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ABSTRACT

This paper presents a filter configuration for canceling and separat-
ing partials from inharmonic piano tones. The proposed configu-
ration is based on inverse comb filtering, in which the delay line is
replaced with a high-order filter that has a proper phase response.
Two filter design techniques are tested with the method: an FIR fil-
ter, which is designed using frequency sampling, and an IIR filter,
which consists of a set of second-order allpass filters that match
the desired group delay. It is concluded that it is possible to ob-
tain more accurate results with the FIR filter, while the IIR filter is
computationally more efficient. The paper shows that the proposed
analysis method provides an effective and easy way of extracting
the residual signal and selecting partials from piano tones. This
method is suitable for analysis of recorded piano tones.

1. INTRODUCTION

In this paper, the extraction of the residual signal and selection
of single partials from inharmonic piano tones by means of dig-
ital filtering are discussed. Both the tonal and noise components
are essential in signal analysis. For example, the decay rates of the
partials [1] or analysis of the sustain pedal [2, 3] provide important
information for sound synthesis. The proposed residual signal ex-
traction technique is based on inverse comb filtering, an approach
that was used already by Moorer in the 1970s for pitch detection
in speech signals [4], and analysis of musical tones for obtaining
parameters for additive synthesis [5]. In this work, the delay line
in the inverse comb filter is replaced by an FIR or IIR filter, which
has a proper phase specification for matching the partial frequen-
cies of an inharmonic piano tone. Recently, this idea has been used
for analysis of harmonic musical instrument tones [6, 7, 8], where
the spectral components are integral multiples of the fundamental
frequency. This is not the case with the piano, however, where
the partial components are stretched upwards in frequency due to
dispersion, a typical feature of stiff musical instrument strings.

The purpose of this work is to provide a simple yet effective
tool for analyzing inharmonic musical instrument tones using the
same starting point as in [6, 7, 8]. The required parameters for the
method are the fundamental frequency and the inharmonicity co-
efficient. These parameters can be obtained by using some inhar-
monicity estimation algorithm, such as the inharmonic comb fil-
ter method proposed by Galembo and Askenfelt [9] or the partial
frequency deviation algorithm presented by Rauhala et al. [10].
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of Finland (project no. 122815), the Finnish Cultural Foundation, the
Nokia Foundation, and Emil Aaltonen Foundation.

Recently, Wang and Tan presented a method based on wavelets for
analyzing the dispersion [11].

The dispersion phenomenon is clearly audible in low piano
tones, and it must be taken into account in high-quality sound syn-
thesis. Different methods for modeling the dispersive behavior of
the piano strings have been proposed in the literature [12, 13, 14,
15, 16, 17]. Most of the previous dispersion filter design tech-
niques are used for real-time synthesis purposes, and they are able
to roughly approximate the dispersion phenomenon; this is suffi-
cient, since the human hearing system is not extremely sensitive
to accuracy in inharmonicity [18, 19, 20]. In analysis of recorded
piano tones, more precision is required, however. In this paper, a
large FIR filter and an IIR filter proposed by Abel and Smith [17]
are used to accurately model the dispersive behavior in the inverse
comb filter.

Other methods for extracting the residual signal have been
proposed earlier. Sinusoidal modeling [21, 22, 23] is a method
that is based on the analysis of the target signal in frames with
windowed FFT, where spectral peaks are picked in order to ob-
tain frequency, amplitude, and phase information for each partial.
The data obtained from each frame are connected in adjacent data
points to form frequency, amplitude, and tracks, which are used in
synthesizing the desired signal component. Sinusoidal modeling
is a powerful analysis method, especially for the analysis of very
complex time-varying signals. Methods that apply inverse filter-
ing in some form include the matrix pencil inverse filtering [24]
and inverse filtering with sinusoids plus noise [25]. Recently, Lee
et al. proposed a statistical spectral interpolation method for ex-
tracting the excitation signal from plucked guitar tones [26]. Other
possibilities for analyzing the spectral contents of musical instru-
ments include wavelets [27, 11], high-resolution tracking methods
[28, 29], and frequency-zooming ARMA modeling [30, 31]. An
advantage of the filtering-based analysis tool over other, more so-
phisticated analysis methods is its simplicity; the filter can be de-
signed based on the fundamental frequency and the inharmonicity
coefficient value, and after the design process the analysis can be
carried out with a single filtering operation.

The residual signal has an essential part in physics-based sound
synthesis. In digital waveguide modeling [32, 33], the residual sig-
nal can be obtained by filtering the desired output with the inverted
transfer function of the desired string model [1]. This signal can
then be used as an excitation signal for the synthesis algorithm. In
order to conduct inverse filtering for obtaining the excitation sig-
nal, the partial decay times should be taken into account in the filter
design in addition to the dispersion phenomenon. Inverse filtering
for this purpose is not considered in the present work, however,
the main reason being the complicated decay process of the piano
tones. Dealing with the decay-related features that are character-
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istics of the piano tones, such as the two-stage decay and beating
[34] accurately enough would require a separate filter for matching
the loop gain values. Moreover, since the goal in the present work
is to analyze the partials and residuals of piano tones, matching the
loop gain values is not of primary interest.

This paper is organized as follows. First, in Sec. 2 the structure
of the inverse comb filter is presented, and the replacement of the
delay line with two alternative dispersion filters, an FIR filter de-
signed with frequency sampling and an IIR filter proposed by Abel
and Smith [17], is discussed. After this, the performance of the two
dispersion filters as a part of the inverse comb filter are compared
in Sec. 3. Section 4 illustrates how the proposed method works
in practice: single partial components are selected from synthetic
tones, and residual signals are extracted from two recorded piano
tones. Finally, conclusions are drawn in Sec. 5. Sound examples
are provided at http://www.acoustics.hut.fi/go/DAFx08-IICF/.

2. INHARMONIC INVERSE COMB FILTERS

The inverse comb filter (ICF) is an FIR filter in which the delayed
version of the input signal is subtracted from the original input
signal. The block diagram of an ICF is shown in Fig. 1 (a). The
transfer function of such a system can be written as

HICF(z) =
1

2
(1− z−L), (1)

where L is the length of the delay line and the coefficient 1/2
sets the gain to unity in the passband. The magnitude response
of the ICF contains notches at nfs/L, where n ∈ Z and fs is
the sampling rate in Hz. Since the delay line length L in Eq. (1)
is restricted to be an integer, it might happen that the filter is not
capable of effectively canceling the harmonic components. For ex-
ample, if the fundamental frequency of the tone is f0 = 261.626
Hz (which corresponds to the middle C in the piano), the required
delay line length would be L = fs/f0 = 168.562 samples, when
the sampling rate of 44.1 kHz is used. In practice, the delay line in
Fig. 1 (a) can be replaced with a fractional-delay filter [35, 36, 37],
which fine-tunes the delay line length so that the notches of the fil-
ter appear exactly at the harmonic frequencies. This is illustrated
in Fig. 1 (b), in which H(z) is the fractional-delay filter. Earlier
studies [6, 7, 8] show that fractional-delay ICFs can be used to can-
cel partial components effectively, when the musical tone is strictly
harmonic. In the case of the piano, the harmonic frequencies are
not exactly integral multiples of the fundamental frequency. Thus,
canceling partials from a piano tone requires a filter, which has a
nonlinear phase specification.

2.1. Design of Dispersive FIR Filter

The phase response of the dispersion filter is defined from the
knowledge that the phase is a multiple of 2π radians at every par-
tial frequency. In the case of the piano, the partial frequencies can
be obtained from Eq. (2) [34] that follows:

fk = kf0
p

1 + k2B, (2)

where k refers to the partial index, f0 is the nominal fundamen-
tal frequency of the tone, and B is the inharmonicity coefficient.
Thus, the value of the phase response θ(ω) is −2πk at frequency
fk. In the case of a strictly harmonic tone, the coefficient B is
equal to 0 and the partial frequencies are integral multiples of the

Figure 1: (a) Block diagram of the conventional ICF and (b) an
ICF with a fractional-delay filter H(z) (after [6]).

Figure 2: (a) The magnitude and (b) phase delay specifications of
the dispersive FIR filter (f0 = 261.6 Hz,B = 3.0×10−4). In (c),
the truncated impulse response of length 200 samples is shown.

nominal fundamental frequency, which leads to a linear-phase fil-
ter. When B > 0, the partials are displaced upwards in frequency,
and the phase response becomes nonlinear. Since the phase re-
sponse θ(ω) is assumed to be a smooth curve, cubic spline inter-
polation is performed between the partial frequencies so that the
frequency response can be computed as a continuous function of
frequency. The frequency response of the dispersive FIR filter can
now be written as

H(ω) = |H(ω)|ejθ(ω). (3)

Since it is impossible to design a dispersive allpass FIR filter,
it is proposed that the magnitude response imitates a lowpass filter,
whose passband covers the range 0− 20 kHz. The remaining part
is defined by means of a raised cosine function (see Fig. 2(a)). The
cosine function is a natural choice for the transition and stopbands,
since this specification is easily realizable with FIR filters [38].
The approximation bandwidth 0−20 kHz is suitable for analyzing
most musical instrument tones at the sampling rate of 44.1 kHz,
because in recorded tones the remaining frequency band above 20
kHz contains little or no information of interest. Moreover, the
upper limit of the range of human hearing is about 20 kHz.

The magnitude and phase delay specifications, and the impulse
response of the filter are shown in Figs. 2(a), 2(b), and 3, respec-
tively, when the nominal fundamental frequency f0 and the inhar-
monicity coefficient B are set to be 261.6 Hz and 3.0 × 10−4,
respectively.

The impulse response, and thus the FIR filter coefficients, can
be obtained from the frequency response of Eq. (3) by applying
the inverse discrete Fourier transform. When the number of data
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Figure 3: Truncated impulse response of the dispersive FIR filter
of length 200 samples (f0 = 261.6 Hz, B = 3.0× 10−4).
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Figure 4: Squared error of the truncated impulse response as a
function of filter length when f0 = 261.6 Hz andB = 3.0×10−4.

points in the frequency response vector is large, say, 44100 points,
good accuracy is obtained. The length of the impulse response can
be decreased by truncating the prototype impulse response with a
rectangular window function. By choosing the window position
so that the squared sum of the truncated impulse response is max-
imized, the performance of the truncated filter can be optimized
in terms of the least-squares error. It is also possible to use some
other window function, such as the Hamming window. In practice,
however, in order to achieve good accuracy, the response should
be truncated so that the largest samples are included in the final re-
sponse, indicating that the excluded sample values are small in any
case. In addition, the rectangular window is known to be optimal
in the least-squares sense [38].

The position that corresponds to the maximum squared sum
can be found by sliding the rectangular window of a certain length
over the prototype impulse response. When the best position is
found, the truncated impulse response can be cascaded, if needed,
with a delay line in order to set the phase delay at the fundamental
frequency to the correct value. In Fig. 4 the squared error of the
impulse response is displayed as a function of filter length. As
can be seen, the approximation error decreases monotonously with
filter length and saturates at some point, depending on the f0 and
B parameters corresponding to the filter specification. In this case,
the saturation point is found at approximately 190 samples (see
Fig. 4).

When the delay line of an ICF is replaced by the proposed
dispersive FIR filter (see Fig. 1 (b)), the notches of the ICF occur

Figure 5: Block diagram of the FIR inharmonic inverse comb filter.

at the partial frequencies of an inharmonic tone. In order to obtain
an accurate design, the phase response of the whole structure is
approximated instead of the phase response of the dispersion filter.
The corresponding block diagram is shown in Fig. 5. The filterHU

in the upper branch is used to synchronize the signals, and it has the
same magnitude response as the dispersion filter (3) and a linear
phase response. Thus, the frequency response of the structure can
be written as

HIICF(ω) = g0[HU(ω)− rH(ω)], (4)

where the coefficients g0 and r are used to set the maximum gain
to unity and the gain at the bottom of the notches to a desired
level, such as 10−6, which corresponds to 120 dB attenuation at
frequencies fk. When the attenuation in dB is denoted with AdB,
the g0 and r parameters can be computed as [7]

A = 10
−AdB

20 , (5)

rL =
1−A
1 +A

, (6)

r = L

r
1−A
1 +A

, (7)

g0 =
1

1 + rL
. (8)

Since the analysis is conducted off-line and it is important to
achieve accurate results, the computational cost is not a critical
issue. For example, for the tone C1 (f0 = 32.7 Hz, B = 2.62 ×
10−4) a filter length 2050 is found to be adequate for achieving a
100 dB attenuation at partial frequencies.

2.2. Dispersive IIR Filter Design

Recently, Abel and Smith proposed a nonparametric allpass filter
design technique, which is capable of matching the desired group
delay specification accurately [17]. The method is also numeri-
cally robust, even with high filter orders, unlike many other all-
pass filter design techniques that try to match a certain group delay
specification. The idea is to divide the desired group delay charac-
teristics into sections, which when integrated along the frequency
axis have an area of 2π, and to assign a pole-zero pair to each sec-
tion. These pole-zero pairs, when arranged in allpass form, will
contribute exactly 2π to the total group delay of the filter. The
filter order is determined from the number of 2π integrated delay
sections. The filter order can be decreased, especially in the case
of low fundamental frequencies, by implementing a part of the de-
sired delay with a delay line.

After dividing the group delay into sections with integrated
area of 2π, a first-order complex allpass filter
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G(z) =
−ρe−jθ + z−1

1− ρejθz−1
(9)

is assigned for each section. In Eq. (9) the parameters ρ and θ are
the pole radius and frequency, respectively. The pole frequency
is set equal to the midpoint of the corresponding frequency band
[ω−, ω+], and the pole radius depends on the parameter β so that
the group delay at the frequency band edges is a fraction β of the
group delay peak. The definition of parameters is discussed in
[17]. In order to obtain filters with real coefficients, the complex
allpass sections can be combined to biquads that have real coeffi-
cients.

2.2.1. Aspects on Accuracy and Computational Cost

The value of the parameter β is a very critical issue when the
goal is to model the phase characteristics as accurately as possi-
ble. Abel and Smith point out that by selecting β values close to
one it is possible to obtain smooth delay curves, while smaller val-
ues produce ripple in the delay [17]. On the other hand, with larger
β values the tracking error is larger near the Nyquist limit. In the
case of signal analysis, it is more important to obtain as smooth and
accurate delay curves as possible, especially in the important fre-
quency band, say 0− 20 kHz, while the accuracy near the Nyquist
limit is not a critical issue. The author has found that β = 0.95
produces the best results in most of the design tasks. However,
there is still a minor overall tracking error, also in the low frequen-
cies, and this tracking error is proposed to be compensated with
a fractional-delay tuning filter. The tuning filter can be designed,
e.g. with the Thiran allpass filter design method [39, 35], which
produces a maximally flat group delay. The fractional-delay part
can be determined from the mean error between the target group
delay specification and the group delay of the obtained filter in the
frequency range 0− 18 kHz. After 18 kHz the tracking error is so
large that it should not be taken into account.

In [17], Abel and Smith suggest that a constant delay can be
added to the frequency-dependent delay specification so that it in-
tegrates to an integer multiple of 2π. This procedure adds, how-
ever, error to the group delay that is used as a specification in the
design process. It is suggested here that the extra delay can be
added to the target delay using a linear ramp so that the error is
small at low frequencies and larger at high frequencies. This pro-
cedure ensures that the important frequency range is modeled as
accurately as possible.

In order to reduce the number of second-order sections, part
of the desired delay is modeled with a delay line. The length of
the delay line can be determined from the target group delay at
the Nyquist limit. For example, if the target group delay at the
Nyquist limit is 120 samples (see e.g. Fig. 2 (b)), a delay line of
length 100 samples can be used. In practice, the use of a delay line
length that is equal to the target group delay at the Nyquist limit in
not recommended, since the tracking error occurring with large β
values may lead to negative group delay values at high frequencies.
The optimization of the length of the delay line could be performed
similarly as suggested by Rocchesso and Scalcon [13].

2.3. Selection of Single Harmonics

In addition to canceling all partials from a piano tone, single har-
monics can be extracted as separate signals. This is implemented
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Figure 6: Comparison between the FIR dispersion filter (’*’), IIR
dispersion filter with a tuning filter of order 30 (’.’), and IIR dis-
persion filter without the tuning filter (’x’).

by cascading a second-order all-pole filter with an inharmonic in-
verse comb filter [6, 7, 8]. This kind of filter is called the harmonic
extraction filter (HEF) [7]. In practice, an HEF filter is obtained
when the pole of the second-order all-pole filter located at the fre-
quency of the chosen partial cancels the corresponding zero of the
inverse comb filter. In order to guarantee stability, it is not rea-
sonable to set a pole on the unit circle in the z plane, but to move
the pole slightly inside the unit circle. Consequently, the zeros in
the transfer function of the inverse comb filter are moved inside
the unit circle as well. More extensive discussion of the HEF filter
design along with the choice of parameter values is given in [7].

3. COMPARISON OF THE TWO DISPERSION FILTERS

Figure 6 compares the obtained attenuation at partial frequencies
in the case of the three ICFs with an FIR and IIR dispersion filters,
respectively. The asterisks (’*’) represent the result in the case of
the FIR filter. The dots (’.’) and crosses (’x’) represent the perfor-
mance of the IIR filter when a tuning filter is used and when it is
not used, respectively. In all cases, the parameters f0 and B are
set to f0 = 261.6256 Hz and B = 2.9936 × 10−4. The order of
the FIR dispersion filter is 1000, and the required attenuation at the
partial frequencies is 120 dB. The IIR dispersion filter consists of
30 biquads and an allpass tuning filter of order 29. The β param-
eter is equal to 0.95 and the length of the delay, which is modeled
with pure delay, is 60 samples.

It can be seen that the FIR filter clearly outperforms the IIR
filter, since much better attenuation is obtained. On the other hand,
the computational complexity of the FIR filter is considerably larger.
However, off-line FIR filtering can be implemented efficiently us-
ing FFT convolution. Increasing the order of the IIR filter does not
have an effect on accuracy, since the method automatically deter-
mines the order of the filter when the group delay specification is
divided into sections of 2π. The tuning filter improves the perfor-
mance of the IIR filter by 20 − 60 dB. The peaks that are present
in Fig. 6 come from the fact that the designed group delay ripples
around the target group delay specification. If the fractional delay
filter is excluded, the approximated delay is larger than the target
delay throughout the frequency band.
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Figure 7: Inharmonic synthetic test signal (a) in the time and (b)
the frequency domain.

4. APPLICATION EXAMPLES

This section shows how the inharmonic inverse comb filter copes
with synthetic test tones and recorded piano tones. Two applica-
tion cases are demonstrated: single harmonic components are se-
lected by canceling the rest of the partials and the residual signal
is extracted from tones. The two suggested filters, the FIR filter,
and the IIR filter by Abel and Smith [17] are used as a part of the
inverse comb filter. The sampling frequency is 44.1 kHz in all test
cases.

4.1. Synthetic Test Tones

The inharmonic inverse comb filter is first tested with synthetic
tones. The signal that is to be analyzed is the sum of sinusoids:

x(n) =

KX
k=1

sin(
2πnfk
fs

+ φk), (10)

where K is the total number of harmonics included in the signal
and fk and φk are the frequency and the phase of the kth partial,
respectively. The partial frequencies can be computed with Eq. (2).
In this case, the fundamental frequency and the inharmonicity co-
efficient were set to f0 = 261.6256 Hz and B = 2.9936× 10−4,
respectively. Using these parameters there will be K = 58 par-
tial components in the frequency range 0− 22.05 kHz. The initial
phases φk are uniformly distributed random numbers in the range
[0, 2π]. The test signal is presented in Fig. 7 in the time and fre-
quency domains. The spectrum is computed from a 0.6 s excerpt
taken between 0.2 s and 0.8 s using a 1160 point DFT so that ev-
ery 20th point matches a partial frequency. This choice leads to a
clear visual presentation. The Hamming window was used in the
computation.

Three partial components were extracted from the test tone.
The chosen components were the first, 25th, and 55th. The order
of the FIR-based ICF filter used in the analysis is 810, and the IIR-
based filter consists of 30 biquads and a fractional-delay filter of
order 29. In addition, the length of the pure delay is 60 samples,
when the IIR filter is used. Results for the FIR filter-based ICF
are shown in Fig. 8. The subfigures (a), (b), and (c) represent the
extracted partials #1, #25, and #55, respectively. When compared
to the results of the IIR filter-based ICF, which are shown in Fig. 9
(a), (b), and (c), it can be seen that the FIR filter performs better.
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Figure 8: Results of the partial extraction in frequency domain,
when an FIR-based ICF is used: (a) partial component #1, (b) par-
tial component #25, and (c) partial component #55.
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Figure 9: Results of the partial extraction in frequency domain,
when an IIR-based ICF is used: (a) partial component #1, (b) par-
tial component #25, and (c) partial component #55.

Figure 9 shows that some harmonic components are still visible in
the spectra. No visible differences were found in the time domain
representation, and the effect of temporal smearing is small in both
cases.

4.2. Recorded Test Tones

In order to see how the proposed inharmonic ICFs perform with
real tones, partials were canceled from recorded piano tones. In
the following, the results for two example tones are presented: C2
(key index 16, f0 = 65.6206 Hz, B = 3.8042 × 10−5) and D5
(key index 54, f0 = 587.1 Hz, B = 0.0012). The result for the
tone C2 is shown in Figs. 10 and 11 in the time and frequency
domain, respectively. In both figures, the subfigures (a) present
the original recorded tone, and the subfigures (b) and (c) refer to
the residual signals that are obtained with the FIR- and IIR-based
ICFs, respectively. For clarity, in Fig. 11 (b) and (c), the crosses
indicate the corresponding magnitude computed exactly at the par-
tial frequencies. The spectra are computed using the Hanning win-
dow. The order of the FIR-based ICF used in the analysis is 1200.
The specification for the IIR-based ICF were as follows: the IIR
filter consists of 84 biquads and a fractional-delay filter or order
29, and the length of the delay that is modeled with pure delay
is 250 samples. The obtained theoretical attenuation at the partial
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Figure 10: (a) Recorded piano tone C2 in the time domain. (b)
and (c) show the residual signals that are obtained by filtering the
original tone twice with the FIR- and IIR-based ICFs, respectively.
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Figure 11: (a) Recorded piano tone C2 in the frequency domain.
(b) and (c) show the residual signals that are obtained by filtering
the original tone twice with the FIR- and IIR-based ICFs, respec-
tively. The crosses in (b) and (c) indicate the magnitude at partial
frequencies.

frequencies in the range 0 − 20 kHz is 14 − 63 dB with the IIR-
based ICF, while with the FIR-based ICF it is possible, in theory,
to obtain 98− 122 dB attenuation at the partial frequencies.

It was reported in [6] that in some cases filtering the signals
only once is insufficient in order to get a good attenuation at the
partial frequencies. This is due to the fact that the partials are not
ideal peaks in the frequency domain, but they are spread around
the ideal partial frequency because of beating, for example. The
notches of the ICF are very narrow, and it may happen that some
of the partials hit the slope of the notch rather than the bottom.
Also, in this example, the signal needs to be filtered twice in the
case of both ICFs. This indicates, however, that the accuracy of the
phase delay specification is not very critical when real piano tones
are analyzed, since the partial peaks are spread in frequency. The
crosses in Fig. 11 (b) and (c) indicate, however, that the FIR-based
ICF performs better, since the attenuation at the partial frequencies
is better.
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Figure 12: (a) Recorded piano tone D5 in the time domain. (b)
and (c) show the residual signals that are obtained by filtering the
original tone twice with the FIR- and IIR-based ICFs, respectively.

The results for the second test tone, D5, are shown in Figs. 12
and 13 in the time and frequency domains, respectively. Again, in
both figures the subfigures (a) present the original recorded tone
and the subfigures (b) and (c) refer to the residual signals that
are obtained with the FIR- and IIR-based ICFs, respectively. The
crosses in Fig. 13 (c) indicate the magnitude at partial frequencies.
The corresponding crosses are not visible in Fig. 13 (b), since they
fall below the visible range. The spectra are computed using the
Hanning window. The order of the FIR filter is 600. The IIR filter
consists of 19 biquads, and 20 samples of the delay are modeled
with a delay line. In this case, however, the fractional delay filter
is excluded. This is because of the error that comes from the addi-
tion of the group delay in order to achieve an area that integrates
to an integer multiple of 2π. When the total area of group delay
is smaller, which is the case with the high tones, the proportion of
the added delay is relatively larger. In this case it is suggested that
the additional delay is added without the ramp that was discussed
in Sec. 2.2.1, so that the delay is evenly spread to all frequencies.
To compensate the delay, the direct path of the input signal is de-
layed with a sufficient number of samples, in this case with two
samples. With this procedure, the obtained theoretical attenuation
at the partial frequencies is 14− 32 dB, while with the FIR-based
ICF it is possible, in theory, to obtain 102− 128 dB attenuation.

As can be seen in Fig. 13 (b) and (c), much better attenuation
is obtained when the FIR-based ICF is used, since most of the
partial components are still visible in Fig. 13 (c). Some of the
harmonic components can be heard after filtering the signal twice
with the IIR-based ICF, while the FIR-based ICF performs well
even after filtering only once. Sound examples that illustrate the
effect of filtering once and twice are provided in the Internet at
http://www.acoustics.hut.fi/go/DAFx08-IICF/.

4.3. Notes on Sinusoidal Modeling

Sinusoidal modeling [21, 22, 23] is one of the most powerful meth-
ods for analyzing musical tones. It is especially suitable for com-
plex, time-varying tones. It is also a useful tool for selecting par-
tials from musical instrument tones. On the other hand, imple-
menting the algorithm requires quite many steps and parameter
choices. First, the short-time spectrum of the signal to be analyzed
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Figure 13: (a) Recorded piano tone D5 in frequency domain. (b)
and (c) represent the residual signals that are obtained by filtering
the original tone twice with the FIR- and IIR-based ICFs, respec-
tively. The crosses in (c) indicate the magnitude at partial frequen-
cies. The crosses in (b) fall below the visible range.

is computed. Then, the spectral peaks are picked based on the es-
timated fundamental frequency and inharmonicity coefficients. In
the case of the piano, the spectral peaks may actually be clusters
of partial components due to strings groups of 1-3 strings corre-
sponding to one key, and all of these peaks need to be taken into
account for good accuracy. In addition to the frequency locations,
the phase and magnitude tracks need to be found. After this, the
frequency, phase, and amplitude trajectories are interpolated in or-
der to form continuous-time signals. Finally, the components are
summed to form the extracted partial. If it is of interest to extract
the residual signal, all the partial components need to be analyzed,
synthesized, and finally be subtracted from the original tone. The
parameter choices, for example in the computation of the spec-
trum, have an effect on the result. Especially important are the
length and hop size of the short-term Fourier transform as well as
the window function used. These parameters affect the accuracy in
both time and frequency domains; if the attenuation of the neigh-
boring partials is very good it might be that temporal smearing
occurs. Useful software frameworks, such as CLAM [40], have
been developed for using the sinusoidal modeling, which makes
using the method for analyzing musical tones easier. In the pro-
posed method, the residual signal and the partial components can
be extracted with one or two filtering operations after the filter is
designed.

5. CONCLUSIONS

This paper proposes two filter configurations for extracting partial
components from inharmonic piano tones. The basic idea is to use
an inverse comb filter to subtract a delayed version of the signal
from itself. The delay must be frequency dependent in order to
obtain a proper attenuation at partial frequencies. Two filters were
used to produce the frequency-dependent delay: a large FIR fil-
ter that is designed using the frequency sampling method and an
IIR filter proposed by Abel and Smith [17]. The two filters were
compared, and it was concluded that it is possible to obtain better
accuracy with the FIR-based inverse comb filter, while the compu-
tational cost of the IIR filter is much lower. In addition, the FIR

filter is effortless to design and easy to control, while the nonpara-
metric approach of the IIR filter design technique makes the design
process more complicated.

The proposed techniques were tested first with a synthetic test
tone. Single partials were extracted from the tone. Additionally,
residual signals from two recorded piano tones were obtained us-
ing the proposed inverse comb filters. It was concluded that both
of the methods are suitable as analysis tools, when the study of the
features of the residual signal is of interest.

Future research includes the investigation of inverse filtering
for excitation signals for digital waveguide synthesis of the piano.
In order to do this, the partial decay times need to be computed and
a filter matching the corresponding magnitude gain values needs to
be designed. At the same time the overall phase needs to remain
the same, i.e. the phase of the loop filter should be linear. The idea
is tempting, since the result would provide a physical interpretation
for the analysis-synthesis scheme of piano tones.
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