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Abstract

The performance of combinatorial algorithms is often evaluated
by using the computational times of a certain number of inputs. The
run times of algorithms with certain type of data appear in computa-
tional results as the mean of a small sample. Still the choice of sample
size is rarely based on the distribution of run times. In this work we
use statistical tests to compare the performance of combinatorial al-
gorithms. Furthermore, we determine confidence intervals for the run
times of combinatorial algorithms. As a consequence, we get easy-to-
use bounds of sample size for justifying the accuracy of computational
results.
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1 Introduction

In the past, statistical techniques have not been exploited widely in perfor-
mance testing of combinatorial algorithms. This work attempts to show the
benefit which could be obtained by using them, and in the broader sense the
paper deals with the problem of the choice of sample size. We examine the
use of statistical tests for comparing the performance of algorithms for the
maximum transitive subtournament problem [9] and the minimum spanning
tree problem [8]. In addition, the statistical theory of error in normal approx-
imation [4] is applied to justify the required sample size for computational
tests in order that the confidence intervals for means can be stated.

The paper is organized as follows. Section 2 deals with the statistical
tests that are applied in Section 4. Section 2.1 surveys the relevant parts of
the theory of error in normal approximation to this context. In Section 3
we discuss the combinatorial algorithms from which the experimental data
of run times is obtained for Section 4.

2 Preliminaries

Statistical tests enable us to determine the statistical significance of an obser-
vation. For a general introduction to statistical tests see for example [14, 15].
In our case, when the inputs for different algorithms are the same and thus
the samples are dependent, some possible tests for the equality of run time
means are the Student’s paired t-test, the Wilcoxon signed rank test and the
Sign test. The t-test assumes the sample to be from normal distribution
and the Wilcoxon signed rank test assumes symmetric distributions but not
normality. The Sign test is even more tolerant by accepting nonsymmetric
distributions. These ground assumptions should be taken into account when
applying these tests. It can be said that the stricter assumptions are, the
more efficient test is when the assumptions are fulfilled. An analytical com-
parison of the Wilcoxon and Sign tests to t-test is presented in [5]. A similar
comparison based on examples is done in [10].

For the paired differences di = xi − yi, 1 ≤ i ≤ N , only the ratio of the
sample mean d̄ and the sample standard deviation sd affect the test value
of the Student’s paired t-test if we have certain sample size N . Using this,
we can determine the minimum sample sizes for verifying the statistically
significant difference of means between two normal distributions with signif-
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icance level α, see Table 1. Note that these values are indicative also for the
Wilcoxon signed rank test and the Sign test.

Table 1: Minimum sample sizes for determining the difference of the mean
of two normal distributions with Student’s paired t-test.

|d̄/sd| α = 0.1 α = 0.05 α = 0.02 α = 0.01

0.1 273 387 545 669
0.3 32 46 64 78
0.6 10 14 19 23
1.0 5 6 9 11
1.5 4 5 6 7

Many theoretical models use normal distribution as a basis for calcula-
tions. To help decide whether to use normal models or not, different tests for
normality are used. The most intuitive normality tests are graphical com-
parisons [13]. See more information for numerical/analytical tests in [11] for
the Kolmogorov–Smirnov test, [12] for the Lilliefors test, or [2, 6] for the
Jarque–Bera normality test.

2.1 Estimating Confidence Intervals for Skewed Dis-

tributions

The skewness of a distribution X is [3]

γ1 =
µ3

σ3
, (1)

where µ3 is the third moment about the mean and σ is the standard deviation.
The skewness of the sample can be determined as follows [7]

g1 =
m3

m
3/2
2

, (2)

where m2 and m3 are the second and the third central moment of the sample.
Let us consider a random sample xi from a distribution of run times X.

We are interested in the confidence interval of the mean x̄. The approxima-
tion of the distribution of the mean can be done with normal distribution,
and error in the approximation is controlled by sample size. That is, the
normalized sample mean

x̄ − µ

s

√
N (3)
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is asymptotically normally distributed [14]. Determining the confidence in-
terval for the mean of normal distribution is explained in detail in many
textbooks and it is [14]

x̄ ± s√
N

zα , (4)

where x̄ and s are sample mean and estimate for standard deviation, respec-
tively. The fractile zα is calculated from normal distribution.

Since (3) is only approximately and asymptotically normally distributed,
the error in normal approximation must be considered. The suitable research
for practical purposes is the work by Höglund [4]. Höglund approximates the
distribution of the normalized sample mean (3) by Edgeworth expansion [4]

Fn(t) = Φ(t) +
P (t)φ(t)√

N
+

Q(t)φ(t)

N
+ o(

1

N
) , (5)

where Φ and φ are cumulative and density functions of the standard nor-
mal distribution, respectively. P and Q are polynomials depending on the
population distribution and sampling procedure. Using this he estimates the
error ǫ in α when determining two-tailed confidence interval. To be exact,
Höglund proves that

|α+
N+(α,ǫ) −

α

2
| = ǫ + O(ǫ2), (6)

where

α+
N+(α,ǫ) = 1 − FN+(α,ǫ)(zα/2) (7)

is the probability of the sample mean to be in the upper α
2
-fractile while the

sample size is N+(α, ǫ) = β2
α

ǫ2
and βα = −P (zα/2)φ(zα/2). Practically, this

gives us a lower bound

N >
P 2(zα/2)φ

2(zα/2)

ǫ2
(8)

for the sample sizes when determining the confidence intervals for skewed
distributions. Höglund proves that if the identically and independently dis-
tributed events in a sample are from the continuous distribution of the ran-
dom variable X with unknown variance and E[X8] < ∞, and the error in
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both upper and lower bound of the confidence intervals does not exceed ǫ/2,
the sample size must fulfill [4]

P (t) = γ1
2t2 + 1

6
, (9)

N >
(2z2

α/2 + 1)2φ2(zα/2)

9

γ2
1

ǫ2
. (10)

where γ1 is the skewness (1) of the distribution and φ is density function of
the standard normal distribution. The minimum sample sizes for determining
confidence interval with skewness γ1 = 1 are shown in Table 2. Reasonable
range of use in (10) is α ≥ ǫ since the error should not exceed the magnitude
of the nominal value. Note that the sample size increases relatively to γ2

1 .
In addition to making the interval more credible, the increase in sample size
narrows the confidence interval, i.e. makes it more accurate.

Table 2: The minimum sample sizes with skewness γ1 = 1. The bounds for
other values of γ1 can be calculated by multiplying the numbers by γ2

1 .
ǫ α = 0.1 α = 0.05 α = 0.02 α = 0.01

0.005 1944 1145 442 190
0.01 486 287 111 48
0.02 122 72 28 (12)
0.03 54 32 (13) (6)
0.04 31 18 (7) (3)

Example 1 Lognormal distributions with 0 mean and variance 0.314, 0.5
and 1 have skewnesses 1.00, 1.75 and 6.18. Table 2 gives bounds for the
first case directly. For the other two that are clearly skewed, Table 2 gives
required sample sizes for ǫ = 0.02 and α = 0.1 to be N = 374 and N = 4660.

In Example 1, the skewnesses were exact but when we apply Höglund’s
theorem for real experimental data skewness is always estimated from a sam-
ple. Höglund [4] advices to proceed with the following iterative method. Start
with reasonably large n0 and decide α and ǫ. After this evaluate an estimate
for γ1 by using g1 in (2) with sample of size n0. Then calculate n̂0(α, ǫ)
using (10) and check if n0 ≥ n̂0(α, ǫ). If not, continue by evaluating a more
accurate estimate for γ1 based on the sample of size n1 ≥ n̂0(α, ǫ). Then
calculate n̂1(α, ǫ) and check if n1 ≥ n̂1(α, ǫ). Iterate this until nk ≥ n̂k(α, ǫ)
is fulfilled. Then the sample is sufficiently large.
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3 Combinatorial Algorithms

The idea for this work arose during the computational experiments of algo-
rithms for the maximum transitive subtournament problem [9]. Run times
with the similar random input deviated so much that the commonly used
average of ten run times did not make computational results reproducible.
When examining the distributions of means it turned out that the distribu-
tions were strongly skewed. Two basic backtrack algorithms (A1 and A2)
and the Russian doll search algorithm (A3) for finding the maximum tran-
sitive subtournaments are experimentally evaluated in [9]. Run time data
from that work is shown in Table 3.

In addition, to illustrate the use of statistical pair tests we chose to use
Prim’s and Kruskal’s algorithm for the minimum spanning tree problem [8].
Prim’s algorithm slows down when the number of vertices is increased while
Kruskal’s algorithm is nearly invariant for this change if the number of edges
is kept constant. An increase in the number of edges has a slowing effect on
both. By trial one can quickly find the number of edges and vertices so that
run times are nearly equal. Then randomly generated instances with these
parameters produce an experimental data that is used in section 4.2.

These algorithms are deterministic i.e. in principle, in the same compu-
tational environment they always go through the same computational steps
and use the same run time with the same input. Even so, we cannot generally
say for a random input what the accurate run time will be without testing it
experimentally. The main reason for this is that the properties of the input
that influence the run time are difficult to know in full. The next section
applies statistical methods to experimental data. It appears that inferences
about the performance differences of combinatorial algorithms can be quite
varying if based only on sample means.

4 Results

Experimental data is now analysed with statistical tests which were referred
to in Section 2 and with the technique described in Section 2.1. The outcomes
are from the inputs for which no isomorph rejection was carried out and
the inputs are identical for the compared algorithms. The algorithms were
implemented in C++ and runs made in a 2.0-GHz PC with Linux operating
system. Directed random graphs were generated with standard C function
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rand and undirected random graphs with minstd rand in Boost library [1].
The population is the set of run times for the inputs with the same number
of vertices and edges. The significance level α = 0.05 is used unless noted
otherwise. For a detailed description of the statistical tests used see e.g.
[14, 15].

In Figure 1 the graphical comparison is done for the samples of run times
in Table 4 on page 10. The unit of the X-axis is second and the width of
bars (in Figures 1(a) and 1(b)) is chosen to be one fifth of the estimator of
variance of the population, s/5. To avoid the choosing of width, consider a
sample distribution for sample {x1, x2, ...xN} from population X

XN(x) =











0, x < x∗

1

k/N, x∗

k ≤ x < x∗

k+1

1, x ≥ x∗

N

(11)

where x∗

1 is the smallest event in sample and x∗

2 the second smallest and so
on. By plotting XN(x) one can obtain a more accurate representation of
the cumulative distribution function of the sample. This is demonstrated in
Figures 1(c) and 1(d).

All samples deviate notably from the corresponding normal distribution
and with Algorithm 1 the most. In the following the significance of the
deviation is estimated with Lilliefors or Jarque–Bera tests to check if t-test
can be used.

4.1 Algorithms for finding the maximum transitive sub-

tournaments

To describe the insufficiency of ten runs, let us have 10 consecutive runs sam-
pled by using algorithms for the maximum transitive subtournament prob-
lem. The run times are as stated in Table 3. A1 is one order of magnitude
slower on average and is the quickest only in one case. The shape of the
distribution of its run time seems to be highly skewed. A3 is 4.1 s quicker per
run (or 32%) than A2 on average in these 10 runs. However, sA2 and sA3 are
larger than x̄A2-A3, and thus the significance of the observed difference should
be determined. Lilliefors or Jarque–Bera tests cannot reject the normality of
either of A2 or A3. The P-values are approximately 0.15 or more. Now, the
null hypothesis H0 is that the population mean of run times of A2 and A3
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(d) A1

Figure 1: Graphical comparisons of cumulative distribution functions of run
times of Algorithms 3, 2, and 1 (see section 4.1).

are equal, and we calculate the test value for the Student’s paired t-test:

t =
d̄

sd

√
N ≈ 4.1

6.3

√
10 ≈ 2.06 . (12)

That is lower than the critical test value t0.05,10 = 2.26 for significance level
α = 0.05 with sample size N = 10.

Thus the observed difference is not significant and we do not reject H0.
However, the test value is higher than t0.1,10 = 1.83 which means that the
P-value for our case is between 0.05 and 0.1. With α = 0.1, H0 would have
been rejected.

The ranks of the differences in run times for ten runs are combined
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Table 3: Ten consecutive sample runs for A1, A2 and A3 (inputs had 50
vertices and 1960 arcs). Run times are in seconds. Differences and ranks are
for A2 and A3.

x1 x2 x3 x4 x5 x6

A1 295.9 68.5 114.3 5.0 256.1 121.3
A2 7.59 13.60 16.68 12.40 12.14 10.21
A3 1.92 6.53 18.79 9.85 4.65 8.40
A2-A3 5.66 7.07 -2.10 2.55 7.49 1.81
Rank 7 8 3 4 9 2

x7 x8 x9 x10 x s g1

1401 201.4 143.1 120.3 273 406 2.91
7.54 27.41 16.61 3.88 12.8 6.5 1.10
3.71 8.75 19.29 5.22 8.7 6.0 1.08
3.83 18.67 -2.68 -1.34 4.1 6.3 1.36

6 10 5 1

in Table 3. The Wilcoxon signed rank test thus has test values

w− =
∑

i,sign(di)<0

rank(di) = 3 + 5 + 1 = 9 , (13)

w+ =
n(n + 1)

2
− w− =

10(10 + 1)

2
− 9 = 46 . (14)

Since w = max(w+, w−) = 46 is lower than critical test value w0.05,10 = 47,
we do not reject H0. As w > w0.1,10 the P-value for the test is between 0.05
and 0.1. With α = 0.1, H0 would have been rejected.

The test value for the Sign test, S = |{i : xi < yi}| = 3, is not in the
region of rejection, i.e. max(S, N −S) = 7 < 9 = S0.05,10. Thus the Sign test
does not reject H0.

Since for the difference A2-A3, x̄/s ≈ 0.65, 10 to 20 runs should be
sufficient for the Student’s paired t-test to differentiate A2 and A3 (see Table
1), depending on the significance level α. Taking ten sample runs more, we
get mean, deviation, and skewness for A2 18.7 s, 17.3 s and 2.44 respectively.
For A3 the values are 10.0 s, 7.4 s and 1.46, respectively. The Lilliefors and
Jarque–Bera tests reject the normalities and thus Student’s paired t-test
cannot be safely used. Wilcoxon signed rank test gives test values w− = 26,
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w+ = N(N+1)
2

− w− = 184 and normalized test value

z =
max(w+, w−) − 0.5 − N(N + 1)/4

√

N(N + 1)(2N + 1)/24
≈ 2.93 . (15)

This is greater than z0.05 = 1.96 and H0 is rejected. The test value for the
Sign test is now S = 4 which is in the region of rejection for significance level
α more than or equal to 0.02, i.e. N − S = 16 ≥ Sα,20. Therefore, we accept
the alternative hypothesis that the population mean of run times of A2 and
A3 are not equal. Further, the observed means and w+ > w− and N −S > S
suggest that A3 is quicker than A2 for this population.

The distributions of the run times of algorithms are skewed, see Table
3. By using n0 = 10 we have estimates for skewnesses (2) g1,A1 = 2.91,
g1,A2 = 1.10 and g1,A3 = 1.08. Testing the sufficiency of the sample size for
confidence interval with ǫ = 0.03 and α = 0.05 as proposed in section 2.1 gives
N > 32g2

1 (see Table 2). Thus we need sample sizes of at least 271, 39 and
38 for A1, A2, and A3, respectively. Let us next choose n1,A2 = n1,A3 = 100,
then we get new estimates for skewnesses g1,A2 = 1.91 and g1,A3 = 2.24
which lead to sample sizes of at least 117 and 161. We choose n2,A2 = 200
and n2,A3 = 250, then the estimates are g1,A2 = 1.95 and g1,A3 = 2.45. These
give sample sizes of at least 121 and 192 which means n2,A2 and n2,A3 are
large enough. With A1 the iteration did not stop even we had a sample size
of 8000 (g1,A1 = 22.9). The required sample size becomes impractically large
because of the high skewness.

For A2 and A3, 95% confidence intervals of means are calculated by using
(4), resulting in CIA2 = 16.9±1.8 s and CIA3 = 10.0±1.1 s. Table 4 combines
the descriptive statistics of the run times of the three algorithms. For the
confidence intervals, the error in the upper and lower tail probabilities is at
most 0.015, i.e. the propability for the real mean to be outside the region is
less than α/2 + ǫ/2 = 0.04.

Table 4: Descriptive statistics of A1, A2, and A3.
Sample size Mean (s) Deviation (s) Skewness CI (s)

A1 8000 555 2600 22.9 -
A2 200 16.9 13.2 1.95 16.9 ± 1.8
A3 250 10.0 8.8 2.45 10.0 ± 1.1
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4.2 Prim versus Kruskal

Consider Prim’s and Kruskal’s algorithms as described in Section 3 with
parameters 200000 and 495000. Let us have 10 consecutive paired runs for
both algorithms to compare the mean run times of algorithms. The times are
as stated in Table 5. The normality test does not reject the normality of these
samples. The resulting P-values for Prim and Kruskal from Jarque–Bera are
0.51, 0.57 and from Lilliefors >0.2, 0.17.

Kruskal is 3.0 ms quicker per run (or 0.7%) on average in these 10 runs.
However, sPrim is larger than x̄Difference and the Student’s paired t-test gives
test value t ≈ 3.0

13.1

√
10 ≈ 0.72. The test value is below critical value t0.05; 10 =

2.26 and the null hypothesis H0 that the population mean of run times of
Prim and Kruskal are equal is not rejected.

When running the Wilcoxon test it is important to notice that for one of
the pairs the run times are equal, and thus we have only 9 runs to test. The
test value for Wilcoxon signed rank test is w = max(w+, w−) = 31.5 which
is below critical value w0.05; 9 = 40 and therefore the observed difference is
not significant. The Sign test has test value S = 2 which does not reject H0.

Table 5: Ten consecutive sample runs for Prim and Kruskal (inputs had
200000 vertices and 495000 edges). Run times are in milliseconds.

x1 x2 x3 x4 x5 x6

Prim 424 415 388 421 420 430
Kruskal 410 412 415 412 413 411
Difference 14 3 -27 9 7 19
Rank 7 1.5 9 4,5 3 8

x7 x8 x9 x10 x s g1

402 415 422 410 414.7 12.2 -1.23
411 412 411 410 411.7 1.5 1.14

-9 3 11 0 3.0 13.1 -1.39
4,5 1,5 6 -

Since for the Differences |x̄/s| ≈ 0.11 is small we increase our sample size
to N = 340 which according to Table 1 should be sufficient for verifying the
statistically significant difference of means. For descriptive statistics of run
times with the new sample size, see Table 6. When looking at the sample
means in Table 5, Kruskal seems to be quicker than Prim. Nevertheless,
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the larger data indicates the opposite. There is always such possibility of
drawing wrong conclusions when they are based on the sample. However,
with statistical tests we are more aware of the probabilities of errors.

Table 6: Descriptive statistics of Prim and Kruskal with N = 340.
Mean (ms) Deviation (ms) Skewness CI (ms)

Prim 409.8 13.9 -0.38 409.8 ± 1.5
Kruskal 414.1 7.1 3.12 414.1 ± 0.8
Difference -4.3 14.5 -0.67

The run times of Prim and Kruskal are skewed (see Table 6) and thus
potentially not normal. The resulting P-values for Prim and Kruskal from
Jarque–Bera are 0.001 and <0.001 and from Lilliefors <0.01. Hence, Stu-
dent’s paired t-test is not used for this sample. With sample size N = 326
(and 14 pairs equal) the test values for Wilcoxon signed rank test are w+ =
19181.5 and w− = 34094.5. The normalized test value is

z =
max(w+, w−) − 0.5 − N(N + 1)/4

√

N(N + 1)(2N + 1)/24
≈ 4.37 , (16)

which strongly indicates that the population mean of run times of Prim and
Kruskal are not equal. The P-value for the test is less than 0.01. The test
value for the Sign test is S = 183. Using the normalized test value, we have

z =
max(S, N − S) − 0.5 − N/2

√

N/4
= 2.16 . (17)

The Sign test also rejects H0 with P-value between 0.02 and 0.05. The
observed means and w− > w+ and S > N − S support our conclusion that
Prim is quicker than Kruskal for this population.

The estimates of the skewnesses (2) of run time distributions with sample
size N = 340 are g1,Prim = −0.38 and g1,Kruskal = 3.12. The proposed sample
size for confidence interval with ǫ = 0.03 and α = 0.05 is N > 32g2

1 (see
Table 2). The estimates give sample sizes of at least 5 and 310 which means
that sample is sufficiently large for estimating the confidence intervals. The
95%-confidence intervals for Kruskal and Prim are combined in Table 6.

12



5 Conclusions

In this paper we showed how statistical techniques help us make inferences
concerning the performance differences of combinatorial algorithms and how
they also bring reliability to computational experiments. One should be able
to adapt the presented methods easily to one’s own needs. A natural future
study on this topic would be to examine the possibilities to reduce the bounds
for sample size while still maintaining the same reliability.
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[4] T. Höglund, Bounds for the Sample Size to Justify Normal Approxima-
tion of the Confidence Level, Ann. Inst. Statist. Math, Vol. 43, 565–578
(1991)

[5] J. L. Hodges, Jr, E. L. Lehmann, The Efficiency of Some Nonparametric
Competitors of the t-Test, The Annals of Mathematical Statistics, Vol.
27, 324–335 (1956)

[6] C. M. Jarque and A. K. Bera, Efficient Tests for Normality, Homoscedas-
ticity and Serial Independence of Regression Residuals, Econ. Lett.,
Vol. 6, 255–259 (1980).

[7] D. N. Joanes and C. A. Gill, Comparing measures of sample skewness
and kurtosis, The Statistician, Vol. 47, 183–189 (1998).

[8] D. Jungnickel, Graphs, Networks and Algorithms, 2nd ed., Springer,
Berlin, 2005.

13
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