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This dissertation discusses exhaustive search algorithms for discrete optimization problems. The search space
of the problems is pruned by determining different lower or upper bounds for the solution of the problem. In
some cases, redundant candidates can be pruned on the basis of structural symmetry. One effective approach
to prune the search space is Russian doll search, which is based on the idea of dividing a problem into smaller
subproblems that are subsequently solved in an ascending order. The solutions to the previous subproblems
are then used to further prune, in order to solve the next subproblem. The final subproblem is, then, the original
problem.

In this work, Russian doll search is applied to some optimization problems in digraphs and hypergraphs. The
problems considered are the ’Steiner triple covering problem’, the ’maximum transitive subtournament prob-
lem’, and the ’best barbeque problem’. The Steiner triple covering problem is a hitting set problem that cor-
responds to a search for a vertex cover from a hypergraph. A search for a transitive subtournament from a
digraph can be translated to a search for an independent set from a hypergraph. Moreover, the best barbeque
problem can be presented as a problem on hypergraphs.

The performance of the implemented algorithms was experimentally evaluated. For example, the Russian
doll search algorithm for the Steiner triple covering problem A135 has solved an instance approximately 100
times faster than the leading commercial software for integer programming. In the best barbeque problem
context, the relevant parameters of test instances comprised the complete range of relevant parameters for
real biological instances. Algorithms designed to find the maximum (order of) transitive subtournaments have
succeeded in all but eight directed graphs, of up to five vertices, determining the lower bounds for Sperner
capacities that meet the upper bounds, obtained by other methods. In addition, a new record, a tournament of
order 14, in which tournament winners are disjoint by using the definitions developed by Banks and Slater, is
discovered with the algorithms for finding the maximum (order of) transitive subtournaments.
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Väitöskirja käsittelee diskreettien optimointiongelmien täydellisiä hakualgoritmejä. Ongelmien hakuavaruutta
pyritään karsimaan erilaisin ongelman ratkaisulle määritettävin ala- tai ylärajoin. Joissain tapauksissa voidaan
matemaattisen rakenteen symmetrioiden perusteella karsia redundantit ratkaisuehdokkaat. Yksi tehokkaaksi
osoittaunut karsintamenetelmä on niin kutsuttu maatuskanukkealgoritmi, joka perustuu ideaan jakaa ongelma
pienempiin osaongelmiin joita ratkotaan kasvavassa järjestyksessä. Tietoa edellisten osaongelmien ratkaisu-
ista käytetään aina hyödyksi seuraavan ratkaisemisessa. Lopulta ratkaistaan alkuperäinen ongelma hyödyn-
täen tietoa kaikista aiemmista osa-ongelmista.

Tässä väitöskirjatyössä maatuskanukkealgoritmiä hyödynnetään eräiden suunnattujen graafien ja hyper-
graafien optimointiongelmien ratkaisemisessa. Käsiteltävät ongelmat ovat Steinerin kolmikkosysteemin peitto-
ongelma, transitiivisen osaturnauksen etsiminen ja best barbeque -ongelma. Steinerin kolmikkosysteemin
peitto-ongelma on osumisjoukko-ongelma, joka vastaa solmupeiton etsimistä hypergraafista. Transitiivisen
osaturnauksen etsiminen suunnatusta graafista voidaan muuntaa riippumattoman joukon etsinnäksi hyper-
graafista. Best barbeque -ongelma on myös esitettävissä hypergraafiongelmana.

Implementoitujen algoritmien suorituskyky arvioitiin kokeellisesti. Esimerkiksi, Steinerin kolmikkosysteemin
peitto-ongelman A135 ratkaisemiseen tehty maatuskanukkealgoritmi suoriutuu tehtävästä noin sadasosa
ajassa siitä mitä saman ongelman ratkaisemiseen kuluu johtavaa kaupallista kokonaislukuohjelmointiohjelmis-
toa käyttäen. Best barbeque -ongelman ratkaisemiseen tehdyn maatuskanukkealgoritmin nopeus on riittävä
aitojen biologisten instanssien ratkaisemiseen. Transitiivisten osaturnausten etsintään tehdyillä algoritmeillä
onnistutaan määrittämään Spernerin kapasiteetin alarajat, jotka ovat yhtä suuria muulla tavoin määritettyjen
ylärajojen kanssa, kaikille suunnatuille viisisolmuisille graafeille kahdeksaa tapausta lukuunottamatta. Lisäksi
transitiivisten osaturnausten etsintään tehdyillä algoritmeillä löydetään uusi ennätys, kokoa 14 oleva turnaus,
jolle turnausvoittajat Slaterin ja Banksin määritelmiä käyttäen ovat erilliset.
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whose contribution was essential to my dissertation. I would also like to
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Chapter 1

Introduction

Discrete optimization problems arise from a wide variety of real-life situ-
ations. An everyday example of a challenging combinatorial optimization
problem is the airline crew scheduling problem [64]. Optimal solutions
for instances of the crew scheduling problem can produce significant eco-
nomical savings for airline companies. Another good example is related to
electronic circuits. By solving an instance of the minimum feedback vertex
set problem [5], the number of components in hardware can be reduced to
its minimum so that the testability of the electronic circuit is ensured [40].

Any instance of a finite combinatorial optimization problem can be solved
in finite time and space. However, the required time can be impractically
long or the required space can be unfeasibly large; for this reason, there will
always be unsolved instances of finite combinatorial optimization problems.
Complexity theory classifies combinatorial problems in terms of complex-
ity classes [54]. Problems in the same complexity class share a common
property; namely, that they can all be solved within the same bound of a
required resource.

A desirable property for a practical algorithm is polynomial time complex-
ity. Problems that can be solved in polynomial time belong to a complexity
class called P. Nevertheless, for several discrete optimization problems there
is still no known polynomial time algorithm. Moreover, it is widely believed
that, for some of these problems, such algorithms do not even exist. Prob-
lems that require a “yes” or “no” answer, wherein the “yes” answer can be
verified in polynomial time, belong to a complexity class called NP. If a
problem in class NP is at least as hard as any other problem in class NP,
then the problem is NP-complete [21]. NP-completeness is a valuable con-
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cept in algorithm design. If a problem is known to be NP-complete, then
the efforts to develop exhaustive algorithms can be directed towards design-
ing exponential algorithms that are practical for small or special instances.
For some applications near optimal solutions to NP-complete problems may
be adequate and then the use of approximation algorithms is the better
choice than the use of exhaustive algorithms.

Graphs such as undirected graphs, digraphs, and hypergraphs provide for-
malisms in which many discrete optimization problems can be presented.
These formalisms form a general framework in which the application specific
terminology is absent. Furthermore, connections between the optimization
problems in graphs can be observed when the problems are presented within
the same framework.

An optimal solution for an instance of a discrete optimization problem can
be found by using exhaustive algorithms. Backtracking [24, 26, 34] is a basic
method for solving a discrete optimization problem. Simple backtracking
searches through an entire search space and is guaranteed to find an optimal
solution. More advanced algorithms improve backtracking by using pruning
to reduce the search space. Typically, pruning is based on lower or upper
bounds that can be pre-calculated or evaluated during the search. Moreover,
the symmetry of a discrete structure may allow pruning, which can then
significantly diminish the required computational time.

Analysis of algorithms is an essential part of the algorithm research. Tra-
ditional algorithm analysis has produced asymptotic time bounds for CPU
performance. In this dissertation, algorithms are evaluated by computa-
tional experiments that aim at comparability and reproducibility [10]. The
performance of polynomial time algorithms can often be evaluated with
mathematical methods in order to choose a suitable algorithm for a task,
but similar comparison between exponential time algorithms is seldom ad-
equate to make such an inference.

Here, algorithms for discrete optimization problems are studied. In Chap-
ter 2, the concepts and terminology related to combinatorial optimization
in graphs are introduced, and the exact definitions for the problems ex-
amined in [I,II,IV] are given. In Chapter 3 some exhaustive algorithms
related to the algorithms used in [I,II,IV,V,VI] are presented. The anal-
ysis of computational experiments is discussed in [III] and also dealt with
in Chapter 3. The dissertation is concluded in Chapter 4.
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Chapter 2

Some problems in digraphs
and hypergraphs

This chapter offers some definitions used in graph theory, as well as defi-
nitions of certain discrete optimization problems. The definitions used in
graph theory are limited to those that appear in the descriptions of the
discrete optimization problems in this dissertation.

2.1 Graphs

Many combinatorial optimization problems can be presented in terms of
graphs. The following three subsections gather basic definitions of undi-
rected graphs, digraphs, and hypergraphs.

2.1.1 Undirected graphs

The notation and definitions used in this section follow Diestel’s text-
book [17]. An introductory level text to graph theory is [65]. An undirected
graph G = (V,E) consists of a set of vertices V and a set of edges E, where

E ⊆ {{a, b} : a 6= b and a, b ∈ V }.

The notations V (G) and E(G) refer to the vertices of G and the edges
of G, respectively. The complement graph Ḡ of G = (V,E) is the graph,



4 Some problems in digraphs and hypergraphs

the vertices of which are V and edges

{{a, b} : a 6= b and a, b ∈ V }\E.

A graph G′ = (V ′, E ′) is a subgraph of G = (V,E), if

V ′ ⊆ V and E ′ ⊆ E,

where each edge {a, b} ∈ E ′ has its ends a, b ∈ V ′. A subgraph G′ = (V ′, E ′)
of G = (V,E) is an induced subgraph of G if

E ′ = {{x, y} ∈ E : x, y ∈ V ′}.

A vertex x ∈ V (G) is incident with an edge e ∈ E(G), if e = {x, y}.
Similarly, a vertex y ∈ V (G) is incident with an edge e ∈ E(G), if e = {x, y}.
Vertices x, y ∈ V (G) are adjacent, if {x, y} ∈ E(G). An independent set is a
set of vertices that are pairwise non-adjacent. A vertex cover of G = (V,E)
is a set U ⊆ V such that every edge of E is incident with a vertex in U .
An edge cover of G = (V,E) is a set S ⊆ E such that every vertex of V
is incident with an edge in S. A complete graph is an undirected graph in
which all vertices are pairwise adjacent. A clique is a set of vertices that
are pairwise adjacent. The clique number ω(G) is the number of vertices
in a maximum clique in G. A clique in an undirected graph G = (V,E) is
an independent set in the complement graph Ḡ, in which the complement
of the independent set with respect to V is a vertex cover of Ḡ.

A path of length k in G = (V,E) is a sequence of distinct vertices P =
x0x1 . . . xk so that there are edges

{{x0, x1}, {x1, x2}, . . . , {xk−1, xk}} ∈ E(G).

The vertices x0, xk ∈ V (G) are said to be linked by the path P . If there is a
path P = x0x1 . . . xk inG = (V,E) with k ≥ 2 and an edge {xk, x0} ∈ E(G),
then the sequence of vertices x0x1 . . . xkx0 is a cycle. If there are no cycles
in G = (V,E), then G is acyclic. An undirected graph G = (V,E) is
connected if all the pairs of distinct vertices xi, xj ∈ V (G) are linked by
a path. A set S ⊂ V is a separating vertex set of G = (V,E) if the
induced subgraph G(V \S) is disconnected. A component of G = (V,E) is
a maximal connected subgraph of G. A tree T is an undirected graph that
is both acyclic and connected. Let the notation xTy denote the unique path
in a tree T between vertices x and y. By defining

x ≤ y if x ∈ rTy
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one obtains a partial ordering on V (T ). The least element of this partial
order, r, is the root of the tree T . If the root of the tree is fixed, then
the tree is a rooted tree. A binary tree is a tree T in which every vertex
v ∈ V (T ) has zero, one, or two neighbour vertices v′, {v, v′} ∈ E(T ), for
which v ≤ v′.

2.1.2 Digraphs

The notation and definitions used in this section follow those stated in Bang-
Jensen’s and Gutin’s textbook [5]. A directed graph or digraph D = (V,A)
consists of a set of vertices V and a set of ordered pairs

A ⊆ V × V

called arcs. The notations V (D) and A(D) refers to the vertices of D and
the arcs of D, respectively. A complement digraph D̄ of D is a digraph with
vertices V (D) and with arcs

(V (D)× V (D))\A(D).

A digraph F = (V ′, A′) is a subdigraph of D = (V,A), if

V ′ ⊆ V and A′ ⊆ A,

where each arc xy ∈ A′ has a tail x ∈ V ′ and a head y ∈ V ′. A subdigraph
is induced if

A(F ) = {xy ∈ A(D) : x, y ∈ V (F )}.
An orientation of an undirected graph G is a digraph obtained by replacing
each edge {x, y} ∈ E(G) by either an arc xy or an arc yx.

A tournament is a digraph that is an orientation of a complete graph. A
tournament is transitive if the occurrence of the arcs xy and yz implies
the occurrence of the arc xz. A subtournament is a subdigraph that is a
tournament. A cycle is a sequence x0x1x2 . . . xk of distinct vertices xi ∈
V (D) so that there are arcs

{x0x1, x1x2, . . . , xk−1xk, xkx0} ∈ A(D)

where k ≥ 2. An acyclic digraph has no cycles. A feedback vertex set in a
digraph D is a set of vertices S so that the graph induced by V (D)\S is
acyclic. The set of vertices S of a transitive subtournament in a digraph
D is an acyclic induced subdigraph in the complement digraph D̄, and vice
versa [II, Theorem 1]. Furthermore, the set V (D)\S is a feedback vertex
set in D̄.
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2.1.3 Hypergraphs

Hypergraphs are generalizations of graphs. Some definitions on hypergraphs
are given here and more can be found in [7]. Formally, a hypergraph is a
collection of subsets

H = {E1, E2, . . . , Em},

where each hyperedge Ei is a subset of a finite set of vertices

X = {x1, x2, . . . , xn}.

The complement of a hypergraph H with vertex set X is a hypergraph
H̄ = P(X)\H, where P(X) denotes the power set of X, the set of all the
subsets of X. The dual of a hypergraph H is a hypergraph,

H∗ = {X1, X2, . . . , Xn}

the set of vertices of which E = {e1, e2, . . . , em} correspond to the hyper-
edges of H. The hyperedges of H∗ are defined by

Xi = {ej : xi ∈ Ej ∈ H}.

Concepts defined in graphs can be generalized to hypergraphs. An indepen-
dent set S in a hypergraph H is a subset of X, so that for every hyperedge
Ei of H it holds that Ei * S. A vertex cover for a hypergraph H is a
subset of X that intersects every hyperedge Ei ∈ H. An edge cover for a
hypergraph H is a subset of hyperedges of H, the union of which equals X.
A vertex cover of size t in H corresponds to an edge cover of size t in H∗.

2.2 Computational complexity

Computational complexity theory [54] enables us to determine which com-
putational problems are hard to solve by computers. Computers solve com-
putational problems with algorithms. Therefore, formal treatment of com-
plexity theory requires a formalized notion of an algorithm, which in turn
requires a fixed model of computation (for example a program for a deter-
ministic one-tape Turing machine which recognizes languages) [21]. This
section presents some complexity theoretic definitions informally in terms
of problems and algorithms (instead of a formal approach in terms of lan-
guages and Turing machines).
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A large part of complexity theory applies only to decision problems. These
problems have two possible solutions, the answer is either “yes” or “no”. A
decision problem Π consists of a set of instances DΠ (finite objects such as
integers, sets, sequences, graphs, digaphs, hypergraphs, etc.) and a subset
YΠ ⊆ DΠ which denotes the instances for which the answer is “yes” [21].
A complexity class is a set of problems which share the property that they
can all be solved within the same bound of a required resource, which is
in most cases time or space. For any problem in class P there exists a
polynomial time algorithm. For any instance of the problem in class NP
for which the answer is “yes”, the following holds. There exists a proof that
the answer for the instance is “yes” which can be verified by a polynomial
time algorithm. The question of equality (or nonequality) of the classes
P and NP is one of the most important in computer science. In order to
examine relationships between complexity classes P and NP the definition
of a polynomial transformation [21] is given in Definition 1.

Definition 1 A polynomial transformation from a decision problem Π1 to
a decision problem Π2 is a function f : DΠ1 → DΠ2 that is computable
by a polynomial time algorithm and the following is true for all instances
x ∈ DΠ1 : x ∈ YΠ1 iff f(x) ∈ YΠ2 .

Decision problems are ordered in respect to their difficulty by polynomial
transformation, since polynomial transformation is transitive. That is, if
there are decision problems Π1, Π2, Π3, and a polynomial transformation
from Π1 to Π2 and a polynomial transformation from Π2 to Π3, then there
is also a polynomial transformation from Π1 to Π3. The maximal elements
of this order are particularly interesting. Note that Definition 1 gives just
one possible way to define what it means that a problem is at least as hard
as another one. In general, a polynomial transformation is an example of
a reduction between problems, other examples can be found in [54]. By
applying Definition 1 to class NP and by using a polynomial transforma-
tion we obtain a definition of NP-complete problems. Such problems are
decision versions of the problems discussed in this dissertation.

Definition 2 Let C be a complexity class, and let P be a problem in C.
The problem P is C-complete if any problem in C can be reduced to P .

Decision problems are somewhat limited to describing practical combina-
torial problems including the optimization problems studied in this disser-
tation. These problems can be classified to be search problems. A search
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problem Π consists of a set of instances DΠ and for each instance x ∈ DΠ

there is a set of solutions SΠ(x) (note that a decision problem can be pre-
sented as a search problem by setting SΠ(x) = {“yes”} for each x ∈ YΠ and
SΠ(x) = ∅ for each x /∈ YΠ ). An algorithm solves a search problem Π for a
given input x ∈ DΠ if it determines the lack of solution when SΠ(x) = ∅ and
otherwise it returns a solution s ∈ SΠ(x). A more general type of reduc-
tion, a polynomial time Turing reduction [21], is presented in Definition 3
for reductions between search problems.

Definition 3 A Turing reduction from a search problem Π1 to a search
problem Π2 is an algorithm A that solves instances of Π1 by using a hy-
pothetical subroutine S for solving instances of Π2 so that, if S were a
polynomial time algorithm for solving instances of Π2, then A would be a
polynomial time algorithm for solving instances of Π1.

Applying Definition 4 to class NP and by using a Turing reduction we
obtain a definition of NP-hard problems. Most of the combinatorial opti-
mization problems discussed in this dissertation are of this type.

Definition 4 Let C be a complexity class, and let P be a computational
problem. The problem P is C-hard if a C-complete problem reducible to P
exists.

According to Definition 4, if there is a Turing reduction from an NP-
complete problem to a combinatorial optimization problem, then this com-
binatorial optimization problem is NP-hard [21]. In general, optimization
versions of NP-complete decision problems are NP-hard [39]. The prob-
lems studied in this dissertation are either instances of optimization versions
of NP-complete problems or instances of NP-hard problems.

2.3 The set covering problem

The decision version of the set covering problem, for a given set S and
a collection C of subsets of S, asks whether there is a collection of subsets
X ⊆ C, the union of which equals S and which has cardinality |X | ≤ k. This
problem is NP-complete [21]. The optimization version of the set covering
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problem is to find a collection of subsets X ⊆ C, for which
⋃
X = S and

|X | is the minimum.

In the weighted set covering problem, a positive real valued weight is given
for each subset in the collection C. In addition, the condition for |X | in
the decision version is replaced by the condition for the total weight of X ,
w(X ) ≤ wk. The optimization version of the weighted set covering problem
is to find a collection of subsets X ⊆ C, for which

⋃
X = S and w(X ) is

the minimum. An important application of the set covering problem is crew
scheduling in airline [64], railway [13], and mass-transit companies [14]. The
optimization version of the weighted set covering problem can be formulated
as an integer linear program.

Problem 1 The optimization version of the set covering problem

minimize c>x

subject to Mx ≥ e,

where c is a constant n × 1 vector, x is an n × 1 (0, 1)-vector, M is an
m× n (0, 1)-matrix, and e is an m× 1 vector of 1s.

If Problem 1 is unweighted, then the constants ci are equal to 1, and if
it is weighted, then the constants ci are greater than 0. The optimization
version of the unweighted set covering problem is considered here.

An equivalent to the set covering problem is the hitting set problem. For a
set S and a collection F of subsets of S, a subset B ⊆ S is a hitting set if B
intersects all members of F . The decision version of the hitting set problem,
given S and F , asks whether there is a hitting set B which has cardinality
|B| ≤ k. The optimization version of the hitting set problem is to find a
hitting set with minimum cardinality.

An instance of the hitting set problem can be translated to a hypergraph
by taking the set S as the set of vertices and the collection F as the set of
hyperedges. A hitting set in the original instance is a vertex cover in the
constructed hypergraph. In the dual of the hypergraph, the hitting set is an
edge cover, which, in turn, translates back to the instance of the set cover
problem.

An instance of the set covering problem in which the (0, 1)-matrix M is an
incidence matrix of a certain Steiner triple system, which is defined in [IV]
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on page 2. is called a Steiner triple covering problem. A Steiner triple
covering problem is considered in many papers on algorithms, including
[20, 44, 50, 53]. Usually, the Steiner triple covering problem is presented as
a hitting set problem. An instance of the Steiner triple covering problem is
solved in [IV] in the framework of the hitting set problem.

2.4 The maximum transitive

subtournament problem

The decision version of the transitive subtournament problem for a given di-
graph asks whether there is a subdigraph of order k that is a transitive tour-
nament. The corresponding feedback vertex set problem is NP-complete
[5, 60]. The optimization version of the transitive subtournament problem
for a given digraph is to find a subdigraph that is a transitive tournament
with the maximum number of vertices. The maximum transitive subtour-
nament problem is formulated as follows.

Problem 2 The maximum transitive subtournament problem
Given a digraph D = (V,A), find a maximum transitive subdigraph of D.

As was stated in Section 2.1.2, searching for a maximum transitive sub-
tournament in digraph D is equivalent to searching for a maximum induced
acyclic subdigraph in D̄. An instance of the maximum induced acyclic sub-
digraph problem can be expressed in terms of a hypergraph. The set of
vertices of the hypergraph is V (D̄) and the vertices of each cycle in digraph
D̄ form one hyperedge. A maximum independent set in this hypergraph
corresponds to a maximum induced acyclic subdigraph in D̄. The comple-
ment with respect to V (D̄) of a maximum independent set is a minimum
vertex covering. As we recall from Section 2.3, a hitting set that is a so-
lution to an instance of the hitting set problem is a vertex cover in the
hypergraph corresponding to that instance. Therefore, the maximum tran-
sitive subtournament problem can be reduced to the minimum hitting set
problem.

An approach commonly used in the pertinent literature to solve instances
of the maximum transitive subtournament problem in a digraph D is that
of solving the minimum feedback vertex set problem in the complement
digraph D̄ [8, 43, 51, 59]. If there are a small number of cycles in D, then
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the size of the maximum transitive subtournament in D and the size of
the maximum induced acyclic subdigraph in D̄ are expected to be large,
with the size of the minimum feedback vertex set in D̄ being small. Due to
the small size of the solution, the problem is often computationally faster
to solve by finding the minimum feedback vertex set in D̄. However, for
some applications, it is preferable to search for transitive subtournaments
or induced acyclic subdigraphs. This is the case at least in the first two
applications described in following section.

2.4.1 Applications for transitive subtournaments

Applications for transitive subtournaments include determining the Sperner
capacity, tournament solutions, and testing electronic circuits. These three
applications are described in this section. Testing electronic circuits is ex-
pressed here as an application of a minimum feedback vertex set.

Sperner capacity is a generalization of Shannon capacity to digraphs. In
order to define the concepts of Shannon and Sperner capacity, some auxil-
iary definitions are needed. Consider an undirected graph G that has one
vertex for each input symbol of a discrete communication channel and an
edge between two vertices if and only if the two symbols cannot lead to
the same output symbol (due to channel errors). The graph G is known
as the characteristic graph of the channel. The clique number ω(G) of the
characteristic graph G = (V,E) gives the largest set of symbols that can
be used for transmitting one symbol over the channel error-free, and the
amount of information transmitted is log2 ω(G) bits per transmission.

For undirected graphs G1 and G2, the co-normal product G1 · G2 has the
set of vertices

V (G1 ·G2) = V (G1)× V (G2)

and the set of arcs

E(G1 ·G2) = {{{x1, y1}, {x2, y2}} : {x1, x2} ∈ E(G1) or {y1, y2} ∈ E(G2)}.

For an undirected graph G = (V,E) the (co-normal) power Gn has the
vertex set V n = {(u1, u2, . . . , un) : ui ∈ V (G)}, and (u1, u2, . . . , un) and
(v1, v2, . . . , vn) are connected by an edge if and only if there is an i such
that {ui, vi} ∈ E(G). If information is transmitted in blocks of size n, then
the information rate is

log2 ω(Gn)

n
= log2 ω(Gn)1/n
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bits per transmission, whereas the Shannon’s zero-error capacity [58] of the
channel is

sup
n≥1

log2 ω(Gn)1/n

bits per transmission. When this problem is studied purely in the context
of graphs, one ignores the logarithm and defines the zero-error capacity of
G as

Θ(G) := sup
n≥1

ω(Gn)1/n.

For digraphs D1 and D2, the co-normal product D1 · D2 has the set of
vertices

V (D1 ·D2) = V (D1)× V (D2)

and the set of arcs

A(D1 ·D2) = {(x1y1, x2y2) : x1x2 ∈ A(D1) or y1y2 ∈ A(D2)}.

For a digraph D = (V,A), the (co-normal) power graph Dn has the ver-
tex set V n = {(u1, u2, . . . , un) : ui ∈ V (D)}, and there is an arc from
(u1, u2, . . . , un) to (v1, v2, . . . , vn) if and only if there is an i such that
uivi ∈ A(D). The (non-logarithmic) Sperner capacity [22] of D is then

σ(D) := sup
n≥1

ωt(D
n)1/n,

where ωt(D) is the size of the maximum transitive subtournament.

The theoretical aspects of Sperner capacity are studied in [37, 56]. Sperner
capacity can be used to determine the zero-error capacity of a compound
channel [49] and has been applied in extremal set theory [23]. In this disser-
tation Sperner capacity was determined for all but eight digraphs up to five
vertices in [V] by using algorithms from [II]. Next, an application related
to an election is considered.

Let V be the set of candidates and for each pair x, y of distinct candidates
let mxy be the number of voters who prefer x to y. If mxy > myx, then x
is preferred to y by the majority of voters. The result of this method can
be presented as a digraph D = (V,A), where V is the set of candidates,
and there is an arc xy ∈ A whenever mxy > myx. If the resulting digraph
D = (X,A) is a tournament, it is called a majority tournament [31].

Methods for choosing the winner of a tournament are called tournament
solutions [41]. Simple majority is one way of choosing the winner of elec-
tions and has been in use for centuries [18]. Sophisticated ways of choosing
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the winners of a tournament can be found in [15, 41]. Some tournament
solutions are: a Copeland winner of a tournament is a vertex x with a max-
imum out-degree, a Banks winner of a tournament is the first vertex of a
maximal (with respect to inclusion) transitive subtournament, and a Slater
winner of a tournament is the first vertex of a Slater order, which is a tran-
sitive tournament obtained by reversing the minimum number of arcs in the
tournament. The Copeland set, the Banks set, and the Slater set are sets
of all Copeland, Banks, and Slater winners of a tournament, respectively.
Determining the Slater set and the Banks set are both NP-hard problems
[3, 9, 31, 66]. Slater winners and Banks winners are examined in [VI].

Lastly, an application for transitive subtournaments, which is expressed as
an application of a minimum feedback vertex set, is discussed. The testing
of electronic circuits [5, 42] is an important application of the minimum
feedback vertex set. An electronic circuit can be modeled by a digraph
D = (V,A) so that the components of the circuit — primary inputs, primary
outputs, and outputs of the gates and flip flops — correspond to the set of
vertices V , and the set of arcs A consists of the arcs vw, for which v is an
input of a component with an output w. A storage element graph D′ =
(V ′, A′) [40] is a subdigraph of D, which is defined as follows. Terminals
and outputs of flip flops correspond to the vertices V ′ ⊆ V and there is an
arc from a vertex v ∈ V ′ to w ∈ V ′ if there is a path from v to w in the
digraph D. By solving the feedback vertex set problem in the digraph D′,
the minimum number of flip flops that must be directly accessible in order
to ensure the testability of the electronic circuit is obtained [40].

2.5 The best barbeque problem

The best barbeque problem is a combinatorial optimization problem that
asks for the largest intersection of n sets that are taken one from each of
n given collections of subsets of a universal set {1, 2, . . . ,m}. The collec-
tions of subsets fully specify an instance of the combinatorial best barbeque
problem. This combinatorial optimization problem arises in the context of
discovering so-called cis-regulatory modules in regulatory DNA sequences,
and the decision version of the problem is NP-complete [48]. The name
of the problem originates from an analogy with a barbeque party with n
guests. For each guest there is a plate with m different barbeque ingredients
arranged randomly in multiple layers. Then each guest prepares one skewer
for themselves by stabbing just once into their plate. One possible outcome



14 Some problems in digraphs and hypergraphs

is that the set of ingredients common to all is maximized.

Problem 3 Combinatorial best barbeque problem. For positive inte-
gers m and n, let Ci, 1 ≤ i ≤ n be collections of subsets of {1, 2, . . . ,m} and
denote the subsets in a collection Ci by Ci,j, where 1 ≤ j ≤ |Ci|. Determine
the maximum value of ∣∣∣∣∣

n⋂
i=1

Ci,ν(i)

∣∣∣∣∣ ,
where ν : {1, . . . , n} → Z+ with ν(i) ≤ |Ci| and optimization is done over
all such ν.

A combinatorial best barbeque problem with a support parameter 1 ≤ σ ≤ n
is to find the maximum value of∣∣∣∣∣

σ⋂
i=1

Ct(i),ν(t(i))

∣∣∣∣∣ ,
where t is a bijection t : {1, . . . , n} → {1, . . . , n}, and optimization is done
over all t and ν.

A problem related to the combinatorial best barbeque problem is frequent
itemset mining [2, 48]. Let I = {i1, i2, . . . , im} be a set of items. A sub-
set of the set of items X ⊆ I is called an itemset. A pair T = (id, I)
is a transaction over I where id is an identifier of the transaction and I
an itemset. The set of transactions is a transaction database D over I.
A transaction T = (id, I) supports an itemset X if the itemset X ⊆ I.
An itemset X is frequent if the number of transactions supp(X,D) in the
database D that support the itemset X is greater or equal to the mini-
mal support threshold σabs. Given a set of items I, a transaction database
D over I, and the minimal support threshold σabs, the problem of fre-
quent itemset mining [25] is to find the collection of frequent itemsets
F(D, σabs) = {X ⊆ I : supp(X,D) ≥ σabs}. Problem 4 corresponds to
the best barbeque problem with the support parameter σ and |Ci| = 1 for
all 1 ≤ i ≤ n.

Problem 4 Frequent itemset with maximum cardinality. Let I be
a set of items, D be a transaction database over I, and σabs be the minimal
support threshold. Determine the maximum value of |X| so that a frequent
itemset X ⊆ I and supp(X,D) ≥ σabs.
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In frequent itemset mining, itemsets are subsets of the set of items. In the
combinatorial best barbeque problem with limited support, we are given
collections of subsets of the set of items. Therefore, the combinatorial best
barbeque problem, with limited support, is the natural generalization of the
frequent itemset mining. More information on frequent itemset mining can
be found in [29].

An instance of the combinatorial best barbeque problem translates straight-
forwardly to a combinatorial problem in a hypergraph. Let the universal set
{1, 2, . . . ,m} correspond to a set of vertices X and a subset Ci,j to a hyper-
edge, the colour of which is i. The combinatorial problem in the hypergraph
is the search for a subset of vertices U ⊂ X with maximum cardinality so
that U is a subset of at least one hyperedge of each colour.
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Chapter 3

Exhaustive search algorithms

In this chapter, algorithms are considered in the framework of constraint sat-
isfaction problems and valued constraint satisfaction problems [57, 63]. The
optimization problems discussed in Chapter 2 can be presented as valued
constraint satisfaction problems. Consideration of the optimization prob-
lems can be limited to minimization problems, since maximization prob-
lems can always be straightforwardly transformed to minimization prob-
lems. More information on constraint satisfaction problems can be found
in [16].

To begin with, this chapter introduces the concept of the backtrack search
algorithm. Secondly, more advanced variants of the basic backtrack algo-
rithm are discussed. Finally, the principles of computational experiments
are surveyed. A backtrack algorithm can be used to solve instances of the
constraint satisfaction problem. A modification of backtracking, namely
the depth-first branch-and-bound algorithm, can be used to solve instances
of the valued constraint satisfaction problem [62]. Dynamic programming
and Russian doll search are more advanced methods based on backtrack
search. They can be also used to solve instances of the valued constraint
satisfaction problem.

Problem 5 Constraint satisfaction problem A constraint satisfaction
problem is defined by a set of variables X = {x1, x2, . . . , xn}, with respec-
tive finite domains D = {D1, D2, . . . , Dn} that are sets of all of the possi-
ble values for each variable, and by the set of constraints C = {(X1, R1),
(X2, R2), . . . , (Xm, Rm)} where each Xi = {xi,1, xi,2, . . . , xi,r} ⊆ X and
Ri ⊆ Di,1 × Di,2 × · · · × Di,r is a relation on the variables Xi. Relations
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R1, R2, . . . , Rm denote simultaneously legal values for the variables in the
subsets X1, X2, . . . , Xm, respectively. An instance of the constraint satis-
faction problem is denoted by a triple (X,D,C). The objective is to find a
solution or determine that there is no solution.

Problem 6 The valued constraint satisfaction problem. A valued
constraint satisfaction problem is defined by an instance of the constraint
satisfaction problem (X,D,C); by a valuation structure S = (E,�,⊗),
where E is a set, � is a total order on E, and ⊗ is an operation on E;
and by an application ϕ from C to E, which assigns a valuation to each
constraint. Let A be a complete assignment for an instance of the valued
constraint satisfaction problem and Cviol(A) the set of the constraints that
are violated by the assignment A. The valuation ϕ(A) is defined by

ϕ(A) = ⊗
c∈Cviol(A)

ϕ(c).

The objective is to find a complete assignment that minimizes ϕ(A).

Note that, in both Problems 5 and 6, the search space is finite. Therefore,
with sufficient running time, a solution is guaranteed to be found for an
instance of the constraint satisfaction problem, or, alternatively a lack of
a solution will be determined. Similarly, an optimal solution will be found
to an instance of the valued constraint satisfaction problem. Example 1
connects Problem 6 to the hitting set problem introduced in Section 2.3.
Constraints in Example 1 are given as numeric constraints, that is, they are
written by using arithmetic expressions.

Example 1 An instance of the hitting set problem formulated as
an instance of the valued constraint satisfaction problem. Recall
from Section 2.3 how an instance of the hitting set problem can be translated
to a problem on a hypergraph. Let a set of variables X = {x1, x2, . . . , xn}
represents vertices of a hypergraph H (Section 2.1.3). Each xi has the
domain Di = {0, 1}, i ∈ {1, 2, . . . , n}. The set of constraints C consists of
one constraint for each vertex of H, Ci : xi = 0, i ∈ {1, 2, . . . , n}, and one
constraint for each hyperedge of H,

Cn+j :
∑
xv∈Ej

xv ≥ 1, j ∈ {1, 2, . . . ,m}.
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A suitable valuation structure is S = (N ∪ ∞, >,+) and an application ϕ
from C to N ∪∞ is

ϕ(c) =

{
1 , c ∈ {C1, C2, . . . , Cn}
∞ , c ∈ {Cn+1, Cn+2, . . . , Cn+m}.

3.1 Backtracking

Backtracking [24] builds up feasible solutions for instances of the constraint
satisfaction problem, one step at a time, by exhaustively covering all the
possibilities in a systematic fashion. Algorithm 1 presents the formulation
of backtracking for a constraint satisfaction problem as a search for the
product space Dn = D1 ×D2 × · · · ×Dn and is invoked with search((), 0).
A feasible solution satisfies all constraints Ci, where i ∈ {1, 2, . . . ,m}. Let
Xi = {xi,1, xi,2, . . . , xi,t} where t = |Xi|. Thus the relation Ri is a subset of
Di,1 ×Di,2 × · · · ×Di,t.

Algorithm 1 General backtrack algorithm for a constraint satisfaction
problem

Find all (x1, x2, . . . , xn) ∈ (D1, D2, . . . , Dn) so that (xi,1, xi,2, . . . , xi,t) ∈ Ri

for all i ∈ {1, 2, . . . ,m}.
procedure search((x1, x2, . . . , xl), l);
1: if l = n then
2: Save the current solution (x1, x2, . . . , xn)
3: else
4: for each xl+1 ∈ Dl+1 do
5: if (xi,1, xi,2, . . . , xi,t) ∈ Ri for all i ∈ {1, 2, . . . ,m} then
6: search((x1, x2, . . . , xl+1), l + 1)
7: end if
8: end for
9: end if

end procedure

Note that (xi,1, xi,2, . . . , xi,t) is considered in this work to be in Ri even if
not all variables in Xi have been assigned, but the remaining unassigned
variables can be assigned so that (xi,1, xi,2, . . . , xi,t) ∈ Ri.

To find a complete assignment of minimum valuation for an instance of
the valued constraint satisfaction problem, a modification of backtracking
is used. The depth-first branch-and-bound algorithm [12, 63] presented as
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Algorithm 2 is an extension of the backtrack algorithm. Algorithm 2 finds
a solution for a valued constraint satisfaction problem.

Algorithm 2 Depth-first branch-and-bound algorithm for a valued con-
straint satisfaction problem

Find an assignment A of the problem variables so that ϕ(A) is minimized.

procedure dfbb()
1: ub← +∞
2: sdfbb(1)

end procedure
procedure sdfbb(j)
3: for each k ∈ Dj do
4: A[j]← k
5: lb← FC(A)
6: if lb < ub then
7: if j = n then
8: ub← lb
9: Save the current assignment A
10: else
11: sdfbb(j + 1)
12: end if
13: end if
14: end for
end procedure

In Algorithm 2, A is a global array that stores the current assignment, ub
is a global variable that stores the valuation of the best assignment found
so far, and lb is a global variable that stores the lower bound for a current
partial assignment. The lower bound lb bounds from below the valuation of
the best complete assignment that can be extended from the current partial
assignment. If j = n, then lb equals the valuation of the current complete
assignment. For an assignment in A, partial or complete, a forward checking
method (FC) [16, 19, 30] computes lb in line 5. Therefore, when lb ≥ ub
in line 6, the current partial assignment cannot be extended to a better
complete assignment than the current best (or the complete assignment is
worse than the current best) and Algorithm 2 backtracks. The depth-first
branch-and-bound search can be improved by the choice of good variable
ordering or value ordering, or by having a good forward checking function
that computes large lower bounds early. Example 2 describes the use of
Algorithm 2 for solving an instance of the problem presented in Example 1
in page 18.
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Example 2 Proceeding of Algorithm 2 for an instance of the val-
ued constraint satisfaction problem. Let n = 4 in Example 1 and set
of constraints C consists of Ci : xi = 0, i ∈ X, C5 : x1 + x2 + x4 ≥ 1,
C6 : x2 + x3 ≥ 1, and C7 : x3 + x4 ≥ 1. Let variable ordering be
(x1, x2, x3, x4), value ordering (0, 1), and a forward checking function

FC(A) =
∑

c∈Cviol(A)

ϕ(c) +
∑

q∈{j+1,j+2,...,n}

min
k∈Dq

( ∑
c∈Cviol(Aq)

ϕ(c)
)

where

Cviol(A) = {c ∈ C : c is assigned and violated by A[i], i ∈ {1, 2, . . . , j}},
and Aq = A[i], i ∈ {1, 2, . . . , j, q}, q ∈ {j + 1, j + 2, . . . , n},

(FC(A) is equal to LB2 in [63]). Algorithm 2 proceeds as follows.

A[1] = 0, lb = 0
A[2] = 0, lb = ϕ(C3) + ϕ(C4) = 2

A[3] = 0, lb = ϕ(C4) + ϕ(C6) =∞
A[3] = 1, lb = ϕ(C3) + ϕ(C4) = 2

A[4] = 0, lb = ϕ(C3) + ϕ(C5) =∞
A[4] = 1, lb = ϕ(C3) + ϕ(C4) = 2,
ub = 2, Save A = (0, 0, 1, 1)

A[2] = 1, lb = ϕ(C2) = 1
A[3] = 0, lb = ϕ(C2) + ϕ(C4) = 2
A[3] = 1, lb = ϕ(C2) + ϕ(C3) = 2

A[1] = 1, lb = ϕ(C1) = 1
A[2] = 0, lb = ϕ(C1) + ϕ(C3) = 2
A[2] = 1, lb = ϕ(C1) + ϕ(C2) = 2

Algorithm 2 terminates with a complete assignment A = (0, 0, 1, 1) which
minimizes ϕ(A). In a hypergraph H the subset {x3, x4} ⊆ X is a minimum
vertex cover. In an original instance of the hitting set problem the subset
{x3, x4} ⊆ X is a hitting set with minimum cardinality.

Many variants of the basic branch-and-bound search are referred to in
the relevant literature; including recursive best first [35], iterative deep-
ening [36], iterative objective relaxing [36], iterative approximating [55],
Russian doll search [63], iterative deepening together with Russian doll
search [12], and specialized Russian doll search [46]. The aforementioned
search methods, apart from the specialized Russian doll search, are experi-
mentally compared in [12]. The specialized Russian doll search is compared
to Russian doll search in [46, 47]. The following two sections consider the
specialized Russian doll search and dynamic programming [38] for a valued
constraint satisfaction problem.
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3.1.1 Dynamic programming

Dynamic programming [6] is a method for solving problems that can be di-
vided into subproblems. For instances of the valued constraint satisfaction
problems, dynamic programming can be applied through a tree decomposi-
tion of the constraint graph.

The tree decomposition of a graph G is a pair (T,V), where T is a tree,
V = (Vt)t∈V (T ) is a family of vertex sets Vt ⊆ V (G) indexed by vertices of
T , and which satisfies the following three conditions:

(i) V (G) =
⋃
t∈V (T ) Vt,

(ii) for every edge e = {x, y} ∈ E(G) a vertex t ∈ V (T ) exists such that
x, y ∈ Vt,

(iii) Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 belongs to the unique path from t1 to t3
in T .

The width of (T,V) is defined by max{|Vt| − 1 : t ∈ V (T )}. The small-
est width of any tree decomposition of G is called tree-width of G. Note
that a tree has tree-width 1. Theorem 1 states an important feature of a
tree-decomposition [17, Lemma 12.3.1], and Theorem 2 [17, Lemma 12.3.2]
passes tree-decompositions to subgraphs.

Theorem 1 Let {t1, t2} ∈ E(T ) be any edge of a tree T and let T1, T2 be
the components of a tree

T ′ = (V (T ), E(T )\{t1, t2}),

with t1 ∈ T1 and t2 ∈ T2. Then Vt1 ∩ Vt2 separates U1 =
⋃
t∈V (T1) Vt from

U2 =
⋃
t∈V (T2) Vt in G.

Theorem 2 For every subgraph H of G, the pair (T, (Vt ∩ V (H))t∈V (T )) is
a tree decomposition of H.

A constraint hypergraph [16] is a hypergraph in which the vertices corre-
spond to the set of variables X = {x1, x2, . . . , xn}, and the hyperedges to
the subsets Xi ⊆ X in the set of constraints

C = {(X1, R1), (X2, R2), . . . , (Xm, Rm)}.
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A constraint graph is a special case of the constraint hypergraph in which
each Xi has a cardinality of at most two. The concepts hypertree decompo-
sition and hypertree-width are defined in [28]. In the following it is assumed
that every subset Xi involves two variables at the most.

The idea of the dynamic programming algorithm based on the tree decom-
position approach is explained as follows. Let G = (V,E) be a constraint
graph the tree decomposition of which is (T,V). The optimal assignment
in disconnected components then depends only on the assignment in a sep-
arating vertex set S. According to Theorem 1, any edge t1t2 of T spec-
ifies a separating vertex set S = Vt1 ∩ Vt2 and disconnected components
U1 =

⋃
t∈T1 Vt and U2 =

⋃
t∈T2 Vt. According to Theorem 2,

(T, (Vt ∩ U1)t∈T ) and (T, (Vt ∩ U2)t∈T )

are tree-decompositions for U1 and U2, respectively.

Algorithm 3 Tree decomposition approach
Find an optimal assignment for the vertices V of a tree decomposition of
the constraint graph.

procedure dp()
1: for i = n downto 1 do
2: if i is a leaf node then
3: Compute all assignments for i
4: else
5: Compute all assignments for Ti from Tj and Tk
6: Store the best assignment for Ti
7: end if
8: end for

end procedure

For the sake of simplicity, the dynamic programming algorithm [38] pre-
sented in Algorithm 3 concentrates on the way in which a solution to the
original problem is obtained from solutions to subproblems. In addition, it
is assumed that a tree decomposition of the constraint graph is both rooted
and binary. The notation used in Algorithm 3 is as follows. The set of
vertices of the tree is I = {1, 2, . . . , n}, enumeration runs from the leaves
towards the roots, and a subtree rooted at vertex i is denoted by Ti. In
line 5, a vertex i is assumed to be the predecessor of j and k. After termi-
nation of execution, the solution to the original problem is obtained from
the stored best assignment for T1.
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Solving an instance of the valued constraint satisfaction problem with the
arbitrary structure of the constraint graph may require exponential space [63].
If the treewidth of the constraint graph is bounded, then the instance of the
valued constraint satisfaction problem may be solved in polynomial time.
Many NP-complete or NP-hard problems are indeed solvable in polynomial
time for graphs of bounded treewidth, for example maximum independent
set [4].

The performance of the dynamic programming algorithm will depend on
the width of the tree decomposition. For this reason, it is important to find
a tree decomposition of small width. Nevertheless, the problem of finding
a tree decomposition with optimal width is NP-hard [38]. Complexity
analysis for backtracking with tree-decomposition is presented in [32, 61],
and for the dynamic programming algorithm in [38].

3.1.2 Russian doll search

The Russian doll search algorithm [12, 63] is presented as Algorithm 4. The
Russian doll search algorithm solves an instance of the valued constraint
satisfaction problem through n successive nested subproblems. The first
subproblem includes just the nth variable, the second subproblem the last
two variables, and so on until the the nth subproblem equals the original
problem. Each subproblem is solved by the depth-first branch-and-bound
search. Recordings of the valuations of the optimal assignments for the
solved subproblems help in the search for solutions to future subproblems.
Dynamic programming and Russian doll search methods have common fea-
tures, but they differ in the way in which they use the results from previous
subproblems; the latter only uses them to improve the lower bound on the
global valuation.

In Algorithm 4, A is a global array that stores the current assignment to
a subproblem consisting of variables from i to n, ub is a global variable
that stores the valuation of the best assignment found so far, and lb is a
global variable that stores the lower bound for a current partial assignment.
The lower bound lb bounds from below the valuation of the best complete
assignment that can be extended from the current partial assignment for a
subproblem consisting of variables from i to n. A global array c[i] stores
ϕ(A) for the optimal valuation A of each subproblem. The lower bound lb
in line 9 is evaluated by the forward checking method (FC) and a value of
the c[i] array.
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Algorithm 4 Russian doll search algorithm for a valued constraint satis-
faction problem

Find an assignment A of the problem variables so that ϕ(A) is minimized.

procedure russiandoll
1: c[n+ 1]← 0
2: for i = n downto 1 do
3: ub← +∞
4: rds(i, i)
5: c[i]← lb
6: end for

end procedure
procedure rds(i, j)
7: for each k ∈ Dj do
8: A[j]← k
9: lb← FC(A) + c[j + 1]
10: if lb < ub then
11: if j = n then
12: ub← lb
13: if i = 1 then
14: Save the current assignment A
15: end if
16: else
17: rds(i, j + 1)
18: end if
19: end if
20: end for
end procedure

The Russian doll search algorithm was originally developed for use in han-
dling the daily management problems of an earth observation satellite [1, 63].
Other applications of the Russian doll search algorithm are, for example, the
maximum clique problem [52], the radio link frequency assignment problem
[11, 47], the combinatorial best barbeque problem [I], the maximum tran-
sitive subtournament problem [II], and the Steiner triple covering prob-
lem [IV].
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3.2 Computational experiments

Mathematical methods can be used to predict consumption of the compu-
tational resources of an algorithm. With polynomial time algorithms pre-
dictions are often accurate enough to permit inferences about the suitable
algorithm for a task before implementation. Examples of this are presented
in [39]. With algorithms for NP-complete or more difficult problems, pre-
dictions for practical instance usually require experimental analysis. For the
specific instance, more accurate prediction of the usage of time (or space)
can be obtained by computational experiments that provide knowledge of
algorithms in real-world situations [45].

The Russian doll search and depth-first branch-and-bound algorithms (Sec-
tions 3.1 and 3.1.2) are theoretically compared in [63] via two extreme in-
stances. Let us consider valued constraint satisfaction problems Ploose and
Ptight, both having n variables, each variable having the domain size of d,
and both having a complete constraint graph (Section 3.1.1). The set of
constraints of Ploose allows all d values for each variable and the set of con-
straints of Ptight denies all d values for each variable. All the valuations of
Ploose and Ptight equal 0 and n(n − 1)/2 (the number of constraints), re-
spectively. The depth-first branch-and-bound algorithm for Ploose accepts
the first complete assignment of the variables as an optimal solution, but
the Russian doll search algorithm for Ploose has to examine one assignment
for each subproblem before an optimal solution is found. In contrast, the
depth-first branch-and-bound algorithm for Ptight goes through all the pos-
sible dn complete assignments before termination, whereas the Russian doll
search algorithm for Ptight determines the exact lower bound for a valuation
based on the first assigned variable implying termination of the search in
each subproblem after all values have been assigned for the first variable.

Therefore, the Russian doll search algorithm may require more computa-
tional time than the depth-first branch-and-bound algorithm in some cases;
however, in other cases, the Russian doll search algorithm may use exponen-
tially less computational time than the depth-first branch-and-bound algo-
rithm. Computational experiments can be used to obtain more information
about the cases in which the Russian doll search algorithm outperforms
the depth-first branch-and-bound algorithm. Experimental evaluation of
Russian doll search algorithms can be found in [46, 47, 63] and [I,II].

The experimental approach to analyzing algorithms is a relatively young
branch of algorithm research. Therefore, experimental analysis of algo-
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rithms is still in the developmental stage. The fundamental principles of
experiments, however, are the same for experimental algorithmics as for any
other field of science. A possible explanation for the slow adoption of exist-
ing standard practices especially in analyzing the results of experiments on
backtrack search is the erratic behavior of the mean and the variance of run
times of the backtrack search. The distribution of run times of backtrack
search can be heavy-tailed in general [27]. The moments of these distri-
butions are not all finite which may cause assumptions in the context of
standard statistical methods to be erroneous.

The right tail distribution function, P (X > x) = 1 − F (x), where F (x) is
the cumulative distribution function of the random variable X, should have
an approximately linearly decaying tail in a log-log plot in case of the heavy-
tailed distribution [27]. Figure 3.1 shows the empirically obtained right tail
distribution functions for the run times of algorithms in [II] (the unit of the
x-axis is one second) and presents the right tail distribution functions for
standard normal distribution N (3, 1) and N (105, 5 · 104) as reference ma-
terial. Based on Figure 3.1 the heavy-tailedness of run time distributions
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1

Fig. 3.1 Right tail distribution functions for N (3, 1), run times of algorithms
A3, A2, A1 in [II], and N (105, 5 · 104)

of algorithms in [II] strongly depends on backtrack search strategy itself.
Hence, the run time distribution of backtrack search with a sophisticated
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pruning strategy is not necessary heavy-tailed. Standard statistical analy-
sis tools for experimental analysis of combinatorial algorithms are studied
in [III].

General guidelines for experimental analysis of algorithms are found in [33].
The use of statistics, including the methodology presented in [III], in a
coherent way with [33] requires careful consideration. Statistics on run times
are useful for supporting general conclusions on performance differences but
too accurate results may waste computational resources on unimportant
questions. However, information about the distribution of run times is
essential when one estimates the accuracy of means of the run times. For
this purpose it is in most cases fully adequate to present standard deviations
of run times as has been done in [II,IV]. The methodology in [III] exploits
information about the distribution in order to get precise means. Analysis
of experiments in paper [II] benefited from the study done in [III], but the
level of description of distributions is kept to a minimum.
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Chapter 4

Conclusions

Several discrete optimization problems of practical importance are opti-
mization versions of NP-complete problems for which no polynomial time
algorithms are known. In this dissertation, efforts are directed towards the
development of algorithms for small or special instances of optimization
versions of NP-complete problems. As a result, real biological instances
of the combinatorial best barbeque problem [I] and the Steiner triple cov-
ering problem of order 135 are solvable in reasonable computational time
with a personal computer. Furthermore, Sperner capacity for all but eight
digraphs of up to five vertices [V] is determined and a tournament of order
14 with disjoint Banks set and Slater set [VI] is found.

From among the many available exhaustive search methods, Russian doll
search was selected for use in this work. The results listed above are con-
crete examples of the outcomes and they imply that Russian doll search is
a recommendable method for solving practical discrete optimization prob-
lems. In a broad sense a general finding of this research is that the use of
relatively simple algorithmic ideas can lead to practical algorithms. Easy-
ness in implementation of the Russian doll search algorithm improve the
chance to get successful results.

A further result of this research is the information obtained about the prac-
tical performance of the Russian doll search algorithm. The performance
of the Russian doll search algorithms is experimentally analyzed and com-
pared to other backtrack algorithms in [I] and [II]. The computational ex-
periments outlined in [II] inspired the study of the experimental methods
discussed in [III]. In addition, in [I] and [II], different variable orderings
are studied. Nonetheless, more research would be needed in order to get a
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better understanding of the influence of variable orderings on the Russian
doll search algorithm.

Similarly, the results can be extended in each paper of this dissertation.
Real biological instances of the combinatorial best barbeque problem could
be more complex or the Russian doll search algorithm could be modified to
handle a weighted or limited support version of the best barbeque problem.
There are 80 non-isomorphic Steiner triple systems of order 15 that could
be used to generate Steiner triple covering problems in a similar way as was
done in [IV]. Eight instances of the Sperner capacity problem for digraphs
were left open in [V]. In these eight instances, one digraph with five vertices
is a subdigraph to all the other seven digraphs. Determination of Sperner
capacity for this subdigraph might imply the solution to all the other seven
instances.

Further research on Sperner capacity could be carried out by considering
digraphs with six or more vertices. Additionally, open problems exist for
tournament solutions, including that of the minimum size of a tournament in
which the Banks set and the Slater set are disjoint [VI], and the minimum
size of a tournament in which the Copeland set, the Slater set, and the
Banks set are disjoint.
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