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Probabilistic Analysis of Probe Reliability
in Differential Gene Expression Studies

with Short Oligonucleotide Arrays
Leo Lahti, Laura L. Elo, Tero Aittokallio, and Samuel Kaski

Abstract—Probe defects are a major source of noise in gene expression studies. While existing approaches detect noisy probes

based on external information such as genomic alignments, we introduce and validate a targeted probabilistic method for analyzing

probe reliability directly from expression data and independently of the noise source. This provides insights into the various sources of

probe-level noise and gives tools to guide probe design.

Index Terms—Applications, biology and genetics, parameter learning, probabilistic algorithms.
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1 INTRODUCTION

GENE expression profiling is widely used to explore gene
function in various biological conditions, and vast

collections of microarray data are available in public
repositories. These large-scale data sets contain valuable
information of both biological and technical aspects of gene
expression studies [1], [2], [3], [4]. However, gene expres-
sion data are notoriously noisy. A better understanding of
the technical aspects of the measurement process could
ultimately lead to enhanced measurement techniques and
improved analytical procedures, providing more accurate
biological results in future studies.

Short oligonucleotide arrays of Affymetrix [5] are one of
the most widely used gene expression profiling platforms.
These arrays utilize multiple (typically 10-20) 25-mer
probes, the so-called probe set, to measure the expression
level of each transcript target. The probes within an
individual probe set are designed to target the same gene,
and ideally they should detect the same gene expression
signal. Use of several probes for each target leads to more
robust estimates of transcript activity, but the reliability of
individual probes is known to vary and may significantly
affect the results of a microarray study [6]. For example, it
has been noticed that a considerable number of probes on
short oligonucleotide arrays do not uniquely match their
intended targets [7], [8], [9]. Single-nucleotide polymorph-
isms, alternative splicing, and nonspecific hybridization
add biological variation in the data [10], [11]. Other factors

in the measurement process that cause probe-specific effects

include RNA extraction and amplification, binding affi-

nities, and experiment-specific variation [12], [13].
Many preprocessing algorithms utilize probe-specific

parameters to obtain probeset-level summaries of gene
expression. These include MBEI/dChip [14], RMA [15],
gcRMA [16], FARMS [17], gMOS [18], and BGX [19].
Despite the importance of probe-specific effects in gene
expression analysis and probe design [6], [20], the various
sources of probe-level noise are still poorly understood.
Only a few studies have systematically analyzed the factors
affecting probe reliability. The existing approaches typi-
cally rely on external information such as genomic
sequence data [8], [9], [11] or physical models [21], [22],
[23], and cannot reveal probes that are less reliable due to
so far unknown reasons.

We introduce and validate a targeted computational
tool for probe reliability analysis. In contrast to previous
probe quality studies, the proposed model is independent
of external information or physical models. This can
advance the understanding of the various factors that
affect probe reliability. Our approach is closely related to
preprocessing methods that utilize probe-specific para-
meters to obtain probeset-level summaries of gene expres-
sion. A key difference in our work is that we assign an
explicit probabilistic measure of reliability to each probe
and demonstrate how this information can be used to
assess probe performance. Explicit estimates and analysis
of probe-specific noise have been missing in preprocessing
studies. The method is applied to gene expression data
sets from two human genome arrays, HG-U95A/Av2 and
HG-U133A, and the results are validated by comparisons
to known probe-level error sources: errors in probe-
genome alignment, interrogation position of a probe on
the target sequence, GC-content, and the presence of SNPs
in the target sequences of the probes. Implementation of
the method is available in R/BioConductor1 at http://
bioconductor.org/packages/release/bioc/html/RPA.html.
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2 MODELING OF PROBE RELIABILITY

The reliability of a probe is ultimately determined by its
ability to measure the expression level of the target
transcript. As the true expression level is unknown in most
practical situations, the collection of probes measuring the
same transcript can provide the ground truth for assessing
probe performance (See Supplementary Figure 1, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2009.38.). Our
model captures the most coherent signal of the probe set,
and the reliability of individual probes is estimated with
respect to this signal across a large number of arrays. We
provide an explicit probabilistic model for probe-level
observations, and derive the posterior distribution for the
model parameters describing probe reliability and differ-
ential gene expression. While probe-level preprocessing
algorithms aim at summarizing probe-level measurements
[14], [15], [17], [18], [19], we have specifically targeted a
more detailed analysis of probe reliability. This avoids
certain problems encountered in the preprocessing context
as discussed in the next section.

2.1 Model Assumptions

Our approach is based on a Gaussian model for probe
effects. This is a reasonable starting point for modeling
heterogeneous and partially unknown sources of probe-
level noise. The feasibility of related models has already
been demonstrated in the preprocessing context [15], [17].
In a nutshell, we assume normally distributed probe effects,
and identify probe reliability with its variance over a large
number of arrays. In contrast to many probe-level pre-
processing methods, where the mean is the important
quantity, we use probe-level observations of differential
expression. Then the mean cancels out, and the model can
focus on estimating the variances (see Section 3 for details).

Variance reflects the noise level of the probe and is the
main focus in our analysis. This is different from probe-
level preprocessing methods that focus on estimating probe
affinities, corresponding to the mean parameter of the
Gaussian noise model. For example, the probe-specific
parameters in MBEI [14] and RMA [15] preprocessing
models describe probe affinities. These are constant shifting
factors and as such not informative of probe reliability.
Moreover, unidentifiability of probe affinities is a known
problem in preprocessing studies [15], [24]. The recently
suggested FARMS preprocessing algorithm [17] has a more
complex model for probe effects than RMA and contains
implicitly a similar probe-specific variance parameter as our
model. However, FARMS does not provide explicit esti-
mates of the probe-related parameters and is, therefore, not
applicable to probe reliability analysis.

We avoid the modeling of unidentifiable probe affinities
by using probe-level observations of differential gene
expression. Probe effects are captured in a single probe-
specific variance parameter in the resulting model. The
number of probe-related parameters in the model is halved,
and faster and more robust inferences concerning the
parameters of interest can be obtained. Use of a single
parameter for probe effects also leads to more straightfor-
ward interpretations of probe reliability. Cancelation of the
probe affinity parameters in our analysis can partly explain
the previous observations that calculating differential
expression at probe-level improves the analysis of differ-
ential gene expression [25], [26]. However, these methods

differ from our approach in that they are nonprobabilistic
preprocessing methods that do not aim at quantifying the
uncertainty in the probes.

2.2 Comparison to Known Error Sources

The model is applied to six publicly available gene
expression data sets, including four large-scale studies on
human samples [27], [28], [29], [30], referred to as ALL and
GEA data sets, and two spike-in data sets from Affymetrix
(www.affymetrix.com), referred to as SPIKE data sets
(Table 1). The data sets have been measured using two
popular human genome arrays, HG-U95A/Av2 and HG-
U133A. To validate our model and to analyze probe
reliability on these arrays, we test the overrepresentation
of the following probe-level error sources among the least
reliable probes predicted by our model.

2.2.1 Probe-Genome Alignments

Ideally, each probe has a unique sequence match to its
target gene. In practice, a number of probes do not uniquely
match their intended mRNA target. Filtering of probes with
erroneous genome alignments has previously been shown
to improve the accuracy and comparability of microarray
results [8], [9], [11], [26], [31]. A good model for estimating
probe reliability should detect such erroneous probes.

2.2.2 Interrogation Position on the Target Sequence

RNA degradation, typically starting from the 50 end of the
transcript, has been reported to affect the results in
microarray studies [32], [33]. Hence, the binding location
of the probe on the target sequence, i.e., its interrogation
position, is likely to affect probe reliability.

2.2.3 GC-Content

Various hybridization effects that are based on the nucleo-
tide content of the probes have been reported [21], [22], [23],
[34]. For example, the G/C nucleotides have a higher
binding affinity since G-C pairs form three hydrogen bonds
whereas the A-T pairs form two. Therefore, the GC-content
of a probe is expected to affect its reliability.

2.2.4 SNP Associations

Probes that target sequences with common single-nucleo-
tide polymorphims (SNPs) can produce misleading
results in microarray studies [10], [35], [36]. Each probe
can measure accurately at most one of the polymorphic
target sequences and, therefore, gene expression differ-
ences between two individuals can be observed in some
probes due to sequence polymorphism rather than real
expression changes. This would add noise to microarray
data. It is expected that SNPs located in the central region
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Gene Expression Data Sets in This Study



of the target sequence will have a greater influence on
probe reliability than other SNPs due to a larger impact
on probe affinity [21], [37].

2.3 Connection to Preprocessing

The reliability of a probe is ultimately measured by its ability
to capture the real underlying gene expression signal. This is
unknown in most practical situations, however, and needs to
be estimated from the probe-level observations. Probe
reliability estimates are sensible only if the true signal is
estimated accurately in our model. To guarantee this, the
performance of the proposed model in estimating relative
gene expression changes was compared to four alternative
approaches: MAS5.0 (www.affymetrix.com) and RMA [15]
are among the most widely applied methods for assessing
probe set-level signals (which are then used to calculate the
expression changes); FARMS [17] represents the previously
introduced probe-level models; and PECA [38] shares the
idea of directly utilizing probe-level expression changes.
Note that the other methods do not provide explicit
estimates of probe reliability, while our method provides
only estimates of relative gene expression changes. A general
difference between preprocessing algorithms and our
method is that preprocessing methods have been designed
to summarize probe-level information, whereas our model is
specifically targeted at estimating certain probe-specific
effects that are then used to analyze probe reliability.

3 METHODS

3.1 Probabilistic Model

In the following, we describe a probabilistic model for
probe reliability and differential gene expression. In the
calculations, we use the logarithmized perfect match (PM)
intensities of the Affymetrix arrays, and investigate each
probe set separately. Affymetrix arrays also contain so-
called mismatch (MM) probes that have an altered
nucleotide in the middle (13th) position of the probe.
These were originally designed to measure cross-hybridi-
zation from unrelated sequences. Some widely used
preprocessing algorithms, such as RMA, ignore the MM
probes due to the lack of efficient models for utilizing this
information [15].

3.1.1 Conditional Likelihood for the Observations

Let us consider a probe set targeted at measuring the
expression level of target transcript g. We model probe-level
observations as a sum of the true expression signal that is
common for all probes, and probe-specific Gaussian noise.
A probe-level observation for probe j on array i can then be
written as sij ¼ gi þ �j þ "ij. The mean parameter �j
describes the systematic probe affinity effect, and the
stochastic noise component is distributed as "ij � Nð0; �2

j Þ.
The variance parameters f�2

jg are of interest in probe
reliability analysis. To focus on these parameters we take
advantage of the fact that the unidentifiable probe affinity
parameters f�jg cancel out when the signal log-ratio
between a randomly selected “control” array and the
remaining arrays is computed for each probe. The differ-
ential expression signal between arrays t ¼ f1; . . . ; Tg and
the control array c for probe j is then mtj ¼ stj � scj ¼ gt �
gc þ "tj � "cj ¼ dt þ "tj � "cj. Using vector notation, the dif-
ferential gene expression profile of probe j across the arrays

ftg is now mj ¼ dþ ""j, where the two noise terms have been
combined into a single variable ""j. Note that the control-
related noise "cj is constant across the comparisons whereas
the second noise component "tj depends on the array t.

To identify the probe-specific variance parameter, shared
by the two noise components in ""j for each probe j, we
consider the control-related noise "cj a hidden variable in
our model. This can be marginalized out by assuming that
the probe-level observations mj of the true underlying
signal d are independent given the model parameters. Let
us also denote the collection of probe-level signals of a probe
set by m ¼ fmjg. The likelihood for the observations is then

P ðmjd; ��2Þ ¼
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3.1.2 Posterior Distribution of the Model Parameters

The posterior density for the model parameters is computed
from the conditional likelihood of the data (2) and the prior
according to Bayes rule:

P ðd; ��2jmÞ � P ðmjd; ��2ÞP ðd; ��2Þ: ð2Þ

We use a noninformative prior for d, and conjugate
priors for the variance parameters in ��2 (inverse Gamma
distribution, see [39]). Using a standard assumption that d
and ��2 are independent with P ðdj��2Þ � 1, the prior takes the
form P ðd; ��2Þ �

Q
j invgamð�2

j ;�j; �jÞ, where �j and �j are
the parameters of the inverse Gamma distribution. These
parameters are probe-specific and allow incorporation of
prior information about probe reliability into the analysis.

The final model for probe intensities is hence described by
two sets of parameters; the vector of underlying differential
gene expression signals d ¼ ½d1 . . . dT �, and the probe-
specific variance parameters ��2 ¼ ½�2

1 . . . �2
J �. High variance

�2
j would indicate that the probe-level observation mj is

strongly deviated from the estimated true signal d. The
Bayesian formulation quantifies the uncertainty in the model
parameters and allows incorporation of prior information
about probe reliability into the analysis. We refer to this
procedure as Robust Probabilistic Averaging (RPA).

3.1.3 Implementation

In this paper, we use the posterior mode as a point estimate

for the model parameters. This is searched for by iteratively

optimizing d and ��2 in (3). The model is initialized to give

equal prior weight for each probe by setting �2
j ¼ 1 for each

probe j. A mode for d, given ��2, is searched for by a

standard quasi-Newton optimization method [40]. The

variance parameters �2
j follow an inverse Gamma distribu-

tion with parameters �̂j ¼ �j þ T
2 and

�̂j ¼ �j þ
1

2

X
t

ðmtj � dtÞ2 �
ð
P

tðmtj � dtÞÞ2

T þ 1

 !

given d. The mode is then given by �2
j;new :¼ �̂j=ð�̂j þ 1Þ. We

use noninformative priors with �j ¼ �j ¼ 10�5.
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3.2 Data

Only the common probe sets of the HG-U95A and HG-
U95Av2 platforms were used, referred to as HG-U95A/
Av2. Probe intensities were quantile-normalized, and the
AFFX control sets excluded before the analysis.

3.2.1 Leukemia Data (ALL)

The public ALL data sets from the microarray studies of
Ross et al. [27] and Yeoh et al. [30] contain expression data
from patients with various leukemia subtypes. A total of
360 patient samples have been hybridized to HG-U95Av2
arrays and 132 of the same samples are additionally
hybridized to HG-U133A arrays. For our analyses, we
selected 37 samples that were hybridized to both array
types and represent homogeneous patient groups with five
distinct leukemia subtypes and control patients (Table 1).
We refer to these two data sets as ALL-95Av2 and ALL-
133A, respectively.

3.2.2 Gene Expression Atlas (GEA)

The gene expression atlases of Su et al. [28], [29] cover a
diverse set of biological conditions measured on the human
array platforms HG-U95A and HG-U133A (Table 1). We
refer to these two data sets as GEA-95A and GEA-133A,
respectively. Some samples in the HG-U95A data were
ignored because no biological replicates were available.

3.2.3 Affymetrix Spike-In Data (SPIKE)

The Affymetrix HG-U95Av2 and HG-U133A spike-in data
sets were downloaded from the Affymetrix web pages
(www.affymetrix.com). We refer to these data sets as
SPIKE-95Av2 (59 hybridizations) and SPIKE-133A (42 hy-
bridizations). A total of 14 and 42 genes have been spiked-in
at known concentrations on the HG-U95Av2 and HG-
U133A arrays, respectively, and arrayed in a Latin Square
format. Recently, it has been demonstrated that 22 addi-
tional probe sets in the SPIKE-133A data set should also be
considered as spiked [41]. Accordingly, we utilized
the extended set of 64 spiked probe sets when evaluating
the performance of the different analysis approaches in the
SPIKE-133A data.

3.2.4 Probe Sequence Data

Probe sequences and their bestmatch tables were down-
loaded from the Affymetrix web pages (www.affymetrix.
com). Other array-wise information on probes and probe
sets, including probe locations on the array, were acquired
from the annotation data packages of the Bioconductor
project [42]. Human genomic mRNA sequences were down-
loaded from Entrez Nucleotide [43] on 16 August 2006,
excluding EST, STS, GSS, working draft and patents
sequences, and sequences with a “XM_*” tag, as in [8], [26].

3.2.5 Probe-Genome Alignment

To identify probes having errors in the genomic alignment,
all probes on the HG-U95A and HG-U133A arrays were
aligned to the nucleotide sequences from Entrez Nucleotide,
and assigned GeneIDs according to their matched sequence.
Perfect matches of the probes to mRNA sequences were
sought with BLAT v. 26 [44], following the same procedure
as in [8], [26], but using updated genomic sequence data. The
Entrez mRNA sequences were assigned to GeneID identi-
fiers by using the “gene2accession” conversion file obtained
from NCBI ftp server (ftp://ftp.ncbi.nlm.nih.gov/gene/

DATA, 10 August 2006). The percentage of probes with no
GeneID match was 9.4 percent and 10.1 percent for the HG-
U95A and HG-U133A arrays, respectively. Multiple GeneID
matches were detected for 4.6 percent (HG-U95A) and
4.8 percent (HG-U133A) of the probes.

3.2.6 Single-Nucleotide Polymorphisms

Information about the probe-SNP associations was pro-
vided by the CustomCDF BioConductor package [10] that
contains SNP mapping for the probes based on data from
the dbSNP database [43]. The mappings have been used to
investigate SNP effects in microarray data in recent studies
[36], [45]. To focus on common SNPs, we considered only
SNPs with a minimum population frequency of 5 percent.

4 RESULTS

The RPA algorithm was applied on gene expression data sets
from two commonly used microarray platforms to validate
the model and to assess the differences between known
probe-level noise sources. First, we compared probe relia-
bility estimates to known probe-level error sources. Second,
preprocessing comparisons were used to test the preproces-
sing performance of RPA and, importantly, to guarantee the
validity of the probe reliability measures that depend on
accurate estimation of the differential gene expression signal.

4.1 Comparison to Known Error Sources

4.1.1 Probe-Genome Alignment

Mistargeted probes that did not uniquely match the GeneID
target of the probe set were significantly enriched (p < 0:05;
hypergeometric test) among the least reliable 1 percent of
the probes detected by our model (Fig. 1; Table S1, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TCBB.
2009.38.). The mistargeted probes were 1.1-1.7 times more
common in the HG-U95A/Av2 data sets than expected, and
2.2-3.1 times more common in HG-U133A. The enrichment
of mistargeted probes was the highest for the probes that
were consistently unreliable in the independent GEA and
ALL data sets. On the HG-U133A array, mistargeted probes
could explain 20.4 percent of the least reliable probes while
the expected proportion was 6.7 percent. Consistently
unreliable probes were detected by using the average rank
of the probes obtained in the two experiments. Detection of
probes having errors in their genomic alignment was
expected because such probes do not necessarily have any
correlation with the probe set-level signal. This supports the
validity of our model.

4.1.2 Interrogation Position

The interrogation position of a probe on the target
sequence was significantly associated with probe reliability
(p < 0:05; �2-test). Probes closest to either end of the target
sequence were enriched among the least reliable probes;
the observed counts deviated 73-138 percent from the
expectation, depending on the interrogation position
(Fig. 2a; Table S1, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2009. 38.). Enrichment of 50-binding
probes was expected due to RNA degradation starting
from this end of the transcript. Enrichment of 3’ probes is
supported by previous findings of Dai et al., who noticed
that 3’-focused probe sets have often increased noise levels
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[10]. Probes closer to the 3’ end detect, on average, a
higher absolute signal. A higher signal is often associated
with higher noise in microarray studies [46], which could
explain our observation. Alternative transcription may also
cause differences between 3’ probes and the other probes
[47], [48].

4.1.3 GC-Content and Probe Reliability

C-rich probe sequences were enriched among the least
reliable probes of our model in all data sets except ALL-
95Av2 and GEA-95A (Fig. 2b; Table S1, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2009.38.). The
observed counts for the different GC contents deviated
39-132 percent from the expectation in the investigated

data sets (p < 0:05; �2-test). To guarantee the assumptions
of the �2-test, probes with most extreme G/C or A/T
contents were combined in the test. One explanation for
our observation is that high-affinity probes may have
higher likelihood of cross-hybridization to nonspecific
targets [21]. This would add noise to the probe-level
signal.

4.1.4 Single-Nucleotide Polymorphisms

Probes whose target sequences have common SNPs were
enriched among the least reliable probes on the HG-U133A
platform and in the combined results from HG-U95A/Av2
platform (See Supplementary Figure 3; Table S1, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2009.38.). In
these data sets, the SNP-associated probes were 1.7-1.9 times
more common among the least reliable probes than
expected (p < 0:05; hypergeometric test). It is interesting
to notice that the association between probe reliability and
SNPs is observed only when information from the ALL-
95Av2 and GEA-95A is combined; a similar observation
was made with the GC-rich probes. A likely explanation is
that the systematic effects from the SNP-associated, or GC-
rich probes are more effectively observed when the data
sets are combined and the data set specific noise cancels
out. In general, the SNP-associated probes were less reliable
than the other probes in all investigated data sets (p < 0:05;
Wilcoxon test). As expected, probes having a single SNP in
the central 13bp region of the 25-mer probe were less
reliable than probes with a single SNP in either end of the
target sequence on HG-U133A (p < 0:05; Wilcoxon test) but,
interestingly, not on the HG-U95A/Av2 platform.

4.1.5 Relative Contribution of the Known Error Sources

Probes that are associated with the investigated noise sources
had 7-39 percent increase in average variance, detected by
RPA, in the studied data sets except ALL95-Av2 (Fig. 3).
Mistargeted probes had the highest variances on HG-U133A,
whereas probes with the most 50=30 interrogation positions
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Fig. 2. Probe reliability versus interrogation position and GC-content on the HG-U133A platform. (a) Probes that bind to either the 50 or the 30 end of
the target transcript were enriched among the least reliable (1 percent) probes (p < 0:05; �2-test). Probe index indicates the relative interrogation
position of the probe on the target sequence, starting from the 50 end of the transcript. The gray bars show the proportion for each interrogation
position among the least reliable probes in the inspected data sets (dark: ALL; light: GEA; white: combined results). The expectation is illustrated by
the dashed line. There are 11 probes per probe set on the HG-U133A arrays. (b) GC-rich probes were enriched among the least reliable (1 percent)
probes (p < 0:001; �2-test). The GC-content of a probe is indicated by the number of G/C nucleotides on the 25-mer probes. Gray bars show the
proportion of each GC-content among the least reliable probes (dark: ALL; light: GEA; white: combined results). Consistently less reliable probes
(GEAþALL) had the highest deviation from the expectation (black bars). To guarantee the assumptions of the �2-test, we combined probes with
most extreme G/C or A/T contents for testing. Results for the HG-U95A/Av2 data sets are shown in Supplementary Fig. 2.

Fig. 1. Genomic alignment and probe reliability. Mistargeted probes that
do not uniquely match the GeneID target of the probe set were enriched
among the least reliable probes (p < 0:05; hypergeometric test). Black
bars show the expected proportion of mistargeted probes, i.e., their
proportion on the whole array. Gray bars show the proportion of
mistargeted probes among the least reliable 1 percent of the probes
detected by our model (dark: ALL; light: GEA; white: combined results).



had the highest variances on HG-U95A/Av2. High GC-
content led to a more moderate increase in probe-specific
variance than the other investigated sources. However, GC-
rich probes are more common (28-33 percent of the probes)
than mistargeted probes (6-8 percent), probes with common
SNPs (3-3.4 percent), or probes in the most 50=30 positions of
the target sequence (10-18 percent) and have, therefore, a
remarkable contribution to the overall probe-level noise.
Interestingly, many (35-60 percent) of the least reliable
probes detected by RPA were not associated with the
investigated sources, including many probes that have
systematically low reliability in independent data sets.

4.2 General Observations of Probe Reliability

Examples of the least reliable probes in the GEA-95A data
set are shown in Supplementary Figure 4, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2009.38. Com-
parison of the results from independent ALL and GEA
data sets revealed many probes with consistently poor
reliability, although the comparability of the results was
affected by data set-specific effects: Spearman correlations
of the probe-specific variances f�2

jg between the ALL and
GEA data sets were 0.28 (HG-U95A/Av2) and 0.52 (HG-
U133A). Surprisingly, the least reliable probes in the ALL
data sets showed almost identical expression profiles (See
Supplementary Figure 5, which can be found on the
Computer Society Digital Library at http://doi.ieeecompu-
tersociety.org/10.1109/TCBB.2009.38), although they are
located in independent probe sets and expected to capture
uncorrelated signals. The noise probably originates in the
biological samples that have been hybridized on both array
types in the ALL-95Av2 and ALL-133A data sets. The
specific source of this contamination remains unclear.

4.3 Preprocessing Comparisons

The validity of probe reliability estimates depends on
accurate estimation of the probe set-level signal. We
compared RPA to other preprocessing methods to test its
preprocessing performance and to guarantee the validity of
probe reliability estimates.

4.3.1 Spike-In Data

In spike-in data sets, the true expression changes are known
and, hence, the different preprocessing approaches can be
compared in terms of their receiver operating characteristics
(ROC). RPA and PECA were more successful in detecting the
spiked genes than MAS5.0 or RMA (Fig. 4). FARMS was
found to outperform the other methods when a large number
of genes are inspected. The good performance of FARMS in
the spike-in data may, however, be favoured by the
particular design of the spike-in experiments, in which the
expression changes always occur in the same genes. This was
supported by the observation that, unlike the other methods,
FARMS produced nearly perfect ROC-curves even when
replicated samples were compared with each other, although
in these comparisons no changes should be detected and the
gene rankings should be random (See Supplementary
Figure 6, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2009.38.).

4.3.2 Technical Replicates

We also assessed the performance of the different prepro-
cessing methods in real research settings using the ALL and
GEA data sets. Since in these data sets the true expression
changes were not known, the performance of the different
methods was evaluated in terms of their consistency across
replicated measurements for both genes and biological
samples. Following the approach of Reverter et al. [49], we
first measured the consistency of the expression changes
within each data set (See Supplementary Figure 7, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2009.38.). Spe-
cifically, for each GeneID represented by at least two probe
sets on an array, the average Pearson correlation of the
expression profiles between all the matching probe sets was
calculated. Based on our probe-genome alignments, there
were 1,470 and 3,774 such GeneIDs on the HG-U95A/HG-
U95Av2 and HG-U133A arrays, respectively. In each data
set, RPA produced the highest correlations (p < 0:05; paired
Wilcoxon test), and PECA and RMA also clearly out-
performed not only MAS5.0 but, notably, also FARMS.

To further investigate the performance of the methods, we
evaluated the consistency of the expression changes across
the two separate data sets, ALL-95Av2 and ALL-U133A, in
which the same biological samples have been hybridized
(Fig. 5). The consistency was measured by the Pearson
correlation between the pairs of arrays, to which the same
sample was hybridized. This indicates the performance of
the methods, as the technical replicates are assumed to
produce effectively the same results on both array versions.
The so-called “bestmatch” tables, provided by the array
manufacturer (www.affymetrix.com), were utilized to com-
bine the data across the arrays. The results from this analysis
supported the earlier findings. In particular, RPA and PECA
outperformed the other approaches; RMA performed better
than MAS5.0 and FARMS; and MAS5.0 showed the poorest
performance (p < 0:05; paired Wilcoxon test). Interestingly,
the simple PECA yielded better consistency between the data
sets than RPA (p < 0:05). While the main focus of this paper
is in probe reliability analysis, the preprocessing compar-
isons confirmed that RPA compares favourably with the
other methods in estimating differential gene expression.
This guarantees the validity of probe reliability estimates in
our model.
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Fig. 3. Increase in the average variance of the probes associated with
the investigated noise sources: mistargeted probes having errors in the
genomic alignment, most 50=30 probes of each probe set, GC-rich, and
SNP-associated probes. The variances were estimated by RPA and
describe the noise level of the probes. The results are shown for the
individual ALL and GEA data sets, and for their combined results on both
platforms (133A and 95A/Av2).



5 DISCUSSION

Previous probe-level models have focused on preprocessing
of gene expression data, whereas we have specifically
targeted a more detailed analysis of probe reliability.
Enrichment of known probe-level error sources among the
less reliable observed probes validates our model; many of
the findings were explained by errors in genomic align-
ment, probe interrogation position, GC-content, or common
SNPs. However, any single source of error seems to explain
only a fraction of the probes that have consistently poor
reliability in independent data sets. Therefore, methods that
remove probe-level noise based on external information
such as genomic alignments are likely to ignore a large
number of the least reliable probes. For example, a probe set
designed to measure a certain transcript may additionally
detect unknown alternatively spliced transcripts which may
have different expression patterns [12], or cross-hybridize
with mRNAs having closely similar (>18=25 bp) but not
perfectly matching sequences [11]. Various laboratory- and

experiment-specific effects are also known to add experi-
mental noise in microarray studies [12], [13]. The proposed
model can detect poorly performing probes that are
susceptible to noise from such sources.

A Gaussian model for probe effects is a reasonable starting
point for modeling heterogeneous and partially unknown
sources of probe-level noise. The feasibility of similar models
has already been demonstrated in the preprocessing context.
For example, the RMA preprocessing algorithm [15] has a
Gaussian model for probe effects with probe-specific mean
(affinity) parameters and a shared variance parameter for the
probes. We avoid the estimation of probe affinities and
instead focus on estimating probe-specific variances. The
recently suggested FARMS preprocessing algorithm [17] is
closely related to our approach but has a more complex
model for probe effects. The model can be written as
sij ¼ zi�j þ �j þ "ij. Here, zi captures the underlying gene
expression, and the model has three parameters f�j; �j; "ijg
for each of the 10-20 probes in a probe set. In contrast, our
model has a single variance parameter for each probe. The
use of a more complex model in FARMS is justified as it aims
at summarizing the absolute values of logarithmized PM
intensities. This is a hard task since large systematic
differences are known to exist between probes [14], [46].
We have shown that by computing differential gene
expression at probe-level avoids the need to estimate
unidentifiable probe affinity parameters. Use of a single
parameter for probe effects leads to more straightforward
interpretations about probe reliability and makes the model
potentially less prone to overfitting. This is supported by the
observation that RPA and PECA compared favourably with
other preprocessing methods in the analysis of differential
gene expression. The distinguishing feature of the two
methods is that they compute differential gene expression
at the probe-level. However, only the probabilistic RPA
estimates probe reliability.

While for most probe sets, different preprocessing
methods give largely consistent results, their differences
can be especially large for probe sets containing several
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Fig. 4. Preprocessing performance for spike-in data. ROC curves for the various methods that were used to estimate the signal log-ratio: RPA,
PECA, RMA, FARMS, and MAS for the two spike-in data sets ((a) Affymetrix HG-U95Av2 and (b) HG-U133A). For each curve, the results from the
investigated spike-in samples within the data sets were pooled. The axes have been truncated to focus on the most relevant area. When comparing
the curves, the one closest to the upper left corner shows the best performance.

Fig. 5. Reproducibility of signal estimates in real data sets between the
technical replicates, i.e., the best match probe sets between the HG-
U95Av2 and HG-U133A platforms. The consistency was measured by
the Pearson correlation between the pairs of arrays, to which the same
sample was hybridized.



inconsistent probe-level signals. The main contribution of the

current study is to introduce and apply a probabilistic model

with explicit modeling assumptions to analyze probe relia-

bility on short oligonucleotide arrays. At the same time, the

model provides a principled framework for incorporating

prior information of the probes in differential gene expres-

sion analysis. This is a potential topic for future studies.

6 CONCLUSION

We have introduced a probabilistic framework for analyz-

ing the reliability of individual probes directly from gene

expression data, and validated the model using gene

expression data sets from two popular human genome

arrays. A major advantage of the proposed approach is its

capability to detect unreliable probes independently of

physical models or external, constantly updated informa-

tion such as genomic sequence data. Probe reliability

information can be useful in many applications, including

evaluation of the end results of gene expression analysis,

and recognition of potentially unknown probe-level error

sources. It can be used to quantify the uncertainty in the

measurements and in designing the probes, and is also

utilized by our model to provide robust estimates of

differential gene expression. A better understanding of the

various probe-level error sources could advance probe

design and contribute to reducing probe-related noise in the

future generations of gene expression arrays.
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Figure 1: Probe set ”215157 x at” contains a highly unreliable probe (dashed line) detected by
the probabilistic model in the GEA-133 data set. Other probe-level observations of differential
gene expression are illustrated with gray lines. Reliability of each probe is estimated with respect
to the estimated probe set-level signal (black) across a large number of arrays.

Mistargeted Interrogation GC-content SNP SNP position
effect

ALL133 8.5e-43 0.020 8.0e-4 1.8e-15 2.5e-4
GEA133 1.1e-77 1.5e-07 3.6e-39 4.1e-11 0.041
ALL95 0.046 0.031 0.079 0.69 0.24
GEA95 3.3e-14 2.9e-13 2.2e-06 0.39 0.37
HGU133 1.3e-113 2.0e-08 2.5e-26 8.8e-16 0.0014
HGU95 4.6e-19 4.2e-07 5.4e-15 5.7e-7 0.27

Table 1: Enrichment p-values for the investigated noise sources among the least reliable probes
detected by RPA (columns 1-4). The last column (’SNP position effect’) shows the p-values for
the comparison of probe realibility between probes with an SNP in the central 13bp region of
the probe versus the other SNP-associated probes. For further details, see the main text.
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Figure 2: Probe reliability vs. interrogation position and GC-content on the HG-U95A/Av2A
platform. (a) Probes that bind to either the 5’ or the 3’ end of the target transcript were
enriched among the least reliable (1%) probes (p < 0.05; χ2-test). Probe index indicates the
relative interrogation position of the probe along the target sequence, starting from the 5’ end of
the transcript. The grey bars show the proportion for each interrogation position among the least
reliable probes in the inspected data sets (dark: ALL; light: GEA; white: combined results).
The expectation is illustrated by the dashed line. There are 16 probes per probe set on the
HG-U95A/Av2 arrays. (b) GC-rich probes were enriched among the least reliable (1%) probes,
except for the ALL-95Av2 and GEA-95A data sets. The GC-content of a probe is indicated by
the number of G/C nucleotides on the 25-mer probes. Grey bars show the proportion of each
GC-content among the least reliable probes (dark: ALL; light: GEA; white: combined results).
Consistently less reliable probes (GEA+ALL) had the highest deviation from the expectation
(black bars). To quarantee the assumptions of the χ2-test, we combined probes with most
extreme G/C or A/T contents for testing.
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Figure 3: Single-nucleotide polymorphisms and probe reliability. Probes having SNPs in their
target sequence were enriched among the least reliable probes (p < 0.05; hypergeometric test) on
the HG-U133A platform and in the combined results from the ALL-95Av2 and GEA-95A data
sets. Black bars show the expected proportion of SNP-associated probes, i.e. their proportion
on the whole array. Grey bars show the proportion of SNP-associated probes among the least
reliable 1% of the probes detected by our model (dark: ALL; light: GEA; white: combined
results). The enrichment of mistargeted probes was highest when the results from the two
independent studies were combined (GEA+ALL).

4



0 20 40 60 80

−
6

0
4

41430_at, probe 4

Treatment samples

S
ig

na
l l

og
−

ra
tio

0 20 40 60 80

−
6

0
4

41430_at, probe 6

Treatment samples

S
ig

na
l l

og
−

ra
tio

0 20 40 60 80

−
6

0
4

39961_at, probe 3

Treatment samples

S
ig

na
l l

og
−

ra
tio

0 20 40 60 80

−
6

0
4

39961_at, probe 2

Treatment samples

S
ig

na
l l

og
−

ra
tio

0 20 40 60 80

−
6

0
4

37471_at, probe 6

Treatment samples

S
ig

na
l l

og
−

ra
tio

0 20 40 60 80

−
6

0
4

32052_at, probe 7

Treatment samples

S
ig

na
l l

og
−

ra
tio

0 20 40 60 80

−
6

0
4

32755_at, probe 15

Treatment samples

S
ig

na
l l

og
−

ra
tio

0 20 40 60 80

−
6

0
4

32052_at, probe 6

Treatment samples

S
ig

na
l l

og
−

ra
tio

0 20 40 60 80

−
6

0
4

32755_at, probe 14

Treatment samples

S
ig

na
l l

og
−

ra
tio

Figure 4: Probe-level signals for the least reliable probes. Probe-level signals for the probe
sets containing the nine least reliable probes according to the probabilistic model in the GEA-
95A data set. Signal of the detected unreliable probe is illustrated with dashed line in each
probe set, and the signals from the other probes in the probe set are shown in grey lines. The
differential gene expression estimate given by the model is also shown (black line). The header
for each example specifies the name of the probe set and the relative interrogation position of
the unreliable probe. It is interesting to notice that some of the least reliable probes have similar
differential expression profiles although they are located in independent probe sets.
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Figure 5: Differential gene expression profiles of the least reliable 100 probes in the studied data
sets (grey lines). Unexpectedly many of the least reliable probes in the ALL data sets capture
similar signal although these probes are located in independent probe sets. Furthermore, in the
ALL data sets these signals are correlated with one of the probes in the AFFX control probe
sets (black line). Same biological samples have been used on both ALL-95Av2 and ALL-133A
data sets. This suggests that the noise originates from the biological samples. A weaker but
similar phenomenon is also visible in the GEA-95A data.
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Figure 6: ROC curves for the various preprocessing methods: RPA, PECA, RMA, FARMS,
and MAS for the replicated samples in the two spike-in data sets (Affymetrix HG-U95Av2 and
HG-U133A). Unlike the other methods, FARMS produced nearly perfect ROC-curves when
replicated samples were compared with each other, although in these comparisons no changes
should be detected and the gene rankings should be random.
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Figure 7: Histogram of the within-platform correlations for technical replicates within each data
set. For each GeneID represented by at least two probe sets on an array, the average Pearson
correlation of the expression profiles between all the matching probe sets was calculated.
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