

Helsinki University of Technology Department of Communications and Networking

Teknillinen korkeakoulu Tietoliikenne- ja tietoverkkotekniikan laitos

Espoo 2010 Report 8/2010

DISTRIBUTED RESOURCE DISCOVERY:

ARCHITECTURES AND APPLICATIONS IN MOBILE NETWORKS

Nicklas Beijar

Dissertation for the degree of Doctor of Science in Technology to be presented with due
permission of the Faculty of Electronics, Telecommunications and Automation for public
examination and debate in Auditorium S4 at Aalto University School of Science and
Technology (Espoo, Finland) on the 10th of December, 2010, at 12 noon.

Aalto University

School of Science and Technology

Faculty of Electronics, Telecommunications and Automation

Department of Communications and Networking

Aalto-yliopisto

Teknillinen korkeakoulu

Elektroniikan, tietoliikenteen ja automaation tiedekunta

Tietoliikenne- ja tietoverkkotekniikan laitos

Distributor:

Aalto University

School of Science and Technology

Department of Communications and Networking

P.O. Box 13000

FI-00076 Aalto

Tel. +358-9-470 25300

Fax +358-9-470 22474

© Nicklas Beijar

ISBN 978-952-60-3416-4

ISBN 978-952-60-3417-1 (pdf)

ISSN 1797-478X

ISSN 1797-4798 (pdf)

Multiprint Oy

Espoo 2010

ABSTRACT OF DOCTORAL DISSERTATION AALTO UNIVERSITY
SCHOOL OF SCIENCE AND TECHNOLOGY
P.O. BOX 11000, FI-00076 AALTO
http://www.aalto.fi/

Author Nicklas Beijar

Name of the dissertation
Distributed Resource Discovery: Architectures and Applications in Mobile Networks

Manuscript submitted 10.3.2010 Manuscript revised 27.9.2010

Date of the defense 10.12.2010

� Monograph � Article dissertation (summary + original articles)

Faculty Faculty of Electronics, Communications and Automation
Department Department of Communications and Networking
Field of Research Networking
Opponent(s) Professor Frank Fitzek (Aalborg University, Denmark)
Supervisor Professor Raimo Kantola (Aalto University)
Instructor

Abstract

As the amount of digital information and services increases, it becomes increasingly important to be able to locate the
desired content. The purpose of a resource discovery system is to allow available resources (information or services) to be
located using a user-defined search criterion. This work studies distributed resource discovery systems that guarantee all
existing resources to be found and allow a wide range of complex queries. Our goal is to allocate the load uniformly
between the participating nodes, or alternatively to concentrate the load in the nodes with the highest available capacity.
 The first part of the work examines the performance of various existing unstructured architectures and proposes new
architectures that provide features especially valuable in mobile networks. To reduce the network traffic, we use indexing,
which is particularly useful in scenarios, where searches are frequent compared to resource modifications. The ratio
between the search and update frequencies determines the optimal level of indexing. Based on this observation, we
develop an architecture that adjusts itself to changing network conditions and search behavior while maintaining optimal
indexing. We also propose an architecture based on large-scale indexing that we later apply to resource sharing within a
user group. Furthermore, we propose an architecture that relieves the topology constraints of the Parallel Index Clustering
architecture. The performance of the architectures is evaluated using simulation.
 In the second part of the work we apply the architectures to two types of mobile networks: cellular networks and ad
hoc networks. In the cellular network, we first consider scenarios where multiple commercial operators provide a resource
sharing service, and then a scenario where the users share resources without operator support. We evaluate the feasibility
of the mobile peer-to-peer concept using user opinion surveys and technical performance studies. Based on user input we
develop access control and group management algorithms for peer-to-peer networks. The technical evaluation is
performed using prototype implementations. In particular, we examine whether the Session Initiation Protocol can be used
for signaling in peer-to-peer networks. Finally, we study resource discovery in an ad hoc network. We observe that in an
ad hoc network consisting of consumer devices, the capacity and mobility among nodes vary widely. We utilize this
property in order to allocate the load to the high-capacity nodes, which serve lower-capacity nodes. We propose two
methods for constructing a virtual backbone connecting the nodes.

Keywords Resource discovery, peer-to-peer, ad hoc network, distributed search algorithm

ISBN (printed) 978-952-60-3416-4 ISSN (printed) 1797-478X

ISBN (pdf) 978-952-60-3417-1 ISSN (pdf) 1797-4798

Language English Number of pages 220 p.

Publisher Department of Communications and Networking / Aalto University

Print distribution

� The dissertation can be read at http://lib.tkk.fi/Diss/2010/isbn9789526034171/

VÄITÖSKIRJAN TIIVISTELMÄ AALTO-YLIOPISTO
TEKNILLINEN KORKEAKOULU
PL 11000, 00076 AALTO
http://www.aalto.fi/

Tekijä Nicklas Beijar

Väitöskirjan nimi
Hajautettu resurssien paikantaminen: arkkitehtuureja ja sovelluksia mobiiliverkoissa

Käsikirjoituksen päivämäärä 10.3.2010 Korjatun käsikirjoituksen päivämäärä 27.9.2010

Väitöstilaisuuden ajankohta 10.12.2010

� Monografia � Yhdistelmäväitöskirja (yhteenveto + erillisartikkelit)

Tiedekunta Elektroniikan, tietoliikenteen ja automaation tiedekunta

Laitos Tietoliikenne- ja tietoverkkotekniikan laitos

Tutkimusala Tietoverkkotekniikka

Vastaväittäjä(t) Prof. Frank Fitzek (Aalborgin yliopisto, Tanska)

Työn valvoja Prof. Raimo Kantola (Aalto-yliopisto)

Työn ohjaaja

Tiivistelmä

Kun digitaalisen tiedon ja verkkopalvelujen määrät kasvavat, halutun sisällön paikantaminen muuttuu yhä tärkeämmäksi.
Resurssien paikantamisjärjestelmän tehtävänä on mahdollistaa resurssien (tiedon tai palvelujen) paikantaminen käyttäjän
määrittämän hakuehdon avulla. Tämä työ tutkii hajautettuja resurssien paikantamisjärjestelmiä, jotka takaavat kaikkien
olemassa olevien resurssien löytämisen sekä mahdollistavat laajan joukon monimutkaisia hakuja. Tavoitteena on, että
järjestelmän kuorma jakautuisi tasaisesti osallistuvien solmujen kesken tai vaihtoehtoisesti kohdistuisi suurimman
kapasiteetin omaaville solmuille.
 Työn ensimmäisessä osassa esitetään malleja rakenteettomien arkkitehtuurien suorituskyvyn analysointiin sekä
esitetään uusia arkkitehtuureja, jotka tarjoavat erityisesti mobiiliverkkojen kannalta tärkeitä ominaisuuksia. Verkko-
liikenteen pienentämiseen käytetään indeksointia, jonka hyöty näkyy erityisesti skenaarioissa, joissa haut ovat suhteellisen
yleisiä resurssien muutoksiin nähden. Hakujen ja päivitysten esiintymistaajuuksien suhde määrää optimaalisen
indeksoinnin. Tämän havainnon perusteella kehitetään arkkitehtuuri, joka sopeutuu hakukäyttäytymisen sekä verkon
muutoksiin niin, että indeksoinnin taso pysyy optimaalisena. Sitten esitetään kattavaan indeksointiin perustuva
arkkitehtuuri, jota myöhemmin sovelletaan käyttäjäryhmien sisäiseen resurssien jakoon. Lisäksi esitetään arkkitehtuuri,
joka pienentää Parallel Index Clustering -arkkitehtuurin vaatimuksia topologian suhteen. Arkkitehtuurien suorituskyky
arvioidaan simulointien avulla.
 Työn toisessa osassa sovelletaan resurssien paikantamisarkkitehtuureja kahteen mobiiliverkkoon: matkapuhelin-
verkkoon sekä ad hoc -verkkoon. Matkapuhelinverkossa tarkastellaan ensin skenaarioita, joissa kaupalliset operaattorit
yhdessä tarjoavat resurssien jakopalvelun, ja sitten skenaariota, jossa käyttäjät keskenään jakavat resursseja ilman
operaattorin tukea. Arvioidaan mobiilivertaisverkkokonseptin toteutuskelpoisuutta mielipidekyselyjen sekä teknisten
suoritusarviointien avulla. Käyttäjien palautteen perusteella kehitetään pääsynvalvonta- ja ryhmänhallinta-algoritmeja
vertaisverkkoympäristöön. Tekniset arvioinnit tehdään prototyyppitoteutusten avulla. Erityisesti tutkitaan voidaanko
Session Initiation Protocol -protokollaa käyttää vertaisverkkojen merkinantoon. Lopuksi tutkitaan resurssien
paikantamista ad hoc -verkossa. Huomataan, että kuluttajalaitteista koostuvassa ad hoc -verkossa eri laitteiden kapasiteetit
ja liikkuvuudet vaihtelevat laajasti. Tilannetta hyödynnetään siten, että kuorma kohdennetaan korkean kapasiteetin
omaaville solmuille, jotka osaltaan palvelevat tehottomampia solmuja. Ehdotetaan kaksi menetelmää, joiden avulla
solmuja yhdistävä virtuaalirunkoverkko rakennetaan.

Asiasanat resurssien paikantaminen, vertaisverkko, ad hoc verkko, hajautettu hakualgoritmi

ISBN (painettu) 978-952-60-3416-4 ISSN (painettu) 1797-478X

ISBN (pdf) 978-952-60-3417-1 ISSN (pdf) 1797-4798

Kieli Englanti Sivumäärä 220 s.

Julkaisija Tietoliikenne- ja tietoverkkotekniikan laitos / Aalto-yliopisto

Painetun väitöskirjan jakelu

� Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/2010/isbn9789526034171/

SAMMANFATTNING (ABSTRAKT)
AV DOKTORSAVHANDLING

AALTO-UNIVERSITETET
TEKNISKA HÖGSKOLAN
PB 11000, FI-00076 AALTO
http://www.aalto.fi/

Författare Nicklas Beijar

Titel
Distribuerad resursupptäckt: arkitekturer och tillämpningar i mobilnät

Inlämningsdatum för manuskript 10.3.2010 Datum för det korrigerade manuskriptet 27.9.2010

Datum för disputation 10.12.2010

� Monografi � Sammanläggningsavhandling (sammandrag + separata
publikationer)

Fakultet Fakulteten för elektronik, kommunikation och automation

Institution Institutionen för kommunikations- och nätverksteknik

Forskningsområde Nätverksteknik

Opponent(er) Prof. Frank Fitzek (Aalborg Universitet, Danmark)

Övervakare Prof. Raimo Kantola (Aalto-universitetet)

Handledare

Sammanfattning (Abstrakt)

Vartefter som mängden nättjänster och digital information ökar blir det alltmer viktigare att kunna hitta det önskade
innehållet i nätet. Avsikten med ett resursupptäcktssystem är att låta resurser (information eller tjänster) hittas med hjälp
av användardefinierade sökargument. Detta arbete studerar resursupptäcktssystem som garanterar att alla existerande
resurser upphittas och tillåter ett flertal typer av komplexa förfrågan. Vårt mål är att allokera belastningen jämt mellan de
deltagande noderna eller alternativt att koncentrera belastningen till noderna med störst kapacitet.
 Den första delen av detta arbete undersöker prestandan av existerande ostrukturerade arkitekturer och presenterar nya
arkitekturer, vilka erbjuder egenskaper som är speciellt lämpliga i mobilnät. För att reducera nätverkstrafiken använder vi
indexering, som är fördelaktigt framför allt i scenarion där sökning sker oftare än modifiering av resurser. Förhållandet
mellan sök- och uppdateringsfrekvenserna avgör den optimala nivån av indexering. Baserad på denna observation
utvecklar vi en arkitektur som anpassar sig till varierande nätverksförhållanden och sökbeteende samtidigt som en optimal
indexering upprätthålls. Vi presenterar också en arkitektur baserad på omfattande indexering som vi senare tillämpar på
resursdelning inom användargrupper. Dessutom presenterar vi en arkitektur som befriar Parallel Index Clustering
arkitekturen från sina krav på topologin. Arkitekturernas prestanda undersöks genom simulering.
 I den andra delen av arbetet tillämpar vi arkitekturerna i två typer av mobilnät: mobiltelefonnät och ad hoc nätverk. I
mobiltelefonnätet betraktar vi först scenarion där flera kommersiella operatörer erbjuder en resursdelningstjänst och sedan
ett scenario där användarna sinsemellan delar resurser utan hjälp av operatören. Vi undersöker genomförbarheten av det
mobila peer-to-peer konceptet genom användarundersökningar och tekniska utvärderingar. Baserat på användarnas åsikter
utvecklar vi algoritmer för behörighetskontroll och grupphantering för peer-to-peer nätverk. Den tekniska utvärderingen
genomförs med prototyper. Dessutom undersöker vi om Session Initiation Protocol kan användas för signalering i ett
peer-to-peer nät. Till slut studerar vi resursupptäcktssystem i ad hoc nätverk. Vi observerar att nodernas kapacitet och
mobilitet varierar brett i ett ad hoc nätverk bestående av konsumentapparater. Vi utnyttjar denna egenskap för att allokera
belastningen till noder med hög kapacitet, vilka stöder de noder som har lägre kapacitet. Vi presenterar två metoder för
konstruerande av ett virtuellt stamnät som ansluter noderna.

Ämnesord (Nyckelord) resursupptäckt, peer-to-peer nätverk, ad hoc nätverk, distribuerad sökalgoritm

ISBN (tryckt) 978-952-60-3416-4 ISSN (tryckt) 1797-478X

ISBN (pdf) 978-952-60-3417-1 ISSN (pdf) 1797-4798

Språk Engelska Sidantal 220 s.

Utgivare Institutionen för kommunikations- och nätverksteknik / Aalto-universitetet

Distribution av tryckt avhandling

� Avhandlingen är tillgänglig på nätet http://lib.tkk.fi/Diss/2010/isbn9789526034171/

 i

Preface

This dissertation is the result of research within two areas: ad hoc networks and peer-
to-peer networks. Common to both areas is the need to locate resources – information
and services – in the network. While all architectures presented in this work originally
have been designed for mobile networks, they can also be used in fixed networks, and
therefore the generic architectures and the network-specific functions are separately
described in this dissertation.

The work was started in 2003 while I was finishing my Licentiate’s thesis.
Although the dissertation work represented a new research topic, the M.Sc. and
Lic.Sc. topics on IP telephony routing turned out to provide a useful background for
the dissertation work. The decision to do a dissertation on resource discovery was
fortified when I was granted the honor of being admitted to the Graduate School of
Electronics, Telecommunications and Automation (GETA), which provided funding
for a period of four years starting in 2003. In addition, I am grateful for the generous
financial support from the Finnish Foundation for Technology Promotion (TES) and
the TeliaSonera Foundation.

The work on ad hoc networks has been carried out in the MobileMAN project
funded by the European Commission under the Information Society Technologies
programme. The work on peer-to-peer networks started in 2005 in a department
funded project, MobileP2P, where many of the original concepts forming the work
were created. In 2007 the work on peer-to-peer networking continued in the three-year
Decicom project funded by Tekes, Nokia, Ericsson, and Nethawk. This project
enabled the development of the ideas into the form they are presented here.

During the research work, the additional duties of teaching and instructing student
work have provided me with new perspectives and an opportunity to widen my
knowledge. Towards the end of the dissertation work, working in the ICT SHOK
Future Internet research programme has allowed me to work on the foundations for
enabling the peer-to-peer type of communication in future networks.

 ii

Acknowledgements

First of all, I wish to express my gratitude to my supervisor, Professor Raimo Kantola,
whose input and guidance have made this work possible. The proposals and
challenges that he provided made the work an interesting and rewarding journey.

I wish to thank my colleagues and co-authors for their valuable participation in
this work. The most influential persons include Dr. José Costa Requena and Marcin
Matuszewski, with whom I have been privileged to work with in close co-operation. I
also wish to thank Juuso Lehtinen, Tuomo Soinio (née Hyyryläinen), Victor Morales
Reyes, Jarrod Creado and Veikko Pankakoski for their excellent work and inspiring
discussions. I thank Tapio Levä, Aura Palmgren, Susanne Lagerström, and Emma
Nordbäck for their contributions to the user studies. Thanks to Mikko Heikkinen for
valuable input and participation in running the Decicom project. I thank William
Martin for checking the language. I am also indebted to the scientific reviewers of the
thesis, Prof. Jussi Kangasharju from University of Helsinki and Prof. Qin Lv from
University of Colorado at Boulder. My gratitude goes to Prof. Frank Fitzek from
Aalborg University for devoting his time and expertise to act as my opponent.

I am thankful for the productive collaboration with the research teams of Oulu
University, Nokia, Ericsson and Jyväskylä University. In particular,
acknowledgements go to Erkki Harjula, Prof. Mika Ylianttila, Jani Hautakorpi,
Miguel García-Martín, and Mikko Vapa. I wish to thank my international colleagues,
especially the MobileMAN team, for making traveling and conferences rewarding
experiences.

I am grateful for the opportunity to work with the skillful and creative people in
the Department of Communications and Networking, who create an innovative and
motivating atmosphere. The good administrative and technical support from Arja
Hänninen, Sanna Patana, Marja Leppäharju, Kimmo Pitkäniemi, Markus Peuhkuri, to
name but a few, has been crucial in resolving all practical issues.

Many other persons deserve thanks – you know who you are.
I wish to thank my parents for their support and guidance. Last but not least,

thanks to my wife Minna for all the love, encouragement and understanding. Victor,
you are my greatest gift – the time spent with you gives me all the energy.

 iii

Contents

PREFACE ... I

ACKNOWLEDGEMENTS .. II

CONTENTS ... III

LIST OF FIGURES ..VI

LIST OF TABLES ..IX

ABBREVIATIONS .. X

CHAPTER 1 INTRODUCTION .. 1

1.1 BACKGROUND ... 1

1.2 RESEARCH PROBLEM AND OBJECTIVES .. 5

1.3 METHODOLOGY ... 7

1.4 OUR CONTRIBUTION .. 8

1.5 STRUCTURE ... 9

CHAPTER 2 MODELING AND ANALYZING INDEXING ... 11

2.1 INTRODUCTION .. 11

2.1.1 Overlay networks .. 13

2.1.2 Topologies ... 14

2.1.3 Distribution algorithms in random topologies .. 16

2.2 RELATED RESEARCH .. 18

2.3 OUR CONTRIBUTION .. 19

2.4 MODELING INDEXING .. 20

2.4.1 Terms and definitions .. 20

2.4.2 Fundamental properties of a resource discovery architecture 22

2.4.3 Network model parameters ... 25

2.4.4 Performance metrics ... 26

2.4.5 Overhead ... 30

2.4.6 Overhead of distribution algorithms ... 31

2.4.7 Frequency of index updates ... 33

2.4.8 Common indexing architectures .. 34

2.4.9 Simulator for overlay networks ... 38

2.5 ANALYZING UNIFORM INDEXING ARCHITECTURES .. 41

2.5.1 The Search/Index Space model ... 41

2.5.2 Optimal balance between proactive and reactive operations 44

2.5.3 Optimal balance for non-optimal search and index distribution algorithms 45

2.5.4 When are the extremes optimal? ... 46

2.5.5 Analyzing practical implementations .. 47

2.5.6 Applying the Search/Index Space model to PIC and PSC 48

2.5.7 Application to non-uniform architectures ... 49

2.6 SUMMARY ... 50

CHAPTER 3 UNIFORM INDEXING ARCHITECTURES ... 51

3.1 INTRODUCTION .. 51

3.2 RELATED RESEARCH .. 52

3.2.1 Unstructured systems .. 52

3.2.2 Structured systems ... 54

3.2.3 Loosely structured systems .. 55

3.3 OUR CONTRIBUTION .. 56

3.4 CLUSTERED INDEXING ARCHITECTURES .. 57

3.4.1 Scalability of the PIC topology ... 58

3.4.2 IPIC: Indirectly connected Parallel Index Clusters .. 58

 iv

3.4.3 Stack-based random walk (SBRW) .. 59

3.4.4 Backtracking ... 60

3.4.5 Replicating stack-based random walk (RSBRW) .. 61

3.4.6 Topology construction ... 61

3.4.7 Hierarchical PIC and IPIC ... 62

3.4.8 Performance of architectures based on PIC ... 63

3.4.9 Replicated resources ... 66

3.4.10 Difference in cluster sizes ... 67

3.4.11 The cost of index distribution .. 69

3.4.12 Related architectures .. 69

3.4.13 Comparison ... 69

3.5 ZONE INDEXING – A PROACTIVE-REACTIVE HYBRID ARCHITECTURE 71

3.5.1 Topology.. 71

3.5.2 Index distribution algorithm .. 72

3.5.3 Search algorithm ... 73

3.5.4 Experimental setup for simulations of Zone Indexing ... 75

3.5.5 Performance of the basic version of Zone Indexing .. 75

3.5.6 Performance under optimal zone size ... 77

3.5.7 Algorithm for dynamic control of zone size ... 80

3.5.8 Avoidance of local redundancy ... 81

3.5.9 Evaluation of the algorithm for zone size control ... 82

3.5.10 Searching using shortcuts ... 83

3.5.11 Algorithm for delay control ... 84

3.5.12 Performance of delay control .. 85

3.5.13 Algorithm for topology maintenance ... 88

3.5.14 Algorithm for topology maintenance in exceptional cases 88

3.5.15 Performance under churn ... 89

3.5.16 Replicated resources ... 91

3.5.17 Comparison ... 91

3.6 DIRECT INDEX – A FULLY PROACTIVE ARCHITECTURE ... 92

3.6.1 Algorithm .. 93

3.6.2 Index compression ... 94

3.6.3 Performance .. 95

3.6.4 Related architectures .. 98

3.6.5 Comparison ... 98

3.7 SUMMARY ... 100

CHAPTER 4 RESOURCE DISCOVERY IN CELLULAR NETWORKS 102

4.1 INTRODUCTION .. 102

4.1.1 Considered networks ... 103

4.1.2 Technical constraints .. 104

4.1.3 Mobile peer-to-peer scenarios .. 105

4.2 RELATED RESEARCH .. 106

4.3 OUR CONTRIBUTION .. 107

4.4 MOBILE PEER-TO-PEER SERVICES FROM THE USER’S PERSPECTIVE 109

4.4.1 Interest in obtaining content ... 110

4.4.2 Willingness to share content ... 113

4.4.3 Access control and user groups... 114

4.4.4 Interesting applications ... 116

4.4.5 Constraints .. 116

4.4.6 Cost ... 117

4.4.7 Considerations .. 118

4.5 ARCHITECTURES FOR OPERATOR-CONTROLLED PEER-TO-PEER SERVICES 118

4.5.1 Two-layer hierarchical architecture ... 119

4.5.2 Implementation in IMS .. 121

4.5.3 Group management and access control .. 124

4.5.4 Architectures for the core overlay network ... 126

4.6 PEER-TO-PEER WITH DECENTRALIZED CONTROL ... 132

4.6.1 Scenario .. 132

4.6.2 Social network model .. 133

 v

4.6.3 Group management and policies ... 135

4.6.4 Implementing resource discovery in a mobile social network 136

4.6.5 Feasibility of proactive architectures.. 140

4.6.6 Index compression ... 141

4.7 SIP SIGNALING SCHEMES FOR RESOURCE DISCOVERY.. 143

4.7.1 Resource discovery with SIP ... 143

4.7.2 Signaling scheme based on INVITE .. 145

4.7.3 Signaling scheme based on SUBSCRIBE/NOTIFY ... 147

4.7.4 Signaling in resource access ... 148

4.8 TECHNICAL FEASIBILITY OF PEER-TO-PEER IN CELLULAR NETWORKS............................ 149

4.8.1 Prototypes ... 150

4.8.2 Feasibility in mobile device ... 151

4.8.3 Feasibility of SIP signaling ... 152

4.8.4 Network performance .. 154

4.8.5 Summary of evaluation .. 158

4.9 TECHNICAL FEASIBILITY OF DECENTRALIZED GROUP-BASED PEER-TO-PEER 159

4.9.1 Prototype ... 160

4.9.2 Feasibility tests.. 161

4.9.3 Summary of evaluation .. 162

4.10 SUMMARY .. 162

CHAPTER 5 RESOURCE DISCOVERY IN MOBILE AD HOC NETWORKS 164

5.1 INTRODUCTION .. 164

5.2 RELATED RESEARCH .. 166

5.2.1 Dominating sets and virtual backbones .. 166

5.2.2 Clustering .. 167

5.2.3 Service discovery ... 168

5.3 OUR CONTRIBUTION .. 169

5.4 COMBINING PROACTIVE AND REACTIVE ROUTING ... 170

5.5 UTILIZING CAPACITY HETEROGENEITY .. 172

5.6 VIRTUAL BACKBONE FOR COMBINING PROACTIVE AND REACTIVE PROTOCOLS 173

5.6.1 Local role determination ... 173

5.6.2 Forming a backbone ... 174

5.7 CLUSTERING BASED ON CAPACITY... 175

5.7.1 Objective of clustering .. 176

5.7.2 Node attributes .. 177

5.7.3 Clustering algorithm ... 179

5.7.4 Connecting algorithm .. 181

5.7.5 Simulation ... 182

5.7.6 Routing and service discovery based on clustering .. 188

5.8 SUMMARY ... 190

CHAPTER 6 CONCLUSIONS ... 192

6.1 RESULTS AND DISCUSSION ... 192

6.2 SUMMARY OF CONTRIBUTION .. 197

6.3 FUTURE RESEARCH .. 199

REFERENCES ... 201

 vi

List of figures

Figure 2.1. The resource retrieval process. .. 13

Figure 2.2. Example network modeled with QIL. ... 19

Figure 2.3. (a) Search flooding, (b) centralized, and (c) semi-centralized architectures
modeled with QIL. ... 36

Figure 2.4. A (a) PIC network and a (b) PSC network modeled with QIL. 38

Figure 2.5. The continuous Search/Index Space model. .. 42

Figure 2.6. The discrete Search/Index Space model. ... 43

Figure 2.7. The Search/Index Space model with (a) a reactive system and (b) a
proactive system. .. 43

Figure 2.8. Torus architecture. ... 44

Figure 2.9. Areas of optimality for proactive, reactive and hybrid architectures. 47

Figure 2.10. A semi-centralized architecture in the Search/Index Space model. 50

Figure 3.1. Flooding with a trace starting from node A resulting in receptions by two
nodes, B and C, in the same cluster. ... 59

Figure 3.2. Number of links in the network. .. 64

Figure 3.3. Scalability in terms of Ms. ... 64

Figure 3.4. Scalability in terms of Ωs. .. 65

Figure 3.5. Scalability in terms of search delay. .. 66

Figure 3.6. Effect of replication on Ms... 66

Figure 3.7. Effect of replication on search delay. .. 67

Figure 3.8. Average and maximum number of received messages per search under
different cluster configurations. ... 68

Figure 3.9. Normalized maximum number of received messages per search under
different cluster configurations. ... 68

Figure 3.10. An example Zone Indexing network from the perspective of node E. 72

Figure 3.11. Index reception algorithm of node w. .. 73

Figure 3.12. Algorithm for determining the border node of node w. 74

Figure 3.13. Forwarding a search request in a Zone Indexing network. 74

Figure 3.14. Received index and search messages vs. zone size. 76

Figure 3.15. Received messages vs. zone size for different search/index ratios. 76

Figure 3.16. Average search delay when no shortcuts are used. 77

Figure 3.17. Zone indexing in the Search/Index Space model. 78

Figure 3.18. Received message vs. network size when zone size is optimal. 78

Figure 3.19. Average search delay vs. network size when zone size is optimal. 79

Figure 3.20. Redundancy caused by large variation in zone size. 81

Figure 3.21. The adaptation of zone size in time. .. 82

Figure 3.22. Dynamically adjusted zone sizes compared to optimal ones. 83

Figure 3.23. Searching using shortcuts. ... 84

Figure 3.24. Average search delay when shortcuts are enabled. 86

Figure 3.25. Effect of the shortcut interval on the average search delay. 86

Figure 3.26. Received messages when shortcuts are enabled. 87

Figure 3.27. Example of interleaving to repair the overlay. .. 89

Figure 3.28. Effect of churn on success ratio. .. 90

Figure 3.29. Effect of churn on the frequency of received messages. 90

 vii

Figure 3.30. Update exchange signaling in Direct Index. .. 94

Figure 3.31. Message receptions depending on the search/index ratio. 96

Figure 3.32. Message receptions under increasing node degree. 97

Figure 3.33. Message receptions under increasing network size. 97

Figure 3.34. Delay under increasing network size. .. 98

Figure 3.35. Flowchart for considering proactive solutions. 100

Figure 4.1. Interest in downloading content to a mobile phone in Survey 1. 111

Figure 4.2. Interest in downloading content to a mobile phone in Survey 2. 111

Figure 4.3. Interest in downloading content from different groups of users to a mobile
phone in Survey 2. .. 111

Figure 4.4. Interest in downloading content to a mobile phone in Survey 3. 112

Figure 4.5. Willingness to share content with different groups of users in Survey 1.
 .. 113

Figure 4.6. Willingness to share content with different groups of users in Survey 2.
 .. 114

Figure 4.7. Willingness to share different types of content in Survey 2. 114

Figure 4.8. Willingness to share different types of content in Survey 3. 114

Figure 4.9. Methods of controlling file access. .. 115

Figure 4.10. Methods of assigning access rights. .. 115

Figure 4.11. Group sizes. ... 115

Figure 4.12. Effect of various constraints on service use. ... 117

Figure 4.13. Acceptable search delay. ... 117

Figure 4.14. Architecture for hierarchical operator-controlled peer-to-peer service. 120

Figure 4.15. Peer-to-peer resource sharing service in the IMS. 122

Figure 4.16. Social network with groups of category G. ... 134

Figure 4.17. Flooding to group members. .. 137

Figure 4.18. Pseudo-code for node v when timer Tw expires. 139

Figure 4.19. Pseudo-code for node v sending an update to node w. 139

Figure 4.20. Pseudo-code for node v handling an update received from node w. 139

Figure 4.21. Pseudo-code for v handling an acknowledgement received from w. 139

Figure 4.22. Signaling in target scheme. .. 146

Figure 4.23. Signaling using the resource event package. ... 148

Figure 4.24. Signaling in resource access. ... 149

Figure 4.25. The Client Application. ... 152

Figure 4.26. Signaling in the implemented scheme. .. 153

Figure 4.27. Topologies in Testbed O1 for testing of search delays. 156

Figure 4.28. Cumulative distribution of search delays in topologies 1 – 4. 156

Figure 4.29. Direct Index prototype application on Nokia E61i [Pan09]. 160

Figure 5.1. Typical relationship between capacity and mobility. 172

Figure 5.2. Example cluster. .. 178

Figure 5.3. Difference between (a) variant 1 and (b) variant 2. 180

Figure 5.4: Example of three connected clusters. .. 181

Figure 5.5: Node types in comparison of algorithm versions. 184

Figure 5.6: Stability in comparison of algorithm versions. 184

Figure 5.7: Node types in Keep-Cluster strategy. .. 185

Figure 5.8: Stability in Keep-Cluster strategy. .. 185

Figure 5.9: Node types in networks of varying density. .. 186

Figure 5.10: Example screenshot with added cluster borders. 186

Figure 5.11: Stability in networks of varying density.. 187

Figure 5.12: Average cluster size and size of the DV and NIT tables. 187

 viii

Figure 5.13: Node types under varying mobility. .. 188

Figure 5.14: Stability under varying mobility. ... 188

 ix

List of tables

Table 2.1. Input parameters. .. 26

Table 2.2. Traffic metrics. .. 28

Table 2.3. Transaction metrics. .. 29

Table 2.4. Quality metrics. ... 29

Table 2.5. Overhead of flooding. ... 32

Table 2.6. Properties of the PIC and PSC architectures under optimal cluster size. ... 49

Table 3.1. Number of nodes per cluster in the examined scenarios. 68

Table 3.2. Properties of the PIC, IPIC-SBRW and IPIC-RSBRW architectures and
comparison to standard flooding. ... 70

Table 3.3. Additional traffic and delay reduction caused by shortcuts. 87

Table 3.4. Properties of the Zone Indexing architectures with and without shortcuts,
and a comparison with Chord. .. 92

Table 3.5. Properties of flooded search, flooded index and Direct Index. 99

Table 4.1. Key characteristics of edge and core nodes. ... 120

Table 4.2. Properties of the core overlay architectures from operator’s viewpoint. .. 131

Table 4.3. Properties of the core overlay architectures from operator’s viewpoint. .. 132

Table 4.4. Sizes of SIP messages in prototype. ... 155

Table 4.5. Search delays in topologies 1 - 4. ... 156

Table 4.6. Validity of postulates. ... 159

Table 4.7. Validity of postulates. ... 162

Table 5.1. Applying the Search/Index Space model to overlay and ad hoc networks.
 .. 171

Table 5.2. Attributes of a node v. ... 178

Table 5.3. Simulation parameters and their default values. 183

Table 5.4. Routing models based on the cluster structure. .. 190

 x

Abbreviations

3G 3rd Generation
3GPP 3rd Generation Partnership Project
AMC Adaptive Multi-hop Clustering
AODV Ad hoc On-demand Distance Vector
AS Application Server
CDF Cumulative Distribution Function
CDS Connected Dominating Set
DDCA Distributed Dynamic Clustering Algorithm
DHT Distributed Hash Table
DLBC Degree-Load-Balancing Clustering
DNS Domain Name System
DOM Document Object Model
DSDV Destination Sequence Distance Vector
DSR Dynamic Source Routing
DVMRP Distance Vector Multicast Routing Protocol
FTP File Transfer Protocol
GGSN Gateway GPRS Support Node
GPS Global Positioning System
GSM Global System for Mobile communications
GUI Graphical User Interface
HSS Home Subscriber Server
HTTP Hypertext Transfer Protocol
ID Identity
IETF Internet Engineering Task Force
IMS IP Multimedia Subsystem
ICE Interactive Connectivity Establishment
IP Internet Protocol
IPIC Indirect Parallel Index Clusters
IPR Intellectual Property Rights
J2ME Java 2 Micro Edition
MAC Medium Access Control
MANET Mobile Ad hoc Network
MCDS Minimum Connected Dominating Set
MIDP Mobile Information Device Profile
MP3 MPEG-1 Audio Layer 3
MPEG Moving Picture Expert Group
MSRP Message Session Relay Protocol
MST Minimum Spanning Tree
N/A Not Available
NAT Network Address Translator
OLSR Optimized Link State Routing
OSPF Open Shortest Path First
P2P Peer-to-Peer
PDA Personal Data Assistant

 xi

PIC Parallel Index Clusters
PID Proportional-Integral-Derivative
PIM-DM Protocol Independent Multicast Dense Mode
PSC Parallel Search Clusters
QIL Query/Index Link
RIP Routing Information Protocol
RSBRW Replicating Stack-Based Random Walk
RSTP Rapid Spanning Tree Protocol
SBRW Stack-Based Random Walk
SDP Session Description Protocol
SIL Search/Index Link
SIP Session Initiation Protocol
SLP Service Location Protocol
SSDP Simple Service Discovery Protocol
STP Spanning Tree Protocol
TCP Transmission Control Protocol
TTL Time-To-Live
TURN Traversal Using Relay NAT
UDP User Datagram Protocol
UMTS Universal Mobile Telecommunications System
UPnP Universal Plug and Play
URI Uniform Resource Identifier
VoIP Voice over IP
WCDMA Wideband Code Division Multiple Access
WLAN Wireless Local Area Network
WWW Word Wide Web
XML eXtensible Markup Language
ZRP Zone Routing Protocol

1

Chapter 1

Introduction

1.1 Background

The Internet is built on the philosophy that the control and intelligence
should be at the network edge instead of at the core [SRC84]. Currently,
a similar shift toward the edge is seen in the information and media
market. This shift concerns both the production of media and the
distribution technology [KK08]. Whereas media was earlier generated by
large organizations and published through a few distribution channels, the
popularity of user-generated content has increased rapidly during recent
years. The main enablers have been the improved technical possibilities
for ordinary users to create and publish digital media [VW07]. Users
have a large choice of distribution services, including YouTube
[YouTube] for publishing video material, Flickr [Flickr] for publishing
photos, myHeimat [myHeimat] for citizen journalism and justin.tv
[JustinTV] for live broadcasts. In several popular services, such as
Wikipedia [Wikipedia], the ordinary user is responsible for creating and
maintaining the information and the service. Personal opinions and
experience can be published through various blogging systems, bulletin
boards and chat systems. Distribution of files and media has traditionally
been implemented using servers in the network, using for example the
File Transfer Protocol (FTP) and the World Wide Web (WWW).
Distributed systems, such as peer-to-peer (P2P) file sharing systems and
personal web-servers are currently rising as an interesting alternative to
server-based systems. Moving the distribution system to the network
edge allows saving costs by avoiding large centralized servers.

The trend of decentralization fits well with the currently popular Web
2.0 ideology. Web 2.0 [ORe05] refers to web services emphasizing user-
created content, social networks, communities and collaboration.
Facebook [Facebook], MySpace [MySpace], and LinkedIn [LinkedIn] are
examples of popular services allowing users to network and keep in touch
with other users. These online communities also support the distribution
of user-generated media by controlling the access and focusing the
attention on topics relevant to a given user.

2

Electronic devices are being equipped with an increasing amount of
processing power, memory and communication capabilities at the same
time as they become more lightweight and mobile. Today’s mobile
phones, Personal Data Assistants (PDAs), cameras, and music players
have capacities comparable to those of computers a few years ago. In
particular, mobile phones have been at the center of development, with
increasing memory and processor capacity and a wide range of integrated
applications and peripherals. Modern mobile phones are equipped with
cameras, media players, radio, television and Global Positioning System
(GPS) receivers. This broadens the use of the phone from simple voice
communications to video communications, media sharing, collaboration,
entertainment, and gaming. The phone is becoming a device for creating
and consuming all types of digital media. The powerful capabilities and
open software development platforms of mobile phones, and their wide
range of communication networks, make these devices capable of
participating in the current trend of user-generated media and social
networking. As the phone is light and small, the user carries it along
almost always. In addition to the applications known in the fixed
network, mobility gives room for new innovative applications and
services that were not meaningful in a fixed computer.

A variety of network technologies allow mobile devices to
interconnect with other devices and with external services. Cellular
networks, such as GSM (Global System for Mobile communications) and
UMTS (Universal Mobile Telecommunications System) are by far the
most popular for voice communications. Driven by the Internet, the share
of packet data traffic on these networks increases. Cellular networks
provide good mobility with wide coverage. They are based on a fixed
infrastructure controlled by the operator. For local data communications,
Wireless Local Area Networks (WLANs) are common. They typically
connect to the public Internet through the private network of an
organization. Complementary to the above technologies, recent research
efforts have produced data networks operating between the devices
without any fixed infrastructure. These so called wireless mesh networks,
or mobile ad hoc networks (MANETs), are formed of mobile devices co-
operating to forward packets where the radio range of a single sender is
not sufficiently large to cover the destination. They are typically built on
top of IEEE 802.11 [IEEE2007] or Bluetooth [Bluetooth] technology.
Their lack of centralized elements leads to using decentralized algorithms
for routing, resource discovery and other network management functions,
making them inherently self-organizing.

As the amount of information increases, the importance of being able
to locate the desired resources is emphasized. For web pages, search
engines like Google [Google] provide a fast and convenient method for
locating a page containing a specified keyword. Search engines, however,
are not able to locate recently created pages, dynamically generated pages
and pages with access limitations. Furthermore, searching is limited to
keywords without support for more expressive semantics. Since the
search is central to the operation of many web services, these often
provide a separate search system to bypass the restrictions of search

3

engines. These, however, operate only locally. As the information moves
to the network edge, there is a growing need for scalable methods to
locate information in the terminals, in user communities and in social
networks. In addition to information, there is a need to locate services,
users, communities, events, and hardware resources.

Vanthournout et al. [VDB05] define a resource as “any source of
supply, support, or aid that a component in a networked environment can
readily draw upon when needed. Examples are: files, measurements, CPU
cycles, memory, printing, control devices, forums, online shops, etc.”
Vanthournout et al. define resource discovery as the “ability to locate
resources that comply to a set of requirements given in a query.” They
further define a resource discovery service as “the service that returns the
location of matching resources in response to a query with requirements.”
The resource discovery service thus takes a query as input and returns a
location. In this work we also use the terms resource discovery system as
a synonym for resource discovery service.

Schwarz et al. [SEK+92] define searching as “an automated process,
where the user provides some information about the resources being
sought, and the system locates some appropriate matches.” Thus, the
search does not identify any specific resource and does not initiate the
access to the resources. Schwarz et al. further define browsing as “the
user-guided activity of exploring the contents of a resource space.” The
resource space may include all resources in the system but typically the
resources are limited to the ones residing at a given location. In addition
to searching and browsing, we can identify a third type of information
retrieval. In a lookup, the identity of a resource is known and the
information, including the location, is desired. As a result of searching,
browsing or a lookup, a given resource may be selected for access by the
user. Each type of resource may be accessed in a different way. For
example, a file is downloaded using an indicated file transfer protocol.

Resource discovery is a central component in peer-to-peer (P2P)
systems. Schollmeier [Sch01] defines peer-to-peer as “a distributed
network architecture, where the participants share a part of their own
hardware resources (processing power, storage capacity, network link
capacity, printers, etc.). These shared resources are necessary to provide
the service and content offered by the network (e.g. file-sharing or shared
workspaces for collaboration). They are accessible by other peers
directly, without passing intermediary entities. The participants of such a
network are thus resource (service and content) providers as well as
resource (service and content) requesters (servent-concept).”
Androutsellis-Theotokis and Spinellis [AS04] define peer-to-peer
systems as “distributed systems consisting of interconnected nodes able
to self-organize into network topologies with the purpose of sharing
resources such as content, CPU cycles, storage and bandwidth, capable of
adapting to failures and accommodating transient populations of nodes
while maintaining acceptable connectivity and performance, without
requiring the intermediation or support of a global centralized server or
authority.” Roussopoulos et al. [RBR+04] characterize peer-to-peer
systems as self-organizing systems with symmetric communication and
decentralized control.

4

Hitherto peer-to-peer has been nearly synonymous with file sharing,
with popular systems for sharing music and video material (e.g. Napster
[Napster], Gnutella [Gnutella]) or documents (e.g. Freenet [Freenet]). It
has been estimated that up to 70% [KBB+04] and 80% [FLM+03] of the
Internet traffic is related to peer-to-peer file sharing, depending on the
measurement point and how peer-to-peer traffic is identified. During
night-time, the peer-to-peer traffic stands for nearly all of the total traffic
[FLM+03]. Currently most of the activity in file sharing systems is illegal
distribution of copyrighted files, such as music and movies, but legal
applications are emerging. For example, the BitTorrent [BitTorrent] peer-
to-peer protocol is used for the distribution of the Linux operating system
[How03]. Commercial content providers are considering peer-to-peer
systems as an efficient distribution method allowing cost savings and
reducing the need for massive server farms as the users themselves
contribute with the storage, bandwidth and processing power. Examples
include Spotify [Spotify] for delivering streamed music and the P2P-Next
[P2PNext] project aiming to provide large-scale delivery of video
streams.

Peer-to-peer systems can be used in applications beyond file sharing.
The peer-to-peer approach has been proposed as the underlying model for
a wide variety of applications, from storage systems and cooperative
content distribution to Web caching and communication infrastructures
[QB06]. Seti@home [SETI] utilizes a peer-to-peer approach to combine
the unused computer capacity of several users to analyze telescope data.
Skype [Skype] utilizes peer-to-peer technology in order to locate users
and bypass firewalls in the distributed implementation of Internet
telephony. Whereas conventional Internet telephony, represented by the
Session Initiation Protocol (SIP) [RSC+02] and H.323 [ITU98], has been
based on servers, a distributed version of the SIP protocol, P2P-SIP
[P2PSIP], is being developed within the Internet Engineering Task Force
(IETF). Peer-to-peer technology can also be utilized to implement
applications similar to the currently popular Web 2.0 services,
represented by LinkedIn [LinkedIn], Facebook [Facebook], Flickr
[Flickr], blogs, and chat and discussion groups. The inherent peer-to-peer
type of interaction between users and the need for large servers in these
applications make them good candidates for distribution. Roussopoulos et
al. [RBR+04] categorize applications into the following general problem
areas that are suggested as suitable for peer-to-peer: routing problems,
backup, distributed monitoring, data sharing, data dissemination and
auditing.

The popularity and interest in peer-to-peer systems can be explained
by a few advantages. First, the load is distributed between the participants
and individuals can distribute files practically without any costs. The
storage space and bandwidth consumption is distributed between users
eliminating the need for a server with massive capacity. This lowers the
costs and risks in the introduction of a new service. For commercial
providers, distribution offers lower requirements on server capacity and
better scalability, which above all reduces the capital expenditure but also
operation expenditure. For new providers, peer-to-peer systems lower the

5

entrance costs to the market. Moreover, the responsibility is distributed.
No single service provider is responsible for hosting the material. It is
difficult to track the participants, and there is no single point that can be
shut down and held responsible, which has been an important driver
especially in illegal file sharing. The system is also fault tolerant and
provides a high degree of self-organization and load-balancing [YG02].
Traditional client-server solutions show their restrictions especially under
peak usage [T08].

From the individual user’s perspective the drawback is the required
contribution and effort. Each peer-to-peer system uses some of the
processing power, storage and bandwidth of the user. Participating in
several peer-to-peer systems simultaneously multiplies these
requirements. Each peer-to-peer system also requires an application to be
installed, which is more cumbersome than using an application residing
on a web server. These problems can be alleviated by implementing the
peer-to-peer functionality as middleware, allowing a common resource
discovery system to be shared between several applications.

A peer-to-peer file sharing application represents a typical
application of resource discovery. The desired file is specified in a query
that defines the attributes of the file. The most common attribute is the
file name, but other important attributes include the file type, the
description, the artist and the bitrate of a MP3 song, the codec of a video
file, etc. Using peer-to-peer in a mobile environment gives new possible
attributes, for example the location where a picture is taken. A search
mechanism can be used to search for several other types of resources,
such as a video streaming service or a chat group.

1.2 Research problem and objectives

The design of a resource discovery system is a tradeoff between several
factors. During the last few years, most of the research on resource
discovery has been concentrated on structured systems, i.e. systems with
strict rules for the topology and location of information. In these, the
requirements in terms of versatility have been lowered in favor of high
efficiency. The main restriction of structured systems is that they are
fundamentally restricted to exact-match single-key queries without any
possibility to express complex queries [RM06]. Complex queries are
required in several types of applications, where the desired resource is
specified using multiple attributes, value ranges, numerical and string
operations, substrings etc.

On the other hand, the high overhead of unstructured systems
restricts their scalability, particularly in mobile networks. To improve
scalability, the search scope is reduced in several systems. These systems
are only able to locate a resource with a given probability and they are
unable to guarantee finding a resource consequently. While such systems
may be adequate for file sharing where the number of replicas is high and
the harm of not detecting a file is low, reliable methods are needed to
provide support for several other types of applications where resources
may be unique or the number of replicas may be low.

6

Another common way to improve efficiency has been to increase the
degree of centralization. This implies an unevenly distributed load, which
may demotivate users from participating in the system. Our objective is
to allocate the load according to the available capacity while maintaining
a motivation to participate in the system. When all devices are similar, it
is meaningful to allocate an equal load to each device. When some of the
devices have a significantly higher capacity, and are maintained by a
party willing to provide this capacity to the system, the aim is that these
high-capacity devices bear a higher load. The load is primarily measured
as the network traffic and storage.

In this work, we study distributed resource discovery systems with a
special focus on mobile networks. We study approaches to designing a
system that is efficient yet generic. The design requirements common to
all architectures proposed in this work are:

• Reliable and predictable operation. If a requested resource exists in
the system, then it must be found in each search.

• Support for complex queries. The application should be able to define
any kind of query without customizing the overlay according to the
query type.

• Load distribution. Load should be distributed uniformly between
nodes or, where justifiable, according to device capacities.

• Practically implementable. The architecture must be feasible to
implement in practice, considering the requirements on topology,
maintenance, and usage. Nodes should be able to join and leave the
system without causing large restructuring of the network.

• Minimized traffic. Considering all other requirements, the control
traffic must be minimized.

In this work, we aim to address these properties by proposing a
modeling framework and based on that framework we develop new
architectures. The architectures developed in this work are intended for,
but not limited to mobile networks. The mobile networks considered
include cellular networks and ad hoc networks. These environments call
for solutions that reduce the required bandwidth and energy consumption
in the devices. The resource discovery is seen as a general service
provided to a wide range of applications. Thus, the resource discovery
can be implemented as middleware utilized by several applications
running on the device. For the cellular network, we also aim to propose
scenarios how resource discovery architectures can be utilized in the
implementation of a resource sharing service – either provided by the
cellular operator or running among the users themselves. We base the
scenarios on the input from user studies. We further aim to evaluate the
technical feasibility of such a service.

Although we recognize that security is important in all distributed
systems, we do not attempt to analyze security threats or to develop
solutions against malicious attacks, such as denial of service, as part of
this work. We only consider the functional aspects of the resource
discovery, such as hiding resources to which the requester has no access
rights.

7

In our study, a resource can be any information or service that should
be located. The resources may reside in any of the participating devices.
We exclude systems relying heavily on a globally agreed classification of
resources into different types as this may be impractical in open and
heterogeneous scenarios. This eliminates systems where the nodes must
be pre-classified according to their interest or where resources must be
manually categorized into fixed categories. We do not consider how
resources are specified, i.e. the format and content of the metadata. We
aim to provide a general service that is not designed for any specific
application. We exclude strictly structured systems. Finally, we also
exclude work on the methods for accessing a located resource, as the
method is specific to the type of resource.

1.3 Methodology

This work proposes several new algorithms and architectures. System and
algorithm design is therefore the main method used in the work. The
proposed solutions are tested and verified using various methods. For the
technical evaluation, we use mathematical analysis, simulation and
prototype implementations. The user study is based on questionnaires and
interviews.

Mathematical analysis allows systems to be quickly and accurately
studied. However, the model must often be simplified and generalized in
order to allow analysis. In this work, mathematical analysis is used for
determining parameters, for analyzing the expected performance of a
system, and for explaining the experimental results.

Simulation allows a system to be implemented and tested in a
controlled environment. The model of the system is more complex and
realistic, and resembles the final implementation closely. However, the
evaluation is exposed to the assumptions and approximation of the
simulated external environment. All proposed architectures have been
evaluated using simulation.

Implementation provides information about the actual performance
of a system, usually using a simplified prototype. While prototyping
gives real-world information, it is usually limited to tests with a few
devices. This work uses prototype implementations to evaluate the
performance of the mobile device and the wireless connections.
Prototypes are also implemented to verify that the simulated architectures
work in real networks and to detect shortcomings in the practical
applicability.

Questionnaires and interviews provide information about how the
user thinks and behaves. In this work, questionnaires and interviews have
been used to aid the design of group-based resource discovery systems, to
provide motivation for design choices and to provide input parameters.
Large-scale user testing with implemented systems is, however, out of the
scope of this work, which concentrates more on technical questions.

8

1.4 Our contribution

This thesis is written as a monograph. It is partially based on several
publications authored or coauthored by the present author. The work
presented in most of the publications has been extended. Additionally,
this thesis contains material that has not been published earlier.

The main contributions of our work are the following.

1. A model for analyzing resource discovery systems. In particular, we
propose a model that analyzes the balance between proactive and
reactive operations.

2. Three new resource discovery architectures and the related
algorithms. The first architecture extends the Parallel Index Clusters
[CG03] architecture, allowing arbitrarily interconnected clusters. The
second architecture minimizes the traffic by making the division
between proactive and reactive operations optimal. This architecture
is able to adapt to changing network conditions. The third
architecture is fully proactive with a low traffic overhead.

3. Deployment scenarios and implementation considerations for
resource discovery in a cellular network, both when the service is
provided by an operator and when the service is maintained by the
users in a distributed fashion. The contribution includes proposals to
signaling schemes based on the Session Initiation Protocol.

4. Studies on the feasibility of resource discovery in a cellular network
both from the user perspective and from a technical standpoint. The
former is based on questionnaires and interviews, and the latter on
prototype implementations.

5. Methods to organize the nodes in an ad-hoc network into clusters or
into a backbone in order to allocate the largest load to the nodes with
the highest capacity. The organization is the basis for a resource
discovery system.

6. A simulator for evaluating the performance of overlay networks.

The original contributions of the present author can be found in this
work and the following publications.

• The modeling work in Chapter 2 is mostly new unpublished work,
except for the Search/Index Space model published in [Bei10]. This
represents the sole work of the present author.

• The three architectures in Chapter 3 have been published in [Bei07a],
[Bei10], and [Bei07b], respectively. These are the sole work of the
present author.

• Results from one of the user studies of Chapter 4 have been published
in [MBL+07] and [MBL+06b]. The operator-controlled architecture,
the SIP-based signaling schemes and some measurements have been
published in [BML+05], [MBL+06b], and [MGB+07]. The signaling
has also been proposed for standardization in [GMB+06]. The fully
distributed architecture has been published in [Bei07b], with the
protocol specified in [Bei07c]. This work extends the published
works and integrates the different approaches.

9

• The fundamental ideas for the categorization of devices and the
creation of the virtual backbone in Chapter 5 are published in
[CBK02], [CBK04], [CGK+04], [CKB05], and [CVK+06]. The
algorithms for clustering the network according to capacity are
published in [BKC05]. A shorter version of this publication has also
been published as a book chapter [BKC06]. This work extends the
published work.

• In addition to the publications directly related to resource discovery,
the author previously participated in research on IP telephony and
interoperability [KCB00], [KCB01], [Bei04]. These have given
background on the methods in mapping, routing and distribution. The
author has also worked on resource discovery in peer-to-peer SIP
(P2P-SIP) [HHB09].

Consequently, part of the results of this work can be found in existing
publications. This work, however, complements and extends the work in
these publications. The work is structured as a monograph to give a more
comprehensive view and a progressive approach to the research.

All simulations of overlays are performed using PONGsim
[PONGsim], a simulation package developed by the present author.
PONGsim is described in a technical report [Bei09]. Publication
[BKC05] uses a predecessor of PONGsim for simulating ad hoc
topologies.

Related work has been published in student work instructed by the
present author. Parts of the prototype implementations have been
presented in the Master’s theses [Leh06] and [Rey07] as well as in the
special assignments [Hyy06] and [Pan09]. The Master’s thesis [Soi09]
categorizes and proposes access control methods. Some of the surveys
are described in the Bachelor’s theses [Lag09], [Nor09], and [Pal09] and
in the special assignment [Lev09].

We present the detailed contributions for each chapter separately in
Sections 2.3, 3.3, 4.3, and 5.3.

1.5 Structure

The work studies resource discovery architectures and the applications of
resource discovery in mobile networks. The work is therefore divided
into a generic architectural part and a network-specific part. The purpose
of the architectural part is to model and analyze resource discovery
architectures and to propose new architectures. This allows us to compare
algorithms and architectures in the general case without involving
implementation specific details. The network-specific part applies
resource discovery systems to cellular and ad hoc networks.

The rest of the work is divided into five chapters. Chapter 2 defines
the terminology and concepts used in the thesis. It provides models for
describing and analyzing resource discovery architectures. In particular it
analyzes the optimal degree of index distribution, which is the basis for
the rest of the work.

Chapter 3 presents three new types of architectures involving index
distribution. For all architectures, we require that it should be possible to

10

locate all existing resources, and that the load is evenly distributed
between nodes. We also aim to support a wide range of query types.

Chapter 4 studies the use of resource discovery in cellular networks.
We evaluate the feasibility of peer-to-peer systems in cellular networks
both from the user perspective and from a technical standpoint. We
propose architectures for two different scenarios, depending on whether
external centralized processing resources are available. We also design
signaling schemes for the scenario.

Chapter 5 studies resource discovery in an ad hoc network formed
between consumer devices. As the capabilities of the nodes are expected
to vary significantly in such a network, we aim at allocating the load to
the nodes with most capacity. The study focuses on forming an overlay
according to the node capacities and utilizing this overlay to support
resource discovery.

Chapter 6 presents the results, summarizes the work and suggests
topics for future research.

11

Chapter 2

Modeling and analyzing indexing

This chapter presents techniques for modeling and analyzing indexing in
a resource discovery system. First, the terminology and the concepts used
in this work are defined and a technology background is provided. Then,
we provide models for describing and analyzing resource discovery
architectures. This includes the definition of the metrics and the desired
properties as well as the modeling of overhead, update frequencies, and
centralization. We present the simulator used in this work. We propose a
model called the search/index space model for analyzing uniform
indexing. In particular, we use this model to analyze the optimal degree
of index distribution, and to determine when a reactive, proactive or
hybrid system is optimal.

2.1 Introduction

In a collaborative system, resource providers make a selected set of their
resources available to other users. A resource can be a piece of
information or a service that the resource provider provides through his
or her device. Information is usually in the form of a file, but equally well
could be retrieved from a relational database. A service implements a
function that a device provides for other devices, for example a printing
service. In general, information has the characteristic that it is easy to
replicate, but services are rather tied to a specific node. Information
generated in real-time, such as a video stream, is viewed as a service.
While the differences between information and services need to be
considered in caching and replication, resource discovery operates in a
similar way for all resources.

A resource is described, automatically or manually, by a set of index

terms or attributes. Fundamental attributes include the type of resource
and the name identifying the resource. The attributes form the resource’s
metadata. The metadata is used in the search to determine, both manually
and automatically, whether a given resource meets the requirements of

12

the user. A resource descriptor includes access information in addition to
the metadata of a resource. The access information is a set of attributes
specifying the location and access methods of the resource, or it can be a
key used in a subsequent lookup.

A resource requester is a user who intends to access a resource.
Often, the resource requester does not specifically know the resource to
access, but is able to specify the desired attributes of the resource using a
search criterion. For example, a user wishing to access a printing service
must at least specify the type of resource, a printer, for it to be found. The
user might additionally specify other attributes, such as the type of
printer, e.g. PostScript printer, or the color capability.

 The objective of a resource discovery system is to be able to locate
resources that reside in the devices of the participating users. The
resource discovery process can be divided into a resource publication
process performed by the resource provider, and a resource retrieval
process performed by the resource requester. We identify four phases in
the entire resource discovery process:

1. A resource provider publishes the resource descriptor in order to
make the resource known to other devices.

2. A resource requester searches for resources matching a specified
search criterion.

3. The resource requester looks up the devices providing the resources.
4. The resource requester contacts the resource provider in order to

access a located resource.

The phases are sequential and connected to each other. Phases 1 and
2 are connected by the metadata that matches between the resource
descriptor and the search criterion. Phases 2 and 3 are connected by a
resource key, for example a hash of the resource name, uniquely
identifying the resource in the system. Phases 3 and 4 are connected by
the access information of the resource, for instance in the form of an IP
address and a port number, or as a Uniform Resource Identifier (URI)
[BFM98]. The phases are independent: a published resource may be
found in several searches, a search may find several published resources,
a resource may be available in several devices, and a located resource
may be accessed several times and in different ways. The access is
generally not considered as part of resource discovery – the resource
discovery rather aims to provide the information to make access possible.

The resource retrieval process is depicted in Figure 2.1. Resource
discovery systems can be divided into systems providing lookup and
systems providing search. In the former, phase 2 is omitted and the user
must know the identity (e.g. the unique name or key) of the resource
through some external means. For example, in a structured system the
user may need to search for the key with a separate web search engine, as
in BitTorrent [BitTorrent]. In the latter, the user knows some properties
of the desired resource. In those systems, phase 2 and 3 are commonly
integrated into a single search phase. Unstructured systems allow this
type of search. The search involves feedback: the user may re-specify the
search criterion based on the obtained metadata, location and resources.

13

To enable feedback, the found information is presented to the user. The
search process is successful if the user obtains the desired resource.

Figure 2.1. The resource retrieval process.

An index is the collection of resource descriptors of several
resources. An indexing architecture is a resource discovery architecture,
where the resource descriptors are distributed to nodes other than the
resource provider. This chapter analyzes the use of indexing in resource
discovery systems. Before going into the specific study of indexing, we
present overlay networks, common topologies and basic distribution
algorithms as a background to the analysis.

2.1.1 Overlay networks

An overlay network is a network built on top of another network. It is
formed when a set of nodes, those running a given application, form a
network by connecting to each other. The links between nodes in the
overlay network are logical, and each overlay link can be thought of as a
path of physical links. Nodes that are neighbors in the overlay network
are not necessarily neighbors in the physical network. The underlying
network is transparent from the overlay network’s view and the traffic
between two nodes in the overlay network is routed using the underlying
routing protocol. Peer-to-peer systems are based on overlay networks.
Other uses of overlay networks include adding structure to ad hoc
networks and implementing application-layer multicast.

The overlay network can be modeled as a graph G = (V, E), where
V = {v1, v2, …, vN} is the set of vertices, or nodes, and E = {e1, e2, …, eM}
is the set of edges, or links, in the graph. The number of nodes in the
network is denoted by N. Two nodes v, u ∈ V are neighbors if a direct
link e = (v, u) ∈ E between them exists. The set of neighbors of a node v
is denoted N(v). The number of neighbors of a node v is the node’s
degree, d(v) = |N(v)|. Links are usually assumed bidirectional, but in order
to generalize, we define a bidirectional link as two unidirectional links:
one per direction. A node v with unidirectional links may have an
indegree din(v) (the number on links ending at the node) that differs from
the outdegree dout(v) (the number of links starting from the node)

User knows
expected attributes

Search criterion

Lookup

Key

Access
Location

feedback

Search
Metadata and key

User knows the
resource key

User obtains the resource or
the service of the resource

Resource
discovery

14

[RW95]. To avoid ambiguity, we define that in a directed graph N(v) only
includes the nodes to which v has a link, whereas d(v) = dout(v). The
distance dist(v, u) between two nodes v and u is the lowest number of
links in the graph needed to connect the two nodes. The diameter of a
network is the largest distance found between two nodes in the network.

In practice, a link in the overlay network is usually implemented as a
Transmission Control Protocol (TCP) connection. When the User
Datagram Protocol (UDP) is used instead of TCP, a link is only known at
the application-layer through the knowledge about the peering node.
Generally, each link has state information associated with it. Since an
overlay link is purely conceptual, it is also possible to establish
temporary links in order to transmit a packet directly between two nodes.
The typical use of temporary links is to transmit a search reply directly to
the resource requester without traversing intermediary nodes. For
example, this method is used in the semi-recursive routing model in
[JZM+08].

Since the topology of the overlay network is independent of and non-
coinciding with the underlying network’s topology, routing is often
inefficient. Nodes that are neighbors in the overlay may be very distant
physically, and a search operation may require a high number of round
trips globally. The inefficiencies due to this mismatch between the
overlay and physical topology have often been neglected as sufficient
bandwidth has been available in the fixed Internet. The topology
mismatch makes the effects of an inefficient resource discovery method,
such as flooding, even more severe. The problem has been recognized
and methods (e.g. [LZX+03], [LZX+04], and [WIH05]) have been
developed for modifying the overlay topology to better match the
physical topology. Especially in ad hoc networks the consideration of the
physical topology is critical, and emphasized by the low bandwidth, high
packet loss, changing physical topology, and the effect of collisions on
the Medium Access Control (MAC) -layer. Overlays designed for ad-hoc
networks often follow the physical topology to some degree.

2.1.2 Topologies

The connections between nodes in a network form the topology. The
considered network can either be an overlay network or a physical
network. We now describe some important topologies.

Random power-law topologies

Several types of natural networks, including social networks and
computer networks, are shown to have a power-law distribution of node
degrees [WS98]. A network whose degree distribution follows a power-
law is referred to as a scale-free network [BA99]. In such a network, the
probability Π(d) that a node connects to d nodes is Π(d) ∝ d-γ, where the
exponent γ characteristically is between 2 and 3 [BA99]. The power-law
distribution implies a high number of low-degree nodes, and a small
number of high-degree nodes.

A random topology is created by unstructured systems. As a node
joins the overlay network, it creates links to a set of known nodes. These

15

nodes may be advertised through some external method (e.g. a www-
page), build into the application, or remembered from previous sessions.
The joining node may ask the known nodes for the addresses of other
nodes to which it may connect. Consequently, the topology of the
network forms rather randomly. The topology is easy to create and
requires minimal maintenance. It has been demonstrated that the node
degrees of most unstructured topologies follow a power-law distribution
[SGG03], although not perfectly. The power-law property of such a
topology is often self-enforcing: a node with a high degree has a higher
probability of receiving new connections, i.e. further increasing its degree
[BA99]. This preferential attachment mechanism is most often associated
with scale-free networks, although it is only one of several mechanisms
that can produce power-law networks [LAD+05].

Power-law topologies are demonstrated to be robust in the face of a
random node breakdown [SGG03]. The network diameter of a power-law
topology is low, improving routing efficiency – the highly-connected
nodes essentially form a backbone which connects the nodes in the
network with a small number of hops. The load on high-degree nodes is
higher than the load of low-degree nodes, so ideally these nodes should
be the most powerful and well-connected nodes. In most systems high-
degree nodes appear quite randomly without any controlled selection.
However, Gia [CRB+03] includes a method to adapt the topology so that
high-capacity nodes have a higher degree and low-capacity nodes are
within a few hops from a high-capacity node.

Unit disk graphs

Another type of random topology is generated when nodes distributed in
a two-dimensional plane interconnect with nodes within each other’s
radio coverage. Broadcast networks are often modeled as unit disk

graphs, where every node is assumed to have an identical radio coverage
with radius one. A node v has a link to a node u if and only if the
Euclidean distance between v and u is at most 1. This model is slightly
over-simplified as the transmission power of practical devices often
varies. Neither does it consider obstacles and interference [KWZ08].
Regardless of these shortcomings, the model is frequently used to model
ad hoc networks [KMW04].

Structured topologies

The above topologies are formed rather randomly or depending on the
physical restrictions. In an overlay network, any kind of topology can be
constructed in a controlled way. Well-known topologies in networking
include rings, stars, trees and fully connected topologies. In these
topologies it is easy and efficient to send a message to all nodes. These
can also successfully be used in overlay networks. The difference to
random topologies is that they require continuous maintenance as nodes
join and leave. Structured topologies, together with strict data placement
and actively maintained routing information, are used in a type of peer-
to-peer systems called structured systems, described more thoroughly in
Section 3.2.

16

2.1.3 Distribution algorithms in random topologies

Delivering a message to all (or a defined set of) nodes in a random (or
arbitrary) topology is a common problem with applications in, for
instance, routing and multicasting. Two basic search algorithms are
commonly used in random topologies: flooding and random walk. Both
algorithms allow for several variations.

Flooding

Flooding is a simple and popular method to deliver a message to all
nodes in a network using a breadth-first search. Typical applications for
flooding include the delivery of routing updates in link state routing
protocols, including OSPF [Moy94], and locating the destination node in
reactive routing protocols for ad hoc networks, including AODV
[PBD03] and DSR [JHM07]. In this work, we are concerned with using
flooding as a search algorithm whereas the flooded message is a search
request. Most popular unstructured systems, including Gnutella
[Gnutella] and Kazaa [Kazaa], use flooding for distributing search
requests. We call an architecture using global flooding of search requests
in a random topology a search flooding architecture

1.
In flooding, the resource requester v sends a search request message

to all its neighbors simultaneously. Each node receiving the message
processes the message (e.g. by looking for a requested resource in its
index), and then forwards a copy of the message to all neighbors, except
the one from which it was received. In order to avoid forwarding the
same message several times, each message is identified with a unique
request identity (ID). A node remembers the IDs of the forwarded
messages, and if the same ID is seen in a received message then the
received message is discarded before processing and forwarding.
Flooding is a solid search method: if there is a path from the resource
requester to a given node, then the request will be delivered. The request
will reach a given node on the fastest (often shortest) path. However,
even though the algorithm guarantees that a message will not be
forwarded twice, it cannot guarantee that the message is not received
twice. In fact, the more neighbors a node has the more copies of the
message will it receive.

In order to reduce the traffic, the maximum number of hops is usually
limited with a time-to-live (TTL) field TTTL that is initialized to a given
value TInitialTTL and decreased each time the message is forwarded. When
TTTL = 0, the message is discarded. For example, Gnutella limits the scope
of a search request to a maximum of TInitialTTL = 7 hops [RFI02]. The
disadvantage of this method is that it cannot find resources on a node u
for which D(v, u) > TInitialTTL. Fortunately, resources are typically well
replicated in file sharing applications, so a copy can, with reasonable
probability, be found within the hop limit. Rare resources may still be
undetected.

1 For clarity we avoid the more common but ambiguous term fully distributed

architecture as several other architectures can be classified as fully distributed.

17

Iterative deepening [YG02] [BCF+03] (also called expanding ring
search or adaptive TTL) is a well-known technique where TInitialTTL is
successively increased until a match has been found or until TInitialTTL
exceeds a maximum value. The resource requester must wait a defined
period and observe potential replies before repeating the search with an
increased TInitialTTL. This increases the search delay but allows all existing
resources to be found. For resources near the resource requester, the delay
and message overhead is low. A variant of iterative deepening is
Hurricane Flooding [JJ07], where the resource requester divides its
neighbors into groups, and upon each iteration sends the message to one
group with a TInitialTTL higher than in the previous iteration. In this
algorithm, the network is searched in a spiral pattern centered in the
resource requester.

Flooding has also been extended by forwarding the query only to
selected neighbors chosen randomly, such as in Modified Random BFS
[KGZ02] and Normalized Flooding [GMS05], or according to some
heuristics, such as the number of past results in Directed BFS [YG02],
similarity of queries in Intelligent Search [KGZ02], or similarity of
neighbors in [CDN+05]. None of these approaches are able to guarantee
finding an existing resource.

Random walk

Random walk is a message distribution algorithm that, like flooding, can
be used to distribute a search request in any topology. In random walk,
the resource requester generates one or several walkers, with TTTL
initialized to TInitialTTL. A walker is in practice a search message that is
sent to a randomly chosen neighbor. Each node that receives the walker
checks its index for matches and forwards the walker to a randomly
chosen neighbor with a reduced TTTL, excluding the neighbor from which
the walker was received. The difference to flooding is thus that the search
is sent only to one neighbor instead of to all. The search can be stopped
when one or a given number of matches have been found. Otherwise, the
walker traverses the network until TTTL = 0. The walker may return to an
already visited node. It has been shown that a walker gravitates toward
high-degree nodes in a power-law network [ALP+01].

One major weakness of random walking is the long delay. As nodes
are visited sequentially, one node at a time, the maximum delay is
proportional to TInitialTTL. To reduce the delay, several parallel walkers can
be generated by the resource requester, but this reduces the efficiency as
the walkers are likely to visit the same nodes. The question how many
walkers should be generated is difficult as it depends on the network size
and node connectivity, both of which are unknown by the resource
requester.

Walkers can also be replicated during their walk. For example, a
walker can be split into two walkers each time it is forwarded. This
allows random walk to adapt to networks of different size: the longer the
path the more walkers are generated. Overlapping between different
walkers is still a major problem. The method can be seen as an
intermediary between pure random walks and flooding, i.e. flooding with

18

a limited number of considered neighbors. In [ZLZ+05] the walkers
avoid overlapping paths by storing the visited nodes in a Bloom filter.
However, after the walker has been replicated, the new walkers do not
communicate and the Bloom filter contains only the nodes visited by the
other walker before replication.

Random walks have been applied to unstructured peer-to-peer
networks in several variations. In [ALP+01] the walker is sent to the
highest-degree neighbor, utilizing the power-law property of the overlay.
Freenet [Freenet] uses hints to guide a walker towards nodes with higher
probability of having the requested resource. Gia [CRB+03] selects the
highest capacity neighbor for which there is an available token. Gia nodes
further remember queries, so that when the same query returns to a node,
it is forwarded to a different node than earlier. Matches reported to the
resource requester serve as keep-alive messages, indicating that the query
has not been lost due to topology changes.

2.2 Related research

The scalability of search flooding networks has been analyzed in several
publications. Ripaeanu and Foster [RF02] analyze the Gnutella network
using packet traces and determine the degree distributions and path
lengths in Gnutella. Saroiu et al. [SGG02] use a similar method to obtain
comprehensive statistics about traffic, sessions and shared resources in
Gnutella. Ritter [Rit01] models the peer-to-peer traffic patterns using a
tree and concludes that the traffic grows exponentially with the number of
hops, which causes scalability problems. Schollmeier and Schollmeier
[SS02] show that this exponential model is too simplified and
unrealistically pessimistic, partly because it does not consider the finite
network size.

As only a few architectures utilize large-scale index distribution (see
Chapter 3), the number of works modeling and analyzing such
architectures is low.

Cooper and Garcia-Molina propose the Search/Index Link (SIL)
model [CG03] to analyze architectures involving indexing. In this model,
links are divided into non-forwarding search links, forwarding search

links, non-forwarding index links, and forwarding index links.
Forwarding links implement flooding while non-forwarding links
implement sending over a single hop. A search message is sent on all
search links starting from the resource requester. A search message
received over a forwarding search link is forwarded on all search links
(except for the link on which the message was received), provided that
this search message has not been forwarded earlier. On a non-forwarding
search link the message is only sent over a single hop and not forwarded
by the receiving node. Copies of a node’s local index are distributed
correspondingly over forwarding and non-forwarding index links, and
stored in the remote indices of the nodes along the path. Links are
unidirectional.

The SIL-model is enhanced by Deng and Lv into a Query/Index Link
(QIL) model [DL04], with only two types of links: search links and index

19

links. QIL adds an optional parameter to the link that specifies the
TInitialTTL of a message whose first hop is over this link. This replaces the
concept of forwarding and non-forwarding links: for a forwarding link
TInitialTTL = ∞ and for a non-forwarding link TInitialTTL = 1. Graphically
search links are marked with solid arrows and index links with dashed
arrows. Figure 2.2 shows a simple example of a network modeled with
QIL: nodes A and B maintain an index of all resources in the network and
other nodes can search by querying one of these nodes.

Figure 2.2. Example network modeled with QIL.

The models allow coverage to be analyzed. The coverage of node v is
defined in [CG03] as the fraction of nodes in the network that can be
searched by a query generated by v. In a network with full coverage all
nodes have a coverage of one. The models can also be used to analyze
redundancy. A network has redundancy if it contains a link that can be
removed without reducing the coverage for any node [CG03].

Both the SIL and QIL models are able to describe most of the
existing unstructured architectures. Unfortunately, the models only
consider flooding and single-hop updates as search and index distribution
algorithms. Architectures utilizing random walks and other less common
distribution methods cannot be described. Despite this limitation, the
division into search and index links can be used to model a wider range
of architectures, provided that the used search and index distribution
algorithms (if not flooding) are stated explicitly. In this work, we use the
QIL model to visualize the overlay topology.

Three index replication strategies are compared in [CS02], which
shows that a square root allocation minimizes the number of queried
nodes. A square root allocation refers to an allocation where the number
of copies of a resource is proportional to the square root of the search
frequency for this particular resource. The work assumes a search process
that can pick unvisited random nodes regardless of the topology until the
resource is found. As the work does not consider how search and
replication is implemented, it can be considered more of a theoretical
framework. Neither does it consider the message overhead for replication
and searching.

2.3 Our contribution

In this chapter, we provide methods for modeling and analyzing resource
discovery systems and the use of indexing in these. Of particular interest
are such resource discovery systems where centralized components are
avoided and the load is distributed evenly among the participants.

Index link
Search link

A B Index link
Search link

A B

20

In Section 2.4 we define the central concepts and operations in a
resource discovery system. We define four important properties:
determinism, complex queries, index allocation invariance and
uniformity. We specify the parameters modeling a resource discovery
system and the metrics used to evaluate the performance of a system. We
discuss the overhead of common distribution algorithms and examine the
relation between the node degree and the overhead of flooding. We study
when and how frequently index updates should be generated. We
evaluate the use of indexing in the basic peer-to-peer architectures and
the performance implications of centralization. The material is
unpublished and produced as a reference framework for the rest of this
work. We also present a simulator developed by the present author. The
simulator has been published as open source [PONGsim] and is described
in a technical report [Bei09]. The simulator has been used in other
projects, including [Soi10].

In Section 2.4.9 we construct a model called the Search/Index Space
for examining the optimal balance between reactive and proactive
operations in a uniform architecture. We apply the model to analyze how
the ratio between the frequency of index updates and the frequency of
search requests determines how reactive and proactive operations are
optimally combined. In particular, we evaluate when a fully proactive or
reactive solution is optimal. The model is published in [Bei10] and
complemented in this work to consider the message size. We further
apply the model to determine the optimal cluster size in the Parallel Index
Cluster and Parallel Search Cluster architectures.

This chapter and the related publications are the sole work of the
present author.

2.4 Modeling indexing

In order to be able to analyze and describe the properties of resource
discovery systems, we need to model them. In this section, we provide a
model used in the rest of the work.

2.4.1 Terms and definitions

Let us first define some fundamental concepts. Each resource discovery
system studied in this work is based on an overlay network G = (V, E).
The overlay network is formed by a set of nodes V and a set of logical
links E that connect these nodes. The arrangement of links between the
nodes forms the topology of the overlay network. The links are used for
transmission of messages. There are four main types of messages: index

updates, search requests, search replies, and maintenance messages.
Index updates and search requests are typically one-to-many distributions
while the search reply is a one-to-one transmission. Some architectures
send the reply message using a temporary link instead of using the fixed
links of the overlay network. A temporary link connects two nodes for
the duration of a single message transmission. Maintenance messages
may be required in a topology with a defined structure.

21

A new message is generated by a node. The generated message is
then sent to a set of neighboring nodes. Assuming error-free transmission,
each of these nodes receives the message. A node may forward a received
message, whereas the same message or a modified version of the message
is sent to a set of neighboring nodes. Thus, the term sent message
includes both generated and forwarded messages. Each node that either
generates or receives a message is said to process the message.
Unambiguous definitions of these terms are especially important in
performance evaluation as these events are counted.

A subset ℤ of the nodes are resource providers. When a resource
provider makes a resource available, it creates a resource descriptor
containing the resource provider’s address and the metadata describing
the resource. The collection of resource descriptors of node v forms the
local index ℒv, which describes the resources available at node v. Certain
architectures, called indexing architectures, distribute the local index of a
node v, either explicitly or implicitly, to a set of indexing nodes, ℙv. Most
indexing architectures distribute resource descriptors over a single hop,
whereas |ℙv| ≤ 1. We call those non-forwarding indexing architectures. In
a forwarding indexing architecture, the resource descriptor can be
forwarded multiple times.

The local index is transported in one or several index updates to the
indexing nodes. The index distribution algorithm defines the local
decisions made by a node in order to generate and forward index updates.
Consequently the indexing nodes ℙv are determined by the index
distribution algorithm together with the topology. Each node u ∈ ℙv
stores the resource descriptors of a received index update in its remote
index ℛu. A node u may therefore, in addition to its local index, maintain
a remote index ℛu = {ℒw | ∀ w ∈ ℕu} describing resources available at a
set of indexed nodes ℕu. The index ℐu = ℒu ∪ ℛu of a node u
consequently contains the entries of the local index and the potential
remote index. The resource descriptors are maintained in the remote
index until they are either replaced by new versions of the same resource
descriptors or explicitly removed. Additionally, most indexing
architectures remove descriptors that have not been renewed within a
given expiration time.

A resource requester v that desires to access a resource formulates a
search criterion. The search criterion is transported in a search request or
query to a set of queried nodes ℝv according to the local decisions
specified by the search algorithm. The query covers the index of a set of
covered nodes ℍv = ∪u∈ℝv ℕu. When the search request encounters a
node whose index contains a resource descriptor that satisfies the search
criterion, a match has been found. A search reply is then generated and
sent to the resource requester. The search reply may be transported to the
resource requester over a single logical hop or by traversing the reverse
path of the search request.

We call the distribution of a search request or index update to a set of
node a transaction. Borrowing the terminology from ad hoc networks
[Fee99], we separate between proactive and reactive transactions. The

22

distribution of index information to ℙ is a proactive transaction while the
distribution of a search to ℝ is a reactive transaction.

The rules for forming the topology, the search and index distribution
algorithms and the other fundamental properties of the overlay together
constitute the architecture of a resource discovery system.

2.4.2 Fundamental properties of a resource discovery architecture

The choice of architecture is largely determined by the properties that are
required from it. In this section we define the fundamental properties that
we aim to support in most of our proposed architectures.

Determinism

Some resource discovery systems cannot guarantee a resource to be
found in all searches and by all nodes. Instead, the success is determined
probabilistically and the results may vary between consecutive searches.
Jin and Jiang [JJ07] define deterministic search strategies as strategies
guaranteeing that at least one copy of the resource is found, provided that
the resource exists in the system. Non-deterministic strategies do not
provide such guarantees. Non-determinism may be a result of the use of
randomness, such as forwarding a search request to only a few randomly
chosen neighbors. It can also be due to a limited search scope, for
example forwarding a search request only to the few closest neighboring
nodes. In these cases, the system is non-deterministic by design, because
even in the lack of external forces the system may not find all matching
resources. Repeating a search request multiple times in such a system will
not guarantee finding the resources.

A different kind of failure is caused by external forces, such as
message losses or node failures. Because these are independent of the
system design, we do not take them into account in our classification into
deterministic and non-deterministic systems. As these are temporary in
nature, they can be solved by repeating the search. We therefore refine
the term deterministic system to consider the behavior only in static
situations. Specifically, in this work, we define a deterministic resource
discovery system in the following way.

Definition 2.1. An architecture is deterministic if each existing resource,
after a bounded time after its publication, is found in a bounded time in
each search performed by each node in a network that is static for the
duration of the search operation.

This definition allows a bounded time for index distribution and search
distribution. As a consequence of the definition, a system is considered
deterministic even if a search fails due to a topology change during the
short search transaction. In any architecture, a search may fail due to a
topology change, no matter how well-designed the architecture is. The
purpose of the definition is to identify architectures that are deterministic
in the absence of external forces. Unless otherwise stated, we use the
above definition for the term deterministic.

23

The concept of determinism is related to the concept of full coverage
defined in [CG03] for networks modeled with SIL. The coverage of a
node v is defined as the fraction of nodes in the network that can be
searched, either directly or indirectly, by a query generated by a node v.
A network has full coverage if the coverage by every node is one.
Networks with full coverage are deterministic when flooding is the
distribution method (which is assumed in SIL). When another search
method, e.g. random walk, is used in a system with full coverage, the
system is not necessarily deterministic.

Complex queries

Resource discovery systems may allow different degrees of complexity in
defining the search criterion. In the simplest case, each resource is
identified by one or several keys (e.g. keywords or names). A user locates
the resource by specifying one of the keys as a search criterion. The key
must be specified exactly in the same way in the query as in the resource
publication and only a single key is allowed in a query. Systems based on
distributed hash tables (DHT), as described later, are fundamentally
limited to this type of exact-match single-key queries [RM06]. These
systems implement a mapping from a key to a value (typically the
address of the resource).

In practice, users tend to have partial information about the desired
resource and they submit broad queries [GFB+04]. Many applications
therefore need to support complex queries. Especially substring searching
is popular. For example, a user entering the search word “travel” might
want to obtain resources containing the words “travel”, “travels”,
“travel’s”, “travelling” (British), “traveling” (American), “traveller”
(British), “traveler” (American), as well as compounds such as “travel
tips”. Combinations of several keywords are common: Reynolds and
Vahdat [RV03] report that 71.5 % of the queries sent to a Web search
engine contain two or more keywords and over 40% of the queries
contain three or more keywords.

In [TP03] the following types of complex queries are identified:

1. Multi-attribute queries define desired values for several attributes
and the attributes are combined using a logical operation. Typically,
the logical and is used and the query matches if each attribute
matches with the required value. An example multi-attribute query
locates a device providing printing services and providing color
prints.

2. Range queries define a range of values allowed for a given attribute.
Example range queries locate files larger than a given size, music
encoded with given bitrates, or services within given geographical
coordinates.

3. Aggregation queries combine results from a large number of nodes.
Examples of aggregation queries are Count, Sum, Maximum,
Minimum, Average, Median and Top-K [RM06].

4. Join queries combine records from two tables in a relational
database.

24

We complement the above list with evaluated queries:

5. Evaluated queries use an expression to evaluate matches. For
example, the desired resource can be defined using a regular
expression.

The class of evaluated queries has two important subclasses:

6. Substring queries produce matches with string attributes containing a
specified substring. Substring queries are popular in file sharing
applications, where the user can search for files containing a given
substring in their file name.

7. Similarity queries produce matches with string attributes similar to a
specified search string according to some definition. Such queries
can match with words that are in a different form (e.g. singular vs.
plural), with words that sound similar, or words containing minor
spelling mistakes.

Techniques for supporting certain types of complex queries using
multiple exact-match single-key queries exist but these currently have
severe limitations (described in Section 3.2.2). Above all, each technique
supports only a few types of queries and often a priori knowledge of the
expected content is required.

On the other hand, a generic complex query can be based on any
attribute, any combination of the attributes and any part of an attribute.
Therefore, to support all types of complex queries without a priori
knowledge, the whole resource descriptor must be available for matching
with the search criterion. Searching therefore requires each search request
to be compared with the index of each resource provider in the system.
We define the requirement for complex queries in the following way.

Definition 2.2. An architecture supports complex queries if ℍv = ℤ for
every node v ∈ V, where ℤ are the resource providers and ℍv are the
nodes whose indices are covered by searches of v.

Index allocation invariance

A system must reduce stale resource descriptors, i.e. resource
descriptions containing aged information or referring to a non-existent
resource, as they consume storage, cause false matches and give the user
incorrect information. If several versions of an entry exist in the system, a
querying node is not able to determine whether an obtained resource
descriptor is the most recent one unless the search is guaranteed to cover
all indices in the system. A system allowing a high share of stale
descriptors must explicitly check the validity of the resource descriptor
on resource access. Still it may not be deterministic as it may miss
potential matches. To reduce stale resource descriptors, the validity time
of the index must be short and the index often refreshed. This is not
enough to guarantee determinism.

In order to avoid stale resource descriptors, the set of indexing nodes
ℙv must be invariant: consecutive updates of a resource descriptor must
reach the same indexing nodes. This ensures that all remote indices are
correctly updated with a modified or removed resource descriptor. We

25

define the requirement of index allocation invariance in the following
way.

Definition 2.3. An architecture is index allocation invariant if the set of
indexing nodes ℙv and ℙv’ in two consecutive index updates performed
by a node v always are the same (i.e. ℙv = ℙv’) in a static network. If njoin
nodes join and nleave nodes leave between two consecutive updates, the
number of nodes changed in the set of indexing nodes must be |ℙv ∆ ℙv’|
≤ nleave + njoin, where ∆ denotes symmetric difference.

Uniformity

Borrowing from the terminology of ad hoc networking [Fee99], we
define uniform architectures in the following way.

Definition 2.4. An architecture is uniform if there is no distinction in the
roles of nodes.

In uniform indexing architectures, all nodes participate in indexing. As a
consequence of the lack of specific roles, the indexing load is typically
distributed equally among the nodes. A stronger definition requires that
the number of indexed nodes |ℕv| is approximately similar for each node
v in the network.

Definition 2.5. An architecture has uniform index allocation if the
number of indexed nodes |ℕv| is similar (within reasonable limits) for
each node v in the overlay network.

2.4.3 Network model parameters

The performance of a resource discovery architecture is dependent on
several input parameters that describe the modeled network and usage.
We model the network using a selected set of parameters that contribute
significantly to the performance and that can be measured. These input
parameters are expressed as network-wide averages. The central
parameters used in this work are listed in Table 2.1.

26

Table 2.1. Input parameters.

Parameter Symbol Description

Network size N The number of nodes in the system.

Degree D The average node degree.

Frequency of
generated search
messages

fs The average number of generated search
messages per node per time unit.

Frequency of
generated index
messages

fi The average number of generated index
update messages per node per time unit.

Frequency of
generated messages

f f = fs + fi.

Search/index ratio r r = fs / fi.

Churn frequency fchurn The average number of nodes joining the
network per time unit. As we assume that
the long-term network size is constant, this
is also the average number of nodes
leaving per time unit.

Replication Rreplication The percentage of nodes that have
identical copies of a resource. Each
resource is assumed to be replicated to the
same number of nodes.

Size of a search
message

Ss The average size of a search message.

Size of an index
message

Si The average size of an index update
message. The size varies largely as it
depends on the number of resources
contained in the message and the level of
detail in the descriptions.

2.4.4 Performance metrics

A performance metric is used to evaluate the performance of a system as
a function of the input parameters. We divide the metrics into traffic
metrics, quality metrics and transaction metrics.

Traffic metrics

Traffic metrics describe the frequency of events. Events include
generating, sending, forwarding, and receiving messages. The events can
be measured either as a count of messages or as a count of bytes per time
unit. Message types related to resource discovery include search requests,
search replies, index updates, and overlay maintenance messages.
Furthermore, the traffic can be measured on a per-node basis or as a
network-wide average. Although a simulator typically produces all these
metrics, we need to select a subset for evaluating the performance.

As we aim to evaluate the algorithms and architectures independently
of the implementation details and the protocol design, we measure the

27

message frequency instead of the bandwidth. An estimate of the
bandwidth can then be calculated by multiplying the message frequency
with the average packet size, once the packet size is determined. The
packet size depends on the packet format, data encoding, protocol
overhead and the number of included resources. For example, a
significantly higher packet size results from transporting data in the text-
based SIP protocol than using a binary protocol. Multiplying the message
frequency with the message size only gives an estimate of the bandwidth,
as the size of different packet types can vary, but within a given type of
transaction (search or index update) the variation is relatively small.

Assuming error-free transmission, the network-wide number of sent
messages equals the network-wide number of received messages.
Therefore, it is irrelevant which metric is used for measuring the
network-wide traffic. From the view of a single node, the numbers of
received and sent messages differ. We prefer counting the received
messages rather than sent messages, as it gives a simple load indicator.
The motivation is that each received message has to be processed
separately (e.g. with an index lookup), while sending a message (e.g. with
flooding) duplicates the same message to several neighbors.

In our analysis we ignore the messaging for reporting the search
results. The number of reports depends on the number of matches and the
size of a report depends on the number of matches on a given node. These
are unrelated to the performance of a search or index distribution
algorithm. In most cases, as we study unstructured systems, there are no
overlay maintenance messages.

When not explicitly indicated, the used traffic metrics are network-
wide averages. However, in some cases we present the node perspective,
which represents the performance as experienced by the end user.
Especially in non-uniform indexing architectures, nodes are typically
assigned different roles and the performance experienced by different
nodes varies widely. The performance can then be evaluated as averages
for each role separately. In examining the degree of uniformity, the
maximum, the minimum and the variation of a metric are interesting in
addition to the average.

The used traffic metrics are defined in Table 2.2.
Battery consumption is not considered separately in this work, but

the consumption resulting from network access is assumed to be
proportional to the sum F + f.

28

Table 2.2. Traffic metrics.

Parameter Symbol Description

Frequency of
received search
messages

Fs The number of search messages received
by a node per time unit.

Frequency of
received index
messages

Fi The number of index messages received by
a node per time unit.

Frequency of
received index
messages

Fm The number of maintenance messages
received by a node per time unit.

Frequency of
received messages

F The total number of messages received by
a node per time unit.

Search load Ls The number of search messages processed
(generated or received) by a node per time
unit.

Index load Li The number of index messages processed
(generated or received) by a node per time
unit.

Maintenance load Lm The number of maintenance messages
processed (generated or received) by a
node per time unit.

Load L The total number of messages processed
(generated or received) by a node per time
unit.

As both load and message frequencies are commonly used in

literature, we include both as metrics. We define the index load and
search load based on the definitions in [CG06].

Definition 2.6. The search load is the average number of search messages
processed by a node per time unit. This includes messages originating
from the node itself, corresponding to searching the local index:

sss fFL +=
.
 (2.1)

Definition 2.7. The index load is the average number of index messages
processed by a node per time unit. The index load is the sum of received
index messages and generated index messages:

iii fFL +=
.
 (2.2)

As load can be derived from the frequency of generated messages and the
frequency of received messages we do not indicate it separately.

Transaction metrics

Transaction metrics describe the cost and the scope of a single transaction
for a given distribution algorithm. A transaction is either a search
distribution or an index distribution. Network-wide averages are used to

29

reduce the dependence of a given node’s location in the network. The
used transaction metrics are defined in Table 2.3.

Table 2.3. Transaction metrics.

Parameter Symbol Description

Search message
count

Ms Number of message transmissions in the
network resulting from a single search
operation, provided that all matching
resources are found.

Index message
count

Mi Number of message transmissions in the
network resulting from a single index
update.

Search visit count Ns Number of nodes (other than the requester)
contacted in a search operation.

Index visit count Ni Number of nodes (other than the resource
provider) storing the index of a node.

Quality metrics

Quality metrics describe the satisfaction of the user. The quality metrics
used in this work are presented in Table 2.4.

Table 2.4. Quality metrics.

Parameter Symbol Description

Search delay Ts The average time to discover a unique
resource located at a random node in the
network. This delay is the typical latency
experienced by the user.

Full search delay
sT
)

 The time to search all indices in the
system. This is also the maximum delay to
find a given resource located at a random
node.

Full index
distribution delay

iT
)

 The time to distribute an index update to
all indexing nodes. This delay determines
the time from a resource being published
to that the resource can be found in any
search.

Success ratio Rsuccess The ratio of the number of found matches
to the number of existing matching
resources. A ratio below one implies that
the user cannot be satisfied on all searches.

If the success ratio is below one, the user cannot be satisfied in all

searches. As this work studies resource discovery algorithms that are
deterministic according to Definition 2.1, we require a success ratio of
Rsuccess = 1 in a static system. In real systems both resources and nodes are
dynamically added and removed. Even if the system is deterministic
according to our definition, a search may fail if the resource is removed

30

during the search distribution (Ts > 0) or if the search is performed before
the index distribution is completed (Ti > 0). We require a measured
success ratio over 99%.

The delay is affected by the packet size, the underlying topology and
the link delays. To give a more generic view of the performance, free
from these assumptions, we measure the delay with a fixed link delay
Tlink independent of the packet size. The delay can be linearly scaled to
take other link delays and an average message size into account.

The index distribution delay has only a marginal effect on the
perceived performance, since it is unlikely that a newly published
resource is immediately requested. Generally it is possible to use slower
methods for index distribution than for search distribution. Nevertheless,
the index distribution delay must be within reasonable limits not to affect
the success ratio. While an excessive search delay only lowers the user
satisfaction, an excessive index update delay may cause searches for the
resource to fail even though the resource exists in the system.

2.4.5 Overhead

We define the central concepts of overhead of a distribution algorithm in
the following way.

Definition 2.8. The search overhead of a search algorithm is defined as
Ωs = Ms / Ns.

Definition 2.9. The index distribution overhead of an index distribution
algorithm is defined as Ωi = Mi / Ni.

In an optimal distribution algorithm, each node receives a distributed
message only once. Delivering a search message to Ns receivers can
therefore optimally be performed with Ms = Ns transmissions, i.e. Ωs = 1.

Definition 2.10. A search distribution algorithm is optimal if Ωs = 1. An
index distribution algorithm is optimal if Ωi = 1.

The traffic metrics and transaction metrics are related. Let us show

the relationship between metrics by considering a single type of message:
search messages. Each node generates search messages at an average
frequency fs. As each search message is distributed to Ms nodes, and no
message is assumed to be lost, each node v give rise to

ssvs MfF =, (2.3)

receptions of search messages. As the network contains N nodes, each
producing search messages at the frequency of fs, the total number of
search message receptions in the network is

31

ssNv vsnetworks MNfFF ==∑ = ..1 ,, . (2.4)

The network-wide number of received search messages must equal the
network-wide number of sent search messages. The average frequency of
received search messages per node is then

ssnetworkss MfNFF == /, , (2.5)

which is proportional to the search frequency.
The number of message transmissions depends on the overhead.

Inserting Definition 2.8 into (2.5) gives

ssssss NfMfF Ω== . (2.6)

Equation (2.6) can also be rewritten as

ss

s
s

Nf

F
=Ω , (2.7)

giving a convenient way to determine overhead with simulations. The
corresponding equation can be applied to index distribution as well. The
total traffic (assuming Fm=0) in the network can be determined as

 iiisssiissis NfNfMfMfFFF Ω+Ω=+=+= . (2.8)

In most deterministic distribution algorithms, Ns and Ni can be described
as functions of N. The overheads are typically constant and specific to the
distribution algorithm and topology. This allows optimizing the network
for given search/index ratios.

2.4.6 Overhead of distribution algorithms

An overhead of Ω = 1 is achievable in certain structured topologies, for
example rings, stars and fully connected topologies. In the lack of a
structure, the efficiency is reduced. The standard distribution algorithms
for random topologies, flooding and random walks, are far from optimal.
Practical systems therefore often reduce the overhead by reducing the
determinism.

Flooding

In flooding without TTL limitations, each node in the network forwards a
message exactly once. After the first copy is received, other copies of the
same message are ignored. A message forwarded by node v is sent to
d(v)-1 neighbors, where d(v) is the degree of v. Therefore each node v
causes d(v)-1 messages to be received by other nodes.

Hypothesis 2.1. The search overhead of flooding in a network consisting
of nodes vi (i=1…Ns) with an average degree of D is

11)(
1

−=−==Ω ∑ Dvd
NN

M

i

i

ss

s
s . (2.9)

To test this hypothesis we perform a simulation of a network with 1000
nodes and a varying average degree. For each scenario, we simulate 10

32

different artificially generated random power-law topologies, each with
1000 searches, and the results are averaged. The experimental results
presented in Table 2.5 confirm our hypothesis with a maximum error of
1.5%.

 Table 2.5. Overhead of flooding.

D Ns Ms Ωs Expected Ωs

4 999 2982 2.9850 3

6 999 4960 4.9650 5

8 999 6930 6.9369 7

10 999 8892 8.9009 9

12 999 10846 10.8569 11

14 999 12792 12.8048 13

Gnutella [Gnutella], which is commonly used as a reference, had an
average degree of D = 5.50 in October 2000 [LCC+02]. Lv et al.
[LCC+02] found through simulation on the actual Gnutella topology of
October 2000 that a node, on average, receives the same query 4.5 times,
thus Ωs ≈ 4.5 = D - 1, which is in line with our hypothesis.

Decreasing the degree reduces the traffic but increases the network
diameter (and consequently the search delay) and the risk of network
partitioning. It is also difficult to reduce the degree in a controlled way:
the lack of coordinated topology maintenance unavoidably creates a
power-law network with a high degree for some nodes. A typical
approach to reduce the overhead is to limit the maximum number of hops
a query is forwarded using a TTL value. This reduces the set of queried
nodes Ns to a subset of all the nodes N. As the coverage is reduced, the
system becomes non-deterministic. To obtain full coverage, the TTL can
be gradually increased until the whole network is covered. The various
techniques of iterative deepening, including Hurricane Flooding [JJ07],
are therefore deterministic. The other improvements to flooding presented
in Section 2.1.3 are non-deterministic.

Random walk

Also random walk reduces the number of messages at the cost of a
reduced coverage. If the resource requester generates a single walker with
an initial TTL of TInitialTTL, then the number of examined nodes is
Ns ≤ TInitialTTL because of the possibility of visiting the same node multiple
times. The number of messages caused by the search is Ms = TInitialTTL.
Therefore Ωs ≥ 1. For a small TInitialTTL, revisiting occurs infrequently, and
Ns ≈ TInitialTTL, i.e. Ωs ≈ 1. To cover all N nodes with a given probability,
TInitialTTL >> N, whereas the fraction of repeated visits increases
significantly. If Nwalkers parallel walkers are generated by the resource
requester, the number of examined nodes is Ns ≤ NwalkersTInitialTTL. While
the delay is reduced, the number of messages is still Ms = NwalkersTInitialTTL,
thus Ωs ≥ 1. The nodes covered by different walkers overlap especially

33

for a large Nwalkers as all walkers start at the same location. The problem is
that a walker cannot know which nodes have been visited by the other
walkers. The walkers could regularly communicate by sending messages
through the resource requester; however, this extra communication
creates additional overhead.

Random walk is a non-deterministic search method [JJ07]. In basic
random walk it is impossible to guarantee that all nodes are covered by
the search, but increasing TInitialTTL and Nwalkers increases the probability
that most nodes are covered. Unfortunately, this increases
Ωs significantly. Because the non-deterministic behavior, we do not
consider random walk in its basic form in this work. However, in Section
3.4 we provide extensions to guarantee finding all resources.

2.4.7 Frequency of index updates

We categorize systems into push and pull types depending on the party
initializing and controlling the distribution of index updates. Indexing in
today’s peer-to-peer networks is mainly of the push type, where the index
update is initiated by the resource provider. Search engines use a pull
type of index updating: the indexing node itself controls the collection of
index information, for instance, through a web crawler. Generally, push
type index distribution gives better performance and freshness since the
distribution is initialized when a resource has changed and the frequency
of periodical updating can be low. Pull type index distribution is used in
search engines partially because the web servers do not support push
updates and cannot be aware of all search engines. Pull type index
distribution also allows the indexing node to control the update
frequency. However, the inability to detect when resources have changed
leads to long update delays, inaccurate index information, and
unnecessary index transfers. In this work, we only study the push type of
updates.

A single update message may contain updates to several resource
descriptors. The size of an update message is typically limited to a
maximum number of resources, Rm. A full update of all Rn resources
available at a node therefore requires Rn / Rm messages. Including Rm
resources in a message increases the message size less than Rm times the
original size, since the headers typically use a large fraction of the
message.

We distinguish between event-driven and periodical updating of
index information [MBB06]. Event-driven updating generates an index
update describing all or part of its shared resources in the following
situations:

1. Entry index updates are generated when a node joins the system. The
local index of the joining node is distributed using one or several
index update messages. A node generates these messages at an
average frequency fi,entry, which depends on the churn rate fchurn of the
network and the number of resources published per message. As fchurn
is a network-wide parameter and fi,entry is node specific, the
relationship is fi,entry = fchurn Rn / (RmN), where N is the number of
nodes in the network.

34

2. A modification index update is generated when a new shared
resource becomes available, a resource is modified or when a
resource is removed. Only the modified resource descriptor is
included. A node generates these updates at an average frequency
fi,modification, which depends on the user’s behavior. The modification
index update frequency can be assumed proportional to the size of
the node’s local index.

3. An exit index update is generated when a node leaves the system to
inform that all resources of the node are removed. A single indication
removes all resource descriptors without explicitly listing them. In a
stable system the long term frequency of nodes leaving equals the
frequency of nodes joining, and we use the churn rate fchurn for both.
In practice, a fraction pfail of the nodes fail without sending exit index
updates. A node therefore generates exit index updates at a frequency
fi,exit = (1-pfail)fchurn/N.

Periodical updating adds a fourth type of update:

4. Periodical index updates are required by systems where the index
entries age. Aging prevents stale information left by, for example, a
node leaving the system without sending an explicit exit index update
or when this update is lost due to an error or topological change.
Periodical index updates further allow nodes that were off-line
during the entry index update or modification index update to receive
the update later. Index entries are typically refreshed at a system
specific frequency adjusted to balance the amount of traffic and the
risk of stale index information. As the index can be divided between
several messages, the frequency depends on the number of resources
of the node. A node therefore generates periodical index updates at a
variable frequency fi,refresh = frefresh,resourceRn / Rm, where frefresh,resource is
the constant frequency of updating a specific resource. Alternatively,
fi,refresh can be kept constant, whereas refreshing Rn resources requires
Rn / Rm update rounds with a variable resource specific update
frequency of frefresh,resource = fi,refreshRm / Rn. A constant index update
frequency is motivated when the index updates have additional
functions, such as topology maintenance.

Often, both event-driven and periodical updating is used. This
combines the responsiveness of event-driven updating with the reliability
of periodical updating. The total frequency of index updates generated by
a node is fi = fi,entry + fi,exit + fi,modification + fi,refresh. It depends on the
frequency of modifying resources, the churn rate, and the implementation
parameters. As we discuss later in this chapter, the ratio r between the
search frequency fs and the index update frequency fi is an important
parameter determining the best architecture for a given system.
Unfortunately, both fs and fi are difficult to estimate in advance.

2.4.8 Common indexing architectures

The taxonomy [RM06] divides resource discovery architectures into three
categories depending on the use of indexing:

35

1. In local indexing the nodes only store their own local index and no
index distribution is used. All nodes must therefore be queried
separately (Ns = N - 1, Ni = 0). The most common of this type of
architecture is the search flooding architecture (also called fully
distributed or pure architecture), where the topology is (nearly)
random power-law and flooding is used as the search algorithm. All
links are search links. The architecture is uniform. This architecture
is depicted using QIL in Figure 2.3 (a).

2. In centralized indexing, the indices of all nodes are transferred to a
single centralized node as depicted in Figure 2.3 (b). Each node has a
search link and an index link to the centralized node. For the
centralized node Ns = 0 and Ni = 0 while for the other nodes Ns = 1
and Ni = 1. This concentrates the entire load on the centralized node,
whose capacity limits the scalability of the system. Centralized
indexing is therefore, by definition, non-uniform. Even in a
centralized architecture the index may be replicated to or divided
between several nodes, for which various strategies have been
proposed in [SG03]. Conceptually the architecture is still centralized
and an ordinary node sees the server cluster as a single centralized
server.

3. In distributed indexing, the load of indexing is distributed between
several nodes. Only a subset of the nodes are queried (0 ≤ Ns ≤ N-1,
0 < Ni ≤ N-1).

Most current solutions use distributed indexing, which can further be
divided into several subcategories.

Centralization

The most common distributed indexing architecture is a two-layer
hierarchical architecture, usually called semi-centralized architecture or
super-peer architecture. The semi-centralized architecture divides nodes
into C clusters (1 ≤ C ≤ N), where each cluster contains one indexing
node, called a super-peer or super-node. The other nodes are called
ordinary nodes. Each ordinary node is connected with a search link and
an index link to the super-node in their cluster, as depicted in Figure 2.3
(c). The ordinary node transfers its local index to the super-node
(Ni,ON = 1) while the super-node does not distribute its index (Ni,SN = 0).
The super-nodes are interconnected with search links, usually in a
random power-law topology. Searching is performed by distributing the
search request to each super-peer in the network with flooding. A
searching ordinary node generates Ns,ON = C messages while a searching
super-node generates Ns,SN = C-1 messages. The architecture essentially
forms a hierarchy, where the super-nodes form the upper layer and
ordinary nodes form the lower layer.

36

Figure 2.3. (a) Search flooding, (b) centralized, and (c) semi-centralized

architectures modeled with QIL.

The fraction of the nodes being super-nodes is C/N and ordinary
nodes (N-C)/N. Applying Equation (2.8) to both these groups of nodes,
we obtain

.

1)(0)()1(

22

i
iss

ss

iss

iiss

is

fC
N

ff
f

N

CN
f

N

CNC

N

CC
f

N

CN

N

C
f

N

CCN

N

CC
f

FFF

+

 +Ω
−Ω=

 −
+

 −
+

−
Ω=

 ⋅−
+

⋅
Ω+

 −
+

−
Ω=

+=

 (2.10)

This is an increasing function of C when the derivate dF/dC is positive:

ss

i

f

f
N

Ω
+>1

 , (2.11)

which can be rewritten as

)1(
1
−Ω

>
N

r
s . (2.12)

In these situations, F is minimized at the lowest allowed value C=1,
whereas the architecture is centralized. Only in the rare situation that
index updates are very frequent compared to search requests, and the
network is small, a centralized solution is non-optimal. In that particular
case, F is a decreasing function of C, whereas F is minimized at C’s
maximum allowed value C=N.

Centralization thus generally improves the scalability from the
network perspective, and the lowest traffic is generated in a centralized
system. The lower the number of super-nodes, the less traffic is
generated, and since fewer nodes need to be queried also the search delay
is reduced.

For C = 1, the semi-centralized architecture reduces to centralized
indexing, whereas the traffic is

(a) (c)(b)

37

() ()NfNfF is 1111 −+−= . (2.13)

Note that the term (1-1/N) indicates the fraction of ordinary nodes,
i.e. those nodes that need to transport their index and search requests with
a single message. The centralized node itself generates no messages for
its index updates and search requests. On the other hand, for C = N the
semi-centralized architecture reduces to a search flooding architecture:

() sssss NfNfF Ω=−Ω= 1 . (2.14)

While the network perspective favors centralization, the node
perspective prefers distribution. Assuming searches are uniformly
generated among the nodes, the frequency of generated search messages
in the network in total is Nfs. In the semi-centralized architecture, the
frequency of the search messages received by an ordinary node is
Fs,on = 0 while the corresponding frequency of a super-node is
Fs,sn = NfsΩs. Whereas an ordinary node in a semi-centralized architecture
does not receive any search messages from other nodes, a super-node
receives all search requests of the network and stores a large index. It
does not benefit from the improved network-wide efficiency. At the same
time, the capacity of the ordinary nodes is unused.

Concentrating indices in a few nodes results in some nodes being
bottlenecks for scalability. Assuming a message handling capacity of
Fmax,v messages per time unit of super-node v, this node can operate in
networks with at most Nmax nodes, where

ssv fFN Ω= /max,max . (2.15)

In the semi-centralized architecture, the search capacity of the system
does not increase as new super-nodes are added since all queries must be
distributed to all super-nodes. When the capacity of the weakest node is
exceeded, all queries cannot be processed and the system becomes non-
deterministic. Thus, the maximum number of nodes in the system is

ssC fFFFN Ω= /),...,,min(max,2max,1max,max . (2.16)

Typically the super-nodes are selected rather randomly among the
eligible nodes (having adequate bandwidth and no NAT-restrictions). The
large difference between super-nodes and ordinary-nodes creates an
incentive problem, which may discourage a node from becoming a super-
node. The larger the network, the larger the difference in load between
ordinary nodes and super-nodes. Therefore, semi-centralized
architectures are mainly suitable for systems where nodes with
substantially higher capacity exist and can be identified, where there is a
clear third-party providing the system, or where there are additional
rewards for centralized nodes. Moreover, centralization introduces critical
points of failure – the centralized nodes must be more reliable and longer
available than other nodes since they maintain the index of several nodes.

Parallel Index Clusters and Parallel Search Clusters

In their work [CG03] on the Search/Index link model, Cooper and
Garcia-Molina propose two new architectures, Parallel Index Clusters

38

(PIC) and Parallel Search Clusters (PSC), which use a defined topology
but with arbitrary placement of index information. In the PIC
architecture, nodes are divided into C clusters. Index links connect all
nodes within the cluster. For the index links, PIC can use any topology
that guarantees distribution of index information from all nodes to all
nodes within the cluster. Suitable topologies include rings, stars and
random topologies with flooding. The index overhead depends on the
chosen topology and distribution method. Each node has a search link to
at least one node in each cluster. Thus, to search for a resource, at least
one node in each cluster is queried (Ns = C) and consequently the indices
of all nodes are accessed. Ideally, only one node in each cluster is queried
whereas Ωs = 1. On average, Ni = N/C.

Figure 2.4. A (a) PIC network and a (b) PSC network modeled with QIL.

The PSC architecture works in a similar way, but with search and
index links interchanged. The local index is distributed to one node in
each cluster: Ni = C. Ideally, Ωi = 1. In searching, each node in the local
cluster is queried. On average, Ns = N/C. Figure 2.4 depicts a PSC
network and a PIC network using QIL in subfigures (a) and (b),
respectively. Clusters are indicated with dotted circles2.

2.4.9 Simulator for overlay networks

We develop a simulator, PONGsim (Python Overlay Network Graphical
Simulator) [PONGsim], that implements the described modeling
framework. This section gives a brief presentation of the simulator with
which the architectures in this work are evaluated. We focus on
presenting how the simulator relates to the modeling framework. For a
technical presentation we refer to [Bei09].

Our simulator is a discrete-event simulator. In a discrete-time
simulator (also called event-driven simulator) future events are scheduled
using a queue ordered according to the time when the event takes place.
The simulator picks the first-occurring event from the queue, advances
the simulated time to the time of the event and performs the action related
to the scheduled event [JBS92]. Each event may give rise to new future
events. Typically events correspond to receiving a message or performing
the actions of an expired timer.

2 The notation for indicating clusters is not defined by QIL but rather included for

clarity.

(a) (b)

1

1

1

1

1
1

1
1

1

1
1

1
1

1

1
1

1

1

1

1

1

1

1 1 1

1
1

1
1

1

1
1

1

1

39

The simulator is implemented using the Python language, with the
reasoning that the time won by faster prototyping of new algorithms is
larger than the time lost by slower execution in an interpreted language.
The simulator is implemented as a generic framework with a modular
structure to allow using it in a wide range of purposes. To support
development and debugging of algorithms, the simulator supports a
graphical mode and the possibility to control the simulation speed and
examine node properties and messages. For running multiple scenarios in
sequence, the simulator provides a faster batch mode, with a common
queue for scheduling parallel simulation across multiple processors or
processor cores. The simulator allows collecting statistical information
using several tools, and performs averaging across multiple instances of a
simulated scenario. After all defined scenarios are performed the
simulator can collect the results into tables showing the effect of various
input parameters on the examined metrics. Scenarios are defined in
scenario files as collections of parameters together with their values. The
simulator allows specifying value ranges for repeating a simulation with
all combinations of values of the defined parameters.

The simulator implements the following models:

• Application model. Each simulated node runs an application, which
implements the behavior of the node and, in particular, the reactions
to events from other simulator models. The application defines how
received messages are processed, how timer expirations are handled,
how the node connects to other nodes and how the node reacts to
events of the user including search requests and resource
modifications. The simulator comes with applications for standard
algorithms including flooding, random walks, and PIC.

• SIL model. A particular feature of our simulator is that it allows
defining the topology and message forwarding using the SIL or QIL
models. The topology is then specified using search and index links
with a TTL defining the forwarding properties. Additionally
temporary links (e.g. representing UDP messages) can be modeled.
The SIL/QIL model supports three classes of messages: index
updates, search requests and generic messages (including e.g. search
replies and maintenance messages). The model specifies the
processing of messages using flooding (forwarding links) or one-hop
updates (non-forwarding links). The simulator also allows extending
the SIL/QIL models further to generalize for other forwarding
behavior using the underlying search/index link topology. The
application can then decide the neighbors to which a message is
forwarded and modify the TTL. This allows search methods like
random walks to be implemented.

• Topology model. The topology defines the links connecting nodes. A
separate topology generator allows various topologies to be specified,
including fully connected, random power-law, and ring topologies.
Power-law networks are generated based on the method proposed by
Barabási and Réka [BA99], which generates power-law topologies
with the exponent γ = 2.9 ± 0.1. At each step, a new node is added
with k links from the new node to k different existing nodes. The

40

probability Π(vi) that a new link is established to a node vi is
Π(vi) = d(vi) / Σj d(vj). Since each step increases the degree of two
nodes by one, the topology generator can generate topologies with an
even average degree given as parameter. The simulator also includes
a modified version of this algorithm which additionally can produce
fractional and odd average node degrees.

• Resource model. The resource model simulates the user-related
resource events by controlling the generation of searches, and the
addition and the removal of resources. Search requests are generated
at exponentially distributed random intervals with the intensity λs = fs.
The requested resource is selected from the resources currently
existing in the system using a uniform or a Zipf distribution. For the
Zipf distribution, the query rate of the ith most popular resource is
proportional to i

-α with the parameter α controlling the skewness.
Resources are added to the system at exponentially distributed
random intervals with the intensity λr = fr and remain in the system an
exponentially distributed random interval Tr = Nresources / λr
determined using Little’s law to keep the number of resources at a
given average level Nresources. The location of resources can be
uniformly random or selected using a Zipf distribution. The
application model is notified with events from the resource model and
can, depending on implementation, react by generating modification
index updates. Additionally the application can issue periodical index
updates. The resource module follows a search request through the
system and collects statistics about, for example, the success ratio
Rsuccess and search delay Ts.

• Churn model. Nodes can be created and destroyed during the
simulation time to simulate churn. To these events the application can
respond by updating the overlay topology and generating entry and
exit index updates. The simulator also defines an initial topology.

• Delay model. In addition to fixed and uniformly random link delays,
the simulator can import delays from a matrix of pair-wise delays
stored in a file. In particular, this allows mapping simulated nodes to
measured nodes, for instance, obtained from delay measurements
between DNS servers using the King method [GSG02].

Additionally, the simulator provides support functions for interfacing
nodes with other components and provides control for the graphical
interface, logging, simulator performance monitoring and error handling.

Collection of statistics is started after a specified settling period. The
simulator finishes when given stop criteria are satisfied, for instance, after
a given time or a given number of generated search requests. The
simulator collects three types of statistics: snapshots, node-specific
statistics and simulator-wide statistics. Snapshots are generated
periodically to examine global state at different points in time, for
example, the load distribution between nodes. Node-specific statistics are
available per node, but typically the average, maximum value, minimum
value, or sum of all nodes is evaluated. The node-specific statistics can be
divided by the simulation time (excluding the settling period) to obtain
the frequencies Fi, Fs, Li and Ls. Simulator-wide statistics include

41

information not related to specific nodes, such as the number of links in
the network.

2.5 Analyzing uniform indexing architectures

As we have seen, the lowest traffic and delay is normally obtained with a
centralized system. However, this represents an extremely non-uniform
architecture. To balance the indexing load, all nodes in the system must
participate in indexing and each node must index a roughly equal number
of nodes. To balance the search load, different resource requesters contact
a different set of indexing nodes. Further, to support complex queries and
guarantee deterministic behavior in an unstructured system, a search
request must be compared with all resource descriptors in the system.

Both index distribution and searching involves distribution of a
message to several nodes. Index distribution is a proactive transaction,
i.e. it is performed before the resource is requested, while the search is a
reactive transaction performed as a consequence of the resource request.
In order to reduce the search traffic, the number of queried nodes must be
reduced. At the same time, the index load must be minimized. This
section studies how the balance between reactive and proactive
operations is adjusted to minimize message overhead.

2.5.1 The Search/Index Space model

To model searching and indexing in uniform architectures, we introduce a
model called the Search/Index Space. The model, originally published in
[Bei10], is here slightly extended to account for non-optimal search and
index distribution algorithms. The purpose of the model is to illustrate
and analyze the balance between searching and indexing. The model
describes architectures that are (1) deterministic, (2) uniform, and (3)
support complex queries.

We assume that every node in the system can be a resource provider.
Each node v distributes its local index to a set of indexing nodes ℙv.
Consequently, a node w stores the index of a set of indexed nodes
ℕw = {v | w ∈ ℙv}. A search request sent by node v reaches a set of
queried nodes ℝv and locates all resources provided by the nodes ℍv =
∪v∈ℝ ℕv. In order to guarantee finding all matching resources, the search
must reach the index of all nodes. Thus, if the network consists of the set
of nodes V, the requirement is ℍv = V for all v ∈ V. Our goal is to
minimize the sizes |ℙv| and |ℝv| of the sets while still fulfilling the above
requirement.

Continuous model

The Search/Index Space model arranges nodes into a space with two
orthogonal dimensions as depicted in Figure 2.5: a proactive and a
reactive dimension. Each point in the space is allocated to a node. Index
distribution is performed along the proactive dimension and searching
along the reactive dimension. The requirement is that the index
distribution must traverse each point in the proactive dimension, and the
search distribution must traverse all points in the reactive dimension. The

42

nodes that are allocated to the points in space that the distribution crosses
receive the distributed message. Since the dimensions are orthogonal, all
possible search distributions converge with all possible index
distributions. Consequently all indices are covered and the model models
deterministic systems (in static networks). Since all indices are examined,
complex queries are supported. The architecture determines how points
are allocated to nodes and how the dimensions are traversed. If each node
is allocated an equally sized part along both dimensions, the architecture
is uniform.

Figure 2.5. The continuous Search/Index Space model.

Discrete model

For practical purposes we use a discrete version of the Search/Index
Space model. The discrete version depicted in Figure 2.6 represents the
network consisting of N nodes as a P x R matrix. The N ≤ PR nodes are
elements in the matrix. An index update is distributed to one node in each
of the rows and a search request is distributed to one node in each of the
columns. Thus, P = |ℙ| and R = |ℝ|. Using our previous definitions, Ni =
P - 1 and Ns = R - 1. The Search/Index Space models uniform index
allocation if the nodes are distributed uniformly in the matrix, i.e. each
row and each column contains the same number of nodes. Perfect
uniformity is obtained if N = PR but in practical cases the near-uniformity
obtained with N < PR is adequate whereas some slots are empty.

Referring to the SIL model, index links connect nodes in the
proactive dimension and search links connect nodes in the reactive
dimension. The model allows any topology of search and index links that
results in the distribution to the correct nodes. The model does not
specify the algorithms used for distribution of index updates and search
requests. Instead, it models the performance under various distribution
algorithms.

Pr
oa

ct
iv

e
di

m
en

si
on

Reactive dimension

A

Search of node A

Index distribution of node B
B

C

Index of B stored at C accessed by search of A

Pr
oa

ct
iv

e
di

m
en

si
on

Reactive dimension

A

Search of node A

Index distribution of node B
B

C

Index of B stored at C accessed by search of A

43

Figure 2.6. The discrete Search/Index Space model.

The model can describe various common architectures. A fully
reactive architecture is modeled as a 1 x N matrix shown in Figure
2.7 (a). Such an architecture is Gnutella, where flooding is used as a
search algorithm and a random connected topology of search links
connects the nodes. A fully proactive architecture, such as a global index
network is modeled as an N x 1 matrix represented by Figure 2.7 (b). The
Direct Index approach described in Section 3.6 uses this approach.
Hybrid proactive-reactive architectures are formed when P > 1 and R > 1.
The PIC and PSC architectures are examples of architectures having both
a reactive and a proactive dimension. In PIC, the P clusters are the rows
in the matrix, and nodes are fully connected with search links with nodes
in the same column. In PSC, the R clusters are the columns in the matrix,
and index links fully connect all nodes in a row.

Figure 2.7. The Search/Index Space model with (a) a reactive system and (b) a

proactive system.

The model can also be used to form new architectures. Any
arrangement of search links connecting all nodes in a row as well as any
arrangement of index links connecting all nodes in a column is valid. For
example, connecting nodes with ring topologies in both the reactive and
proactive dimensions results in a torus, as depicted using QIL in Figure
2.8.

Pr
oa

ct
iv

e
di

m
en

si
on

Reactive dimension

A Search of node A

Index distribution of node B
B

C

Index of B stored at C accessed by search of A

Pr
oa

ct
iv

e
di

m
en

si
on

Reactive dimension

A Search of node A

Index distribution of node B
B

C

Index of B stored at C accessed by search of A

P
ro

ac
ti

ve
di

m
en

si
on

Reactive dimension

A

Search of node A
Index distribution of node A

Pr
oa

ct
iv

e
di

m
en

si
on

Reactive dimension

A

(b)(a)

P
ro

ac
ti

ve
di

m
en

si
on

Reactive dimension

A

Search of node A
Index distribution of node A

Pr
oa

ct
iv

e
di

m
en

si
on

Reactive dimension

A

(b)(a)

44

Figure 2.8. Torus architecture.

2.5.2 Optimal balance between proactive and reactive operations

We now want to determine P and R so that the total traffic received by
the N nodes is minimized. To simplify the presentation, let us first
assume that both the search algorithm and the index distribution
algorithm are optimal in terms of message overhead: Ωs = Ωi = 1.
Optimally, distributing an index update from a node to all other nodes in
the same column requires Mi = Ni = P - 1 messages. Correspondingly,
distributing a search request from a node to all other nodes in the same
row requires Ms = Ns = R - 1 messages.

We use the continuous version of the Search/Index Space model,
whereas P and R are fractional numbers which finally are rounded to
integers. In the continuous model, N = PR. We first determine the optimal
P, from which we can calculate the corresponding R = N / P. As a node
receives index messages from P-1 other nodes, each generating messages
at frequency fi, the number of index messages received by a node per time
unit is

()1−= PfF ii . (2.17)

The number of search messages received per time unit is correspondingly

()1−= RfF ss . (2.18)

The total traffic (inserting R = N / P) is

() ()()1/1 −+−=+= PNfPfFFF sisi . (2.19)

Deriving (2.19) with respect to P gives

−= 21'

P

rN
fF i

,

 (2.20)

where

is ffr /= (2.21)

is the search/index ratio. As only positive values of P are valid, (2.20) is
zero when

rNP = . (2.22)

The second derivative of (2.19)

45

3

2
''

P

rNf
F i= (2.23)

is positive for P > 0 as r > 0, N > 0, fi > 0, indicating that this is a
minimum. Thus, (2.22) gives the value of P that minimizes the total
traffic. In that situation, the total traffic is

issiiiisi ffNfffrfrNfFFF −−=−−=+= 22 . (2.24)

In practical networks, the values P and R need to be rounded to
integers:

 rNPNR

rNP

==

=

/
. (2.25)

In addition to the frequency of received messages we consider the
frequency of processed messages, i.e. the message processing load. The
total load according to (2.2) and (2.1) is

PrNfPffFfFL iissii +=+++= . (2.26)

Deriving the load with respect to P gives

rNP = . (2.27)

Thus, we observe that the P that minimizes the network traffic also
minimizes the processing load on the nodes.

2.5.3 Optimal balance for non-optimal search and index distribution
algorithms

We now extend the analysis to the general case, where the search and
index algorithms may be non-optimal. We model the required number of
transmissions to distribute a search message to Ns nodes using a linear
overhead as

ssss NM ω+Ω= . (2.28)

For example, in flooding Ωs > 1 and ωs = 0. In an optimal search
algorithm Ωs = 1 and ωs = 0. Correspondingly, the number of message
transmissions required to distribute an index update to Ni nodes is

iiii NM ω+Ω=
.
 (2.29)

A node receives on average

() ()iiiiiiiii PfNfF ωω +Ω−Ω=+Ω= (2.30)

index messages and

()sssss RfF ω+Ω−Ω= (2.31)

search messages per time unit. By requiring the derivate of F = Fi + Fs to
be zero, we obtain the optimal P:

46

ii

ss

i

s

f

f
NrNP

Ω
Ω

=
Ω
Ω

=
, (2.32)

which gives the optimal R,

ss

ii

s

i

f

f
N

r

N

P

N
R

Ω
Ω

=
Ω
Ω

==
. (2.33)

Theorem 2.1. A constant overhead ωs and ωi of the search and index
algorithms does not affect the optimal R and P.
Proof. Equations (2.32) and (2.33) do not depend on ωs or ωi.

2.5.4 When are the extremes optimal?

Fully reactive protocols are popular today, partly because of their
simplicity due to the lack of index distribution. We now apply the
Search/Index Space model to determine in which situations a fully
reactive protocol is optimal. For a reactive protocol to be optimal, the
optimal P must be P ≤ 1, i.e. there must be no proactive transactions.
Applying this requirement to Equation (2.32), gives the search/index ratio
for which a reactive architecture is optimal:

s

i

N
r

Ω

Ω
≤

. (2.34)

We can see that the feasibility of the reactive algorithm increases when
modification of the resources becomes frequent compared to searching.
The feasibility of fully reactive architectures also decreases as the
network size grows. Note that although there is no indexing in the
reactive algorithm, the parameter Ωi must be considered since it denotes
the efficiency of the index distribution algorithm to which we compare.
Comparing to an optimal index distribution algorithm thus yields Ωi = 1.

Correspondingly applying the requirement R ≤ 1 to Equation (2.33)
gives the criterion for a fully proactive algorithm to be optimal:

s

iN
r

Ω

Ω
≥

. (2.35)

Combining (2.34) and (2.35), a hybrid proactive-reactive approach is
feasible when

s

i

s

i N
r

N Ω

Ω
≤≤

Ω

Ω
 (2.36)

or written in an alternative way:

N
f

f

N ii

ss ≤
Ω

Ω
≤

1

. (2.37)

It is worth noticing that the feasibility of both fully reactive and fully
proactive architectures decreases as network size increases, while the
hybrid architectures become feasible in large networks. The extremes are

47

thus feasible in very marginal situations. Consequently, fully reactive
protocols like Gnutella need to artificially limit the network size (search
scope) through a TTL. The areas of optimality for proactive, reactive and
hybrid architectures are depicted in Figure 2.9 for a case where
Ωs = Ωi = 1.

Figure 2.9. Areas of optimality for proactive, reactive and hybrid architectures.

In some cases, a hybrid proactive-reactive approach is not applicable,
and only fully reactive and fully proactive solutions can be considered.
Then, the frequency of received messages per node per time unit is
F = Fi = fi(ΩiN + ωi) for the proactive solution and F = Fs = fs(ΩsN + ωs)
for the reactive solution. The proactive solution is optimal when

iiiissss fNffNf ωω +Ω>+Ω . (2.38)

If we assume that there is no constant overhead ωs = ωi = 0, then the
proactive solution is optimal when

iiss ff Ω>Ω , (2.39)

which can be written as

sir ΩΩ> . (2.40)

We observe that in this particular case, the choice is independent of the
network size.

2.5.5 Analyzing practical implementations

The model does not consider the size of search and index update
messages. Typically, the number of messages received per time unit is
more critical than the size of the messages. This is in particular true for
evaluating energy consumption and processing load. Furthermore, the
message size is heavily dependent on the actual implementation. Still, the
model can easily be adapted to consider the average size Ss of a search
message and the average size Si of an index update message. The

1

10

100

1000

0.001

0.01

0.1

1 10 100 1000 10000

Reactive

Proactive

Hybrid proactive-reactive

Network size

Se
ar

ch
/in

de
x

ra
ti

o

1

10

100

1000

0.001

0.01

0.1

1 10 100 1000 10000

Reactive

Proactive

Hybrid proactive-reactive

Network size

Se
ar

ch
/in

de
x

ra
ti

o

48

message sizes affect the performance proportionally to the frequency of
the messages. Multiplying the average message size with the average
transmission frequency gives the average bandwidth. The average
bandwidth of received index messages is SiFi = Sifi(ΩiNi + ωi) and the
average bandwidth of received search messages is SsFs = fsSs(ΩsNs + ωs).
Modifying Equation (2.32) to calculate the optimal cluster size when the
average message size is known gives:

iii

sss

ii

ss

Sf

Sf
NrN

S

S
P

Ω
Ω

=
Ω
Ω

=
.

 (2.41)

The size should be considered especially in the implementations that
transports the index update of several resources in a single update
message. In these solutions, the frequency fi is reduced while the size Si is
increased.

2.5.6 Applying the Search/Index Space model to PIC and PSC

Equations (2.25) allow us to determine the optimal number of clusters in
PIC and PSC for given search/index ratios. In PIC, the index information
is proactively distributed within clusters and search requests reactively
between clusters. In the Search/Index Space model, R = C is the number
of clusters and P = Nc = N / R is the average cluster size. The search
algorithm is optimal (Ωs = 1, ωs = 0) but the index distribution algorithm
can be freely selected. In PSC, the reactive and proactive operations are
swapped. In the model, P = C and R = Nc = N / P. The index distribution
algorithm is optimal (Ωi = 1, ωi = 0) but the search algorithm is arbitrary.

The inventors of PIC and PSC provide in their later paper [CG06]
similar calculations for the optimal cluster size, which give identical
results. Our model is, however, more general in that it considers the
overhead of various index and search distribution methods. It can be
applied to architectures other than PIC and PSC.

Marossy et al. [MCB+04] provide a simulation-based analysis of PIC
where a “square-root law” is formulated: the average load over a set of
different search/update loads is constant when the number of clusters is
the square root of the number of nodes. We can determine their
simulation results mathematically by inserting P = N into (2.26),
which gives

 ()si ffNL += , (2.42)

confirming that under this condition the total traffic is independent of r
and only depends on the total number of generated messages fi + fs. The
simulation of Marossy et al. also indicated that the load increases slower
than linearly with an increasing network size. With (2.42) we can
accurately confirm that the increase is in the order of O(N). Also the
square root allocation in [CS02] shows similar criteria for optimality in a
different type of architecture.

49

Table 2.6. Properties of the PIC and PSC architectures under optimal cluster size.

Architecture PIC PSC

Index topology Arbitrary connected
topology within a
cluster *

A link from each node
to at least one node in
all other clusters

Search topology A link from each node
to at least one node in
all other clusters

Arbitrary connected
topology within a
cluster *

Index distribution
method

Any * One-hop updates to a
node in each cluster

Search distribution
method

One-hop queries to a
node in each cluster

Any *

Class Hybrid proactive-
reactive uniform

Hybrid proactive-
reactive uniform

Links in network ()2NO ()2NO

Index entries per node ()NO ()NO

Index message
scalability, Mi

()NO ()NO

Search message
scalability, Ms

()NO ()NO

Search delay, Ts ()1O star: ()1O

ring: ()NO
* The topology and distribution algorithm within a cluster are undefined. For example

ring, star and random topologies can be used. The indicated properties are valid for ring

and star topologies.
Table 2.6 summarizes the properties of PIC and PSC when the cluster

size is optimal. The properties may, however, be rather optimistic for
practical networks as the optimal cluster size is difficult to maintain in a
dynamic scenario. The practical implementation of a system adjusting the
cluster size automatically is difficult as there is no global knowledge
about the number of nodes and the search/index ratios available.
Furthermore, rearranging nodes between clusters as the optimal cluster
size changes is also difficult.

2.5.7 Application to non-uniform architectures

The Search/Index Space model is not limited to uniform architectures,
even though its practical application is most valuable for these. Consider,
for example, a semi-centralized architecture with two super-nodes and
four ordinary nodes per super-node. This architecture can be modeled as
depicted in Figure 2.10. The model illustrates that a search can be
implemented by examining either all ordinary nodes or all super-nodes.
The search of a node in its own local index is redundant as the same
index information is examined in the super node as well. The model also
shows that this architecture is non-uniform.

50

Figure 2.10. A semi-centralized architecture in the Search/Index Space model.

2.6 Summary

This chapter presented techniques for modeling and analyzing indexing
in a resource discovery system. We defined central concepts, including
determinism, complex queries, index allocation invariance, and
uniformity. We established a set of metrics for evaluating the
performance of an overlay. We defined the overhead Ω of a distribution
algorithm and stated that a distribution algorithm is optimal when Ω = 1.
For search and index distribution algorithms, we denote the overhead
with Ωs and Ωi, respectively. We found that the overhead of flooding is
Ωs ≈ D – 1, where D is the average node degree. We divided the
frequency fi of generated index update messages into components:
fi = fi,entry + fi,exit + fi,modification + fi,refresh, where fi,entry is the frequency of
entry index updates, fi,exit is the frequency of exit index updates,
fi,modification is the frequency of resource modifications and fi,refresh is the
frequency of periodical index updates. The search/index ratio r is defined
as r = fs / fi, where fs is the frequency of generated search requests. We
concluded that centralization reduces the total network traffic when
r > 1/Ωs(N-1), i.e. in almost all practical cases. However, centralization
causes unevenly distributed load and creates a capacity bottleneck and an
incentive problem. Complete centralization is therefore undesired in
many cases. We presented our simulator PONGsim which uses the
described metrics to analyze the performance of overlay networks.

We proposed our Search/Index Space model for illustrating and
analyzing searching and indexing in architectures that are deterministic,
uniform and support complex queries. Above all, the model can be used
to determine the optimal balance between searching and indexing, i.e. to
determine the number of nodes P to which an index update is distributed
and the number of nodes R contacted in a search. Denoting the number of
nodes in the network with N, the optimal P and R are

iiss fNfP ΩΩ= /

and
ssii fNfR ΩΩ= / , respectively. A fully reactive solution is optimal

in the marginal case when r ≤ Ωi/NΩs and a fully proactive solution is
optimal when r ≥ NΩi/Ωs. In all other situations, it makes sense to
combine reactive and proactive operations.

Pr
oa

ct
iv

e
di

m
en

si
on

Reactive dimension

A

Search of node A

Index distribution of node B
B

C

Index of B stored at super-node C
accessed by search of A

Searching the local index
of nodeA is redundant

51

Chapter 3

Uniform indexing architectures

This chapter presents three new types of architectures involving index
distribution. The first architecture extends the Parallel Index Clusters
[CG03] architecture by allowing the clusters to be arbitrarily
interconnected. We present two search algorithms for this architecture.
The second architecture minimizes the traffic by making the division
between proactive and reactive operations optimal. We present how this
architecture can dynamically adapt to changing conditions and how the
delay can be reduced. The third architecture is fully proactive with a low
traffic overhead. For all architectures we require that it should be possible
to locate all existing resources, and that the load is evenly distributed
between nodes. We also aim to support a wide range of query types. All
architectures are evaluated by simulations. We start by presenting the
research related to indexing in resource discovery systems.

3.1 Introduction

We have seen that a centralized architecture provides the lowest message
overhead and delay. However, the capacity of the centralized node limits
the capacity of the system. The centralized node can also be a single point
of failure. When all participating nodes are similar, it is difficult to give a
node the incentive to take the additional burden as a centralized node. In
uniform architectures, every node maintains a part of the index
information. Consequently, the load is distributed more evenly between
the participating nodes. These systems are particularly useful in
collaborative settings where nodes are similar and have an equal role. The
goal of a uniform architecture is to minimize the traffic without
concentrating the load in a few nodes.

Indexing is a proactive transaction that transfers information about
available resources to other nodes in advance, reducing the number of
nodes that need to be queried for a search. With the Search/Index Space

52

model, we have shown that a large group of scenarios benefit from
indexing. In particular, large networks can benefit from a combination of
proactive and reactive transactions.

Most resource discovery systems today use some form of indexing.
Distributing index information to more than a single node is still a quite
uncommon approach, as we will see in Section 3.2. The Parallel Index
Clusters (PIC) and Parallel Search Clusters (PSC) are examples of this
kind of large-scale index distribution approach. They represent hybrid
proactive-reactive architectures, which can be adjusted to be optimal
according to the Search/Index Space model. However, the clustered
topology imposes certain restrictions. Above all, the topology is difficult
to construct and maintain.

In this chapter we propose three new architectures. The first
architecture enhances the PIC architecture so that clusters can be
interconnected in an arbitrary manner. The second architecture represents
a completely new approach to implement a hybrid architecture. A major
motivator is the need to dynamically adjust the topology as nodes enter
and leave the network. The third architecture shows that a completely
proactive architecture can be implemented in an efficient way.

Although uniform architectures assume that all nodes have similar
capacity, the proposed architectures can be seen as components of
architectures that allow allocating load in a desired way. Firstly, uniform
architectures can be used together with centralization in a hierarchical
way. The lower layer is then centralized, concentrating the load on the
centralized node to an appropriate level. The centralized nodes are
connected with a uniform architecture. Secondly, if some nodes have a
higher capacity and are willing to take a higher load, the load on these
nodes can be increased in a controlled way using a virtual node concept.
A single node then operates as several virtual nodes, whereas it receives
the combined load of these virtual nodes.

The architectures studied in this chapter are uniform, deterministic,
and index allocation invariant. Two of them natively provide complex
queries and one provides complex queries with special considerations.

3.2 Related research

Let us first review the research on indexing, including both uniform and
non-uniform architectures.

3.2.1 Unstructured systems

Centralized architectures were used in the early peer-to-peer file sharing
systems. The most famous example is the original Napster [Napster] for
sharing music. As the centralized architectures showed their weaknesses,
above all the dependence on a single centralized point, search flooding
architectures such as Gnutella version 0.4 [Clip2] were developed. To
improve scalability and to support nodes behind firewalls and NATs,
semi-centralized architectures have become popular. Semi-centralized
architectures are used in Gnutella version 0.6 [KM02] and in the
FastTrack protocol on which Kazaa [Kazaa] and Skype [Skype] are built.

53

Of these, only the search flooding architecture provides a relatively
uniform load, but it does not utilize indexing.

In a Global Index network [CG03], the topology consists of only
index links and the resource descriptors are available to all nodes before
the resource actually is needed. This results in fast searches and
eliminates the need for search distribution. The architecture is uniform,
index allocation invariant, deterministic and fully proactive. Global
indexing can be implemented using structured topologies (e.g. rings) or in
random topologies, with index distribution based on flooding. Global
indexing is used in some distributed database systems [ÖV99] but is
often practically unfeasible in large-scale resource discovery, since it
requires all nodes to store a complete index over all resources. However,
a global index can be used in limited overlays. In [CG03] global indexing
is considered for the upper layer of a two-layer hierarchical architecture.
The resulting architecture is fundamentally a semi-centralized system
with the search and index links exchanged. The architecture is index
allocation invariant and deterministic but non-uniform.

In the Local Indices approach [YG02], each node maintains the
indices of nodes within r hops. The approach uses a method to learn
nodes within r hops and to maintain this knowledge in a dynamic
topology. Search requests are sent by flooding, but only nodes spaced at r
hops examine their index. Thus, the processing power and search delay is
reduced. However, as the message is still distributed to all nodes (within
a TTL), the search overhead still equals flooding with an additional
overhead due to index distribution. We therefore find the improvement to
flooding marginal in terms of message overhead. The architecture is
deterministic, index allocation invariant and uniform. Local indices with
r=1 are also used in Gia [CRB+03].

In the Routing Indices scheme [CG02], a node maintains a routing
table indicating the number of resources of given types reachable through
each of its neighbors. Resources thus need to be classified according to a
defined set of types. Depending of which of three proposed models is
used, the routing table gives the compound number of documents under a
branch, the number of documents for each hop up to a specified horizon,
or an exponentially aggregated count of documents under a branch. A
query is forwarded to the subset of neighbors that reaches most resources
of the requested type. While the search requires a lower number of
messages than in normal flooding, the index distribution has a cost
comparable to flooding. If the manual classification of documents is
omitted, as assumed in this work, the algorithm can only count the total
number of documents under a branch, which gives a marginal benefit.

In Percolation Search [SBR04] the local index is replicated to a set
of nodes using a short random walk, the length of which is a function of
the network size N and the power-law exponent γ. A query is implanted
on a set of nodes using a similar short random walk. These nodes start a
probabilistic flooding search, where the query is sent to a neighbor with a
given probability. This results in a search delay in the order of O(log N).
For random power-law networks, O(log2 N) messages are generated per
query, while in most grown graphs (with a maximum degree of N) the

54

traffic scales as)log(2 NNO . Even though the reported hit rate is fairly
high (over 90% in given scenarios), the algorithm is non-deterministic.
Additionally, the lack of index allocation invariance contributes to the
non-determinism.

BubbleStorm [TKL+07] controls the number of index replicas and
queried nodes so that the hit rate is arbitrarily high. It uses a concept
called BubbleCast to distribute index updates and queries to a specified
number of nodes determined by the weight w. Each node receiving the
message reduces w by one and forwards it to s (the split factor)
neighbors. The currently remaining weight is divided between the s
neighbors. BubbleStorm provides an algorithm for generating a
controlled topology, a random multigraph, where the node degree is
proportional to the bandwidth. Even though the hit rate is theoretically
controlled, BubbleStorm is fundamentally non-deterministic. A major
problem is the lack of index allocation invariance. Consequently, each
update round generates new replicas and leaves stale versions of the
previous replicas.

In contrast to explicit index distribution, index information can be
collected implicitly – a method usually referred to as index caching.
Index caching must not be confused with content caching, where the
actual resource is replicated. A simple caching method is to store copies
of the search results in the nodes relaying the search reply to the resource
requester, whereas no additional index distribution traffic is generated.
This approach is used in [Mar02] and [Freenet]. The performance
improvements provided by index caching are based on location locality
(resources nearby tend to be more frequently used) and time locality (an
accessed resource is often accessed again). Stale index replicas are left in
the system when the original local index is modified. Because of the
lacking index allocation invariance, the validity time of an entry must be
short.

3.2.2 Structured systems

Recent research has concentrated on structured systems, where the
overlay topology is strictly defined and the location of the index entries
within the network is defined. This is in contrast to unstructured systems,
where the topology is random and the index can be located anywhere in
the network. A structured system utilizes an abstract key space, e.g. in the
form of a ring in Chord [SMK+01], a torus in CAN [RFH+01] or a
Plaxton tree [PRR97] in Tapestry [ZKJ01] and Pastry [RD01]. Each node
has an identifier that identifies its location in the key space. Consistent
hashing is used to prevent restructuring when nodes join and leave.
Likewise, each stored element has a key identifying its location. The key
is generated by a hash function, for example, from the file name,
keywords, description, etc. The element is stored at the node whose
identifier is “closest” to the key, where the definition of distance depends
on the algorithm. The fact that the location of each resource’s index is
known makes searching efficient, with a scalability in the order of O(log
N) for a network of N nodes in most algorithms. Maintenance of the strict
structure is generally claimed costly under a high churn rate [CRB+03],

55

even if this claim has been questioned [QB06]. Today’s peer-to-peer
systems show high churn rates, with a median up-time of 60 minutes per
node [SGG02].

In order to find a resource in a structured system, the key of the
resource must be known. The structured system essentially maps a key to
the corresponding data. Therefore, DHTs are naturally constrained to
exact-match single-key queries. Chawathe et al. [CRB+03] point out that
structured systems are ill-suited for file sharing systems where keyword
searches are more prevalent and important than exact-match searches,
and most queries are for relatively well-replicated files.

Some types of complex queries can be supported in DHTs through
various techniques. Each technique is specific to one or a few query
types. Most work, including [AX02], [BAS+04], [BHP+04], [GAA03],
[GS04], [HJS+03], [CLG+04] and [SGA+04], aim to support range
queries. Multi-attribute queries are supported in [BAS+04], [BHP+04],
and [FBG+04], substrings in [HHH+04], equi-joins in [HHL+03], and
longest-prefix matching in [BHP+04]. A comprehensive survey of these
techniques can be found in [RM06]. A typical approach is to divide the
attribute into several partitions, and to allocate each partition to a node.
For example, ranges are divided into sub-ranges and strings into words or
n-character sequences. Each partition must be stored separately in the
DHT. Also queries are divided into partitions and each partition is
queried separately. This increases both the storage and the query
overheads, which decreases the efficiency of the DHT. Furthermore,
since each technique enables only a few query types, supporting multiple
query types entails implementing several techniques and, in the worst
case, several overlays in parallel. Most solutions also require some a

priori knowledge about the stored data, such as the data-types and
expected values. The overlay must therefore be tailored separately for
each application. While DHT-based techniques are valuable for many
applications, they may not provide the expressiveness and flexibility
required by a system shared between multiple applications. In contrast, an
unstructured system natively supports all types of complex queries as the
whole index is available at the node evaluating the query [BHP+04]. For
this reason, several flooding-based overlays are in widespread use despite
their high overhead.

Structured and unstructured systems can be integrated. In the Assisted

Search with Partial Indexing [ZH05] scheme, an unstructured system is
assisted by a structured overlay. A random part of the resources are
registered in a DHT-based index, which is used to find common interests
among peers. Peers with similar interest are connected together in an
unstructured overlay used for searching with a reduced TTL, thus,
complex queries can be supported. Additionally, the index covers
unpopular resources which can be found using the DHT.

3.2.3 Loosely structured systems

Between structured and unstructured systems, a separate class of systems
is emerging. These are often called loosely structured systems. The
definition of a loosely structured system varies. Androutsellis-Theotokis

56

and Spinellis [AS04] define loosely structured systems as systems where
the location of the content is not completely specified but is affected by
routing hints, such as in Freenet [Freenet]. Ganguly et al. [GCD04] use
the term for a system with a topology evolving according to the shared
content. In fact, most of the recent “unstructured” systems involve a
degree of structure and, as Risson and Moors [RM06] point out, the
structure is rather determined by the type of index. The structured versus
unstructured routing taxonomy is becoming less useful [RM06]. We
therefore do not aim to provide a definition of loosely structured systems
but rather use the term where either the structure or the placement of
index information is not strictly defined, while not completely arbitrary
as in an unstructured system. Several of the solutions studied in this work
can be categorized as loosely structured systems. In particular, the
Parallel Index Clusters (PIC) and Parallel Search Clusters (PSC), having
a strictly defined topology but with a free placement of indices, can be
considered as a loosely structured system. These architectures have been
described in Section 2.4.8.

3.3 Our contribution

Our review of the existing architectures shows that very few architectures
distribute index information to more than a single node, especially in a
way that improves the system performance. Several of the reviewed
architectures are non-deterministic. This chapter studies uniform
architectures. Thus, we avoid the concentration of load in a few nodes, as
common in centralized and semi-centralized systems. The aim is to
minimize the number of messages in the network while providing a
reasonable search delay. Furthermore, we require the architectures to be
deterministic, index allocation invariant and provide a method to support
complex queries.

In Section 3.4 we propose a modified version of the PIC architecture
called IPIC that allows clusters to be interconnected arbitrarily.
Removing the requirement of full connectivity between clusters allows a
reduction of the number of links in a network with N nodes from O(N2) to
O(N). Searching in this architecture requires a different search algorithm
than the one used in PIC. Therefore, we propose two new search
algorithms based on random walk. The first algorithm visits every cluster
in the network exactly once, while the second algorithm trades efficiency
for a reduced delay. We analyze the performance using simulations. The
architecture and a first set of simulations are published in [Bei07a]. In
this present work, we repeat the simulations of [Bei07a] but with larger
networks and with metrics compatible with the other metrics of this work.
These new simulation results are unpublished. We also provide an
unpublished backtracking method to be used in certain scenarios.

In Section 3.5 we propose a new architecture called Zone Indexing
based on a ring topology. The architecture allows the balance of reactive
and proactive operations to be adjusted dynamically according to the user
behavior and network properties. We propose an algorithm for
determining the optimal balance according to locally available

57

information. We propose a method to limit the delay using shortcuts. We
perform simulations to study the performance of the algorithms. The
architecture and simulations are published as part of [Bei10].

In Section 3.6 we present a fully proactive architecture based on a
link-state routing protocol. In contrast to a routing protocol, however, we
utilize the possibility to communicate directly between nodes, making
index distribution efficient. We propose compressing the index
information to reduce storage space and communication overhead. The
performance is evaluated with simulation. The work is reported in
[Bei07b].

The research presented in this chapter and the related publications are
the sole work of the present author.

3.4 Clustered indexing architectures

The Parallel Index Clusters (PIC) architecture provides searching at an
overhead that is significantly lower than search flooding when 1/N ≤
fsΩs/fiΩi ≤ N. However, the requirements on topology may restrict the
scalability in certain networks. This section describes the scalability
problem and proposes solutions to it. Let us first define some concepts.

The cluster topology is a specified topology of connections between
clusters that controls how the overlay topology is implemented. The
cluster topology can be thought as an upper hierarchical layer of the
overlay network. Let Es ⊂ E denote the set of search links and Ei ⊂ E
denote the set of index links in an overlay network G = (V, E). We define
the cluster topology as a graph T = (C, K), where the vertices C are
clusters and the edges K the connections between clusters. A cluster C’ ∈
C is a set of nodes C’ = {v1, v2, …, vn}, where each node v ∈ V belongs to
a single cluster Cluster(v) ∈ C.

Definition 3.1. An overlay network G = (V, E) implements a cluster
topology T = (C, K) if and only if a link e = (v1, v2) ∈ E exists for all k =
(C1, C2) ∈ K from every node v1 ∈ C1 to some node v2 ∈ C2. A cluster
topology can be implemented with either search links (e ∈ Es) or index
links (e ∈ Ei).

Definition 3.2. An overlay network G = (V, E) exclusively implements a
cluster topology T = (C, K) if G implements T and additionally a
connection k = (Cluster(v1), Cluster(v2)) ∈ K exists for all e = (v1, v2) ∈
E, where Cluster(v1) ≠ Cluster(v2).

Definition 3.3. The peer clusters of node v is the set of clusters Cpeer(v) =
{C’ ∈ C | (Cluster(v), C’) ∈ K}.

Thus, if a cluster C1 is connected to a cluster C2 in an implemented
cluster topology, then for each node in C1, there is a link to a node in C2
in the overlay network. The specific node within the target cluster can be
freely chosen, i.e. there are several possible ways to implement a cluster
topology in the overlay network. If some link defined by the cluster

58

topology is missing in the overlay, then the cluster topology is not
implemented. If there is a link between clusters that are not connected in
the cluster topology then the cluster topology may be implemented but
not exclusively implemented.

3.4.1 Scalability of the PIC topology

PIC uses one-hop queries as its search method: the node in the other
cluster is queried in a single roundtrip with a minimal delay.
Consequently, the architecture requires that each node is connected with a
search link to at least one node in each cluster, i.e. PIC implements a
fully connected cluster topology. The peer clusters of every node v are
Cpeer(v) = C \ Cluster(v). The number of search links in the network
therefore increases in the order of O(NC) as the number of clusters C
increases. Assuming the number of clusters increases in proportion to the
network size N, the number of network links increases as O(N2).

In practical applications, the cost of maintaining a search link may be
high. There is usually state information related to the link and some
traffic is needed in order to keep the connection open and to check
whether it is operating (e.g. with Hello packets or pings). Furthermore,
the maximum number of links may be limited. For instance, the
maximum number of concurrent open TCP connections is limited in
several systems. The topology also makes PIC less error resilient: if a
search link is down, the resources in a cluster becomes unavailable.
Adding a new node is complicated as the node must be connected to all
the existing clusters. Often the joining node is not aware of all the
existing clusters in the system. Rearranging the network, for example, by
introducing a new cluster, is difficult. Especially, if the clusters are
operated by different administrative parties, as assumed in Section 4.5,
there may be administrative costs and overhead related to the
establishment of peering relations – it may be unfeasible to require
connections between all parties. Because of these reasons, it would
therefore be desirable that the clusters could be connected in an arbitrary
topology instead of requiring every cluster to be connected to all other
clusters.

3.4.2 IPIC: Indirectly connected Parallel Index Clusters

We propose an architecture, called IPIC (Indirectly connected Parallel
Index Clusters), based on a modified PIC architecture. IPIC can use an
arbitrary cluster topology. Instead of connecting all clusters together,
each cluster has a limited number of neighbor clusters. A node is only
required to maintain state information for a node in each of these
neighbor clusters. The solution requires that the cluster topology is
connected, i.e. that there is a path between each pair of clusters in the
cluster topology. We further assume the possibility to use temporary links
to send search messages between nodes that are not connected by
permanent search links. A temporary link is stateless and corresponds to
sending a single message (using e.g. UDP) to a node without establishing
a permanent link.

59

Searching in the IPIC architecture is more challenging than in the
ordinary PIC architecture. The direct query method of PIC cannot be used
since a node does not know about all clusters in the network. Queries
must be forwarded more than one hop. Basic flooding operates at the
node-level (not the cluster-level). Hence, although an individual node is
able to detect duplicate receptions, several nodes in the same cluster may
still be visited. The goal is to visit each cluster only once. A visited node
could distribute knowledge that the cluster is visited to all other nodes in
the cluster, but this distribution adds overhead and is too slow to prevent
all redundant visits. Thus, the search message itself must contain the
information about visited clusters. With such a trace, flooding can be
used as a search method in the IPIC architecture.

Flooding with a trace is a feasible search method but not a perfect
one. A cluster can receive the same query several times if each copy
reaches the cluster through a dissimilar path, as illustrated in Figure 3.1.
As the trace is local to a given instance of the search query, the different
instances are not aware of the path taken by other instances. We therefore
need to minimize the number of instances. We propose two new search
methods based on this observation: Stack-Based Random Walk (SBRW),
and Replicating Stack-Based Random Walk (RSBRW). The IPIC
architecture and the SBRW and RSBRW algorithms are published in
[Bei07a]. We here extend the solution with an unpublished backtracking
method and the changes necessary to support it.

Figure 3.1. Flooding with a trace starting from node A resulting in receptions by

two nodes, B and C, in the same cluster.

3.4.3 Stack-based random walk (SBRW)

Stack-based random walk (SBRW) is a search method that visits every
node in any topology. It is especially feasible in a clustered network,
where it operates in the cluster topology. Using SBRW requires each
cluster to have a unique identifier and that the cluster identifier Cluster(v)
is known to each node v.

SBRW extends random walk by adding two features:

1. The walker does not visit the same cluster twice (unless virtual links
are prohibited).

2. The walker visits all clusters in the network.

To implement the first feature, the walker carries a set T of visited
clusters – a trace. The walker is not forwarded to a neighboring node v if

A

B
C

60

Cluster(v) ∈ T. In order to save space, the trace can be represented as a
Bloom filter as in [ZLZ+05] but in a reasonably sized network this is not
needed. To implement the second feature, the walker contains a set S of
known but unvisited clusters. The entries in S are tuples (v, Cluster(v)),
where v can be any node in the unvisited cluster Cluster(v). The set S can
be unordered (Set Based Random Walk), or ordered in the form of a stack
(Stack Based Random Walk) or queue (Queue Based Random Walk). In
the following, we assume that S is a stack.

As the walker is received by a node v, the stack is updated by adding
an entry (w, Cluster(w)) for each neighbor w for which Cluster(w) ∉ S ∧
Cluster(w) ∉ T. Thus, S contains neighbors in unvisited clusters that are
scheduled for visit in the future. The node then removes the first entry D
= (w, Cluster(w)) from S and forwards the walker to w. The definition of
“first” depends on the order (random, stack, or queue) of S, and
determines whether the clusters are traversed in a random, depth-first, or
breadth-first order. When S is empty, the walker has visited one node in
each cluster in the network. Before forwarding the walker, node v updates
the trace: T ← T ∪ Cluster(v).

Using SBRW as a search method allows interrupting the search when
a given number of matching resources have been found. The maximum
path length can be limited using a TTL field, which makes the method
non-deterministic. Information about matching resources can be stored
within the walker or sent directly to the resource requester.

SBRW is a suitable search method at the node-level as well.
However, the advantage of the trace is most obvious at the cluster-level.
As the knowledge is stored in the walker instead of the node, the risk of
visiting different nodes in the same cluster is eliminated.

3.4.4 Backtracking

In this section, we provide a backtracking mechanism that is used when
virtual links are unavailable. Possible reasons for this situation include
strict firewall policies and NATs with address-dependent filtering [AJ07].
The walker may then not be able to contact the following unvisited
cluster directly from the current cluster. Instead, it must follow the
traversed path back to a cluster that can reach the unvisited cluster.
Consequently, the walker is only sent on the permanent links in the
overlay topology.

The backtracking mechanism requires an additional field in the
search message: the backtracking stack, B. This is a stack storing all
visited nodes on the shortest path between the searching node and the
current node.

The backtracking mechanism modifies the forwarding procedure of
the SBRW algorithm. When a node v examines the first entry D =
(w, Cluster(w)) in S, it checks whether it has a direct link to w. If a link to
w exists, the walker can be forwarded normally using this link to w,
whereas the entry D is removed from S and Cluster(v) is added to T.
Additionally, the address of the current node is added to the end of B. If
no link to w exists, the last node v’ in B is removed and the walker is sent
to v’. The trace T is then not updated. When v’ receives the search

61

message, it can deduce that it is a returning message as it sees itself
already in T, whereas it tries to find a link to the first entry in S using the
above procedure. The procedure is repeated until a link to the first entry
in S is found.

Because the walker must revisit visited nodes, backtracking adds
overhead compared to SBRW. In practice, S must be a stack (producing
depth-first searching) instead of a queue (producing breadth-first
searching) to avoid the significantly higher overhead created when
branching nodes are multiple times traversed in a breadth-first search.
Random selection of entries in S unfeasible because of the high overhead.

3.4.5 Replicating stack-based random walk (RSBRW)

Like traditional random walks, the SBRW search method suffers from
long delays due to the lack of parallel operations. As clusters are visited
sequentially, the delay is proportional to the number of clusters in the
network. In order to reduce the delay, parallel operations must be
introduced. Sending multiple parallel walkers from the resource requester
is not feasible, as all walkers will visit all clusters in the network. We
therefore apply a method of periodical self-replication of the walker. In
self-replication, a single walker becomes several walkers. This gives a
degree of adaptability as the number of walkers increases with an
increasing network size. Instead of blindly sending replicated walkers to
random neighbors, we utilize the knowledge gathered before the
replication to send walkers on different paths.

We implement self-replication by duplicating the walker into
identical walkers. The only detail that differs between the walkers is the
stack. The stack of the original walker is divided between the new
walkers, thus, the new walkers are scheduled for visiting different
clusters. The new walkers contain identical traces and will not visit the
already visited clusters. The walkers are forwarded to the first node of
their respective stack. The frequency of duplication (every hop, every
second hop, etc) and the number of walkers generated in the replication
are selectable parameters. In our experiments, we replicate the walker at
each hop into two walkers.

Although the stack is divided between the new walkers, some
overlapping visits appear. All clusters encountered after the replication
will be visited by all replicated walkers. Since walkers cannot
communicate, there is no way to assign a newly encountered cluster to a
single walker. Neither can a walker indicate to other walkers that it has
visited one of the newly encountered clusters. Consequently the overhead
is higher than the overhead of the single walker in SBRW. Still, the
overhead is significantly lower than in flooding. In [Bei07a] we refer to
the replicating SBRW as a hybrid between flooding and SBRW, since it
operates as flooding to a limited number of neighbors on the cluster level.

3.4.6 Topology construction

The inventors of PIC do not specify methods to construct and maintain
the topology. The need to implement a given cluster topology is common
to PIC and IPIC. In this section we describe a connecting procedure for

62

constructing a static PIC/IPIC network. We assume a fixed number of
clusters. Further, we assume that each node knows its peer clusters and
one node in each of them.

Definition 3.4. A cluster C’ ∈ C is indegree balanced if the indegree
din(v) is roughly the same for each v ∈ C’.

The procedure implements a specified cluster topology so that all

clusters are indegree balanced. For balancing, the procedure requires a
Hello protocol that distributes the current indegree of each node to all
other nodes in the cluster. The Hello messages are generated periodically
and distributed on the index links with the used index distribution
algorithm. Alternatively, the indegree can be transported as an additional
field in index messages. As a consequence, each node stores the degree of
all nodes in the cluster in a degree table.

The purpose of the connecting procedure is to connect a joining node
to the node with the lowest indegree in a given cluster. Initially the
joining node has a list of one known node w in each of its peer clusters.
For each of its peer clusters, the joining node v sends a Connection
Request to w. Node w forwards the request to the node w’ with the lowest
indegree according to its degree table. The request can be recursively
forwarded if node w’ knows about a less loaded node. A path trace in the
Connection Request is used for loop prevention. If recursive operation is
restricted (e.g. by NATs) node w can send a Connection Redirect
message to v, indicating the node w’ to which v should reconnect in an
iterative way. If a node w’ is unaware of nodes with lower indegree, a
connection reply is sent to the joining node v and the search link is set up
between v and w’.

3.4.7 Hierarchical PIC and IPIC

A semi-centralized network is created by connecting each ordinary node
with a search link and an index link to a super node. The super nodes are
interconnected with a search flooding architecture. Replacing the search
flooding architecture with a PIC or IPIC architecture creates a two-layer
hierarchical PIC or IPIC network, respectively. This allows attaching
low-capacity or restricted nodes to an overlay of higher-capacity nodes.

The proposed connecting procedure can be reused to construct a
hierarchical PIC/IPIC network with a balanced number of ordinary peers
per upper-layer node. A joining ordinary node sends a Connection
Request to a known node w in the PIC/IPIC network. Using the
previously defined iterative or recursive search, the node w’ with the
lowest indegree is found. The joining ordinary node v establishes an
index link and a search link to w’. Indegrees of links from an ordinary
node and another cluster should be counted separately to better balance
load.

The node w’ can later send v a Reconnect Request to reallocate v to a
node u with a lower indegree if the difference din(w’) – din(u) is large.
Upon receiving this message, v restarts the connecting procedure to node
u. The index of v does not need to be removed during the reconnection.

63

3.4.8 Performance of architectures based on PIC

We compare the performance of IPIC to PIC and standard flooding using
simulation. The simulations in this work represent a generic use of the
architectures. Simulations modeling small operator networks are
presented in [Bei07a]. We compare five schemes:

1. Flooding in a power-law topology with the average degree of D = 4.
2. Flooding in a power-law topology with the average degree of D = 8.
3. PIC in a fully connected cluster topology.
4. IPIC with the SBRW search method in a power-law cluster topology

with the average degree of 4.
5. IPIC with the RSBRW search method in a power-law cluster

topology with the average degree of 4.

The two flooding architectures are included for comparison. The degrees
are selected to give realistic upper and lower bounds for the performance
of flooding, whereas a typical Gnutella topology has an average degree of
D = 5.5 [LCC+02]. IPIC assumes that temporary links are available, i.e.
backtracking is not used.

We denote the number of nodes in the network with N. In PIC and
IPIC, the network is clustered into clusters with Nc = 10 nodes each, in
total C = N / Nc clusters. PIC and IPIC implement the overlay topology
by forming overlay links with the proposed connecting procedure so that
clusters are indegree balanced. For this purpose a Hello protocol operates
with messages sent at 60 s intervals. We do not count these messages as
they are used for topology construction and do not affect search
performance. For all schemes we test both a forwarding and non-
forwarding variant. In the non-forwarding variant, the search is
terminated when the first matching resource is found while the
forwarding variant searches the whole network. The search scope is not
limited by a TTL. All schemes are deterministic, and the simulations give
a success ratio Rsuccess > 99.5%. The reason that it is less than 100% is
because of the dynamically added and removed resources: index updates
are distributed with a fixed period of 1/fi = 360 s with no event based
updates. Nodes are static during the simulation. Each scenario is
simulated with 10 simulation runs, each 36360 s with an initial 3600 s
stabilization period, and the results are averaged. Search requests are
generated with exponentially distributed intervals with an average of
360 s. Resources are uniformly distributed between the nodes and
requests are made for random resources. Resources are not replicated
unless otherwise stated. Matching results are reported to the resource
requester directly.

Figure 3.2 shows the number of links in the network. In PIC, the
number of links increases exponentially with the network size as each
node must be connected to a node in all other clusters. This high number
of links is the reason for the development of IPIC. In all other schemes
the number of links grows linearly with the network size. The exact
number depends on the average degree and number of clusters. IPIC
requires a number of links that corresponds to a random power-law
topology with the average degree of D = 4.

64

Figure 3.2. Number of links in the network.

Figure 3.3. Scalability in terms of Ms.

Figure 3.3 shows Ms, i.e. the average number of receptions of a
search message (excluding the response message) per search in a network
of increasing size. As both PIC and IPIC-SBRW visit each cluster exactly
once, Ms = C - 1, as expected. For flooding the number of receptions
depends on the average degree D of the topology, and according to
Hypothesis 2.1 it is expected to be Ms ≈ (D-1)N, which also the
simulation shows. Analytical results from IPIC-RSBRW have not been
obtained but our simulation shows that IPIC-RSBRW generates about 6
to 7 times more messages than PIC and IPIC-SBRW in the given
scenario.

0

20000

40000

60000

80000

100000

120000

100 200 300 400 500 600 700 800 900 1000

#
 li

n
ks

 in
 n

e
tw

o
rk

Network size (# nodes)

Flood D=4
Flood D=8
PIC
IPIC-SBRW
IPIC-RSBRW

0

1000

2000

3000

4000

5000

6000

7000

8000

100 200 300 400 500 600 700 800 900 1000R
e

ce
iv

e
d

 tr
a

ff
ic

 (#
 m

e
ss

a
g

e
s/

se
a

rc
h

)

Network size (# nodes)

Flood D=4
Flood D=8
PIC
IPIC-SBRW
IPIC-RSBRW

65

Figure 3.4. Scalability in terms of Ωs.

Dividing Ms by Ns gives the overhead Ωs shown in Figure 3.4. For
PIC and IPIC, Ns = C, while for flooding Ns = N. As expected, PIC and
IPIC-SBRW are optimal Ωs = 1. For flooding, Ωs ≈ D – 1. IPIC-RSBRW
has a low overhead for small networks but the overhead stabilizes at
Ωs ≈ 7 when C > 30. This indicates that knowledge about visited clusters
is useful only during the first replication steps, after which the knowledge
becomes aged. In large networks, the frequency of replication therefore
needs to be reduced. One approach is to decrease the frequency of
replication with the number of hops. The overhead does not reveal the
full truth, however: although the overhead is larger than the overhead of
flooding in a Gnutella topology, the Ms is lower because of indexing.

Figure 3.5 shows the delay for locating the first copy of a resource
assuming a link delay of DL = 20 ms. The delay includes the delay of the
reply message, which is sent on a single hop. In PIC, the delay
corresponds to one roundtrip, 2DL. The delay is independent of N. In
SBRW, all clusters are visited sequentially with a total of C + 1 hops. For
the first hit the delay is DL(C+1) / 2 on average. The delay thus increases
linearly with the network size. In all clustered architectures, the measured
delay is slightly lower because of the possibility to find the requested
resource in the same cluster as the requesting node. The delay in flooding
is proportional to the network diameter, which depends on the average
degree. In [CL02] the diameter of a power-law random graph with
exponent γ > 3 and D > 1 is shown to increase logarithmically with the
network size. RSBRW trades efficiency for a reduced delay. The delay is
slightly higher than in flooding.

0

1

2

3

4

5

6

7

8

9

10

11

12

100 200 300 400 500 600 700 800 900 1000

S
e

a
rc

h
 o

ve
rh

e
a

d

(#
 m

e
ss

a
g

e
s/

se
a

rc
h

/n
o

d
e

)

Network size (# nodes)

Flood D=4
Flood D=8
PIC
IPIC-SBRW
IPIC-RSBRW

66

Figure 3.5. Scalability in terms of search delay.

For IPIC-RSBRW the replication frequency has a central role. A
given performance that is between IPIC-SBRW and IPIC-RSBRW, both
in terms of message overhead and delay can be obtained by adjusting the
frequency of replication.

3.4.9 Replicated resources

When several copies of a resource are available, the sequential search of
SBRW (and to some extent in RSBRW) becomes an advantage. The
search can be interrupted when one or a given number of matching
resources have been found, which reduces the message overhead and
search delay. We evaluate networks with N=500 nodes and each resource
available at 1 to 30 random nodes. The resource is thus replicated to
0.002% to 6% of the nodes.

Figure 3.6. Effect of replication on Ms.

0

100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600 700 800 900 1000

D
e

la
y

(m
s)

Network size (# nodes)

Flood D=4
Flood D=8
PIC
IPIC-SBRW
IPIC-RSBRW

1

10

100

1000

10000

0 % 1 % 2 % 3 % 4 % 5 % 6 %

R
e

ce
iv

e
d

 tr
a

ff
ic

 (#
 m

e
ss

a
g

e
s/

se
a

rc
h

)

Replication

Flood D=4
Flood D=8
PIC
IPIC-SBRW
IPIC-RSBRW

67

Figure 3.6 shows the number of received messages per search for the
non-forwarding variants. Because of the large differences in traffic, a
logarithmic scale is used. We can see that flooding and PIC cannot
benefit from replication whereas the traffic in both IPIC variants
decreases to a level lower than PIC. The forwarding variant is not shown:
the redundant copies do not reduce the traffic since the whole network
must be examined.

Figure 3.7 shows the search delay for finding the first matching
resource. Since only the first match is required, both the forwarding and
non-forwarding variants behave similarly (only the non-forwarding is
shown). The reduction in search delay for IPIC-SBRW is significant – the
existence of a few copies halves the delay, whereas a 3% replication
reduces the delay to a level comparable to flooding. IPIC-SBRW, given
its low overhead, is particularly useful for replicated resources. Also
IPIC-RSBRW benefits from replication in terms of delay.

Figure 3.7. Effect of replication on search delay.

3.4.10 Difference in cluster sizes

So far we have assumed an identical number of nodes Nc in each cluster.
If the number of nodes per cluster varies, it is expected that the load is
unevenly distributed among the participating nodes. We simulate six
scenarios with different allocations of nodes to clusters. The total number
of nodes N = 500 and the number of clusters C = 10 are identical in all
scenarios. The number of nodes in the scenarios is presented in Table 3.1.
Figure 3.8 shows the average and maximum number of received
messages per generated search. As expected, the traffic of the most
loaded node increases as the variation in size increases. The average
traffic is constant. In Figure 3.9 the maximum traffic is normalized in
respect to the average traffic. The figure shows that all clustered
architectures react similarly to the increasing difference in cluster sizes.
However, the IPIC architectures show a slightly higher traffic for the
most loaded node.

0

50

100

150

200

250

300

350

400

450

500

0 % 1 % 2 % 3 % 4 %

D
e

la
y

(m
s)

Replication

Flood D=4

Flood D=8

PIC

IPIC-SBRW

IPIC-RSBRW

68

Table 3.1. Number of nodes per cluster in the examined scenarios.

Cluster 1 2 3 4 5 6 7 8 9 10

Scenario 1 50 50 50 50 50 50 50 50 50 50

Scenario 2 40 40 40 50 50 50 50 60 60 60

Scenario 3 30 30 40 40 50 50 60 60 70 70

Scenario 4 10 20 30 40 50 50 60 70 80 90

Scenario 5 10 15 20 30 40 60 70 80 85 90

Scenario 6 5 10 15 20 25 75 80 85 90 95

Figure 3.8. Average and maximum number of received messages per search

under different cluster configurations.

Figure 3.9. Normalized maximum number of received messages per search

under different cluster configurations.

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6

R
e

ce
iv

e
d

 tr
a

ff
ic

 (#
 m

e
ss

a
g

e
s/

se
a

rc
h

)

Scenario

PIC average
IPIC-SBRW average
IPIC-RSBRW average
PIC max
IPIC-SBRW max
IPIC-RSBRW max

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6

R
e

ce
iv

e
d

 tr
a

ff
ic

 (#
 m

e
ss

a
g

e
s/

se
a

rc
h

)

Scenario

PIC max

IPIC-SBRW max

IPIC-RSBRW max

69

3.4.11 The cost of index distribution

The efficiency of PIC and IPIC does not come without a cost. The index
must be distributed to all nodes within a cluster. An efficient topology,
such as a ring or fully connected topology, of index links allows the index
to be distributed with Mi = Nc - 1 messages in a cluster containing Nc
nodes, i.e. with Ωi = 1. If the index needs to be updated fi times per time
unit on average, the index message traffic per node is Fi = fi(Nc-1). Since
we have determined Ωi and Ωs for the various architectures, we can use
the Search/Index Space model to calculate the optimal cluster size for a
given search/index ratio.

3.4.12 Related architectures

For completeness, we also examine whether the Parallel Search Cluster
(PSC) architecture could be modified to allow indirect cluster
connectivity in the same way as in IPIC. In this approach, index updates
are distributed to one node in each cluster using SBRW or RSBRW. All
nodes in a cluster are queried in a search.

Index updates are not time-critical but they must be reliably
distributed to all clusters. It is also important that only one (or very few)
nodes per cluster receive the index update, since otherwise the efficiency
is reduced by storing multiple copies. The main problem, however, is that
this type of architecture is not index allocation invariant. Because each
consequential update of a node v may follow a different random path, the
indexing nodes ℙv constantly changes and the previous versions of v’s
resource descriptor remain in the system until they expire. Generally,
index allocation invariance is difficult to provide with any multi-hop
index distribution method without a rather strict structure of the network.
Given this limitation we conclude that this architecture is not feasible in
practical implementations. The IPIC architecture, however, does not
suffer from this problem as the set of indexing nodes ℙv is stable.

3.4.13 Comparison

Table 3.2 compares the properties of the discussed architectures. All the
clustered architectures (PIC, PSC, IPIC) provide a significant
performance increase, both in terms of overhead and delay, compared to
flooding, provided that the search/index ratio is sufficiently high. While
PIC and PSC are able to provide optimal performance with correct cluster
size, the IPIC architectures allow an arbitrary cluster topology and with a
linear growth of state information but at the cost of either a longer delay
or a larger overhead. The architectural choice therefore depends on
whether these properties are required.

70

Table 3.2. Properties of the PIC, IPIC-SBRW and IPIC-RSBRW architectures

and comparison to standard flooding.

Architecture Search
flooding

PIC IPIC-SBRW IPIC-
RSBRW

Index
topology

- Arbitrary
connected
topology
within cluster

Arbitrary
connected
topology
within cluster

Arbitrary
connected
topology
within cluster

Search
topology

Random
power-law

A link from
each node to
at least one
node in all
other clusters

A link from
each node to
at least one
node in a
subset of the
other clusters

A link from
each node to
at least one
node in a
subset of the
other clusters

Index
distribution
method

- Any (e.g. ring
or star within
cluster)

Any (e.g.
ring or star
within
cluster)

Any (e.g. ring
or star within
cluster)

Search
distribution
method

Flooding One-hop
queries to a
node in each
cluster

SBRW RSBRW

Class Reactive
uniform

Hybrid
proactive-
reactive
uniform

Hybrid
proactive-
reactive
uniform

Hybrid
proactive-
reactive
uniform

Links in
network

()NO ()2NO ()NO ()NO

Index entries
per node

()1O ()
()CNO

NO c =

()
()CNO

NO c =

()
()CNO

NO c =

Index
message
scalability,
Mi

- ()
()CNO

NO c =

()
()CNO

NO c =

()cNO

Search
message
scalability,
Ms

()DNO ()
()cNNO

CO =

()
()cNNO

CO =

()kNO

Search
delay, Ts

()NO log ()1O ()
()cNNO

CO =

Unknown
(nearly
logarithmic)

Benefit from
replicated
resources

Low Low High Medium

71

3.5 Zone Indexing – a proactive-reactive hybrid architecture

Architectures combining proactive and reactive operations can be
implemented in several ways, including the PIC, PSC and IPIC
architectures. Such architectures can be made optimal using the
Search/Index Space model. Despite their good performance, the
mentioned architectures suffer from crucial practical problems. Firstly, it
is difficult to construct and maintain the topology as nodes join and leave.
To our knowledge, no automatic algorithm has been proposed. The
closest attempt to create such an algorithm is [Dun], which however lacks
several critical properties and has not been experimentally or theoretically
verified. Secondly, as the performance depends on the cluster size, the
overlay must be updated when the network size and user behavior
changes. This update may require moving nodes between clusters and
rearranging the links both within clusters and between clusters. The
overlay network must itself be able to detect the need for restructuring.
We therefore develop a new architecture implementing the Search/Index
Space model. Our goal is to develop an architecture that

• provides near-optimal search and index distribution algorithms,
• provides automatic construction of the overlay network,
• dynamically adapts to the current network size,
• dynamically adapts to the current search/index ratio,
• provides a search delay less than O(N), and
• can be implemented in practice with reasonable effort.

Additionally, the architecture must support our general requirements of

• uniform index allocation,
• support for complex queries,
• determinism, and
• index allocation invariance.

This research has resulted in an architecture called Zone Indexing, which
is presented in [Bei10].

3.5.1 Topology

Like Chord [SMK+01], Zone Indexing organizes the nodes into a ring.
Each node v knows the node that precedes it on the ring, its predecessor
Pred(v), and the node that succeeds it on the ring, its successor Succ(v).
The successor of the successor is called the second successor and is
denoted Succ2(v) = Succ(Succ(v)). Correspondingly, the kth successor is
denoted Succk(v). The kth predecessor of v is Predk(v). A node actively
maintains knowledge about its first successor only but several
predecessors can be learned through indexing.

In a ring topology, searching can be performed reactively by simply
forwarding a search request along the ring until it reaches the resource
requester again or encounters a match. The search message overhead is
then O(N) and the delay is O(N). To improve search performance,
additional state information and index replication are needed. Here,
Chord and Zone Indexing take dissimilar approaches, which determine
the difference in the type of supported queries and the performance.

72

Chord places a resource-specific index in a single node which is
identified by a key, while Zone Indexing replicates a node-specific index
to several nodes. The searching node in Chord needs to know the key of
the requested resource, whereas Zone Indexing allows for complex
searches using any logic based on the metadata of the resource. The
ability to support complex searches is the main advantage of Zone
Indexing. The ring structure in both approaches is similar and can be
reused in scenarios where both lookups and complex searches are needed.

Zone Indexing divides the ring into overlapping zones. The number
of nodes within the zone of node v is called the zone size of node v and is
denoted Zv. The zone of node v of size Zv contains the nodes {v, Succ1(v),
Succ2(v), …, SuccZv-1(v)}. The algorithm allows each node to select a
different zone size, which can vary dynamically. Various algorithms for
selecting the zone size can be developed – we later propose one such
algorithm.

3.5.2 Index distribution algorithm

Each node v maintains a unidirectional index link to its successor. Index
updates are sent with a time-to-live value of R = Zv. The local index of v
is consequently distributed to all nodes in node v’s zone. Thus, ℙv = {v,
Succ1(v), Succ2(v), …, SuccZv-1(v)}. Using our previous definition, a node
w stores the index of the nodes ℕw = {u | w ∈ ℙu}, i.e. of all nodes in
whose zone w resides. For searching (described later), each node
maintains a unidirectional search link to its border node. The border
node, Border(v), of a node v is defined as the closest predecessor not
included in the remote index of v. Thus, Border(v) ∉ ℕv.

Figure 3.10 depicts an example network from the perspective of a
node E. All nodes use the same zone size Z = 4. The index of node E is
distributed to the nodes ℙE = {E, F, G, H}. Node E stores the index of
nodes ℕE = {B, C, D, E}. The border node of E is node A, as this is the
closest node that is not indexed by E. The zones overlap, and therefore
for example, node D distributes its index to a different set of nodes, ℙD =
{D, E, F, G}.

Figure 3.10. An example Zone Indexing network from the perspective of node E.

D

G

A
B
C

E
F

H

Nodes indexed by EEdge node of E

Distribution of the index of E

D

G

A
B
C

E
F

H

Nodes indexed by EEdge node of E

Distribution of the index of E

73

An index update message (v, Pred(v), R, E, T) sent by node v
contains the address of the sender v, the address of the sender’s
predecessor Pred(v), the remaining hops R, a set of index entries E, and a
timeout value T. The remaining hops is initialized by the sender to
R = Zv – 1. The timeout specifies the length of time the index entries are
stored in a node’s remote index and is initialized to k (an application
specific constant) times larger than the periodical index update interval:
T = k / fi,refresh. The format for the index entries depends on the
application.

A node w receiving the index update message through a node u first
updates its predecessor Pred(w) = u. This accounts for a potential new
node that has joined the ring as a new predecessor. Node w stores
information about the sender v: the predecessor Pred(v) is stored in the
neighbor cache Pneighborcache and the index entries E in the remote index
Ecache. If R > 0, the message is then forwarded to Succ(w) with R = R - 1.
The expiration timer for the received entry and the timeout timer for the
predecessor are restarted. The reception algorithm is summarized in
Figure 3.11.

Figure 3.11. Index reception algorithm of node w.

To distribute the index to Ni nodes, Mi = Ni messages are required.
The overhead of the indexing distribution algorithm is therefore Ωi = 1,
ωi = 0 according to Equation (2.29) and the algorithm is optimal.

3.5.3 Search algorithm

Search requests are forwarded in reverse direction compared to the index
updates. The search algorithm utilizes border nodes in order to avoid
examining the same index multiple times. A unidirectional search link is
maintained to the currently chosen border node. Each time the neighbor
cache is updated (e.g. on each received index update) the border node is
re-evaluated. The algorithm for determining the border node is presented
in Figure 3.12. If the border node changes, the search link to the former
border node is closed and a search link to the new border node is created.

1: receive index (v, P, R, E, T) via u

2: Pred(w) ← u

3: Pneighborcache(v) ← P

4: Ecache(v) ← E

5: restart timer for Ecache(v) with T seconds
6: restart timer for u with T seconds
7: if R > 0 then
8: send index (v, P, R-1, E) to Succ(w)
9: end if

74

Figure 3.12. Algorithm for determining the border node of node w.

Before presenting a more efficient search method, we present the
idea using a simple form of searching. The simplest form of searching is
implemented by using border nodes only. A search message (v, Q, S)
contains the address v of the resource requester, the query Q and a list of
stop nodes S. In the simplest form of searching, a single stop node, the
resource requester itself, is defined: S = {v}. The search request is
forwarded by a node to its border node, which in turn forwards the
request to its border node, until the whole ring is traversed. On each step,
the request is forwarded to the first predecessor with new index
information. To determine when the search has traversed the ring, the set
of stop nodes is examined on each hop. The search finishes when it either
(1) reaches a node w that has an entry for a stop node in its neighbor
cache, or (2) when a stop node is the border node of w. In other words,
the search is forwarded until

S ∩ (Border(w) ∪ ℕw) ≠ ∅. (3.1)

Consequently, the search covers all indices between the resource
requester and the stop node. In the simplest form, the search covers all
indices in the ring. We define the search path of node v as the ordered set
of nodes that a search request generated by v will traverse, including node
v itself.

Figure 3.13. Forwarding a search request in a Zone Indexing network.

1: b ← Pred(w)
2: while Pneighborcache(b) is defined do
3: b ← Pneighborcache(b)
4: end while
5: if b ≠ Border(w) then
6: remove search link to Border(w)
7: Border(w) = b
8: create search link to Border(w)
9: end if

C

A

G

D

B

E

F

Indexed by A

Indexed by B

Indexed by C

Indexed by D

Indexed by E

Indexed by F

Indexed by G

C

A

G

D

B

E

F

Indexed by A

Indexed by B

Indexed by C

Indexed by D

Indexed by E

Indexed by F

Indexed by G

75

Figure 3.13 shows an example of searching. The search request
generated by node A is forwarded to node B, which forwards to its border
node C. The request is forwarded until it reaches node G, whose border
node is A. As node A is the stop node, the search finishes. The search
path of node A is {A, B, C, D, E, F, G}.

3.5.4 Experimental setup for simulations of Zone Indexing

We implement Zone Indexing in our simulator [Bei09] to prove the
concept and to validate our mathematical analysis. Differently to our
paper [Bei10], we here present the simulation results together with the
corresponding analysis of each separate mechanism.

The simulated system consists of N nodes, which are static unless
otherwise mentioned. The resources are modified (added or removed) at
exponentially distributed random intervals at a frequency of fi,update =
1/2000 s-1, and each update triggers an index update. Additional
periodical updates are sent at the frequency fi,periodic = 1/2000 s-1. The total
index update rate is fi = fi,update + fi,periodic = 1/1000 s-1. Search requests are
performed by uniformly randomly selected nodes for resources that at the
time of the request exist in the network. The popularity of requested
resources follows a Zipf distribution3 where the query rate of the ith most
popular resource is proportional to i

-α with α = 1.0. Search requests are
generated at exponentially distributed random intervals at a frequency of
fs. To obtain the desired search/index ratios r = fs / fi, the search frequency
fs is adjusted. The search examines all indices, i.e. the search message is
forwarded after a matching resource is found. In all simulations,
resources are non-replicated and located at random nodes selected from a
Zipf distribution with parameter α = 1.0. Transmission delays between
simulated nodes are based on pair-wise delay measurements between
DNS servers using the King method [GSG02]. The average unidirectional
link delay is 90 ms with a standard deviation of 66 ms. The collection of
statistics is started after a 3000 s settling period, whereafter the
simulation is continued until 5000 search requests have been generated.
The measured success ratio is Rsuccess > 99.9% in all static scenarios (a
slight variation is due to dynamically added and removed resources). The
system is considered deterministic.

3.5.5 Performance of the basic version of Zone Indexing

As the index update is distributed to all nodes within the zone with Z - 1
messages, the frequency of received index messages per node is

)1(−= ZfF ii .
 (3.2)

To find all matching resources, the search request is forwarded along the
search links so that the whole ring is traversed. Assuming that all nodes
use the same zone size Z, the search message is forwarded to

3 We performed the simulations with both uniform and Zipf distributions. No

differences were observed. This independence of distribution comes from the fact that
the indices of all nodes are examined. The results from the Zipf distribution are shown.

76

 ZNZNN z // ≈= (3.3)

nodes. The number of search messages received per time unit is therefore

 −= 1
Z

N
fF ss . (3.4)

Figure 3.14 shows the frequency of received index and search
messages in a network with N = 1000 nodes for varying zone sizes (all
nodes use the same zone size). The used search/index ratio of r = 2 is
obtained by selecting fs = 1/500. The figure shows the simulation results;
the analytic results from (3.2) and (3.4) are practically indistinguishable
from the simulation results if plotted on the same graph. The index traffic
increases with an increasing zone size while the search traffic decreases.

Figure 3.14. Received index and search messages vs. zone size.

Figure 3.15. Received messages vs. zone size for different search/index ratios.

In Figure 3.15 the total traffic is shown for search/index ratios
varying between r = 1/8 and r = 8. As suggested by the Search/Index

0.0001

0.001

0.01

0.1

1

10

1 2 4 8 16 32 64 128 256 512

R
e
ce

iv
e

d
 tr

a
ff

ic
 (#

 m
e
ss

a
g

e
s/

s)

Zone size

Index

Search

Total

0.01

0.1

1

10

1 2 4 8 16 32 64 128 256 512

R
e
ce

iv
e
d

 tr
a
ff

ic
 (#

 m
e
ss

a
g

e
s/

s)

Zone size

r = 8:1
r = 4:1
r = 2:1
r = 1:1
r = 1:2
r = 1:4
r = 1:8

77

Space model, the traffic is minimized by a certain zone size for each
value of N and r.

To locate all matching resources, Nz = N/Z nodes are queried
according to (3.3). If each overlay link has a delay of Tlink, the maximum
delay for finding a resource is

Z

NT

Z

N
TNTT link

linkzlinksearch ≈

==ˆ

,

 (3.5)

including the search reply. This is also the delay for finding all matching
resources. The delay increases linearly with the size of the network.

If only one matching resource exists, the average number of queried
nodes is Nz/2, assuming the resource is located at any node with uniform
probability. The average delay for finding a matching resource is then

Z

NT

Z

NT
T linklink

seearch 22
≈

=
. (3.6)

Figure 3.16 depicts the analytic and simulated average search delays
in an N = 1000 node network where the average link delay is Tlink = 90
ms. As the delay is independent of r, only r = 2 is shown. A larger zone
size decreases the search delay. The delay is high, which motivates using
an optimal zone size and adding parallel operations (in Section 3.5.10).
The delay increases linearly with the network size (not shown).

Figure 3.16. Average search delay when no shortcuts are used.

3.5.6 Performance under optimal zone size

Zone indexing implements the Search/Index Space model. A zone
consists of one node in each row in the matrix. Because of the
overlapping clusters, these nodes can reside in two adjacent columns, as
depicted in Figure 3.17. A search request is distributed to one node in
each column in the matrix. Consequently P = Z and R = N / Z. Both
searching and indexing are optimal: Ωi = Ωs = 1.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 4 8 16 32 64 128 256 512

D
e

la
y

(m
s)

Zone size

Simulated

Analysis

78

Figure 3.17. Zone indexing in the Search/Index Space model.

The analysis of optimal zone size follows the one in Section 2.4.9.
By deriving the total traffic F = Fi + Fs given by (3.2) and (3.4) with
respect to Z, we obtain the optimal zone size

rNZ o = . (3.7)

When the zone size is optimal, the frequency of received index messages
is

() isiii fNffrNfF −=−= 1
,
 (3.8)

and the corresponding frequency of received search messages is

() ssiss fNffrNfF −=−= 1/ . (3.9)

The total frequency of received messages when the zone size is optimal is
consequently

issisi ffNffFFF −−=+= 2
.
 (3.10)

Figure 3.18. Received message vs. network size when zone size is optimal.

The frequency of received messages for optimal zone sizes is shown
in Figure 3.18. The network size varies between N = 500 and N = 6000

Reactive dimension

Distribution of
a search request

Zone of node A

Pr
oa

ct
iv

e
di

m
en

si
on

A

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

R
e
ce

iv
e

d
 tr

a
ff

ic
 (#

 m
e
ss

a
g

e
s/

s)

Network size (# nodes)

r = 4:1 simulation
r = 1:1 simulation
r = 1:4 simulation
r = 4:1 analysis
r = 1:1 analysis
r = 1:4 analysis

79

nodes and the search/index ratio takes the values r = 4, r = 1, and r = 1/4.
The analytic and simulation results plotted in the same graph correspond
well to each other. The traffic grows in the order of O(√N) when the zone
size is optimal. A high search/index ratio increases the traffic.

Inserting (3.7) into (3.3) gives the number of nodes queried when the
zone size is optimal:

rNZNN ooz == /, .
 (3.11)

Inserting (3.7) into (3.5) gives the maximum delay for finding a resource
when the zone size is optimal:

r

NT
NTT link

ozlinkoseearch == ,, .
 (3.12)

Correspondingly, inserting (3.7) into (3.6) gives the average delay for
finding a single random resource when the zone size is optimal:

r

NTNT
T linkozlink

oseearch
22

,
, ==

.
 (3.13)

Figure 3.19 shows the average search delay when the zone size is
optimal. The traffic grows in the order of O(√N). An increasing
proportion of searches to index updates decreases the search delay. The
simulation results coincide with the analytic results.

Figure 3.19. Average search delay vs. network size when zone size is optimal.

0

1000

2000

3000

4000

5000

6000

7000

8000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

D
e
la

y
(m

s)

Network size (# nodes)

r = 4:1 simulation
r = 1:1 simulation
r = 1:4 simulation
r = 4:1 analysis
r = 1:1 analysis
r = 1:4 analysis

80

Theorem 3.1. If the zone size is optimal, the search load equals the index

load.
Proof. Inserting (3.8) into (2.2) gives

NffL sii = .

Correspondingly, inserting (3.9) into (2.1) gives

NffL sis = . □

3.5.7 Algorithm for dynamic control of zone size

The goal of the Zone Indexing architecture is to be able to adjust the
number of index replicas so that it is close to optimal. The overlapping of
zones allows the adjustment to be made with low effort, much lower than
the effort of rearranging the links and clusters in a PIC or PSC network as
the optimal number of clusters changes. The change of zone size only
affects the initial value of the hops left field in the index update message.

As Equation (3.7) indicates, the optimal zone size depends on the
network size N and the search/index ratio r. Unfortunately, both variables
are difficult to measure. A node is able to determine its local frequency of
generated search messages and index updates and calculate a local
search/index ratio, but this represents the behavior of only one node,
which can be very different from the average behavior. Moreover, the
process of obtaining a global node count does not scale. However,
Theorem 3.1 states that Li = Ls when the zone size is optimal. When
Ls > Li the zone size needs to be enlarged and vice versa. The load is easy
to measure locally. The local index load Li,v of node v is calculated by
measuring the interval Ti between processed (generated and received)
index messages. The load is then the inverse 1/Ti of the time interval. To
give a longer time perspective and better stability, an exponentially
weighted average with parameter α (0 < α < 1) is used to include the load
of earlier measurement periods:

)1()1(/)(,, −−+= tLTtL viivi αα . (3.14)

Our simulations showed that the selection of α has a marginal effect on
the performance. We use α = 0.1. The search load is measured in a
similar way.

To reduce the variation in zone size between neighboring nodes, we
approximate the network-wide average load by averaging the local load
of a larger number of nodes. The choice of zone size of node v directly
affects the index load of v’s successors: when v changes its zone size, the
load balances of its successors change. Therefore, we use the load of
node v’s current successors as a basis for the zone size decision. As the
search load is dependent on the index load (through the zone size), it is
sufficient to adjust the index load in order to affect the Li/Ls ratio.

To measure the load of the successors, the index update sent by node
v contains v’s current local search load and index load. On forwarding the
index update, each node adds their current search and index load to these
fields. The last node in the zone sends an acknowledgement message
back to node v containing the averaged index and search loads. Node v

81

thereby learns the average load of the nodes in its zone. If the search load
is higher than the index load, the zone size is increased by one. If the
search load is lower than the index load, the zone size is reduced by one.
If the difference is small (defined by a threshold) the zone size is
unmodified. As the zone size changes with a fixed maximum rate of ±1
nodes per index update, the change rate is sufficiently slow to give
stability. The acknowledgement message further doubles as an indication
that the index update was correctly delivered. The acknowledgement
message adds a constant overhead of ωi = 1. As stated by Theorem 2.1
this does not affect the optimal zone size.

3.5.8 Avoidance of local redundancy

The Search/Index Space model requires the nodes to be uniformly
distributed in the space. Applying this requirement to Zone Indexing,
translates into a requirement that all nodes should use the same zone size
to guarantee optimal performance in a network-wide perspective.

A particular case of non-optimal performance results from local
redundancy. This is caused by a large variation in the zone size between
consecutive nodes. To illustrate the situation, consider the example in
Figure 3.20. The zone sizes are ZA = 4, ZB = 2, and ZC = 2. Node D will
select B as its border node as it is the first predecessor not included in the
neighbor cache. When a search message is forwarded by node D to the
border node B, the index entries of node A are examined twice: at both D
and B. Thus, the distribution of A’s index entries to node D is redundant.
Node A should select a zone size of ZA = 3 or less.

Figure 3.20. Redundancy caused by large variation in zone size.

Local redundancy is avoided if

1)(+≤ vSuccn ZZ (3.15)

for each node v in the network. As periodical messages are received only
from the predecessor, it is more practical to express this condition in an
equivalent form:

1)(Pr −≥ vedn ZZ . (3.16)

In some cases it may be beneficial to allow local redundancy in a limited
form. To increase the speed of adaptation when the target zone size

D

A

B

C
Border
node of D

Distribution of
index information

82

changes rapidly, it may be justified to allow a larger variation in the zone
size between neighboring nodes. The maximum variation is then a system
parameter ZAllowedDifference generalizing (3.16) to

ferenceAllowedDifvedv ZZZ −≥)(Pr . (3.17)

For symmetry, an application can additionally consider an upper limit for
the allowed zone size, whereas the condition is

ferenceAllowedDifvedvferenceAllowedDifved ZZZZZ +≤≤−)(Pr)(Pr .
 (3.18)

3.5.9 Evaluation of the algorithm for zone size control

We first test the adaptation speed of the algorithm using a network with
N = 2000 nodes. All nodes are started simultaneously with an initial zone
size of Zv = 1. We implement the algorithm described in Section 3.5.7 for
zone size control with a parameter of α = 0.1. We limit the variation in
zone size using both an upper and a lower limit as defined in (3.18). The
cases ZAllowedDifference = 1 and ZAllowedDifference = 2 are examined. Figure 3.21
shows the development of the zone size during 110000 s. The vertical
bars indicate the measured standard deviation. The final zone size is
reached faster with ZAllowedDifference = 2 with a cost of a slightly higher
deviation, especially during the settling time. In the stable state, both
cases behave similarly. As the zone size can change only with ±1 node on
each index update and updates are sent in 1000 s interval, the smallest
possible time for reaching the final size Z = 36 is Z / fi = 36000 s. The
measured convergence time is between 50000 s and 60000 s.

One should be reminded that the situation of all nodes starting from
scratch is artificial and only shows the adaptation speed. In a practical
implementation, a joining node learns the current zone size from its
predecessor, whereafter the adjustment reacts to relatively slow changes
in the network.

Figure 3.21. The adaptation of zone size in time.

0

5

10

15

20

25

30

35

40

45

5
0

0
0

1
0

0
0

0
1

5
0

0
0

2
0

0
0

0
2

5
0

0
0

3
0

0
0

0
3

5
0

0
0

4
0

0
0

0
4

5
0

0
0

5
0

0
0

0
5

5
0

0
0

6
0

0
0

0
6

5
0

0
0

7
0

0
0

0
7

5
0

0
0

8
0

0
0

0
8

5
0

0
0

9
0

0
0

0
9

5
0

0
0

1
0

0
0

0
0

1
0

5
0

0
0

11
0

0
0

0

Z
o

n
e

 s
iz

e

Time (s)

| Zn - Zpred(n) | ≤ 1

| Zn - Zpred(n) | ≤ 2

83

We then examine the precision of the algorithm. Figure 3.22 shows
how close the dynamically adjusted zone size is to the analytic optimal
size 100000 s after starting the nodes. Networks have a size varying
between N = 250 and N = 2000 nodes and a search/index ratio of r = 2
and r = 1/2. The simulations represent a scenario of ZAllowedDifference = 1.
The resulting size is relatively close to the optimal one although a slightly
larger zone size is obtained.

Figure 3.22. Dynamically adjusted zone sizes compared to optimal ones.

3.5.10 Searching using shortcuts

Using a single search message traversing the whole ring, as in the simple
form of the search algorithm, creates a long search delay in large
networks. To reduce the delay, we divide the ring into search sectors
which are examined in parallel with separate search messages. The ring is
divided by shortcut nodes which, together with the resource requester,
separate consecutive search sectors. The more sectors the ring is divided
into, the lower the delay, but the more state information in the form of
shortcuts is required.

A separate search request is sent to each shortcut node, which
forwards the request according to the normal search algorithm. These are
sent in addition to the normal search request originating from the
resource requester. Each search request is forwarded along the ring until
it encounters one of the stop nodes listed in the request, as defined in
(3.1). Consequently, the resource requester v has several parallel search
paths, each starting in v. All the shortcuts and the resource requester itself
are given as stop nodes in the search. For comparison, recall that in the
basic version of Zone Indexing, the only stop node is the resource
requester, resulting in a single search sector covering the whole ring. The
reason that all shortcut nodes must be included as stop nodes is that the
resource requester cannot determine in which order the shortcut nodes
appear in the ring.

Consider the example in Figure 3.23. The resource requester A and
the shortcuts D and F divide the ring into three search sectors. The search

0

10

20

30

40

50

60

70

80

250 500 750 1000 1250 1500 1750 2000

Z
o

n
e

 s
iz

e

Nodes

r=2:1 optimal

r=2:1 dynamically adjusted

r=1:2 optimal

r=1:2 dynamically adjusted

84

message contains the list of stop nodes {A, D, F}. The search message is
processed by node A and forwarded to A’s border node B as normally. A
copy of the search message is also sent to each of the shortcut nodes, who
process the query and forward the message to their border nodes. Node C
detects that its border node D is one of the stop nodes and finishes the
search. Also node G stops forwarding as its border node A is one of the
stop nodes. Node E stops forwarding as it has the index of node F, which
is a stop node. The search paths of node A are {A, B, C}, {A, D, E}, and
{A, F, G}.

Figure 3.23. Searching using shortcuts.

Any known node can be used as a shortcut node. For instance, if a
search reply has been received from a node w, node w can be stored as a
shortcut. If zone indexing is used together with Chord, the fingers can be
shortcuts.

3.5.11 Algorithm for delay control

This section proposes a method to populate the list of shortcuts in order
to obtain a controlled delay. It can be used either as the only way to
create shortcuts or to complement another method.

A desired maximum delay is obtained by adjusting the maximum
length of a search path. To implement controlled delay, we add two fields
to the search message. The search message contains a counter H

initialized to zero, counting the number of hops the search message is
forwarded. The maximum delay is specified in terms of a maximum
allowed hop count, Hmax. When H reaches Hmax, a Shortcut message
containing the address of u is sent to the resource requester, which can
establish a shortcut to node u. The counter H is then reset and the
forwarding is continued, whereas more shortcuts may be generated by
other nodes.

Assuming all nodes have the same zone size Z, the maximum length
of a search sector is ZHmax nodes, and the network is divided into at least
N / ZHmax search sectors. With an average delay Tlink of each overlay link
the maximum delay for finding a resource is

C

A

G

D

B

E

F

Indexed by A

Indexed by B

Indexed by C

Indexed by D

Indexed by E

Indexed by F

Indexed by G

C

A

G

D

B

E

F

Indexed by A

Indexed by B

Indexed by C

Indexed by D

Indexed by E

Indexed by F

Indexed by G

85

linkshortcutssearch THT max,
ˆ = (3.19)

and the average delay for finding a single copy of a resource is

2/max, linkshortcutssearch THT = . (3.20)

As a new node is unaware of any shortcuts, the delay of the first
search may be long. However, once some shortcuts are known, the list of
shortcuts only needs to be maintained.

Topology changes cause new shortcuts to be allocated as the distance
between two shortcut nodes can become too large. The maximum number
of shortcuts can be limited to a value Ns in order to reduce the state
information. When a new shortcut is established and the limit is reached,
a randomly selected shortcut is removed. The randomness is used to
distribute the shortcuts evenly around the ring since a node cannot know
the distance between different shortcuts. Since a search sector contains
ZHmax nodes, a network of N nodes needs to be divided into at least

maxmin, / ZHNN s = (3.21)

search sectors. If the Ns < Ns,min, all generated shortcuts cannot be
maintained, with the consequence that new shortcut messages are
continuously triggered. In this exceptional case, the application needs to
increase Hmax as it detects a high number of continuously received
Shortcut messages.

If all shortcuts are used and evenly distributed, the expected average
delay is

)1(2, +
=

s

zlink
tsallshortcusearch

N

NT
T

.

 (3.22)

3.5.12 Performance of delay control

The delay control algorithm is simulated in a network with N = 3000
nodes and a search/index ratio of r = 1. All nodes use an optimal zone
size of Zo = 55 according to (3.7). The shortcut interval is varied between
Hmax = 5 and Hmax = 55. The number of available shortcuts is varied
between Ns = 0 and Ns = 16. At Ns = 0 shortcuts are disabled. The delays
are presented in Figure 3.24 and Figure 3.25.

Figure 3.24 reveals that the delay is most dependent on Ns. Already a
small number of shortcuts reduce the delay. The delay further decreases
for each added shortcut, i.e. as Ns increases. The delay is slightly higher
than the analytic delay given by (3.22). The difference between the
analytic and the simulated delays is due to the fact that randomly
distributed shortcuts are not perfectly evenly distributed. As Hmax is
reduced, the distribution of shortcuts becomes more even, but still not
perfect.

86

Figure 3.24. Average search delay when shortcuts are enabled.

Figure 3.25. Effect of the shortcut interval on the average search delay.

Figure 3.25 shows that the parameter Hmax affects the delay only
slightly. For comparison the figure also presents the perfect allocation
given by (3.20), which is expected when exactly Ns = Ns,min shortcuts are
evenly distributed. Perfect allocation is not achieved in a practical
scenario. Instead, the delay depends almost solely on the number of
available shortcuts, because all available shortcuts will be used even
though they do not fulfill the spacing requirement given by Hmax. When
the minimum number of shortcuts Ns,min given by (3.21) is exceeded, the
additional shortcuts are distributed randomly across the network reducing
the delay further. This distribution takes place when the network size is
varied (e.g. during network construction) and before the index cache is
fully populated.

The scenario is selected to also demonstrate the particular case where
the number of available shortcuts is too low to fulfill the spacing
requirement set by Hmax. This occurs when Ns < Ns,min as given by (3.21).
The affected points are encircled in Figure 3.25. For these points, the

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16

D
e
la

y
(m

s)

Number of shortcuts, Ns

Analysis

Hmax = 55

Hmax = 45

Hmax = 35

Hmax = 25

Hmax = 15

Hmax = 5

0

500

1000

1500

2000

2500

3000

55 50 45 40 35 30 25 20 15 10 5

D
e
la

y
(m

s)

Shortcut interval, Hmax

Simulation,
Ns = 1

Simulation,
Ns = 2

Simulation,
Ns = 4

Simulation,
Ns = 8

Simulation,
Ns = 16

Simulation,
no shortcuts

Perfect
allocation

87

delay no longer decreases with a decreasing Hmax and may instead
slightly increase as shortcuts become unevenly distributed and the
allocation of shortcuts never converges.

Figure 3.26 shows the message overhead added by the use of
shortcuts. In the simulated case, the increase in traffic is between 0% and
5%, which can be considered as a low cost for the reduced delay. An
exception appears in the particular case when Ns < Ns,min when the
shortcuts are never stabilized, causing continuous transmission of
Shortcut messages with an resulting overhead of up to 9%. This can be
avoided by increasing Hmax.

Figure 3.26. Received messages when shortcuts are enabled.

Table 3.3 presents how the number of shortcuts affects the traffic and
delay reduction using averages of values for which Ns < Ns,min. For Ns = 1
the value for Hmax = 1 is used as no values satisfy the condition.

The choice of Ns is a tradeoff between delay and message overhead:
increasing Ns adds overhead linearly while reducing the delay
asymptotically toward zero. A practical application could adjust Ns until a
desired maximum delay is obtained, at the same time modifying Hmax
according to (17).

Table 3.3. Additional traffic and delay reduction caused by shortcuts.

Number of
shortcuts

Traffic
increase

Traffic increase
per shortcut

Delay
reduction

Delay reduction
per shortcut

Ns = 1 -0.30 % -0.30 % 30.86 % 30.86 %
Ns = 2 0.24 % 0.12 % 43.99 % 21.99 %
Ns = 4 1.53 % 0.38 % 56.57 % 14.14 %
Ns = 8 2.32 % 0.29 % 64.70 % 8.09 %
Ns = 12 4.35 % 0.36 % 69.10 % 5.76 %
Ns = 16 5.16 % 0.32 % 70.96 % 4.43 %

0.105

0.110

0.115

0.120

55 50 45 40 35 30 25 20 15 10 5

R
e

ce
iv

e
d

 tr
a

ff
ic

 (#
 m

e
ss

a
g

e
s/

s)

Shortcut interval, Hmax

Simulation,
Ns = 1

Simulation,
Ns = 2

Simulation,
Ns = 4

Simulation,
Ns = 8

Simulation,
Ns = 16

Simulation,
no shortcuts

Analysis

88

3.5.13 Algorithm for topology maintenance

For creating and maintaining the ring topology, any suitable method can
be used, including the one used in Chord. In contrast to Chord, Zone
Indexing does not require a node to join at a specific position in the ring –
a requirement generating O(log N) messages per joining node in Chord.
Because of the lower demands, we propose a more lightweight method to
join the ring, requiring only O(1) messages. Our simulations have further
shown that the proposed algorithm is very robust under high churn rates.

To create a new ring topology, a node v selects itself as both its
predecessor and successor: Pred(v) = Succ(v) = v.

To join an existing ring, the joining node must know any node w
already in the ring, for instance, through a bootstrap mechanism or from
previous sessions. The fact that a node can join the ring at any position
allows the node to measure the delay to a set of nodes and select w as the
node with the lowest delay, thereby reducing the overall delay of the
system. The joining node v inserts itself between w and Succ(w). To
accomplish this, node v sends a Join message to node w. Upon receiving
the Join message, node w sets its successor Succ(w) = v and answers with
a Join Reply containing its previous successor u and its current zone size
Zw. When v receives the Join Reply, it updates its successor Succ(v) = u
and optionally uses the current zone size of w as an initial value for its
own zone size. The following index update informs u about its new
predecessor v using the normal index update algorithm.

A node v can leave the ring gracefully by sending its predecessor u a
Leave message containing Succ(v). The node u receiving a Leave
message sets its successor to the node indicated in the message Succ(u) =
Succ(v). The new successor of u is informed about the change in the
following index updates.

3.5.14 Algorithm for topology maintenance in exceptional cases

If a node v has received no index updates via its predecessor w during a
specified timeout, the node w is assumed failed and it is added to node v’s
list of failed nodes Fn. A node w can later be removed from the list Fn if v
receives any message from w. Node v starts recovering by sending Join
messages to its predecessors according to increasing distance, starting
from the failed predecessor. The addresses of the preceding nodes are
obtained from the neighbor cache. These Join messages are sent and
handled like normal Join messages. However, the node v does not update
its successor to the node u indicated in the Join Reply if it has declared
node u as a failed node.

In the exceptional case when a large number of consecutive nodes
fail simultaneously, none of the known predecessors replies. Node v can
then send a Join message to any known node u, such as a shortcut node.
In such a case, both the joining node v and the known node u can be
followed by several nodes. In fact, one of them is probably followed by
the rest of the ring. Therefore, the chains of the nodes succeeding v and u
must be merged. More precisely, as one of the chains may contain the
rest of the ring, the chains must be interleaved until one of the chains

89

ends. Interleaving implies inserting the nodes following v as every second
node in the chain following u.

Interleaving is implemented in the following way. A node v receiving
a Join Reply from a node w sends its successor (if it has one) a Rejoin
message containing its successor Succ(v). The node receiving the Rejoin
message sends a Join message to the indicated node, i.e. to Succ(v). The
Join Reply triggered by this Join may cause another Rejoin message to be
sent, and the process is repeated until a node without a successor is
reached.

Figure 3.27. Example of interleaving to repair the overlay.

The procedure is illustrated in Figure 3.27 using an example. The
attempts of node A to join its predecessor have failed. Node A, however,
knows another node, E, to which it sends a Join message. Since both
nodes A and E are succeeded by a chain of successors, these chains must
be interleaved. As the node A has a successor (Succ(A) = B), it sends
node B a Rejoin message indicating node F, i.e. the node in the received
Join Reply. Node B then sends a Join message to F. Upon receiving the
Join Reply, node B sends a Rejoin message to C, indicating node G.
Node C consequently sends node G a Join message. The ring is corrected.
The successor of node G, if included in the Join Reply, is dead and any
further attempt of C’s successor D to join G will fail and D will therefore
keep its current successor.

The process of interleaving also gives a solution to a situation where
a node v is not aware of any other nodes. In this situation, the only known
node is the node v itself, and as a last resort the node sends a Join
message to itself. This causes a sequence of events that wraps the
remaining ring around node v like a snowball, interleaving the layers
together and resulting in a repaired ring.

3.5.15 Performance under churn

To test the topology maintenance algorithm, we simulate nodes joining at
exponentially distributed random intervals 1/λ = 1/fchurn. The average
interval is varied between 1/fchurn = 125 s and 1/fchurn =16000 s. Nodes
stay in the system an exponentially distributed random period of average
length 1/µ. The parameter µ is selected according to Little’s law µ =
N/fchurn so that the average number of nodes N = 1000 is constant. As N is
constant, the leave interval equals the join interval. The index update
frequency is fi = 1/500 s-1 and the search frequency is fs = 1/500 s-1 giving

GF

E

D

BC

A

FA

E

D

C

G

FA

E

D

C

B

G

B

6.Rejoin(G)

4.Join
5.JoinRep.(G)

90

a search/index ratio of r = 1. The number of shortcuts is Ns = 10 with
Hmax = 5. We examine the case where all nodes leave gracefully and the
cases where 10% and 50% nodes fail without notification. A node
declares its predecessor failed if no index updates are generated or
relayed through the predecessor within a timeout Ttimeout = 1/fi = 1000 s.

The effect of churn on success ratio is shown in Figure 3.28. When
nodes exit without notification, the success ratio starts dropping when
1/fchurn ≤ Ttimeout. Therefore, the periodical index update frequency should
be selected sufficiently high to match the expected churn rate. In order to
ensure reliable operation under churn, fi should preferably be selected fi >
2fchurn. When nodes exit gracefully, the drop in success ratio is lower.
Additional simulations (not shown) showed that the search/index ratio r
does not affect the success ratio.

Figure 3.28. Effect of churn on success ratio.

Figure 3.29. Effect of churn on the frequency of received messages.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

125 250 500 1000 2000 4000 8000 16000

S
u

cc
e

ss
 ra

tio

Join/leave interval (s)

0% of nodes fail
10% of nodes fail
50% of nodes fail

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

125 250 500 1000 2000 4000 8000 16000

R
e

ce
iv

e
d

 tr
a

ff
ic

 (#
 m

e
ss

a
g

e
s/

s)

Join/leave interval (s)

0% of nodes fail

10% of nodes fail

50% of nodes fail

91

Figure 3.29 shows the frequency of received messages under churn.
The highest churn rate increases the message overhead up to 30% when
graceful exits are used. When nodes leave ungracefully, the lower
message overhead is partially related to the lower success ratio.

Testing with churn rates 1/fchurn < 250 showed cases where the node
joined itself as all other known nodes failed. Separately studying these
cases, where a node wraps the ring around itself shows that this method
succeeded to save the topology from partitioning in all tested cases. As
any known node can be used to repair the ring, a moderate number of
shortcuts and indexed nodes gives a good protection against partitioning.

3.5.16 Replicated resources

In current peer-to-peer networks, resources are typically well replicated.
In zone indexing, the distribution costs and storage can be reduced when
resources are replicated. It is often sufficient to find one of the replicated
resources. In the case that a node v receives an index update for a
resource that it itself shares it can ignore the received index update and
stop forwarding it. The succeeding nodes consequently only see a single
copy of the resource. The number of copies can be limited, so that if the
index already contains a given number of copies of a resource in a
received update, the forwarding is suppressed. Another alternative is to
combine the local resource descriptors with the received one and forward
a single copy of the resource descriptor. This resource descriptor contains
multiple addresses for the resource.

Similar methods can be used in searching. Copies of resources
encountered by the search message can be ignored or combined with the
existing result set. A resource requester that only needs a single resource
can indicate that the search shall be interrupted when the first matching
resource has been found. Alternatively, the search can be interrupted
when a given number of copies have been found. If the resource requester
later requires more matches, it can make a new search request that starts
at the node which returned the previous search message.

The design goal of Zone Indexing is to provide deterministic
searching. If it is necessary to trade determinism for better scalability, it
is further possible to limit the maximum hop count for a search message.
Such an approach corresponds to the TTL used in Gnutella and other
common file sharing systems, and relies on well-replicated resources.

3.5.17 Comparison

Table 3.4 summarizes the properties of Zone Indexing with and without
delay control using shortcuts. The zone size is assumed to be nearly
optimal and the number of shortcuts fulfils Equation (3.21). The
properties of Chord, based on [LCP+04], are included for comparison,
although these algorithms have different goals.

92

Table 3.4. Properties of the Zone Indexing architectures with and without

shortcuts, and a comparison with Chord.

Architecture Zone Indexing Zone Indexing
with Shortcuts

Chord

Index topology Unidirectional
ring

Unidirectional
ring

Ring with fingers

Search topology Unidirectional
link from node to
its border node

Unidirectional
link from node to
its border node,
shortcuts

Ring with fingers

Index
distribution
method

Zone Indexing Zone Indexing Routed

Search
distribution
method

Forwarding to
border nodes

Initial forwarding
to shortcuts,
forwarding to
border nodes

Routed

Class Hybrid
proactive-
reactive uniform

Hybrid
proactive-
reactive uniform

Structured
single-key exact-
match uniform

Links in
network

()NO ()sNNNO + ()NNO log

Index entries
per node

()NO ()NO ()1O

Index message
scalability, Mi

()NO ()NO ()NkO log *

Search message
scalability, Ms

()NO ()NO ()NO log

Search delay, Ts ()NO ()sNNO ()NO log
* Note that nodes in structured systems update each resource descriptor to a separate
node, whereas nodes in the considered unstructured indexing systems update all

resource descriptors to the same set of indexing node. This additional overhead of Chord

is indicated with k.

3.6 Direct Index – a fully proactive architecture

Let us finally study fully proactive architectures. As stated by Equation
(2.35), a fully proactive architecture is feasible in a marginal group of
scenarios. One such scenario is studied in Section 4.6. Contrary to Zone
Indexing, the studied architectures do not create and maintain a structured
topology. Instead, they operate on arbitrary (random) topologies.

In a fully proactive architecture, the distribution of search requests is
eliminated, but the efficiency of index distribution becomes important. A
simple way to distribute index updates is to use flooding. For example,
link-state routing protocols, including OSPF [Moy94], operate by
flooding updates to all nodes proactively. Flooding is, however,
inefficient with an overhead of Ωi ≈ D. In this section we propose a more
efficient method, called Direct Index, to distribute updates in an overlay

93

network. We utilize the fact that in a proactive architecture each indexed
node is known. Our goal is to provide index distribution with an overhead
approaching Ωi ≈ 1.

Let us first review how a link-state routing protocol operates. Each
node collects a map of the network in the form of a link table. For each
link (v, w) starting from node v, node v generates a link state
advertisement that is distributed using flooding to all nodes in the
network. All nodes store this information in the link table and
consequently the link table contains an entry for both directions of every
link. The link table, representing the network topology, is given as input
to Dijkstra’s shortest-path first algorithm [CLR+01], which generates the
routing table. The routing table indicates for each destination u the
distance in hops to u and the first link on the route to u.

3.6.1 Algorithm

In [Bei07b] we propose an algorithm called the Direct Index for index
distribution. The algorithm is based on a link-state routing protocol. Each
node builds a topological map of the network. While a link-state routing
protocol operates at the network layer and uses flooding over physical
links, the proposed Direct Index approach uses an overlay network. This
allows us to reduce overhead by exchanging index updates directly
between nodes over temporary links instead of forwarding the updates via
intermediate nodes. Furthermore, duplicate messages are avoided as the
distribution is controlled by a single node, the sender. For each known
node, an exchange of index information is periodically invoked. Through
the exchange, the node learns about the neighbors of the other node, and
utilizes this information to construct a topological map of the group.

Each node v maintains a table Pv = {p1, p2, …,} called the peer table.
The entries pw = (Nw, Ew, Tw) of the peer tables represent each peer w
known by node v. The neighbor list Nw indicates the neighbors of node w.
The index entry Ew includes a set of resource descriptors of the resources
shared by node w and Tw is a timer used for triggering the following
update exchange with node w.

As a node v starts, it only knows its direct neighbors, which are
preconfigured or obtained via some known node. Each of these
neighboring nodes is initially added to the peer table with empty entries
for Nw and Ew. The timer Tw is initialized to a random value between zero
and UpdateDelay. The constant UpdateDelay is used to delay update
exchanges in order to avoid a storm of messages on a topology change.

When the timer Tw expires, an update exchange with node w is
triggered. An Update message with the fields (Nv, Ev, F) is sent over a
temporary link (e.g. using UDP) directly to node w. The Update message
contains a list Nv of node v’s neighbors and the index entries Ev
describing resources that v shares. The request flag F is set to F = 1.

Upon receiving an Update message from node v, node w updates the
information for node v in its peer table. The index entry Ev and neighbor
lists Nv are copied from the received message and the timer Tv is set to
UpdateInterval. For each node u ∈ Nv that has no corresponding entry in
node w’s peer table, a new entry is created with empty Nu and Eu, and

94

with the timer Tu initialized to a random value between zero and
UpdateDelay. If the request flag F is set, node w replies to node v with a
similar Update message containing the list of its neighbors and its index
entries but with the request flag unset (F = 0). If the request flag is unset
in a received Update message, an Acknowledgement message is sent to
end the update exchange. When node w receives an Acknowledgement
message from node v, the timer Tv in Pw is reset to UpdateInterval.

Figure 3.30. Update exchange signaling in Direct Index.

The update exchange is depicted in Figure 3.30. Through the update
exchange node v learns about the shared resources of w, and vice versa.
More importantly, node v learns about the neighbors Nw of node w. On
the kth round of update exchanges, node v learns about nodes at a
distance of k hops. Consequently, it takes at most d rounds of update
exchanges to learn about all nodes in a network with diameter d.

When a node’s local resources or local neighbors change, it may
reschedule update exchanges with each known node w by setting the
timer Tw to a random value between zero and UpdateDelay.
Alternatively, it can wait for the following update round.

If an Update message sent to w is not answered with an Update or
Acknowledgement messages within a given timeout, it is considered lost.
A lost message is resent using exponential backoff using the timer Tw. A
node that has not been updated within several UpdateIntervals is declared
unreachable and is removed from the peer table.

A node v may optionally maintain a routing table Rv, in which the
entry Rv(w) indicates dist(v, w). The routing table is recalculated with
Dijkstra’s algorithm after each change of Nw in the peer table of v. The
routing table is required in the access control extensions presented in
Section 4.6.

3.6.2 Index compression

Maintaining full information about all resources in the network may
require a substantial storage space. To reduce the storage size and
bandwidth requirements, we propose compressing the index information
using Bloom filters [Blo70].

A Bloom filter is a lossy but compact method to represent a set as a
bit-string. The bit-string can be used to check whether or not an element
belongs to the set. False positives are possible but not false negatives.
The more elements that are added to the set, the larger the probability p of
false positives.

Node v Node w

Update (Nv, Ev, F=1)

Update (Nw, Ew, F=0)

Acknowledgement

95

The Bloom filter is implemented as a bit-string of m bits, initially
zeroed. The filter uses k hash functions. Each hash function maps an
element to one of the v bits. When an element is added to the filter, the k
bits indicated by the hash functions are set to one. To test whether an
element is in the set, the element is hashed and the k bits indicated by the
hash functions are tested. If all are ones, a positive is obtained. If not all
of the indicated bits are ones, a negative is obtained, and the element is
definitely not in the set.

According to [FCA+02] the probability of false positives in a filter
containing n elements is minimized for

nmk ⋅= 2ln , (3.23)

in which case the probability is

() nmk
p 6185.021 == . (3.24)

This allows us to determine the optimal number of hash functions as

5.0ln
ln p

k = (3.25)

and the optimal number of bits as

 1.4427
6185.0ln

5.0ln
nk

nk
m == . (3.26)

Bloom filters can be used in a wide range of applications. A good
overview of different networking applications is given in [BM02]. In our
resource sharing application, the elements are the attributes of the
resource descriptors. The hash functions then calculate the bit positions
based on the attribute string. A single Bloom filter can describe the
attributes of several resource descriptors. In the extreme case, a Bloom
filter can describe all resources available at a node. In order to reduce the
probability of false positives, the attributes of a resource provider may be
divided between several Bloom filters.

Although providing significant reduction in index size, Bloom filters
come with two disadvantages. Firstly, because of the false positives, the
actual existence of a resource matching with the filter must be checked
separately. Therefore searching involves an additional roundtrip to a set
of nodes to check whether the resource actually is available. Secondly,
the possibility to make complex searches is lost. The use of hash
functions reduces the possible queries to exact-match single-key queries.
However, because the whole filter is available at a single node, some
types of multi-attribute queries can be performed efficiently, as presented
in Section 4.6.6.

3.6.3 Performance

Our simulations reported in [Bei07b] compare three architectures:

1. a reactive system with flooding-based search distribution,
2. a proactive system with flooding-based index distribution, and
3. a proactive system with Direct Index distribution.

96

In all compared cases, a similar topology is used. The network has N
nodes connected with a random power-law topology. The default network
size is N = 100 nodes and the default average degree is D = 10. Index
updates are according to an exponential distribution with an average of
one update per day, fi = 1/86400 s-1. Extra index updates are triggered if
no index updates is generated in two days, i.e. UpdateInterval = 172800
s, which practically increases fi further. For avoiding bursts of updates,
UpdateDelay = 60 s. These parameters are chosen to reflect the intended
use scenario, described in Section 4.6. Search requests are generated
according to an exponential distribution with frequency fs. The search
frequency fs is adjusted to obtain a desired search/index ratio r = fs / fi. By
default, r = 1:1. In the simulations, one of the parameters N, D, and r are
varied while the others take their default value. Index flooding and Direct
Index use index compression. All local resources are described using a
Bloom filter, simulated so that it generates false positives with a
probability of p = 0.02.

Figure 3.31. Message receptions depending on the search/index ratio.

Figure 3.31 shows the message receptions per search for the
examined architectures. The traffic is normalized so that the total number
of receptions is divided by the number of searches during the simulated
time. The simulations confirm our assumption that the search/index ratio
is the most important parameter in determining whether a proactive peer-
to-peer system is feasible. When flooding is used for both search
distribution and index distribution (Ωs = Ωi), a proactive system generates
less traffic than a reactive system if fs > fi, as given by Equation (2.40). In
the simulations Ωs = Ωi ≈ D-1, and it is expected that a flooded message
generates about ND ≈ 900 receptions.

Direct Index shows a lower traffic than index flooding with Ωi < D.
In the simulation Ωi ≈ 3 because each update exchange requires three
messages (Update, Update, and Acknowledgement). Using
unacknowledged updates (as in flooded index updates), would yield a
lower overhead – even as low as Ωi ≈ 1.

1

10

100

1000

10000

1:8 1:4 1:2 1:1 2:1 4:1 8:1 16:1 32:1 64:1

N
o

rm
a

liz
e

d
 re

ce
iv

e
d

tr
a

ff
ic

(#

 m
e

ss
a

g
e

s/
se

ar
ch

)

Search frequency : Index update frequency

Index flooding
Search flooding
Direct index

97

Compressing the index with Bloom filters causes some additional
roundtrips due to false positives. The proactive solutions therefore
generate a small additional overhead because of the roundtrip (2
messages per query) for confirming the availability of the resource once a
match has been found. False positives are generated at a probability p per
node, resulting in pN extra roundtrips per query in addition to the
roundtrip used for the actual resource. The total search message count
Ms = 2 + pNs has a marginal effect on the total overhead unless p is high.
In searching the simulated 100 node network, on average three nodes are
queried of which two are due to false positives.

For the Direct Index algorithm, the independence of node degree is
beneficial in scenarios with a high average node degree, as shown in
Figure 3.32. The message overhead of flooding increases linearly with
increasing average degree as Ωi ≈ D-1. The overhead of the Direct Index
algorithm is independent of the degree.

Figure 3.32. Message receptions under increasing node degree.

Figure 3.33. Message receptions under increasing network size.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

5 10 15 20 25 30 35 40

#
 re

ce
iv

e
d

 m
e

ss
ag

es
/s

ea
rc

h

Average node degree

Index flooding
Search flooding
Direct index

0

500

1000

1500

2000

2500

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0
11

0
1

2
0

1
3

0
1

4
0

1
5

0
1

6
0

1
7

0
1

8
0#
 re

ce
iv

e
d

 m
e

ss
ag

es
/s

ea
rc

h

Network size (# nodes)

Index flooding
Search flooding
Direct index

98

As visible in Figure 3.33, the overhead of both flooding and Direct
Index grows linearly with the network size. The simulations show that the
Direct Index architecture always performs better than a flooding-based
index distribution in terms of message overhead.

Figure 3.34 shows the search delay for the first matching resource,
assuming a delay of 20 ms per overlay link. In the proactive architectures
the index information is immediately available. Because Bloom filters are
used, a single roundtrip is necessary to verify that the indicated resource
actually exists. Reactive searching based on flooding has a delay that is
proportional to the network diameter, which is shown to increase in the
order of O(log N) for given power-law networks [CL02].

All architectures are deterministic, and the success ratio was
measured to be Rsuccess > 99.75% in all simulations. The failed searches
are due to the dynamically added and deleted resources.

Figure 3.34. Delay under increasing network size.

3.6.4 Related architectures

Direct Index replaces flooding with direct updates over temporary links
to reduce the cost of index distribution. Could the same approach be
utilized in a reactive system to make search flooding more efficient?
Unfortunately this is not equally feasible. Direct Index is inherently based
on proactive information about known nodes in the network. Even if
direct links could be used for distributing search requests, the
maintenance of the topology information still needs O(N) messages on
top of the O(N) messages used for searching. Therefore the usefulness of
such a “Direct Search” approach is marginal.

3.6.5 Comparison

Table 3.5 compares the properties of Direct Index with index flooding
and search flooding.

0

10

20

30

40

50

60

70

80

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0
11

0
1

2
0

1
3

0
1

4
0

1
5

0
1

6
0

1
7

0
1

8
0

D
e

la
y

(m
s)

Network size (# nodes)

Index flooding

Search flooding

Direct index

99

Table 3.5. Properties of flooded search, flooded index and Direct Index.

Architecture Search flooding Index flooding Direct Index

Index topology - Random power-
law

Random power-
law

Search topology Random power-
law

- -

Index
distribution
method

- Flooding Link state with
direct links

Search
distribution
method

Flooding - -

Class Reactive uniform Proactive uniform Proactive uniform
Links in network ()DNO ()DNO ()DNO

+temporary links
Index entries per
node

()1O ()NO ()NO

Index message
scalability, Mi

- ()DNO ()NO

Search message
scalability, Ms

()DNO
()

10 << p

pNO

()
10 << p

pNO

Search delay, Ts ()NO log ()1O ()1O

The largest limitation of proactive systems is the need to store index
and state information about all other nodes. As all N nodes store state of
all N nodes, the total state information in the network is in the order of
O(N2). This restricts the scalability and is one of the reasons why the
proactive peer-to-peer approach is uncommon in practical systems.
Because of this, we see proactive architectures as more applicable to
group-based resource sharing, as discussed in Section 4.6, than to global
scenarios.

Based on our performance study, we provide the flowchart in Figure
3.35 for comparing the fully proactive solutions to an alternative solution
with Ωs in a network with parameters r, D and N. The overhead of
flooding is assumed to be Ωi ≈ D and of Direct Index Ωi ≈ 3. As hybrid
proactive-reactive solutions generally require a managed topology, these
solutions may not always be available, as assumed in our intended
scenario. When only fully proactive and fully reactive solutions are
available, the choice of solution is determined by Equation (2.40).
Furthermore, the Direct Index architecture requires temporary links,
which may not always be available.

100

Figure 3.35. Flowchart for considering proactive solutions.

3.7 Summary

We presented three new types of architectures involving index
distribution. For all architectures we required that it must be possible to
locate all existing resources, and that the load is evenly distributed
between the nodes. We also required a possibility to implement complex
queries.

The IPIC architecture extends the PIC architecture by allowing the
clusters to be arbitrarily interconnected. This architecture requires a new
search algorithm and we presented the Stack Based Random Walk
(SBRW), which visits each cluster exactly once. To reduce the delay of
SBRW, we also proposed the Replicating Stack Based Random Walk
(RSBRW) algorithm which uses multiple walkers in parallel at a slightly
higher overhead. The IPIC architecture can replace PIC when full
connectivity between clusters and exponential growth of state
information are undesired.

We proposed the Zone Indexing architecture, which minimizes the
traffic by making the balance between proactive and reactive operations
optimal. While this is possible with existing architectures, such as PIC
and PSC, our architecture is more applicable to practical scenarios by
allowing nodes to join and leave without restructuring the overlay. It
remains optimal under changing conditions, such as when the network
size grows or the ratio between searches and updates changes. Optimality
is maintained by continuously adjusting the zone size with the provided
algorithm. We also presented an algorithm that reduces the search delay
using shortcuts. Zone Indexing is a general purpose overlay useful when
complex queries are required.

Finally, we proposed the Direct Index architecture, which is fully
proactive with a low traffic overhead. It is particularly useful in networks
with a high node degree and a topology that is determined by external
influences (i.e. cannot be modified by the overlay). Social networks are
examples of such networks.

Temporary overlay
links are possible?

Yes

No

Use Direct IndexUse flooded
index updates

Use alternative
reactive or
hybrid solution
with

No No

Yes

sΩ

Yes

s

ND
r

Ω
≥

s

N
r

Ω
≥

3

Temporary overlay
links are possible?

Yes

No

Use Direct IndexUse flooded
index updates

Use alternative
reactive
solution with

No No

Yes

sΩ

Yes

s

D
r

Ω
≥

s

r
Ω

≥
3

A hybrid solution
can be considered?

NoYes

Temporary overlay
links are possible?

Yes

No

Use Direct IndexUse flooded
index updates

Use alternative
reactive or
hybrid solution
with

No No

Yes

sΩ

Yes

s

ND
r

Ω
≥

s

N
r

Ω
≥

3

Temporary overlay
links are possible?

Yes

No

Use Direct IndexUse flooded
index updates

Use alternative
reactive or
hybrid solution
with

No No

Yes

sΩ

Yes

s

ND
r

Ω
≥

s

N
r

Ω
≥

3

Temporary overlay
links are possible?

Yes

No

Use Direct IndexUse flooded
index updates

Use alternative
reactive
solution with

No No

Yes

sΩ

Yes

s

D
r

Ω
≥

s

r
Ω

≥
3

A hybrid solution
can be considered?

NoYes

101

The architectures are designed to have properties that are
advantageous in mobile networks. The application of the presented
architectures in mobile networks is described in the following chapter.

102

Chapter 4

Resource discovery in cellular networks

This chapter studies the use of resource discovery in cellular networks.
We evaluate the feasibility of peer-to-peer systems in cellular networks
both from a user perspective and from a technical standpoint. The chapter
begins with an introduction to the use of resource discovery and peer-to-
peer services in cellular networks and a presentation of related research.
We present the results of four user surveys, which provide input for the
technical design. We propose architectures for two different scenarios. In
the first scenario, the resource discovery service is provided by the
operator or a third-party service provider. In the second scenario, the
system is completely maintained by the participating users. We propose
signaling schemes based on the Session Initiation Protocol (SIP)
[RSC+02]. Finally, we evaluate the technical feasibility of the proposed
systems using prototypes.

4.1 Introduction

Today’s mobile phones are in an ever increasing degree becoming more
similar to personal computers. The memory and the processing power are
increasing rapidly. Together with increasingly faster network
connections, this allows complex communications software to be
developed. Integrated peripherals like cameras, media players and GPS
receivers create possibilities for new types of applications, which
specifically can benefit from the mobile nature of the phone. At the same
time, applications based on social networks, communities, sharing and
user-generated media are becoming popular. Well-known examples
include Wikipedia, MySpace, Flickr, YouTube, and Facebook. Still, most
of these so called Web 2.0 applications are centralized and based on fixed
servers. However, distributed operation is gradually becoming part of
many traditionally centralized applications, which can be exemplified by
Skype and Spotify. We expect these applications to be popular in mobile
phones as well.

103

In this chapter, we examine architectures that enable resource sharing
in a peer-to-peer fashion between users in a cellular network. The
architectures form the basis of collaborative applications that support
sharing of files, media, services and other types of resources between
users. In particular we study resource discovery, i.e. searching, in mobile
peer-to-peer systems.

The following are hypothetical examples of applications that utilize
resource discovery in mobile networks:

1. A user takes photos with a camera phone while traveling. The newest
pictures are immediately available for the user’s friends and family
without being uploaded to a centralized server first.

2. During an event (e.g. a sports event), several users are broadcasting
real-time video transmission using their camera phones. Other users
can locate these video streams using suitable keywords or by clicking
on the location on a map.

3. While visiting a city, a tourist searches for nearby restaurants. As
search results, he obtains the latest menus, current offers, pictures
and user comments. The application presents the restaurants ordered
according to distance from the current location. Users in the area can
be located, for example, to form a discussion group.

4. Users in a tennis club share their pictures, video clips, score tables,
and equipment reviews. Only invited users may access the resources.

5. While shopping, a user finds an interesting product for which he
wants to obtain additional information and reviews from other users.
The product is identified by extracting visual properties of the photo
or by decoding the bar code. In addition to the specifications and
description from the manufactures, the user finds comments, reviews,
pictures and application suggestions from other users.

6. A map displays notes and photos related to the shown locations. The
information is created and maintained by other users. Also parts of
the map can be downloaded from other users to reduce the load on
centralized servers.

7. A working group shares documents between group members. Instead
of centrally collecting the documents on a file server, the files reside
on the user’s devices.

4.1.1 Considered networks

While more types of wireless networks, such as Wi-Fi and Bluetooth, are
becoming supported by phones, cellular networks, including GSM and
UMTS networks, still have a central role in providing data access for
mobile users. Cellular networks are infrastructure-based networks
maintained and operated by a commercial operator. The operator has a
strong role in providing services and controlling the network use. The
operator commonly aims to provide services either itself or by a
contracted third-party service provider. Traditionally operators have
preferred charging based on the service use, avoiding being used as a
“bit-pipe” that only transports traffic between the phone and some
external (e.g. in the public Internet) service provider. However, recently
flat-rate schemes have become more common. In our survey, we found

104

that 22% of users have a flat-rate scheme. A later survey by Heikkinen &
Nurminen [HN09] reports 33% of users having flat-rate, 32% usage-
based pricing and 24% limit-based pricing.

Joint efforts by the Third Generation Partnership Project (3GPP) and
IETF have been spent on providing the 3rd generation (3G) networks
with an IP based core. The IP Multimedia Subsystem (IMS) is a platform
offering common functionality including session control, charging,
accounting and authorization for IP based services, such as VoIP (Voice
over IP). The signaling in IMS is based on the Session Initiation Protocol
(SIP), which has been extended for the needs of IMS. Basing a mobile
peer-to-peer service on IMS allows reuse of the services provided by the
infrastructure avoiding the development of new proprietary protocols. It
is clear that for a mobile peer-to-peer service to succeed technically in an
operator controlled environment, it must integrate well with the rest of
the network.

In addition to cellular network access, modern phones may be
connected to several other networks. Bluetooth connectivity is mainly
used to connect the phone to nearby peripherals and users or to a
computer. Wireless LANs (WLANs) allow the phone to be part of a
corporate or private LAN, and thereby part of the public Internet without
using the operator’s services. These networks are generally privately
owned and available for free to a limited number of users. Commercial
and community-driven WLAN networks exist as well but these are still
uncommon. Furthermore, WLAN can form the foundation of an ad hoc
network, connecting several devices together without any fixed
infrastructure. Because of the multitude of networks, the possibility to
switch between networks or utilize several networks simultaneously is
becoming interesting.

4.1.2 Technical constraints

Compared to the fixed Internet, the cellular environment adds technical
constraints arising both from the terminal and the network. Compared to
a fixed PC, the mobile terminal has significant limitations in its

• battery power,
• memory,
• processing power,
• programming environment and operating system support,
• persistent storage, and
• user interface, with small screen size and rudimentary input

functionality.

The limitations of the network include

• low bandwidth, especially in the uplink direction,
• high delay,
• connectivity limited by NATs and firewalls,
• possible monetary costs, unless flat rate charging is used, and
• frequent disconnections due to mobility, i.e. a high churn rate.

These limitations must be observed in the design of resource
discovery solutions. The software and the underlying algorithms must be

105

simple to reduce the required processing power and memory. The state
information and number of active connections must be reduced. More
importantly, the traffic over the wireless link must be reduced. According
to [BFN06], a mobile Gnutella client constantly generates 3-4 kbps traffic
with a minor dependence on the user’s own activity. There are several
reasons for reducing the wireless traffic:

• The available bandwidth is limited and shared between multiple
users.

• Transmissions create interference.
• Transmitting and receiving consume power, which shortens the time

between recharging.
• Power consumption also needs to be reduced for environmental

reasons.

The battery capacity of mobile devices has not been able to keep up
with the development of computational resources, falling far behind
Moore’s law [Rie95]. In terms of energy consumption, the transmission
cost is high. According to [PC04], each bit sent over a WLAN link
consumes 700 nJ, whereas a CPU cycle consumes 0.07 nJ. Transmission
of a single bit therefore corresponds to 10000 CPU cycles.

Because of monetary costs, especially the traffic that gives the user
no direct and visible benefit such as signaling and network maintenance
traffic should be minimal. Power consumption must be reduced by
lowering the computational requirements and the network activity.
Altogether these factors motivate the use of algorithms that are more
efficient than flooding, and to avoid algorithms with high structure
maintenance costs, such as structured overlays. They also motivate
performing some functions in elements in the fixed network.

4.1.3 Mobile peer-to-peer scenarios

Peer-to-peer services can be deployed in cellular networks in several
scenarios. The choice of architecture largely depends on whether the
operator or some other commercial provider is providing the service, or
whether the users run the service among themselves. In the existing
networks, the architectural choice often, but not always, follows the type
of control. We separate three cases depending on the controlling body:

1. Single controlling body: In this case there is a central body, e.g. the
operator or a service provider, which controls the service. This model
often leads to a centralized architecture, such as in Google [Google]
and early Napster [Napster]. However, even though there is a single
controlling body, the architecture can be partly distributed, often with
a few centralized elements, such as in Skype [Skype].

2. Multiple controlling bodies: This case involves several bodies, e.g.
operators, which are equal peers. Each body controls a part of the
service and a part of the network. Each user subscribes to one
operator. This model arises when several systems with a single
controlling body are interconnected. Although semi-centralized
architectures are natural for this model, the technical solution can
still be distributed.

106

3. Decentralized control: In this model each user is independent and
there is no controlling body. Most of the current file sharing systems
follow this model. The operator has no, or a minimal, role in
controlling the network. The technical architecture is usually a search
flooding architecture (e.g. Gnutella and Kademlia) or, for scalability,
a semi-centralized architecture (e.g. Kazaa).

In this work, we study peer-to-peer services in cellular networks in
two scenarios: commercial peer-to-peer services with multiple controlling
bodies (operators) and a system with decentralized control involving only
users. The single controlling body can be considered as a special instance
of the case of multiple controlling bodies. We only consider data transfer
over networks available at the time of the writing, such as GSM and
UMTS, and networks currently being introduced, such as IMS. We
mainly consider cellular phones, although similar systems can be used in
laptops and other devices connected to the networks.

4.2 Related research

A large number of different peer-to-peer clients have been developed for
the fixed network, including well-known clients like Gnutella, Kazaa, e-
Donkey, Bit-Torrent, etc. Research on mobile peer-to-peer systems has
mainly concentrated on using peer-to-peer technology in mobile ad hoc
networks. Research on service discovery in ad hoc networks is presented
in Chapter 5. Significantly less research has been spent on developing
peer-to-peer solutions specifically intended for cellular networks. Mobile
peer-to-peer is an upcoming research area, as the need for mobile
collaborative applications increases.

The concept of mobile peer-to-peer has been explored using popular
fixed peer-to-peer systems ported to the mobile network. Symella
[KFM07] is an implementation of the popular Gnutella protocol on the
Symbian platform. The implementation supports the downloading of files
shared by fixed clients, but lacks the possibility to upload content, and is
therefore not a complete implementation. The behavior of only
downloading without uploading is known as free riding or leeching, and
it is not appreciated by the file sharing community. SymTorrent [KEP07]
is a BitTorrent [BitTorrent] client implemented on the Symbian platform.
BitTorrent is currently one of the most popular peer-to-peer file sharing
protocols and this popularity makes it attractive to implement a version
for mobile devices. SymTorrent is a complete implementation, including
both uploading and downloading. MobTorrent [ENK08] is a BitTorrent
client implemented on the J2ME platform in order to measure and
evaluate the capabilities of low-end devices and examine if they can join
a large already existing peer-to-peer network. Currently MobTorrent
supports downloading only. MobileMule [MMule] is a mobile control
application for the eMule [eMule] client but it is not an actual peer-to-
peer application. Fring [Fring] and iSkoot [iSkoot] bring the peer-to-peer
based Skype application to the mobile phone. In [BH09] a mobile device
can access the eDonkey network via a fixed peer that has been modified
to support mobile devices and relay traffic.

107

JXTA for J2ME [AHP02] is a version of JXTA adapted for mobile
terminals. JXTA [MM02] is a general purpose overlay platform based on
XML messaging. Peers are divided into edge-peers and super-peers, and
super-peers are further divided into rendezvous peers and relay peers.
Edge peers have low capacity and are possibly behind firewalls,
rendezvous peers coordinate the peers in the network, and relay peers
provide firewall traversal. Peers can be divided into peer groups to
provide logical clustering and message scoping.

Kato et al. [KIS+03] presents an XML-based mobile peer-to-peer
protocol, where the control is located in central nodes. The architecture is
semi-centralized. New types of architectures have mainly been examined
theoretically and through simulation. Bakos et al. [BCF+03] compare
topologies resembling wireless networks using simulation, and found that
semi-random mesh and connected stars are suitable for homogeneous and
heterogeneous networks, respectively. Marossy et al. [MCB+04] examine
the use of the PIC architecture in GPRS networks and compare different
cluster topologies. Bakos et al. [BFN06] examine peer-to-peer
applications on mobile phones using four experimental systems:
distributed computing, adaptation of fixed software to the mobile phone,
using a PIC architecture on mobile phones, and searching in a social
network. In addition to [BFN06], searching a social network has been
proposed by the same authors in [BFN05a] and [BFN05b], but with an
architecture differing from ours. Recently, Tiago et al. [TKK+08]
published a solution with similar ideas as the ones in [Bei07b], but with a
reactive approach based on flooding with user-controlled iterative
deepening. The solution utilizes the social network formed by the address
books of cellular phones but does not use explicitly defined groups.

Few user studies on peer-to-peer systems in cellular networks had
been performed when we started our work. Kostamo et al. [KKK+07]
study incentives for content distribution among mobile users using a
questionnaire. An interesting conclusion is that mobile users are willing
to send their self-generated content to a greater number of users than
commercial content. Heikkinen et al. [HKV09] study the traffic and use
of peer-to-peer applications using traffic traces and user logs. Heikkinen
and Nurminen [HN09] present a questionnaire study of user attitudes
towards peer-to-peer services.

4.3 Our contribution

This chapter proposes various resource discovery solutions for cellular
networks. The solutions are primarily aimed at providing a platform for a
peer-to-peer type of resource sharing between mobile users. Some of the
publications that form the basis of this chapter are shared with Chapter 3,
as we apply the presented architectures to cellular networks.

In order to make a user-centric approach, we first perform initial user
studies based on questionnaires and interviews. We present and analyze
the results in Section 4.4. The studies elucidate the thoughts, opinions,
behavior and expectations concerning resource sharing applications in a
cellular environment. This work directly uses the results of four separate
surveys. The results of the survey made in 2005 were partly published in

108

[MBL+06b] and [MBL+07]. This survey was designed and performed by
the present author and Matuszewski as joint work. Here, we also include
some unpublished results from this survey. The other three surveys have
been organized by the present author and carried out by students under
the present author’s supervision. The results are reported as student work
in [Lev09], [Pal09] and [Lag09]. Our work analyzes the raw data
independently from these. The central results and constraints from the
user studies, such as the need for access control and groups, are utilized
in the rest of the chapter.

We present two different approaches to providing peer-to-peer
resource discovery in cellular networks. The first approach, the operator-
controlled service, is presented in Section 4.5. We motivate the need for a
two-layer hierarchical architecture. We propose a commercial resource
sharing service involving multiple operators and we describe how the
service is implemented in the IMS. This architecture was originally
published in [BML+05] and refined in [MBL+06b] and [MGB+07]. The
architecture and its application in IMS were developed jointly by the
present author and Marcin Matuszewski. This work further extends the
published scheme by specifying the functions of the fixed nodes in detail.
We present unpublished work on the implementation of groups and
access control, including definitions and implementation of access control
classes. Although we take a different approach, we use as a background a
limited set of ideas in the Master’s thesis of Tuomo Soinio [Soi09]
instructed by the present author. As unpublished work, we evaluate how
different resource discovery architectures can be applied to the fixed
network of the system. In particular, we propose utilizing our IPIC
architecture, which allows operators to be connected according to
business relations while still maintaining control over their network and
customers.

In the second approach, presented in Section 4.6, there is no support
from an operator or an external provider. The users run the system in a
fully distributed fashion. We motivate the need for uniform architectures.
We propose a new scheme for distributed group management. We
propose extensions to flooding and the Direct Index algorithm in order to
support groups and policies. The fundamental ideas have been published
in [Bei07b]. We present an unpublished analysis of the feasibility of
proactive solutions. We analyze the properties when index compression is
used and suggest how queries are specified in this case. The fully
distributed approach represents independent work of the present author.

In Section 4.7 we present signaling schemes based on extensions to
SIP for resource discovery, as originally suggested in [BML+05]. We
establish a set of requirements for the scheme. The first signaling scheme
has been published in [MBL+06b]. The second scheme is published in
[MGB+07] and given as input for standardization in [GMB+06]. We
further present how SIP is used for establishing the access connection.

At the time of our research, there were no existing implementations
of peer-to-peer software for mobile clients. Therefore, it was also unclear
if mobile phones are able to run peer-to-peer software in a satisfactory
way. In Section 4.8 we examine whether mobile peer-to-peer is a
technically feasible concept with the current technology and in the

109

current networks. We formulate a set of postulates that we test using a
prototype implementation involving multiple components. A mobile
client has been developed by Juuso Lehtinen and Tuomo Hyyryläinen
under instruction from the present author and Marcin Matuszewski. The
client implementation has been presented in [Leh06]. A relay and a
centralized index node are developed by the present author. A distributed
index node is implemented by Victor Morales under the supervision of
the present author. This implementation is presented in [Rey07]. We
configure the components into three testbeds, with which we prove the
validity of the concept both from a device and a network perspective.
Testbed O1 has been demonstrated in [BML+05] and [MBL+06a]. We
measure the performance and compare it to the user’s expectations.
Furthermore, we evaluate whether a SIP-based signaling scheme works in
practice. Some of the results of Testbed O1 are reported in [MBL+06b].
Testbed O2 and O3 represent unpublished research, but with some results
presented in [Rey07]. We further present a new evaluation of the
influence of different topologies on the search delay.

In Section 4.9 we evaluate the fully distributed peer-to-peer service
using a prototype implementation. We verify the feasibility of the concept
and examine whether the restrictions in today’s network prevent the
practical applicability. The implementation is based on the concept
defined in [Bei07b] with a protocol defined in [Bei07c]. The prototype is
implemented by Veikko Pankakoski under the instruction of the present
author and described in a report [Pan09].

4.4 Mobile peer-to-peer services from the user’s perspective

The cellular environment has certain properties that make the use cases
different from the fixed Internet. An evident but remarkably important
one is the fact that the device is mobile. The user is able to request and
consume information and services at any time and in any location. The
use of a mobile peer-to-peer system is therefore often expected to be
related to a given location or time, whereas quick and interactive access
to information is needed. The phone is less suited for long downloads. In
contrast to server-based solutions, pieces of content can be made
available immediately after they are created without uploading to a
server.

Today’s mobile phones are powerful multimedia devices, allowing
not only displaying different types of multimedia content, but also
creating content by taking photos, recording video clips, recording voice
and taking notes. The popularity of blogs and reality television also
shows an increasing trend in the interest in documenting, disseminating
and disclosing personal experiences as well as observing, viewing and
becoming entertained by the experiences of others. Thus, we can assume
that there are both providers and consumers of legal peer-to-peer content
in the cellular network. The willingness to distribute illegal content,
especially to masses of unknown recipients, is reduced due to operator
control, charging and easy identification of users.

The mobility, the increasing bandwidth, the capability for creating
media, the popularity of user-generated media and communities is a

110

powerful combination. Peer-to-peer technology suits well as a
distribution method in this scenario. If only a part of the created content
actually is accessed, it may not make sense to upload everything to a
server. The peer-to-peer approach transfers only requested content,
saving both bandwidth in the access network and storage space on the
servers. Caching allows the peer-to-peer and server mode to be combined
so that the content being downloaded through a peer-to-peer system is
stored on a cache in the network, allowing popular content to be accessed
efficiently. The best parts of both worlds can thus be combined.

Technologically the concept is promising, but are users interested in
this type of application? In order to better understand the potential users,
we performed a set of surveys, both based on questionnaires and
interviews. The people answering the surveys were mostly technical
students, representing young people with a technical understanding, that
are assumed to be the first people to adopt such a service. However, the
relatively small sample size and the homogenous background limit the
applicability of the results to other than an initial background study. The
following surveys are used in this work:

• Survey 1. This questionnaire performed in 2005 was answered by 98
respondents. Of the respondents 86% are Finnish and 80% are male.
All respondents are students of Helsinki University of Technology.
64% are employed part- or full-time. 66% are between 21 and 25
years old and 24% between 26 and 30 years old. Part of the results
have been published in [MBL+06b] and [MBL+07].

• Survey 2. This questionnaire performed in 2008 was answered by 125
respondents. Of the respondents 75% are Finnish and 78% are male.
78% of the respondents are studying, of which 59% study technology.
72% are employed part- or full-time. The majority (85%) are between
22 and 28 years old. A thorough report is given in [Lev09].

• Survey 3. This questionnaire concentrating on microblogging
performed in 2009 was answered by 16 respondents. Of the
respondents all are Finnish and 50% are male. All respondents are
students of Helsinki University of Technology. The respondents are
between 19 and 30 years old. A presentation of the survey can be
found in [Pal09].

• Survey 4. This interview concentrating on social networks performed
in 2009 involved 8 respondents. All respondents are Finnish and
students of Helsinki University of Technology. Half of the
respondents are male. The respondents are between 20 and 25 years
old. From this interview we use only the suggestions for applications.
The other results have been reported in [Lag09].

4.4.1 Interest in obtaining content

In both Survey 1 and 2, we first examine the interest in obtaining content
on the mobile phone without considering the distribution technology. The
interest is surveyed based on the type of content and the creator of the
content. Most types of content were divided into two groups: the content
created by people known to the user, and content created professionally.

111

Figure 4.1. Interest in downloading content to a mobile phone in Survey 1.

Figure 4.2. Interest in downloading content to a mobile phone in Survey 2.

Figure 4.3. Interest in downloading content from different groups of users to a

mobile phone in Survey 2.

According to Survey 1, shown in Figure 4.1, the most interesting type
of content is pictures taken by friends. Video clips made by friends are
almost equally interesting. These types of content show a high difference
in interest depending on whether the creator is known: pictures and video
clips made by other people are considered uninteresting. Text documents
are generally less interesting than pictures and video clips, but also here
the interest was higher for text documents made by friends.
Commercially created content (e.g. news reports) is valued more than
content generated by unknown users, but less than content generated by
known users. The differences between the popularity of these sources are
large: most users have a high interest in the content generated by their
friends, a moderate interest in professionally generated content and rather
low interest in content made by other users. Music is considered almost
as interesting as pictures by known people. Ring tones and mobile games
were interesting only to a smaller part of the respondents. For music, ring
tones and mobile games the creator was not defined.

In Survey 2, the content and creators are separately surveyed. As
shown in Figure 4.2, the interest in downloading different types of

0 % 20 % 40 % 60 % 80 % 100 %

Pictures taken by your friends and family

Pictures taken by other people

Video clips recorded by your friends and family

Video clips recorded by other people

Video clips recorded by professional content providers (e.g. news)

Text documents created by your friends and family

Text documents created by other people

Text documents created by professional content providers (e.g. news)

Music (e.g. MP3 files)

Ring tones

Mobile games

How interested are you in downloading the following types of content to your mobile phone?

5 (Very interested)
4
3
2
1 (Not interested)

0 % 20 % 40 % 60 % 80 % 100 %

Photos

Video clips

Text (news, short books, blogs)

Calendar notes

Web-links

Maps and POIs

4 (Very interested)
3
2
1 (Not interested)

How interested are you in downloading the following types of content created by other users to your mobile phone?

0 % 20 % 40 % 60 % 80 % 100 %

Family and friends

Friends of friends

Unknown people

Study and work colleagues

Interest/hobby group or club

How interested are you in downloading content from the following groups of users to your mobile phone?

4 (Very interested)
3
2
1 (Not interested)

112

content corresponds to the results of Survey 1, with photos and video
clips considered as the most interesting types and text considered less
interesting. Calendar notes and web-links, included as new content types,
are also considered relatively interesting. Interestingly, maps and points
of interest (POI) are considered as the most promising types of content.
Figure 4.3 shows the importance of knowing the source of the content.
We can see a much higher interest in downloading content from family
and friends than from the friends of friends, which in turn is higher than
the interest in downloading content from unknown people. The special
groups consisting of study and work colleagues and interest/hobby related
groups is relatively high, although not as high as for family and friends.
These groups contain people of varying closeness to the user, although
most can be considered as known.

Figure 4.4. Interest in downloading content to a mobile phone in Survey 3.

Status information, such as the current availability of a user, is
becoming part of the communication in several applications, including
Skype and Live Messenger. In many systems, such as Facebook, the user
can comment on what he/she currently is doing. Microblogging,
represented by Twitter [Twitter], among others, is a service
fundamentally aimed at distributing short status updates about thoughts
and doings. The mobile phone provides interesting possibilities for such
status information as it is always following the user. The mobile phone
further makes it possible to automate the generation of certain types of
status information. Automatically obtained status information can be
presented in the phone book or in a separate screen showing status
information about a few selected contacts.

In Survey 3, shown in Figure 4.4, we asked the respondents about the
interest in obtaining status information about other users. The most
requested information is the presence status, to which many users have
been used to through many popular applications. The current location of
another user is often mentioned in phone calls. Automatic presentation of
the current location is desired by several respondents, especially
regarding their friends. If the calendar contains information about a
current event of the user, around half of the respondents would like to
obtain this information. Other types of information is less popular.
However, the currently playing song in a friend’s phone is considered
interesting. Interestingly, users are less willing to obtain automatically

0 % 20 % 40 % 60 % 80 % 100 %

Current location of the user

Current presence status of the user

Current event in the user's calendar

Caller or callee of the user's current phone call

TV-program currently viewed on the user's phone

Song currently playing on the user's phone

Willingness to receive automatically generated information about another user

Family
Friends
Work and study colleagues
Known people
Anybody

113

generated status information from their family members than from their
friends.

4.4.2 Willingness to share content

The willingness to share different types of content with different types of
users according to Survey 1 is shown in Figure 4.5. As expected, a user’s
willingness to share a resource with another user depends on how closely
related the users are. The willingness to share resources with family
members and close friends is much higher than the willingness to share
resources with other friends and work and study colleagues. Willingness
to share resources with other known people (people in the address book
of the phone) and to completely unknown people was very low. About
10% of the users did not want to share given resources with anybody.

Figure 4.5. Willingness to share content with different groups of users in Survey 1.

The difference between different content types was low. Generally,
users were more interested to share pictures than video clips. The interest
to share text documents was lower than for video clips, with an exception
for work and study colleagues, to which the interest to share text
documents was high. Photos, video clips and many text documents are
usually generated by the user and are personal in nature. Hence, the user
wishes to control to whom the resource is distributed. The same tendency
can, however, be seen for less personal types of content, such as content
generated by a commercial provider. The reason may be the cost of
resource sharing in the form of bandwidth use and monetary costs, but
also because of avoiding problems with intellectual property rights.

The results of Survey 2 shown in Figure 4.6 confirm the above
results. The willingness to share (in Figure 4.6) corresponds remarkably
well with the interest to download (in Figure 4.3). The willingness to
share is slightly lower than the interest to obtain the same information,
this difference being larger for unknown people. The difference between
content types, shown in Figure 4.7, is relatively small, although the order
of content types matches the one of sharing.

0 % 20 % 40 % 60 % 80 % 100 %

Family

Closest friends

Other friends

Work and study colleagues

People in the call contact list of the mobile phone

Anybody

Nobody

Willingness to share content with different groups

Pictures

Video clips

Text documents

Content from a professional content provider

114

Figure 4.6. Willingness to share content with different groups of users in Survey 2.

Figure 4.7. Willingness to share different types of content in Survey 2.

Figure 4.8. Willingness to share different types of content in Survey 3.

For the automatically generated status updates in Survey 3, the
willingness to share presented in Figure 4.8 is slightly lower than the
interest in obtaining the same type of information. Especially for location
information and calendar information this asymmetry can be seen.

4.4.3 Access control and user groups

Survey 1 compared the user’s preferences for different methods of
controlling file access and assigning access rights in a file sharing
service. Figure 4.9 Shows that most respondents prefer placing shared
files in a separate directory. The differences between the suggested
methods for assigning access rights to users are small, as shown in Figure
4.10.

0 % 20 % 40 % 60 % 80 % 100 %

Family and friends

Friends of friends

Unknown people

Study and work colleagues

Interest/hobby group or club

How interested are you in sharing content to the following groups of people from your mobile phone?

4 (Very interested)
3
2
1 (Not interested)

0 % 20 % 40 % 60 % 80 % 100 %

Photos

Video clips

Text (news, short books, blogs)

Calendar notes

Web-links

Maps and POIs

Music

Applications and games

How interested are you in sharing the following types of content from your mobile phone?

4 (Very interested)
3
2
1 (Not interested)

0 % 20 % 40 % 60 % 80 % 100 %

Current location of the user

Current presence status of the user

Current event in the user's calendar

Caller or callee of the user's current phone call

TV-program currently viewed on the user's phone

Song currently playing on the user's phone

Willingness to share automatically generated information to other users

Family
Friends
Work and study colleagues
Known people
Anybody

115

Figure 4.9. Methods of controlling file access.

Figure 4.10. Methods of assigning access rights.

We asked the respondents to approximate the size of given groups of
users. The group sizes of Survey 1 and 2 are presented in Figure 4.11. In
both Survey 1 and 2, the median number of family members is 5 and the
median number of work/study colleagues is 20. In Survey 1, the median
number of close friends is 7 while the median number of other friends is
20. In Survey 2, the types of friends are not separated, whereas the
median still is 20. The variance in group size is fairly large. The total of
the median sizes in Survey 1 is 52 contacts per user and 45 contacts in
Survey 2.

Figure 4.11. Group sizes.

We can assume the existence of several types of contacts in addition
to the given ones, of which many are related to interests and hobbies.
According to Survey 2, 80% of the respondents would participate in 1-5
groups while 4% would participate in 6-15 groups for sharing content.
Only 16% of the respondents would not utilize groups. The median size
of a group is 20 persons, although the suggested size was millions of
users in some cases. The theme of the most important group is hobbies
(30%), sports (27%), music (21%), friends and family (13%) and other
(9%).

0 % 20 % 40 % 60 % 80 % 100 %

Mark every file that can be shared. Other files are not shared.

Place file that can be shared into a given directory.

Accept or deny the first time somebody wants to access the file

Other

In which way would you want to control which of your files are shared?

Yes No

0 % 20 % 40 % 60 % 80 % 100 %

Mark every user who is allowed to access

Group users into profiles and define access rights for each profile

Ask the first time the user tries to access a file

Other

In which way would you want to control who can access your shared files?

Yes No

0 10 20 30 40 50 60

Family members (Survey 1)

Closest friends (Survey 1)

Other friends (Survey 1)

Work/study colleagues (Survey 1)

Family members (Survey 2)

Friends (Survey 2)

Work/study colleagues (Survey 2)

How many people can you classify as belonging to the following groups?

10% percentile

Median

Average

90% percentile

116

According to Survey 1, the median number (approximated) of
contacts in the respondents’ phone books is 113. This fits well with the
measured median value of 111 contacts reported by Verkasalo [Ver07].

4.4.4 Interesting applications

Asked in Survey 1 to evaluate a few given mobile applications, the
respondents were mostly interested in an application allowing searching
for pictures related to a given keyword (e.g. a public event or incident).
The application would be used at least monthly by half of the
respondents. Also the downloading of pictures from an event commonly
experienced by friends was found interesting, though the willingness to
pay for the service was lower. Ringtone downloading is much less
interesting. The respondents proposed several applications for requesting
information, including traveling, entertainment, sports, education and
financial information. In particular, information related to the current
location, such as nearby restaurants, was suggested. Furthermore,
applications related to social networking, dating, and sharing contact
information were proposed.

In Survey 4 the respondents were asked about ideas for applications
based on social networks. Several respondents proposed combining social
networks with the phone book so the online status and pictures are shown
in the phone book. Several also wished that the location of a selected
group of friends could be presented. Participants showed general interest
in a suggested application showing the profiles of surrounding people, for
example, in a party. While a few thought this was frightening, most
thought that this would work as a starting point to get familiarized as
some background information was available.

4.4.5 Constraints

Figure 4.12 shows how various constraints affect the willingness to
download and share content in a content sharing service. The respondents
of Survey 2 rated the effect on a scale between one (does not reduce the
willingness) and five (prevents the use). All constraints were considered
more limiting in sharing than in downloading. The battery consumption
and the resulting reduction of the operation time of the phone was
considered as the least restricting constraint. The most serious constraint
reducing the willingness is the cost. Most respondents would limit the use
because of the cost involved and some (over 20%) would completely stop
using the service. In particular, a cost resulting from sharing was not
accepted. The slowdown of the phone has a relatively low influence,
although larger than the reduction in operating time. Users are not
prepared to wait much longer for a transfer to finish than they are used to
on PCs. One of the most important constraints is the lack of access
control. Half of the respondents would not at all use a content sharing
service that lacks access control. Less than 10% are unaffected by this
constraint. Several respondents commented that usability issues, such as
screen size, restricted the ability to handle large data amounts. Also
privacy concerns were raised.

117

Survey 1 also asked the respondents about acceptable search delays.
As displayed in Figure 4.13, a search delay of Ts < 2 s is required by
30% of the users. A search delay of Ts < 30 s satisfies 70% of the
respondents while a search delay of Ts < 60 s satisfies 38% of the
respondents.

Figure 4.12. Effect of various constraints on service use.

Figure 4.13. Acceptable search delay.

4.4.6 Cost

In current cellular networks, the user usually pays both for uploading and
for downloading. Thus, the user must pay for other people accessing the
shared content. As discussed, this is a major obstacle for peer-to-peer
applications in cellular networks. The current trend is, however, shifting
toward flat rate service. The user pays for a given access rate but the
actual transfer is free. Some operators prohibit the use of peer-to-peer
software in their networks to prevent massive use, and in particular illegal
use. While peer-to-peer systems easily fill up all available capacity, it is
often a driver for the user to obtain a fast connection.

Interestingly, Survey 1 showed that the user prefers service based
charging (pay per downloaded item) to a fixed monthly sum (including
everything) in almost all of the proposed usage scenarios. Roughly one
fourth of the respondents would only use the proposed services if they
were free. About 41% of the respondents would not pay for content
created by other users. Equally many respondents would be prepared to
pay, but less than for professionally created content. About 16% of the
respondents give equal value to user-created content as to professional
content. Very few users (2%) would pay more for user-created content.

In traditional peer-to-peer networks, most users only download
content without sharing anything. Measurements in [For07] show that
53% of the nodes stay online less than 10 minutes and 62% stay online
less than 15 minutes. This behavior, called free-riding or leeching, is

0 % 20 % 40 % 60 % 80 % 100 %

Downloading reduces operation time of the phone

Downloading increases the phone bill

Downloading makes the phone slower

Downloading takes longer time than with a PC

Sharing reduces operation time of the phone

Sharing increases the phone bill

Sharing makes the phone slower

No possibility to control who accesses shared f iles

How do the following constraints affect the willingness to use the content sharing service

1 (does not reduce interest)

2

3

4

5 (prevents the use)

0..2 s

2..30 s

30..60 s

> 60 s

How long time would you be prepared to wait
for locating the content?

118

expected to be more common in the mobile scenario, where the cost of
uploading data is higher. The uploading user consumes battery power and
must often pay for the upload traffic, for which he personally does not
benefit. However, the user might have a higher incentive to provide
resources for publishing content created by himself than to provide extra
copies for public and even illegally distributed material.

4.4.7 Considerations

For the respondents, it can be difficult to evaluate a service from which
no personal experience has been gained. Therefore, the survey results
mainly show the initial opinions and directions for development. The
actual attractiveness of a mobile peer-to-peer service is visible only when
it is publicly available.

According to Survey 1, most respondents would use a resource
sharing service at least sometimes, and around 10% of the respondents
would use it often. Only about 15% of the respondents are not interested
at all. The interest is higher for respondents with much experience of
fixed peer-to-peer software and among younger respondents.

Asking the respondents about their reasons for using mobile peer-to-
peer gives about the same number of responses for the following given
reasons: a possibility to purchase the content cheaper from a peer-to-peer
based service, a more convenient way of obtaining content, a possibility
to get hard-to-find content, and a possibility to get very recently created
content. Very few respondents saw the possibility to get new friends as a
reason. A large range of other reasons were suggested, a large part of
which relate to sharing content within a community and obtaining illegal
content.

The surveys show the importance of knowing the people with whom
you exchange information. The closer the relationship, the higher the
willingness to share resources with the other user. But a close relationship
is also important in accessing resources; users are more interested in
obtaining resources created by known people than those created by
unknown people. The exception is commercially provided resources,
which may have a higher quality and a more general audience. To support
the sharing of user-generated content, the sharing application should
therefore allow forming user groups and control the access to resources
within the group. Alternatively, the contacts can be modeled as a social
network, whereas the access rights are determined by the contacts and
distance. Additionally, it may be feasible to integrate access to
commercial content in the same application.

4.5 Architectures for operator-controlled peer-to-peer services

In this section, we consider the technical implementation of a resource
sharing service in a cellular network. We assume that the service is
provided either by operators or separate service providers. Henceforth,
we use the term operator for both cases. Several operators may combine
their services, forming a multi-operator resource sharing system.
Combining the services increases the amount of available resources and,
according to Metcalfe’s law [Kir98], the value and attractiveness of the

119

system. We assume that overlay links can be established between a pair
of operators only if they have a formal agreement. The peer-to-peer
service forms a generic platform on top of which different applications
can be built. In order to support a broad range of possible applications,
we require the system to support complex searches while providing
deterministic search results. As structured systems currently do not
support complex queries adequately, we concentrate on unstructured
systems.

4.5.1 Two-layer hierarchical architecture

The bottle-neck in a cellular network is the limited bandwidth and high
cost, both for the user and the operator, of the wireless link. The primary
technical requirement is therefore to minimize the traffic over the
wireless link, which also reduces the consumption of battery power and
other resources.

Direct communication between nodes in a cellular network is not
possible. In GPRS networks, all communication goes through the
Gateway GPRS Support Node (GGSN), making a true peer-to-peer
architecture in the lower layers impossible [MCB+04]. Consequently, a
message sent between two cellular devices traverses the air interface
twice. Moreover, firewalls and NATs contribute to making direct
communication between cellular devices difficult or impossible.

The choice of architecture has a major influence on the traffic. In a
completely distributed system without indexing all queries must be
distributed to all terminals. As terminals flood the query to each other,
every hop traverses two wireless links. Due to the inefficiency of
flooding, queries traverse the wireless links multiple times. Utilizing
indexing, the total traffic can be minimized. However, the fundamental
problem is still the cost of communicating between terminals.

From the network perspective, traffic is minimized using
centralization. Centralized nodes can be maintained either by the operator
or by other users. Although this choice is irrelevant from the technical
viewpoint, it influences the reliability and possibility to control the
network. Given the operator’s need for control, the approach of placing
the centralized elements in the operator’s network or a third-party service
provider network is more realistic. Centralized elements among the
mobile nodes create uneven distribution of load and battery consumption
and it is difficult to give good reasons why a user should receive more
traffic than other users. Centralized elements in the fixed network reduce
the traffic from the perspective of both the network and the terminal. A
server maintained by an operator can have a significantly higher
bandwidth and processing power, and a constant power supply. As we
consider multi-operator scenarios with multiple points of control, we
need to introduce several centralized points – at least one per operator.
All cellular devices should be loaded equally, while also the load between
operators should be distributed.

These considerations lead to the hierarchical architecture shown in
Figure 4.14, in which the upper layer consists of servers in the operator
network and the lower layer of mobile terminals. The architecture is
suitable for cellular networks, since terminals are usually behind NATs

120

and firewalls, which complicates direct application layer communication
between terminals. The connections between the centralized elements are
at this stage undefined: practically any type of peer-to-peer architecture
can be used within the operator’s network and between different
operator’s networks.

Figure 4.14. Architecture for hierarchical operator-controlled peer-to-peer service.

For clarity, we call the centralized elements in the fixed network core

nodes. The overlay network between the core nodes is called the core

overlay. Optionally, there can be several core overlays, for instance, for
different applications or types of operator agreements. Links in the core
overlay between elements of the same operator are called interior core

links. Correspondingly, an exterior core link connects the elements of two
different operators. Exterior core links are formed based on formal
agreements between operators. The mobile nodes are called edge nodes.
There are no overlay links directly between the edge nodes. The edge
nodes form the lower hierarchical level and the core nodes form the upper
hierarchical level. The core nodes and edge nodes differ in several
significant ways as indicated in Table 4.1.

Table 4.1. Key characteristics of edge and core nodes.

Operator 1

Operator 2

Operator 3

External
system

Core
n ode

Core
node

Core
nod e

Core
node

Core
node

Edge
node

E dge
node

Edge
node

Core
overlayOperator 1

Operator 2

Operator 3

External
system

Core
n ode

Core
node

Core
nod e

Core
node

Core
node

Edge
node

E dge
node

Edge
node

Core
overlay

 Core node Edge node
Responsible party Operator User

Storage capacity High Low
Processing power High Low
Power supply Unlimited Battery
Bandwidth High Low
Connectivity
restrictions

None NATs/Firewalls

Stability High Low

121

An edge node is configured with the address of one or several core
nodes in its network. Alternatively, there can be a bootstrap server in the
network providing configuration information. An edge node selects one
core node, to which it connects. A connection procedure similar to the
one proposed in Section 3.4.6 can be used to allocate the edge node to the
least loaded core node. Optionally, an edge node can be simultaneously
connected to several core nodes. The edge node does not need to know
the architecture or topology of the core overlay.

A mobile peer-to-peer system can be connected to an external peer-
to-peer system, for example, to Kazaa. This allows the mobile user to
access resources in the external system and also to provide resources to
users in the external system. In this scenario, special care has to be taken
to avoid loops. A query sent to the external system may be received later
by the same or another core node in the mobile peer-to-peer system. To
prevent loops there must be a search identifier common to all systems.
Unless there is a global search identifier, a query received from the
external system must not be forwarded within the mobile peer-to-peer
system.

Compared to traditional peer-to-peer sharing, the cellular
infrastructure allows for more control. Because of the centralized control,
the operator may limit illicit material and reduce the risk of security
attacks. As all users can be identified, the incentive for illegal sharing is
reduced and evidence for possible legal action is available. However,
since the content itself is not in the operator’s network, the control must
be based on the metadata describing the content. Analyzing the content
distributed through the operator’s network is typically a heavy process.

As the traffic passes through the fixed network, it is possible to
improve performance by caching. We can distinguish between two types
of caching: the caching of search requests and the caching of resources.
The former implements an implicit form of indexing. Resource caching
allows popular content to be replicated on a central server. This allows
the system to adjust toward a client-server operation, combining the best
parts of both worlds.

4.5.2 Implementation in IMS

In Publications [BML+05] and [MBL+06b], we present a commercial
peer-to-peer service for the IMS network. As IMS utilizes SIP signaling,
we propose using SIP also for P2P control messages, as described more
comprehensively in Section 4.7. Services in SIP are generally hosted and
executed by SIP Application Servers (SIP-AS) defined in 3GPP Release
5. Therefore we implement the core node as an application server called
the P2P Application Server (P2P-AS). Utilizing an application server
makes the P2P service similar to other IMS services, allowing the
charging and security provided by the IMS infrastructure to be reused. As
depicted in Figure 4.15, the P2P-AS is connected to the S-CSCF (Serving
Call/Session Control Function) through the ISC interface based on SIP
signaling. The S-CSCF is connected to a P-CSCF (Proxy Call/Session
Control Function) through the Mw interface, also using SIP signaling.
The S-CSCF and P-CSCF are fundamentally SIP proxies enhanced with
IMS-specific functions. The P2P-AS can store persistent information

122

about the users in the HSS (Home Subscriber Server) between active
sessions. The ISIM provides user authentication. Supplementary
functions, such as prioritizing of resources, load balancing and caching
can be implemented in the P2P-AS.

Figure 4.15. Peer-to-peer resource sharing service in the IMS.

The overlay network is formed when several P2P-AS are connected
together. We specify the following main functions of the P2P-AS:

1. Edge connection maintenance. This function involves handling
connection requests from edge nodes, and optionally allocating the
edge node to another P2P-AS better capable of serving the
connecting edge node. Before establishing the overlay connection,
the user is authenticated and authorized. The function further handles
error conditions, mobility, connection teardown and ungraceful exits.

2. Edge index maintenance. This function involves maintaining a
remote index of resources shared by the connected edge nodes. The
P2P-AS may require the index to be refreshed periodically and may
further limit the index size.

3. Core overlay maintenance. This function maintains the core overlay
as specified by the used architecture. The operator may specify
additional policies, for example, regarding the number of peer
connections for load balancing. The core overlay includes both
interior and exterior core overlay links. When a core link specified by
the architecture is missing, a new core link is establishing by sending
connection requests to another P2P-AS. Incoming connection
requests are compared to the architecture requirements and the
policy, and the other party is authenticated and authorized. The
connection quality and traffic are monitored.

4. Core index maintenance. In applicable architectures, this function
maintains a remote index of resources reachable through other P2P-
ASs. Correspondingly, the P2P-AS’s own index information is
distributed to other P2P-ASs.

ISC (SIP)

Mw (SIP)

IP connectivity
Access network
(e.g. GPRS)

OperatorA Operator B

P2P AS
(SIP AS)

S-CSCF

P2P AS
(SIP AS)

P-CSCF

SIP

123

5. Search distribution. This function involves forwarding search
requests received from edge nodes and other P2P-ASs according to
the search algorithm. For matches, search replies are generated.
Depending on policies, these replies may be sent directly to the
requester or accumulated in intermediary P2P-ASs.

6. Usage recording. This function creates usage records for the purpose
of charging and billing. The operator may also compensate the user
for providing resources or redundant copies in order to motivate
sharing.

 In addition to these, the P2P-AS may perform optional functions:

7. Caching. This function stores a copy of the transferred content in a
content cache. The content cache is a logical element that is inserted
as a proxy on the transfer path. The function may maintain statistical
information about the popularity of items for efficiency reasons.

8. External connectivity. This function maintains a connection to an
external P2P network. The P2P-AS translates between the protocols
on each side. Search requests are forwarded from and to this
network.

9. Commercial providers. This function connects the peer-to-peer
network to a provider of commercial content. The search requests are
compared to the content provided by the commercial provider. The
function may also provide methods to charge for accessing
commercial content.

10. Content control. This function inspects the index information and
search requests in order to impede the sharing of illegal content, or
the sharing of which is restricted by intellectual property rights (IPR)
or policies. The function detects malicious use of the network, such
as spamming and providing false resource descriptors. It may also
search for viruses and other malicious software. An advanced
function can also compare the index with a database of IPR. It may
also be feasible to inspect the actual content as it is transported
through the network, although this is complicated and resource
demanding.

The P2P-AS collects application level usage records that form the
basis for charging. This allows flexible pricing models based on the
service instead of data- or time-based charging. Pricing models based on
the actual transferred content is assumed to be more understandable by
the user than a model where the user is charged for all traffic, including
overlay maintenance, signaling and search traffic. The user is then able to
better estimate the cost of resource sharing. A scheme that charges for
signaling and maintenance traffic creates an incentive to close the
application between resource downloading sessions, making resources
unavailable. On the other hand, free uploads motivate users to share and
the higher amount of available resources pays back as higher service use.
Pricing models that reward users for sharing resources are also possible.
In general, it is important to distinguish between signaling (overlay
maintenance, search and index distribution) and resource access traffic.

124

4.5.3 Group management and access control

In our user study we identified the need for access control: the resource
provider may require the availability to be limited to known people, and
the resource requester may prefer to limit the search scope to include only
known people. One way to implement access control is by using groups.
A user can be a member in one or several groups. The shared resources
can be marked with the groups to whose users it is shared. Search
requests can be marked with a set of groups, which limits the results to
resources in the given groups. Groups are identified by their names.
Soinio [Soi09] identifies four kinds of groups:

1. Local groups. Personal groups defined by users with membership not
visible to other users.

2. Symmetric personal groups. Personal groups defined by users with
membership visible to (at least) all members. Membership is
symmetric, i.e. the added person must accept the inclusion to the
group.

3. Asymmetric personal group. Personal groups defined by users
(normally) with global visibility.

4. Global groups. System groups typically defined by a system
administrator with global visibility.

Access control classes

We denote the set of groups available in the system as G = {g1, g2, …,
gn}. The group membership of a user u is Mu, where Mu ⊆ G. The groups
to which a resource r is shared is Gr. The groups to which a search
request s is directed is Gs. Let us now define different levels of access
control. These are defined based on the search outcome independently of
how and where the access control is implemented.

Definition 4.1. A resource discovery system provides indicative access

control if every resource r that is shared to a set of groups Gr is excluded
from the search reply when Gs ∩ Gr = ∅.

Definition 4.2. A resource discovery system provides read access control
if every resource r that is shared to a set of groups Gr is excluded from
the search reply of a user u when Mu ∩ Gs ∩ Gr = ∅.

Definition 4.3. A resource discovery system provides write access

control if every resource r that is shared by user v to a set of groups Gr is
excluded from the search reply when Mv ∩ Gs ∩ Gr = ∅.

Definition 4.4. A resource discovery system provides read-write access

control if every resource r that is shared by user v to a set of groups Gr is
excluded from the search reply of a user u when Mu ∩ Mv ∩ Gs ∩ Gr
= ∅.

Indicative access control can only be regarded as a guide for easier

location of the desired resources, as the system does not check whether
the requester u is a member in any of the groups Gr. Indicative access

125

control works as an access control system only if the authorization is
checked in the access phase separately. Read access control, on the other
hand, guarantees that only resources shared in groups that the requester is
a member of are located. Write access control ensures that the resource
provider is a member of the groups to which the resource is published.

Note that the resource discovery system is not responsible for
controlling the access to the resource itself. Thus, if the resource has been
found with means outside the resource discovery system, the resource
could still be accessed. However, this situation can easily be corrected if
the resource provider generates a secret identification code, a token, that
is included in the resource descriptor. The resource provider grants access
to the resource only if the token is provided in the resource access
message. A hash identifying the file can be an adequate token.

Group management

Group management means the control of the group membership Mu of the
users u. Group management functions include adding members to the
group, removing members from the group, and defining rights and roles
for members. Also the definition of the scope and properties of the group
can be regarded as group management functions. We propose three
different models for managing groups:

1. Role based group management. In this model, the right to manage
the group is assigned to members with given roles. For example, a
group administrator may be responsible for managing the group. The
administrator is typically the user that created the groups, and the
current administrator can entrust the administrator role to other users.

2. Collaborative group management. Group management decisions are
collaboratively made, e.g. using voting. The aim is to make decisions
in a democratic way. One way is to require acceptance of a given
percentage or number of users for a decision, such as accepting a
new member.

3. Distributed group management. All users have an equal right to
make decisions. This model can be implemented so that all users
manage their own view of the group and the group is implicitly built
from the sum of the views of all participants. Such a model
approximates a social network.

Depending on the model, group management functions include functions
for applying for membership in a group, inviting a user to a group,
collecting votes from users, etc. A (distributed) group membership
database is used to store the group membership Mu of all users u. The
database either maps the user into a set of groups that the user is a
member of, or alternatively maps the group name into a set of users that
are members in this group.

Implementation in a operator-controlled service

A centralized implementation of the system allows all models to be
implemented in a straightforward manner. Users are assumed to trust the
core node and that the core node implements access control correctly.

126

Most currently available resource sharing systems that support access
control are centralized.

Where the architecture includes several interconnected core nodes,
the implementation becomes challenging, both in terms of distributed
group management and distributed search and indexing. The
implementation varies depending on whether the core nodes trust each
other. We assume that a relationship of trust is formed as a consequence
of the agreements between peering operators. This assumption makes the
implementation simpler. The lack of trust most likely leads to the use of
cryptographic methods.

In a simple implementation index updates and search requests are
distributed normally. The access control is performed locally at each edge
node by comparing the group list Gr of the resource descriptor r with the
group list Gs in the search request s. Only indicative access control is
achieved in this way, and the requesting user can obtain access to any
desired resource. Indicative access control is feasible if the resource
access is authorized separately. To provide read access control, the
system must ensure that the search request is directed to only groups of
which the resource requester is a member. This is done by querying the
group membership database. To provide write access control, the system
must check the group membership database when resources are
published.

The group membership database can be centrally maintained or
replicated to all core nodes. Alternatively, each core node hosts a given
set of groups and maintains the fraction of the database describing the
membership of the hosted groups. In this case, the group name indicates
the core node hosting the group, for instance, in the format
group@operator.com. The group membership database can also be
distributed using other means, such as DHTs, but this adds an additional
overlay to the system.

Ideally, the search request should be distributed only to the edge
nodes with group members in order to reduce the traffic. Such an
implementation is, however, challenging, especially when flooding is
used in the core overlay. Nodes must know which other nodes have
members belonging to a given group. In implementing this knowledge,
the system easily reduces to a centralized system or to a global index
system. We return to the problem of flooding according to group
membership in Section 4.6.4, where a slightly different approach is used.

The work has been continued by Soinio, which has produced a
comprehensive study of access control in peer-to-peer systems [Soi09].
Soinio proposes three solutions for access control: distributed access
control lists, service passwords and local delegations.

4.5.4 Architectures for the core overlay network

The core overlay connects the core nodes together. Practically any
architecture can be used in the core overlay. In this section we evaluate
the suitability of different architectures for the core overlay in a
commercial resource sharing service. In all architectures, we assume that
users are connected as edge nodes to the core nodes.

127

Desired properties

So far the choice of architecture has been driven by performance issues,
such as the need to reduce the message overhead, processing load and
delay. The architectural choice for a commercial resource sharing service
is influenced by several factors in addition to the performance. First, as
each operator may have several core nodes, the architecture should be
able to distinguish between interior core links and exterior core links.
Exterior links can be assumed to have a higher cost, a lower bandwidth
and an additional processing overhead because of firewalls and policies.
It is therefore desirable to reduce the traffic on the exterior core links.

Second, the number of peer operators should be limited. Each peering
relationship is assumed to be based on a formal contract with the traffic
measured and controlled. Also the cost of the exterior link motivates
limiting the number of peer operators. In particular, it is unreasonable to
require all operators peer with all other operators, especially in a large
scenario.

Third, the operators generally desire to keep certain information
private, such as information about the internal topology, the customers,
and the resources shared by the customers. As a consequence, the indices
of an operator’s customers should not be distributed to the networks of
other operators. We call this property index confidentiality. Index
confidentiality also implies that the indices of one operator do not
consume storage resources in another operator’s network. An operator
does not need to increase its capacity when the competitor’s index grows
or if more operators join the system. Likewise, the operator should be
able to choose the topology of the interior core links independently of
other operators. We call this property topology autonomy. Finally, the
topology should not be revealed to other operators. This property is called
internal topology confidentiality.

Flooding

In the simplest case, the core overlay has an arbitrary topology, whereas
the architecture is semi-centralized. In publications [BML+05] and
[MBL+06b] we present a peer-to-peer service based on this architecture.
Searching is performed using flooding or random walk. The search
algorithm does not distinguish between interior and exterior core links,
and a query may traverse operator boundaries multiple times, which is
ineffective as the cost of exterior links is high. The semi-centralized
architecture is only feasible if an operator has one or a few super-peers.
When the number of super-peers is high, the inefficiency of flooding
becomes apparent and other architectures become more feasible. A search
request must be forwarded to all core nodes. Therefore, adding core
nodes increases the index capacity but not the search capacity. Index
confidentiality is provided as no indexing is used within the core overlay.
The internal topology of an operator is not revealed. Only nodes with
exterior links are visible to the outside.

128

Clustered architectures

In clustered architectures, such as PIC, PSC and IPIC, it is feasible that
each operator maintains a cluster. The operator can then control the
topology and the distribution method used within the cluster. The
operator also controls the addition and removal of core nodes in the
cluster. We do not find it feasible that several operators share a cluster, as
this breaks the autonomy regarding control and topology choice. Instead,
it may be advisable to divide an operator’s network into several clusters if
the network size grows very large. As we found in Section 3.4.10, the
clustered architectures perform best in terms of load distribution when the
sizes of all clusters are similar. As each node requires an exterior link, the
number of nodes in the cluster is revealed to all operators. However, the
topology and the distribution algorithm used within the cluster are not
revealed.

In PSC, all exterior core links are index links and all interior core
links are search links. A PSC architecture does not provide index
confidentiality as the index is distributed to one node in each cluster. The
operator can increase the storage capacity by adding new core nodes to
the cluster. However, it is difficult to add capacity for handling search
requests. Search capacity can only be increased by adding clusters.

Because of the lack of index confidentiality, we consider
architectures based on PIC and IPIC more feasible for a commercial
scenario. All exterior core links are search links and all interior core links
are index links. PIC provides index confidentiality since the index of the
operator’s customers is distributed to the nodes in the operator’s own
network but not to any competing networks. PIC allows the operator to
easily add capacity for handling search requests by adding more core
nodes, which unloads the existing nodes. The index capacity is more
difficult to enlarge as each node must store the index of the whole cluster.
Index capacity is added by splitting a cluster into several clusters.

The problem with the PSC and PIC architectures is the requirement
of full connectivity between clusters. Exterior links are set up based on
agreement. The establishment and management of these links is a heavy
process. We therefore consider the requirement of full connectivity
between clusters as incompatible with scenarios involving several
operators, especially when the number of operators is high. For these
scenarios we proposed a new architecture, IPIC, for the upper
hierarchical layer. While reducing exterior links, it suffers from a slight
performance degradation, either as an increased search delay or higher
bandwidth use. Compared to flooding, IPIC provides a significant
improvement in performance and a controlled flow of information in the
network. Like the other clustered architectures, the topology and
distribution method used within the cluster remain confidential. However,
the number of nodes in the cluster is revealed to the peer operators.

As PIC, PSC, and IPIC demand a maintained topology, a method to
construct and maintain the topology is required. Generally, construction
requires the following steps:

129

1. Dividing nodes into clusters.
2. Interconnecting all nodes within the cluster with index links (in PIC

and IPIC) or search links (in PSC).
3. Interconnecting all clusters so that each node has a search link (in

PIC and IPIC) or index link (in PSC) to at least on node in each
cluster.

In our case, the first two steps are manual: the operator divides the
nodes into one or several clusters and arranges the index or search
distribution between the nodes using any method. For the third step, we
can use the method outlined in Section 3.4.6 that allocates new links to
the node with the lowest indegree. A node v needs to know at least one
node wC, the ingress node, for each peer cluster C. The ingress node is a
node that externally represents the cluster, and is known by the
neighboring operators. The same procedure can be used to connect edge
nodes to core nodes.

Ring architectures

A ring topology ensures distributing a message to each node only once.
The ring structure is easy to create and maintain, using e.g. the topology
maintenance algorithm in Section 3.5. Exterior traffic is reduced if all
nodes of an operator’s network are consecutive in the ring. An operator
then has only two exterior links and the internal nodes are not revealed to
other operators. In a simple solution, a search message is forwarded
between the edge nodes and no index distribution is used. For two
reasons the solution is, however, not scalable: (1) the search capacity
cannot be increased by adding nodes as all queries are forwarded to all
nodes and (2) the search delay increases linearly with the network size.

A more advanced version of the ring is the Zone Indexing algorithm.
In a normal implementation of Zone Indexing, the index distribution is
not limited to the operator’s own network. Moreover, the internal
topology is disclosed to the successors through the index updates.
However, this disclosure is only limited to a small number of operators.

The Zone Indexing algorithm can be modified so that index updates
are dropped at operator borders. This corresponds to zones that include
only the operator’s own nodes. Unfortunately, this affects the
performance negatively. The zone is very small for the last nodes of the
operator’s part of the ring – the last node has a zone of size one. This may
be a high cost for providing index and topology confidentiality.

Adding nodes to a Zone Indexing network increases the search and
index capacity of the whole system. However, the benefit of the increase
is not limited to the operator that adds the new nodes.

Tree architectures

Since the topology of the upper hierarchical layer is fairly static, more
rigid topologies can be used. A tree has the desired property that there is
a single path between every pair of nodes. Broadcasting on a tree is
simple: a node forwards a message on all links of the three, except on the
one over which the message was received. There are no loops in a tree.

130

Broadcasting is also optimal: each node is reached only once. In practice,
it is only feasible to forward search messages on a tree.

A tree can be manually formed. Such a tree could consist of a upper-
layer tree connecting one node from each operator’s network. From this
node a sub-tree connects all nodes within the operator’s network.

Spanning trees can also be automatically built of an arbitrary
topology, from which an algorithm selects a subset of overlay links as
belonging to the tree. Links that do not belong to the tree are disabled.
Automatically formed spanning trees are used by Ethernet bridges, where
the tree is automatically generated with the Spanning Tree Protocol (STP)
[IEEE1990] or Rapid Spanning Tree Protocol (RSTP) [IEEE2004].
Similar algorithms can be used for connecting the nodes in the core
overlay. Automatically formed trees can recover from node or link
failures. Two critical issues must be considered in generating a tree for
forwarding search messages. First, the diameter, i.e. the maximum
distance between two nodes, affects the search delay and should therefore
be minimized. The diameter in a tree with N nodes can be anything
between 2 and N - 1. Second, load balancing is difficult. Although each
node receives a message only once, the times the message is forwarded
depends on the degree. As leaf nodes have a degree of one and do not
forward a message, perfect load balancing cannot be achieved. Both these
properties are determined by the topology on which the tree is based as
well as the choice of root node. Adjusting the topology for the purpose of
shaping the tree is as heavy a work as configuring the tree manually. The
automatically generated tree does not separate between interior and
exterior links, and therefore the internal topology is revealed.

Multicast

Searching in peer-to-peer networks is based on distributing a message to
a set of nodes. This is also the aim of multicast algorithms such as the
Distance Vector Multicast Routing Protocol (DVMRP) [WPD88] and
Protocol Independent Multicast Dense Mode (PIM-DM) [ANS05]. For
each sender a separate tree is generated and the path length from each
sender is minimized. The load is well distributed. However, using
multicasting in the overlay would require the overhead of a separate
routing protocol operating at the overlay level. At the network level,
multicast provides an interesting alternative. However, network level
multicast is currently not widespread and it is questionable if there will be
multicasting between operators in the near future.

Comparison

Table 4.2 and Table 4.3 summarize the properties of the discussed
overlay architecture. The first five properties are the policy properties
defined as in the beginning of this section. Search overhead is considered
as low when it is under O(N), medium for O(N), and high for O(kN) with
a constant k>1. Search delay is considered as low for O(1), high for O(N)
and medium when it is between these extremes. Search and index
capacity expandability refer to the operator’s ability to add nodes in order

131

to handle more search requests or store more index information,
respectively.

None of the architectures are perfect. While search flooding provides
all desired policy properties, the low performance limits the usefulness of
the solution, especially in terms of search capacity expandability. The
search ring shares the same properties, although the feasibility suffers
more from the high delay than from a high overhead. PSC and Zone
Indexing, while being efficient, are less suitable for a competitive
environment as they do not provide index confidentiality. PIC is the most
efficient, but requires full connectivity between operators. When full
connectivity is impossible, IPIC is a more suitable architecture despite
having slightly lower performance. We argue that this overhead is
acceptable considering the other alternatives. IPIC also allows index
capacity to be expanded by splitting a cluster, which can be implemented
without constructing new relations with all other operators. Spanning
trees, while being interesting options for further development, provide a
limited search capacity expandability as no indexing is used.
Automatically generated spanning trees fail to consider policy
requirements.

In practice, the clustering architectures can be seen as tree-layer
hierarchical networks, where the uppermost layer is the inter-operator
topology, the following layer is the intra-operator topology and the
lowest layer the edge nodes. Also spanning trees with separate sub-trees
for interior core links show this property.

Table 4.2. Properties of the core overlay architectures from operator’s viewpoint.

Architecture Flooding PIC PSC IPIC
Separation between
interior and exterior
links

No Yes Yes Yes

Index confidentiality Yes Yes No Yes
Topology autonomy Yes Yes Yes Yes
Internal topology
confidentiality

Yes Partial Partial Partial

Limited number of peer
operators

Yes No No Yes

Search overhead High Low Low Low /
Medium

Search delay Medium Low Low /
Medium

Medium

Search capacity
expandability

No Yes Limited Yes

Index capacity
expandablity

N/A Limited Yes Yes

132

Table 4.3. Properties of the core overlay architectures from operator’s viewpoint.

Architecture Search
ring

Zone
Indexing

Spanning
tree 1 *

Spanning
tree 2 **

Separation between
interior and exterior
links

Yes Yes Yes No

Index confidentiality Yes No Yes Yes
Topology autonomy No No Yes No
Internal topology
confidentiality

Yes Partial Yes No

Limited number of peer
operators

Yes Yes Yes Yes

Search overhead Medium Low Medium Medium

Search delay High Medium Medium Medium
Search capacity
expandability

No Partial No No

Index capacity
expandablity

N/A Partial N/A N/A

* Manually configured spanning tree with separate sub-tree for interior core links.
** Spanning tree build from an arbitrary (random) overlay topology.

4.6 Peer-to-peer with decentralized control

A decentralized peer-to-peer system allows mobile users to share
resources without the control of an operator or service provider. The
overlay can be formed by the users without any external support and
service subscription. This scenario is interesting if the operator or a third-
party service provider do not intend to provide the desired service. It can
further be used for forming overlays specific to certain applications,
collaborative projects or user groups.

As discussed in Section 4.4.6, the cost of uploading discourages most
users from sharing. Unless there is a high will to share all costs,
decentralized peer-to-peer systems practically require flat-rate charging to
maintain an incentive to share. Fortunately, it looks like flat-rate charging
will become the prevalent charging scheme in a few years. Furthermore,
the cellular environment calls for a uniform load distribution, which
excludes the use of super-peers and centralized servers among the nodes.
Centralized control must also be avoided because of the possibly high
unavailability and churn. In this section we study architectural solutions
for such a decentralized peer-to-peer network. Since decentralized peer-
to-peer networks are unlikely to scale globally, we are interested in
utilizing groups to limit the distribution.

4.6.1 Scenario

In order to test the concept of fully distributed resource discovery in peer-
to-peer systems, we apply it to a particular area, where we see it as a
feasible solution. The application area we consider is the sharing of

133

resources within relatively small-scale groups of users in a mobile
network. We consider a scenario based on the following assumptions:

1. Social network. The overlay topology is based on the social contacts
of the user. The contacts are a selected subset of the contacts in the
address book. As each contact is a neighbor in the overlay, the
average degree D of the nodes is high.

2. Stable topology. As the topology is based on the social network, it is
relatively stable. This is in contrast to traditional peer-to-peer
systems, where the topology is based on the devices and the stability
is determined by the churn rate of the devices. A node that is offline
still exists in a social topology but the offline status is separately
considered. We assume that a fairly small percentage of the nodes are
offline at a given moment.

3. Groups. As identified in Section 4.4, users prefer to share their
resources within a group. In a mobile network, we assume that the
shared content is mostly generated by the user and therefore is rather
personal in nature. Furthermore, providing access to the shared
resource incurs expenses, loss of battery power, and consumption of
available bandwidth. Legal restrictions, such as the fair use concept,
may reduce the willingness or possibility to share content with
unknown users. Therefore, the objective is that the access to a
resource can be limited to certain groups. Section 4.4 also shows that
users are more interested in resources provided by known people. As
groups are formed based on the common interests and social
relationships, users are more likely to find relevant interest. Based on
Figure 4.11, the median size of a group based on personal contacts is
between 5 and 20, but groups based on interests and hobbies can be
assumed larger.

4. Frequent searches, infrequent updates. During a session of active
use, a user performs search requests in bursts, for example, for
finding photos with various motives. The frequency fs is assumed to
be in the order of a few sessions a day, each session involving several
searches. New pieces of content are published relatively infrequently,
such as when photos are published. The frequency fi,modification is
expected to be less than one modification per day.

4.6.2 Social network model

We propose a method for creating groups based on the contacts of a user.
These contacts are available in the phone book of the user. Although the
phone book does not cover nearly all persons known by a user, it
represents the set of users that are frequently contacted. Kuitto [Kui02]
reports significant overlapping between the contacts in a user’s phone
book with the user’s real social network, and that only in a few cases
important contacts are not in the phone book. We model the social
network formed by the phone book contacts as a graph G = (V, E) where
V is the set of users and E is the set of contacts between users. The graph
is directed, since a contact from user v to u does not imply a contact from
user u to v.

134

Many phones already allow categorizing the contacts into different
groups or profiles. In current phones, the incentive for a user to
categorize contacts is rather small, since the added value is often limited
to assigning a common ring tone to the members of a category. Lugano
[Lug08] points out that many important features in the user interface,
including the phone books, have not improved since old phones: phone
books do not integrate a user profile nor social networking features and
mechanisms supporting sharing, searching and filtering of data with other
users. We propose to attach a set of textual group names, called
categories, to contacts in the phone book. Contacts can be categorized
into family, friends, work/study colleagues. Additional categories can be
related to, for instance, hobbies, activities and communities. We denote
the set of categories of a contact e ∈ E with Ce. The categorization is used
as a basis for our definition of groups.

Definition 4.5. The category graph of category c is Gc = (V, Ec) ⊆ G
where Ec = {e ∈ E | c ∈ Ce}.

Definition 4.6. A group c of a user v ∈ V includes every user u ∈ V to
which there is a path from v to u in Gc.

According to this definition, the group membership depends on the

user observing the group. In a directed graph G the groups are
asymmetric, whereas they are symmetric in an undirected graph. Observe
that the network may contain several separate groups of a given category,
i.e. different users may see different groups with the same name. It is
therefore important to separate the concepts group and category. For the
purpose of the following discussion we define a few more concepts.

Definition 4.7. The social distance distc(u, v) between two users u ∈ V
and v ∈ V in a category c is the minimum number of edges needed to
connect u and v in Gc.

Definition 4.8. The connectivity dc(u) of a user u ∈ V in a category c is
the degree of u in Gc.

Figure 4.16. Social network with groups of category G.

The example in Figure 4.16 shows a social network with the
undirected category graph of category G marked with thick lines and the
symbol G. Nodes A, B, C, and D are members of a group named G.
Nodes E and F are members of a different group with the same name G.
The social distances distG(A, D) = 2 while distG(A, E) = ∞. The
connectivity of B in G is dG(B) = 3.

G
B EA

C
G G G G

G FD

Connection with a group
named ”G” activated
Other connection

G
B EA

C
G G G G

G FD

Connection with a group
named ”G” activated
Other connection

135

4.6.3 Group management and policies

In the given scenario there is no centralized control and no node that can
store a group membership database. Furthermore, part of the users may
be offline. These factors make role based or collaborative group
management difficult to implement in an efficient manner. The former
requires a trusted node serving the membership database. The latter
requires querying all (or a given percentage) of the group members for a
collaborative decision. Instead, we propose a new method for distributed
group management. This method has been published in [Bei07b].

Distributed group management

Groups are formed based on the categories the user specifies for each
contact, for instance, using the phone book. A user u specifies a set of
categories Cuv for the connection (contact) to a user v. While two users
can specify different sets of categories for the connection between them,
only the set of common categories are activated. The groups are thus
symmetric. For instance, if user A marks user B as member of groups
CAB = {G1, G2, G3} and user B marks user A as member of groups CBA =
{G2, G3, G4}, then the groups activated on connection e between A and B
are the groups common to both users, Ce = CAB ∩ CBA = {G2, G3}. To
simplify coordination, categories added on a connection are in a practical
implementation displayed to the other user and the other user is asked to
join the proposed category. Thus, from a user perspective, adding a
category implies inviting another user to a common group.

In an implementation, the determination of common groups operates
with an exchange of Hello messages. Each time the list of categories Cuv
that the node u specifies for a contact v is modified, the contact v is
marked unverified in u’s application. For each unverified contact v, the
application of u periodically tries to send a Hello message as long as the
contact remains unverified. The Hello message contains the list of
categories Cuv proposed by u. The receiving node v replies with a Hello
Response message, including its corresponding list of categories Cvu
proposed for contact u. When either a Hello or Hello Response message
is received, the categories Ce = Cuv ∩ Cvu common to both parties are
determined and the contact is marked as verified.

For groups that are not common to both users, the other user is
invited. Thus, for each group c in Cuv \ Cvu. the application displays the
group name and offers user v to join the group. If user v accepts the
invitation, the category c is added to Cvu and the contact is marked
unverified in v’s application, thereby triggering another Hello message.

Removal of a category c from Cvu requires no special considerations:
the contact u is marked unverified and the set of common groups is
updated on the triggered Hello exchange.

Access control and policies

The purpose of groups is to provide access control. The access to a shared
resource can be limited to users of a given group c. For example, a work-
related file might only be available to colleagues and a photo only to

136

family members. The resource shared by user u is then available to a user
v only if distc(u, v) is finite.

Based on our studies in Section 4.4, we assume that the willingness
to share a resource declines as the social distance between two users
increases. For example, a user may want to distribute photos to her friend,
but is less willing to distribute them to a friend’s friend. We also assume
that the willingness to access a resource declines as the social distance
increases. For example, a photo taken by a user at an event may be
interesting to the user’s friends, as they know many people in common. It
may also be interesting to the friend’s friends as they might know some
common people and the event and the location probably are known to
them. For people more remotely connected, the interest may be marginal.

To account for this, we introduce two policies, called the distribution

horizon and the interest horizon. A resource shared by user u with a
distribution horizon distdh is only accessible to a user v if distc(u, v) ≤
distdh. Likewise, a search by user u having an interest horizon of distih
only locates the resources of a user v if distc(u, v) ≤ distih. Both horizons
limit the maximum distance between the resource provider and the
resource requester, but each horizon is defined by a different user.
Combining both horizons, a resource by user u shared to group c is
accessible to user v if distc(u, v) ≤ min(distdh, distih).

We also propose a policy based on the minimal connectivity of a user
to the group. A resource shared with minimal connectivity dmin to group c
is only available to a user u if dc(u) ≥ dmin. For example, when the
minimal connectivity is two, a resource is visible only to group members
with at least two connections to other group members. In this case, it is
not sufficient to be accepted to the group by only a single member. In
practice, this implements a simple form of collaborative group
management.

Policies control sharing and searching. Each resource r is marked
with the sharing policy Pr = (Gr, distdh,r, dmin,r) including the set of groups
Gr to which they are shared, the distribution horizon distdh,r and the
minimal connectivity dmin,r. In practice, it is unlikely that distdh,r and dmin,r
are defined on a per-resource basis. The search s may be limited to
resources in a given set of groups Gs and within an interest horizon
distih,s.

4.6.4 Implementing resource discovery in a mobile social network

In a social network, the topology is relatively static. A user is expected to
add and modify contacts at a rate of a few modifications per week or
month. The user’s devices, however, may show a high churn rate.
Verkasalo [Ver07] reports an average of 1.2 power-off switches per day.
Despite the churn, the device is assumed to be online most of the time,
and offline periods are of a more temporary nature. We propose the rather
radical and unusual approach to consider the node as part of the topology
even though the device is offline. The implementation must therefore
consider the existence of such offline nodes.

The topology of a social network is typically a random power-law
graph [WS98]. Replacing the topology with a structured or loosely

137

structured network, or forming another layer of overlay on top of the
social network, would break the connection between the real network and
the implemented one. It would cause signaling between nodes that are not
connected in the social network, which would cause costs (monetary or
non-monetary) that are unrelated to the user’s contacts. Furthermore,
maintenance of a structured or loosely structured topology is difficult, as
the churn may be high and the overhead of maintenance should be kept
low. Therefore, we build the technical solution directly on top of the
topology of the social network.

In a random topology, distribution is typically performed with
flooding or random walks. We exclude random walks because of long
delay and non-determinism. Adapting a distribution method for the given
scenario implies addressing the following requirements:

1. The distribution must be limited to group members only.
2. The system must support implementation of policies.
3. Offline nodes in the topology must be supported.

Implementation based on flooding

Flooding can easily be adapted to observe groups. Both index updates
and search requests can be distributed using flooding. Thus, we can use
flooding to build either a fully proactive or a fully reactive solution. The
message contains a distribution list D specifying the groups to which it
will be delivered. In search distribution, D = Gs is the groups examined in
a search s and in index distribution D = Gr is the groups to which the
resource r is distributed. In the flooding process, the message is
forwarded on a link e with the groups Ce activated only if D ∩ Ce ≠ ∅.
When the message is forwarded on the connection e, the distribution list
is updated: D ← D ∩ Ce. The algorithm limits the distribution to
members in groups common to the sending node u, i.e. to the set of nodes
{v | distc(u, v) < ∞, c ∈ D}.

Figure 4.17. Flooding to group members.

To illustrate flooding with groups, let us look at the example in
Figure 4.17. Nodes A, E, and F form the group G1. Nodes A, C, D, and E
form the group G2. Nodes F and G form a different group named G2.
Node A publishes a resource r with Gr = {G1, G2}. The group list in the
entry sent to E contains DAE = DA ∩ CAE = {G1, G2} ∩ {G1, G2} =
{G1, G2}. The index entry sent to C contains DAC = DA ∩ CAC = {G1, G2}
∩ {G2} = {G2}. The entry is not forwarded to B because DAB = {G1, G2}
∩ ∅ = ∅. Node C forwards the entry to node D: DCD = DAC ∩ CCD =
{G2} ∩ {G2} = {G2}. When E forwards the entry to node F, group G2 is
removed: DEF = DAE ∩ CEF = {G1, G2} ∩ {G1} = {G1}. Node F does not
forward the entry to node G: DFG = DEF ∩ CFG = {G1} ∩ {G2} = ∅. Note

G1,G2 E

A

G
G2

F
G1

B

C D
G2G2

G1,G2 E

A

G
G2

F
G1

B

C D
G2G2

138

that the solution provides read-write access control as A cannot publish
resources to a group that A is not a member of, and other nodes cannot
locate resources in groups they are not members of.

The distribution horizon and index horizon policies are implemented
by counting remaining hops and forwarded hops. The minimal
connectivity policy cannot be implemented for flooding.

While requirements 1 and 2 are reliably handled, requirement 3 is
challenging. The number of redundant links must be sufficiently high to
allow offline nodes to be bypassed. In practice, this requires a high
connectivity and, thus, a high average degree for all nodes in the group. If
flooding is used for index updates, the periodical index update frequency
fi,refresh must be sufficiently high to enable later updates to nodes currently
offline or unreachable. This increases the overhead. While a high average
degree is required for reliable operation in a topology based on a social
network, it is at the same time the main restriction. Recall that the
overhead of flooding is proportional to the average degree.

Implementation based on the Direct Index algorithm

As an alternative to flooding, we extend the Direct Index algorithm
defined in Section 3.6 to limit distribution to group members only and to
provide access control. The extended algorithm is published as part of
[Bei07b]. The modification requires adding group membership
information to the peer table and the messages. Recall, that the peer table
of a node v has an entry pw = (Nw, Ew, Tw) for each known peer w, where
the neighbor list Nw = {u1, u2, …, un} indicates the neighbors of node w.
Now for each neighbor u we store a list of groups common between v and
u. Furthermore, in the Update message (Nv, Ev, F), the neighbor list Nv is
extended with a list of groups for each neighbor.

In order to provide access control, a routing table must be calculated
based on the neighbor table. A separate routing table Ru,c is calculated for
each group c known by node u. The routing table entry Ru,c(v) indicates
the distance distc(u, v) in group c. More importantly, it indicates whether
nodes u and v are in a common group c. The routing table Ru,c is
recalculated (e.g. using Dijkstra’s algorithm) when any neighbor
information for a group c is modified.

Before node u sends an Update message to node v, it checks the
routing table. The message is sent only if Ru,c(v) < ∞ for any group c.
Otherwise, the entry pv for node v is removed from the peer table. The
update message sent from u to v includes only the resources for which
Ru,c(v) < ∞ for any c ∈ D, where D is the distribution list of the resource.
Thus, before granting access to a resource, the node checks that there is a
path of connections with a common group activated. When an Update
message is received, it is processed only if Ru,c(v) < ∞ for any group c.

The distribution horizon and interest horizon policies are
implemented using the routing table. An Update message sent by u to v
only includes resources for which the distance Ru,c(v) ≤ distdh for any c ∈

D. When node u receives an Update message from v, it only stores the
index of resources for which the distance Ru,c(v) ≤ distih for the group c.
The minimal connectivity policy is also implemented using the neighbor

139

table. An Update message sent from u to v includes only resources
distributed to group c for which |W| ≥ dmin, where W = {w | v ∈ Nw}. The
algorithms for handling timer expirations and sending updates are
summarized in Figure 4.18 and Figure 4.19, respectively. The modified
algorithms for handling received messages are summarized in Figure 4.20
and Figure 4.21.

1: on expiration of timer Tw:
2: SendUpdate(w)

Figure 4.18. Pseudo-code for node v when timer Tw expires.

3: SendUpdate(w):
4: Cvw ← { c | Ru,c(w) ≠ ∞ }
5: if Cvw = ∅ then
6: remove entry Pw
7: else

8: Ev ← { r ∈ ℒv | Gr ∩ Cvw ≠ ∅ }
9: Nv ← { (v, Nm ∩ Cvw) | Nm ∩ Cvw ≠ ∅ }

10: send update (Nv, Ev, 1) to w

11: reschedule Tw with an exponential backoff
12: end if

Figure 4.19. Pseudo-code for node v sending an update to node w.

13: on received update (Nw, Ew, F) from w:
14: if Ru,c(w) = ∞ ∀ c then
15: send error message to w

16: else

17: Pw ← (Nw, Ew, 0)
18: for each (u, Gu) in Nw do
19: if Pu is undefined then

20: Pu ← (∅, ∅, 0)
21: reschedule Tu after 0… UpdateInterval seconds
22: end if

23: end for

24: if F = 1 then
25: SendUpdate(w)
26: else

27: reschedule Tw after UpdateInterval seconds
28: send acknowledgement to w
29: end if

30: for each known category c do
31: generate Ru,c(w) to all w in Nw using Dijkstra’s shortest-path-first
32: end for

33: end if

Figure 4.20. Pseudo-code for node v handling an update received from node w.

34: on received acknowledgement from w:
35: reschedule Tw after UpdateInterval seconds

Figure 4.21. Pseudo-code for v handling an acknowledgement received from w.

140

The Direct Index algorithm is not required to perform separate
actions in order to ensure that updates are delivered to currently offline
nodes. If a node is offline, it will not reply to an Update message, and a
new update will be rescheduled with an exponential backoff. The update
exchange is performed normally when the node is again online later. As
extra protection and to handle possible error conditions, a slow periodical
update interval fi,refresh in the order of one per several days can be used.
Neighbors are included in the neighbor lists of the Update messages even
though they are offline; thus, the topology represents the entire social
network. Only if a node does not reply in an excessive time (in the order
of several days) it is removed from the neighbor table.

Considerations regarding the proactive architectures

We propose, as an optimization, that nodes store the indices of other
group members between active sessions. This is possible because of the
stable topology. The index of all other nodes is already available at
startup, and the update traffic can be reduced. The consequence is that
resources of members currently off-line seem to be available, and
therefore the actual availability of the resource must be checked
separately. Checking is, however, anyway required if the index is
compressed by a Bloom filter because of potential false positives.
Checking has a low overhead involving a single roundtrip and can be
combined with obtaining a detailed description of the matching resources.

The access control of the resource discovery system only hides
resources that should not be accessed. Full access control can be obtained
by including a random number in the resource descriptor. This number
must be included in the resource access signaling. Access is granted only
if the number in the access signaling matches with the one in the original
resource descriptor.

4.6.5 Feasibility of proactive architectures

We can take either a proactive or a reactive approach for the group-based
mobile resource discovery system. Using an appropriate signaling
protocol, such as SIP, direct messaging between users is possible at the
application layer, which enables the use of temporary links required for
Direct Index. With the help of Figure 3.35, we can decide whether a
proactive solution meets our needs. We assume that a hybrid proactive-
reactive solution cannot be used because we need to follow the topology
of the social network. In this situation, Equation (2.40) states that a
proactive solution is optimal when r > Ωi / Ωs.

We first examine the ratio between Ωi and Ωs. As the alternative is
reactive flooding, we use the value Ωs ≈ D - 1, determined experimentally
in Section 2.4.5. The first considered proactive approach uses flooding to
distribute the index information. This gives Ωi ≈ D - 1 for index updates.
If the resource is distributed to all contacts of a user, the degree is high.
Based on Survey 1 described in Section 4.4.3, the approximated median
number of contacts in the phone books is D = 113, while Verkasalo
[Ver07] reports a median value of D = 111 contacts. When groups are
used, only a part of the user’s contacts belong to a given group. We

141

therefore assume an average degree in the order of D = 10. Because of the
high degree, flooding is highly inefficient in social networks, both for
search and index distribution. Instead, we propose using the Direct Index
algorithm described in Section 3.6. This has a low overhead (Ωi ≈ 3 in
simulations) that is independent of the degree. Using Ωi = 3 and Ωs = 10,
we can conclude that Direct Index is optimal when r > 0.3 in our
scenario.

The search/index ratio is defined as r = fs / fi. The search frequency fs
is entirely determined by the users and cannot be affected by the design
of the system. However, the index update frequency fi can be adjusted for
the given scenario. In Section 3.1, we divided index updates into
components: fi = fi,entry + fi,exit + fi,modification + fi,refresh. By saving the remote
index between active sessions, we can eliminate fi,entry and fi,exit.. The
modification frequency fi,modification completely depends on the user. The
periodical update frequency fi,refresh depends on the index distribution
algorithm. Index flooding requires a periodical update frequency
comparable to the churn frequency since it has to be frequent enough to
allow nodes to receive updates that they missed while being offline.
Direct Index requires a periodical update frequency comparable to the
frequency of changes in the social network. Because Direct Index detects
offline nodes and changes in the topology, the periodical refresh rate is
merely an extra protection. Based on this reasoning we can assume that
r > 1 for a wide range of applications. Clearly, proactive solutions should
be considered for social networks.

4.6.6 Index compression

The proactive operation gives quick searches, but a major challenge is the
index update traffic and the amount of index information to be stored at
each node. A node must, for each group, store the index of all members
within the interest horizon. We therefore propose utilizing Bloom filters
to compress the index information. The material in this section is
published as a part of [Bei07b].

Traffic estimate

We dimension the Bloom filter to represent 100 resources on average,
each resource described using 7 elements (keywords) on average. Thus
n = 700 elements are stored per node. Nodes with more than 100
resources need to create several index entries to maintain a sufficiently
low probability of false positives. Because of the low cost of a false
positive, we allow false positives at a probability of p ≤ 0.02. Using
(3.25) we can calculate the optimal number of hash functions k = 6. With
(3.26) we calculate the optimal number of bits v = 6059. Adding a header
of about 20 bytes (in binary format) to the entry, the size of an index
entry is Si = 777 bytes.

For an average group size of N = 50 nodes, the index takes about
NSi = 38 kB of storage space per group. Such a group contains up to 5000
resources. The requirement is small compared to the memory sizes that
are common for modern phones.

142

Transporting index updates over SIP gives the advantage of good
interoperability with the IMS and easier NAT traversal. The disadvantage
is the requirement of a centralized SIP server. A textual representation of
the Bloom filter using Base64 encoding [Jos06] adds about 40%
overhead, increasing the size of the index entry to Si,Base64 = 1060 bytes.
Adding the header of a SIP MESSAGE request (approximately 330
bytes), a header of the index entry (approximately 50 bytes), and the UDP
and IP headers (28 bytes), the size of the index update datagram is Si,IP =
1468 bytes. The index update is sufficiently small for transport in a single
UPD datagram.

With the Direct Index algorithm, a node receives an index update
only once per update round. A complete update of all nodes in the group
requires NSi = 72 kB, corresponding to an average bandwidth of 6.8 bit/s
per group if a complete update is done daily. In practice updates are
expected to be done less frequently. With flooded index updates in a
topology with average degree of D = 10, a complete update of all nodes
requires about DNSi = 720 kB. This corresponds to a bandwidth of
68 bit/s per group when updates are performed daily.

Searching with compressed filters

To locate a resource, a Bloom filter called a search filter is used. The
search filter is generated by applying the hash functions to the keywords
of the query. The search filter is compared with each Bloom filter in the
index. If the query matches, i.e. for every bit in the search filter the
corresponding bit in the Bloom filter is set, a message containing the
original query is sent to the responsible node, which performs a local
check. The query contains the original list of query strings. Because of
false positives, the node may receive a query that does not match with
any resource. It then responds with an empty result list. The search results
are presented to the user according to increasing social distance, allowing
the user to quickly locate the most relevant sources.

The disadvantage of Bloom filters is that the information lost in
compression makes complex queries impossible. However, since the
whole Bloom filter is available at a single node, combinations of
attributes can be performed using logical operations. The logical AND
operation, meaning that all keywords must match, is implemented as a
binary OR operation between the search filters of both keywords. For
example, if the search filter of “golden” contains the bits (12, 15) and the
search filter of “gate” contains the bits (6, 15), then the query “golden”
AND “gate” contains the bits (6, 12, 15). The logical OR operation
requires specifying the query as a set of search filters. The query matches
if any of these search filters matches with the Bloom filter. For a query
“golden” OR “gate”, the query contains two separate bit-fields: (12, 15)
and (6, 15). Nodes matching with either of these bit-fields are examined.
In a query combining different logical operators, such as “golden” AND
(“gate” OR “bridge”), the distributivity property [RW95] can be utilized
to rewrite the query. In this case the query is rewritten as (“golden” AND
“gate”) OR (“golden” AND “bridge”), which can be specified with two
bit-vectors: (6, 12, 15) and (3, 12, 15, 19), assuming that “bridge”
represents the bits (3, 19).

143

Other types of complex queries must be forwarded to all nodes in the
group, whereas every node performs the matching locally. In a proactive
architecture, the node is aware of all nodes belonging to the same groups.
Therefore, the node can send its query directly to these nodes, which
saves bandwidth compared to flooding. To further save bandwidth, the
resource requester can send the queries sequentially with increasing
distance until the resource is found. This method increases the search
delay, but allows the query to be aborted once a required number of
resources are found, which is not possible with traditional flooding.

4.7 SIP signaling schemes for resource discovery

We can separate between four generic situations where control messages
are sent in today’s peer-to-peer systems:

1. Publishing the shared resource (index distribution).
2. Locating the shared resource (search distribution).
3. Initiating and controlling access to the shared resource.
4. Maintaining the overlay structure.

Index distribution and search distribution are one-to-many signaling in
most architectures. Control of resource access is one-to-one
communication even though a resource can be accessed from several
locations simultaneously. The actual resource access (e.g. the content
transfer) is classified as user traffic and not as control traffic. Messaging
related to overlay maintenance is specific to the overlay structure, and has
a minor role in unstructured or loosely structured systems.

All commonly used file sharing systems use proprietary protocols for
index distribution and search distribution. For several peer-to-peer
systems there are several compatible implementations available and these
protocols have become more or less de facto standards. No considerable
efforts on interoperation between different systems have been made.
However, some applications can be simultaneously connected to multiple
resource discovery systems. The file transfer is usually implemented with
the Hypertext Transfer Protocol (HTTP). The File Transfer Protocol
(FTP), which at first sight would seem the natural choice, has not been
used in any file sharing systems. HTTP and FTP combine the access-
related signaling and the actual content transfer in the same protocol.

4.7.1 Resource discovery with SIP

The Session Initiation Protocol (SIP) [RSC+02] is becoming the standard
protocol for initiating and controlling calls in IP telephony. SIP is also
chosen as the signaling protocol for the IP Multimedia Subsystem (IMS)
[PMK+04]. SIP implements application-layer routing using proxies,
which can forward, redirect and fork (forward to multiple recipients) a
call. Several extensions have been defined, allowing SIP to be used for
advanced session control and value-added services including presence
services [Ros04] and instant messaging [CRS+02]. For searching, SIP
relies both on its own location servers and on the Domain Name System
(DNS). The user registers its current location through the registrar to the
location server. The location server typically serves all users of a given

144

domain. Upon receiving an incoming call, a proxy retrieves the
destination’s current location from the location server. Before that, the
proxy has been located by looking up the domain name of the user in the
DNS. Like in peer-to-peer systems, the access (media transfer) takes
place directly between endpoints once the destination is found. SIP
provides signaling for controlling the access (i.e. the call) but the content
transfer is performed with a separate protocol (e.g. the Real Time
Protocol).

Apart from the help from DNS, SIP can be seen as a centralized
resource discovery system, where the resource is the user. The
REGISTER message performs the index update and the INVITE
performs the search. The use of SIP in generic resource discovery is a
relatively new idea. A conceptual SIP-based peer-to-peer application,
called SIPShare, has been presented by Earthlink [SIPshare]. The
application is based on a search flooding architecture and demonstrates
the use of SIP for peer-to-peer signaling. It is, however, not designed with
mobile networks in mind.

A different approach for combining SIP with peer-to-peer technology
is P2P-SIP [P2PSIP]. In P2P-SIP, the server-based architecture of a SIP
network is replaced by a structured overlay network. P2P-SIP thus
borrows ideas from Skype [Skype] but bases the signaling on the open
SIP protocol. The purpose is, like in standard SIP, to locate users by
mapping the URI of a user to the user’s current IP address. Therefore, a
simple exact-match mapping is adequate. The P2P-SIP approach is
different from the topic of this work, where we use extended SIP to
support complex searches and to locate more generic types of resources.

Using SIP signaling for generic resource discovery becomes
especially interesting in IMS-networks. We identify the following
advantages of the approach:

1. SIP provides an established method for user-to-user signaling. As
SIP is an integral part of the IMS, SIP signaling messages are routed
correctly between mobile terminals, whereas firewalls and NATs
would complicate the use of proprietary signaling.

2. SIP supports connectionless signaling, which is especially important
in architectures using temporary overlay links, e.g. the Direct Index
architecture.

3. SIP allows re-using the IMS infrastructure, avoiding the need for
separate charging, security and management mechanisms for the
peer-to-peer service.

The major drawback of using SIP in a mobile environment is the
overhead of text-based messages. This problem can be, to a certain
degree, solved using compression, e.g. using SigComp [PBC+03].

In this section, we examine how SIP can be used as a generic
resource discovery system. To accomplish this goal, we must

1. enhance the SIP signaling to support generic types of resources, and
2. replace the use of DNS in forwarding between proxies with a peer-

to-peer system.

145

We take two different approaches to designing a SIP-based signaling
scheme, as presented in the following subsections. The following
requirements are set as the basis for the design:

1. The signaling must maintain compatibility with both SIP and with
IMS.

2. The signaling must be applicable to different peer-to-peer
architectures, including centralized, semi-centralized and distributed
architectures.

3. It must be possible to obtain search results incrementally as matches
are found and it must be possible to abort the search.

4. The state information required to be maintained by network elements
must be minimized.

4.7.2 Signaling scheme based on INVITE

Our first signaling scheme is proposed in [BML+05] and more
comprehensively published in [MBL+06b]. To maintain the similarities
to the operation of conventional SIP, we propose using an INVITE
request to locate and initiate access to resources. A generic resource is
located in a similar manner as a user is located in SIP. The main
difference is that a user is unique, even though the user may have several
active terminals, while there may be several resources matching to a
generic search. The searching user must be presented with the alternatives
and allowed to select one or several resources to access. Allowing the
user to choose the destination from several alternatives is uncommon in
normal SIP, but is possible to implement with the “303 Multiple choices”
response. Another difference is that general resource discovery requires
the ability to use several attributes in the search. Normal SIP specifies the
destination in the “To” field. While a single line is enough in SIP to
describe a user, the description of a generic resource involves several
attributes. We therefore prefer transporting the query in the body. In our
architecture, the INVITE request carries a body in XML format defining
the search criteria.

SIP uses a central location server to store the locations of the users.
Typically there is one server per domain. The user updates its location by
sending a REGISTER request. A similar server can be used for generic
resources, acting as an index. In our target implementation, index
distribution is performed by sending a REGISTER request containing a
body with the resource descriptor in XML format. A resource is removed
by unregistering it.

To search for a given resource, an INVITE request is sent to the
index node, which performs a local search. The replies are transmitted in
a “303 Multiple choices” redirection responses or in the 1xx group of
provisional responses. Provisional responses are useful as they allow the
list of results to be complemented incrementally, while a redirection
(3xx) response can only be sent once. The “200 OK” response cannot be
used as it establishes a session with the super-node, which is not desired.

The signaling scheme is presented in Figure 4.22. The user agent
(UA) binds its URI to a given IP and port number by registering with the
registrar, which is implemented in the same device as the proxy. Then the

146

UA registers its shared resources to the P2P-AS. Searching is performed
with the INVITE message to which the P2P-AS replies by giving the
descriptions and addresses of matching resources. The user selects one of
these resources to access, whereas the UA sends an INVITE directly to
the address obtained from the search. The resource access is performed
with a protocol not related to SIP, for example, with HTTP.

Figure 4.22. Signaling in target scheme.

We define a compact XML-based scheme for describing resources.
The XML body includes commands for incrementally adding, removing
and updating resource descriptions in the index. A similar XML body is
used to describe the query in the INVITE request. The search results are
in an XML format in the body of the response.

Implementing architectures other than centralized ones require the
forwarding of search requests. Normally SIP relies on DNS to locate the
destination proxy of a session, whereas the proxy is indicated by the
domain name in the user’s address. For general resource discovery no
such information is available. The INVITE request must be forwarded on
all search links specified by the overlay topology. Consequently, each
indexing node must know the neighboring indexing nodes.

The SIP standard allows an INVITE request to be forwarded and
forked to several destinations. This makes flooding possible to
implement. Forwarding can be performed in a stateful or stateless
manner. It is essential for the correct operation of flooding to avoid loops
and to detect multiple receptions of the same message. The Via field in
the INVITE is used to detect loops. If a node receives a request with its
own address in the Via field, the request is dropped. The Via field
consequently works like a trace. As stated earlier, traces avoid loops but
do not avoid multiple forwarding. A more reliable method is to use state
information, whereas the node remembers the Call-ID and CSeq headers
of the forwarded messages. The Call-ID specifies a unique identify of the
session and the CSeq indicates the request within the session. If a node
receives a message with a Call-ID and CSeq combination seen before, it
does not forward the message. Instead it replies with a “482 Loop
Detected” response.

Iterative forwarding can be implemented using redirection responses.
Each indexing node indicates a set of alternative indexing nodes to the

REGISTER

UA 1 Proxy/registrar P2P-AS

200 OK

REGISTER

200 OK

INVITE

300 Multiple choices

REGISTER

200 OK

INVITE

300 Multiple choices

ACK ACK

147

resource requester, which can choose whether to continue the search by
repeating the INVITE to the indicated nodes. An iterative approach is not
suitable to be performed by the mobile device as it creates excessive
traffic on the wireless interface.

Architectures, such as global indices and Zone Indexing, that involve
index distribution to multiple nodes require the REGISTER messages to
be forwarded. REGISTER messages must be forwarded to all
neighboring nodes to which an index link exists. SIP does not natively
support forwarding of a registration. A registration can be forwarded
recursively using the loop detection methods used for the INVITE
request. However, this approach may meet practical difficulties as is
deviates from standard operation significantly.

4.7.3 Signaling scheme based on SUBSCRIBE/NOTIFY

An INVITE request is intended to resolve the location of a destination
and to set up a session with this location. Our experiments with signaling
showed that for some applications, including resource discovery, there is
a need to query the location of a destination without establishing a
session with it. The work on this issue lead us to the proposal of a new
mechanism for generic resource searching using SIP that was given as
input for standardization [GMB+06]. The approach has also been
presented in [MGB+07]. The signaling scheme is based on a new
“resource” event package [GM06] allowing a terminal to subscribe to
resource information. Similarly to SIPshare [SIPshare] the scheme is
based on the PUBLISH and SUBSCRIBE requests, but utilizes existing
standardized components.

We extend the use of the PUBLISH request [Roa02] to publish
information about a generic shared resource. The resource is described in
XML format in a resource document included in the body. The resource
document is defined by a resource event package [GM06]. The P2P-AS
replies with a “200 OK” response including a SIP-ETag field providing
an identifier for the published resources. A publication must be refreshed
periodically. To refer to the existing publications, these renewals include
the identifier of the resource in the SIP-If-Match field. The resource can
later be modified or deleted by resending a PUBLISH request referring to
the identifier but with a new version number in the resource document.

Searching is implemented by sending a SUBSCRIBE request for the
resource event package. The SUBSCRIBE request includes a filter body
[KLL+06] that defines the query. The P2P-AS replies with a “200 OK”
response. Immediately after sending the reply, the P2P-AS reports
potential matching resources using a NOTIFY request. The body contains
a resource event package describing the matches, if any. The
SUBSCRIBE request creates a soft state in the P2P-AS for the duration
indicated in the SUBSCRIBE request. The P2P-AS may later, as it learns
about more resources, send further NOTIFY requests. Each NOTIFY is
answered with a “200 OK” response. When several matching results are
found, the results can be divided between several NOTIFY requests,
which can be spaced in time to allow the user to receive a gradually
growing list of matches. The subscription state is removed by sending a
SUBSCRIBE with a zero value in the Expires header field. If, instead, the

148

subscription state times out, the P2P-AS sends a NOTIFY indicating
“terminated” in the Subscription-State header field. The signaling is
illustrated using an example in Figure 4.23.

Figure 4.23. Signaling using the resource event package.

A P2P-AS can forward PUBLISH requests and SUBSCRIBE
requests to other P2P-ASs. Loop detection and detection of duplicate
receptions has not been considered in the published work. However, these
can be addressed by an identifier tag unique to the transaction. The Call-
ID could be used, but learning from our practical implementation (see
Section 4.8.3) we suggest defining a new field for this specific purpose.

Compared to the scheme based on INVITEs, this signaling scheme
represents a cleaner approach utilizing existing standardized components.
However, the large signaling overhead due to the inefficiency of XML
and the generality of the event packages is disadvantageous in a mobile
network. Thus, the cost of generality is a high overhead.

4.7.4 Signaling in resource access

The signaling in the resource access setup is identical to both the INVITE
and the SUBSCRIBE/NOTIFY schemes. At this stage, the resource
requester has obtained the public SIP URI of the resource provider from
the resource descriptor. As depicted in Figure 4.24, the resource requester
sends an invite to the resource provider to establish the resource access
session. Using an INVITE request retains the compatibility as it is the
same message as used in normal voice sessions in SIP. The INVITE is
sent directly from the requester to the provider without traversing the
P2P-AS. The body transports a Session Description Protocol (SDP)
[HJ98] offer, which describes the session in terms of capabilities,
addresses, ports, communication protocols and other parameters. The
SDP can be adapted for generic access protocols, e.g. for file transfers,
whereas the identifier (e.g. file name or hash) of the resource is included.
The resource provider can queue the access if it currently is serving the
maximum number of other users. It then replies with a provisional
response “128 Queued”. When the provider is ready to provide access to
the resource, a “200 OK” response containing a SDP body is sent to the
requester. The session is terminated by sending a BYE request.

REGISTER

UA 1 Proxy/registrar P2P-AS

200 OK

PUBLISH

200 OK

SUBSCRIBE

200 OK

PUBLISH

200 OK

SUBSCRIBE

200 OK

NOTIFY

200 OK

NOTIFY

200 OK

149

Figure 4.24. Signaling in resource access.

Each type of resource requires a different access method and a
different set of parameters in the SDP message to describe the access. For
file transfers, the Message Session Relay Protocol (MSRP) is a more
suitable candidate than HTTP and FTP. MSRP [CMJ07] is a protocol
intended for the transport of messages and files within a SIP session.

Communication between two mobile nodes is difficult in many
networks including most cellular networks because of Network Address
Translators (NATs) and firewalls. A NAT is more restrictive for the
resource access than for signaling as the resource access is performed
directly between endpoints whereas signaling traverses the SIP proxy. If
only one endpoint is behind a NAT, this endpoint must be the initiator of
the session to the other endpoint. If both endpoints are behind a NAT, the
access must be assisted with a relay, either in the form of a separate
server in the network or as an additional function provided by an
endpoint that is not behind a NAT. A standard method for relaying is
provided by Traversal Using Relay NAT (TURN) [RMM08]. As relaying
loads the relay server and the network, it should be used as the last resort.
The Interactive Connectivity Establishment (ICE) method allows
searching for the optimal transport for a given case. Relaying is supported
by MSRP through extensions [JMR07].

4.8 Technical feasibility of peer-to-peer in cellular networks

We perform an experimental study in order to evaluate the technical
feasibility of peer-to-peer systems in today’s cellular networks and with
today’s terminals, and to find possible limitations. We want to determine
numerical estimates to:

• The memory consumption of a simple resource discovery application
running in the mobile phone.

• The message sizes of a SIP-based resource discovery protocol.
• The search delays in various network configurations.

Several factors can hinder, delay or add complexity to the deployment of
peer-to-peer services in cellular networks. We therefore examine the
validity of the following postulates:

UA 1 Proxy/registrar UA 2
INVITE INVITE

200 OK 200 OK

182 Queued 182 Queued

ACK ACK

BYE BYE

200 OK 200 OK

Resource access

150

• Postulate 4.1: A resource discovery application can be implemented
with the APIs and the user interface available on today’s mobile
phones.

• Postulate 4.2: Today’s mobile phones have enough memory and CPU
power to run a resource discovery application smoothly.

• Postulate 4.3: A SIP based signaling protocol for resource discovery
can be implemented and works with the available SIP stacks and
proxies without modification to them.

• Postulate 4.4: The network bandwidths of today’s networks are
adequate for a hierarchical resource discovery architecture.

• Postulate 4.5: Signaling can bypass the NATs and firewalls of
today’s networks.

• Postulate 4.6: Access connections can bypass the NATs and firewalls
of today’s networks.

4.8.1 Prototypes

We examine the technical feasibility using three testbeds consisting of
prototypes of various elements:

• Testbed O1. The network consists of the PartySIP SIP proxy/registrar
[Partysip], a Client Application running on a Nokia 6680 phone, a
Centralized Index Node, and a TCP Relay. The wireless connection is
a commercial 3G/WCDMA network (Sonera). The SIP
proxy/registrar implements a standard SIP network. It can also be
seen as a simple model of a CSCF in an IMS network. A single
centralized index node is used, whereas a centralized peer-to-peer
architecture is implemented.

• Testbed O2. The network consists of the Repro SIP proxy/registrar
[reSIP], a Client Application running on a Nokia 6680 phone, a
Distributed Index Node, and a TCP Relay. The wireless connection is
a commercial 3G/WCDMA network (Sonera). This testbed is
identical to Testbed O1, except for the changed proxy and a new
index node. The Distributed Index Node replaces the Centralized
Index Node, whereas the architecture is semi-centralized.

• Testbed O3. The network consists of the Octopus IMS network
[Octopus], a Client Application running on a Nokia 6680 phone, a
Distributed Index Node, and a TCP Relay. This testbed is identical to
Testbed O2 with the SIP proxy/registrar replaced by a complete IMS
network. The IMS network (Octopus [Octopus]) is a commercial but
experimental IMS network used by universities and companies to test
and evaluate IMS applications.

The Client Application is an edge node implemented on the Nokia
Series 60 Symbian platform. The language chosen for the implementation
is C++ because of the more complete interfaces for mobile programming
and the availability of an operational SIP stack. The application is divided
into three separate processes: the Core module, the Transfer module and
the Graphical User Interface (GUI). The core module consists of the
Registrar and the Finder. The prototype supports a file sharing service,
which is represented by the Transfer module. File transfer is implemented

151

by a simple TCP-based protocol that adds support required for the TCP
Relay. The modular structure allows later extensions to support access to
other types of resources. New services, such as streaming and chatting,
can be added by introducing new modules that define the shared resource,
the access protocol and the GUI. The structure further allows different
parts to be run independently. For example, the GUI can be stopped while
ongoing file transfers continue running and shared resources still are
available. Inter-process communication between modules is implemented
using the standard client-server architecture of Symbian. The details of
the implementation are given in [BML+05], in [MBL+06b], in
[MGB+07], and in [Leh08]. The implementation was presented in the
demo session of CCNC 2007 [MBL+06a].

The Centralized Index Node is implemented in the Python language
[Python]. It includes a simple custom-built SIP stack allowing better
possibilities to extend the SIP signaling. XML bodies are parsed using
MiniDOM [Minidom]. The centralized index node served as a first
implementation of an index node in order to assist the terminal client
implementation and provide guidelines and interface models for the
distributed index node. The resource database is implemented with
Python data structures.

The Distributed Index Node is able to communicate with other index
nodes, enabling a distributed multi-operator platform for resource sharing
between mobile users. This index node is implemented in C++ on the
Linux platform. The reSIPprocate [reSIP] SIP stack is used for SIP
signaling, the TinyXML parser [TinyXML] for handling XML data, and
MySQL [MySQL] as database for storing the index of shared resources.
The details of the implementation are given in [Rey07].

The TCP Relay is used to relay file transfer connections between two
client applications in order to bypass NAT and firewall restrictions. It is
an element in the fixed network that connects two incoming TCP
connections together. To be able to pair connections, a header is sent
before the data transmission. The header indicates the direction (upload
or download) and the hash of the resource. The relay can handle several
simultaneous connections and is able to detect timeouts.

4.8.2 Feasibility in mobile device

Using the Client Application, illustrated in Figure 4.25, we examine the
feasibility of the mobile resource sharing service from the perspective of
the mobile device. We examine whether the current mobile phones have
the capacity for running peer-to-peer applications. As the application was
implemented successfully, it serves as a proof of concept, showing that
client applications for resource sharing services can successfully be
created on today’s devices. We observe that the processing power and
battery consumption is adequate for normal use. From the
implementation perspective, no serious limitations are observed. The
client is successfully implemented using the current APIs and SIP stack.
Some issues related to the SIP stack, however, require modification of the
intended signaling scheme as described in Section 4.7. Furthermore, the
user interface is a serious challenge in the mobile application. Given the

152

small screen size, it is difficult to present long lists of matching resources
and comprehensive resource information.

The memory usage of the
and 350 kB. Additionally, the SIP stack and the SIP profile manager
consume 170 kB of memory. Thus, about half a megabyte of RAM is
adequate for runn
types of services and a more complex user interface
memory requirements
integral part of the operati

Studies [YG02]
files and that a file
Thus, the index of a node is
recognize that the
that the number of files can be much higher in case of
sharing. Files are stored on flash memory, which currently
sizes of several gigabytes at
phones are equipped with more memory,
consumption
allows a phone to cache indices of other users, as in the Direct Index
architecture.

4.8.3 Feasibility of SIP signaling

Testbed O1 evaluate
and the feasibility to implement SIP signaling using
stack of the mobile phone
forward and fork requests as well as detect loops. Testbed
compatibility with a real IMS network.
implemented as a user agent registered to a SIP proxy.
several optional ways to implement a SIP Application Server. The
intention of this
the INVITE request as described in Section

The implement
constraints of extending SIP signaling for generic resource discovery.
The SIP stack of the mobile phone
calls. As the stack

small screen size, it is difficult to present long lists of matching resources
and comprehensive resource information.

The memory usage of the Client Application varies between 200 kB
and 350 kB. Additionally, the SIP stack and the SIP profile manager

170 kB of memory. Thus, about half a megabyte of RAM is
adequate for running a simple file sharing application. Support for other
types of services and a more complex user interface
memory requirements. It is highly likely that the SIP stack will be an
integral part of the operating system in IMS enabled phones.

Studies [YG02] on Gnutella reveal that a user on average shares 340
files and that a file on average is described with Si = 72 bytes of metadata.

the index of a node is on average 24 kB. One should, however,
recognize that the use in a mobile environment is probably different and
that the number of files can be much higher in case of, for example,

Files are stored on flash memory, which currently
sizes of several gigabytes at affordable prices. As it is likely that futur
phones are equipped with more memory, we do not consider
consumption as a limiting factor. Instead, the availability of memory
allows a phone to cache indices of other users, as in the Direct Index

Figure 4.25. The Client Application.

Feasibility of SIP signaling

1 evaluates the fundamental feasibility of using SIP signaling
and the feasibility to implement SIP signaling using the available SIP
stack of the mobile phone. Testbed O2 further evaluates the possibility to
forward and fork requests as well as detect loops. Testbed
compatibility with a real IMS network. In all testbeds, the
implemented as a user agent registered to a SIP proxy. This is
several optional ways to implement a SIP Application Server. The

of this section is to implement the signaling scheme based on
the INVITE request as described in Section 4.7.2.

mplementation of signaling in Testbed O1 show
constraints of extending SIP signaling for generic resource discovery.
The SIP stack of the mobile phone is mainly intended for normal voice
calls. As the stack is given and cannot be modified, we need

small screen size, it is difficult to present long lists of matching resources

between 200 kB
and 350 kB. Additionally, the SIP stack and the SIP profile manager

170 kB of memory. Thus, about half a megabyte of RAM is
upport for other

types of services and a more complex user interface increases the
the SIP stack will be an

system in IMS enabled phones.
average shares 340

72 bytes of metadata.
One should, however,

ment is probably different and
, for example, photo

Files are stored on flash memory, which currently is available in
t is likely that future

we do not consider memory
Instead, the availability of memory

allows a phone to cache indices of other users, as in the Direct Index

the fundamental feasibility of using SIP signaling
the available SIP
the possibility to

forward and fork requests as well as detect loops. Testbed O3 verifies the
In all testbeds, the index node is

This is one of the
several optional ways to implement a SIP Application Server. The

to implement the signaling scheme based on

1 showed the
constraints of extending SIP signaling for generic resource discovery.

mainly intended for normal voice
needed to make

153

some compromises, resulting in an implemented signaling scheme that
differs from the target scheme.

First, the REGISTER was replaced with a MESSAGE method in
resource registration as the proxy did not allow registrations to be
forwarded. The operational principle remains the same. The MESSAGE
method is certainly not a perfect choice as it is intended to transport user
traffic and not signaling. However, as we could not define a new method,
we had to stick to the available ones. We agree that the REGISTER
message is in the first place not the best method for index distribution, as
it also may face problems in implementing architectures involving
forwarding of index information.

Second, we noticed that the SIP stack does not support the “302
Multiple choices” response and a replacement response code had to be
chosen. As the response must have a code higher than 300 in order not to
establish a session, we chose the “602 Not Acceptable” for lack of a
better message. The signaling is summarized in Figure 4.26.

Figure 4.26. Signaling in the implemented scheme.

Testbed O2 revealed a disadvantage of implementing the index node
as a user agent instead of a proxy server. In our signaling scheme the
Call-ID header is used for loop detection and therefore all INVITE
requests of the same resource discovery must have the same Call-ID.
However, the used SIP stack considers that a call ends when a user agent
is reached. When an INVITE is forwarded by a user agent, the forwarded
INVITE must have a different Call-ID as it belongs to a separate call.
Also, each forked INVITE must have a different Call-ID. This renders the
use of Call-ID for loop detection impossible. To solve this problem, a
custom header called Message-ID is introduced. The original Call-ID is
copied to the Message-ID by the first indexing node after which it is
repeated in all forwarded INVITE requests. Unfortunately, the PartySIP

REGISTER

UA 1 Proxy/registrar P2P-AS

200 OK

MESSAGE

200 OK

INVITE

602 Not acceptable

INVITE

MESSAGE

200 OK

INVITE

602 Not acceptable

INVITE

UA 2

200 OK 200 OK

ACK ACK

ACK ACK

BYE BYE

200 OK 200 OK

Resource access

154

proxy drops custom headers from forwarded messages. Therefore we
replaced it with the repro proxy server.

Even though the signaling differs from the target scheme, the
experiment shows that it is possible to implement a SIP based signaling
scheme in a mobile scenario. An ideal signaling scheme requires
standardized extensions that are supported by the SIP stacks and proxies.
Furthermore, the P2P-AS should preferably be implemented as a proxy
server instead of a user agent.

4.8.4 Network performance

So far in this work, we have measured traffic in terms of messages. This
allows us to examine the behavior of an algorithm without considering a
specific implementation, since the message size depends on how the used
protocol encodes information. In this section we consider an
implementation using SIP-based messages. From our prototype we obtain
an estimate of the size of SIP messages, allowing us to estimate the
required bandwidth in a SIP-based protocol. This determines the
minimum required bandwidth on the wireless interface. The bandwidth
further affects battery consumption in the terminal and the network traffic
in the operator’s network. In a pricing model based on transferred data,
the message size also directly affects the cost of the service.

Centralized architecture

Using the centralized architecture of Testbed O1 we measure the message
size and network delay. Sizes of SIP messages are extracted from packet
traces using Etherreal (now Wireshark) and tcpdump. The results are
presented in Table 4.4. The sizes are averages of multiple packets and
rounded to the nearest ten-byte boundary. A typical search operation
generates between 1120 and 2180 bytes, with a large variation due to the
variable size of the search criteria, the metadata of the matching resources
and the number of matching resources. A typical update operation
generates between 700 and 1630 bytes, depending on the level of detail in
the metadata and the number of advertised resources. Initiation of an
access session generates 1220 bytes on average. We claim that the
difference in the amount of bytes generated in different operations is
relatively small, especially considering the variation in message size, and
the error in using only a message count in algorithm evaluation is
therefore low.

Likewise, our purpose has been to study delays independently of a
specific implementation by measuring them as a hop count instead of as
time. We now apply the delays obtained from actual wireless and wired
networks. In [MBL+06b], we measured the delay of sending messages of
varying sizes between the terminal and the index node in both directions.
Applying these measured delays to a linear equation gives a delay of
(70 + 0.136b) ms for the uplink and (100 + 0.155b) ms for the downlink
where b is the message size in bytes. The delay of the downlink is thus
higher than the delay of the uplink even though the uplink has a lower
bandwidth.

155

Table 4.4. Sizes of SIP messages in prototype.

Action Message Type Size (bytes) Delay (ms)
Registration REGISTER Request 370 120

 200 OK Reply 300 147
Publication MESSAGE Request 450…1380 131…258
 200 OK Reply 250 139
Search INVITE Request 430…480 128…135
 606 Not Acceptable Reply 370…1380 157…314
 ACK Request 320 114
Session setup INVITE Request 540 143
 200 OK Reply 290 160
 ACK Request 390 123
De-registration REGISTER Request 380 122
 200 OK Reply 250 139

Based on these equations, we calculate the delays for transmitting the

messages between the application and the index node. Table 4.4 is
complemented with these calculated delays, assuming requests are sent
uplink and replies downlink. The delay of a search operation is thus
between 399 and 563 ms, while the delay of a resource publication is
between 270 and 397 ms. These assume a centralized architecture. The
search delay is lower than the delay of the full search operation, as the
ACK request is sent after receiving the results. The search delay is
between 285 and 449 ms. According to our earlier user studies, all users
are satisfied with such a delay. The initiation of an access session takes
426 ms for a single wireless link, but because the other terminal is
assumed to be wireless as well, the total delay is 852 ms. Note that other
delays, such as processing delay and queuing are not included in these
measurements.

Architectures with multiple core nodes

In Testbed O2 we replace the centralized architecture with four test
topologies depicted in Figure 4.27. We select the topologies so that the
results can be used to estimate the delays of more complex topologies.
We measure the search load in an unloaded system: the time from
sending the query to the reception of the response. The Distributed Index
Node developed in [Rey07] is tested. The cumulative distribution of
search delays for each of these topologies is presented in Figure 4.28. The
figure shows the percentage of searches with a delay less or equal to the
time at the x-axis.

156

Figure 4.27. Topologies in Testbed O1 for testing of search delays.

Figure 4.28. Cumulative distribution of search delays in topologies 1 – 4.

Table 4.5. Search delays in topologies 1 - 4.

Action Average delay (ms) Median delay (ms) Std.dev. (ms)
Topology 1 Tt1 = 833 781 295

Topology 2 Tt2 = 1055 1000 194
Topology 3 Tt3 = 1140 1140 629
Topology 4 Tt4 = 1481 1421 616

Topology 1 represents a centralized architecture, in which the delay

is caused by the air interface, the transport in the fixed network, the
processing in the SIP proxy and the query handling in the index node. We

Topology 1

Topology 2

Topology 3

Topology 4

P2P-AS 1

P2P-AS 1 P2P-AS 2

P2P-AS 1

P2P-AS 2

P2P-AS 3

P2P-AS 1

P2P-AS 2

P2P-AS 3

GPRS link + SIP server
Wired link + SIP server

0
10
20
30
40
50
60
70
80
90

100

0,
0

0,
1

0,
2

0,
3

0,
4

0,
5

0,
6

0,
7

0,
8

0,
9

1,
0

1,
1

1,
2

1,
3

1,
4

1,
5

1,
6

1,
7

1,
8

1,
9

2,
0

2,
1

2,
2

2,
3

2,
4

2,
5

2,
6

2,
7

2,
8

2,
9

3,
0

P
er

ce
nt

ag
e

Search delay (s)

Topology 4
Topology 3
Topology 2
Topology 1

157

can thus express the delay as a sum Tt1 = Tair1 + Tproxy1 + Tindexnode + Tproxy2
+ Tair2 + 4Tfixed, where

• Tair1 is the delay of sending the request over the air interface,
• Tproxy1 is the delay of processing the request in the SIP proxy,
• Tindexnode is the delay of processing the request in the index node,

including the database lookup using MySQL,
• Tproxy2 is the delay of processing the reply in the SIP proxy,
• Tair2 is the delay of processing the reply over the air interface, and
• Tfixed is the delay of sending a request or reply between two elements

in the fixed network.

The delay Tindexnode depends on the capacity of the index node and the
database as well as the current load level of these. Likewise the capacity
and load level of the proxy affect Tproxy1 and Tproxy2. The delay from the
fixed network is small compared to the other delays.

The average, median and the standard deviation of the delays in the
tested topologies are listed in Table 4.5. The 5% and 95% percentiles are
641 ms and 938 ms, respectively. Comparing them to the search delay
obtained from Testbed O1 shows a difference of between 356 and 489
ms. This difference is likely to result from the processing in the index
node, including a database lookup using MySQL. The messages and
message formats used in both testbeds are the same.

In topology 2 the query is forwarded to another P2P-AS, adding the
delay of the transport in the fixed network and the query handling in an
intermediary super-peer. This increases the average delay with Tt2 - Tt1 =
222 ms. For a chain of n P2P-ASs, the median delay would be

())(1 121 ttthopn TTnTT −−+=− . (4.1)

The results can be generalized to other architectures than the given semi-
centralized architectures. Equation 4.1 gives the delay of an n-node zone
in Zone Indexing, an n-node random walk, an IPIC network with n
clusters, and an n-node PSC cluster with ring topology, all provided that
the reply is forwarded on the same path as the search request. Requiring
the search delay to be below two seconds, which according to Section
4.4.5 satisfies all users, implies a maximum depth of 6 index nodes.

In topology 3, the results from two P2P-ASs must are combined and
consequently the slowest of the branches determines the delay. Thus,
even though the branches are traversed in parallel, each additional branch
adds a delay. The difference in average delay to topology 2 is Tt3 - Tt2 =
85 ms. In topologies with more branches, each branch could be estimated
to add an identical average delay, but this implies an excessive
simplification. In case the results are reported incrementally, the delay of
the first reply is the delay of the fastest of the branches. Several one-hop
branches are used in PIC and in fully connected architectures.

Topology 4 adds to topology 3 the additional query handling delay of
a loop, which is detected and signaled. The difference in average delay
between topology 4 and topology 3 is Tt4 - Tt3 = 341 ms. We can see that
the use of parallel searches increases the standard deviation.

158

Resource access

The bandwidth of the access connection is mainly limited by the air
interfaces. When the file is downloaded from another terminal with no
other interfering transfers, the available bandwidth Bavailable is determined
as Bavailable = min(Buplink, Bdownlink) by the bandwidth Bdownlink of the local
downlink and the bandwidth Buplink of the remote uplink. Usually Buplink <
Bdownlink, whereas the upstream bandwidth of the remote terminal limits
the achievable bandwidth. The prototype implementation was tested in a
3G/WCDMA network with a nominal bandwidth of Bdownlink,nom =
384 kbit/s downstream and Buplink,nom = 128 kbit/s upstream. We observed
a fixed transmission delay of 60 ms upstream and 100 ms downstream
with an actual obtained bandwidth of Bavailable = 92 kbit/s in the transfer.
The measured file transfer time for a 100 kB file (e.g. picture) was 9 s
and for a 5 MB file (e.g. MP3 song) 450 s. The dependence on the limited
upstream bandwidth can be reduced by caching in the network or
simultaneous downloading from several sources. The ultimate limitation
of the transfer speed is determined by the local downstream bandwidth.
For resources other than files, the required bandwidth varies widely with
the type.

NAT and firewall traversal

NATs and firewalls are deployed in several networks to increase the
available address space and to separate the customer network from the
operator network. A firewall can especially in cellular networks be
motivated by the need to prevent malicious traffic to the terminal, which
would cause extraneous costs to the user. Firewalls also give the operator
added control over the traffic. A NAT/firewall prevents incoming TCP
connections, which inhibits direct connections between terminals, as
required in fully decentralized architectures and in the access connection.

During our experiments, none of the Finnish cellular operators
provided direct IP connectivity between terminals. The firewall of the
used network prevented incoming TCP connections. UDP ports were kept
open for incoming packets a limited time after an outgoing packet. We
were able to pass this restriction by sending periodical keep-alive packets
to the SIP server in order to keep the UDP connection open. This creates
extra traffic. SIP-based initiation of the access connection succeeded via
the SIP server as each terminal actively maintained a connection to the
server. However, a TCP connection for a file transfer could not be
established between terminals. The transfer must therefore be assisted by
a TCP relay in the fixed network.

4.8.5 Summary of evaluation

Based on our testbeds, we summarize in Table 4.6 the validity of the
postulates for successful deployment. We conclude that a resource
sharing service is possible to implement today provided that certain
constraints are observed.

159

Table 4.6. Validity of postulates.

Action Validity Motivation
Postulate 4.1 Valid We successfully implemented a resource

discovery application with the APIs and the
user interface available on a Nokia smart
phone.

Postulate 4.2 Valid Our implementation runs smoothly and
consumes less than 520 kB of RAM in
normal operation.

Postulate 4.3 Valid with
constraints

Despite departing from the original
specification, we successfully implemented
SIP-based signaling without changes to the
SIP-stack or the proxy.

Postulate 4.4 Valid In the used network, the network-related
delay of all operations are less than 1 s.

Postulate 4.5 Valid with
constraints

We successfully used SIP-based signaling but
this required an actively maintained
connection to the server.

Postulate 4.6 Valid with
constraints

Direct access connections could not be set up
between terminals but access can be
supported by a relay in the fixed network.

Since our implementation, other implementations have appeared,

including Symella [KFM07], SymTorrent [KEP07], and MobTorrent
[ENK08]. These applications behave much like their counterparts in the
fixed network, with a slightly reduced functionality (especially the upload
restrictions of Symella and MobTorrent). The fact that these applications
appear shows that mobile peer-to-peer is technically feasible and an
upcoming type of application. Some features of the mobile platform still
restrict implementing the full set of capabilities found in fixed peer-to-
peer applications. Ekler et al. report [ENK08] that the limitation of the
number of concurrent sockets, a single concurrent connection attempt,
long timeouts and inability of random access to files in the J2ME
platform limited the performance of MobTorrent.

4.9 Technical feasibility of decentralized group-based peer-to-peer

In this section, we study the decentralized group-based peer-to-peer
application described in Section 4.6. The purpose is to verify the
feasibility of the group-based access control and the Direct Index
algorithm, both published in [Bei07b], using a prototype. In particular,
we test the validity of the following postulates:

• Postulate 4.7: The application can be implemented with the APIs and
the user interface available on today’s mobile phones.

• Postulate 4.8: Today’s mobile phones have enough memory and CPU
power to run the application smoothly.

• Postulate 4.9: The Direct Index algorithm operates correctly.
• Postulate 4.10: Groups can be managed in a distributed way.

160

• Postulate

users of a certain group
• Postulate

today’s networks.

4.9.1 Prototype

The proposed concept based on the Direct Index algorithm was
implemented in Java 2 Micro Edition (J2ME) using the Mobile
Information Device Profile
libraries are used.
can define groups by indicating a set of categories f
Access to resources can be limited to specified groups. Searching is ba
on a keyword. For each matching resource the IP address of the
resource’s location is obtained. The actual download is not implemented
as it is not part of the resource discovery
to compress the index, which is exchanged
peer. Policies such as interest horizon, distribution horizon and minimum
connectivity are excluded from the implementation. The details of the
implementation are reported in [Pan09].

A binary protocol
the prototype in order to simplify implementation and reduce bandwidth.
The protocol defines six types of messages: a Hello request, a Hello
reply, an Update request, an Update reply, an Acknowledgement, and an
Error message. All me
message type, the message length and the sender’s and the receiver’s IP
addresses. In the prototype, users are identified by their IP address. This
makes it in practice necessary to allocate a fixed IP address to

Figure 4.29

Postulate 4.11 The access to resources can be restricted so that only
users of a certain group can access it.
Postulate 4.12: Signaling can bypass the NATs and firewalls of
today’s networks.

The proposed concept based on the Direct Index algorithm was
implemented in Java 2 Micro Edition (J2ME) using the Mobile
Information Device Profile (MIDP). Both Series 60 and Sun's Java
libraries are used. The prototype covers the main functionalities. The user
can define groups by indicating a set of categories for
Access to resources can be limited to specified groups. Searching is ba
on a keyword. For each matching resource the IP address of the
resource’s location is obtained. The actual download is not implemented
as it is not part of the resource discovery problem. Bloom filters are used
to compress the index, which is exchanged directly with each known
peer. Policies such as interest horizon, distribution horizon and minimum
connectivity are excluded from the implementation. The details of the
implementation are reported in [Pan09].

A binary protocol [Bei07c] is used instead of a SIP based protocol in
the prototype in order to simplify implementation and reduce bandwidth.
The protocol defines six types of messages: a Hello request, a Hello
reply, an Update request, an Update reply, an Acknowledgement, and an
Error message. All messages share a common header specifying the
message type, the message length and the sender’s and the receiver’s IP
addresses. In the prototype, users are identified by their IP address. This
makes it in practice necessary to allocate a fixed IP address to

29. Direct Index prototype application on Nokia E61i [Pan09].

The access to resources can be restricted so that only

Signaling can bypass the NATs and firewalls of

The proposed concept based on the Direct Index algorithm was
implemented in Java 2 Micro Edition (J2ME) using the Mobile

(MIDP). Both Series 60 and Sun's Java
The prototype covers the main functionalities. The user

or each contact.
Access to resources can be limited to specified groups. Searching is based
on a keyword. For each matching resource the IP address of the
resource’s location is obtained. The actual download is not implemented

. Bloom filters are used
directly with each known

peer. Policies such as interest horizon, distribution horizon and minimum
connectivity are excluded from the implementation. The details of the

a SIP based protocol in
the prototype in order to simplify implementation and reduce bandwidth.
The protocol defines six types of messages: a Hello request, a Hello
reply, an Update request, an Update reply, an Acknowledgement, and an

ssages share a common header specifying the
message type, the message length and the sender’s and the receiver’s IP
addresses. In the prototype, users are identified by their IP address. This
makes it in practice necessary to allocate a fixed IP address to the user.

. Direct Index prototype application on Nokia E61i [Pan09].

161

The software is dived into five packages: A Logic package
implementing the Direct Index algorithm and the program control, a
Packet package for generating and parsing messages of the binary
protocol, a Network package controlling sending and receiving messages,
a Client package controlling the user interface and a Utility package for
various support functions such as configuration, Bloom filters and
logging. The central data structure is the peer table containing the
following entries for each peer: an IP address, a group list, an update
timer, a neighbor list with an IP address and group list for each neighbor,
and an index list with an IP address, ID and sequence number for each
resource descriptor. The application is shown in Figure 4.29 on a Nokia
E61i.

4.9.2 Feasibility tests

The prototype is tested in four environments:

• Testbed D1. The network consists of 7 emulated mobile phones. This
verifies the correct operation of the Direct Index algorithm, the group
management functionality and the access control.

• Testbed D2. The network consists of two phones (Nokia E61i and
Nokia 5800 Xpress Music) connected with a WLAN network. This
verifies that the application works in real telephones.

• Testbed D3. The network consists of two phones (Nokia E61i and
Nokia 5800 Xpress Music) connected with a cellular network. This
verifies that the application works in a commercial cellular network
(Elisa).

• Testbed D4. The network consists of two phones (Nokia E61i and
Nokia 5800 Xpress Music) connected with a cellular network. This
verifies that the application works in a prototype IMS network
(Octopus).

The test with Testbed D1 shows that the group management
functions work. New contacts can be created and groups can be added to
and removed from a contact. The prototype is simplified in that the other
party automatically accepts all invitation requests, whereas the group is
activated on the connection. The tests show that the Direct Index concept
works. The local resources are correctly distributed to all nodes in a
group, and each node obtains a correct routing table of each group in
which it as a member. Nodes can search for resources by examining their
remote index. Two isolated islands can be connected and the groups with
the same names can be correctly united and synchronized. Synchronizing
the removal of resources required special consideration but finally it was
successfully implemented. The tests also verify correct operation of the
access control. Resources can be shared to and removed from specified
groups. Resources were not found by a user having no groups common
with the sharing user, or if the groups with a common name are isolated.

Testbed D2 required replacing some libraries but after that the
application successfully worked in Series 60 phones over WLAN.
Testbeds D3 and D4, however, failed because of messages dropped by
firewalls or NATs. These tests show that direct communication between
mobile phones must be enabled in operator networks in order for the

162

application to work. Alternatively support from a relaying node in the
fixed node is needed. This requires adding support for the relay in the
application. A more generic approach, which we described in Section 4.6,
is to use SIP signaling, whereas the SIP proxy operates as a relay. The
connection to this proxy must be maintained by sending UDP traffic
periodically.

4.9.3 Summary of evaluation

Based on our implementation, we summarize in Table 4.7 the validity of
the postulates. The main obstacle for the proposed application is the
NATs/firewalls preventing traffic between cellular terminals. Apart from
this network-related issue, the prototype demonstrates that the Direct
Index algorithm works in practical implementations.

Table 4.7. Validity of postulates.

Action Validity Motivation
Postulate 4.7 Valid We successfully implemented the application

using J2ME with Java and Series 60 libraries
and the user interface functions of Java.

Postulate 4.8 Valid Our implementation runs smoothly on various
mobile phones.

Postulate 4.9 Valid The local index of each node was distributed
correctly to all nodes in the common groups.

Postulate 4.10 Valid The user can successfully define the groups
of a contact and the groups common with the
contacts are activated.

Postulate 4.11 Valid A resource shared to a given group is visible
to all members of that group but not to other
nodes.

Postulate 4.12 Invalid,
requires
changes

Messages could not be sent directly between
terminals in current cellular networks due to
NATs/firewalls. The solution only works in
WLAN networks. To bypass the restriction,
the protocol must be relayed via a fixed node.

4.10 Summary

This chapter examined the use of overlays for resource discovery in
cellular networks. The chapter focused on technologies enabling resource
sharing between mobile users in a peer-to-peer fashion. We first
performed a set of user studies to obtain knowledge about user
expectations and opinions that can guide the technical development.
These studies particularly showed the need for observing the underlying
social relations and providing access control. This need may not only be
due to the personal nature of the shared content, but also because of the
unwillingness to allow the device capacity and bandwidth to be used by
strangers.

163

We presented a scenario where the service is provided by the
operator or a third-party service provider. In this case, it is motivated to
use a centralized approach, where interconnected servers in the fixed
network support the overlay by taking over most of the processing and
storage load. We proposed utilizing the IP Multimedia Subsystem (IMS)
by implementing the resource discovery as an Application Server (AS).
We identified the functions performed by the AS, and recognized
different types of access control and group management that can be
provided by the network. We identified a few properties that are desired
in a commercial resource discovery service. These include separation
between interior and exterior links, the ability to establish overlay
connections based on inter-operator agreements, the ability to use any
internal topology, index confidentiality and internal topology
confidentiality. We evaluated various architectures against these criteria.
We concluded that IPIC shows several good properties for the use in a
commercial peer-to-peer service.

In a network without centralized operator support, it becomes
important to take user relations into account, since the users must provide
a share of their device and network capacity to other users. As a social
network represents a fairly comprehensive model of user relations, it
provides a good foundation for a resource sharing system. We provided a
theoretic model of a social network and formed methods for distributed
group management, access control and policies on top of it. We presented
two proactive resource discovery schemes implementing the above
methods: index flooding and Direct Index. We discussed the feasibility of
a proactive scheme and described index compression based on Bloom
filters to reduce the storage and transport requirements.

We studied the use of the Session Initiation Protocol (SIP) for
signaling in resource discovery. Our motivation is that SIP is an
established protocol utilized in the IMS with existing support functions
like charging, security, NAT/firewall traversal and management. We
defined two schemes for SIP-based resource discovery: the first based on
INVITE and the second based on SUBSCRIBE/NOTIFY.

We evaluated the technical feasibility of peer-to-peer systems in
cellular networks using prototypes arranged into a set of testbeds. We
showed that neither today’s devices nor the network pose serious
restrictions. The major challenge is to handle NAT/firewall traversal. Our
prototypes showed that a SIP-based signaling scheme works after certain
modifications. Furthermore, the decentralized group-based peer-to-peer
approach worked as expected.

164

Chapter 5

Resource discovery in mobile ad hoc networks

This chapter studies resource discovery in an ad hoc network formed
between consumer devices. As the capabilities of the nodes are expected
to vary significantly in such a network, we aim at allocating the load to
the nodes with most capacity. To reach this goal, we form an overlay
network according to the relative node capacities. We take two
approaches for the construction of the overlay: the first approach is based
on local decisions while the second approach forms clusters that are
interconnected. Since resource discovery is closely related to routing in
ad hoc networks, we also discuss issues related to routing. The aim is to
enable a combination of proactive and reactive operations. The chapter
begins with an introduction to the topic and an overview of the related
research.

5.1 Introduction

Ad hoc networks are wireless networks that are established between a set
of nodes without the support of any fixed infrastructure. Initially ad hoc
networks were developed with military and rescue operations in mind.
However, now the technology has been proposed for a wide range of
applications ranging from meetings and conferences to personal area
networks, vehicular networks, and control networks for automation. An
ad hoc network can be a freestanding network or connected to another
network. The network can also be connected as a leaf to a LAN,
extending the range of the access point. Closely related to ad hoc
networks are sensor networks, transporting measurements from a large
set of wireless sensors to a sink. Usually the network has a temporary
nature, such as for the duration of a meeting or conference.

A pure ad hoc network has only wireless links, but practical networks
are likely to incorporate fixed devices and gateways to external networks
like the Internet as well. Ad hoc networks can be implemented with
various underlying physical network technologies, such as IEEE 802.11

165

[IEEE2007] wireless LANs (WLANs) and Bluetooth [Bluetooth]. The
nodes can be consumer devices, such as laptops, PDAs, mobile phones,
and lightweight laptops (netbooks). Nodes typically have a limited
processing and battery power. Especially among different consumer
devices, the capacity varies widely. The network is characterized by a
dynamic topology with unreliable links with low bandwidth. All nodes
act as routers, which gives a high number of possible routes. The address
space is flat, which implies that a separate route entry to each node is
needed. Altogether, these properties make routing in ad hoc networks
challenging.

As traditional routing protocols, such as OSPF and RIP, perform
poorly in ad hoc networks, numerous routing protocols have been
developed specifically for these networks. The protocols can be divided
into proactive and reactive protocols [Fee99]. A proactive protocol
continuously maintains a route to each node in the network. Well-known
proactive protocols include Optimized Link State Routing (OLSR)
[CJ03] and Destination Sequenced Distance-Vector (DSDV) [PB94]. A
reactive protocol aims to reduce traffic by creating a route only when a
packet is sent to a given destination. Dynamic Source Routing (DSR)
[JHM07] and Ad hoc On-demand Distance Vector (AODV) [PBD03] are
examples of reactive routing protocols. In general, proactively maintained
routing information ages quickly when mobility is high or when only a
fraction of the nodes communicate. On the other hand, reactive protocols
have an unnecessarily high route request overhead in a stable network or
when a large number of nodes communicate. Thus, both approaches are
suitable for a specific set of scenarios. To combine the advantages of
these approaches, protocols based on both proactive and reactive routing
have been proposed, including the Zone Routing Protocol (ZRP) [PH99].

Ad hoc networks share several properties with peer-to-peer networks,
including the flat and changing topology, the low reliability of nodes, the
distributed control, the security problems, and the need for co-operation
between nodes [SGF02]. The techniques for routing and service
discovery in these networks are therefore similar, with a large
dependency on flooding. Yet, the techniques differ due to the fact that the
topology in ad hoc networks is determined by the physical locations
whereas peer-to-peer networks are free to form any kind of overlay
topology [SGF02].

Whereas the purpose of resource discovery solutions in fixed
networks usually is to locate application layer resources, ad hoc networks
additionally need resource discovery for locating network layer resources.
Network layer resources include storage, printing, domain name service
(DNS), telephony servers, relays, and gateways to external networks.
Because of the lack of centralized control and fixed servers in
combination with the varying availability of nodes, the network services
must often be located on a per-session basis. In ad hoc networks resource
discovery is preferably implemented at the network layer.

To locate a small amount of fairly static resources, manual
configuration suffices. However, in most practical applications an
automatic way to discover resources fulfilling a given criteria is needed.
Such a system automatically selects the best resource for a given purpose

166

in a dynamic environment where new resources are added and existing
resources may fail or be unavailable at times. As the resources to locate
mainly are services, we usually talk about service discovery instead of
resource discovery, and service directories instead of indices. Service
discovery allows devices to automatically locate network services based
on their attributes. Typically, the service is provided by ordinary nodes or
the service is distributed between these. Service discovery therefore
provides the means for advertising a service available to other devices.
Locating a gateway for communication with infrastructure-based
networks can also be considered as service discovery.

5.2 Related research

Mobile ad hoc networks have gained large interest in the research
community. In the early years, most research efforts were spent on
developing and improving routing protocols, resulting in a multitude of
routing approaches. A good survey over routing protocols for ad hoc
networks can be found in [AWD04]. As the research scope has widened,
research topics have included developing support for service discovery
[MBB06], peer-to-peer networking [DB04] [OSM+05], security
[YLY+04], delay-tolerant networking [JFP04] and specific applications
for ad hoc networks. Several experiments with implemented ad-hoc
networks have been performed [KM07].

5.2.1 Dominating sets and virtual backbones

Most ad hoc routing protocols, both proactive and reactive, are to some
extent based on flooding. A proactive routing protocol floods the network
in order to distribute updated routing information. A reactive routing
protocol uses flooding to distribute a route request for locating the
destination, often using an expanding ring search. Flooding in ad hoc
networks differs from flooding in a fixed network in that the packet must
not be sent to each neighbor separately. Instead, packets are transmitted
on a broadcast address, which allows reception by all nodes within the
sender’s radio coverage. Consequentially, a node receives a flooded
packet multiple times, as repeated by each of its neighbors.

A dominating set (DS) is a subset D of nodes in a graph G = (V, E)
chosen so that every node either belongs to D or has a neighbor that
belongs to D. A connected dominating set (CDS) is a DS that is
connected, i.e. there is a path from every node in the CDS to all the other
nodes in the CDS. In a dense network it is possible to significantly reduce
the flooding overhead using a connected dominating set. Flooded packets
are forwarded only by nodes belonging to the CDS. Since every node
either is in the CDS or has a neighbor in the CDS, all nodes will receive
the flooded packet. The CDS operates as a virtual backbone spanning the
network, and can be used to efficiently distribute routing information
[DBB+97]. To reduce the overhead, the CDS can be minimized. Thus,
the purpose of many solutions for efficient flooding is to find a minimum

connected dominating set (MCDS). Finding the MCDS has been proved
NP-complete [GJ79, LK01]. Therefore, various heuristic algorithms have

167

been developed, including [GK98] and [WAF04]. An MCDS can be
approximated using a spanning tree, whereas the purpose is to maximize
the number of leaves. The leaf nodes do not participate in flooding. As
global information is not available, heuristic algorithms such as the self-
pruning and dominant pruning in [LK01] have been proposed. An
approximated MCDS is also formed indirectly through certain clustering
algorithms.

5.2.2 Clustering

Kwon and Gerla [KG02] define clustering as the grouping of nodes into a
manageable set. Roles are assigned to certain nodes, such as cluster-
heads, gateways and ordinary nodes. Normally, only cluster-heads and
gateways participate in forwarding, thus, these nodes constitute a virtual
backbone. One good overview and categorization of different clustering
algorithms is given in [YC05]. In [KG02] clustering algorithms are
classified depending on whether the clusters are overlapping or disjoint.
The classification also separates between algorithms generating two-hop
clusters, whereas the distance between two nodes in a cluster is at most
two hops, and multi-hop clusters, whereas the cluster size can be larger.

A large set of schemes, including [GT95] and [Bas99], create two-
hop overlapping clusters. In such a cluster each node is at most two-hops
from other nodes in the cluster and there is a cluster-head in the center of
the cluster that is able to contact all nodes over a single hop. Some nodes
belong to two or several clusters, acting as gateways between these
clusters. The cluster-heads form a dominating set, while the gateways and
cluster-heads together form a CDS. The aim is to minimize the number of
gateways and cluster-heads, and consequently to approximate an MCDS.

Besides minimizing the CDS, clustering schemes have been
developed with other goals. Some schemes, including Adaptive Multi-
hop Clustering (AMC) [OIK03] and Degree-Load-Balancing Clustering
(DLBC) [AP00], aim to balance load by controlling the size of clusters.
Too large clusters may overload the cluster-head while a too small cluster
size results in too many clusters and thereby inefficient routes. In
mobility-aware clustering schemes, such as MOBIC [BKL01] and the
Distributed Dynamic Clustering Algorithm (DDCA) [MZ01], the aim is
to put nodes with similar mobility patterns in the same clusters.
Clustering is based on the relative speed differences between nodes. The
links within the cluster remain stable as nodes move with the same speed.
In the On-Demand Weighted Clustering Algorithm [CST00], the cluster-
head selection is based on the weighted combination of degree-
difference, distance to neighbors, average speed and cluster-head serving
time. Some schemes aim at reducing the maintenance costs. The
motivation is that the need to maintain the cluster structure may reduce
the benefit of clustering. Of these, Passive Clustering [KG02] is able to
eliminate the active messaging by transporting clustering information
using two bits in the normal user traffic.

While clustering improves routing efficiency, it comes at a cost.
Firstly, explicit message exchange between node pairs is required to
maintain the structure. Structure maintenance may be costly in a dynamic
network. Secondly, some clustering schemes suffer from the so called

168

ripple effect of re-clustering: re-election of cluster-head due to some local
event in one cluster may cause the restructuring of the whole network.
Thirdly, most schemes are based on distinct phases for constructing and
maintaining the clustering structure. This often requires that the network
is relatively static during construction. Finally, several rounds of
computation may be required for cluster formation. Different algorithms
are affected to various extents by these limitations. [YC05]

5.2.3 Service discovery

Several service discovery protocols have gained the status of industry
standard in wired networks. Jini [Sun99] is based on a centralized service
directory, the Simple Service Discovery Protocol (SSDP) used by
Universal Plug and Play (UPnP) [Upnp08] is based on multicasting, and
the Service Location Protocol (SLP) [GPV+99] operates both with and
without service directories. The service discovery protocols developed for
fixed networks are not suitable for ad hoc networks as they are based on
different assumptions, most critically regarding mobility [MBB06].

In ad hoc networks, both routing and service discovery can be
implemented with similar techniques. These problems, however, have a
major difference: In routing, the identity of a node is known; on the other
hand, a service may be provided by several devices and the user wishes to
contact the device that best fits some given criteria. [MBB06]

Several solutions for service discovery have been proposed
specifically for ad hoc networks. Good overviews over service discovery
protocols can be found in [SBW07] and [MBB06]. Mian et al. [MBB06]
divide service discovery architectures into directory-based, directory-less
and hybrid architectures. The operation principle of most directory-less
solutions is that the service provider proactively broadcasts service
advertisements to the network using flooding with a limited TTL. Nodes
maintain a cache of the advertisement they are interested in. If, upon a
resource request, no matching resource is found in the cache, a node can
also reactively broadcast a search request to the network. The service
discovery can also operate completely reactively. Examples of directory-
less architectures are GSD [CJY+02] and Konark [HDV+03]. While
directory-less architectures typically do not form an overlay network,
overlay-like structures are used in the alliances of Allia [RCJ+02].

From the perspective of this work, directory-based solutions are
more interesting. In these, certain nodes act as service directories. Most
directory-based architectures use an overlay network. In [KT03] this
overlay is a virtual backbone and the directory is maintained by the nodes
in the virtual backbone. In [KKO03a] the overlay is a set of service rings
formed by nodes physically close and offering similar services. A service
access point in each ring stores the service directory. In both solutions,
services are advertised to a node acting as directory, and all directories
are queried in searching. In [KKO03b] the overlay consists of groups of
nodes called lanes. The directory is replicated to nodes within the same
lane. Service requests are sent to all lanes through anycasting. It is worth
noticing that traditional peer-to-peer overlays are rather unsuitable for
service discovery in resource-constrained ad hoc networks as they are
completely decoupled from the physical topology.

169

In hybrid solutions, a directory is used if there is one within a limited
scope. Thus, the directory only serves the nodes within its scope. If no
directory is within the scope, a directory-less approach is used. In ad hoc
networks hybrid solutions are uncommon [MBB06].

5.3 Our contribution

This chapter studies how an overlay can be formed to support resource
discovery systems in an ad hoc network and, in particular, how the
diversity of node capacities can be utilized to support resource discovery.
The fundamental idea is to identify the nodes with high capacity and
concentrate the processing and storage on these nodes. As the work
concerns the network layer, also routing solutions are presented.

In Section 5.4 we discuss the feasibility of combining proactive and
reactive routing. We find similarities between ad hoc networks and
overlay networks, and therefore we propose how the Search/Index Space
model can be applied to ad hoc networks. This material has not been
published earlier.

In Section 5.5 we present the problem of routing and service
discovery in ad hoc networks consisting of devices with varying
capabilities. We make the observation that in an ad hoc network formed
by consumer devices, the devices with high mobility typically have low
capacity, and vice versa. Based on this observation, we propose
classifying the devices according to their capacity and mobility. We take
two approaches for this classification, presented in Section 5.6 and
Section 5.7, respectively. In the first approach, published in [CBK02],
[CBK04], [CGK+04], [CKB05], [CVK+06], the class depends on local
decisions. This work has been led by Jose Costa-Requena, where the
present author has participated in developing the node classification and
task distribution. In the second approach, published in [BKC05], the class
depends on the neighboring devices. A shorter version of [BKC05] is
published in [BKC06].

In Section 5.6 we propose a modular architecture based on the node
classification. This architecture combines proactive and reactive routing
and service discovery so that the nodes with high capacity and low
mobility support the nodes with lower capacity and higher mobility. The
former type of nodes run proactive protocols while the latter utilize a
reactive protocol. We have published the architecture in [CBK02] and
[CBK04]. The scheme described in this work is slightly modified.

Section 5.7 takes a different approach to the above architecture. We
propose an algorithm for clustering nodes according to their capacity and
mobility. The algorithm connects nodes in the cluster using a tree-shaped
overlay, where the most powerful and least mobile nodes are in the center
of the cluster. We further propose an algorithm for connecting these
clusters together, forming an overlay spanning the whole network. We
perform simulations that compare the different variants of the algorithm
and describe the formed network. We finally provide a framework about
how this overlay can be utilized in routing and service discovery so that
the load is concentrated in the nodes with the highest capacity. The above
algorithms, simulations, and descriptions are published in [BKC05] and

170

[BKC06]. We also complement the published results with some
unpublished results.

5.4 Combining proactive and reactive routing

For ad hoc networks both proactive and reactive routing protocols have
been proposed. Proactive protocols maintain up-to-date routing tables for
all destinations in the network. Synchronizing routing information
consumes a considerable amount of bandwidth. If nodes are mobile,
whereas the topology is constantly changing, a large part of the routing
information will never be used before it is aged. As the mobility
increases, the frequency of routing updates must be increased to keep up
with the topology changes. Reactive protocols have been developed for
this kind of dynamic topology. A reactive protocol creates the route on
demand as the first packet for a given destination is encountered. Route
generation creates a burst of traffic, but once the route is available, no
routing traffic is required. The routing information is stored as long as
traffic is sent on the route. As a consequence of node mobility, the
routing protocol may need to repair or regenerate routes, which generates
traffic. While proactive protocols constantly generate traffic, which
increases with increasing mobility, the reactive protocol generates a given
amount of traffic per required route. Therefore, a reactive protocol is a
more efficient choice if only a few routes are active at a given moment or
if the network is very dynamic so that routes are short-lived. The choice
between proactive and reactive routing thus fundamentally depends on
the relationship between the mobility and the number of active routes. As
different networks have different properties, any given protocol has not
been considered optimal for all cases.

To combine the good properties of both proactive and reactive
routing, hybrid routing protocols have been proposed. One hybrid routing
approach is the Zone Routing Protocol (ZRP). In ZRP, proactive routing
is used within a zone around each node. Reactive routing is used for
packets to destinations outside the sender’s zone. The proactive routing
information is through the concept of bordercasting utilized to guide the
reactive route request so that the overhead is lowered. Limiting the
proactive routing protocol to a limited zone reduces the overhead of the
broadcasting of routing information. Exact information about destinations
far away is not required – it is sufficient to guide the request in the right
direction and only near the destination utilize precise routing information.
Additional benefit comes in networks where most traffic is directed to
nodes nearby. Although these are important advantages, they do not alone
motivate the use of a hybrid routing protocol.

The major advantage of hybrid routing is that the optimal strategy in
most situations is between fully reactive and fully proactive routing. This
can be motivated by an analysis similar to our Search/Index Space model.
In this model, route requests correspond to search requests and route
updates correspond to proactive index updates. Mobility directly affects
the frequency needed for distributing route updates: the more often the
topology changes, the more often the routing information must be

171

distributed. The frequency of route requests depends on the usage. The
relationship between these frequencies, like in the Search/Index Space
mode, determines the optimal balance of proactive and reactive
operations. Both the proactive and reactive distribution have a given
overhead that is protocol dependent. Based on these similarities we can
study ad hoc networks with (2.32). We present the interpretation of the
Search/Index Space model in ad hoc networks in Table 5.1 using PIC and
ZRP as example algorithms.

Table 5.1. Applying the Search/Index Space model to overlay and ad hoc networks.

Symbol in the
Search/Index
Space model

Interpretation in an overlay
network

Interpretation in an ad hoc
network

P The cluster size (in PIC) is
the proactive component.

The zone size (in ZRP) is
the proactive component.

N The optimal cluster size
increases as the network size
increases.

The optimal zone size
increases as the network size
increases.

fs The optimal cluster size
increases as the frequency of
searches increases.

The optimal zone size
increases as the frequency of
route requests increases.

fi The optimal cluster size
decreases as the frequency
of index updates increases.

The optimal zone size
decreases as the mobility
increases.

is ΩΩ / The optimal cluster size
increases if the overhead of
the search algorithm is
higher than the overhead of
the index distribution
algorithm.

The optimal cluster size
increases if the overhead of
the route request algorithm
is higher than the overhead
of the route update
algorithm.

We do not claim that (2.32) can be applied to ad hoc networks as

such, but we argue that the parameters affect the balance in the same
direction. Simulation studies in [PH99] support our assumptions:

• an optimal zone size that reduces the traffic exists,
• an increasing mobility decreases the optimal zone size,
• an increasing network size increases the optimal zone size, and
• an increasing node degree increases the optimal zone size.

The last result seems to indicate that the node degree affects the reactive
search algorithm in ZRP more than it affects the locally operating
proactive routing algorithm.

In this work, we do not aim to provide a detailed generic analysis
adapted for ad hoc networks because the situation is more complex than
that of overlay networks. In ad hoc networks, the proactive and reactive
protocols operate under different conditions because the protocols work
either on a different scale or in different parts of the network. For
example, in ZRP proactive routing is used on a local scale while reactive
routing is used on a global scale. In hierarchical protocols (e.g. CEDAR)
the logical upper-layer links pass through several physical lower-layer

172

nodes. This is in contrast to hierarchical overlay networks, where all
hierarchical layers use comparable links. Analyzing how mobility affects
these scopes can be difficult and varies widely between protocols.
Mobility must be modeled to obtain the frequency of proactive route
updates in order to provide reliable routes. Furthermore, the overhead of
the proactive and reactive protocols must be modeled separately. The
overhead often depends on the node degree, but analytically estimating
the effect of the degree on the overhead of bordercasting is difficult.

5.5 Utilizing capacity heterogeneity

In this work, we study an ad hoc network formed by consumer devices.
The devices in this kind of network are assumed to have a large variation
in capacity and mobility. In addition to mobile devices, we expect the
network to contain fixed devices as well. This type of scenario needs
different resource discovery architectures than those designed for cellular
networks, where the devices are mainly mobile phones with rather similar
capacity. Moreover, as the resources to be discovered are often network
layer entities, the resource discovery system should operate at the
network layer. While capacity heterogeneity often is considered as a
problem, we instead try to utilize the situation to our benefit. We aim to
allocate most of the load to the nodes with the highest available capacity.

Figure 5.1. Typical relationship between capacity and mobility.

Examining the capacity and mobility of popular customer devices,
leads us to the following assumption: the devices with high mobility
typically have low capacity and vice versa. With capacity we refer to
properties of the device such as processing power, memory, and battery
power. Especially the power supply is considered crucial from a capacity
perspective. As depicted in Figure 5.1, the highest capacity is typically
found in the stationary devices running on a constant power supply, such
as fixed computers and servers. Laptops have lower capacity and are at
times connected to a fixed power supply. Mobility is reduced as the
laptop seldom moves while being used. Mobile phones have limited
capacity and almost constantly run on battery power. They are used while
moving. Personal data assistants (PDAs), residing between mobile
phones and laptops, are currently being replaced with miniature laptops
and smart phones. In the future, several small portable devices such as
music players and health sensors are becoming networked and various
household and entertainment devices will have embedded computers. It

Increasing capacity

Increasing mobility

Embedded/
Sensor

Mobile
phone

PDA Laptop Fixed computer/
Server

173

may not be feasible to connect the smallest devices to all existing long-
range networks. Instead, the smaller and capacity-limited devices should
use the support of surrounding higher-capacity devices.

5.6 Virtual backbone for combining proactive and reactive protocols

In [CBK04] we propose to classify the devices into two groups: smart
nodes and dummy nodes. A smart node is defined as a node with low
mobility and high capacity and a dummy node as a node with high
mobility and low capacity. We propose to utilize capacity heterogeneity
to support routing and service discovery. Smart nodes are interconnected
with other smart nodes and run a proactive routing protocol, such as
OLSR, which requires larger storage, steady available bandwidth and
high stability (low mobility). These nodes support the weaker nodes,
which run a reactive routing protocol, such as AODV, requiring minimal
persistent data. The smart nodes fundamentally form a virtual backbone.

In resource discovery, it makes sense to place indices on the most
stable and powerful nodes. These nodes act as upper-layer nodes (super-
nodes) in a resource discovery system. Other nodes are connected as
lower-layer nodes (ordinary nodes) to these nodes. The main challenges
are thus to (1) identify high capacity stable nodes with low mobility, and
to (2) allocate one such node to each of the remaining nodes. In our
smart/dummy node scheme, indices are located at the smart nodes. These
nodes are connected by a virtual backbone consisting of the most stable
nodes and links in the network, which is used for search and index
distribution between the smart nodes.

5.6.1 Local role determination

The simplest way to categorize devices into smart and dummy nodes is to
perform local decisions based on the node type and capacity. We take this
approach in [CBK04]. Certain devices with low capacity, such as PDAs
and phones, are by default dummy nodes, while laptops and fixed
computers are smart nodes. Roles can change dynamically. For example,
a smart node may become a dummy node when the battery is depleted.
Role determination can also utilize information about surrounding
devices, so that a node may act as a smart node if there is no smart node
within a given distance even though it is configured as a dummy node.
The role determination mechanism can be different in different nodes.

To implement the role determination, each node calculates its
preference value. The initial value is the default preference that is
preconfigured depending on node type. The value is adjusted depending
on the resources. For example, if the battery is half empty, the preference
value can be halved. The calculation of the preference is a local decision,
which can be different in different nodes. A node acts as a smart node if
the preference value is above a threshold; otherwise it is considered as a
dummy node. The threshold depends on the preference of the surrounding
devices. The preference value is transported to all neighbors in the
neighbor detection protocol. In one approach, the threshold is the average

174

preference value of the surrounding device with an added constant. The
constant determines the percentage of devices acting as smart nodes.

A node may also decide to become a smart node if it has a stable link
to another neighboring smart node. A link is considered as stable if it has
been operating a given minimum time. Such a case appears if both nodes
are static or move in the same direction with similar speed. It is beneficial
that smart nodes are connected with stable links.

5.6.2 Forming a backbone

If each node individually determines its role, there is no guarantee that all
smart nodes can communicate with each other. Where several smart
nodes are neighbors, an isolated island of communicating smart nodes is
formed. A smart node therefore needs to detect other smart nodes several
hops away. Once the surrounding smart nodes are found, virtual links are
set up to some of them. An upper hierarchical layer is formed by the
smart nodes. The links on the upper layer are either physical links or
virtual links. Smart nodes may thus need the support of dummy nodes to
communicate. A virtual backbone is formed by the smart nodes and the
dummy nodes connecting islands of smart nodes.

When a node becomes a smart node it performs an Attach procedure.
The smart node sends a broadcasted message with a TTL of one. The
message describes the node’s capabilities. A smart node within the range
can decide whether to accept or deny the attach request. The request is
denied if the number of surrounding smart nodes is above a defined
threshold. If the request is accepted, the attaching node can establish a
link to it.

If no smart nodes are within a single hop, two alternatives are
possible. A dummy node may be aware of a smart node, to which it
relays the request. The dummy nodes cache the address of the smart
node. Alternatively, the neighboring dummy nodes relay the request to all
their neighbors. In either case, the scope is limited by a TTL. The
attaching smart node uses an expanding ring search, which finishes when
a given number of surrounding smart nodes are found. The attaching
smart node consequently receives routes to a desired number of smart
nodes, to which it selects the ones to which links are established. Once
the smart node has links, either direct or virtual, to its surrounding smart
nodes, it starts providing its proactive services. Most importantly, it starts
a proactive routing protocol operating between all smart nodes in the
network. The attach request can be implemented as extensions to normal
reactive route requests, where the destination is any smart node.

Because smart nodes bear a higher load, users must be motivated to
provide a higher amount of their capacity for the good of the network.
We analyze the incentive of users to participate as smart nodes in
[CKB05]. The study reveals that a rewarding mechanism is needed to
provide an incentive for users.

When the capacity of a node is reduced, it becomes a dummy node.
The node then performs a Detach procedure, whereas it detaches itself
from the surrounding smart nodes and the proactive routing protocol.

When the backbone is used in routing, a proactive routing protocol,
such as OLSR, is running between the smart nodes. Dummy nodes

175

implement a reactive protocol, such as AODV. Dummy nodes experience
a reduced bandwidth and battery consumption as they transmit only when
user data needs to be sent. To enable communication with dummy nodes,
also smart nodes need to implement the reactive routing protocol. Thus, a
smart node participates in two routing protocols. A dummy node that
requires a route to a given destination sends a route request according to
the normal operation of its reactive protocol. The dummy node does not
necessarily need to be aware of the existence of a virtual backbone. Once
the request reaches a smart node, the smart node replies with the route on
behalf of the destination. The proactively obtained routing information
consequently becomes available to the reactive protocol.

The work principally continued by Costa-Requena on this
architecture has produced the Scalable Ad Hoc Routing Protocol (SARP).
Describing the actual routing protocol is out of the scope of this thesis.
The routing protocol is presented in more detail in [CGK+04], [CVK+06]
and [Cos07].

5.7 Clustering based on capacity

A problem with individual role determination in the above scheme is that
the control over the density of smart nodes is weak. A high density of
smart nodes creates an excessive overhead. A low density makes
interconnection of smart nodes difficult. Virtual links through dummy
nodes put an additional forwarding overhead on these dummy nodes.
Furthermore, it is difficult to select remotely located smart nodes in order
to avoid partitioning of the network. Virtual links are also unreliable in
highly mobile scenarios. We will therefore take another approach to the
construction of a backbone.

In [BKC05] we present an algorithm for dividing nodes with highly
varying capacity into clusters and an algorithm connecting these clusters
using a virtual backbone. The aims are the following:

• To generate a backbone constituting a CDS that can be used as a
platform for service discovery and routing.

• To utilize the diversity in resources and mobility of nodes by
allocating most of the traffic to nodes with high capacity and low
mobility.

• To operate with a low and constant message overhead and with low
computational requirements.

• To operate continuously without distinct phases of computation and
no need to restart the computation synchronously in all nodes.

• To maintain the stability of formed clusters, especially for nodes
supporting service discovery.

• To avoid the ripple effect of re-computing the whole network due to
local changes.

Our algorithm operates with a single message – the Hello message. The
Hello message can be integrated into the messages of some other protocol
(e.g. the neighbor discovery of a routing protocol), making the overhead
of the clustering algorithm minimal. As the message is sent periodically,
the overhead is constant and predictable. The objective is to maintain the

176

clusters stable, so that indices for service discover can reside in specific
nodes. It is important to note, that the routes along the backbone are not
guaranteed to be optimal in respect to hop-count. Instead, we prefer to
form the backbone of the nodes that are stable and have a high capacity.

We represent the ad hoc network using a unit disk graph. Thus, the
network is modeled as an undirected graph G = (V, E), where V is the set
of nodes and E is the set of edges. All nodes in the network share the
same communication channel and every node is assumed to have an
identical omni-directional radio transmitter and receiver. A message
transmitted by a node is received by every node within a fixed radio-
range of radius Z. Nodes operate in a promiscuous mode, i.e. they are
able to receive transmission directed to other nodes than themselves if the
sender is within the range Z. We define the neighbors of a node v as the
set of nodes N(v) from which v has received a Hello message within a
given expiration time. We define the full neighborhood of a node v as
N

+(v) = N(v) ∪ v.

5.7.1 Objective of clustering

The basis of clustering is a numerical preference value P(v) calculated for
each node v. The preference value describes both the capacity and the
mobility of the node. The value is calculated by a preference function,
which is not defined in this work. The inputs of the function are
numerical parameters describing the capacity, including the available
memory, the processing power, and the remaining battery, and the
mobility. A device may have a preference that is several orders of
magnitude higher than the one of another device. An example of this
situation is the comparison of a laptop with a constant power supply to a
PDA running out of battery.

The formula for combining the capacity and the mobility into a
preference value is implementation specific, provided that the following
requirements are satisfied:

1. Low mobility must increase the preference value while high mobility
must decrease it.

2. High available capacity must increase the preference value while low
available capacity must decrease it.

3. The preference values used by different nodes in the network are
comparable.

One approach is to use a weighted sum of the different components
constituting the capacity and divide the sum by a value representing
mobility. The mobility can be measured, for example, using GPS.
However, since the use of physical coordinates imposes additional
hardware requirements and does not account for group mobility, we
instead prefer describing mobility as a measure of the average frequency
of connections and disconnections of neighboring nodes. The preference
value can change in time. In order to provide a stable operation, the
change can be smoothed using an exponentially weighted average of the
current and previous values.

177

The clustering algorithm divides the nodes of the network into
clusters of one or more nodes. Each cluster has a cluster-head which has
the locally highest preference. Every node knows and has a route to the
cluster-head of its cluster. Specifically to our approach is that a node is
not necessarily a neighbor of its cluster-head; instead the path to the
cluster-head may traverse other nodes. Clusters are thus multi-hops. Each
node knows a direct neighbor that is logically closer to the cluster-head
than itself. This neighbor is the dominator of the node. The dominator of
a cluster-head is the node itself. The cluster can be modeled as a tree. The
root in the tree is the cluster-head. A node at the distance k from the
cluster-head dominates nodes at a distance of k+1.

The purpose of the algorithm is to create clusters so that the
preference value increases on each hop toward the cluster-head. Branches
starting from the cluster-head follow nodes with decreasing preferences.
The capacity of the nodes toward the cluster center increases with the
highest capacity in the cluster-head. Nodes forward routing information
and, depending on the used routing protocol, user data through the
cluster-head. The cluster-head also operates as the index in a resource
discovery system. As the index updates are forwarded to the cluster-head,
the load is the highest on the higher-capacity nodes near the center.

As the goal is to be stable and lightweight rather than perfectly
optimal, there may be situations where the preference order is not strict.
The motivation for preferring stability to optimality is the need to allocate
rather persistent information, such as indices, to a stable node – the
cluster-head. As each node in the cluster has a path to this cluster-head,
the cluster-head can be queried, and the queries follow paths that
concentrate the load in high-capacity and low-mobility nodes.

5.7.2 Node attributes

Every node has a set of attributes summarized in Table 5.2. The
clustering algorithm operates by continuously assigning a color, a
dominator, and a cluster to each node. Each node v selects one of its
direct neighbors or itself as its dominator, dom(v) ∈ N

+(v). A direct
neighbor refers to a node from which a Hello message has been received
within the Hello timer expiration interval. The aim is to select the
highest-preference neighbor as the dominator, at the same time observing
stability. The selection is described in detail in Section 5.7.3. A
dominatee of a node v is defined as a node u for which dom(u) = v.

Moreover, each node v is assigned a color C(v) ∈ {white, green,
black} depending on its function in the network. The color is determined
by neighboring nodes. The white color represents the special case of a
node that has recently started or it has no neighbors. Hence, white is the
initial color of a node. A green node (leaf node) has at least one neighbor.
Green is the default color for nodes that have received Hello messages
from other nodes. A green node becomes a black node if one (or several)
of the neighbors selects it as its dominator. Thus, the black node
(dominator) is one of the most stable and high-capacity nodes within its
surrounding. The aim is to keep a small set of the highest-preference
nodes as black nodes while the other connected nodes are green. The

178

participation of green nodes in message forwarding is minimized. The
black nodes form a CDS within a cluster: each connected node is either a
black node or a neighbor of a black node. In addition to the color, a node
can have an additional role of a cluster-head or a bridge node.

Table 5.2. Attributes of a node v.

Attribute Symbol Description Source

Address A(v) A unique identifier of node v. Manual
configuration.

Preference P(v) A value determined by the capacity
and mobility of node v.

Calculated by
the preference
function.

Color C(v) The color of a node v, which can be
white, green, or black.

Determined by
the clustering
algorithm.

Dominator dom(v) A neighbor of node v or node v
itself.

Determined by
the clustering
algorithm.

Cluster π(v) The identifier of the cluster (address
of the cluster-head) of node v.

Determined by
the clustering
algorithm.

Cluster-
head
distance

hdist(v) The distance in hops to the cluster-
head of node v’s cluster.

Determined by
the clustering
algorithm.

A cluster-head is defined as a node v for which dom(v) = v. Thus, a

cluster-head considers itself as the most stable and high-capacity of all
surrounding nodes and has selected itself as its dominator. The cluster-
head is always a black node but not all black nodes are cluster-heads.
Each node v belongs to some cluster π(v) that is formed around a cluster-
head λ(π). In order to identify nodes in the same cluster, the cluster needs
a unique name. The cluster is therefore identified with the address A(λ(π))
of its cluster-head. Other nodes obtain the name of their cluster from its
dominator when this dominator is selected. The maximum radius of a
cluster can be limited with a cluster radius limit, Rmax, so that a node can
be at most Rmax hops from its cluster-head. An example cluster is depicted
in Figure 5.2. The arrow from a node v to a node u indicates that dom(v)
= u.

Figure 5.2. Example cluster.

Cluster head (black node)

Black node

Other link
Dominator link

Green node

179

The colors are ordered so that white < green < black. In determining
the dominator, the color order is the primary selection criteria and the
preference the secondary selection criteria. Hence, the black node with
the highest preference is chosen if there is an eligible black node.
Otherwise, the green node with the highest preference is chosen. A white
node is chosen only if there are no black or green neighbors. We call this
the (color, preference) order. The reason for observing the color first is to
maintain stability: a black node remains black even if a new higher
preference neighbor appears. This avoids modifying routes, as these
follow the backbone of black nodes.

Both a green and a black node can act as a bridge node. A bridge
node is defined as a node v that has a neighbor u belonging to a different
cluster as itself: π(v) ≠ π(u). The clustering algorithm, described in
Section 5.7.3, defines the organization into clusters and the connecting
algorithm, described in Section 5.7.4, defines the connection of clusters
together.

5.7.3 Clustering algorithm

When a node v starts, it sets its attributes to their initial values: C(v) =
white, dom(v) = A(v), π(v) = A(v), and hdist(v) = 0. It starts a timer which
triggers a Hello message to be sent periodically at a defined interval Thello.
The Hello message is sent over a single hop on a broadcast address, so
that all neighbors of the sending node can receive it. The Hello message
sent by v contains the fields (A(v), C(v), P(v), dom(v), π(v), hdist(v),
dv(v)) describing the attributes of v. It also piggybacks a small routing
table dv(v) described in the following section.

Upon receiving a Hello message from v, node u stores the
information of the sender in a neighbor table, and starts a timer Tu with
the time Texpire. If the timer Tu expires, the entry for u is removed. The
expiration timer Texpire is a multiple of the periodical timer Thello.

An attribute determination procedure is invoked (1) after each
received Hello message, and (2) if a neighbor entry is removed due to
expiration. The attribute determination procedure consists of two phases.
In phase 1, the dominator, cluster and cluster-head distance are
determined and in phase 2 the color is determined. We provide two
variants of the first phase.

In the first phase, the node v creates a dominator-candidate list E(v),
which includes each node w of the neighbor table for which hdist(w) <
Rmax. The parameter Rmax limits the cluster radius so that node v will not
choose a dominator that would result in positioning v farther than Rmax
hops from a cluster-head.

In the first variant of this phase, node v also includes itself in the
dominator-candidate list:

() (){ }max)(, RwhdistvNwwvE <∈= +

. (5.1)

In the second variant, node v includes itself only if some direct neighbor
has chosen v as its dominator:

180

()

(){ }
() ()

(){ }

<∈

=∈∃

<∈

=

+

otherwise

RwhdistvNww

udomvvNuif

RwhdistvNww

vE

,

)(,

:,

)(,

max

max

.

 (5.2)

The rest is identical for both variants. From the dominator-candidate list,
node v selects the node w with the highest (color, preference) rating and
sets it as its dominator:

()

())()()()()()(:)(

,)(

uPwPuCwCuCwCvEu

thatsovEwwvdom

≥∧=∨≥∈∀

∈=

.
 (5.3)

After that, it updates its cluster

≠

=
=

vvdomifvdom

vvdomifvA
v

)(,))((

)(,)(
)(

π
π (5.4)

and head-distance attribute

≠+

=
=

vvdomifvdomhdist

vvdomif
vhdist

)(,1))((

)(,0
)(

.
 (5.5)

In the second phase, node v determines its color C(v) by checking the
dominator dom(u) of each direct neighbor u.

=

≠∈∀∨>

=∈∃

=

0)(,

)(:)(:0)(,

)(:)(:,

)(

vNif

vudomvNuuvNif

vudomvNuuif

white

green

black

vC

.

 (5.6)

The difference between the two variants is illustrated in Figure 5.3,
where nodes are marked with letters and P indicates the preference. In the
first variant, node A notices that it has the highest (color, preference) of
the nodes A, B, and C. It selects itself as its dominator. The number of
cluster-heads is reduced in the second variant. Node A again detects that
it has the highest (color, preference) rating. Since no neighbor has
selected A as its dominator, A selects its dominator by comparing the
(color, preference) of B and C. This node, B, becomes a black node. Note
that if we limit the cluster radius with Rmax=1, both variants give the same
results because neither B nor C is eligible.

Figure 5.3. Difference between (a) variant 1 and (b) variant 2.

Black node

Cluster head

Green node

(b)(a)

C. P=3B. P=5

A. P=8

D. P=10

C. P=3B. P=5

A. P=8

D. P=10

181

We further examine a strategy for improving stability by avoiding
moving a node between two clusters. In this Keep-Cluster strategy, a
node v does not include into E(v) any neighbor u for which π(u) ≠ π(v)
unless E(v) otherwise would be empty.

5.7.4 Connecting algorithm

The above clustering algorithm divides the network into clusters so that
every node belongs to exactly one cluster. Within each cluster, the black
nodes form a backbone. To connect clusters together and to form a
backbone spanning the whole network, some nodes operate as bridges.
For each neighboring cluster, one node is selected as a bridge to that
cluster. The bridge is selected so that it is the node that connects the
cluster-heads of the two clusters with the minimum distance. In case of
equal distances, the node with the highest preference is selected.

Since the Hello message contains the field π(v), a node can detect
neighbors belonging to a different cluster. For each neighboring cluster
π(v), an entry (π(v), hdist(v)+1, P(v), v) is inserted into the local routing
table. As π(v) is the address of the cluster-head, this entry thus indicates a
route to the cluster-head in the given cluster. The distance in the routing
table indicates the distance to this cluster-head. In case several entries for
the same cluster π(v) are available, the one with the lowest hdist(v) is
selected, and in case of a draw, the entry with the highest P(v) is selected.

The local routing table is transported toward the cluster-head using
the dv(v) field of the Hello protocol. When a Hello message is received
from a dominatee v, the entries of dv(v) are copied into the local routing
table with the distance increased by one. In case several entries for the
same neighboring cluster are available, the one with the lowest distance
(or highest preference) is selected. The dv(v) field of a Hello message
sent by a node other than a dominatee is ignored.

Figure 5.4: Example of three connected clusters.

As information is passed in only one direction, no loops can appear.
The cluster-head retrieves a routing table with one entry per neighboring
cluster. These are not necessarily the same entries as further down a
branch; a message can follow a shorter route to a neighboring cluster if
such a route is known. The routing tables are used for implementing

Cluster-head
(black node)

Black node

Bridge link (as
seen by the
cluster-head)

Dominator link

Green node

182

different routing models as described in Section 5.7.6. Figure 5.4 shows
an example topology created by the proposed algorithm. A node
connecting a cluster to a neighboring cluster is called a bridge node, and
the link between the bridge node and the corresponding bridge node in
the opposite cluster is called a bridge link.

5.7.5 Simulation

The proposed clustering scheme is simulated in order to verify its correct
operation, to compare the different variants, and to evaluate the properties
of the clustering created by the scheme.

Simulation setup

The N nodes are initially uniformly randomly distributed in the 1000 x
1000 m roaming area. The random waypoint [GP02] mobility model is
used. A node selects a uniformly random speed between 1 m/s and vmax
and a random destination within the roaming area and moves toward this
destination until it is reached. Then the node pauses for a time uniformly
random between 0 s and Twait, whereafter it selects the following
destination.

The simulation includes only the network layer as the physical layer
is assumed to operate on a much faster time scale. A message sent by a
node is received correctly by all nodes within a distance of Z. Hello
messages are sent at Thello=1 s intervals. A node is considered as a
neighbor to all nodes that have received its Hello messages within a
Texpire=2 s interval. Each node has a fixed preference value. This
represents the situation, where the resources change slowly compared to
the simulation time.

Each scenario is simulated Nsim=5 times, each run lasting for
Tsim=600 s, and the results are averaged. The network state is sampled at
1000 evenly spaced instances and the results are averaged. Unless
otherwise mentioned, the default parameter values in Table 5.3 are used.

In the simulations, we measure the percentage of nodes with different
colors and roles. We also measure the stability of each role. Stability is
measured using the average interval between color changes, cluster
changes and head-selections. The average interval is calculated as

e

sim

N

NT
T =

,
 (5.7)

where Ne is the measured number of event, N is the number of nodes and
Tsim is the simulation time.

183

Table 5.3. Simulation parameters and their default values.

Parameter Symbol Default
value

Description

Number of
nodes

N 100 The number of nodes in the network.

Radio
range

Z 300 m The maximum distance between two
nodes considered neighbors.

Network
area

A 1000 x
1000 m

The size of the area within which nodes
are allowed to move.

Cluster
radius
limitation

Rmax 1 The maximum number of links between
a node and its cluster-head.

Hello
interval

Thello 1 s The interval between two consecutive
Hello messages sent by a node.

Hello
timeout

Texpire 2 s The time after which an entry for a
neighbor is removed if no Hello message
has been received.

Maximum
speed

vmax 10 m/s Nodes move with a speed uniformly
random between 0 and vmax.

Maximum
waiting
time

Twait 100 s Nodes wait a time uniformly random
between 0 and Twait before choosing the
following random destination.

Simulation
time

Tsim 600 s The time a simulated scenario is run.

Scenario
repetitions

Nsim 5 The number of times a simulated
scenario is repeated.

Simulation results

In Section 5.7.3 we presented two variants of the clustering algorithm. In
the first variant, a node can select itself as its dominator if it has the
locally highest (color, preference) rating. In the second variant, the node
can select itself only if it has one or several dominatees. Recall, that
selecting itself as a dominator implies becoming a cluster-head. We first
examine the difference between these variants. Figure 5.5 shows the
percentage of black nodes and cluster-heads in both variants under an
increasing Rmax. Note that the number of cluster-heads equals the number
of clusters as each cluster contains exactly one cluster-head. The
difference between the variants is minimal. Figure 5.6 shows the stability,
i.e. the average interval between events. In the second variant, the
stability of cluster-heads is higher, and therefore we choose to use the
second variant in all the following simulations.

In the above simulation we varied the cluster radius limit Rmax, which
indirectly controls the maximum cluster size. The largest difference is
between the values Rmax=1 and Rmax=2. In the case Rmax=1 all black nodes
are cluster-heads, and the curves consequently coincide. For Rmax>1 the
number of clusters is halved and more black nodes are required. The
stability increases with the increased cluster size. A node can keep its
dominator for a longer time as the limitation does not force it to change.

184

However, for Rmax>4 the stability drops as mobility causes long branches
to break more frequently. Increasing the maximum cluster size above
Rmax>2 does not increase the number of black nodes or clusters. It rather
increases the variance in the cluster size, whereas the largest clusters
grow at the same time as the percentage of clusters with a single black
node increases.

Figure 5.5: Node types in comparison of algorithm versions.

Figure 5.6: Stability in comparison of algorithm versions.

Testing the Keep-cluster strategy reveals that it is not practically
useful. While it correctly decreases the interval between cluster changes,
as shown in Figure 5.8, it performs worse in all other aspects. Especially
remarkable is the high percentage of black nodes, shown in Figure 5.7.
This can be explained with a higher probability of selecting a low-
preference node as dominators: a green neighbor becomes a black node
when it is selected as dominator, even though a black node (of another
cluster) is in the neighborhood. The keep-cluster strategy also decreases
the stability of cluster-heads. We do not use this strategy in further
simulations.

0

2

4

6

8

10

12

14

1 2 3 4 5

P
er

ce
nt

ag
e

(%
)

Cluster radius limit

Version 1 - Average percentage of black nodes
Version 2 - Average percentage of black nodes
Version 1 - Average percentage of cluster-heads
Version 2 - Average percentage of cluster-heads

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5

E
ve

nt
 in

te
rv

al
 (

s)

Cluster radius limit

Version 1 - Become cluster-head
Version 2 - Become cluster-head
Version 1 - Change cluster
Version 2 - Change cluster
Version 1 - Change color
Version 2 - Change color

185

Figure 5.7: Node types in Keep-Cluster strategy.

Figure 5.8: Stability in Keep-Cluster strategy.

The advantage of clustering is expected to increase in a network with
a high density of nodes. As a measurement of density, we use the average
degree of a node, i.e. the number of nodes within the radio-range of the
node. The expected average node degree is calculated as

2Z
A

N
D π=

.
 (5.8)

The density can be varied by either varying the radio-range or the number
of nodes in a network of a fixed size. In this work we use the former
approach; simulations using the latter approach can be found in [BKC05].

Figure 5.9 shows the percentage of different node types under an
average degree varying between 0.39 and 19.24. The degree is
accomplished by varying the radio range between Z=50 m and Z=350 m.
The number of nodes is N=50 and the maximum speed vmax=20 m/s. In
this and the following simulations Rmax=1. When the density is low
(Z ≤ 150 m), the large percentage of white nodes indicates that many

0

5

10

15

20

25

30

35

40

1 2 3 4 5

P
er

ce
nt

ag
e

(%
)

Cluster radius limit

No keep-cluster - Average percentage of black nodes
No keep-cluster - Average percentage of cluster-heads
Keep-cluster - Average percentage of black nodes
Keep-cluster - Average percentage of cluster-heads

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5

E
ve

nt
 in

te
rv

al
 (

s)

Cluster radius limit

No keep-cluster - Become cluster-head
Keep-cluster - Become cluster-head
No keep-cluster - Change cluster
Keep-cluster - Change cluster

186

nodes are isolated and the network is disconnected. The fraction of black
nodes is less than 30% in most connected networks and less than 20% in
dense networks. About half of the black nodes are cluster-heads in dense
networks. A typical cluster contains one cluster-head, one other black
node and eight green nodes when D=10. Figure 5.10 shows an example
of the clusters generated.

Figure 5.9: Node types in networks of varying density.

Figure 5.10: Example screenshot with added cluster borders.

Figure 5.11 shows that the stability increases as the network becomes
dense. Black nodes are more stable than other nodes, and cluster-heads
are more stable than other black nodes. A node that has become a cluster-
head remains a cluster-head for a fairly long time despite the changing
topology. Thus, the cluster-head is suitable for storing index data and
maintaining routing responsibility. Figure 5.12 shows that the average

0

10

20

30

40

50

60

70

80

90

100

50 (0.39) 100 (1.57) 150 (3.53) 200 (6.28) 250 (9.82) 300 (14.14) 350 (19.24)

P
er

ce
nt

ag
e

(%
)

Radio range (m), (average degree)

Average percentage of black nodes
Average percentage of cluster-heads
Average percentage of green nodes
Average percentage of white nodes

187

cluster is slightly larger than the average number of neighbors in the
neighbor information table (NIT). As the density increases, this
difference becomes smaller. The average size of the distance vector (DV)
table of the nodes is fairly constant as the number of neighbor clusters
remains the same.

Mobility does not affect the distribution of node types, as shown in
Figure 5.13. In this simulation, N=50 nodes with a fixed radio range
Z=200 move with a uniformly random speed between 0 m/s and the
maximum speed vmax, which is varied. As expected, the stability shown in
Figure 5.14 decreases with increasing mobility.

Figure 5.11: Stability in networks of varying density.

Figure 5.12: Average cluster size and size of the DV and NIT tables.

0

50

100

150

200

250

300

350

400

50 (0.39) 100 (1.57) 150 (3.53) 200 (6.28) 250 (9.82) 300 (14.14) 350 (19.24)

A
ve

ra
g

e
in

te
rv

al
 b

et
w

ee
n

ev
en

ts
 (

s)

Radio range (m), (average degree)

Become black
Become cluster-head
Change cluster
Change color
Change dominator

0

5

10

15

20

25

50 (0.39) 100 (1.57) 150 (3.53) 200 (6.28) 250 (9.82) 300 (14.14) 350 (19.24)

N
um

be
r

of
 n

od
es

Radio range (m), (average degree)

Average cluster size
Average DV size
Average NIT size

188

Figure 5.13: Node types under varying mobility.

Figure 5.14: Stability under varying mobility.

5.7.6 Routing and service discovery based on clustering

The black nodes form a CDS within a cluster. Together with the bridge
nodes, the black nodes form a CDS spanning the whole network.
Broadcasting a message along the backbone reaches all nodes in the
network. This backbone broadcast can replace flooding in routing
protocols to minimize overhead. A backbone broadcast in a link-state
routing protocol provides the same routes as in normal flooding. Using a
distance vector protocol or a reactive protocol results in routes following
the backbone instead of the shortest routes. The reason is that a route
generated by a distance vector routing protocol follows the route that the
update packet has traversed. This may be a desired property as the
backbone nodes have a higher capacity and stability.

Alternatively, a routing approach similar to [DSB97] can be used. In
this approach, cluster-level source routing is used. The packet is routed
by a bridge node to the bridge node that connects the current cluster to
the following cluster on the route. Information about the bridges and
neighboring clusters is proactively distributed by the cluster-head to all

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40 45

P
er

ce
nt

ag
e

(%
)

Maximum speed (m/s)

Average percentage of black nodes
Average percentage of cluster-heads
Average percentage of green nodes
Average percentage of white nodes

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45

A
ve

ra
g

e
in

te
rv

al
 b

et
w

ee
n

ev
en

ts
 (

s)

Maximun node speed (m/s)

Become black
Become cluster-head
Change cluster
Change color
Change dominator

189

bridges in the cluster. Alternatively, the bridge queries the cluster-head
for the information. In order to form the source route, the cluster of the
destination node and the topology of clusters must be known. This
information is proactively maintained. The proactive protocol is
controlled by the cluster-heads. Each node sends its link state updates to
the cluster-head, which determines which updates to distribute along each
sub-tree of the backbone.

In addition to traditional unicast and broadcast, we propose in
[BKC05] a set of routing models based on the cluster structure. The most
important routing models and their example use cases are summarized in
Table 5.4 and presented in the following.

Local head unicast is implemented by repeatedly forwarding a
message to the dominator until the cluster-head is reached. Unicast
usually requires a return path. The return path can be stored as state
information in the intermediate nodes as the message is forwarded.

In a head broadcast, the message is forwarded to all cluster-heads in
the network. It utilizes the fact that a cluster-head has routes to all
neighboring clusters and their cluster-heads. The message is first
forwarded to the local cluster-head using repeated forwarding to the
dominator. The message is then flooded at the cluster-level until it has
reached all cluster-heads. In this flooding process, a cluster-head must
remember the identity of a packet that has been seen earlier.
Alternatively, a list of the traversed clusters can be included in the
message. The list contains the addresses of the corresponding cluster-
heads. A bridge node can detect and discard a packet that is entering the
same cluster again as it recognizes its own cluster-head’s address in the
list.

In a local backbone broadcast, a message is forwarded by all black
nodes in a cluster. Each black node repeats a message that (1) has not
earlier been received, and (2) is received from a node in the same cluster.

In a backbone broadcast, a message is forwarded by all black nodes
and all bridge nodes. Each black node and bridge node repeats a message
that has not earlier been received.

A backbone broadcast can generally replace flooding both in reactive
and proactive routing protocols. Combining a local backbone broadcast
and head broadcast allows using two hierarchical levels in routing and
service discovery. For example, a local backbone broadcast can be used
in a proactive routing protocol used within a cluster, which is
complemented by reactive inter-cluster routing based on a head
broadcast. A local head unicast is useful for centralized services within a
cluster. For example, a node can reactively query its cluster-head for a
route that is based on information collected by a proactive routing
protocol running between the cluster-heads.

190

Table 5.4. Routing models based on the cluster structure.

Name Reaches
cluster-
head in
local
cluster

Reaches
cluster-
head in
other
clusters

Reaches
all black
nodes in
local
cluster

Reaches
all black
nodes in
other
clusters

Example use cases

Local head
unicast

Yes No No No Local centralized
directory

Head
broadcast

Yes Yes No No Inter-cluster
routing protocols

Local
backbone
broadcast

Yes No Yes No Intra-cluster
routing protocols

Backbone
broadcast

Yes Yes Yes Yes In routing protocols
for replacing
flooding

In service discovery, the cluster-heads maintain service directories.

The service directories benefit from the stability of the cluster-head. The
cluster-head is a node with the locally highest capacity and/or lowest
mobility. The role of the cluster-head is fairly stable and the routes
toward the cluster-head follow nodes with high capacity. We provide a
proactive and a reactive approach for service discovery. In the former
approach, a service provider publishes its service description to all
cluster-heads in the network using a head broadcast. A service requester
queries its own cluster-head using a local head unicast when the service
is desired. In the reactive approach, the service provider sends its service
description to its local cluster-head using a local head unicast. The
service description is not forwarded. Instead, a service requester
broadcasts the service query is to all cluster-heads with a head broadcast.
The search/index ratio determines which approach is most suitable.

5.8 Summary

This chapter studied resource discovery in an ad hoc network formed
between consumer devices, which are assumed to have highly varying
capacity and mobility. We noticed that the least mobile nodes typically
have the highest capacity. We presented two approaches for structuring
the network into a virtual backbone consisting of high-capacity low-
mobility nodes. In our first approach, nodes are divided into two classes
(smart nodes and dummy nodes) primarily based on local properties but
also observing surrounding devices. A backbone is constructed by
interconnecting smart nodes. The weakness of this approach is the lack of
control over the density of smart nodes and the resulting need to
interconnect islands of smart nodes.

Our second approach is based on clustering. The proposed clustering
algorithm ensures that every node has a backbone node as a neighbor and
that all clusters are interconnected through bridges. The algorithm
continuously maintains the clusters without requiring separate phases for

191

construction and maintenance. The algorithm is simple and it uses a
single periodically sent message. The overhead is fairly low and the Hello
message can be piggybacked in other traffic. The load is constant and
predictable. Local changes do not lead to global restructuring.

Once the backbone is available, by using either of the algorithms, it
can be used for service discovery and routing. The backbone nodes,
having a higher capacity and a lower mobility, are suitable for
maintaining service directories. Moreover, the overhead of flooding can
be reduced by distributing a message over the backbone. For our second
algorithm we presented methods for routing to specific types of nodes in
the clustered network, for example, to all cluster-heads. The cluster-head
stores centralized information about its cluster and each node in the
cluster has a route available to the cluster-head. The cluster-head can
therefore serve as a service directory or as a connection point between
proactive and reactive routing.

192

Chapter 6

Conclusions

In this chapter, we present an overview of the results and summarize the
contributions. We suggest topics for future research.

6.1 Results and discussion

The choice of architecture for a resource discovery system depends on
several requirements set by the application and the network environment:

• The type of supported queries. If the application only requires exact-
match single-key queries, or if the queries are simple structured
combinations of these, the obvious choice is a structured system. If
the application must be able to support all types of queries, or if the
data types and the query format are not known a priori, an
unstructured or loosely structured system is a better choice.

• Determinism. Many types of distributed applications such as social
networks, collaboration and information retrieval applications require
deterministic behavior. The system must then be able to locate a
requested resource if this resource exists. If determinism is not
needed, for instance in ordinary file sharing with well-replicated files,
probabilistic search methods are sufficient, or the search scope can be
limited using a TTL. However, guarantees for finding a requested file
may be desirable in file sharing as well.

• Load allocation. The best network-level efficiency is achieved with
centralized index nodes. Therefore, we recommend as high a degree
of centralization as feasible. However, the centralized nodes need a
high capacity. Furthermore, the users maintaining the centralized
nodes need a motive for providing more capacity to the system than
other users do. Such scenarios appear when an external service
provider offers a commercial service. When all nodes have similar
capacity and are maintained by ordinary users, the load must be
evenly distributed between the participating nodes.

193

• Topological restrictions. In some situations the overlay topology is
determined or restricted by external factors. For example, an inability
to maintain links between all participating parties limits the usability
of architectures likes PIC and PSC. In a social network, the users’
social contacts form a topology, which can be used as the overlay
topology directly. In ad-hoc networks, it is preferred to use an overlay
topology that closely follows the physical topology.

In this work, we have focused on architectures that are deterministic
and support complex queries. Structured systems have not been covered
by this work. When nodes with a higher capacity are available, we have
taken a more centralized approach while otherwise the goal has been to
distribute the load evenly. In the studied cases, we have encountered
various restrictions regarding the overlay topology. These have affected
the architectural choices.

Most of today’s architectures are reactive. Indexing is often limited
to a small set of centralized nodes, such as super-nodes, which must
handle most of the load. In several situations, it is desirable that all nodes
participate in indexing, whereas the load is equally divided between the
nodes. Such uniform indexing architectures are still rare. The few
existing architectures include PIC and PSC. While indexing lowers the
search costs, it introduces indexing costs. So far, not much research has
been spent on examining how to balance between indexing and
searching, i.e. between proactive and reactive operations.

In Section 2.5 we proposed the Search/Index Space model. This
model allows studying the tradeoff between reactive and proactive traffic.
With the Search/Index Space model we can show that in many practical
scenarios, the lowest total traffic is obtained when a certain degree of
indexing is used. This optimal balance between searching and indexing
depends on the ratio r between the frequencies of search messages and
index updates. According to (2.34), fully reactive algorithms, despite
their popularity today, are only optimal for the marginal case when
r ≤ Ωi/NΩs in an N-node network. Here, Ωi denotes the index distribution
overhead, and Ωs denotes the search distribution overhead. In typical
flooding-based search algorithms Ωs ≈ 5. Index distribution algorithms
like Direct Index achieve good efficiency with Ωi ≈ 1. Therefore, a
traditional flooding-based architecture such as Gnutella is feasible for
r ≤ 1/5N. At the opposite extreme, a fully proactive architecture, such as
Direct Index, is optimal when r ≥ NΩi/Ωs according to (2.35). Using a
value of Ωi ≈ 1, this architecture is optimal when r ≥ N/5. Contrary to
flooding, the overhead in Direct Index is independent of the node degree,
which is beneficial in cases such as social networks.

In situations other than in these extremes, i.e. for Ωi/NΩs ≤

r ≤ NΩi/Ωs, it is optimal to combine proactive and reactive operations.
Such hybrid architectures are particularly beneficial in large networks.
PIC and PSC are hybrid architectures whose traffic can be minimized
with an optimally selected cluster size. The optimal cluster size calculated
by the Search/Index Space model is given by (2.32) for PSC and (2.33)
for PIC. While being efficient, these architectures suffer from two major
disadvantages: (1) full connectivity between clusters is required, and (2)

194

the topology is difficult to construct and maintain in a practical network
so that optimality is preserved.

The first disadvantage is tackled by the IPIC architecture proposed in
Section 3.4. For this architecture two new deterministic search methods
were provided: Stack-Based Random Walk (SBRW) and Replicating
Stack-Based Random Walk (RSBRW). The IPIC architecture does not
require full connectivity between clusters. It avoids the exponential
growth of state information when the network size grows. The drawback
of IPIC is a slight performance degradation: depending on whether
SBRW or RSBRW is used, either the message overhead or the delay
increases. For PSC, we have not found a feasible alternative that would
allow an arbitrary cluster topology.

While clustered architectures such as PIC, PSC and IPIC provide
good performance, their adaptability to changing network conditions is
low. Clusters are relatively static. To solve this problem, we developed an
approach with overlapping “clusters”, called zones. The Zone Indexing
architecture presented in Section 3.5 provides an overhead similar to PIC
and PSC with controlled delay bounds. It is based on a mindset similar to
the Zone Routing Protocol, which combines proactive and reactive
routing in ad hoc networks. As Zone Indexing automatically measures the
traffic, it avoids the problem of approximating the search/index ratio r.
The complexity of Zone Indexing is higher than the complexity of PIC
and PSC due to the zone size control but, on the other hand, a
corresponding mechanism for adjusting cluster size in PIC and PSC
would increase the complexity of these architectures as well. As Zone
Indexing can use any ring topology, it could be used to supplement Chord
with complex queries using the same ring.

We found that the optimal scalability of a uniform system supporting
complex queries is O(N). This can be achieved with PIC, PSC and
Zone Indexing. As today’s commonly used unstructured systems provide
a scalability of O(N), the improvement is significant. However, the ability
to support complex queries comes at the cost of not being able to achieve
the O(log N) scalability of structured systems.

Our questionnaire studies in Section 4.4 provided an overview of the
behavior and opinions of users regarding peer-to-peer services. One of
the most important observations was that users want to limit the access to
given types of resources to people they know. The more personal the
content is, the lower the number of people that are allowed to access the
content. A similar tendency is observed in searching: people are more
interested in accessing files made by the people they know. The cost of
sharing as well as legal restrictions may reduce the willingness to share
also content that is less personal and commonly available. The studies
support our assumption that there is a need for group support in resource
sharing applications. Group support and access control are not found in
today’s peer-to-peer systems, which publish resources to everybody.
Group support is motivated especially in the mobile environment, as a
major portion of the resources created on phones are personal in nature
and the cost of sharing (measured in bandwidth, battery consumption and
money) is higher.

195

Support for groups can be implemented in both an operator-
controlled and a completely distributed environment. The centralized
control in the former allows several models for group managements to be
implemented. However, in a completely distributed scenario, the lack of
central control complicates role-based and collaborative group
management. For that reason we developed a distributed group
management method based on the user’s contacts. The group is implicitly
formed by merging each member’s local view.

In an operator controlled environment, it is advisable to transfer the
bulk of the load to the fixed network. The resource sharing service is
supported by fixed servers that are interconnected with each other. The
architecture is consequentially hierarchical with the mobile device
connected to a server as a client. Practically any peer-to-peer architecture
can be used to interconnect servers. The simplest but least efficient
topology is a random topology, leading to a semi-centralized architecture.
A loosely structured topology, such as PIC, PSC, or Zone Indexing
provides better performance and a lower overhead. However, in a
commercial environment, the technical performance is not the only
criteria. The architecture must be compatible with the inter-operator
agreements, the charging schemes, and the control requirements of the
operator, and guarantee non-disclosure of customer and network
information. The architecture must ensure that the indices are contained
within the operator’s network. Because of these demands, we propose
using IPIC in the upper hierarchical layer.

When operator support is unavailable or not desired, a peer-to-peer
network can be formed between the mobile devices directly. As the
resources are limited, centralized points among these devices must be
avoided. Architectures based on flooding are robust and resilient albeit
very inefficient. The PIC and PSC architectures provide good
performance but are not suitable because of their lack of an automatic
cluster maintenance mechanism. On the other hand, Zone Indexing has
been designed to minimize the overhead and to automatically optimize
the performance while maintaining the topology.

An overlay built on top of a social network provides an interesting
alternative. One approach is to use a completely proactive architecture,
which is feasible when searches are frequent compared to index updates.
We presented Direct Index – a proactive architecture suitable for groups
of moderate size. The update load of Direct Index is proportional to the
group size and is independent of the node degree, which is beneficial in
social networks with a typically high node degree. The proactive
approach generates a minimal search load since searches are local and
need only a single roundtrip for confirming the results. It allows the use
of policies to control distribution and access.

As SIP is supported natively in IMS networks, we consider using SIP
for resource discovery. Particularly valuable in current networks is the
ability to route peer-to-peer signaling via SIP servers in the fixed
network, allowing firewalls and NATs to be traversed. The extensions
needed for index publication and searching are easy to implement. We
presented two different approaches. However, the limitations found in

196

current SIP stacks prevent implementing some functions in a way that
corresponds to the ideology of the protocol. Therefore workarounds were
required in the prototype implementations.

The prototype implementations showed that the capacity and the
network capabilities of modern cellular phones are adequate for peer-to-
peer software. The user perceived experience is mainly affected by the
user interface and the network constraints. The bandwidth currently
restricts the downloading of large media files, but is adequate for
exchanging songs, photos and text files. Large media files can be
accessed using streaming, allowing the file to be viewed before it is
completely downloaded. These limitations are not specific to peer-to-
peer. Provided that an appropriate architecture is selected, current cellular
phones do not set noticeable technical limitations on resource discovery.

The studied ad hoc networks are assumed to be formed by wireless
consumer devices with varying capacity and mobility. We utilize the
capacity heterogeneity in making service discovery and routing efficient.
We observed an inverse relationship between mobility and capacity,
allowing us to abstract the capacity and the mobility into a preference
value. Based on this observation we select the devices with the highest
capacity and the lowest mobility to form a virtual backbone. This
backbone assists the other nodes by performing heavier tasks and storing
information.

We took two different approaches in categorizing the devices and
forming the backbone. In the first approach, devices are divided into two
classes (smart nodes and dummy nodes) according to independent
choices by the nodes. Smart nodes connect to neighboring smart nodes.
In this approach, it is difficult to control the density of smart nodes.
Virtual links are therefore necessary to interconnect islands of smart
nodes when the density is low. It is also difficult to guarantee that the
backbone remains connected.

The second approach creates the backbone using clustering. It
ensures that every node has a backbone node as a neighbor and that all
clusters are interconnected through bridges. Nodes are categorized into
three classes: cluster-heads, backbone nodes (black nodes) and ordinary
nodes (green nodes). In many situations, it is worth sacrificing some extra
forwarding hops in order to concentrate the load on high-capacity nodes.
Therefore, the resulting clusters can have a diameter larger than two hops
when it is justified by the location of high-capacity nodes. The number of
clusters is consequently smaller than in many similar algorithms. The
maintenance of the clustering is continuous without separate phases for
construction and maintenance. The algorithm uses a single periodically
sent message that can be piggybacked in other messages.

Constructing a service discovery system for an ad hoc network
requires (1) allocating service directories to powerful nodes and (2)
connecting service directories together with an overlay. In our approach,
service directories are maintained by the backbone nodes (smart nodes or
cluster-heads), which have a higher capacity and better stability. Any
overlay could be used to connect the service directories. However,
overlays designed for fixed networks are ill-suited for ad hoc networks as

197

the mismatch between the physical network and the overlay topology has
more severe consequences in the ad hoc network. A virtual backbone
following the physical topology provides a more efficient overlay. Both
proposed algorithms connect service directories via high-capacity nodes.

We argue that in most situations it makes sense to combine proactive
and reactive routing. The different routing approaches operate on
different hierarchical layers. A virtual backbone allows dividing nodes
into two layers: the backbone nodes on the higher layer and the other
nodes on the lower layer. For clustering the hierarchical division is even
more evident: the intra-cluster operation on the lower layer and the inter-
cluster operation on the higher layer. A virtual backbone and clustering
can be seen as dual problems: a virtual backbone connects clusters
together, and clustering allocates a backbone node to every non-backbone
node. If a backbone of stable nodes is available, a proactive routing
protocol can be run globally over this backbone. The non-backbone
nodes use a reactive routing protocol locally to access the proactive
routing information of a nearby backbone node. The roles can also be
exchanged: the proactive protocol operates within a cluster and the
reactive protocol uses the backbone for remote destinations. This
approach is rather similar to ZRP, but with disjoint clusters.

6.2 Summary of contribution

This work has studied resource discovery architectures where indexing is
utilized to reduce the search overhead. The architectures are limited to
those supporting complex queries and deterministic search.

The work has focused on architectures providing uniformly
distributed load. To model such architectures we proposed the
Search/Index Space model. We applied the model to determine the
optimal level of index distribution. This includes determining the optimal
cluster size in PIC and PSC. The model was also used to determine when
a completely reactive or a completely proactive solution is optimal. To
support the design and analysis, the work specified a set of desired
properties and metrics and provided modeling of update frequencies,
overhead and centralization. A new simulator called PONGsim was
developed.

This work proposes three novel architectures. Firstly, we extended
the PIC architecture by allowing clusters to be connected with an
arbitrary cluster topology. This requires a new search algorithm, which
we call Stack-based Random Walk (SBRW), operating on the cluster-
level. To reduce the delay associated with random walks, we proposed
replication of the walker in the Replicating Stack-based Random Walk
(RSBRW). Secondly, we proposed a new architecture called Zone
Indexing, which allows the balance between reactive and proactive
operations to be dynamically maintained at an optimal level. The network
allows nodes to join and leave without the need to restructure the
network. We proposed an algorithm to automatically maintain an optimal
zone size. Shortcuts were introduced in order to reduce delay. We
proposed a method for overlay maintenance under heavy churn. Thirdly,

198

we proposed a fully proactive architecture, called Direct Index. This
architecture is more efficient than flooding due to the proactively
available information. It is suitable for specific scenarios, such as a
decentralized social network.

We studied how resource sharing systems can be implemented in
cellular networks. We performed four user surveys to examine the
feasibility of resource sharing in mobile networks from the user’s
perspective. The user studies examined questions such as the willingness
to distribute and obtain different types of resources. Access control turned
out to be one of the most requested features in a resource sharing
network. We studied the application of various architectures to an
operator controlled resource sharing service as well as a completely
distributed resource sharing platform. We suggested how access control
and groups can be implemented. In particular, we proposed a fully
decentralized system supporting groups for controlling resource access.
We developed two schemes for using SIP-based signaling in peer-to-peer
systems. Finally, we examined the technical limitations of the device and
the network. By developing and testing prototypes we proved that the
concept works technically. The tests included both the operator-
controlled and the fully distributed model. It was observed that NATs and
firewalls are the main challenges in a practical deployment.

We studied ad-hoc networks formed of consumer devices with highly
varying capacity and mobility. We proposed categorizing devices
according to their capacity and mobility, and forming a virtual backbone
of the devices with high capacity and low mobility. We proposed two
methods for node categorization and backbone construction. The first
interconnects groups of high-capacity nodes via low-capacity nodes. The
second forms clusters centered around high-capacity nodes and connects
these clusters together through bridges. We presented how the virtual
backbone can be used in resource discovery and routing.

The main contributions are the following:

1. the Search/Index Space model,
2. the IPIC architecture and the related SBRW and RSBRW search

algorithms,
3. the Zone Indexing architecture and the related zone adjustment, delay

control and topology maintenance algorithms,
4. the Direct Index architecture,
5. results of user studies based on surveys,
6. access control and group management methods,
7. deployment scenarios for resource discovery in a cellular network,
8. signaling schemes based on SIP,
9. prototype implementations of resource discovery systems in cellular

networks,
10. two algorithms for creating overlays in ad hoc networks, and
11. a simulator for evaluating the performance of overlay networks.

199

6.3 Future research

The work has focused on deterministic resource discovery supporting
complex queries. This covers only a part of the possible architectures.
Where determinism is not needed, a large range of probabilistic systems
can be used. Especially determining the suitable amount of replication
becomes interesting in such systems. For systems not requiring complex
queries, structured systems are feasible. A lot of research on structured
systems is currently ongoing. Especially the support of certain types of
complex queries in structured systems is a promising research area. A
large fraction of the resource discovery systems are likely to be based on
structured systems. However, we find it improbable that every possible
system will be structured. Similarly, in computer programs data
structures such as trees and hash tables have not replaced the linked list
and the array. Instead, it is feasible to combine structured and
unstructured components, which opens up new research areas.

Between structured and unstructured systems, there is a large gap that
we have been examining. Our research looks at only a part of the
different solutions possible by adding some structure to an unstructured
system without limiting searches to exact-match single-key queries. As
the Zone Indexing architecture shows, we can rearrange links in new
ways to obtain systems with interesting properties, especially in terms of
handing dynamic node membership. Considering churn is important in
the system design as the churn rate largely determines the index update
interval and the overhead of the structure maintenance.

An important design parameter is the degree of centralization. In
particular, if the devices have a widely varying capacity, how can load be
allocated according to the available capacity? This becomes challenging
considering both the indexing and the search load.

We fundamentally base the balance between proactive and reactive
operations on the search/index ratio r. However, to better be able to
analyze practical systems, we need to know the search/index ratios of
various existing systems. Finding these is challenging because the search
frequency varies widely between applications and searches are performed
in bursts. The index frequency depends on several system parameters,
most importantly on the churn rate of the system but also on the user
behavior. The possibility to advertise several resources in the same
message and the user adding multiple resources (e.g. a directory of files)
simultaneously complicates the evaluation. In systems such as PIC and
PSC, the search/index ratio must be known in order to divide nodes into
clusters optimally. The inability of determining this ratio may be a
obstacle in motivating the development of new hybrid proactive-reactive
architectures. Zone Indexing solves the problem by automatically
adjusting to the current ratio.

So far we have not made an effort to model the performance of IPIC
using the Search/Index space model. The modeling of IPIC-SBRW is
rather straightforward while the modeling of the RSBRW search method
becomes more challenging due to the replications.

200

We provided an algorithm for adjusting the zone size in a Zone
Indexing network. The provided algorithm is sufficient for moderate
changes in zone size but slow if all nodes join simultaneously. The
algorithm can be improved using control theory. It is however important
to reduce oscillations and quick variations as these create redundant index
information. The influence of replication in a Zone Indexing network has
not been examined. Replication can allow reduced search delays and
overhead as a search can be interrupted when a sufficient number of
resources have been found. Also expanding ring searching can be applied
to Zone Indexing. Generally, the effect of replication could be analyzed
in the general case using extensions to the Search/Index Space model.

The Zone Indexing architecture has been evaluated using
simulations. In order to evaluate the architecture in practice, we aim to
implement a large-scale prototype running, for example, in PlanetLab
[PlanetLab]. Integration with an existing file sharing application would
allow evaluating the real benefit of hybrid systems, as the search/index
ratio is based on actual user behavior. Similarly, we aim to test the Direct
Index approach with users in order to evaluate the user experience of
group based sharing and to examine the group sizes and social topologies
forming the base for sharing. For the operator-controlled scenarios, it
would be interesting to obtain input from operators. In general, for
resource sharing applications in the cellular network it is necessary to
evaluate the commercial possibilities and obstacles. On the application
level, the prototyping of distributed versions of common centralized
applications, such as social network (e.g. similar to Facebook) and media
sharing (e.g. similar to YouTube) reveals the feasibility both from
technical and from commercial perspective.

Routing protocols, as long as they have been automatic, have been
proactive. Only with the introduction of ad hoc networks, the reactive
approach has become interesting. While considerable efforts have been
spent on developing proactive and reactive routing protocols, only a few
approaches have tried to combine the two concepts. Even less research is
spent on analyzing the optimal balance between proactive and reactive
operations. We presented a discussion on applying the Search/Index
Space model to ad hoc networks. The optimal balance between reactive
and proactive routing in ad hoc networks could be examined in detail
with a similar model. This model may become complex or inaccurate as
it is dependent on the physical topology and on the used routing methods.

While the large-scale combination of reactive and proactive
operations in both routing and service discovery is still uncommon, it
seems that both areas could benefit largely from a hybrid approach. The
same kind of problem can be found in other areas, such as in
publish/subscribe systems, web-caching and content distribution
networks. The techniques of combining proactive and reactive operations
may find fruitful applications in several systems outside routing and
service discovery.

201

References

[AHP02] A. Arora, C. Haywood, K. S. Pabla, “JXTA for J2ME -
Extending the Reach of Wireless with JXTA Technology,”
in JavaOne Conf., 2002.

[AJ07] F. Audet, C. Jennings, Network Address Translation (NAT)

Behavioral Requirements for Unicast UDP, RFC 4787,
January 2007.

[ALP+01] L. A. Adamic, R. M. Lukose, A. R. Puniyani, B. A.
Huberman, “Search in Power-Law Networks,” in Physical

Review E, vol. 64, issue 4, 2001.

[ANS05] A. Adams, J. Nicholas, W. Siadak. Protocol Independent

Multicast - Dense Mode (PIM-DM): Protocol Specification

(Revised), RFC 3973, January 2005.

[AP00] A. D. Amis, R. Prakash. “Load-Balancing Clusters in
Wireless Ad Hoc Networks,” in Proc. 3rd IEEE Symp. on

Application-Specific Systems and Software Engineering

Technology (ASSET'00), pp. 25-32, March 2000.

[AS04] S. Androutsellis-Theotokis, D. Spinellis, “A survey of peer-
to-peer content distribution technologies,” in ACM

Computing Surveys (CSUR), vol. 36, no. 4, pp. 335-371,
December 2004.

[AWD04] M. Abolhasan, T. Wysocki, E. Dutkiewicz, “A review of
routing protocols for mobile ad hoc networks,” in Ad Hoc

Networks, vol. 2, 1–22, 2004.

[AX02] A. Andrzejak, Z. Xu, “Scalable, efficient range queries for
grid information services,” in Proc. 2nd IEEE Int. Conf. on

Peer to Peer Computing, pp. 33-40, September 2002.

[BA99] A.-L. Barabási, R. Albert, “Emergence of Scaling in
Random Networks,” in Science, vol. 286, no. 5439, pp.
509-512, October 1999.

[Bas99] S. Basagni, “Distributed and mobility-adaptive clustering
for multimedia supporting multi-hop wireless networks,” in
Vehicular Technology Conf. 1999 (VTC 1999), vol. 2, pp.
889-893, 1999.

[BAS+04] A.R. Bharambe, M. Agrawal, S. Seshan, “Mercury:
supporting scalable multi-attribute range queries,” in Proc.

2004 conf. on Applications, technologies, architectures, and

protocols for computer communication, pp. 353-366, 2004.

202

[BCF+03] B. Bakos, G. Csucs, L. Farkas, J. K. Nurminen, “Peer-to-
peer protocol evaluation in topologies resembling wireless
networks - An experiment with Gnutella query engine,” in
Proc. 11th IEEE Int. Conf. on Networks, 2003 (ICON2003),
pp. 673-680, September-October 2003.

[Bei04] N. Beijar, Telephony Routing with Support for Number

Portability in Interconnected Circuit and Packet Switched

Networks, Licentiate thesis, Helsinki University of
Technology, 2004.

[Bei07a] N. Beijar, “Extending Parallel Index Clustering for Multi-
Operator Mobile Peer-to-Peer Services,” in The 4th IEEE

Int. Conf. on Broadband Communications, Networks, and

Systems, IEEE Broadnets 2007, ISBN 978-1-4244-1432-1,
pp. 415-422, Raleigh, North Carolina, USA, 2007.

[Bei07b] N. Beijar, “Index Distribution in a Group-Based Resource
Sharing Application,” in The 3rd Int. Conf. on

Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom 2007), ISBN 978-1-4244-
1318-8, pp. 345-352, New York, USA, November 2007.

[Bei07c] N. Beijar, Binary protocol for the Direct Index algorithm,
Technical report, 2007.

[Bei09] N. Beijar, Introduction to the Python Overlay Network

Graphical Simulator (PONGsim), Technical report,
Helsinki University of Technology, 2009.

[Bei10] N. Beijar, “Zone Indexing: Optimizing the Balance between
Searching and Indexing in a Loosely Structured Overlay,”
in Computer Networks, vol. 54, issue 12, pp. 2041-2055,
August 2010.

[BFM98] T. Berners-Lee, R.T. Fielding, L. Masinter, Uniform

Resource Identifiers (URI): Generic Syntax, RFC 2396,
August 1998.

[BFN05a] B. Bakos, L. Farkas, J. K. Nurminen, “Phonebook crawler –
search engine for mobile P2P social networks,” in IASTED

Int. Conf. on Databases and Applications, Innsbruck,
Austria, February 2005.

[BFN05b] B. Bakos, L. Farkas, J. K. Nurminen, “Search engine for
phonebook-based smart phone networks,” in Proc. 61st

Vehicular Technology Conf. (VTC’2005), Stockholm,
Sweden, 2005.

[BFN06] B. Bakos, L. Farkas, J. K. Nurminen, “P2P Applications on
Smart Phones using Cellular Communications,” in Proc.

2006 IEEE Wireless Communications and Networking

Conf. (WCNC 2006), Las Vegas, USA, 2006.

203

[BH09] A. Berl, H. de Meer, “Integration of Mobile Devices into
Popular Peer-to-Peer Networks,” in Proc. 5th Euro-NGI,
2009.

[BHP+04] D. Bauer, P. Hurley, R. Pletka, M. Waldvogel, “Bringing
efficient advanced queries to distributed hash tables,” in
Proc. 29th Annu. IEEE Int. Conf. on Local Computer

Networks (LCN’04), pp. 6–14, 2004.

[BitTorrent] BitTorrent, http://www.bittorrent.com/.

[BKC05] N. Beijar, R. Kantola, J. Costa-Requena, “A Lightweight
Clustering Algorithm for Utilizing Capacity Heterogeneity
in Ad Hoc Networks,” in The 4th Annu. Mediterranean Ad

Hoc Networking Workshop, Med-Hoc-Net 2005, Île de
Porquerolles, France, 2005.

[BKC06] N. Beijar, R. Kantola, J. Costa-Requena, “A Lightweight
Clustering Algorithm Utilizing Capacity Hereogeneity,” in
Challenges in Ad Hoc Networking, Edited by K. Al Agha, I.
Guérin Lassous, G. Pujolle, ISBN 0-387-31171-8, Springer,
USA, 2006.

[BKL01] P. Basu, N. Khan, T. D. C. Little, “A Mobility Based Metric
for Clustering in Mobile Ad Hoc Networks,” in 21st Int.

Conf. on Distributed Computing Systems Workshops

(ICDCSW '01), pp. 413-418, April 2001.

[Blo70] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” in Communications of the ACM, vol. 13,
no. 7, pp. 422-426, 1970.

[Bluetooth] Bluetooth Special Interests Group,
https://www.bluetooth.org.

[BM02] A. Z. Broder, M. Mitzenmacher, “Network Application of
Bloom Filters: A Survey,” in Proc. 40th Annu. Allerton

Conf. on Communication, Control, and Computing,
Monticello, IL, October 2002.

[BML+05] N. Beijar, M. Matuszewski, J. Lehtinen, T. Hyyryläinen,
“Mobile Peer-to-Peer Content Sharing Services in IMS,” in
The Int. Conf. on Telecommunication Systems, Modeling

and Analysis 2005, ICTSM2005, Dallas, Texas, USA, 2005.

 [CBK02] J. Costa-Requena, N. Beijar, R. Kantola, “Replication of
routing tables for mobility management in ad hoc
networks,” in The 1st Annu. Mediterranean Ad Hoc

Networking Workshop (Med-Hoc-Net 2002), Chia,
Sardegna, Italy, 2002.

204

[CBK04] J. Costa-Requena, N. Beijar, R. Kantola, “Replication of
Routing Tables for Mobility Management in Ad Hoc
Networks,” in Wireless Networks, vol. 10, no. 4, pp. 367-
375, Kluwer, 2004.

[CDN+05] P. A. Chirita, A. Damian, W. Nejdl, W. Siberski, “Search
strategies for scientific collaboration networks,” in Proc.

2005 ACM Workshop on Information Retrieval in Peer-to-

Peer Networks, pp. 33-40, Bremen, Germany, 2005.

[CG02] A. Crespo, H. Garcia-Molina, “Routing indices for peer-to-
peer systems,” in Proc. 22nd Int. Conf. on Distributed

Computing Systems, pp. 23-32, 2002.

[CG03] B. F. Cooper, H. Garcia-Molina, “SIL: Modeling and
Measuring Scalable Peer-to-Peer Search Networks,” in Int.

Workshop on Databases, Information Systems and Peer-to-

Peer Computing, 2003.

[CG06] B. F. Cooper, H. Garcia-Molina, “SIL: A model for
analyzing scalable peer-to-peer search networks,” in
Computer Networks, vol. 50, issue 13, pp. 2380-2400,
September 2006.

[CGK+04] J. Costa-Requena, J. Gutiérrez, R. Kantola, J. Creado, N.
Beijar, “Network Architecture for Scalable Ad Hoc
Networks,” in The 11th Int. Conf. on Telecommunications

(ICT2004), Fortaleza, Ceará, Brazil, 2004.

[CJ03] T. Clausen, P. Jacquet, Optimized Link State Routing

Protocol (OLSR), IETF RFC 3626, October 2003.

[CJY+02] D. Chakraborty, A. Joshi, Y. Yesha, T. Finin, “GSD: a
novel group-based service discovery protocol for
MANETS,” in 4th Int. Workshop on Mobile and Wireless

Communications Network, pp. 140-144, September 2002.

[CK08] S. Cheshire, M. Krochmal, DNS-Based Service Discovery,
IETF Internet Draft, draft-cheshire-dnsext-dns-sd-05.txt,
Work in progress, September 2008.

[CKB05] J. Costa-Requena, R. Kantola, N. Beijar, “Incentive
Problem for Ad Hoc Networks Scalability,” in Int. Conf. on

Networking and Services (ICNS'05), Papeete, Tahiti, French
Polynesia, 2005.

[CL02] F. Chung, L. Lu, “The average distances in random graphs
with given expected degrees,” in Proc. National Academy

of Sciences, vol. 99, no. 25, pp. 15879-15882, December
2002.

[Clip2] Clip2 Distributed Search Solutions, The Gnutella protocol

specification v0.4, http://www.stanford.edu/class/cs244b/
gnutella_protocol_0.4.pdf (retrieved 27.8.2010).

205

[CLG+04] A. Crainiceanu, P. Linga, J. Gehrke, J. Shanmugasundaram,
“Querying peer-to-peer networks using P-trees,” in Proc.

7th Int. Workshop on the Web and Databases, Paris, France,
pp. 25-30, 2004.

[CLR+01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,
Introduction to Algorithms, 2nd Edition, MIT Press and
McGraw-Hill, ISBN 0-262-03293-7, 2001.

[CMJ07] B. Campbell, R. Mahy, C. Jennings, The Message Session

Relay Protocol (MSRP), IETF RFC 4975, September 2007.

[Cos07] J. Costa-Requena, A Hybrid Routing Approach for Ad Hoc

Networks, Doctoral dissertation, ISBN 978-951-22-8910-3,
Helsinki University of Technology, Espoo, 2007.

[CRB+03] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S.
Shenker, “Making Gnutella-like P2P Systems Scalable,” in
Proc. 2003 conf. on Applications, technologies,

architectures, and protocols for computer communications,
ACM Press, ISBN 1-58113-735-4, pp. 407-418, New York,
NY, USA, 2003.

[CRS+02] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, D.
Gurle, Session Initiation Protocol (SIP) Extension for

Instant Messaging, IETF RFC 3428, December 2002.

[CS02] E. Cohen, S. Shenker, “Replication Strategies in
Unstructured Peer-to-Peer Networks,” in Proc. of

SIGCOMM ’02, Pittsburgh, USA, 2002.

[CST00] M. Chatterjee, S. K. Sas, D. Turgut, “An on-demand
weighted clustering algorithm (WCA) for ad hoc
networks,” in IEEE Global Telecommunications

Conference 2000 (GLOBECOM '00), vol. 3, pp. 1697-1701,
San Francisco, CA, USA, November-December 2000.

[CVK+06] J. Costa-Requena, T. Vadar, R. Kantola, N. Beijar,
“AODV-OLSR scalable ad hoc routing proposal,” in 1st

Int. Symp. on Wireless Pervasive Computing, 2006.

[DB04] G. Ding, B. Bhargava, “Peer-to-peer file-sharing over
mobile ad hoc networks,” in 2th IEEE Annu. Conf. on

Pervasive Computing and Communications Workshops, pp.
104-108, Orlando, Florida, March 2004.

[DBB+97] B. Das, V. Bharghavan, “Routing in Ad hoc Networks
Using Minimum Connected Dominating Sets,” in IEEE Int.

Conf. on Communications (ICC), 1997.

[DL04] Q. Deng, H. Lv, “Analyzing Unstructured Peer-to-Peer
Search Networks with QIL,” in Proc. 2004 IEEE Int. Conf.

on Services Computing (SCC’04), 2004.

206

[DSB97] B. Das, R. Sivakumar, V. Bharghavan, “Routing in ad hoc
networks using a spine,” in Proc. 6th Int. Conf. on

Computer Communications and Networks, 1997, pp. 34-39,
September 1997.

[Dun] R. Dunlap, Self-Organizing Parallel Search Clusters,
http://www.cc.gatech.edu/~rocky/docs/splitting_parallel_se
arch_clusters.pdf (retrieved 27.8.2010).

[ENK08] P. Ekler, J. K. Nurminen, A. J. Kiss, “Experiences of
implementing BitTorrent on Jave ME platform,” in 5th

IEEE Consumer Communications and Networking Conf.,

2008 (CCNC 2008), pp. 1154-1158, Las Vegas, USA,
January 2008.

[eMule] Official eMule Homepage, http://www.emule-project.net.

[Facebook] Facebook, http://www.facebook.com/.

[Fan08] N. Fan, Mobile Peer-to-Peer Simulator, Master’s thesis,
University of Oulu, Oulu, March 2008.

[FBG+04] P. A. Felber, E. W. Biersack, L. Garcés-Erice, K.W. Ross,
G. Urvoy-Keller, “Data indexing and querying in DHT
peer-to-peer networks,” in Proc. 24th IEEE Int. Conf. On

Distributed Computing Systems, pp. 200-208, 2004.

[FCA+02] L. Fan, P. Cao, J. Almeida, A. Z. Broder, “Summary cache:
a scalable wide-area Web cache sharing protocol,” in
IEEE/ACM Trans. on Networking, vol. 8, no. 3, pp. 281-
293, 2000.

[Fee99] L. M. Feeney, A Taxonomy for Routing Protocols in Mobile

Ad Hoc Networks, SICS technical report T99/07, October
1999.

[Flickr] Flickr, http://www.flickr.com/.

[FML+03] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D.
Moll, R. Rockell, T. Seely, C. Diot, “Packet-level traffic
measurements from the Sprint IP backbone,” in IEEE

Network, vol. 17, no. 6, pp. 6-16, November-December
2003.

[For07] B. Forstner, “Semantic Peer-to-Peer Information Retrieval
for Mobile,” in MDD 2007, Aalborg, Denmark, 2007.

[Freenet] The Freenet Project, http://freenetproject.org/.

[Fring] Fring, http://www.fring.com/.

[GAA03] A. Gupta, D. Agrawal, A. El Abbadi, “Approximate range
selection queries in peer-to-peer systems,” in Proc. 1st

Biennial Conf. on Innovative Data Systems Research, 2003.

207

[GCD04] N. Ganguly, G. Canright, A. Deutsch, “Design of a Robust
Search Algorithm for P2P Networks,” in 11th Int. Conf. on

High Performance Computing, December 2004.

[GFB+04] L. Garces-Erice, P.A. Felber, E.W. Biersack, G. Urvoy-
Keller, K.W. Ross, “Data indexing in peer-to-peer DHT
networks,” in Proc. 24th Int. Conf. on Distributed

Computing Systems, pp. 200-208, 2004.

[giFT] The giFT project, The FastTrack protocol,
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-
FastTrack/PROTOCOL?rev=HEAD&content-
type=text/vnd.viewcvs-markup (retrieved 1.6.2010).

[GJ79] M. L. Garey, D. S. Johnson, Computers and Interactability:

A Guide to the Theory of NP-Completeness, WH Freeman
and Co., San Francisco, 1979.

[GK98] S. Guha1, S. Khuller, “Approximation Algorithms for
Connected Dominating Sets,” in Algorithmica, vol. 20, no.
4, April 1998.

[GM06] M. Garcia-Martin, M. Matuszewski, A Session Initiation

Protocol (SIP) Event Package and Data Format for

Describing Generic Resources, draft-garcia-sipping-
resource-event-package-01, December 2006.

[GMB+06] M. Garcia-Martin, M. Matuszewski, N. Beijar, J. Lehtinen,
A Framework for Sharing Resources with the Session

Initiation Protocol (SIP), draft-garcia-sipping-resource-
sharing-framework-01, Work in progress, December 2006.

[GMS05] C. Gkantsidis, M. Mihail, A. Saberi, “Hybrid search
schemes for unstructured peer-to-peer networks,” in Proc.

24th Annu. Joint Conf. of the IEEE Computer and

Communications Societies (INFOCOM 2005), vol. 3, pp.
1526- 1537, March 2005.

[Gnutella] Gnutella, http://www.gnutella.com/.

[Google] Google, http://www.google.com/.

[GP02] R. Giovanni, S. Paolo, “An analysis of the node spatial
distribution of the random waypoint mobility model for ad
hoc networks,” in Proc. 2nd ACM Int. Workshop of

Principles of Mobile Computing, pp. 44-50, October 2002.

[GPV+99] E. Guttman, C. Perkins, J. Veizades, M. Day, Service

Location Protocol, Version 2, IETF RFC 2608, June 1999.

[GS04] J. Gao, P. Steenkiste, “An adaptive protocol for efficient
support of range queries in DHT-based systems,” in Proc.

12th IEEE Int. Conf. on Network Protocols (ICNP), pp.
239-250, October 2004.

208

[GSG02] K. P. Gummadi, S. Saroiu, S. D. Gribble, “King: Estimating
Latency between Arbitrary Internet End Hosts,” in Proc.

ACM IMW, pp. 5-18, November 2002.

[GT95] M. Gerla, J. Tsal, J. Multicluater, “Mobile, multimedia
radio network,” in ACM-Baltzer Journal of Wireless

Networks, vol. 1, issue 3, pp. 255-265, 1995.

[HDV+03] S. Helal, N. Desai, V. Verma, Lee Choonhwa, ”Konark - a
service discovery and delivery protocol for ad hoc
networks,” in IEEE Wireless Communications and

Networking, 2003 (WCNC 2003), vol. 3, pp. 2107-2113,
March 2003.

[HHB09] E. Harjula, J. Hautakorpi, N. Beijar, “Peer-to-Peer SIP for
Mobile Computing: Challenges and Solutions,” in Mobile

Peer-to-Peer Computing for Next Generation Distributed

Environments: Advancing Conceptual and Algorithmic

Applications, Book chapter, Ed. Seet Boon-Chong, ISBN
978-1-60566-715-7, IG I Publishing, 2009.

[HHH+04] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S.
Shenker, I. Stoica, “Complex queries in DHT-based peer-
to-peer networks,” in Proc. IPTPS, 2004.

[HHL+03] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S.
Shenker, I. Stoica, “Querying the internet with PIER,” in
Proc. 29th int. conf. on Very large data bases, vol. 29, pp.
321-332, 2003.

[HJ98] M. Handley, V. Jacobson, SDP: Session Description

Protocol, IETF RFC 2327, April 1998.

[HJS+03] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, A.
Wolman, “Skipnet: a scalable overlay network with
practical locality properties,” in Proc. 4th conf. on USENIX

Symp. on Internet Technologies and Systems, 2003.

[HKV09] M. Heikkinen, A. Kivi, H. Verkasalo, “Measuring Mobile
Peer-to-Peer Usage: Case Finland 2007,” in Proc. of

Passive and Active Network Measurement Conf. (PAM

2009), pp. 165-174, 2009.

[HN09] M. Heikkinen, J. Nurminen, “Consumer Attitudes towards
Different Aspects of Mobile Peer-to-Peer Services,” in
Proc. of 1st Int. Conf. on Advances in P2P Systems (AP2PS

2009), Accepted for publication, October 2009.

[How03] R. Howorth, “Fedora smartens peer-to-peer kit,” in IT

Week, http://www.infomaticsonline.co.uk/itweek/comment/
2086033/fedora-smartens-peer-peer-kit (retrieved 27.8.
2010), November 2003.

209

[Hyy06] T. Hyyryläinen, Mobile P2P Client Implementation on

Symbian, Special assignment course S-38.3138, Helsinki
University of Technology, Espoo, March 2006.

[IEEE1990] Institute of Electrical and Electronics Engineers, Standard

for Local and Metropolitan Area Networks: Media Access

Control (MAC) Bridges, 802.1D-1990, IEEE standard,
2004.

[IEEE2004] Institute of Electrical and Electronics Engineers, IEEE

Standard for Local and metropolitan area networks: Media

Access Control (MAC) Bridges, 802.1D-2004, IEEE
standard, 2004.

[IEEE2007] Institute of Electrical and Electronics Engineers, IEEE

Standard for Information technology - Telecommunications

and information exchange between systems - Local and

metropolitan area networks - Specific requirements, Part

11: Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications, 802.11-2007, IEEE
standard, 2007.

[iSkoot] http://iskoot.com/.

[ITU98] International Telecommunications Union Tele-
communication Standardization Sector, Study group 16,
Packet-based multimedia communications systems, ITU-T
Recommendation H.323, February 1998.

[JBS92] M. C. Jeruchim, P. Balaban, K. S. Shanmugan, Simulation

of Communication Systems, ISBN 0-306-46267-2, Plenum
Press, New York, 1992.

[JFP04] S. Jain, K. Fall, R. Patra, “Routing in a delay tolerant
network,” in Proc. of ACM SIGCOMM, August 2004.

[JHM07] D. Johnson, Y. Hu, D. Maltz, The Dynamic Source Routing

Protocol (DSR) for Mobile Ad Hoc Networks for IPv4,
IETF RFC 4728, February 2007.

[JJ07] S. Jin, H. Jiang, ”Novel approaches to efficient flooding
search in peer-to-peer networks”, in Computer Networks,
vol. 51, issue 10, pp. 2818-2832, Elsevier, July 2007.

[JMR07] C. Jennings, R. Mahy, A. B. Roach, Relay Extensions for

the Message Session Relay Protocol (MSRP), IETF RFC
4976, September 2007.

[Jos06] S. Josefsson, The Base16, Base32, and Base64 Data

Encodings, IETF RFC 4648, October 2006.

[JZM+08] X. Jiang, H. Zheng, C. Macian, V. Pascual, Service

Extensible P2P Peer Protocol, IETF Internet-Draft, draft-
jiang-p2psip-sep-01, Work in progress, February 2008.

210

[Kazaa] Kazaa, http://www.kazaa.com/.

[KBB+04] T. Karagiannis, A. Broido, N. Brownlee, K. C. Claffy, M.
Faloutsos, “Is P2P dying or just hiding?,” in Global

Telecommunications Conf. 2004 (IEEE GLOBECOM '04),
Dallas, Texas, USA, November 2004.

[KCB01] R. Kantola, J. Costa-Requena, N. Beijar, “Interoperable
routing for IN and IP Telephony,” in Computer Networks,
vol. 35, no. 5, pp. 597-609, Elsevier, 2001.

[KCB00] R. Kantola, J. Costa-Requena, N. Beijar, “A Common
Numbering Infrastructure for IN and IP Telephony,” in
Intelligent Network Workshop (IN2000), Cape Town, South
Africa, 2000.

[KEP07] I. Kelényi, P. Ekler, Z. Pszota, Symtorrent version 1.30,
Budapest University of Technology and Economics,
Department of Automation and Applied Informatics,
http://symtorrent.aut.bme.hu/, October 2007.

[KFM07] I. Kelényi, B. Forstner, B. Molnár, Symella version 1.40,
Budapest University of Technology and Economics,
Department of Automation and Applied Informatics,
http://symella.aut.bme.hu/, October 2007.

[KG02] Taek Jin Kwon, M. Gerla, “Efficient flooding with Passive
Clustering (PC) in ad hoc networks,” in ACM SIGCOMM

Computer Communication Review, vol. 32, issue 1, pp. 44-
56, January 2002.

[KGZ02] V. Kalogeraki, D. Gunopulos, D. Zeinalipour-Yazti, “A
local search mechanism for peer-to-peer networks,” in
Proc. 11th Int. Conf. on Information and Knowledge

Management, McLean, Virginia, USA, pp. 300-307, 2002.

[Kir98] S. Kirsner, “The legend of Bob Metcalfe,” in Wired, issue
6.11, November 1998.

[KIS+03] T. Kato, N. Ishikawa, H. Sumino, J. Hjelm, Y. Yu, S.
Murakami, “A platform and applications for mobile peer-
to-peer communications,” in Proc. Workshop on Emerging

Applications for Wireless and Mobile Access (MobEA),
May 2003.

[KK08] N. Klym, M. J. Montpetit, Innovation at the Edge: Social

TV and Beyond, MIT Communications Futures Program
VCDWG Working Paper, MIT Communications Futures
Program, http://cfp.mit.edu/publications/CFP_Papers/
Social%20TV%20Final%202008.09.01%20for%20distribut
ion.pdf (retrieved 1.10.2009), September 2008.

211

[KKK+07] I. N. Kostamo, O. Kassinen, T. Koskela, M. Ylianttila,
“Analysis of Concept and Incentives for Digital Content
Superdistribution,” in 6th Conf. on Telecommunication

Techno-Economics, 2007 (CTTE 2007), June 2007.

[KKO03a] M. Klein, B. König-Ries, P. Obreiter, “Service rings - a
semantic overlay for service discovery in ad hoc networks,”
in Proc. 14th Int. Workshop on Database and Expert

Systems Applications, 2003, pp. 180-185, September 2003.

[KKO03b] M. Klein, B. König-Ries, P. Obreiter, Lanes – A

Lightweight Overlay for Service Discovery in Mobile Ad

Hoc Networks, University of Karlsruhe, Technical report,
no. 2003-6, May 2003.

[KLL+06] H. Khartabil, E. Leppanen, M. Lonnfors, J. Costa-Requena,
An Extensible Markup Language (XML)-Based Format for

Event Notification Filtering, IETF RFC 4661, September
2006.

[KM02] T. Klingberg, R. Manfredi, Gnutella 0.6, http://rfc-
gnutella.sourceforge.net/src/rfc-0_6-draft.html (retrieved
27.8.2010).

[KM07] W. Kiess, M. Mauve, “A survey on real-world
implementations of mobile ad-hoc networks,” in Ad Hoc

Networks, vol. 5, pp. 324–339, 2007.

[KMW04] F. Kuhn, T. Moscibroda, R. Wattenhofer, “Unit disk graph
approximation,” in Workshop on Discrete Algothrithms and

Methods for MOBILE Computing and Communications, pp.
17-23, Philadelphia, PA, USA, 2004.

[KT03] U. C. Kozat, L. Tassiulas, “Service discovery in mobile ad
hoc networks: an overall perspective on architectural
choices and network layer support issues,” in Ad Hoc

Networks, vol. 2, issue 1, pp. 23-44, January 2004.

[Kui02] E. Kuitto, Lukiolaistyttöjen ja -poikien ystävyyskäytännöt

sekä käsitykset ystävyydestä (The friendship practices and

the conceptions of friendship among the high school girls

and boys), Master’s thesis, University of Helsinki, 2002.

[KWZ08] F. Kuhn, R. Wattenhofer, A. Zollinger, “Ad hoc networks
beyond unit disk graphs,” in Wireless Networks, 14:715–
729, 2008.

[LAD+05] L. Li, D. Alderson, J. C. Doyle, W. Willinger, “Towards a
Theory of Scale-Free Graphs: Definition, Properties, and
Implications,” in Internet Mathematics, vol. 2, no. 4, pp.
431-523, 2005.

212

[Lag09] S. Lagerström, Sociala nätverk i mobiltelefon, Bachelor’s
Thesis, Helsinki University of Technology, Espoo, April
2009.

[LCC+02] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, “Search and
replication in unstructured peer-to-peer networks,” in Proc.

16th annu. ACM Int. Conf. on supercomputing (ICS), 2002.

[LCP+04] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim, “A
Survey and Comparison of Peer-to-Peer Overlay Network
Schemes,” in IEEE Communications Survey and Tutorial,
March 2004.

[Leh06] J. Lehtinen, Design and Implementation of Mobile Peer-to-

Peer Application, Master’s thesis, Helsinki University of
Technology, Espoo, January 2006.

[Leh08] J. Lehtinen, Mobile Peer-to-Peer over Session Initiation

Protocol, Licentiate thesis, Helsinki University of
Technology, Espoo, August 2008.

[Lev09] T. Levä, Questionnaire Study on mobile Peer-to-Peer,
Special assignment course S-38.3138, Helsinki University
of Technology, Espoo, January 2009.

[LinkedIn] LinkedIn, http://www.linkedin.com/.

[LK01] H. Lim, C. Kim, “Flooding in wireless ad hoc networks,” in
Computer communications, vol. 24, issues 3-4, pp. 353-
363, February 2001.

[Lug08] G. Lugano, “Mobile social networking in theory and
practice,” in First Monday, vol. 13, no. 11, November 2008.

[LZX+03] Yunhao Liu, Zhenyun Zhuang, Li Xiao, Lionel M. Ni,
“AOTO: Adaptive Overlay Topology Optimization in
Unstructured P2P Systems,” in Global Telecommunications

Conf., 2003 (IEEE GLOBECOM '03), vol. 7, pp. 4186-
4190, December 2003.

[LZX+04] Yunhao Liu, Zhenyun Zhuang, Li Xiao, Lionel M. Ni, “A
distributed approach to solving overlay mismatching
problem,” in Proc. 24th Int. Conf. on Distributed

Computing Systems, pp. 132-139, 2004.

[Mar02] E. P. Markatos, “Tracing a Large-Scale Peer to Peer
System: An Hour in the Life of Gnutella,” in 2nd

IEEE/ACM Int. Symp. on Cluster Computing and the Grid

(CCGRID’02), 2002.

[MBB06] A. N. Mian, R. Beraldi, R. Baldoni, Survey of Service

Discovery Protocols in Mobile Ad Hoc Networks, Technical
Report 4/06, Universit degli Studi di Roma La Sapienza,
Rome, Italy, 2006.

213

[MBL+06a] M. Matuszewski, N. Beijar, J. Lehtinen, T. Hyyryläinen,
“Mobile Peer-to-Peer Content Sharing Application,” in The

3rd IEEE Consumer Communications and Networking

Conf. (CCNC 2006), vol. 2, pp. 1324-1325, 2006.

[MBL+06b] M. Matuszewski, N. Beijar, J. Lehtinen, T. Hyyryläinen,
“Content sharing in mobile P2P networks: myth or
reality?,” in Int. Journal of Mobile Network Design and

Innovation, vol. 1, 3/4, pp. 197-207, Inderscience
Enterprises Ltd, 2006.

[MBL+07] M. Matuszewski, N. Beijar, J. Lehtinen, T. Hyyryläinen,
“Understanding Attitudes Towards Mobile Peer-to-peer
Content Sharing Services,” in IEEE Int. Conf. on Portable

Information Devices, PORTABLE07, pp. 1 - 5, Orlando,
Florida, USA, 2007.

[MCB+04] K. Marossy, G. Csucs, B. Bakos, L. Farkas, J. K.
Nurminen, “Peer-to-peer content sharing in wireless
networks,” in 15th IEEE Int. Symp. on Personal, Indoor

and Mobile Radio Communications, 2004 (PIMRC 2004),
vol. 1, pp. 109- 114, September 2004.

[Mea02] M. Mealling, Dynamic Delegation Discovery System

(DDDS) – Part Three: The Domain Name System (DNS)

Database, IETF RFC 3403, October 2002.

[MGB+07] M. Matuszewski, M. A. García-Martín, N. Beijar, J.
Lehtinen, “Resource Sharing and Discovery on Top of
IMS,” in IEEE Consumer Communications and Networking

Conf., CCNC2007, Las Vegas, Nevada, USA, 2007.

[Minidom] xml.dom.minidom - Lightweight DOM implementation,
http://docs.python.org/library/xml.dom.minidom.html.

[MM02] N. Maibaum, T. Mundt, “JXTA: a technology facilitating
mobile peer-to-peer networks,” in Proc. International

Mobility and Wireless Access Workshop (MobiWac 2002),
pp. 7-13, Fort Worth, TX, USA, October 2002.

[MMule] MobileMule, http://mobil.emule-project.net/.

[Moy94] J. Moy, OSPF Version 2, IETF RFC 1583, March 1994.

[myHeimat] myHeimat, http://www.myheimat.de.

[MySQL] Kevin Atkinson, MySQL++, http://tangentsoft.net/
mysql++/.

[MZ01] A. B. McDonald, T. F. Znati, “Design and performance of
a distributed dynamic clustering algorithm for ad hoc
networks”, in Proc. 34th Annu. Simulation Symp., pp. 27-
35, April 2001.

[Napster] Napster, http://www.napster.com/.

214

[Nor09] E. Nordbäck, Intresseanalys av gruppkommunikation med

mobiltelefon, Bachelor’s Thesis, Helsinki University of
Technology, Espoo, April 2009.

[Octopus] Octopus network, http://www.octo.fi/.

[OIK03] T. Ohta, S. Inoue, Y. Kakuda, “An adaptive multihop
clustering scheme for highly mobile ad hoc networks,” in
The Sixth Int. Symp. on Autonomous Decentralized Systems

2003 (ISADS 2003), pp. 293- 300, April 2003.

[ORe05] T. O’Reilly, What is Web 2.0 – Design Patterns and

Business Models for the Next Generation of Software,
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/
30/what-is-web-20.html (retrieved 27.8.2010), September
2005.

[OSM+05] L. Oliveira, I. Siqueira, D. Macedo, A. Loureiro, H. C.
Wong, J. Nogueira, “Evaluation of Peer-to-Peer Network
Content Discovery Techniques over Mobile Ad Hoc
Networks”, in IEEE Int. Symp. on a World of Wireless,

Mobile and Multimedia Networks (WoWMoM), pp. 51-56,
2005.

[ÖV99] M. T. Özsu, P. Valduriez, Principles of Distributed

Database Systems, 2nd Edition, Prentice-Hall, 1999.

[P2PNext] P2P-Next, http://www.p2p-next.org/.

[P2PSIP] IETF P2PSIP WG Draft charter, http://www.ietf.org/
html.charters/p2psip-charter.html.

[Pal09] A. Palmgren, Mikrobloggning, Bachelor’s Thesis, Helsinki
University of Technology, Espoo, April 2009.

[Pan09] V. Pankakoski, Implementation of a Mobile Peer-to-Peer

Client, Special assignment course S-38.3138, Helsinki
University of Technology, 2009.

[Partysip] The partysip SIP proxy server, http://www.partysip.org/.

[PB94] C. E. Perkins, P. Bhagwat, “Highly dynamic Destination-
Sequenced Distance-Vector routing (DSDV) for mobile
computers,” in ACM SIGCOMM Computer Communication

Review, vol. 24, issue 4, pp. 234-244, October 1994.

[PBC+03] R. Price, C. Bormann, J. Christoffersson, H. Hannu, Z. Liu,
J. Rosenberg, Signaling Compression (SigComp), IETF
RFC 3320, January 2003.

[PBD03] C. Perkins, E. Belding-Royer, S. Das, Ad hoc On-Demand

Distance Vector (AODV) Routing, IETF RFC 3561, July
2003.

215

[PC04] G. Pujolle, H. Chaouchi, GBN and STP/SP: “Beyond
TCP/IP crisis over wireless networks,” in The Personal,

Indoor and Mobile Radio Communications Symp. (PIMRC),
Barcelona, Spain, 2004.

[PH99] M. R. Pearlman, Z. J. Haas, “Determining the optimal
configuration for the zone routing protocol,” in IEEE

Journal on Selected Areas in Communications, vol. 17,
issue 8, pp. 1395-1414, August 1999.

[PlanetLab] PlanetLab - An open platform for developing, deploying,
and accessing planetary-scale services, http://www.planet-
lab.org/.

[PMK+04] M. Poikselkä, G. Mayer, H. Khartabil, A. Niemi, The IMS:

IP Multimedia Concepts and Services in the Mobile

Domain, ISBN 0-470-87113-X, John Wiley & Sons,
England, 2004.

[PONGsim] N. Beijar, Python Overlay Network Graphical Simulator
(PONGsim), http://www.netlab.tkk.fi/tutkimus/mobilep2p/
pongsim.

[PRR97] C. Plaxton, R. Rajaraman, A. Richa, “Accessing nearby
copies of replicated objects in a distributed environment,”
in ACM Symp. on Parallel Algorithms and Architectures,
1997.

[Python] Python Software Foundation, Python Programming
Language - Official Website, http://www.python.org/.

[QB06] Y. Qiao, F. E. Bustamante, “Structured and unstructured
overlays under the microscope: a measurement-based view
of two P2P systems that people use,” in Proc. USENIX '06

Annu. Tech. Conf., pp. 341-355, Boston, 2006.

[RBR+04] M. Roussopoulos, M. Baker, D. S.H. Rosenthal, T. J. Giuli,
P. Maniatis, J. Mogul, “2 P2P or Not 2 P2P?,” in The 3rd

Int. Workshop on Peer-to-peer Systems, February 2004.

[RCJ+02] O. Ratsimor, D. Chakraborty, A. Joshi, T. Finin, “Allia:
alliance-based service discovery for ad hoc environments,”
in Proc. 2nd int. workshop on Mobile commerce, pp. 1-9,
2002.

[RD01] A. Rowstron, P. Druschel, “Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems,” in Proc. 18th IFIP/ACM Int. Conf. on Distributed

Systems Platforms (Middleware), November 2001.

[reSIP] The Open Source Community, reSIProcate, http://www.
resiprocate.org/.

216

[Rey07] V. H. Morales Reyes, Design and implementation of a

distributed file directory for mobile peer-to-peer, Master’s
thesis, Helsinki University of Technology, July 2007.

[RF02] M. Ripeanu, I. Foster, “Mapping gnutella network:
Macroscopic properties of large-scale peer-to-peer
systems,” in 1st Int. Workshop on Peer-to-Peer Systems

(IPTPS’02), March 2002.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker,
“A Scalable Content-Addressable Network,” in Proc. ACM

SIGCOMM ’01, August 2001.

[RFI02] M. Ripeanu, I. Foster, A. Iamnitchi, “Mapping the Gnutella
Network: Properties of Large-Scale Peer-to-Peer Systems
and Implications for System Design,” in IEEE Internet

Computing Journal, vol. 6, no. 1, 2002.

[Rie95] M. J. Riezenman, “The search for better batteries,” in IEEE

Spectrum, vol. 32, no. 5, pp. 51-56, May 1995.

[Rit01] J. Ritter, Why gnutella can't scale. no, really, http://
www.darkridge.com/~jpr5/doc/gnutella.html (retrieved
27.8.2010), 2001.

[RM06] J. Risson, T. Moors, “Survey of research towards robust
peer-to-peer networks: Search methods,” in Computer

Networks, vol. 50, no. 17, pp. 3485-3521, December 2006.

[RMM08] J. Rosenberg, R. Mahy, P. Matthews, Traversal Using

Relays around NAT (TURN): Relay Extensions to Session

Traversal Utilities for NAT (STUN), draft-ietf-behave-turn-
09.txt, work in progress, July 2008.

[Roa02] A. B. Roach, Session Initiation Protocol (SIP)-Specific

Event Notification, IETF RFC 3265, June 2002.

[Ros04] J. Rosenberg, A Presence Event Package for the Session

Initiation Protocol (SIP), IETF RFC 3856, August 2004.

[Ros07] J. Rosenberg, Interactive Connectivity Establishment (ICE):

A Protocol for Network Address Translator (NAT)

Traversal for Offer/Answer Protocols, draft-ietf-mmusic-
ice-19, work in progress, October 2007.

[RSC+02] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.
Peterson, R. Sparks, M. Handley, E. Schooler, SIP: Session

Initiation Protocol, IETF RFC 3261, June 2002.

[RV03] P. Reynolds, A. Vahdat, “Efficient peer-to-peer keyword
searching,” in Middleware 2003, LNCS 2672, pp. 21-40,
2003.

217

[RW95] L. Råde, B. Westergren, Mathematics Handbook for

Science and Engineering, 3rd edition, ISBN 91-44-25053-3,
Sweden, 1995.

[SBR04] N. Sarshar, P. Oscar Boykin, V. P. Roychowdhury,
“Percolation Search in Power Law Networks: Making
Unstructured Peer-to-Peer Networks Scalable,” in Proc. 4th

Int. Conf. on Peer-to-Peer Computing, pp. 2-9, 2004.

[SBW07] S. A. Hosseini Seno, R. Budiarto, Tat-Chee Wan, “Survey
and new Approach in Service Discovery and Advertisement
for Mobile Ad hoc Networks,” in Int. Journal of Computer

Science and Network Security, vol. 7, no. 2, pp. 275-284,
February 2007.

[Sch01] R. Schollmeier, “A Definition of Peer-to-Peer Networking
for the Classification of Peer-to-Peer Architectures and
Applications,” in 1st Int. Conf. on Peer-to-Peer Computing

(P2P'01), pp. 101, 2001.

[SEK+92] M. F. Schwartz, A. Emtage, B. Kahle, B. Clifford Neuman,
“A comparison of internet resource discovery approaches,”
in Computing Systems, vol. 5, no. 4, pp. 461-493, 1992.

[SETI] SETI@home, http://setiathome.berkeley.edu/.

[SG03] Qixiang Sun, Hector Garcia-Molina, “Partial lookup
services,” in Proc. 23rd Int. Conf. on Distributed

Computing Systems, pp. 58-67, 2003.

[SGA+04] O. D. Sahin, A. Gupta, D. Agrawal, A. El Abbadi, “A peer-
to-peer framework for caching range queries,” in Proc. 20th

Int. Conf. on Data Engineering, pp. 165- 176, March-April
2004.

[SGF02] R. Schollmeier, I. Gruber, M. Finkenzeller, “Routing in
Mobile Ad Hoc and Peer-to-Peer Networks - A
Comparison,” in Int. Workshop on Peer-to-Peer

Computing, pp. 1-15, 2002.

[SGG02] S. Saroiu, K. P. Gummadi, S. D. Gribble, “A measurement
study of Peer-to-Peer File Sharing Systems,” in Proc. of

Multimedia Computing and Networking 2002 (MMCN’02),
San Jose, CA, USA, January 2002.

[SGG03] S. Saroiu, K. P. Gummadi, S. D. Gribble, “Measuring and
analyzing the characteristics of Napster and Gnutella
hosts,” in Multimedia Systems, 9:170–184, 2003.

[SIPshare] Earthlink SIPshare, http://www.research.earthlink.net/p2p.

[Skype] Skype, http://www.skype.com/.

218

[SMK+01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H.
Balkakrishnan, “Chord: A scalable peer-to-peer lookup
service for Internet applications,” in Proc. SIGCOMM, pp.
149-160, 2001.

[Soi09] T. Soinio, Access Control and Group Management in a

Mobile Peer-to-Peer System, Master’s thesis, Helsinki
University of Technology, Espoo, March 2009.

[Soi10] J. Soitinaho, Approximate Information Filtering in

Publish/Subscribe P2P Networks, Licentiate thesis,
Helsinki University of Technology, Espoo, 2010.

[Spotify] Spotify – a world of music, Instant, simple and free,
http://www.spotify.com/en/.

[SRC84] J. H. Saltzer, D. P. Reed, D. D. Clark, “End-to-end
arguments in system design,” in ACM Transactions on

Computer Systems (TOCS), vol. 2, issue 4, pp. 277-288,
November 1984.

[SS02] R. Schollmeier, G. Schollmeier, “Why peer-to-peer (P2P)
does scale: an analysis of P2P traffic patterns,” in 2nd Int.

Conf. on Peer-to-Peer Computing (P2P'02), pp. 112-119,
September 2002.

[Sun99] Sun Microsystems Inc, Why Jini Technology Now?, White
paper, rev. 1.0, http://www.sun.com/software/jini/
whitepapers/whyjininow.pdf (retrieved 2.10.2008), January
1999.

[T08] ------. ”Netti kaatui kun Kauhajoella pamahti,” in
Taloussanomat, http://www.taloussanomat.fi/tietoliikenne/
2008/09/23/netti-kaatui-kun-kauhajoella-pamahti/20082482
1/12 (retrieved 23.9.2008).

[TinyXML] L. Thomason, TinyXML, http://www.grinninglizard.com/
tinyxml/.

[TKK+08] P. Tiago, N. Kotilainen, H. Kokkinen, M. Vapa, J. K.
Nurminen, “Mobile Search - Social Network Search Using
Mobile Devices,” in The 5th IEEE Consumer

Communications and Networking Conf. (CCNC 2008), pp.
1201-1205, January 2008.

[TKL+07] W. W. Terpstra, J. Kangasharju, C. Leng, A. P. Buchmann,
“Bubblestorm: resilient, probabilistic, and exhaustive peer-
to-peer search,” in ACM SIGCOMM Computer

Communication Review, vol. 37, issue 4, pp. 49-60, October
2007.

219

[TP03] P. Triantafillou, T. Pitoura, “Towards a unifying framework
for complex query processing over structured peer-to-peer
data networks,” in Proc. 1st Int. Workshop on Databases,

Information Systems and Peer-to-peer Computing

(DBISP2P), pp. 169-183, September 2003.

[Twitter] Twitter, http://www.twitter.com.

[Upnp08] UPnP Forum, UPnP Device Architecture 1.0, April 2008,
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-
v1.0.pdf (retrieved 27.8.2010).

[VDB05] K. Vanthournout, G. Deconinck, R. Belmans, “A taxonomy
for resource discovery,” in Personal and Ubiquitous

Computing, vol. 9, no. 2, pp. 81–89, March 2005.

[Ver07] H. Verkasalo, A Cross-Country Comparison of Mobile

Service and Handset Usage, Licentiate’s thesis, Helsinki
University of Technology, Finland, 2007.

[VW07] G. Vickery, S. Wunsch-Vincent, Participative Web And

User-Created Content: Web 2.0, Wikis and Social

Networking, ISBN:978-92-64-03746-5, Organization for
Economic Cooperation and Development (OECD), Paris,
France, 2007.

[WAF04] Peng-Jun Wan, Khaled M. Alzoubi, Ophir Frieder,
“Distributed Construction of Connected Dominating Set in
Wireless Ad Hoc Networks,” in Mobile Networks and

Applications, vol. 9, no. 2, April 2004.

[WIH05] H. Wan, N. Ishikawa, J. Hjelm, “Autonomous Topology
Optimization for Unstructured Peer-to-Peer Networks,” in
Proc. 11th Int. Conf. on Parallel and Distributed Systems

2005 (ICPADS’05), 2005.

[WPD88] D. Waitzman, C. Partridge, S. Deering, Distance Vector

Multicast Routing Protocol, RFC 1075, November 1988.

[WS98] D. J. Watts, S. H. Strogatz, “Collective dynamics of ’small-
world’ networks,” in Nature, 393:440–442, 1998.

[YC05] J. Y. Yu, P. H. J. Chong, “A survey of clustering schemes
for mobile ad hoc networks,” in IEEE Communications

Surveys & Tutorials, vol. 7, issue 1, pp. 32-48, 2005.

[YG02] B. Yang and H. Garcia-Molina, “Efficient search in peer-to-
peer networks,” in Int. Conf. on Distributed Computing

Systems (ICDCS), 2002.

[YLY+04] Hao Yang, Haiyun Luo, Fan Ye, Songwu Lu, Lixia Zhang,
“Security in mobile ad hoc networks: challenges and
solutions,” in IEEE Wireless Communications, vol. 11, no.
1, pp. 38-47, 2004.

220

[ZH05] R. Zhang, Y. C. Hu, “Assisted Peer-to-Peer Search with
Partial Indexing,” in Proc. 24th Annu. Joint Conf. of the

IEEE Computer and Communications Societies (INFOCOM

2005), vol. 3, pp. 1514-1525, March 2005.

[ZKJ01] B. Zhao, J. Kubiatowicz, A. Jospeh, Tapestry: an

infrastructure for fault-tolerant wide-area location and

routing, Report no. UCB/CSD-01-1141, 2001.

[ZLZ+05] Q. Zheng, X. Lu, P. Zhu, W. Peng, “An efficient random
walks based approach to reduce file locating delay in
unstructured P2P networks,” in Proc. Global

Telecommunications Conf. (IEEE GLOBECOM ’05), 2005.

