Publication Il

Lasse Kiviluoto, Patric R. J. Ostergard, and Vesa P. Vaskelainen. 2010.
Algorithms for finding maximum transitive subtournaments. Espoo, Finland:
Aalto University School of Science and Technology. 15 pages. Helsinki
University of Technology, Department of Communications and Networking,
Report 5/2010. ISBN 978-952-60-3369-3. ISSN 1797-478X.

© 2010 by authors

Algorithms for Finding Maximum Transitive
Subtournaments

Lasse Kiviluoto*
Celtius Ltd, Pieni Roobertinkatu 11, 00130 Helsinki, Finland

Patric R. J. Ostergard! and Vesa P. Vaskelainen'®
Department of Communications and Networking
Aalto University, P.O. Box 13000, 00076 Aalto, Finland

Abstract

The problem of finding a maximum clique is a fundamental prob-
lem for undirected graphs, and it is a natural question to ask whether
there are analogous computational problems for directed graphs. One
such problem is that of finding a maximum transitive subtournament
in a directed graph. A tournament is an orientation of a complete
graph; it is transitive if the occurrence of the arcs zy and yz implies
the occurrence of xz. Searching for a maximum transitive subtour-
naments in a directed graph D is equivalent to searching for a maxi-
mum induced acyclic subgraph in D, which in turn is computationally
equivalent to searching for a minimum feedback vertex set in D. This
paper discusses two basic backtrack algorithms and a Russian doll
search algorithm for finding a maximum transitive subtournament.

Keywords: backtrack search, clique, directed acyclic graph, feedback vertex
set, Russian doll search, transitive tournament.

*Supported by the Academy of Finland, Grant No. 100500.

fSupported in part by the Academy of Finland, Grants No. 107493, 110196, and
130142.

fSupported by the Academy of Finland under Grant No. 107493 and by the Walter
Ahlstrom Foundation. (Walter Ahlstromin saétio)

§ Corresponding author. E-mail: vesa.vaskelainen@tkk.fi

1 Introduction

The maximum clique problem has attracted a lot of attention along the years;
see [2] for an extensive survey. A clique in a graph is a set of mutually adjacent
vertices, and a maximum clique is a clique with the largest number of vertices.
The following decision problem is NP-complete: Given an undirected graph
G and an integer k as the input, determine whether there is a clique of size
k in G. In any case, much effort has been put on developing algorithms for
the maximum clique problem, since there are several important applications.

The maximum clique problem concerns undirected graphs; it is therefore
natural to ask whether there are corresponding problems for directed graphs.
For a directed graph, one may obviously look at the maximum clique problem
for the underlying undirected graph or the undirected graph with an edge
{u,w} if and only if both uw and wu are arcs in the original graph. Cliques
of the latter type are called symmetric cliques. However, both of these cases
reduce to the undirected case.

In Section 2 we will use the problem of determining the capacity of com-
munication channels to demonstrate one possible correspondence between
certain computational problems in undirected and directed graphs. This
leads to the problem of finding a maximum transitive subtournament in a di-
rected graph, which is computationally equivalent to the problems of finding
a maximum induced acyclic subgraph and a minimum feedback vertex set.
Analogously, in the undirected case we have the maximum clique problem,
which is computationally equivalent to the problems of finding a maximum
independent set and a minimum vertex cover. Two basic backtrack search
algorithms and a Russian doll search algorithm for the maximum transitive
subtournament problem are discussed in Section 3. The performance of these
algorithms is compared in computational experiments in Section 4.

2 Clique-Type Problems for Directed Graphs

In this section, we develop a correspondence between clique-type problems
for undirected and directed graphs via the concept of capacity of certain
communication channels and graphs. This application also accentuates the
demand for practical exact algorithms for these problems.

Consider an undirected graph G with one vertex for each input symbol
of a discrete communication channel and an edge between two vertices if
and only if the two symbols cannot lead to the same output symbol (due
to channel errors). The graph G is known as the characteristic graph of the
channel. Alternatively, one may study G, the confusion graph of the channel.

The clique number of G = (V, E), denoted by w(G), gives the largest set
of symbols that can be used for error-free transmission of one symbol over
the channel, and the amount of information is log, w(G). If information is
transmitted in blocks of size n, then the information rate is

log, w(G™)

—1 G 1/n
o ogy w(G")

bits per transmission, where the (co-normal) power graph G™ has the vertex
set V™ = {(uy,ug,...,u,) : u; € V}, and (uq,us, ..., uy,) and (vy,ve,...,0,)
are connected by an edge if and only if there is an ¢ such that {u;,v;} € E.
The zero-error capacity [18] of the channel is

sup log, w(G™)Y/™

n>1

bits per transmission. When this problem is studied purely in the context of
graphs, one ignores the logarithm and defines the zero-error capacity of G as

sup w(G™)/".

n>1

Gargaro, Korner, and Vaccaro [7] studied directed graphs in an analogous
way. With D = (V, A) a directed graph, the (co-normal) power graph D"
has the vertex set V" = {(uy,u2,...,u,) : u; € V}, and there is an arc
from (uy,us, ..., u,) to (vy,ve,...,v,) if and only if there is an i such that
u;v; € A. The (non-logarithmic) Sperner capacity of D is then

o(D) = supw,(D")''",

n>1

where w, (D) is the size of the maximum symmetric clique.

A transitive subtournament, or transitive clique, in a directed graph is a
set of vertices that can be listed vy, vy,...,v,, such that if i < j then there
is an arc v;v;; note that we do not care about possible arcs in the opposite
direction. The size of a maximum transitive subtournament in D is denoted
by w;(D). The importance of w;(D) in the study of Sperner capacity is that
(see [7, 17] and their references)

o(D) = supw,(D")""

n>1

and as obviously ws(D) < w(D), determination of the size of a maximum
transitive subtournament rather than that of a maximum symmetric clique
for small powers of D may—and often does—lead to better lower bounds

on o(D). Concrete instances for the problem of determining the size of a
maximum transitive subtournament can be found, for example, in [10].

We shall briefly look at some analogies with the undirected case. The
following decision problem is NP-complete [6, 8]: Given a directed graph
D and an integer k as the input, determine whether there is a transitive
subtournament of size k in D.

A clique in an undirected graph G corresponds to an independent set in
G, but can something similar be said in the directed case? An answer to this
question is provided by the following basic graph-theoretic result.

Theorem 1 A transitive subtournament in D is an acyclic induced subgraph
m D, and vice versa.

Proof. In D = (V, A), consider an arbitrary set of vertices V' C V that
is not a transitive subtournament. Equivalently, for any order vy, v, ..., vy,
of the vertices in V', there are ¢ and j such that i < j and v;v; € A. In
the complementary graph D = (V, A), for any order of the vertices in V”,
there are ¢ and j such that i < j and v;v; € A. The well-known fact that
a directed graph has a topological ordering if and only if it is acyclic proves
that the induced subgraph in D is cyclic. This completes the proof as we
have equivalences in all steps. [J

If S is an independent set in an undirected graph G = (V. FE), then
S"=V\ S is a vertex cover of G. For directed graphs we have the following
analogy: If S induces an acyclic graph, then S = V' \ S covers—that is,
contains a vertex of—every cycle of G and is called a feedback vertex set.

Finally, we would like to point out that various aspects of clique-type
problems, for example, considering weighted graphs, carries over naturally
to the problems for directed graphs discussed here. A final example: The
chromatic number of an undirected graph is the smallest number of indepen-
dent sets that partition the vertex set, whereas the dichromatic number [14]
of a directed graph is the smallest number of acyclic induced subgraphs that
partition the vertex set.

3 Algorithms

Bearing in mind the analogy between the discussed problems for undirected
and directed graphs, it is perhaps surprising that in the undirected case
virtually all computational studies have been on cliques and independent
sets (rather than on vertex covers), whereas for directed graphs most studies
have been on feedback vertex sets (rather than on transitive subtournaments

4

and induced acyclic subgraphs). Since the solutions to these two versions of
the problems are complements to each other, it seems reasonable to focus
on the version that has a small(er) solution. Consequently, if a graph is
almost acyclic, then one should indeed search for a minimum feedback vertex
set. However, there are many applications where the alternative formulation
is to be preferred, including the application discussed in Section 2. The
authors feel that the problem of finding maximum transitive subtournaments
(alternatively, induced acyclic subgraphs) should receive more attention in
the literature.

Only a handful of papers have been published on exact algorithms for
the aforementioned problems for directed graphs. (Note that exact algo-
rithms can be studied and compared in two ways: via theoretical bounds
and via their practical performance. We consider algorithm within the latter
framework.) Also here the literature is biased toward feedback vertex sets
[1, 12, 15, 19]. Funke and Reinelt [5] indeed consider induced acyclic sub-
graphs, but they concentrate on a variant of the problem where arcs have
weights and the aim is to maximize the total arc weight of the induced graph.

We shall here present three algorithms for finding a maximum transitive
subtournament: two basic backtrack algorithms and a Russian doll search
algorithm. The similarities between these and the algorithms published in
[4] and [16] are not incidental. The order of the vertices of the input graph
has a (sometimes even significant) impact on the computation times of these
algorithms; this issue is discussed further in the Section 4.

We start by a basic backtrack algorithm, Algorithm 1, that builds up a
transitive subtournament so that if vertex v is added on level i—this infor-
mation is saved in the variable a,—then there must be an arc vw to add
vertex w on level 7 whenever j > i. The set of vertices w such that there is
an arc vw is denoted by T'"(v). The parameters U and s of the procedure
BASIC1(U, s) stand for the set of remaining vertex candidates and the size of
the current transitive subtournament, respectively. The algorithm is invoked
with BASIC1(V,0), where V' is the set of all vertices, and the initial value of
the global variable record is 0.

Algorithm 1 builds up a transitive tournament in the order of its vertices,
starting from the vertex that has all other vertices of the tournament as
successors. One drawback of Algorithm 1 is that having considered a certain
vertex, chosen in line 8, we cannot remove it from U since it can also be
considered at later stages when building up the transitive tournament. The
next two algorithms to be considered do not have this drawback; on the other
hand, in these algorithms we do need a test that determines whether an
induced subgraph is a transitive tournament. Actually, because of this test,
we consider the complementary graph instead and build up induced acyclic

Algorithm 1 First Basic Backtrack Algorithm
procedure BASIC1(U: set, s: integer)

1. if |U| =0 then

2: if s > record then

3: record < s

4: Save the current solution aq,ao,...,a,
5. end if

6: return

7. end if

8: fori« 1,2,...,|U| do

9: U «+ UnT*%(u;); The elements of U are denoted by uy, us,
10: if s+ 1+ |U'| > record then

11: Qg1 < Uy

12: BASICL1(U',;s + 1)

13: end if

14: end for

end procedure

subgraphs (Theorem 1); throughout the rest of this section, the maximum
induced acyclic subgraph setting is therefore assumed.

Although updating the set of vertex candidates in line 9 of Algorithm 1
is a rather straightforward operation, careful implementation of this step
does have some impact on the overall performance as it lies in the core of
the algorithm. A thorough consideration of such core steps of backtrack
algorithm was carried out by Lam et al. [11, 20] in their work on proving
nonexistence of projective planes of order 10; in fact, they gave reasons for
algorithms to act differently on different levels of the search tree (the levels
being split into three regions).

The next algorithms to be considered build up an induced acyclic sub-
graph, adding the vertices in the order they occur in the directed graph D.
Maintaining a set of vertices that do not introduce cycles when added to a
solution set is a much more complicated operation than the update operation
for Algorithm 1. Consequently, as there is not one obvious way of carrying
out this operation, care has to be taken in the evaluation of algorithms to
distinguish between the impact of this core part of the algorithm from the
impact of the overall algorithm.

For each of the algorithms that build up an induced acyclic subgraph, we
consider two different ways of maintaining partial solutions that are induced
acyclic subgraphs. In one version (a) it is checked for each added vertex
whether it leads to an induced cycle together with the vertices so far in the

solution set; this can be done by breadth-first search (BFS) or depth-first
search (DFS) in time O(|V| + |A]). In another version (b) we maintain a set
U of vertices that, together with the partial solution, do not form induced
cycles. In version (b), updating U after adding a vertex to the solution set
is a nontrivial operation. We shall now elaborate briefly on this operation.

When a vertex v is added to the solution set B, we can delete a vertex
u € U whenever there exist vertices v',v” € B such that there is a path
from v’ through v to v” in B, and arcs v"u and uv’ in the original graph D.
The latter information can be precalculated into a table that for each triple
u,v',v" of vertices tells whether there are arcs v"u and uv’. With O(|V|?)
bits for this table, ©(|V']?) bits for each u, the question can be answered in
constant time. On the other hand, by finding—with BFS or DFS—all vertices
V' in B from which there is a directed path to v (v itself is in this set) as
well as all vertices V" to which there is a directed path from v (v is also in
this set), we get the desired pairs (v',v”) € (V',V”). The random instances
considered in Section 4 are not constrained by the large space requirement
of the auxiliary table. Anyway, other data structures can be utilized should
the space requirement be an issue, trading speed for memory.

To test (v/,v") € (V', V") against the information about paths v"uv’,
there are two possibilities. If the number of pairs (v/,v") € (V' V") is large,
then one may form a string with ©(]V']?) bits and 1s for each pair occurring;
this string can be immediately tested against the precalculated strings of the
same length. On the other hand, with very few pairs, it is faster to test each
pair separately. In the current work we used only the latter approach. Note
also that when a certain pair has been tested, then it need not be tested
among descendants in the search tree; this information is maintained in the
search tree.

With the above mentioned versions (a) and (b), we consider Algorithm 2,
which is a basic backtrack algorithm, and Algorithm 3, which a Russian doll
search algorithm. To save space, we only give a detailed presentation of one
version for each algorithm: version (a) for Algorithm 2 and version (b) for
Algorithm 3. In all versions of these two algorithms, we handle the easy case
of cycles of length 2 in a direct way through 7'(v), v € V, which denotes the
set of vertices w € V for which not both vw and wwv are arcs.

Algorithm 2 is invoked with BASic2(V,0). The global variable record has
initial value 0. The other variables and parameters are as in Algorithm 1.

Algorithm 3 is a Russian doll search algorithm. A Russian doll search
algorithm [21] can in general terms be described as an algorithm for solving a
problem with n variables through n subproblems, where the first subproblem
includes just the nth variable, the 7th subproblem the last ¢ variables, and
where the solutions of the subproblems are used for pruning in later subprob-

7

lems. Russian doll search has been applied to the maximum clique problem
in [16].

In Algorithm 3, which is invoked with RUSSIANDOLL, the definition S; =
{Vi, Viy1,...,v,} gives the vertex sets of the subproblems. The size of a
maximum induced acyclic subgraph in the subgraph induced by S; is saved
in the array c[i]. Note that c[i — 1] = ¢[i] or ¢[i — 1] = ¢[i] + 1. If a solution
corresponding to the latter equality is found then a subproblem has obviously
been solved; the variable found makes immediate interruption possible. The
function reduce takes care of reducing the set of candidate vertices in U after
a new vertex is added to the solution (in a way the updating operation of the
version (b) which is described earlier). The other variables and parameters
are as in Algorithm 1.

Algorithm 2 Second Basic Backtrack Algorithm, Version (a)
procedure BASIC2(U: set, s: integer)
1. if |U| =0 then
2: if s > record then
record < s
Save the current solution aq,ao,...,a,
end if
return
end if
while U #) do
if s+ |U| < record then
10: return
11: end if
122 i< min{j:v; € U}
132 U« U\A{vy}
14: Qg1 < U

15: if a1, a9,...,as11 1S acyclic then
16: BASIC2(U NT(v;),s + 1)
17 end if

18: end while
end procedure

Algorithm 3 Russian Doll Search Algorithm, Version (b)

procedure RDS(U: set, s: integer)
1. if |U| =0 then
2: if s > record then
3 record < s
4 Save the current solution aq,ao,...,a,
5 found < TRUE
6: end if
7 return
8: end if
9: while U # () do
10: if s+ |U| < record then
11: return
12: end if
13: i< min{j:v; € U}
14: if s+ c[i] < record then
15: return
16: end if
17: Qsq1 < U;
180 U« U\A{v}
19: U’ + reduce(U,ay, ..., as11)
20: RDS(U';s+1)
21: if found = TRUE then
22: return
23: end if
24: end while
end procedure
procedure RUSSIANDOLL
25: record < 0
26: fort=n,n—1,...,1do
27: found < FALSE
28: RDS(S; NT(v;),1)
29: c[i| = record
30: end for
end procedure

4 Computational Results

In this section we use computational experiments to compare Algorithms 1,
2, and 3, the two latter in versions (a) and (b). Indeed, these algorithms
were designed with the aim of optimizing practical performance, and belong
to a class of algorithms less amenable to a formal performance analysis [13].
Recall that we are dealing with an optimization version of an NP-complete
problem.

The algorithms were implemented in C++ and evaluated using random
graphs. Graphs with 50 to 1000 vertices were generated with different arc
probabilities—for each ordered pair of vertices, there is an arc with a given
probability p. It is important to note that for Algorithm 1 we consider such a
random graph D, but for Algorithms 2 and 3 we consider its complement D.
The results are presented in Table 2. We are not aware of any earlier work
against which these results could be compared—earlier computational results
either consider different versions of the problem or instances with transitive
subtournaments (induced acyclic subgraphs) of size close to the order of the
graph.

One detail that has been omitted so far is the impact of vertex orderings
on the performance of the algorithms. For clique algorithms, the importance
of this detail was recognized in the early work by Carraghan and Pardalos
[4]. Tt is therefore no surprise that the choice of ordering turns out to have a
crucial impact also for the type of algorithms considered in the current study:.

Vertex orderings for clique-type problems are heuristics, many of which
tend to order the vertices (in increasing or decreasing order) according to
how likely they are to occur in a maximum solution. The best orders are not
always intuitive and some experimentation is generally needed to find a good
heuristic (for the graphs considered). Basic orderings considered here are
those based on the vertex degrees in the underlying undirected graph (U), the
outdegrees of the vertices in the directed graph (O), and the indegrees of the
vertices in the directed graph (I). The vertices can be ordered ascending (»)
or descending (\,). Also the case with no reordering is considered (NONE).

Thinking in the terms of D, it seems reasonable that a large number of
pairs v’,v” such that there are arcs v"u and uv’ make it less likely for u to
be in a maximum induced acyclic subgraph (recall that this is related to
the number of elements in the table used in version (b) of the algorithms).
Therefore we also consider the ordering (P) given by the product of the
indegree and the outdegree of the vertices in the complementary graph.

Russian doll search algorithms tend to perform well when the elements
of an optimal solution are spread out evenly over the set of all elements.
For undirected graphs and the maximum clique problem, this is achieved

10

by coloring the vertices and grouping the vertices that belong to each color
class. Also in the case of induced acyclic subgraphs of D, we may get a similar
ordering (C) by grouping the vertices into symmetric cliques; in other words,
these groups are independent sets of the underlying graph of D. Since the
heuristic is only relevant for Russian doll search algorithms and not for basic
backtrack search, it was only carried out for Algorithm 3.

To compare the different orderings, we utilized the average ranks ranking
method [3]. For each parameter pair n,p in Table 2, five instances were gen-
erated and tested with each ordering. Orderings were given a rank number,
starting from 1, with respect to their performance, and the average of all runs
was calculated for each ordering. The results are shown in Table 1. The best
ordering for each algorithm is in bold and used in the computations leading
to Table 2.

Table 1: Ranking of permutations
Ordering Al A2(a) A2(b) A3(a) A3(b)

U~ 573 1.77 1.56 3.64 2.89
Us, 420 836 797 785 815
o 641 312 325 451 428
N 3.67 651 652 720 7.37
1 469 313 327 485 413
I\, 491 671 648 823 836
P - 6.06 217 227 376 3.95
P, 429 816 865 7.92 893
C 3.84 485
N 6.56 5.97

NONE 5.04 507 503 7.64 7.11

In Table 2, we show the average time for 100 random graphs of each pa-
rameter set. Once again, recall that for Algorithms 2 and 3 the computations
are carried out on the complementary graph. The relatively large number of
graphs considered is a consequence of the large standard deviation of com-
putational times which are presented in Table 3. These times are in CPU
seconds for a 2-GHz PC with Linux operating system. Also the average size
of a solution is given.

Table 2 illustrates that the presented algorithm for finding maximum
transitive subtournaments is faster than the one for finding maximum in-
duced acyclic subgraphs in the complement in the region where the solution
size is approximately smaller than 20. The Russian doll search approach for
finding maximum induced acyclic subgraphs is faster than (the backtrack

11

Table 2: Evaluation of the algorithms

V| p maxsize Al A2(a) A2(b) A3(a) A3(b)
50 0.5 10.04 0.01 0.02 0.03 0.01 0.02
50 0.6 12.71 0.06 0.13 0.14 0.07 0.08
50 0.7 16.42 1.73 1.36 1.12 0.64 0.56
50 0.8 2237 573.54 17.35 11.12 7.76 5.46
50 0.9 33.04 >1000 69.81 71.08 25.62 30.38

100 0.5 12.40 0.57 2.85 2.82 1.73 1.60

100 0.6 1591 16.41 71.39 4145 4192 23.13

100 0.7 21.13 >1000 >1000 >1000 >1000 886.29

200 0.3 9.04 0.18 0.90 1.77 0.59 1.18

200 0.4 11.33 3.13 1998 24.00 14.24 16.93

200 0.5 14.54 109.00 835.27 537.31 580.27 367.41

500 0.2 8.03 0.99 4.78 29.61 3.38 21.75

500 0.3 10.67 28.52 220.61 669.65 153.36 475.96

1000 0.1 6.55 0.91 2.69 138.55 2.04 104.66
1000 0.2 9.02 49.70 203.24 >1000 148.67 >1000

Table 3: Sample standard deviation for results in Table 2

V| p maxsize Al A2(a) A2(b) A3(a) A3(b)
50 0.5 0.59 0.00 0.01 0.01 0.01 0.01
50 0.6 0.56 0.03 0.05 0.06 0.03 0.04
50 0.7 0.72 1.24 0.75 0.61 0.39 0.36
50 0.8 0.98 954.64 1241 9.06 6.96 4.84
50 0.9 1.26 - 7474 73770 31.81 34.56

100 0.5 0.49 0.13 0.58 0.73 0.59 0.63

100 0.6 0.47 4.53 20.27 13.16 15.70 10.51

100 0.7 0.54 - - - - 483.27

200 0.3 0.20 0.02 0.13 0.19 0.09 0.21

200 0.4 0.47 0.51 2.70 4.53 3.91 5.36

200 0.5 0.50 20.30 126.32 126.57 159.51 125.60

500 0.2 0.17 0.10 0.15 1.62 0.39 2.72

500 0.3 0.47 4.00 1993 79.06 42.65 137.26

1000 0.1 0.50 0.09 0.15 8.90 0.52 27.84
1000 0.2 0.14 1.50 4.52 - 16.39 -

12

search) Algorithm 2 and the overall fastest for dense graphs, for all instances
considered in this work.

As the described algorithm resembles the maximum clique algorithm pre-
sented in [16], it is natural to ask whether ideas from other maximum clique
algorithms could be implemented in algorithms for finding maximum transi-
tive subtournaments. However, most clique algorithms utilize various types
of colorings, and it is not clear how to carry over this concept (as for efficient
computing) to directed graphs.

We conclude this paper with the remark that the considered algorithms
have indeed been applied to instances of the applications discussed in Section
2; an exhaustive determination of the Sperner capacity of small directed
graphs has been carried out in [9].

Acknowledgements

The authors thank Brendan McKay for useful discussions.

References

[1] Berghammer, R., Fronk, A.: Exact computation of minimum feedback
vertex sets with relational algebra. Fund. Inform. 70, 301-316 (2006)

[2] Bomze, .M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum
clique problem. In: Du, D-Z., Pardalos, P.M. (eds.) Handbook of Combi-
natorial Optimization, Supplement Vol. A, pp. 1-74. Kluwer, Dordrecht
(1999)

[3] Brazdil, P.B., Soares, C.: A comparison of ranking methods for classi-
fication algorithm selection. In: Lépez de Mantanas, R., Plaza, E. (eds.)
Machine Learning: ECML 2000, LNCS 1810, pp. 63-74. Springer, Berlin
(2000)

[4] Carraghan, R., Pardalos, P.M.: An exact algorithm for the maximum
clique problem. Oper. Res. Lett. 9, 375-382 (1990)

[5] Funke, M., Reinelt, G.: A polyhedral approach to the feedback vertex
set problem. In: Cunningham, W.H., McCormick, S.T., Queyranne, M.
(eds.) Integer Programming and Combinatorial Optimization, LNCS 1084,
pp. 445-459. Springer, Berlin (1996)

[6] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)

13

[7] Gargano, L., Korner, J., Vaccaro, U.: Qualitative independence and
Sperner problems for directed graphs. J. Combin. Theory Ser. A 61, 173—
192 (1992)

[8] Karp, R.M.: Reducibility among combinatorial problems. In: Miller,
R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations,
pp. 85-103. Plenum, New York (1972)

9] Kiviluoto, L., Ostergard, P.R.J., Vaskelainen, V.P.: Sperner capacity of
small digraphs. Adv. Math. Commun. 3, 125-133 (2009)

[10] Koérner, J., Pilotto, C., Simonyi, G.: Local chromatic number and
Sperner capacity. J. Combin. Theory Ser. B 95, 101-117 (2005)

[11] Lam, C.W.H., Thiel, L.H., Swiercz, S.: A computer search for a projec-
tive plane of order 10. In: Deza, M.M., Frankl, P., Rosenberg, I.G. (eds.)
Algebraic, Extremal and Metric Combinatorics, pp. 155-165. Cambridge
University Press, Cambridge (1988)

[12] Lloyd, E.L., Soffa, M.L.: On locating minimum feedback vertex sets. J.
Comput. System Sci. 37, 292-311 (1988)

[13] McGeoch, C.C.: Experimental algorithmics. Communications of the
ACM 50(11), 27-31 (2007)

[14] Neumann-Lara, V.: The dichromatic number of a digraph. J. Combin.
Theory Ser. B 33, 265-270 (1982)

[15] Orenstein, T., Kohavi, Z., Pomeranz, I.: An optimal algorithm for cycle
breaking in directed graphs. J. Electronic Testing 7, 71-81 (1995)

[16] Ostergard, P.R.J.: A fast algorithm for the maximum clique problem.
Discrete Appl. Math. 120, 197-207 (2002)

[17] Sali, A., Simonyi, G.: Orientations of self-complementary graphs and
the relation of Sperner and Shannon capacities. Europ. J. Combin. 20,
93-99 (1999)

[18] Shannon, C.E.: The zero-error capacity of a noisy channel. IRE Trans.
Inform. Theory 2, 8-19 (1956)

[19] Smith, G.W., Walford, R.B.: The identification of a minimal feedback
vertex set of a directed graph. IEEE Trans. Circuits and Systems 22, 9-14
(1975)

14

[20] Thiel, L.H., Lam, C.W.H., Swiercz, S.: Using a CRAY-1 to perform
backtrack search. In: Kartashev, L.P., Kartashev, S.I. (eds.) Supercomput-
ing '87: Supercomputer Design, Performance Evaluation and Performance

Education, Vol. 3, pp. 92-99. International Supercomputing Institute, St.
Petersburg Fla. (1987)

[21] Verfaillie, G., Lemaitre, M., Schiex, T.: Russian doll search for solving
constraint optimization problems. In: Proc. 13th National Conference on
Artificial Intelligence (AAAI-96) pp. 181-187. AAAI Press, Menlo Park
(1996)

15

