likelihoods:

d
P(Tilx1e, Tra1) = [[ p(@ilaty, Tre) (4.2)

n=1

where n indexes the nodes of the node set, whose size is d, and x1.; indicates
the locations of a node in images 1, ..., ¢ (to distinguish between the node set and
a single node, a non-boldface symbol is used for this vector). Basically, the node
likelihoods are not fully independent since they are computed from the same image
pixels. The closer two nodes are, the higher is their correlation. Modelling the
covariance between the node appearances is, however, beyond the scope of this
thesis. Besides, the ’naiive Bayes’ assumption (independent likelihoods) lightens
the sampling so it will be used, in line with (Tamminen, 2005) and (Kalliomiki,
2007). From now on, the node index is dropped and the interest is on an individual
node likelihood.

In the example of Figure 4.1, the facial node set consists only object nodes, that
is, nodes that are part of the face. In the methods, presented later in this chapter,
the node set often includes also other kinds of nodes which are called background
nodes. This is illustrated in Figure 4.2. Hence, all the nodes are not necessarily
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Figure 4.2: An example of matching a node set that includes also background
nodes. In the right panel, the dots show a Monte Carlo estimate of the posterior
mean of the locations of the points that have most correspondence with the points
of the left image, with a condition that the points must have similar spatial con-
figuration. An example of an object node, that is, a ‘real’ corresponding point, is
depicted with green circle whereas an example of a background node that is disso-
ciated from the object is illustrated with red circle.

corresponding points of the object. Figure 4.2 also educationally reveals how the
background of the object complicates the matching of the object nodes: two nodes
on top of the head are matched in wrong locations because the Gabor similarities
are low at the correct location due to the different backgrounds.

When matching node sets with object and background nodes, the system must
be able to formally identify them so that only object nodes are associated with
the common object. This requires the concept of association to be adopted. The
association is indicated with A and its complement with A, meaning that the node
is not associated (dissociated) with the common object. Because it is unknown to
the system whether the node in question should be associated or not, the unknown
association status is summed out of the likelihood, akin to integrating out nuisance
parameters:

P(Ze|w1a, Toie—1) =p(Zelz1e, i1, Ar) P(Ae] w141, T1:-1)+
p(It’xlztyzlzt—laZt)P(Zt’xlzt—lyzlzt—l) . (4.3)
The likelihood of a node is thus a weighted mixture of the associative and dissocia-

tive likelihoods. The weights are the prior probabilities for association which are
computed recursively as

1
P(A¢|z1:4-1,T1:-1) = mP(At—ﬂxl:t—laIl:t—l)
t—2
+ t_—lp(At—llxlzt—Zyzlzt—Z) , 4.4)

that is, a prior association probability is a weighted mixture of the posterior and
prior association probabilities of the previous image. Bayes’ formula gives the
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posterior probability for associating the node in image ¢, given the node locations
T1:t-

P(Z| 14, Trie—1, Ae) P(Ae| 214, L1p—1)
p(It’mlzh-z—l:t—l) )

The prior probability for dissociation is the complement of the prior association
probability: P(A|z1.¢,Z1:i—1) = 1 — P(A¢|x1:4, Zre—1)-

P(At‘xlztaz.lzt) = 4.5)

4.2.2 Associative likelihood

The likelihood, conditioned on that the node is associated with the object, is defined
as an un-weighted mixture of likelihood kernels of the processed images:

t—1

P(Te| 14, Tiie—1, Ar) = ZP(It|$t,$j,Ij,At) . (4.6)
=1

Here x; refers to the node location in image j. The locations of the nodes in each
matched image are thus used as reference in forming the likelihood for the follow-
ing image. Using a mixture likelihood enables features with different appearances
to be matched. For instance, for a node representing a chin of a face, some of the
kernels might model a chin with a beard and some a hairless chin.

The associative likelihood kernels are non-linearly mapped from the phase-
sensitive similarities (2.6):

p(It‘xtv xj7z—jv At) = exp(ﬁsp(‘](xt)v J(x]))) ’ 4.7)

where (3 controls the steepness of the mapping, and J(x;) and J(z ;) are the Gabor
jets extracted at the test image location x; and the reference image location x ;. So,
for computing the likelihood kernels, only the reference Gabor jets J(z ;) need to
be stored and the actual images can be erased. Equation (4.7) is, actually, a Gaus-
sian distribution of the (complex) normalized filter jet at z; whose mean is the nor-
malized filter jet at x; and whose covariance is diagonal with a common variance
1/. This can be seen by denoting the normalized jets as J; = J(x¢)/||.J (z¢)]| and
J; = J(xj)/||J(x;)| and computing their L2 -norm distance:

17 = T|1° = (e = T)" (T — Tj) =2-2Re{ T/ T} =2(1 - S,)  (4.8)

Taking the probability of observing J; to be a Gaussian distribution with mean J;
and covariance 31, where I is a unit matrix whose size equals the length of the
filter jets, leads to

(i T;, 71 o e ATl o 0% (4.9)

With lots of annotated training data, an optimal value for (3 could be estimated for
each node using (4.9). Since the incremental matching begins with just one image,
(3 is the same for each node and is estimated with other means, discussed in Section
4.7.
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4.2.3 Dissociative likelihood

The dissociative likelihood, p(Z;|w1.¢,Z1.+-1,A¢), is a difficult subject. Taken
literally, it is the probability of observing a certain image detail in a test im-
age, given that the image detail is not to be associated with the reference details.
Looking at formulas (4.5) and (4.3), it can be seen that this value, multiplied by
P(Ay|z1.4-1,T1.4-1), sets a level for how similar the Gabor responses have to be
with the reference responses in order for the node to receive a high association
probability. With very low value, each node is associated with the common object,
while in the other extreme none is associated.

Basically, the mixture likelihood p(Z¢|x1.4,Z1.4—1), defined in equation (4.3),
only measures how rare or common the observed feature Z;(x;) is. This can be
demonstrated with a simple example. Let N denote the number that certain feature
occurs in all the objects of the world and IV ; the number of different features in the
world. For simplicity, all the possible features are taken to be equally common so
Ny is a constant. Let us consider the case t = 2 so that there is one reference feature
for each node. Also, the location parameter can be dropped by referring to Zs(x2)
with F5 and to Z;(x1) with F;. The likelihood function is thus p(Fs| F1). The
association A can be reformulated as “features F; and F> depict the same image
detail of the same object”. The prior probability of A is 1/(/Ns x Ny) because there
are Ny x Ny number of features that can be observed. If F3 is extracted from the
correct location the likelihood can be divided in parts as follows:

1 Ng—1 NsNy—1 1

—— . (@10
NN, TNN 1S NN, oy @10

p(]:Q :]:26|.7:1) =1x

where the terms correspond to the terms in equation 4.3 and F5 denotes the correct
feature. In the opposite case where F» represents a different image detail than F;
the mixture likelihood takes the form

1 Ny NsNy—1 1

——, @
NN, TNN S TNy, N 3D

p(Fa=Ff| F1) =0x

where fg denotes a false (different than F7) feature. In both cases the value of
the likelihood is — in accordance with intuition — the frequency of the observed
feature, 1/Ny.

Hence, it seems that the likelihood is constant; depending on the observed
feature, it just spreads differently in associative and dissociative parts. What is
missing in the notation, is the dependence on the assumptions which the model
takes, or the information that the model is given. This information can be written
as “there is the same object in 77 and Zy”. This piece of information changes
the prior assumptions a lot from what they were in the previous example. The
second image is not just any image but an image containing the same object which
appears in the first image. The prior association probabilities are therefore much
higher than one divided by the number of features that can be observed (which is
a huge number). If the object is assumed to fill about half of each image, the prior
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2nd image 3rd image

1st image

Figure 4.3: An artificial example of the evaluation of a fixed node set in a sequence
of three images. The dots mark the mean of the posterior distribution of the node
locations and the size of the dots reveals the association probability (large dots are
associated with the object).

association probabilities should be initially fixed to half: P(As|z1,Z;) = 0.5 (or,
actually, the posterior association probabilities in the first image, P(A1|x1,7Z1), are
set to half). With this setting, the probability of observing an object feature is, or
should be, multifold to the probability of observing a background feature.

Basically, the dissociative likelihood should be modeled with a distribution as
in the statistical methodology the likelihood model should be a generative model.
This means that it should be possible to generate samples of the likelihood distri-
bution, for example, to predict future data. The prior distribution of the studied
method is a generative model because it is a Gaussian model from which it is
straightforward to produce samples which would predict the spatial arrangement
of the nodes in a new image. However, the likelihood model used in this study is
not a generative distribution in a sense that it does not explain the appearance of the
whole image as it only models the local appearance around the nodes, the number
of which is much less than the number of image pixels. Sullivan et al. (2001) point
out that images contain statistical information about where the object is and where
it is not; therefore in their Bayesian object localization method they model the ob-
ject and background with separate distributions. Their method is, however, much
simpler than the one presented here for which it is probably impossible to obtain a
detailed generative background model. Hence, the dissociative likelihood will be a
uniform distribution whose value is denoted with . Such an approach is not novel.
For instance, Koeser et al. (2006) model the distribution of the occluded pixels with
a uniform density. Also in target tracking and surveillance, a constant value for no-
detection likelihood is typically used (Bar-Shalom and Li, 1995). Adding a positive
constant with the associative likelihood ensures that the total likelihood — being
the product of the individual likelihoods — is always non-zero. This makes it pos-
sible to match node sets that include background nodes. Setting the dissociative
likelihood parameter is discussed in Section 4.7.
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Figure 4.4: An example of the automatically selected nodes in the starting image
of the sequence.

4.3 Basic method

This section describes the most basic method for learning the object model. In the
method, only a single fixed node set is considered which is placed in the starting
image of the sequence using a simple automatic procedure which aims to place
the nodes in ’interesting’ locations, distributed approximately evenly in the image.
The node set contains object nodes as well as background nodes. In the following
images, the posterior distribution of the node set location is formed. The node set
is located by sampling the posterior with a sequential Monte Carlo implementa-
tion. The prior association probabilities of the object nodes increase to unity along
the sequence. If a node is located on an image detail whose appearance has many
modes, or which is occluded in some images, the increase of its association proba-
bility is slower. The image details of the background nodes typically differ in each
image so their association probability tends to zero along the sequence. A repre-
sentation of the object can be formed anytime as soon as it becomes clear which of
the nodes are object nodes. In Figure 4.3, an illustrative example of matching in-
crementally a set of six nodes in a sequence of three images is shown. The method
has some invariance against scale but basically no invariance against orientation
changes. In addition, it is preferable to have the object located near the center
as the implementation disallows the background nodes to be located outside the
image.
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4.3.1 Node selection

A simple automatic procedure is used to select the nodes in the first image. The
image is divided into small non-overlapping rectangular windows. In each window,
a pixel is chosen which maximizes the sum of the magnitudes of the complex
Gabor filter responses. An example of the selected nodes in the starting image is
illustrated in Figure 4.4. The gaps between the windows prevent many nodes from
being selected at the same image detail (at neighboring pixels) which may happen
if the windows touch each other. The shape of the selected node set is considered as
the reference shape for the subsequent images. The node set in the starting image
is thus fixed. It should be noted that the rectangular windows are used only for
placing the nodes in the starting image and do not set any limits on where to search
for the nodes in the upcoming images.

4.3.2 Posterior distribution of the node locations

As in the basic method only one node set is considered, it can be thought that
p(x1/Z1) is a delta distribution at the selected node set. In addition, the likelihood
is (basically, see the next subsection) independent on the previous node locations
and the prior distribution depends only on the node set of the starting image. Hence,
the marginal posterior distribution of image ¢ is simply

P(Xe|Z1:t, X1:0—1) = P(Xe| L1, X1) X D(Te|xt, Zrt—1)p(xe|X1) 4.12)

where p(Z¢|x¢,Z1.t—1) is the likelihood and p(x;|x1) is the prior distribution for
the location of the node set.

4.3.3 Likelihood model

The likelihood model is basically the same as that presented in Subsection 4.2.1.
However, the formulation is somewhat different as there is only one node set, and
in the used notation the likelihood is independent on the previous node locations.
The likelihood of an individual node of the node set is

P(Ti|xe, Tie—1) = p(Ze|we, Tr:e—1, At) P(A| Z14-1)

+ p(Ze|we, Tri—1, A ) P(Ae|Th—1) (4.13)
where P(A¢|Zy.4—1) is the prior association probability:
1 t—2
P(Ai|ZTv.4—1) = t_—lP(At—l‘Il:t—l) + t_—lp(At—l‘Il:t—Z) . (4.14)

To compute the posterior probability for associating the node in image t,
P(A{|Z;.), the posterior association probability of the node at image location x4,
which resembles equation (4.5), is presented first:

P(Ze|xe, Tig—1, Ae) P(A| Z1:4-1)

P(A¢|ze, Tr) =
(A¢lxe, I14) p(Zy|we, Z1.4-1)

(4.15)
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This is integrated over the posterior distribution of x; to get the posterior associa-
tion probability of a node in image ¢,

P(A|Zy.4) = /P(At|$t,11:t)p(xt|Il:t)dXt , (4.16)
where
p(x¢|Z1.4) = /P(Xt\ﬂ:nxl)p(xﬂ Th.)dxy = p(x¢|Z1.4,%1) 4.17)

as the nodes in the first image, x1, are fixed having no distribution (or they can be
thought of obeying a delta distribution at x). Note that the integration in (4.16) is
performed over the posterior distribution of the location of the whole node set.

Next, the associative likelihood term is integrated over the distribution of Jy.;—
which denotes the Gabor responses of the node in images 1, ..., — 1:

p(Zilae, Tig—1, Ar) = /P(L!%Jm—hAt7J1:t—1)p(J1:t—1\I1zt—1)dJ1:t—1
~ p(Ti|ze, A, Jie1) (4.18)

where the dependence on Z;.;_; has been dropped and a point estimate for Jy.;_
has been plugged in. This means that the posterior distribution of J1.;_1 — which
is independent of x; and A; — is taken to be a delta function at the point estimate,
being for image k:

o [ () P(Agler, Tow)p (% | Tak, X1 )dxp,

4.19)
[ P(Ag|zg, Tk )p(xk | L1k, X1 ) dX,

For the first image, the Gabor responses J, are naturally evaluated at the selected
nodes. The associative likelihood is taken to be a mixture of likelihood kernels
which are one for each processed image so that the appearance of each matched
node is a reference appearance for the node in the test image:

t—1

p(Tilwe, Ay Jue1) =Y p(Tilwg, Ar, i) - (4.20)
k=1

The likelihood kernels are built from the similarity measures (2.6), as in (4.7):

P(Ti|ze, As, Ji) = exp(BS,(J(x4), Ji)) - 4.21)

4.3.4 Prior model

The mean shape of the node set in a test image, a priori to observing the image, is
assumed to be the same as in the starting image, after put into the same location and
scale, with independent Gaussian deviations on the nodes. The prior distribution,
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p(x¢|x1), is therefore defined as a Gaussian distribution in a translation and scale
free space:

xt — E[xy]

s(x¢,X1)

p(x¢|x1) :./\/< | x1 — E[Xl],021> , 4.22)
where I denotes a unit matrix, £[x] is the mean value of x, o2 is the pre-fixed
variance of the nodes and s(x;, x1) is the scale of the node set x; w.r.t. the node
set x;1. The scale is computed from the node locations:

\/Uu Xt +UU )2
\/Uu Xl +Jv )2 ’

s(x¢,x1) = (4.23)

where 0,,(x) is the standard deviation of the horizontal components of the nodes
in x and o0, (x) is that of the vertical components. Since the same Gabor filters
are used with each scale, the likelihood values change with large scales. Therefore
the performance of the system decreases if the size difference between the object
instances in different images is large (say, more than one and a half).

4.3.5 Sequential Monte Carlo sampling

In the SMC implementation, all the data are available from the start and the pa-
rameters (i.e. the coordinates of the nodes) are updated sequentially. The posterior
distribution needs therefore to be defined in a conditional form so that it is possible
to sample the ith node, given the locations of the already sampled nodes \i. Since
the node likelihoods are independent, it is enough to express the prior distribution
in a conditional form which is straightforward for a Gaussian distribution with a
diagonal covariance matrix. For clarity, the image number index is dropped so
x = x; and X’ = x; denote the test and reference node sets:

plzilxy;, x') =N (mliE[)/(\Z] | 2} — E[x/\i],021> ) (4.24)
s(3\i,X\;)

The SMC implementation is illustrated in Algorithm 3. Apart from the first
component, the sampling order of the particles is sampled deterministically accord-
ing to the prior association probabilities so that the nodes that probably associate
with the object tend to be matched first. Each particle thus samples the nodes in
different order. The first component of the particles is matched from the likelihood.
For the following components, the proposal distribution is a mixture of likelihood
and prior terms, with the mixture coefficient ¢ heuristically determined on the ba-
sis of the node association probability. The purpose is that the associative nodes
are sampled from the likelihood and the dissociative nodes from the prior. In the
algorithm, only local area R around the prior mean is used. During the process, the
particles containing high likelihood nodes will survive the resampling and thus the
partially matched node sets will contain different subsets of nodes that probably
associate with the object.
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1. Initialization, m = 1
for j=1to N do
)

- Assign indices of first components for each particle, J gj
Jgj )

=4 modd
- Sample z} ~ p(Z¢|x;, T1.4—1, A¢) using i =
- Set 09) =z and ng) =1
end for
-Setm =2
2. Importance sampling

for j=1to N do
- Assign J ,(%) from 1,...,d according to the prior association probabilities
P(Ay|Ty.—1) so that JG) £ IV

- Assign i = J9) and X\ = ng)

m—1
s ) / P(Zi)|xi,Tr:6—1) p(;]x)4,X)
- Samplexi ~ Q(-T2|X\i,x ,I) 2 ) pt(It\xt %lt D +( —QO)Zp(x—l‘x\z’x,)
z;€ER z;ER
> [p(Telwi,Trie—1))]
where p =1 —exp | 1 zicR _
> p(Ztlxi Trie—1,A:) P(Ai|Z1:4—1)

T, €ER

—Setﬂ 2 :{ 1m LTE}

) ~<J) () Pt X' Tie)
Set wm 1 q( ‘x\i7xlyl-1:t)

end for
3. Reducing the particle number
- Denote the current number of particles as N’ = N
- Eliminate M particles with lowest weights, where M /N < 1
- Set the new number of particles to be N = N’ — M

4. Resampling with Langevin MOVE step

G . _

- Resample with replacement N particles (6y)),,7 = 1,...,N) from the set
: (0%

1
(9? 1)n, j =1,...,N) according to the importance weights (w gjr)n)
for j=1to N do
-Forl =1,...,m, assign i = Jl(j)
bility P(At|9l(j),Il:t), otherwise set E; = (CL‘Z|9
-Forn = 1: Ny, assign \i = Jgjzn and
sample 03, ~ 01, — & Gk (01]),) + N (0,1)
end for
(J) _ (1177(%))

and set B; = p(I]a:i,Ilzt_l) with proba-

!
10— 1l+1m’x)

11—«
- Set wyy, (=)

-If m < dsetm =m + 1 and go to step 2

Algorithm 3: The sequential Monte Carlo implementation. The number of parti-
cles and nodes are N and d, and @ denotes the parameter vector. Also, following
notation is adopted: x = x;, x’ = x;.
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Compared with the basic SMC algorithm, some modifications have been made
that take into account the static nature of the problem. The particles are resampled
according to w®, < 1, in order to keep the particle weights of the previous nodes
and to decrease the variance of the weights. After sampling each node, a Langevin
Monte Carlo (Neal, 1993) step is applied to improve the sampled parameter values.
At the end of sampling, the particles are sampled with an additional Gibbs sampling
step due to its mode exploring capabilities. Also, it is desired to save computation
time without impoverishing the results. Since the hypothesis of the correct mode
is assumed to get stronger as more components are matched, the particle number
is reduced along the sampling procedure by removing some proportion of particles
with the lowest weights before resampling.

4.3.6 The algorithmic form

1. Gabor transform the starting image 7

2. Select the nodes in the starting image and store the Gabor responses at each
node. Sett = 2

3. Gabor transform the next image Z;
4. Compute the likelihood as explained in Subsection 4.3.3
5. Sample the image with SMC Algorithm 3

6. Estimate and store the posterior association probabilities of the nodes with
equations (4.15) and (4.16)

7. Compute the mean Gabor responses with equation (4.19) and store them

8. Sett =1+ 1 and go to step 3

Algorithm 4: The incremental algorithm for matching the corresponding points
with the basic method.

Algorithm 4 shows pseudo code instructions for matching the corresponding
points with the basic method.

4.4 Extensions to the basic method

The method presented in this section is an extended version of the basic version
of the previous section. The main differences are the increased invariance against
translation, scale and orientation changes, a different sampling method as the pos-
terior distribution is sampled with population Monte Carlo algorithm, the modi-
fication of the node set during the procedure as the nodes with low association
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1st image

2nd image

3rd image

4th image

Figure 4.5: A schematic illustration of the method. In the first image, six nodes
are selected (yellow dots) which are matched in the subsequent images (solid blue
arrows and dots). The node association probability is high for large green dots
and low for small red dots. In the third image, three nodes with low association
probabilities are replaced by new nodes (dashed arrows) that are selected inside the
convex hull of the current node set.

probabilities are eliminated and new nodes laid on locations that more probably
cover the object, and the updating of the node variances. A schematic illustration
of the method is presented in Figure 4.5.

4.4.1 Node selection

The nodes are selected in the starting image in a similar way as in the basic method,
except that there is more emphasis on placing the nodes as far from each other
as possible. The starting image is divided into windows in which the sum of the
norm of a vector of the complex Gabor filter response magnitudes and the Gaussian
distribution whose mean is the midpoint of the window, is maximized. As a result,
the nodes are spread fairly evenly in the image, with high information content.
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4.4.2 Posterior distribution

In this method, the scale and orientation of the node set in the current test image
w.r.t. the reference node set are treated as the parameters of the model. They are
denoted with s and ¢ and can be considered as nuisance parameters that can be
integrated out of the posterior distribution of the current node set:

p(xe|x1:0-1,Z1:¢) = /p(XthSD’Xl:t—th:t) ds dyp
1
— T AT 4_1)dsd
p(It |Ilzt71,X1:t71) /p( t|X1.t, 1:t 1,5,90)P(Xt,5,90|X1.t 1) s ay

X /p(It|Xtaz-1:t1, S, So)p(Xt|X1:t—1a S, gO)p(S, 90) ds ng ) (425)

where p(s, ¢) o 1 is a non-informative prior distribution for scale and rotation and
the likelihood is again independent on the node locations of the processed images
X1.¢4—1. In principle, the prior distribution depends on x;.;_1 but as explained in
subsection 4.4.4, only a point estimate for x;.,—; will be used.

4.4.3 Likelihood model

The likelihood model is the same as the one explained in Subsection 4.3.3 apart
from the dependence on scale and orientation. Hence, the likelihood for image
t is p(Z¢|x¢,Z1.4—1, 8, ). For computing the value of the likelihood with an ar-
bitrary scale and orientation, the Gabor jets are estimated by interpolating four
neighboring filter responses as described in Subsection 2.5.5. Also, unlike in the
basic method, the nodes are allowed to locate outside the image which increases
the tolerance against translation. The associative likelihood of a node lying outside
the image area is set to zero.

4.4.4 Prior model

The prior distribution for image ¢ is extended from the basic prior model to include
the possibility of orientation change:

p(Xt|X1:4-1, 8, 0) = N (x| E[xy] +sR(p) (X1.4-1 — E[%1.4-1]), s2°C(p)) . (4.26)

In the equation, X;.;— is the reference node set which is computed from x7.;—1
and is given in formula (4.28), R(¢) is the rotation matrix for orientation angle (:

_ [ cos(p)  sin(p)
i) = (-sin(w) COS(¢)> ’ 27

and C(¢) is the covariance matrix in which the horizontal and vertical components
of the nodes are rotated with the rotation matrix.
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The reference shape X;.;—1 is a mixture of the mean free shapes of the pro-
cessed images, weighted by their posterior association probabilities which for node
i in image k is P(Aj},|Z1.x). The reference location of node i is thus computed as

g, = 2 PAT) (Elr] — M)
-1 — _ i
ot P(AL|Ty)

, (4.28)

where E[z] is the location of z, averaged over the posterior distribution of it.
It should be noted that 2%, ; and E[zi] are vectors of length two as they contain
horizontal (u) and vertical (v) components. In the equation, M, ;. denotes the mid-
points of the matched images which are computed in such a way that they minimize
the weighted variance of the horizontal and vertical components of the distances of
the nodes to the midpoints. For the horizontal component u the variance is

, N2
i i S Vi (Au)?,
B >k Vi <(Au)k - 71&: vy - )
zk/ V]g/ ’

where i indexes the nodes, k indexes the images, V;! = P(A} |Z;.;) is the posterior
association probability of node ¢ in image &, and (Au)/%€ = uf,g — My, ), 18 the hor-
izontal coordinate of E[z}] in m,, ; mean coordinate system. The error function
E, is minimized by differentiating it w.r.t. M, = {my 1, My 2,...,My 1} and
setting the result to zero. By denoting with V' a matrix with elements Vki and with
U a matrix with elements u}, the solution is

E, (4.29)

M, =(Z)"'B,, where (4.30)
v\ 14 g
Z=d||——) Ini| -2(——=] V
(VIT’xT’> e ((Vfofo)2>
T
| d[VIpy]V and 4.31
i <(VIT/><T’)3> [ViznalV an #3D
1% T < Vv )T T
B,=D|(——) U| -2(~————) DVU
(VIT’XT’> (VIprixr)? | ]
(Y Td[VI IDVUT] (4.32)
(VIrer)? o ' '

Here d[w] means constructing a diagonal matrix of vector w, D[IW] means taking
the main diagonal of matrix W, I, is an a x b -sized matrix of ones, the number
of processed images is T/ = t — 1, and N’ is the size of the node set. The divisions
and exponentiations are made element-wise.

The node variances (that is, the diagonal elements of the covariance matrix C')
are updated after each match, in order to allow the system to learn the level of
rigidity of the object being matched. Having an inverse-gamma prior distribution
on the variance leads to an analytical form for the conditional posterior distribution
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(Gelman et al., 2004). Furthermore, using the mode of the posterior distribution
and setting the observed variance in horizontal (u) direction v/, to the point estimate
at the posterior mean, the prior node variance of node ¢ is updated as

i o vot+t—1 190k + (t— 1)
32 : 4.33
(Uu,przor)t Vo +t4 1 v 4t 1 ( )

where v and o are the hyperparameters of the prior distribution of (o prior )2, that
is, the prior node standard deviation in the second image. The vertical prior node
variances are computed in a similar fashion. In addition, in order to decrease the
importance of the starting image the scale and orientation are averaged over the
matched images so that, for instance, the scale in the test image is defined not w.r.t.
the node set size in the starting image but w.r.t. the average node set size.

4.4.5 Relocating the nodes

With more object nodes and fewer background nodes the object model improves,
making it easier to match the node set in the next image. Therefore, the node set
is modified by replacing the nodes whose prior association probability goes below
a threshold with new nodes so that the total number of the nodes stays constant.
Because in the starting image the nodes are distributed over the whole image, the
new nodes are positioned inside the convex hull (Sonka et al., 1999) of the exist-
ing nodes so that the object is approached ’from outside’ by gradually shrinking
the area of the node set. For non-convex objects, this approach leads to a trial
end error type procedure as a new node may not get correspondence in the subse-
quent images and is again moved to a new position. The new nodes are positioned
by maximizing the information content while also penalizing the vicinity of other
nodes, as in selecting the nodes in the starting image. For these new nodes, the
prior association probabilities are set to half, the previous posterior association
probabilities are set to zero, the prior node variances are set to the initial values,
and the previous kernels in the likelihood mixtures are removed. To prevent some
image from having too much control over the new node locations, an upper limit
can be set on the number of the modifications.

4.4.6 Sampling

For representing the distributions and computing the necessary integrals, the
posterior distribution is sampled with population Monte Carlo method. As de-
scribed in Section 3.3, in PMC the proposal distributions may differ between par-
ticles so the variance of the proposal distributions is let to decrease for associable
nodes. The first round of the PMC implementation is special as the particle weight
is taken to be w'/3 to prevent degeneration — theoretically this does not produce
samples of the posterior but acts as an (other) initialization for the second round.
The PMC implementation is presented in greater detail in Algorithm 5, where in-
dexing for different particles is omitted for the sake of clarity so steps 2 and 3 are
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1. Initialize
- Pre-compute a large filter bank consisting of five scales v/2m/{2,4, 8,16, 32}
and 12 orientations {0, /6, ...,117/6}
- Initialize the particles as explained in Subsection 4.4.7
-Seth = 1.
2. Sample each particle from the proposal distribu-
tions

- Compute the posterior association probabilities with (4.15) and set T; =

P(At|xt,11;t)

- Set g(log[s]|s" 1) = /\/'(l og[s"~1],02), where o, = log[1.06]/(1 + E[T])

- Set q(pl" 1) = N("1,02), where o, = 2/( + E[T)) (in radians)

- Sample scale and angle: log[s*] ~ q(log[s]|s" 1) , ©* ~ q(p|" 1)

for ¢ = 1 to Nyoges do
-Set (i x"1, 5%, %) = N (i|mx+ 5™ R(*) (2] —E[X;‘_l]), R(p)Cy),
where my is the T weighted midpoint of x"~Land C; = (Jgi U% ), where

v;

Ou; = s* (Jz,prior)\/ﬁ and Oyp; = 8 (Uv prwr)\/Q_—Ti
- Set q(Zi|wi, Trie—1, 8%, %) = P(Ai|Ty-1)Li(z) + (1 — P(Ai|Z14-1))k.
where L;(x) is the (pre-computed) likelihood, with the scale and orientation
closest to s* and ¢*
-Set Zi = Y ,ca q(zs|x" 1 5% ") q(Zs |z, L1t 1, 5%, *), where the size
of the search window A is [3 3]C; pixels around the prior mean
- Set q(zi|x" 1 8%, 0%, The) = q(walx" 1, 5%, 0% )q(Telwi, Tra1, 875 %)
- Sample location (numerically): ] ~ gz xP1 5% 0" Thy)

end for

3. Compute the particle weights for each particle

- Compute w = —5 P Tt 1,870 )P X 1,57, 07) where the
TT;25% q(slxh=1,5% 0% T1.0)lq(log[s*]|s"~1)g(p*|oh 1)

value of the likelihood has been computed by interpolating between four neigh-

boring filter responses, according to s* and ¢*.

-If h = 1, set the particle weight to w'/3, otherwise set the weight to w

4. Resample and move the particles

- Resample the particles with replacement according to the particle weights using
deterministic resampling

- Set the components of the particles {x", 5", "} to the resampled values

- Move each particle with Langevin Monte Carlo sampling step

-If h > 1 and the variance of x! is below a threshold, or if A = hpay, finish.
Otherwise, set h = h + 1 and go to step 2

Algorithm 5: The population Monte Carlo implementation. See text for details.
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performed individually for each particle. Also, the subindex of the current image
t has been dropped. The various parameter values, used in the implementation of
(Toivanen and Lampinen, 2009b) and in the experiments of this thesis, are inserted
in the algorithm. The number of the best scores in the initialization step, and hence
the number of particles, was chosen to be 150 to have a sensible computational
time. The hypothesis is that the correct approximative match is included in these
150 best scores.

4.4.7 Particle initialization

The PMC particles are initialized by utilizing the global move step of the Elastic
Bunch Graph Matching method (Wiskott et al., 1997), in which an approxima-
tive location of the object is found by sparsely scanning the test image with a
rigid reference node set and at the same time measuring the average node similar-
ity. In this implementation, the test image is scanned using five different scales
s = 2170820400408} anq three orientations ¢ = {—10°,0°,+10°}; hence the
scanning is done 5 x 3 = 15 times with different scale / orientation combinations.
The decision of choosing only a small amount of orientation angles is based on the
fact that the global move step is sensitive to small orientation changes. The goal
is to increase invariance against small changes, rather than to obtain full orienta-
tion invariance which would, of course, lengthen the computation times drastically
and possibly lead to problems with memory. The scales were chosen to balance a
need to cover a relatively large range of different scale changes and a need to use
small enough interval between different scales so as to avoid missing the target.
The interval of the successive matches in the horizontal and vertical directions was
chosen to be 1/80 times the amount of pixels in the corresponding direction, being
for a conventional 240 x 320 -sized image 3 pixels in the vertical and 4 pixels in
the horizontal direction. For each match, the similarities are computed using Ga-
bor jets consisting of three frequencies and six orientations, by interpolating the
filter responses with four neighboring filters of the pre-computed large filter bank.
Each match is given a score, defined as the mean value of the most similar 25 %
of the nodes, using the phase-insensitive similarity. The 150 best scores (matches)
are chosen and the particles are initialized with the corresponding locations. The
initialized values are assigned to x°, s° and .

4.4.8 The algorithmic form

The incremental object matching method with improvements presented in this sec-
tion is summarized in Algorithm 6.

4.5 Full method

Section 4.3 presented a basic method for incremental object matching which was
improved in Section 4.4. There is still room for further improvements. For in-



64 CHAPTER 4. INCREMENTAL OBJECT MATCHING METHODS

1. Actions for the starting image:

(a) Gabor transform the starting image

(b) Select the nodes in the starting image as explained in the text and store
the Gabor responses at each node

2. Match the next image

(a) Gabor transform the next image
(b) Compute the likelihood as explained in Subsection 4.4.3
(c) Match the node set with PMC (Algorithm 5)

3. Compute the parameter values

(a) Estimate and store the posterior association probabilities of the nodes
with (4.16)

(b) Estimate and store the magnitudes and phases of the Gabor responses
with (4.19)

(c) Update the prior node variance with (4.33)
4. Modify the node set

(a) For each node with P(V;) < Py, reposition the node as explained in
Subsection 4.4.5

(b) Update the reference shape with (4.28) and (4.30)

5. Go to step 2

Algorithm 6: The incremental algorithm for matching the corresponding points
with the extended method.

stance, it may seem unnecessary to match a node set that contains background
nodes. Modifying the node set, as presented in the previous section, is a way to
eventually get rid of the background nodes. However, it may take dozens of im-
ages before the node set contains only object nodes. The method, presented in this
section, aims to exclude any background nodes from the beginning of the image
sequence. This is made possible by ’fully’ utilizing the recursive formula for the
joint posterior distribution for x7.;, presented in equation (4.1): the joint posterior
for all the possible node sets, not just one fixed set, is considered. The purpose is
thus to locate the most corresponding point sets in all the images instead of only
locating in the upcoming images the corresponding points of the node set that was
fixed in the starting image.

The particle Monte Carlo is again a natural method for approaching the prob-
lem: Each particle, in principle, corresponds to a different node set and represents
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Figure 4.6: An example of the selected candidate nodes in a starting image.

a hypothesis about the common object in the images. This means that different
hypotheses can be carried along the sequence (see Figure 4.1). Owing to the re-
cursive formula of the posterior distribution, the posterior probabilities of the false
hypotheses diminish when observing new images whereas the correct hypotheses
(object nodes) strengthen. The number of different hypotheses — or in practice
the number of Monte Carlo particles representing different modes in the param-
eter space — is controlled in the resampling stage. Also, the matching is made
fully orientation invariant, without having memory problems or hopelessly long
computation times. This method can be considered to be the most complex and so-
phisticated of the three methods and is expected to outperform the other methods
on difficult images.

4.5.1 Selecting candidate nodes in the starting image

For computational reasons the starting image is downsampled by selecting N, can-
didate nodes, N, being typically few hundreds. The candidate nodes can be consid-
ered as forming a node pool from which the node sets are extracted. The candidate
nodes are selected in visually interesting locations, such as corners and edges, by
taking the local maxima of the sum of the absolute values of the Gabor filter re-
sponses, akin to the node selection schemes of the previous methods. The vicinity
of the already selected nodes is penalized in a Gaussian way using such a variance
that the selected nodes approximately cover every part of the image. Furthermore,
the details in the image should be represented by at most one node so that there
would not be many nodes on the same edge, for instance. This is realized by form-
ing the phase-sensitive Gabor similarity of the selected node with the image and
cropping out from the image the local maximum around the node before selecting
the next node. It can be thought that the selected nodes are local maxima of the
posterior distribution in the first image, p(x;|Z;), where the likelihood p(Z;|x1)
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is the sum of Gabor filters, and the prior assumption p(x1) is that the nodes are
spread at regular intervals. An example of the selected nodes is illustrated in Fig-
ure 4.6. An upper limit is set for the number of nodes used for the representation
of the object, Nmax < N,; the size of the node set can be anything between one
and Nyjax.

Discarding pixels in the starting image means that the distribution p(x1|Z;)
becomes a delta function so that each possible node combination of the selected
candidate nodes (with nodes up to Np,.x) is equally likely and node sets including
other nodes than the selected ones have zero probability. The marginal posterior
distribution of the location of the node sets in the second image is thus

p(x2|Z1:2) = /P(X1:2|Il:2)dX1

= /P(X2!X1711:2)P(X1\I1)dx1 = p(xalx},T12),  (4.34)
S
where the summing is over all the possible node sets.

4.5.2 Posterior distribution

In the basic method, presented in Section 4.3, the marginal posterior distribution of
the node locations in the current image ¢ was contributed by the past images only
through the mean Gabor responses; when searching for the corresponding points
in images 7., the distribution p(x1.4—1|Z1..—1) had no effect on where to look for
the points in image ¢. The extended method (Section 4.4) was an improvement in
the sense that the prior model depended on the mean of the node locations x1.;—1.

In the full method, the current posterior distribution in image ¢ depends on
x1.t—1 and the distribution p(x1.4—1|Z1.4—1) must be taken into account when
matching the image. As in the context of dynamic state-space models (Doucet
et al., 2001), each new image is considered a novel observation which recursively
updates the joint posterior distribution whose dimension grows after each obser-
vation (see Figure 4.1). Therefore, the joint posterior (4.1) is considered in this
section. It is a distribution over all the possible node sets and is rewritten here for
convenience:

p(x1:|Z1:4) X p(Ze| %14, Lr:e—1)P(Xe | X1 —1)P(X1:t—1 | Z1:8—1) - (4.35)

Again, the scale and orientation parameters can be thought of being marginalized
out of the posterior distribution of image .

4.5.3 Likelihood model

The likelihood is built as explained in Section 4.2. To save computation time, the
reference jets J(x;) used in the similarity measure S, (J(x¢), J(x;)), and thereby
in the associative likelihood equation (4.7), are the same for all z ; (that correspond
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to the node under scrutiny) and this value is computed by averaging .J(x ;) over the
product of the posterior probability of x; and the posterior association probability
of the node.

The similarities are computed with Gabor jets having three different frequen-
cies (212253} ) and ten orientations ({0, ..., 9} /10). Since the proposed frame-
work is orientation and scale invariant, the Gabor responses of the test image are
computed with an extended filter bank that contains two additional frequencies on
both ends and additional conjugated filter responses so that the likelihoods can be
estimated from the neighboring filter responses (see Section 2.5).

4.5.4 Prior model

The prior model is the same as in 4.4.4, except that the posterior association prob-
ability depends on the node locations of the past images. Also, the reference shape
does not use a point estimate for the past node locations. The reference location of
node ¢ is thus

i_i _ 22;11 P(A}g|l‘21kaz-1k)(l‘zk - M$,k‘)
1:t—1 — — - -
22:11 P(A;gu'llkaz-lk)

where M, ;. is computed with equation (4.30).

: (4.36)

4.5.5 Particle filtering

The nodes in the test image ¢ are sampled with PMC-like sampling. The algo-
rithm resembles the PMC implementation of Section 4.4 but here the node loca-
tions of the particles at the processed images are taken into account. The particle
weights are evaluated recursively:

(n) (n) p(It!xﬁi? ) Il:t—l)P(Xgn) ’ngbt)—l)

Wiy X Wiy q
g™ ") Tie)

, (4.37)

where n indexes a particle. The detailed form of the particle Monte Carlo imple-
mentation is given in Algorithm 7, where the indexing of the particles have been
dropped for clarity and the notation x; refers to the :th node of the node set x;. The
initialized particles contain components {x{,, s, "}, where x,_; are the node
locations in the processed images.

The algorithm includes two iterations. The first iteration is mainly intended
for getting rid of the worst initializations while in the second iteration the survived
hypotheses are improved. The node sets of the particles are modified during the
second iteration by removing some nodes whose prior association probability gets
too low. The new nodes are selected among such candidate nodes (see Subsec-
tion 4.5.6) that are located near the existing nodes. Also, if the number of nodes
is below the allowed maximum Np,., the node set is expanded by selecting some
of the candidate nodes that are located near the convex hull of the existing nodes.
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1. Initialize
- Pre-compute responses of the test image with a large filter bank consisting of
7 frequencies 2~ t1:1-5--4} 1 and 20 orientations {0, 7/10, ..., 197/10}
- Initialize the particles as explained in Subsection 4.5.6
-Seth = 1.
2. Sample each particle from the proposal distribu-
tions
- If h = 2 compute the posterior association probabilities with (4.5) and set
T; = P(A¢|x, Z1.4), otherwise set T; = 0.5 Vi
- Set g(log]s]|s" 1) = N(log[s" 1], 02), where o5 = 21og[1.1]/(1 + E[T))
- Set q(pl" 1) = N ("1, 62), where o, = 10/(1 + E[T) (in radians)
- Sample scale and angle: log[s*] ~ q(log[s]|s" 1) , ¢* ~ q(p|" 1)
- If h = 2 modify the node set as explained in the text
for i =1 to Nypdes do
-Setg(zifxi ™!, 5%, ¢") = N(ﬂfz‘!merS*R(W)(x?*l—E[Xi;’l])v R(p*)ci),
where my is the T weighted midpoint of x"~! and ¢; = <06“ 002 ), where
v;
oy, = 5*(0° )V2-Ti and oy, = 8*(0! V2T

u,prior v,prior

- Set q(Zi|zi, x0T, 5%, %) = P(A)Li(z) + (1 — P(A;))k, where

P(A;) is the prior association probability (4.4) and L;(z) is the likelihood,

with the scale and orientation closest to s* and ¢*

- Set Z; = ZmieA q(mi|xh_1,5*,go*)q(It|mi,x?:;El,Ilzt,1,s*,go*), where

the size of the search window A is [3 3]c; pixels around the prior mean

- Set q(a|x 1y, 5%, 0%, Thy) =

ZLZ.Q(IHXh_l’ s*, @*)Q(Ituia le;;}pzlztfla s*, SD*)

- Sample location (numerically): ] ~ q(mﬂx?il, s* 0%, I1)

end for

3. Compute the particle weights for each particle

P(Tilx* XV Tra—1,s% 0" )p(x* X)L, 8% 0%)
[TTm g(as|xf5 L 5% 0% Tr.o)]g(logls*]|sh~)a(0* |h 1)
value of the likelihood has been computed by interpolating between four neigh-
boring filter responses, according to s* and ¢™.
- If h = 1, set the particle weight to @ = w, otherwise set W = wy.4—1 W

, where the

- Compute w =

4. Resample
- Resample the particles with replacement according to w®
- Set the components of the particles {x?:t, s, ©"} to the resampled values
-If h = 1set h = h + 1 and go to step 2. Otherwise set the particle weight to
wi. = W' and finish.

Algorithm 7: The particle Monte Carlo implementation. See text for details.
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After the first few images of the sequence, the particle representation may contain
many different hypotheses about the common object. Figure 4.1 can also be used
to depict this; the posterior distribution is represented with three particles, whose
weights are proportional to the size of the dots. Sooner or later the weaker hypothe-
ses pass away owing to the resampling and after many images all the particles share
the same ancestor.

4.5.6 Initializing the particles

Probably the most problematic part of the sampling scheme is the initialization of
the particles, as the object can be located anywhere in the test image with arbitrary
scale and orientation. When matching the second image, the particles are initialized
in the following manner. For each candidate node, selected in the starting image,
the similarity with the second image is computed, using all the possible scales and
orientations (there are 3 and 20 of them). The maximum over the image and over
all the scales and orientations is chosen. This gives so-called key node which sets
the location, scale and orientation for one particle. Each particle has its own key
node so the number of particles is also IV,,.

When applying the PMC algorithm in the second image, the node sets of the
particles are expanded around the key node by picking in the starting image the
closest Npmax number of nodes among the N, candidate nodes. These are matched
in the second image using the proposal distributions. For each matched node loca-
tion, the posterior association probability is computed and nodes having this value
less than half are discarded from the particle set. Due to the resampling, only node
sets with high visual correspondence between the first two images survive. The
sampling algorithm is thus somewhat different in the second image than in the
further images.

For initializing the particles in the subsequent images a similar procedure is
used. The mean value of the Gabor responses of each matched node is estimated
from the particles. The key node of each particle is the one with the largest prior
association probability. For degenerated particles, different key nodes are used,
being those with the largest association probabilities. Some particles may share the
same key nodes. Maximum similarity between the key nodes and the next image is
again computed to initialize the particles. At this stage, also new reference nodes
are selected in the image if the number of different matched nodes is below N, so
that there are always N, number of candidate nodes available when modifying the
current node sets.

The particle initialization is based on the desire that at least one of the key
nodes is correct, giving a correct location, scale and orientation. Typically there
are many correct key nodes and after the resampling of PMC these hypotheses
survive. However, it may happen that none of the key nodes is correct, in which
case the image is doomed to be incorrectly matched.
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4.5.7 Kernel selection

As more images are processed, the number of kernels in the mixture likelihood
increases. This increases the computation time. The idea behind having many
kernels in the likelihood is based on a desire of being able to model multiple ap-
pearances for a same node. However, there is usually an upper limit for the number
of different appearances that certain part of an object possesses. For instance, a hu-
man being does or does not wear glasses, resulting in two different appearances for
an eye node. Of course the appearance of an eye varies from subject to subject but
there probably is redundancy in a mixture representation where all the kernels rep-
resent a bare eye of different subjects. Besides, as the area covered by the kernels
in the Gabor jet space increases, also background pixels receive higher likelihood
values which may more easily lead to false matches.

In order to decrease the redundancy and to compress the object model, a for-
ward selection algorithm (Orr, 1996) is applied to select only the most meaningful
kernels from the mixture. In the algorithm, a new kernel representation is con-
structed which at the beginning does not contain any kernels. The kernel that most
decreases the training error is added into the representation. Then, second kernel is
added using the same reasoning. In the glass example, the first two kernels would
probably be selected in the two groups (with / without glasses) and they would
represent the most typical appearances, meaning that they would lie in the middle
of the two groups. More kernels are added until the number of selected kernels ex-
ceeds a pre-defined threshold, or until some other error measure that is monitored
during the process starts to increase. The error measure used here is the generalized
cross-validation error (Craven and Wahba, 1978) which can be computed analyti-
cally. It estimates how well the mixture model would fit in new data by balancing
the fit in the training data and the model complexity; in other words, it tries to solve
the eternal dilemma of over / underfitting. Other similar error measures, such as
the unbiased estimate of variance and the Bayesian information criterion, exist and
could be used as well. Because the error measure based stopping rule is somewhat
unreliable, a lower limit can be set on the number of kernels. In the experiments
of this thesis, at least three kernels were always selected. After the kernel selection
scheme is stopped, the representation should contain only statistically significant
kernels, but no more.

4.5.8 Algorithmic form

The full incremental method for matching the objects is depicted in Algorithm
8. The small filter bank contains the frequencies 2~ {2253}z and the orienta-
tions {0, ...,9}7/10. The frequencies and orientations in the large filter bank are
2~ {L15 Ak and {0, 7/10, ..., 197 /10}.
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1. Actions for the starting image:

(a) Gabor transform the starting image with the small filter bank
(b) Select N, number of candidate nodes in the starting image as explained
in Subsection 4.5.1 and store the Gabor responses at each node

2. Match the next image

(a) Gabor transform the next image with the large filter bank
(b) Compute the likelihood as explained in Subsection 4.5.3
(c) Compress the kernel representation as explained in Subsection 4.5.7

(d) Sample the posterior distribution of the image with Algorithm 7
3. Compute the parameter values
(a) For each particle, compute and store the posterior association probabil-

ities of the nodes with (4.5)

(b) For each node, estimate and store the mean magnitudes and phases of
the Gabor responses

(c) For each particle, update the prior node variance with (4.33)

(d) For each particle, update the reference shape with (4.36) and (4.30)

4. Goto step 2

Algorithm 8: The incremental algorithm for matching the corresponding points
with the full method.

4.6 Comparison of the methods

4.6.1 On the similarities and differences of the methods

The Sections 4.3, 4.4, and 4.5 have presented three methods for incrementally
matching the corresponding points of an unknown object in a sequence of images.
The methods have much in common: The joint likelihood of a node set is a product
of the independent node likelihoods, a node likelihood is a mixture of dissociative
and associative likelihood which is formed from the phase-sensitive Gabor similar-
ity, the prior is a Gaussian distribution with a diagonal covariance matrix, the prior
node association probabilities are updated as a mean of the previous posterior asso-
ciation probabilities, and the posterior distribution of the node locations is sampled
with particle Monte Carlo methods. The differences lie in the complexities of the
methods. The basic method uses the same set of nodes along the sequence, with a
constant variance in the prior distribution, and uses a SMC implementation where
the nodes are matched one at a time from conditional distributions, conditioned on
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the already sampled nodes. The extended method modifies the node set by moving
the dissociative nodes inside the convex hull of the current node set so that the area
of the node set shrinks along the sequence until it covers only the object. Also, the
node variances are updated and the reference node shape is computed as a mixture
of previous node shapes. The matching utilizes PMC sampling where the parti-
cles are initialized by scanning the image with a rigid node set using few different
scales and orientations to find the most probable locations of the object.

In the basic and extended methods, the marginal posterior distribution of the
current image depends only on the point estimates of the previous images. A par-
ticle is thus a hypothesis of the node locations only in the current image and the
particle representations need not be stored after having computed the point esti-
mates. The full method utilizes the recursive formula of the joint posterior in its
“full extent’ by considering each new image as an observation which updates the
present knowledge about the common object. In the particle representation, each
particle can be inferred as a hypothesis about the common object, containing the
locations of the nodes and the scale and orientation of the node set in the processed
images. The updating of the prior association probabilities, node variances and
reference shapes is thus done individually for each particle. The particle Monte
Carlo implementation resembles the PMC sampling of the extended method but
the weights of the particles in the previous images contribute in computing the cur-
rent weights. Also, the initialization is based on the maximum similarity values of
single nodes instead of the whole node set. Furthermore, it is possible to include
full orientation invariance without having a computationally too heavy model.

4.6.2 On the performance of the methods

It may seem that as the complexity of the methods increases from 4.3 to 4.5 also
the performance of the systems increases. However, this may not always be true,
depending on the nature of the images being matched. The basic method 4.3 as-
sumes the object to appear at nearly constant location, scale and orientation. If this
situation holds for the object instances in the images, the starting point is much bet-
ter for the basic method that for the more complex methods. For the full method,
the search space is significantly larger due to the possibility of arbitrary location,
orientation and (almost arbitrary) scale which means that the correct mode of the
posterior distribution takes a very small portion of the whole parameter space. This
complicates the matching because it may either happen that the main mode of the
posterior is not the correct mode or the sampling algorithm is unable to locate the
globally largest mode. On the other hand, in the extended and full methods the
particle initialization is separated from the actual sampling process, making it pos-
sible to increase the performance of those methods by using better initialization
routines.
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4.6.3 On the robustnesses of the methods

The methods differ also in their robustness, that is, the ability to handle statisti-
cally abnormal observations. The basic method is expected to be the most robust
because its node set is constant so that the prior distribution of the node locations
is the same in each image. A mismatched image presents only a small problem in
matching upcoming images, especially if the mismatch occurs after a few success-
ful matches so that there are enough likelihood kernels that represent the correct
appearances. Actually, the basic method is even expected to handle sequences
containing background images (images without the object instance). In addition,
although it is in principle unnecessary to carry the background nodes in the node
set, they on the other hand provide information about where the object is not.

The extended method is less robust due to the modification of the node set and
node variances. If a node set is modified in a mismatched image, the relocated
nodes are inevitably selected in the background and matching the later images gets
more difficult. For the extended and full methods, each mismatched node also
distorts the value of the node variance. The quality of the first two images is most
important for the full method since the node sets are established based on these
images; if all the particles miss the object, it is almost impossible to find the object
in the upcoming images as the node set is then required to hit the target by change.
Also, only the most similar nodes are included in the node set which may cause
problems. For example, if the object is a human face and the other of the first two
faces have sunglasses, the eye nodes are probably not selected although they should
be part of the object representation with two different appearances (with / without
sunglasses). Although the modification scheme of the sampling algorithm is there
to have the missed nodes included later in the sequence, it is unlikely that the node
representation will ever cover each part of the object. Hence, there is a danger of
overfitting the particle set in the first two images. The level of overfitting, however,
can be diminished by increasing the maximum number of nodes and lowering the
threshold in the initial node selection scheme, but swinging the pendulum too far
the opposite way may also lead to mismatches. As is typical for statistical methods,
there is a balance between over- and underfitting that wants to be found. Finally, it
can be concluded that the order of the images is vital for each method but less vital
for simpler methods.

4.7 Parameter estimation

The three main parameters of the methods, presented in Sections 4.3, 4.4 and 4.5,
are the steepness parameter of the likelihood function ((3) , the dissociative likeli-
hood (k) and the Gaussian deviation from the reference shape (o) which reflects
the elasticity of the object. Although the extended and full methods aim to learn the
shape parameter o during the process, they still need an initial value to be used in
the second image. This section considers a balance between the likelihood steep-
ness and the shape variance as well as presents a heuristic procedure for estimating
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Figure 4.7: An illustrative example of the relation of the standard deviation pa-
rameter of a prior function (dashed blue line) and the steepness parameter of a
likelihood function (dash-dotted green line). In the leftmost plot, the parameters
are small and the unnormalized posterior distribution (solid red line) is between
the two distributions. In the middle plot, the prior variance is large enough to let
the posterior distribution essentially equal the likelihood function, whereas in the
rightmost plot, it is due to the high likelihood steepness that the posterior is again
approximately at the same location as the likelihood.

the dissociative likelihood from the data.

4.7.1 Balancing  and o

The standard deviation of the Gaussian shape model should be large enough to
allow instances of objects with different shapes to be matched. In practice this
means that the marginal posterior distribution of a node location should have a
global maximum at correct location where there — hopefully — is a local likeli-
hood peak. On the other hand, too large variance causes false likelihood peaks to
dominate if they happen to be large by magnitude, and in the limit ¢ — oo the
global maximum of the total likelihood is the maximum of the posterior. The value
of the shape parameter is thus vital to achieve robust object matching.

A ’too’ small value of ¢ can still lead to the correct maximum of the marginal
posterior of a node if the steepness of the likelihood is large enough. This simple
phenomenon is illustrated in Figure 4.7, in which the parameters are modified in
two different ways so that the mode of the posterior would coincide with the mode
of the likelihood. The task is, therefore, to find an optimal balance for the shape
and steepness parameters. The balance can be estimated by noting that the value
of the marginal posterior should be bigger at the correct location x§ than at the
location expected by the reference shape x;. Let us consider the second image of
the sequence and an object node whose prior association probability is taken to be
one. By adopting the notation x = X9, X' = x1,Z = 75 and 7’ = 7 the inequality
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which shows the reciprocal dependence on the steepness parameter and the vari-
ance of the shape model. The larger the distance between the expected and correct
location, and the smaller the similarity difference between the two, the larger the
product of the parameters must be. Having the prior association probability less
than unity leads to an analytically intractable equation but it can be inferred that
the right hand side of the inequality (4.38) increases (slightly, depending on the
value of S, (J(z5), J(x))), thereby demanding higher value for So.

Equation (4.38) illustrates the limit where the correct location is as probable
posterior-wise as the reference location — an open question is how much more
probable the correct location should be. An arbitrary large value for So? makes
the shape model useless as noted before. On the other hand, if the correct loca-
tion is more probable than the reference location, the maximum of the posterior is
probably still in the middle of the correct and reference locations. Equation (4.38)
is exploited to validate the parameters in Chapter 5.

C
?

7")2
& fBo? >

(4.38)

4.7.2 Setting the threshold parameter x

Especially for the performance of the basic method 4.3 and the extended method
4.4 the value of the threshold parameter « has a great effect as it should be set to
such a value that the nodes are associated correctly. Also, it affects the matching
of the node set as the joint likelihood is a product of independent node likelihoods;
if the similarity of (any of) the background nodes of the node set at the correct
location is very low, a too small value for « leads to the main mode of the posterior
being in a false position where each node fits somehow. On the other hand, when
the value of k increases, the mixture likelihood becomes approximately a constant
which again leads to false matches. This is illustrated in Figure 4.8 which con-
siders an artificial example where the reference node set consists of three object
nodes and three background nodes. In the test image, the object nodes fit well at
the correct location and the background nodes possess zero likelihood values —
this is as expected. However, a false location is also imagined, representing a lo-
cal maximum of the posterior in which all the nodes fit somehow — this, too, is
common in object matching. Having a (very) low value for x causes the false like-
lihood peak to dominate but then again the ratio decreases towards unity when
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Figure 4.8: An artificial example of the ratio of joint likelihoods of a node set,
consisting of three object nodes and three background nodes, at correct and false
locations. The prior association probabilities are set to half. For the correct lo-
cation, the object likelihoods are {100,100, 100} and the background likelihoods
{0,0,0}. The likelihood values at the false location are all set to 10.

approaches infinity and an intermediate value gives the highest ratio. Because the
matching is easiest with high ratios of the posterior masses, fixing « is an essen-
tial problem. For the full method, the value of & is perhaps less meaningful as the
node set is supposed to include object nodes only; however, a positive value for x
enables occluded objects or objects with abnormal appearance to be matched.

The fixing of x is based on decision theory according to which an expected
utility of making a certain decision is a weighted average of the utilities for different
outcomes with the decision, weights being the probabilities for those outcomes
(Bishop, 2006). The optimal decision is the one that maximizes the expected utility.
An analytical formula for x can be obtained by considering the expected utility
of the optimal decision for node association in which the object nodes, and only
them, are associated as object nodes. This expected utility is maximized w.r.t. the
parameter x while keeping parameters 3 and o fixed.

Let us assume that the utility is one when making the correct association and
zero for the opposite case. By taking the negation of the expected utility and by
letting A; be the association status of the ith node of image ¢ we end up with the
(sum) association error:

Ey(B.k,0) ==Y P(Ai|T1y) = Y _[1— P(Ai|Tiy)], (439
1eEF i€B

where F denotes the object nodes and B the background nodes. The smallest
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possible value of E is the total number of nodes with a negative sign. Another
option would be to investigate a product based error

Ey(8,k,0) = — [ [ P(AilZr) [[11 - P(Ai|T1)] (4.40)

ieF 1€B

which is directly interpretable as the negative of the total probability of having the
object nodes, and only them, to be associated with the object. Using the product of
individual association errors is highly sensitive to single errors as any of the object
nodes surely associated as a background node, or vice versa, leads to the total error
being zero. It is more reasonable to use an error measure that depends on the
average error than the worse-case error and as the aim of this subsection is to find
some practical (rather than theoretically flawless) rules for setting the parameters,
the sum error (4.39) will be used from now on.

Equation (4.39) deals with the posterior node association probabilities from
which the node locations are integrated out. To estimate the marginal association
probabilities, x; is divided into two subsets, x; and x_;, where the latter contains
all the indices other than i so that p(x|x’, Z1.;) = p(x;|x_i, X', Z1.¢ ) p(x_i|x', Z1.¢).
Then, let the distribution p(x_;|x’, Z1.;) be a delta function at its mean value, X_;.
This assumption ignores the posterior variance but with large (3 the posterior is
essentially unimodal so the variance in the distribution of x _; has little effect on the
marginal posterior distribution p(x;|x_;,x’,Z;.+). The integral in equation (4.16)
then reduces to an integration over the ¢th component z;:

P(A;|T14) = /P(Az'|X,Ilzt)p($z‘|x—i,Il:t)p(X—i|Ilzt)dX (4.41)
fP )p(Zi|xi, Tr.e—1, Ai)p(xi| %) dx; 4.42)

fP It]mZ,Ilt 1, A)p(zi|x_3)dz; + (1 — P(Ay)k
_ P (Ai)yi (4.43)

P(Ai)vi+ (1= P(Ay))w’

where P(A;) is the prior association probability and -y; denotes the integral of the
product of the likelihood and shape function which can be thought of as a smoothed
local average of the likelihood around the mean of the Gaussian distribution:

fyiz/ (Z|miy Typ—1, Ai)p(ai | % )dx; (4.44)

With this notation equation (4.39) is rewritten as

__ P(A
P05 =~ 8 S P PO P 0

eF B

Let us next calculate a value for x that minimizes the error (4.45). For arbitrary
~ values the problem is unattractive to solve analytically. However, (4.45) can be
minimized — in the usual way by differentiating it with respect to x and setting the
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results to zero — with relatively little effort if all the -y values and prior association
probabilities of object nodes are assumed to have the same value, and likewise
for the background nodes. Naturally, this assumption is not in line with reality as
there is some variation in the masses of the likelihood peaks; that variation must
be ignored in this analysis. Let vz and yp denote the v values of object and
background nodes and let Pr and Pp denote the prior association probabilities of
object and background nodes. The value of x that minimizes E' is then

=~ NpPpPpyryB
Ne(l—Pr)(1—Pp)

where Ny and Np denote the number of object and background nodes and the
approximation holds when # 2 1 and v > 7p. By setting the prior association
probabilities to half the above estimate reduces to

Ngp
= —= . 4.47
k=4 Ny YFYB (4.47)

Interestingly, having minimized F,, under the same assumptions as above would
also have lead to estimate (4.47).
It is worthwhile to investigate the logarithm of 4.47:

(4.46)

1 N
log(kr) = 3 {log <N—i> + log(vr) + log(’yB)} . (4.48)

The result seems reasonable: with an equal number of object and background
nodes, the logarithm of an optimal threshold is the mean of the logarithms of back-
ground and object 7y values, being the most optimal way to separate the nodes
whose  values are spread into two groups with zero in-group variance. When the
number of object and background nodes differ, a small bias is added.

The formula 4.47 is implemented in the methods 4.3 - 4.5 in different ways.
In the basic method, the second image is matched with a constant value x =
exp (0.53). After the match, the identities of object and background nodes are
estimated by assessing the nodes whose similarities exceed the mean similarity
value to be object nodes. The mean values of both groups are taken and inserted
into equation 4.47. It is believed that integrating over the prior distribution has little
effect when using high value for 3, as is used in the experiments. & is computed
for each sample and the mean is taken. This estimation for « is used for matching
the third image from which the optimal & is again estimated. For the fourth image,
the median value of the two estimations is used, and so worth. For the extended
method, the first PMC iteration always uses value k = exp (0.53) whereas the
following iterations estimate < from the v values at the sampled locations. The
observed ~ values are split in two groups based on the mean logarithm and the
median values are used for yr and yp. For the third and subsequent images, the
mean of the so far estimated x values are taken. With the full method, a value
k = exp (0.173) is used in the second image. In the later images, & is simply taken
to be the square root of the median of the ~ values, averaged over the samples.



Chapter 5

Evaluation of performance

5.1 Introduction

The purpose of the methods, presented in this thesis, is to locate the corresponding
points of an object by sequentially handling the images in which the object appears.
The promises of the methods can be demonstrated in two different tasks. In the
first one, the pixel-wise matching errors between the true corresponding points and
the points proposed by the methods are evaluated. The second task measures the
ability of the methods to detect whether there is an instance of the learned object
in an unseen test image or not.

In this chapter, the experimental results of the methods are given by measuring
both the matching errors and detection errors. The errors are compared with other
published methods. Before presenting the numerical results, some qualitative re-
sults are illustrated in order to give an intuition of the performance of the methods.
Also, the used image databases and the parameter values are presented. The three
different methods of Sections 4.3, 4.4, and 4.5 will be — somewhat unimagina-
tively — referred to as M1, M2, and M3.

5.2 Data sets and matching details

To assess the performance of the proposed methods, six data sets were used, four
of which are publicly available while the two others consist of private digital cam-
era images. The public databases are the IMM-DTU database (Stegmann, 2002),
the Bio-Id database (Jesorsky et al., 2001), the Caltech faces database (Fergus
et al., 2003), and the butterfly database (Lazebnik et al., 2004). The digital camera
databases contain images of a dog and a similar traffic sign. The DTU images and
the dog and sign images are used in evaluating the matching errors, whereas the
other images, together with the dog images, are used in detection tasks. Illustrative
examples and the sizes of each database are given in the Appendix. In the match-
ing experiments, image sizes were 240 x 320 and in the detection experiments the
vertical size was downscaled to 200 for memory reasons.

79



80 CHAPTER 5. EVALUATION OF PERFORMANCE

Table 5.1: The percentiles for the positive values of A (equation (5.1)) for the Bio-
Id database and Bio-Id* subset, which consists of images from the Bio-Id having
the same person.

Database | 25% 50% 75 %
Bio-Id 19 39 89
Bio-Id* 12 22 51

The Euclidean matching errors of DTU are compared with three published
batch methods that have reported the matching errors for these images. They
are the Elastic Bunch Graph Matching method of Wiskott et al. (1997), Active
Appearance Model implementation of Stegmann (2002) and the Bayesian Object
Matching method of Tamminen and Lampinen (2006). In addition to being batch
methods, these methods utilize manual annotations to learn the object model, so
the situation is much more difficult for the proposed methods. As Rolf Wiirtz has
kindly provided the code for the EBGM method, its performance could be tested
also with the other two matching databases, dogs and signs. The detection results
of the butterfly images are compared with the batch method of Lazebnik et al.
(2004) and the detection results of Caltech face images are compared with several
other published methods.

5.3 Estimating 30>

In Subsection 4.7.1, it was deduced that in order to achieve good performance,
the product of the likelihood steepness parameter 3 and the variance of the shape
model o2 should exceed a threshold. The inequality 4.38 is rewritten here for
convenience, using slightly different notation:
(Tc — )

fo” > 2(S(J (), J (') — S(J(z,), J(z')))

A, (5.1)

where 2’ is the location of a node in the starting image, .. is the correct location
in the second image, and x, is the reference location in the second image, that
is, the mean of the prior distribution (the case with many training images is more
complicated).

In order to exploit the inequality (5.1) the value of its right hand side, de-
noted as ), is estimated using the Bio-Id database. The images on the database
possess manual annotations on 20 fiducial locations of a human face (these anno-
tations were not utilized in the actual matching tasks). Random pairs of images
were drawn from the database and the 20 nodes of the first image were fitted to
the second image using the Procrustes method. The correct locations in the second
image are taken to be the annotated locations and the reference locations are taken
to be the transfered locations. The phase-sensitive similarities and distances were



5.4. THE PARAMETER VALUES 81

computed and inserted in equation (5.1). This was repeated 100 times. The statis-
tical summaries of positive A values are given in Table 5.1. Negative \ values are
a result of having a poorer Gabor similarity at the annotated location than at the
reference location; such nodes pairs are useless for this analysis since they are in-
evitably matched inaccurately. In addition to using all the Bio-Id images, a subset
of the database was extracted that consists of images of the same certain person for
which the same analysis was carried out. The subset is denoted as Bio-Id* and the
corresponding entries are also found in Table 5.1. In line with intuition, the values
are smaller for the images containing the same person as the deformation of the
object is smaller and as the differences in the Gabor similarities are higher due to
the similarities between the annotations being close to one.

The inequality (5.1) and the values of Table 5.1 should be interpreted as rough
guides. One problem is the denominator S(z., z’)—S(x,,2’). The smaller it is, the
larger the product 302 must be to have the marginal posterior higher at the correct
location than at the reference location. However, there is a point beyond which it is
unnecessary to go; if the difference is, say, 1/1000, it can be concluded that such
a node will not match correctly unless the prior variance is unreasonably large.
Therefore, the inference should be based only on the reasonable values of A, such
as the 75% smallest values. As was discussed in Subsection 4.7.1, an upper limit
for B0 exists but is unavailable. It should also be noted that the object instances
of the Bio-Id database vary a lot, both in appearance and shape, whereas the object
instances of the Bio-Id* database are almost identical, and the images that the
proposed methods can handle are expected to fall in between the two extremes.
Based on the available information and common sense, it can be concluded that
the value of Bo? should clearly exceed one hundred but fixing it to more than
one thousand would probably be an exaggeration. Also, as the approximations
that were made in the methods were based on having a sharp-peaked likelihood, a
combination of large (3 - small ¢ is preferred over the opposite case.

5.4 The parameter values

The parameters that probably have the most effect on the performance are the like-
lihood steepness parameter (3, the deviation of the shape model ¢ and the dissocia-
tive likelihood . The relation between 3 and o was discussed in Subsection 4.7.1
and Section 5.3, and a heuristic procedure for adopting ~ using the observed data
was presented in Subsection 4.7.2. In the experiments, the likelihood steepness
was set to 8 = 50 in all the three methods. The node variance in M1 was set to
20 pixels, whereas the hyperparameters in M2 were set to v = 5 and 52 = 10,
corresponding to an initial node variance of 7.1 pixels, and the hyperparameters in
M3 was set to v = 15 and s? = 5, resulting in an even tighter initial node variance
of about 4.4 pixels. Since the node variance in M1 is not updated, it is possibly
safer to fix it to a somewhat large value (for M1, Bo? = 1000). Also, because
the M2 and especially M3 methods are less robust, it is better to use a rather rigid
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node set to prevent the *wandering of the nodes’ phenomenon, discussed later in
this chapter.

The other parameters of the models are the number of nodes and the parameters
of the Gabor filter bank and Monte Carlo sampling methods. The number of nodes
for M1 and M2 was 30, being a result of using a grid size of 5 x 6 in the starting
image. In M2, the threshold for removing the nodes was P(A) = 0.24 (preventing
the node set to be modified yet in the second image) and the maximum number of
nodes to be modified in a single image was set to six. In M3, the total number of
nodes was N, = 150 (except when otherwise noted) and the maximum number
of nodes for a node set was Ny,q, = Np/5 (which is 30 for N, = 150). The
methods seem to be quite insensitive to the chosen Gabor filters, as long as there
are ’enough’ different orientations and the frequencies span a ‘reasonable’ range.
The standard deviation of the Gaussian part of the Gabor filter in all three methods
was set to . In M1, 3 frequencies were used (v/27/4, v/27/8 and v/27/16) and
6 orientations (0, 7/6, ...,57/6). In M2 and M3, a larger set of base frequencies
were used to interpolate the arbitrary scale. Five base frequencies were used in M2
(v27/[2,4,8,16,32]) and seven in M3 (7r/2[1’1'5""’3'5’4]). The orientations for M2
were the same as in M1. In M3 there were 10 different orientations ([0, ..., 9]7/10).

Finally, taking that the actual model parameters have been set to *good’ values,
so that the main mode of the posterior is at the correct location, it is up to the sam-
pling method to find this main mode, that is, to represent the posterior with good
accuracy. In practice, this means a careful implementation of the particle Monte
Carlo methods and a large enough number of particles. Detailed implementations
of the sampling algorithms of the three models are presented in Chapter 4. In M1,
the number of SMC particles was 400 in the beginning and it was reduced by one
fourth at each iteration until it reached 50. The Langevin equation was iterated 10
times with leapfrog stepsize ¢ = 1 and the exponent of the weight was o = 1/3. In
M2, the number of particles was 150 and the maximum number of PMC iterations
was 5. In M3, the number of particles was IV, = 150 (unless otherwise noted) and
the exponent of the weight was v = 1/3(= 1/50).

5.5 Qualitative results

Before giving numerical errors, some qualitative results of matching a sequence
of eight dog images with each method are given in this section. Inspecting the
results should facilitate to understand the performance and differences between the
methods.

Figure 5.1 shows the matching results of the M1 method. The object nodes
(located in nose, eyes etc.) seem to be quite accurately matched in each image
and their association probabilities evolve to unity along the sequence, as can also
be seen from the bottom left panel. For the nodes located near the edge of the
object the evolving is less straightforward due to the affect of the background and
the method is less sure whether these nodes are part of the object. Then again, the
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Figure 5.1: Matching results of the M1 method. Sequence proceeds from left to
right and top to bottom. The dots depict the Monte Carlo estimate of the posterior
mean of the node sets. The red values of the dots are proportional to the prior
association probabilities of the nodes and the sizes of the dots are proportional
to the posterior association probabilities of the nodes. The evolution of the prior
association probabilities for each node and image are given at the bottom left panel
and the SMC particles of the eighth image are shown on the bottom right panel.

background nodes are easily identified by the method. The panel on the bottom
right showing the eighth image of the sequence with the SMC particles superim-
posed reveals how the uncertainty about the location of the nodes is much less for
the object nodes than for the background nodes. An object model could be formed
using only the nodes whose prior association probability exceeds, for instance, 0.9
in the end.

In Figure 5.2, the result of matching the eight dog images with the M2 method
is shown. The object nodes are again accurately matched. The relocation of the
nodes whose prior association probability goes under a threshold of 0.24 causes
the number of object nodes to increase along the sequence and at the end of the
sequence the proportion of the object nodes in the node set is larger than when
using method M1. The matrix of prior association probabilities reveals how the
probabilities typically start to grow after the relocation of the nodes, indicating that
the nodes were reselected inside the object boundaries. The panel on the bottom
right shows how the variances of the shape model update during the sequence. The

values of the matrix are the Euclidean standard deviations (o = /02 + 05) of the
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Figure 5.2: Matching results of the M2 method. See the caption of Figure 5.1 for
details. Bottom right panel shows the progression of the standard deviations of the
shape model, compared with the initial value.

tth image, divided by the initial deviation o (1), for each node. For most nodes, this
figure stays close to unity. For the nodes on the edge of the object, there is more
variance in their locations, again due to the disturbing background.

The matching results of the M3 method are illustrated in Figure 5.3. The
method aims at establishing the correspondence already between the first two im-
ages and seems to succeed as there are no background nodes in the node set, apart
from the few nodes above the head. Since each part of the object is clearly visible in
each image, the posterior association probabilities are unities in each image, except
for one of the nodes above the head in the seventh image, and the prior association
probabilities are close to one in the end. The first two images of the sequence are
shown at the bottom of the figure enlarged, showing also three distinct modes of
the posterior distribution which the method has found. The particle representation
contains three different reference node sets, which are shown in the left image with
different colors and markers. For perceptional purposes, also the convex hulls of
the node sets are plotted. In the right image, the average locations of the particles
with the corresponding reference node sets are depicted in a similar fashion. The
average weight of the node set shown in blue crosses is significantly larger than the
weights of the other two node sets, which is why this node set in practice equals
the mean value of the node locations, shown in the smaller panels. It is also this
node set that alone survives the resampling after observing the third image.

In Figure 5.4 the images that were shown in Chapter 1 are matched with method
M3. The nodes have been indexed with numbers to illustrate the identities of the
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Figure 5.3: Matching results of the M3 method. See the caption of Figure 5.1 for
details. The lowest panels show three distinct modes of the posterior distribution
of the first two images with different colors.

nodes. Despite the rotation and scale differences of the object instances, the method
has been able to locate the common object. This is verified in the right column by
the extracted image areas which obviously are similar. Also, almost all the node
association probabilities are 100%.

5.6 Matching errors

This section presents the matching errors, that is, the Euclidean distances between
the matched locations and the manually annotated correct locations. For evaluating
these errors, different image sequences of ten images were matched. The images
were randomly chosen from the databases. The point-to-point matching errors
were assessed by going through the matched sequences and annotating manually
in the next image the correct locations of the corresponding points of the object
nodes. For the M3 method, all the nodes are assumed to be object nodes, whereas
for the M1 and M2 methods, the nodes whose prior association probability exceeds
a threshold at the end of the sequence are interpreted as object nodes. The weighted
Euclidean distances between the annotated locations and the locations set by the
proposed methods are measured, weights being the posterior association probabil-
ities of the nodes. Hence, the value of the threshold for selecting the object nodes
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Figure 5.4: Left column: Matching results of the example images using method
M3. Right column: The areas extracted from the corresponding images by crop-
ping the area according to the convex hull of the matched points and rotating the
area according to the mean posterior orientation angle.
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Table 5.2: The statistics of the matching errors of 50 dog image sequences for
different methods. N,,,q4.s refers to the number of object nodes used to compute
the error. For the EBGM method, NV refers to the number of training images. The
rightmost column reveals the average CPU time in minutes.

Method Median Mean Std | E[Npoges] Time (min.)
Mil 54 5.6 1.7 8.0 24.6
M2 4.2 5.7 4.8 7.6 23.1
M3 5.8 6.1 1.7 30 57.6
EBGM (N =1) 7.1 16.5 222 12
EBGM (N = 5) 3.2 53 113 12
EBGM (N =9) 32 7.7 16.1 12
M1 M3
12 12
10 10
s 8 s 8
W W
4 4
2 2 4 6 8 2 2 4 6 8
N of images N of images

Figure 5.5: The mean errors and standard deviations for dog images as function of
the number of processed images for the methods M1 and M3.

is not that important as the nodes typically have low posterior association proba-
bility when they are inaccurately matched. A relatively high threshold of 0.9 was
selected in order to have a low number of object nodes and to reduce the manual
work. The errors were averaged over the images in the sequence. Because the
fallacious matches — that is, the matches that converged to an incorrect mode —
have high impact on the mean values, the median values give more insight into the
matching accuracies and the mean values and the standard deviations of the ability
to find the correct mode. It should also be noted that a manual annotation is not
precise and hence carries an (unknown) extra error into the analysis.

The results of 50 dog image sequences are given in Table 5.2. The images were
the same for each method to yield a fair comparison. The studied methods seem
to do an approximately equal job in finding the corresponding points. A closer
look at the statistics indicates that the results of the M1 and M3 methods contain
fewer mismatches than the method M2 which on the other hand matches more
accurately when it finds the target. This is revealed by the fact that for methods M1
and M3 the median and mean values almost coincide and the standard deviations
are small, whereas for method M2 the median is clearly less than the mean and
the variance of the errors is large, referring to a skewed distribution. A reason



88 CHAPTER 5. EVALUATION OF PERFORMANCE

Figure 5.6: An example of the pre-annotations and edges of the dog and sign im-
ages used by the EBGM method.

for this might be that the global move based initialization step of M2 finds only an
approximative position from which the convergence to the correct mode sometimes
fails, even though some of the nodes may be correctly matched. The slightly better
accuracy of the M2 method might be due to the Langevin Monte Carlo step that
M2 utilizes at the end of the sampling procedure. Also, the number of manual
annotations needed to evaluate the error for M3 was huge (30 x 9 x 50 = 13500
clicks of the mouse) and the boredom of the job possibly resulted in somewhat
lower annotation precision which increases the errors. The computation time (in
Matlab) of the method M3 is over twice as much as of the other two methods, due
to the full rotation invariance and larger number of candidate nodes. On the other
hand, the M3 method uses approximately four times as many object nodes as the
other two methods and thus it can be thought of carrying more information of the
object. The computational requirements are dealt more extensively in Section 5.8.

Figure 5.5 reveals how the matching errors of methods M1 and M3 behave
during the sequence. The errors seem to stay at approximately constant values
although for M3 the errors — somewhat surprisingly — even seem to increase a
bit. However, the fact that the highest matching accuracy with M3 is at the second
image is understandable since the method establishes the object nodes by finding
the most similar points between the first two images — if some parts of the object
have different appearances, they are not selected in the node set.

For the EBGM method, all the images were first annotated on the 12 land-
mark locations of the object, such as eyes and nose. The edges between the
nodes, required for the method, were defined as the Delaunay triangulations of
the annotated locations. An example of the annotations and triangulations are pre-
sented in the left panel of Figure 5.6. The orientations in the Gabor filter bank
were (0,7/6, ..., 57/6), like in the M1 and M2 methods, and the frequencies were
7/4, /8, and 7 /16. These parameters were used by Tamminen (2005) who found
them working well in his matching tests. Compared with the frequencies of meth-
ods M1 and M2, these frequencies are smaller by the amount of /2, and compared
with the frequencies of method M3, the frequencies are the same except 7 /16 is re-
placed by 7/22°. According to the experience, these differences in the frequencies
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Table 5.3: The statistics of the matching errors of 100 sign image sequences for
different methods. N,,,4.s refers to the number of object nodes used to compute
the error. For the EBGM method, N refers to the number of training images.

Method Median Mean Std | E[Nodes)
M2 1.7 3.2 11.5 2.8
EBGM (N =1) 16.9 31.9 36.0 6
EBGM (N =5) 11.6 20.1 26.8 6
EBGM (N =9) 6.3 9.5 12.3 6

should be small enough to have a high influence on the similarities.

The object model was learned using different number of training images (1,
5 and 9) that were the same as in the sequences used by the proposed methods.
The learned object model was then matched in the test image, being the following
image in the sequence. EBGM method seems to perform at most as well as the pro-
posed methods, despite that it trains the object model using /N number of annotated
training images simultaneously. When EBGM finds the correct location, it seems
to match accurately but this happens more rarely than with the proposed methods.
Even with nine training images the EBGM method is sometimes unable to locate
the object in a test image. Hence, it can be concluded that all the methods studied in
this thesis perform well for the dog database. EBGM method is implemented in C
language making it thus much faster (the CPU times were not recorded) compared
with the Matlab implementations of the proposed methods.

The traffic sign images were matched with M2 due to its good accuracy and
better invariance w.r.t. scale and transformation compared with M1 (evaluating
the errors for M3 is too exhaustive to be done for another database). The results
of matching 100 sequences with M2 and EBGM are tabulated in Table 5.3. The
extremely small median value is again an indication of the precise matching capa-
bilities of M2. The pre-annotations used by EBGM are shown in the right panel of
Figure 5.6. Although the sign images are easy to match as the traffic signs are stiff
objects with little deformations, EBGM often fails to locate the object. It might
be that six nodes is too few for the EBGM method to achieve robust matching.
Another reason could be the scale changes which might be too large for the basic
version of EBGM.

The results of matching IMM-DTU images with M1 are given in Table 5.4.
The point-to-point errors of M1 are larger than the reference errors, due to several
reasons. M1 learns the object model recursively from un-annotated images starting
from one image whereas the reference methods process simultaneously 36 images,
with 58 pre-annotations in each, to learn the object model. The 58 pre-annotations
are informative as they are located on easily defined landmarks — eyebrows, eyes,
nose, mouth and jaw — whereas the object nodes of M1 are often on the forehead
or top of the head, the exact location of which is more difficult to determine due
to the variation in people’s haircuts (see Figure 5.7). The background in the im-
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Table 5.4: The matching errors of the IMM-DTU images for different methods.
The number of image sequences matched by M1 was 50. N,,,q.s refers to the num-
ber of object nodes used to compute the error. BOM refers to the Bayesian Object
Matching method of Tamminen and Lampinen (2006). The results of EBGM were
taken from (Tamminen and Lampinen, 2006). The reference methods utilize 36
training images.

Ml EBGM AAM BOM
Mean £ std | 6.0 £4.1 3.08+0.88 2.86+0.61 2.76=+0.73
E[Nnodes) 9.2 58 58 58

Figure 5.7: Left: the starting image of a sequence and the nodes selected by M1.
The green circles indicate the object nodes that contribute to the error. Right: the
pre-annotations used by the reference methods.

ages used by the reference methods is monochromatic whereas the backgrounds
of the images used here were filled with parts of other images to complicate the
matching. It should be noted that although for a human observer the added back-
ground textures form an evident pattern, the M1 method is based only on the node
points with no segment analysis. Therefore, the regularly shaped background pat-
terns give no advantage to the method; on the contrary, the background segment
boundaries appearing in the same locations in each image complicate the matching
as they produce false candidates for object nodes. Moreover, the reference exper-
iments (except those of AAM) are conducted on the images whose size is double
to that used by M1; due to the discarded information, the errors are likely to grow
non-linearly with increasing image size (of course, halved errors for those methods
are reported in Table 5.4). Hence, it can be concluded that the proposed method
performs again well in locating the corresponding points of the unknown object in
novel images.

5.7 Detection errors

The detection errors were computed by matching the learned object model in novel
test images, half of which contain the object and half of which are random back-
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ground images. The summary statistics of the errors are generated by using the re-
ceiver operating characteristic (ROC) curve. A ROC curve is obtained by varying a
threshold for detection and for each threshold plotting the true positive rate versus
the false positive rate. For a random classifier on average, the true positive rate
equals the false positive rate for each threshold and the ROC curve is an ascending
diagonal line, whereas a nicely performing classifier has a high true positive rate
with a low false positive rate when the threshold is adjusted correctly. The detec-
tion was based on the average posterior association probability for methods M1
and M2 and on the MAP estimate for M3. For M1, only object nodes contributed
on the association probability, defined as nodes whose prior association probabil-
ity exceeded 0.5 in the image in question. These values were computed and stored
for each matched object image of the sequences which contained 15 images. The
number of matched sequences was 200 unless otherwise noted. The object model
formed from 1, 3, 6, 10 and 15 processed images were matched in randomly cho-
sen Caltech background images (Fergus et al., 2003). The ROC curves can thus be
formed for these numbers of training images. Again, the three methods processed
the same object images so as to exclude the variance caused by randomness in the
chosen images.

Typical summary statistics are the area under the ROC curve (AUR) and equal
error rate (EER). The AUR is equal to the probability that a randomly chosen object
image is correctly detected against a randomly chosen background image whereas
the EER is the true positive rate at the point where the rate of true positives equals
one minus the rate of false positives, being thus the intercept of the ROC curve and
a descending diagonal line of the graph. For a random classifier, both the detection
figures are half, whilst a perfect classifier yields the values of unity — the presented
methods are expected to perform in between the two extrema. Because the AUR
and EER measure somewhat different characteristics, the mean of the AUR and
EER values are used as a final single detection score for comparing the methods of
this thesis within each other.

In Figure 5.8, the detection scores of the dog images for the three methods
are depicted. For methods M1 and M2, the scores are low with a few training
images but increase towards unity as more images are included in the sequence.
On the contrary, the M3 method is able to separate the object and background
images already with one training image. This is as expected, for various reasons.
In the M2 method, the value of the non-associative likelihood, x, is a mixture
of the previous estimate and an estimate that is based on the current test image.
Hence, when matching a background image with only one training image s is
adapted to a low value as the method tries to find something common in the images.
With more training images available the estimate based on the current test image
has less meaning and eventually, in a long sequence, the value of « adjusts itself
to a value that is suitable for the object in question. Also, the portion of object
nodes increases along the sequence which alleviates the matching and increases
the average posterior association probability. The M3 method aims to include only
object nodes in the node set and the score is based on the MAP estimate of the
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Figure 5.8: The ROC scores for dogs.

Figure 5.9: The corresponding points of the rotated dog images matched by M3.

probability of the corresponding points, which is why the method does a good job
in separating the object and background images already from one training image.

In order to quantitatively demonstrate the orientation invariance of the M3
method, a test was made in which the dog images were arbitrarily rotated before
matching. Three images, matched by M3, are illustrated in Figure 5.9. The ROC
scores are given in Figure 5.10, showing how the M3 method yields scores (almost)
as high as with the non-rotated images. M1 and M2 perform also surprisingly
well, probably due to the following reason. Each different rotation (’different’ here
means an angle difference of more than, say, 20 degrees) basically appears as a dif-
ferent object. As M2 and especially M1 are robust methods, they are, in principle,
able to simultaneously represent many objects. The more images processed, the
higher is the probability that the rotation angle in the test image is approximately
the same as in one of the processed images. Thus, the ROC scores increase along
the image sequence, at least up to a certain point.
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Figure 5.11: The ROC scores for Caltech faces.
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Figure 5.12: The quantiles of the values on which the detection of each method is
based for the Caltech face images. Blue solid lines give the quantiles (25%, 50%
and 75%) of the object test images and red cross lines of the background test images
(available only for N =1, 3,6, 10, 15).

The detection scores for the Caltech face images are illustrated in Figure 5.11.
The M3 method again outperforms the other two methods, however, with smaller
difference than in the dog images. The object appears in the same orientation and
usually in the middle in each image and incorporating this prior knowledge in M3
(which is implicit in M1 and almost implicit in M2) would increase the scores (this
is shown later in this chapter). It is somewhat surprising that M1 outperforms M2.
In Figure 5.12, the association probabilities of M1 and M2, and the MAP estimates
of M3, are depicted for each number of training images. The median value based
adaptation of the non-associative likelihood parameter « of M1 causes a regular
fluctuation on the average posterior association probabilities at the beginning of the
sequence. It seems that the adaptation method is not paying off until about five im-
ages and the constant value set at the beginning of the sequence (x = exp(0.543))
happens to give smaller detection errors than the value adjusted after three pro-
cessed images (note that there is no value for background test images with two,
four or five training images). This explains the drop of the detection scores of
M1 at three training images, being visible in each database but very apparent in
Figure 5.11. The average posterior association probabilities of M2 for object and
background images diverge along the sequence, leading to steadily increasing ROC
scores. The MAP estimates of M3 increase with more processed images but so do
those of the background images. This is probably due to the increasing number of
likelihood kernels in the mixture; with more kernels, the number and masses of the
false modes of the (unnormalized) posterior increase. Naturally this applies to M1
and M2 as well, but the full rotation invariance of M3 makes things worse in this
sense. Besides, the detection of M1 and M2 is based on the association probabili-
ties for which an optimal value of « is estimated and the estimate improves along
the sequence.

Figure 5.13 shows the detection scores for the Bio-Id face images which are
more difficult than Caltech face images due to increased variations in lighting,
expression and pose. Hence, it is surprising to see M1 perform so well on this
database which is clearly too difficult for M2 and M3. However, the rotation
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Figure 5.13: The ROC scores for Bio-Id faces.

changes of the faces are again small which facilitates the matching of M1. The
failure of M2, and partly of M3, is probably an indication of the unsuccessful ini-
tialization of the particles; more samples would be needed to increase the scores.

In Figure 5.14, the detection scores for the peacock butterfly images are shown.
The butterflies are photographed under arbitrary orientations and it is not a wonder
that the M1 and M2 methods fail to learn the object model (although M1, again,
outperforms a random classifier). On the contrary, M3 detects the butterflies mod-
erately well in novel test images. To assess the question whether the number of
sequences, 200, is enough for statistically reliable results, the ROC scores of the
peacock butterfly images were computed for M3 using N number of sequences.
N, was varied from 1 to 200 and in Figure 5.15, the scores for each value of N are
plotted. The values seem to change relatively little after 100 sequences although
there is some fluctuation also when Ny approaches 200. Probably a much larger
number of sequences, say 2000, would be needed for real convergence. However,
this would lead to impractical computation times.

From the used databases, reference detection results are found for Caltech face
images and butterfly images. According to the results, the M3 method seems to be
the best method for detecting these images. In order to (hopefully) obtain better
results, the face images were matched again with M3 by doubling the total number
of nodes (and the Monte Carlo particle number) to N, = 300 and hence also
doubling the maximum size of a node set to N,,,, = 60. The experiment also
serves as a comparative test of how much the detection scores change when using
more nodes and particles. This time, both the AUR and EER scores are given. The
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Figure 5.14: The ROC scores for peacock butterflies.
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Figure 5.15: The ROC scores of the peacock butterflies of method M3 for different
number of training images (N = 1,3,6,10,15), plotted against the number of
sequences used in computing the score.
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Figure 5.16: Areas under the ROC curve (AUR) and equal error rates (EER) of
Caltech faces for M3, with two different number of particles.

Table 5.5: The equal error rates (EER) of Caltech faces for different methods, in
percents. N refers to the number of images used for training the object model. All
the reference methods are batch methods. Some values were visually estimated
from a graph.

Method N EER Notes

M3 1 69.4  rotation and scale invariant

M3 6 87.0 rotation and scale invariant

M3 1 85.5 no invariances

M3 6  96.0 no invariances

Weber et al. (2000) 100  93.5

Fergus et al. (2003) 225 96.4

Fei-Fei et al. (2003) 1 ~88 Visually estimated from a graph
Fei-Fei et al. (2003) 4  ~83 Visually estimated from a graph
Willamowski et al. (2004) | 225 99.3

Amores et al. (2005) 300 86.0 Utilize color information
Shotton et al. (2005) 50 96.5 Hand-segmented training samples

Wolf and Martin (2005) 1 ~59 Visually estimated from a graph
Wolf and Martin (2005) 10 ~89 Visually estimated from a graph

Opelt et al. (2006a) 60 100

Lazebnik et al. (2006) 100 98.5

Serre et al. (2007) 225 98.2

Escalera et al. (2007) 90 97.7 Uses supervised training
Zhang et al. (2007) 225 100

Holub et al. (2008) 100 91  Uses Caltech-101 faces

scores for using both N, = 150 and V,, = 300 parameters are plotted in Figure
5.16. The model with 300 particles clearly dominates except with one training
image. A possible cause is that irrespective of the number of nodes, the value of
the posterior distribution at the correct location in the second image is not necessary
large compared with a local maximum somewhere at the background test image,
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Figure 5.17: Areas under the ROC curve (AUR) and equal error rates (EER) of
Caltech faces for different versions of the M3 method. "Full’ refers to the ordinary
M3 method, in ’inv1’ the rotation invariance has been dropped, in ’inv2’ the rota-
tion and scale invariances have been dropped, and ’inv2*’ is the same as ’inv2’ but
the images of Caltech101-faces database were used, in which the 15 images with
the face on a very small scale are excluded.

or may even be inferior to it, but with more training images, the difference is larger
with more nodes in the node set.

The rotation and scale invariances are likely to worsen the detection results
when the object instances appear in the same orientation and size. This was also
noticed by Bay et al. (2006) who state that “the additional complexity of full affine-
invariant features often has a negative impact on the robustness and does not pay
off, unless really large viewpoint changes are to be expected”. Hence, the Cal-
tech faces were also matched with M3 by dropping the invariances which indeed
improves the results as demonstrated in Figure 5.17. Also, the results of using
Caltech101-faces (Fei-Fei et al., 2007) images are shown. The Caltech101-faces
database is the same as the Caltech faces database used so far, but 15 images with
the face on a very small scale have been excluded, making it thus a bit easier
database to match. Using this database further improves the results.

Some EER values of Figure 5.17 are given in Table 5.5, together with values
of various reference methods. There seems to be a trade-off between the number
of training images and the detection rate although for instance the method of Opelt
et al. (2006a) performs perfectly with just 60 training images. It should be noted
that the figures are mean values and sometimes the variance between the differently
learned object models can be significant. There are also remarkable differences in
the computation times of the methods. All the methods use dozens or hundreds of
training images except those of Fei-Fei et al. (2003) and Wolf and Martin (2005);
comparing with these, the results of M3 are equal or even better when the invari-
ances are dropped.

The results of the method of Fei-Fei et al. (2007), which is the only incre-
mental object detection method found in the literature, can be compared with the
Caltech101-face detection results of this work. They report the results of using 1,
3, 6 and 15 training images. However, there are two problems which complicate
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Table 5.6: The areas under the ROC curve for the two incremental methods, in
percents. N refers to the number of images used for training the object model. The
exact results of Fei-Fei et al. (2007) are unavailable; see text for details.
Method N=1 N=3 N=6 N=15
M3 92 99 99 99
Fei-Fei et al. (2007) | <86 <92 <91 ~88
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Figure 5.18: Areas under the ROC curve (AUR) and equal error rates (EER) of
peacock butterflies for M3, with two different particle numbers. The images in the
sequences were different for the two method. Red dashed line shows the results of
the batch method of Lazebnik et al. (2004).

a fair comparison. First, Fei-Fei et al. (2007) report the results only graphically
and in a bit unorthodox way, making it impossible to assess which of the 101 re-
sults corresponds to the face category. Hence, only an upper limit can be given,
being the actual result only if it was the face category that performed best of all
the 101 categories. An exception is the case with 15 training images, for which
they give the category identities of the results. Second, as the results are only in a
graphical form, the performance values must be estimated visually. The compar-
ison is made in Table 5.6 which shows that M3 clearly outperforms the reference
method. Because the method of (Fei-Fei et al., 2007) lacks rotation invariance, the
comparison is made with the rotation variant (but scale invariant) version of M3.
It should, however, be noted that the method of Fei-Fei et al. (2007) is (at least
to some extent) able to detect objects with highly varying appearance and shape
(such as airplanes and joshua-trees) that are depicted in varying view points. This
generality probably comes at the cost of a decreased performance for a single ob-
ject category, compared with a method which aims to detect relatively rigid objects
portrayed in a somewhat constant viewpoint, like the presented method.

The seven butterfly databases were matched with the M3 method, using again
the heavier parameter setting with Ny, = 60 and N, = 300. For the sake of
computational cost, only 100 image sequences were matched for each butterfly
type. Figure 5.18 shows the improvement of using more nodes and particles. In
Figure 5.19, the EER values for the rest of the six butterfly categories are presented.
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Figure 5.19: EER values of different butterflies using M3. Red dashed line shows
the results of the batch method of Lazebnik et al. (2004).

The results of the reference method are out of reach for M3. However, the reference
method (Lazebnik et al., 2004) is a batch method which needs 26 training images
to form the object model. There is also a substantial amount of variation in the
EER values as the results are expected to differ between experiments. The same
is true for the reference method which apparently was tested with only one set of
training images.

There is one notable weakness in the M3 method, namely that sometimes the
results are worse with 15 training images than with 10. This is in contrast with
the general principle of learning which states that having more training samples
improves the performance of a pattern recognition system. However, one must re-
member that the nature of the learning is incremental and most of the information
in the images is discarded after each match. Hence, the situation is very different
compared with the batch learning and may lead to an unexpected behavior that
is difficult to explain. One reason might be that the variance in the shape model
increases along the sequence for some nodes whose location is ambiguous. A
good example are the nodes near the edge of the object the appearance of which is
affected by the background. A node set with larger variance in their prior distribu-
tion fits better in the background images which lowers the detection rates. It seems
like an extremely difficult problem to incrementally learn the corresponding points
whose relative location would be as rigid as possible. For a human face, this would
usually mean only the eyes, nose and mouth nodes, as the appearances elsewhere
in the face differ between individuals. For instance, if the persons in the first two
images have similar haircuts, M3 includes the forehead nodes in the node set. If
the following images contain persons with different hairstyles, these nodes start to
’wander’ as they search for similar appearance and the search area increases after
each image due to the update of the shape variance. Obviously, there is a limit for
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Figure 5.20: The median CPU times for the three methods needed for processing
the next image. M3* refers to M3 without invariances.

the flexibility of the objects that can be matched with the proposed system. The
more rigid the object, the easier its model is to learn incrementally. Having a vari-
ance on the shape model in the beginning which exceeds the ’true’ value is not
dangerous as it adapts itself to the actual level of rigidity, unless it is so high in the
beginning that the matching fails. In the method of Fei-Fei et al. (2003), same kind
of phenomenon of having a weaker detection rate with more training images also
sometimes happens although it is a batch method. However, they refused to com-
ment on this behavior in any way. The incremental method of Fei-Fei et al. (2007)
suffers from similar problems as their errors often increase, at least momentarily,
with more training images. For some categories, they report similar results with
15 training images than with one training image and the batch version of their al-
gorithm outperforms the incremental version when the number of training images
exceeds six. According to them, the degradation of the incremental performance is
because “the incremental method is much more sensitive to the quality of the train-
ing images and to the order in with they are presented to the algorithm. Therefore
it is more likely to form suboptimal models. [...] Less information is carried along
by the incremental algorithm from one learning epoch to the next, while the batch
algorithm has all training images available at the same time”.
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5.8 Computational requirements

The proposed methods are computationally quite heavy. It takes minutes, rather
than seconds, to match one image using a totally unoptimized Matlab implemen-
tation on a regular desktop computer. The median computation times per each
image of the 200 face image sequences are depicted in Figure 5.20. Investigating
the mean computation times would be unreasonable because in the used computer
grid system some individual runs may halt for a very long time. As further images
are processed, matching the next image takes more time because the number of the
likelihood kernels increases. For the M1 method this increase is subtle. Also, the
computation times of M2 increase moderately along the sequence. On the contrary,
processing the following image with M3 is typically much heavier than processing
the previous image. This is because in M3, percentually much more time is spent
in computing the similarity values for which the computation time grows linearly
along the sequence. On the other hand, the scale and rotation variant version of
M3 has the smallest processing times. Because this version also achieved the best
results for Caltech faces, the invariances should definitely be left out when it is
known a priori that the object appears at the same scale and pose in each image.
The major computational bottlenecks are the sampling, and with M2 and M3,
also the initialization. The initialization step is proportional to the number of dif-
ferent scales and orientations with which the particles are initialized. The sampling
time is proportional to the particle number and to the number of nodes. PMC sam-
pling time is also proportional to the number of iterations. Luckily, these steps
are parallelizable as in the initialization the best particle locations over different
scales and orientations are independently searched and as the particles are sampled
independently. A parallel implementation would thus reduce the computation time
dramatically. Furthermore, implementing the algorithms in the GPU (graphical
processing unit) environment would probably make the system real time.



Chapter 6

Conclusion

This thesis has presented probabilistic models and methods for incremental object
matching which is an unexplored field of computer vision. The Bayesian approach
was taken as it offers a theoretically consistent way for updating the object model,
for separating the appearance and shape modeling, and for handling uncertainties
that arise in natural images. Due to the modularity of the Bayesian framework,
any part — appearance or shape — can be modified without affecting the other
part. The dimension of the problem is rather high (dozens) which makes the con-
ventional numerical integration methods unfeasible to use. On the other hand, the
multimodal posterior distribution is unlikely to be well approximated at least with
any unimodal simple distribution, and hence particle Monte Carlo methods were
utilized. Especially the population Monte Carlo method is an appealing approach
to solve the problem; multiple hypotheses about the largest posterior modes are
made in terms of the particles, and the goodness of the hypotheses is revealed by
the particle weights which are directly proportional to the value of the (unnormal-
ized) posterior distribution, evaluated at the sampled points.

Three different methods are presented in this thesis, each of which is an imple-
mentation of the theoretical Bayesian framework for incremental object matching.
In all the methods, the object is modeled as a set of feature points, called nodes,
whose appearance is modeled with Gabor responses and whose shape is assumed
to follow a Gaussian distribution. The methods differ in the approximations and
’shortcuts’ made, and in the sampling methods. The simplest method uses the same
set of node points with the same node variance in each image, and samples the im-
ages with a sequential Monte Carlo algorithm where the nodes are sampled one at
a time and the resampling is based on the values of the marginal posterior distri-
butions in different subspaces. The level of invariances in the simplest method is
small. In the extended method, the node set is allowed to change by eliminating
background nodes and setting new nodes, and the method is able to handle larger
transformations. Also, the variances of the nodes are updated according to Bayes’
rule, and the posterior is sampled with a population Monte Carlo method in which
the particles are resampled according to the value of the full posterior. Finally, the
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most sophisticated method possesses full rotation invariance and takes (almost) full
advantage of the Bayesian framework; the parameter space includes all the possible
node sets in the images, not just the fixed node set as in the simpler methods. For
practical reasons, the number of different possible nodes is limited, but the method
is able to carry multiple hypotheses about the common object during the process.
The sampling algorithm is a population Monte Carlo -like implementation.

The matching errors of the three proposed methods were compared using the
dog image database and the results indicate a similar performance. Also, the meth-
ods are able to match the corresponding points (nearly) as accurately as other
prominent feature point based matching methods. Because the reference meth-
ods utilize a large pre-annotated training set in contrast with the proposed methods
which expand the training set, starting from just one image, and avoid using pre-
annotations, the results can be considered as extremely promising.

Various databases were used in conducting the detection tests. The smallest de-
tection errors are usually given by the most sophisticated method. However, for the
Bio-Id face database the simplest method gives the best results. The experiments
reveal that if an object appears in the same scale and orientation in the images,
having invariances against these can degrade the results. The detection capabilities
of the most sophisticated method are almost on a par with other published object
detection methods, especially when the invariances are dropped from the method.
Again, the reference methods are (usually) batch methods, and also, the reference
methods do not match the corresponding points so they lack the precise object
location information. In addition, the proposed method outperforms the only in-
cremental object detection method found in the literature. It should be noted that
the population Monte Carlo based methods of the thesis would probably benefit
from better particle initialization schemes.

It can be concluded that the primary aim of the thesis — to develop probabilis-
tic methods for incremental object matching — has been met. Some issues have
been excluded from the study and deserve further research. The present appear-
ance and shape models are probably not powerful and scalable enough to handle
multiple classes and larger variations in the viewpoint. If the models are modified,
an open question is how well the improved models would fit into the incremental
framework, that is, how well does the principle of the incremental learning gener-
alize to arbitrary complex models.



Appendix

Image databases

Figure 6.2: Examples of the Bio-Id database. The database contains 1521 images.
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Figure 6.3: Examples of the Caltech faces database. The database contains 450
images.

Figure 6.5: Examples of the traffic signs database. The database contains 35 im-
ages.



Figure 6.6: Examples of each of the seven butterfly classes
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