Aalto University

Automation Technology

Series A: Research Reports No. 35
Espoo, November 2010

ActionPool: A NOVEL DYNAMIC TASK
SCHEDULING METHOD FOR SERVICE ROBOTS

Tapio Taipalus

Doctoral dissertation for the degree of Doctor of Science in Techology to be presented with
due permission of the Faculty of Electronics, Communications and Automation for public
examination and debate in Auditorium AS1 at the Aalto University School of Science and
Technology (Espoo, Finland) on the 12th of November 2010 at 12 noon.

Aalto University

School of Science and Technology

Faculty of Electronics, Communications and Automation
Department of Automation and Systems Technology

Distribution:

Aalto University

School of Science and Technology

Faculty of Electronics, Communications and Automation
Department of Automation and Systems Technology
P.O. BOX 11000

FI-00076 AALTO

FINLAND

e-mail: tapio.taipalus@tkk.fi
Tel. 4358 9 470 23778
Fax +358 9 470 25142

(©Tapio Taipalus

ISBN 978-952-60-3429-4 (printed)
ISBN 978-952-60-3430-0 (pdf)
ISSN 0783-5477

Al

Aalto University

ABSTRACT OF DOCTORAL DISSERTATION AALTO UNIVERSITY

SCHOOL OF SCIENCE AND TECHNOLOGY
P.O. BOX 11000, FI-00076 AALTO
http://www.aalto.fi

Author Tapio Taipalus

Name of the dissertation
ActionPool: A Novel Dynamic Task Scheduling Method for Service Robots

Manuscript submitted 14.6.2010 Manuscript revised 28.9.2010

Date of the defence 12.11.2010

Monograph |:| Article dissertation (summary + original articles)
Faculty Faculty of Electronics, Communications and Automation

Department Department of Automation and Systems Technology

Field of research Service robotics

Opponent(s) Doctor of Science Hannu Lehtinen

Supervisor Professor Aarne Halme

Instructor Professor Aarne Halme

Abstract

Service robots require the seamless utlisation of several technical disciplines. Most of the required
technologies are sufficiently advanced to provide feasible solutions to be used in the designing of service
robots. For instance, mechanical engineering, control theory, electronics and electrical engineering aspects of
the design have all matured well. On the other hand, it is the perception and artificial intelligence that provide
the means for modelling the environment and the knowledge which are lagging behind. The latter two
disciples in their current state, greatly limit the complexity of the tasks which can be performed by service
robots.

In this thesis, an ActionPool method for representing task knowledge and executing multiple tasks
simultaneously with service robots is presented. The method is based on a concept in which the actions that
are ready for execution are placed into a pool and from those most suitable for the situation are selected one
by one. The number of actions in a pool and the number of tasks are limited only by the available
computational resources.

The actions can belong to different tasks, and thus the action pool allows the robot’s indivisible resource to be
dynamically dealt out for various tasks requiring the resources. In the ActionPool method, the functional parts
of the service robot are divided into resources and an action pool is assigned to each one of them. This way,
numerous tasks can be executed simultaneously. The ActionPool method allows a natural way of dynamically
adding and removing tasks to and from the robot’s active execution. The action selection method can direct
the perception processes to observe the relevant parts of the environment.

The ActionPool method has been implemented on two different service robot platforms to verify the generic
nature of the method. Several tasks have been executed successfully to validate the claims about the
qualities of the method. Compared to previous approaches, this work provides a fresh execution- and
contingency-centric vantage point to the well studied robot control problem.

Keywords service robot, multi-tasking, knowledge representation

ISBN (printed) 978-952-60-3429-4 ISSN (printed) 0783-5477
ISBN (pdf) 978-952-60-3430-0 ISSN (pdf)
Language English Number of pages 170

Publisher Aalto University, Department of Automation and Systems Technology

Print distribution Aalto University, Department of Automation and Systems Technology

The dissertation can be read at http://lib.tkk.fi/Diss/2010/isbn9789526034 300/

A!

Aalto-yliopisto

VAITOSKIRJAN TIIVISTELMA AALTO-YLIOPISTO
TEKNILLINEN KORKEAKOULU
PL 11000, 00076 AALTO
http://www.aalto.fi

Tekija Tapio Taipalus

Vaitdskirjan nimi
ActionPool: Dynaamista tehtévien ohjausta palveluroboteille

Késikirjoituksen paivamaara 14.6.2010 Korjatun kasikirjoituksen paivamaara 28.9.2010
Vaitéstilaisuuden ajankohta 12.11.2010

Monografia |:| Yhdistelméavaitéskirja (yhteenveto + erillisartikkelit)
Tiedekunta Elektroniikan, tietoliikenteen ja automaation tiedekunta

Laitos Automaatio- ja systeemitekniikan laitos

Tutkimusala Palvelurobotiikka

Vastavaittaja(t) Tekniikan tohtori Hannu Lehtinen

Tydn valvoja Professori Aarne Halme

Ty6n ohjaaja Professori Aarne Halme

Tiivistelma

Palvelurobotit ovat vahitellen siirtyméassa tutkimuslaboratorioista ja teollisuusymparistéista kuluttajille ja
samaan ympdristd6on ihmisten kanssa. Monella alalla teknologia on jo kypséa todella hyddyllisille ja ihmisten
aikaa saastaville palveluroboteille. Konenakd, seka havainnointi yleensa, ja tekodly eivat vield osaa mallintaa
robotin dynaamista ymparisté& kovin hyvin. Monimutkaisempia tehtavia varten palvelurobotin tulee liséksi
mallintaa omat tehtdvéansa.

Tassa tydssa esitellddn ActionPool metodi, mika on tapa mallintaa, esittéda ja suorittaa monia tehtavia
samanaikaisesti palvelurobotilla. Metodi perustuu robotin jakamiseen loogisiin mekaanisiin kokonaisuuksiin,
resursseihin, ja niiden hallintaan. Suoritettavat tehtavat jaetaan toimenpiteisiin robotin eri resursseille.

Jokaisella robotin resurssilla on pooli, mihin suoritukseen valmiit toimenpiteet eri tehtavista listataan.
Jokaisen toimenpiteen tai ymparistéssa tapahtuvan merkittdvan muutoksen jalkeen valitaan tilanteeseen
parhaiten sopiva toimenpide. Tehtavan edetessa siirretdan uusia toimenpiteita pooliin suoritusta varten.

Ymparist6éa havainnoidaan rinnakkaisena prosessina ja toimenpiteen valinta ohjaa havaintoja ympariston
merkityksellisiin osiin. Esitetty ActionPool metodi sallii robotin eri osien kdytdn samanaikaisesti eri tehtavissa.
Metodi ei rajoita toimenpiteiden lisdysta tai poistoa poolista, miké tarkoittaa sita, etta tehtavia voidaan lisata
tai poistaa robotille dynaamisesti tarpeen mukaan. Tamé& mahdollistaa luonnollisen ja joustavan tavan ohjata
robotin tehtévien suoritusta.

Esitetty metodi on toteutettu kahdelle eri palvelurobotille. Metodin yleistettavyyden osoittamiseksi tehtiin
useita kokeita menestyksekkaasti kumpaakin robottia kdyttden. Tama tyd antaa uuden tehtédvansuoritus- ja
poikkeustapauskeskeisen lahestymistavan muihin esitettyihin ratkaisuihin nadhden.

Asiasanat palvelurobotti, moniajo, tietdmyksen esitys

ISBN (painettu) 978-952-60-3429-4 ISSN (painettu) 0783-5477
ISBN (pdf) 978-952-60-3430-0 ISSN (pdf)
Kieli englanti Sivumaara 170

Julkaisija Aalto-yliopisto, Automaatio- ja systeemitekniikan laitos

Painetun vaitéskirjan jakelu Aalto-yliopisto, Automaatio- ja systeemitekniikan laitos

Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/2010/isbn9789526034 300/

Preface

Working on this doctoral thesis has been one of the most challenging yet most re-
warding tasks I have ever completed. The journey has been long with numerous
ups and downs and along the way I learnt many useful things about life, academic
work, researching, and nature of knowledge.

I would like to extend my deepest gratitude to my supervisor, Professor Aarne
Halme, for guiding me throughout my doctoral studies and believing in my work
and its outcome.

I thank the pre-examiners of this dissertation, Professor Erwin Prasler and Do-
cent Tapio Heikkild, for their valuable comments and insights. Based on their feed-
back, I was able to enhance the structure and the overall quality of this work.

I am grateful to Professor Kazuhiro Kosuge from Tohoku Univeristy, Japan, for
his support and insightful comments and for allowing me to use the research and
experimental facilities in his laboratory for this work.

I sincerely appreciate the guiding role of Docent Mika Vainio, particularly dur-
ing the last few months prior to the submission of this dissertation. I am grateful for
his time and effort in proof reading my thesis time and time again.

Also a big thank you to all the members of the Automation Technology Labora-
tory for creating an inspiring working environment, sharing all the minute details of
Latex and programming tricks, proof reading my work, and generally making the
daily work life a lot more pleasant.

A big thank you to my lovely wife, Hanieh Taipalus, for her patience and mental
support after those long working days, for her love and understanding and for being
there when I needed a shoulder to lean on and an ear to share my thoughts with.
Last by not least, thank you to our beautiful daughter for bringing so much joy and
laughter into our lives.

Finally, I would like to express my gratitude to the Academy of Finland for
financially supporting me during the various stages of this work.

Espoo, October 2010

Tapio Taipalus

i1

Contents

1 Introduction

2

1.1
1.2
1.3
1.4
1.5
1.6

Motivation and Background
Problem statement L.

Contributions

Outline of the Thesis
Author’s Contribution within the Research Groups
Declaration of Previous Work

Introduction to Task Execution and Taxonomy with Service Robots

Service Robots
Control of Service Robots
Task e

2.1
2.2
2.3
24

2.5

2.6
2.7

24.1

Multi-tasking

25.1

Non-Functional Requirements of Service Robot Control Architectures

2.7.1

Planning

Time-sharing
252 Concurrent
253 Parallel
Task Knowledge Representation

Non-Functional Requirements in Literature
2.7.2 Combined Feature Requirements

State of the Art of Task Execution Principles

Tele-operation
Deliberative
Reactive . .

3.1
32
33
34
3.5
3.6

3.7

Hybrid

Behaviour-Based Control
Knowledge-Based Systems
Expert System
3.6.2 Procedural Reasoning System
Discussion .

3.6.1

3.7.1

Plan

11

372 Worldmodel
4 State of the Art in Plan Representation for Service Robots
4.1 Analogous Systems
4.1.1 Computer Operating System Architectures
4.1.2 Company Order/Deliver System
4.1.3 Military Organisation
414 Computer GUlevents
42 Procedural
43 Distributed
43.1 FusedControls
4.3.2 Centralised Action Selection
4.3.3 Agents: Decentralised Action Selection
4.3.4 Disconnected Controls,
44 State Diagram oL L L
45 Treestructure o it e e
4.6 Functional
477 Trajectory e e e e
4.8 Petri-net
49 Conclusions e e
5 Representation and Control of Task in ActionPool
5.1 Divisioninto Resources
5.1.1 ContextSwitch
5.2 Actions and ActionPool o 0oL
5.3 EventListener
54 WorldModel
5.5 Perception Agents
5.6 Task
5.6.1 Interdependency
5.6.2 Graphical Representation of Task
5.7 Control of ActionPool
5.7.1 AddingaTask
572 Pausing
5773 RemovalofTask
574 ErrorHandling
5.8 Summary
6 Implementation
6.1 Hardware
6.1.1 MARY
6.1.2 Rolloottori
6.2 Software
6.2.1 Missionlayer L.
6.2.2 aPlanlayer

v

6.2.3 Real-timelayer
6.2.4 Supporting Components

7 Verification Through Experiments
7.1 MARY
7.1.1 Posereservation
7.1.2 Find object and take picture of human
7.13 Results
7.2 Rolloottori
7.2.1 Posereservation
7.2.2 Texture Mapping of a Wall Segment
7.2.3 Texture Mapping of a Wall Segment With Exception
7.2.4 Texture Mapping of Wall Segments
725 Results L o

8 Analysis
8.1 Non-Functional Requirement Analysis
8.2 Analysis Compared to Other Works
8.2.1 Comparison With Some Plan Representation Methods
8.2.2 Evaluation with Task Execution Principles
823 RelatedWork oL

9 Conclusions and Discussion
9.1 Conclusions e
02 DISCUSSION v v v i e e e e e e e e e
93 Futurework

Bibliography

Appendices

A Description of an Object in the World Model

B Example of XML-Listing of Action

C Features and their Terms in Different Approaches

D Class Diagram of the Action Pool Implementation

X

5 E @ H

_‘
N
Y

Vi

List of Figures

1.1

2.1
2.2
2.3
24
2.5

3.1
32
33
34
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8

5.1
52
53
54

5.5
5.6
5.7

6.1

Screen shot from the film "Planet of the Apes”

Component block diagram of elementary feedback control
Component block diagram of elementary robot control
Layers and components of a robot control architecture
Relations of the terms used
Constraints for service robot task execution causing the requirements

Task execution in elementary robot control
Deliberative control scheme
Reactive control scheme
Hybrid control scheme
Behaviour-based control scheme,
Knowledge-based system
Components of the procedural reasoning system

Plan representation in elementary robot control
A flow chart description of the procedural programming paradigm .
Distributed plan representation using fused controls
An example of a state diagram describing a fetch task
Tree graph describing the Hierarchical Task Network of fetch task
Component diagram of middleware components to achieve a ran-
dom walk behaviour
Example of Petri-net describing a fetchtask
Comparison of plan representations in simplicity and expressiveness

Breakdown of the Task structure
Overview of ActionPool method
Flowchart of the execution process inside Event Listener
View of X3D file created from database as a snapshot of the robot’s

understanding of the world
Screen shot from dynamic presentation of the robot’s world
Explanation of graphical representation
Graphic representation example of “fetch drink” task

Layout of the hardware structure in MARY

vii

6.2
6.3
6.4
6.5
6.6
6.7

6.8

6.9
6.10

6.11

6.12

7.1

7.2

7.3
7.4
7.5
7.6
7.7
7.8
7.9

7.10
7.11

7.12
7.13

7.14

7.15
7.16
7.17
7.18
7.19
7.20

Overview of MARY robot
Overview of Rolloottorirobot
Layout of hardware structure in Rolloottori
Layers of the software in the implementation of ActionPool method .
Breakdown of Task into uTasks
Deployment of Player software components on MARY to control the
POSE . . e
Deployment diagram of MaCl software components on Rolloottori
to form the control system
Line vector map of walls with overlay of road map
Screen shot of graphical user interface for management of Action
pool and Actions init
Screen shot of graphical user interface for management of Tasks in
Actionpool e
Screen shot of graphical user interface for management of Event
Listeners

A path created with wave front path planning algorithm implemen-
tation included in Player
Experiments with MARY in simulated environment and sensor re-
SPONSE oo e e e
Experimental setup for MARY in pose reservation experiment
Graphical representation of the tasks in the experiment
Experimental setup for MARY in pose reservation experiment
Snapshot of laser scan and human detection
Testing of trained object features for search function
World model with empty experimental space and MARY
Projection of MARY’s world model after having found person and
object e e e
Experimental setup for Rolloottori
A sample of the occupancy grid map of the experiment environment
used for localisation, as viewed from above
Graphical representation of “texture mapping a wall segment” task
Hllustration of the algorithm to define image-taking parameters in
“texture mapping of a wall segment” task
Graphical representation of “texture mapping a wall segment with
exception” task e
Graphical representation of “greet humans” task
Path of Rolloottori robot while texturing a wall segment
A sample of a stitched wall segment texture
An empty world model of the Rolloottori
Textured world model of the Rolloottori
Content of different Action pools and Event Listeners during dif-
ferent stages of “Texture mapping a wall segment with exception”
EXPEriMENnt e e e e e e e

88|

90)

103

7.21 Timing diagram of “Texture mapping a wall segment with excep-
HOR” exXperiment v v v v it e e e e e

7.22 Content of different Action Pools and Event Listeners during differ-
ent stages of "Texture mapping of wall segments” experiment

8.1 State diagrams describing two tasks and their merged task

X

List of Tables

2.1
22

4.1

5.1
5.2

6.1
6.2
6.3
6.4

7.1

Al
A2

C.1

Task Types o o o o [l
Combined feature requirements from different authors
Summary chart of different plan representations 51l
Definition of conditions in the Action 62
Summary of essential ActionPoolterms 68}
Comparison of main differences between robotsused 69
Definition of XML tags and attributes for Task (717
Definition of XML tags and attributes for Actionand EL /8
Description of XML tags and attributes for aPlan and uTask 811
Experiments conducted with two robot platforms 89

Description of the shape construction in the world model data base . [139]
Description of object attributes in world model database 140

Comparison of terms for common features in different approaches

(Continues ...) 144l

X1

Xii

Abbreviations

Al
AP
aPlan
BDI
CAD
CPU
DAG
DARPA
DB
DDD
DOF
EL
FSA
GCD
GIM
GUl
HAL
HMI
HTN
IPC
IR

Artificial Intelligence

Action pool

Action plan

Belief Desire Intention
Computer Aided Design
Central Processing Unit
Directed Acyclic Graph
Defence Advanced Research Projects Agency
Database

Dirty, Dangerous, or Dull
Degree Of Freedom

Event Listener

Finite State Automaton
Grand Central Dispatch
Generic Intelligent Machine
Graphical User Interface
Hardware Abstraction Layer
Human-Machine Interface
Hierarchical Task Network
Inter-Process Communication

Infra-Red

Xiii

MDP Markov Decision Process

PC Personal Computer

POMDP Partially Observable Markov Decision Process
PRS Procedural Reasoning System
PTU Pan Tilt (Zoom) Unit

RAM Random Access Memory
RAP Reactive Action Packages
SPA Sense Plan Act

tPlan Task plan

UN United Nations

uTask Micro Task

VFH Vector Field Histogram
WLAN Wireless Local Area Network

XML Extensible Markup Language

Xiv

Glossary

Action A piece of work without purpose by itself. In the ActionPool context an
Action is an indivisible piece of work utilising a resource.

Placeholder~ A method to keep a Task from advancing while there is some
process pending. The placeholder Action can not be selected for execu-
tion, but it can be removed to cancel the process that is pending.

Monitored ~ A type of remote Action whose execution is monitored from
the original Action pool.

Mutual ~ A type of remote Action to ensure the simultaneous use of the orig-
inal and remote resource.

Remote~ An Action initiated from a different Action pool from the one
where it is executed.

Unmonitored~ A type of remote Action whose execution is not monitored
from the original Action pool.

Action plan (aPlan) A plan how to do Action.

Action pool (AP) An abstract data-structure and software agent to manage a re-
source. It holds a list of Actions that are ready to be executed by a resource.

ActionPool A dynamic task cheduling method utilizing Action pools.

Database (DB) A data collection where the information can be stored or retrieved.
In the ActionPool context DB holds the robot’s world model.

Event Listener A software agent that reacts to a change in some variable exceed-
ing a designated threshold.

Knowledge Formalised information

Perception Agent A software agent that reads raw data from sensors and outputs
object observations into the database.

Plan Detailed instructions for how to conduct an activity such as a Task or Action.

Planning A process to generate a plan by predicting the consequences of the oper-
ations the plan is constructed from.

XV

Micro Task (uTask) An indivisible piece of work with a robot.
Multi-tasking Doing multiple tasks with different objectives.

Concurrent~ Multi-tasking simultaneously by the utilising of different re-
sources by the same entity.

Parallel - Multi-tasking simultaneously by the utilising of parallel resources
by the same entity.

Time-sharing~ Multi-tasking simultaneously by dividing the usage of a crit-
ical resource by turns.

Task A piece of work with a purpose by itself.

Task Configuration A process of constructing a task from a goal, plan, and meta-
data.

Task plan (tPlan) A plan how to do Task.

XVi

Chapter 1

Introduction

1.1 Motivation and Background

Robotics has been fascinating people for a long time. A general machine that can
work for us and serve us. A machine that can think for us or with which we can
have a conversation. An artificial person with its own thoughts and motives. Peo-
ple’s imaginations can go far beyond the level of technology and, in some rare cases,
vice versa. Humans tend to give personalities and feelings even to inanimate ob-
jects and stochastic processes in everyday life. One can imagine a sick old car that
breaks down often or a stubborn golf ball that does not want to go into the tiny hole
designed for it.

When we imagine a machine that is purpose-built to think and has feelings and
has a resemblance to a human or animal, expectations can get quite high. Unfortu-
nately, technology can not meet these expectations yet. Machine perception is very
far from understanding our world and drawing intelligent conclusions. Let us take
an extreme example from the film “Planet of the Apes” (1968). The main character
travelled in space and ended up on a habitable planet where humans were treated
like animals and apes ruled over them. At the end of the film, the main character
finds one partially occluded piece of evidence: a part of the “Statue of Liberty”
(Figure [I.T) and suddenly viewers can draw very far-reaching conclusions about
past events, the current location, and a myriad other things. With a machine with
today’s technology we would have a hard time recognising the statue, let alone ways
to associate and store information for drawing the conclusions.

But, still we believe that it is possible to make some rational decisions with
machines and develop a useful generic service robot with today’s technology, while
bearing in mind the current limitations.

The usage of service robots and the market for them have been strong and they
are expected to grow further in the future [1], [2]. In 2008 the sales of service
robots for professional use came to 11.2 billion US dollars and 7.2 million units
were sold for personal and private use world-wide. This trend is also recognised
by many governments. There is, additionally, the problem of an aging population,
for which robotics and home automation are considered a solution by many gov-

1

Figure 1.1: Screen shot from the film "Planet of the Apes"

ernments. Japan is investing in robotics research through university and research
institute funding. Furthermore, large Japanese enterprises, such as Honda, Sony,
Panasonic, Toyota, or Mitsubishi, are invesing heavily in robotics. For example,
Panasonic expects sales of 100 billion yen (890 million Euros) in robotics by 2015
[3]. The Korean government launched a huge service robot research programme in
2009 worth 1 trillion Won (660 million Euros) along with the Robot Land theme
park and investments in the private sector [1]]. In the USA, the government-funded
research has more of a militarily inclined aim, with obviously large but somewhat
undisclosed budgets. Their focus spans from unmanned air, ground, and sea we-
hicles (which are already in use) to research led by DARPA (Defense Advanced
Research Projects Agency) into further automated unmanned vehicles [4] and robo-
tised medical evacuation and trauma treatment [5]], among others.

Automation has revolutionised the production industry during recent decades.
Service robotics could be seen as this automation technology’s revolution affecting
the service-providing industry too. Service robots have great potential to improve
the productivity of a whole nation so that the human capital working in the ser-
vice sector would instead be freed to do something else; one hopes that this would
be something more rewarding, productive, and inspiring. Automation has not only
lowered costs in the production industry but has also made the quality of products
more predictable and stable. Sometimes, the quality has even surpassed manual
manufacturing. Without a doubt, these effects can also be seen in the service in-
dustry, too. For example, when did you last buy an airline ticket over the counter
from a clerk? Travel agencies can offer better deals for the customer faster and in-
dependently of the office location, with a virtual agent browsing through offers from
different airlines via the Internet. The only question is when something similar will
be done with physical agents.

At the beginning, multi-tasking service robots would be very expensive, as al-
ways when a new technology is introduced. This was, and still is, to some extent,
the case in the production industry. Because of the high cost, only parties with
enough capital can utilise the technology commercially and prosper from it. That
can be seen as an advantage or disadvantage of automation, depending on your po-

2

litical stance. There is definitely one bad side to the development of automation.
People freed by the technology cannot always find something else to do, leading to
a rise in unemployment. However, in the home environment the service robot has
the potential to take over the household chores and release unpaid human capital,
which is always welcomed.

It is expected that with the advancement of the required technology and also
mass production the cost of a service robot will be reduced drastically. A service
robot of the future would be affordable enough to be a personal possession similar
to today’s cars, of course, with the assumption that the robot is able to perform
functions that can provide more freedom and free time for its owner, as a car does.

1.2 Problem statement

This research work started from the question of how robots could learn complex
tasks and improve their task execution in time. During the research it became clear
that there was no sufficiently abstract and flexible way to represent the task knowl-
edge. The representation has to be abstract in order to minimise the search space
for any kind of learning or optimisation algorithm.

Thus, in this research, a concise way to represent a task for a service robot is
studied. The control of a service robot is a very complex endeavour and a con-
siderable part of the effort goes into defining and refining how the tasks should be
performed. So, the main problem tackled in this work could be formulated into the
following question: How can a task be represented to a service robot in a concise
way and how can they be executed simultaneously?

To answer this question, three fundamental aspects [6] should be defined before
the solution or method is proposed: 1) the available hardware; 2) the task to be
performed, and 3) the operating environment. The case considered in this research
is a single mobile manipulator kind of service robot. The robot executes multiple
varying tasks initiated by a human operator. The operational environment is un-
structured, dynamic, and also occupied by humans. The main focus of this work is
in the representation of the task knowledge, since it affects the usability of the robot
so strongly. But the methodology for the execution of the task is so intertwined with
the representation that it cannot be omitted.

1.3 Contributions

This research is in the field of the control of service robots. In this work the so-called
ActionPool method was created. The two main contributions of the ActionPool
method are as follows.

1. A new way of abstracting the functions to execute a task

In this work the task is divided into elements called actions. An action is
considered as a unit operation for the robot on a particular resource. In the
previous works, either the granularity of the unit operation has been much
smaller or the size has been completely arbitrary. The representation also has
an event listener component that describes the operation sequenced by events
that are uncontrollable for the robot or in the case of an exception. In this
work a task-centric bottom-up approach from the execution point of view has
been taken, i.e. what the robot should do to execute a task successfully and
how to describe that in the plan. In the previous works the approach has been
a plan- or planning-centric top-down approach, i.e. what would be the most
convenient way to manage the plan or create the plan automatically?

2. A method is developed to execute multiple tasks concurrently while utilising
different resources of the robot.

Traditionally, a particular single task has dominated the usage of the robot.
The development has concentrated on conducting tasks one by one. If the
tasks are mixed, that is known beforehand and the interactions between the
tasks are carefully planned before anything is done. The work presented in
this thesis divides the functional parts of the robot into interdependent re-
sources instead of considering the robot as a single resource. The division of
tasks into actions allows the dynamic sharing of a resource between different
tasks and thus no planning is required.

To the best of the author’s knowledge, there is no other control method for a
service robot that allows the dynamic adding or removing of tasks for execution
which has been demonstrated to work on a real robot in a dynamic environment.

The proposed representation allows the incremental configuration of a task.
Tasks can be developed independently but executed at the same time. The rep-
resentation is on an abstract level and thus tasks can be interchangeable between
different kinds of robots. Additionally, the task representation becomes very com-
pact and natural for humans. Furthermore, the compact representation makes the
search space smaller for various learning algorithms.

1.4 Outline of the Thesis

In this chapter, an introduction to the research field was provided, along with a
motivation and problem statement. In the next chapter a more elaborate and focused

4

explanation of the research field is given. The description of the state of the art is
divided into two chapters. First, the different ways to execute a task with a service
robot are shown in Chapter[3] In Chapter] the state of the art regarding different
ways to represent knowledge about the task are considered.

Chapter [5] provides details of the ActionPool method followed by a chapter ex-
plaining the implementation of the ActionPool method. The experimental validation
of the ActionPool method is shown in Chapter [7] In Chapter [§] the results of the
experiments are analysed further and compared to existing methods. Finally, in the
last chapter the significance of this work is discussed, along with future work and
other considerations related to this work and its applicability.

1.5 Author’s Contribution within the Research Groups

The work started with studying the basics of task execution with service robots
within the large research group in the WorkPartner project [[7,18]. The project lasted
from 1998 until the first quarter of 2006 and the author was privileged to participate
in it from 2005.

The major part of the work presented here was done only by the author on
a researcher exchange funded by the Finnish Academy (under decision numbers
115898 and 121006). The exchange was a two-year period between 2006 and 2008
at Tohoku University, Sendai, Japan. The System Robotics Laboratory, led by Pro-
fessor Kazuhiro Kosuge in Japan, provided the research facilities and the hardware
to work with. Some algorithms from the Player [9] project were utilised.

Since mid-2008 the author has continued to refine the method in the Generic
Intelligent Machines (GIM) research group. The GIM group provided valuable
support for the software development and algorithms. Dr. Jari Saarinen provided the
localisation algorithms, Antti Maula gave support to the interfacing of the hardware,
and Sami Terho and Dr. Teppo Pirttioja shared their insights about the perception
and world modelling.

1.6 Declaration of Previous Work

Some early work with the robot platforms used here is presented in conference
papers [10, [11]. The basis of the micro task representation utilised in this work to
describe the robot-dependent part of the task was presented in a doctoral dissertation
[12], which was partly derived from the intermediate language for mobile robots
(ILMR) presented in another doctoral dissertation [[13]]. Some principles of this
work were published in [14].

Chapter 2

Introduction to Task Execution and
Taxonomy with Service Robots

In this chapter more light is shed on the complex problem field tackled by this work.
This is done by defining key terms used in this thesis along, with the explanation
of some basic concepts and relations. There are many conflicting and overlapping
terms used in robotics because the inspiration for solutions has been coming from
diverse fields in science. Table[Clillustrates this fact. This chapter tries to rationalise
the terms and provide crisp and unambiguous meanings for them.

2.1 Service Robots

A service is defined by Webster’s New American Dictionary (1968) as: “1. The
Performance or work done for another for hire. 2. Assistance.” The Dictionary
of Economics [15]] defines a service as an intangible good often consumed at the
same time as it is provided. A notable feature of a service is that it has two parts:
a provider and a receiver. The receiver or consumer of the service in this work is
referred to as a user of the service robot. The service provider is then a service
robot. This is notably different from the case where a service is provided by a group
of robots or by the combined efforts of a human and a machine.

A machine that has: 1) functions controlled by 2) sensory feedback and 3) ac-
tuators to affect the state of its environment is referred to as a robot in this work.
Naturally, a service robot would be such a machine executing functions that would
serve the user as [[16] defines.

Service robots can be classified into single-task and multipurpose service robots.
Single-task robots are designed and often optimised to provide only one kind of
service. Multipurpose robots can provide many different services and for this to
be possible some compromises have to be made in the design phase. A common
assumption is that for a successful multipurpose service robot at least three general
functions are vital: 1) perception and human-machine interaction (HMI); 2) mobil-
ity, and 3) manipulation [17]. For manipulation, this typically means a robot arm
with the ability to manoeuvre the end effector to a desired position and orientation

7

in a sufficient workspace. For perception typical requirements are the ability to
recognise and localise objects, obstacles, and humans, as well as the robot’s own
pose, in relation to some world model co-ordinate system.

If a tool is defined as an apparatus that can make people work more efficiently,
a service robot could then be understood as a sophisticated tool for the user to do
different kinds of tasks. The aim of this work is to partly increase the autonomy
of this tool. Autonomy can be measured as the amount of supervisor intervention
needed in the work process. A fully autonomous robot could assess the situation
and provide the right services when needed without being asked to do so. It also
makes sure that it is operational when needed. As mentioned in the introduction,
that would be very difficult. To be useful, it is enough when the level of autonomy
is high enough for the robot to provide a greater service than it requires work to
operate.

There are other exceptions to justify the use of the service robots, even with very
low autonomy level. First is the famous triple-D of the automation. With a robot
you could do something that would be Dirty, Dangerous or Dull(DDD) otherwise
[18]]. Another case is tele-presence, where one can circumvent the classical problem
of being in two places at the same time. In tele-presence, the robot roams around,
observes and sometimes even interacts with the environment under manual control
from a remote location. In an optimal case all sensory stimulus is transferred from
the robot to the remote location so that the operator feels like being in the same
location than the robot.

There are other exceptions to justify the use of service robots, even with a very
low level of autonomy. The first is the famous triple-D of automation. With a robot
you could do something that would otherwise be Dirty, Dangerous, or Dull (DDD)
[18]]. Another case is tele-presence, where one can circumvent the classical problem
of being in two places at the same time. In tele-presence, the robot roams around,
observes, and sometimes even interacts with the environment under manual control
from a remote location. In an optimal case all sensory stimuli are transferred from
the robot to the remote location, so that the operator feels as if they are in the same
location as the robot.

2.2 Control of Service Robots

From the viewpoint of classical control theory, any feedback control problem, such
as the control of a service robot, is constituted from a model similar to Figure @
This diagram shows the flow of information or influence as arrows and the process-
ing of information or influence as blocks.

The input to the system can be either a single value or, in a more complex
case, a vector. For example, in the case of an oven as a plant we can have some
temperature as a desired state, which is filtered into a certain voltage level to be a
reference. The current temperature is measured and in the data acquisition process
it gets filtered into a voltage level. The voltage level represents the state of the plant
to the controller. The controller decides the correct control input for the actuator.

8

Disturbance

Desired
state

Reference reference control
» » »
filtering > Controller > Actuator > Plant

Y

A

state State P measurement
filtering n

Figure 2.1: Component block diagram of elementary feedback control

Disturbance
r-—-—-—--=-=-=-= _I
Y
. la control
Goal > Planning pan > Controller > Robot > World
| A
world model
| X measurement
Perception <«
I— = = == = Control Architecture ==

Figure 2.2: Component block diagram of elementary robot control

In this case the controller could be just a comparator controlling the current going
to the heating element acting as the actuator. Finally, there would be a disturbance,
such as a worried cook opening and closing the oven door.

In the case of a service robot the system is far more complex but can still be
described with these elements, as can any system with feedback control. In Figure
[2.2] the same diagram is shown with terms usually used in robotics. In robotics
there is also a common term called “control architecture”, indicated by a dashed
line in the figure. Sometimes it includes the planning part and in some cases it
excludes it. It is important to notice that some arrows were also included in the
control architecture. The controller has two inputs, the plan (or task) to be done
and the state of the world, in one way or the other. In a simple case these inputs
are just single numbers but in the service robot case these inputs need to convey a
huge amount of information. This leads to the fact that the information needs to be
compressed for efficient processing in order to keep up with the speed of the world
around the robot. Now we can conclude that to define a control architecture we
need to define: 1) how the plan is represented; 2) how the world is represented, and
3) how the right control for the actuators is deduced.

An interesting common feature in the feedback control of complex systems is
that several cascaded controllers exist in which the output from one controller is the
reference for the next one. The case of service robot control is not different. So
the control architecture for the service robot is actually a stack of cascaded con-

9

trollers or even cascaded control architectures. A famous paper [19] describes three
cascaded controllers or architectures. The hierarchical stacking of the layers is chal-
lenged with the theory of heterarchical organisation, sometimes called agent-based
control. But in their applications you can still find layers below and above the
agents, and thus agents forming a layer in the hierarchy themselves. That is to say,
in the feedback control of service robot there is not just a controller in series but a
combination of controllers in series and parallel.

The feedback loop presented in Figures [2.T]and [2.2]is needed to keep the system
stable. From classical control theory we know that too long a delay in the loop tends
to make the system unstable. The delay is constituted of the time spent gathering the
measurements and solving the suitable control, along with the effectiveness of the
actuator to change the state. What is too long a delay then depends on the speed or
time constant of the plant or world around the robot. And when service robot control
is considered, several control loops with different delays are actually present. They
each still use the same sensors to observe the world, but luckily, typically, as the
level of abstraction gets higher, the system being controlled gets slower.

The control of a service robot is a complex problem and, like any complex
problem, an essential part of the solution is its suitable division into subproblems.
This is commonly done by dividing the control into hierarchical layers. The break-
down of the problem continues with dividing each layer into components. With
this kind of division it is always essential to define well how and what the layers
and components communicate with each other. Figure 2.3] attempts to illustrate the
division. The NASREM architecture [20] proposed six layers with different levels
of abstraction. [19] suggested a division into three layers based on the world model
the components use. The first one utilises just the instantaneous sensor readings, the
second one has some memory of the world model, and the third one also predicts
the world model. Volpe argued in [21]] that only two layers should be used for the
sake of hiding information from higher-level layers.

What is communicated down in the hierarchy of layers or control architectures is
the plan or task representation. Thus, in the case of several layers, several represen-
tations are needed at different levels of the control. The combination of components
used in one or more layers is also a well-known and widely studied problem, and
so several solutions have arisen and they are commonly called robotic middleware
(9, 22], 23], 24| 25]].

2.3 Task

The Oxford Advanced Learner’s Dictionary (2001) defines the word ’task’ as “a
piece of work that somebody has to do, especially a hard or unpleasant one”. The
general description of a task is further clarified here as a process that has some pur-
pose or goal in the operating environment. Robots operate in a real physical envi-
ronment and their tasks are, then, real tangible tasks and not just abstract operations
inside a computer.

10

|
|
|

Figure 2.3: Layers and components of a robot control architecture

— —

0 €H €
Ul

. - -
Q Y Q
< < <
(] (] (]
= = =
——

When the task for a service robot is being configured, the environment is typ-
ically clear from the context and does not need specific definition. The purpose
and goal of the task are relatively simple to describe to a human but for a machine
they are then much more difficult to define. That is actually a branch in a science
called ontology. When the task is initiated and its execution is started, the intended
execution process, the plan, needs to be described. There are also relevant meta-
data related to the task. It is important to define when and how the task is started
and sometimes when it is considered to be done. Most commonly this is done by
defining the pre- and post-conditions of the task. Other metadata could be the im-
portance, estimated execution time, success rate of the task, or who configured or
initiated the task. Sometimes it would be interesting to know if the task is a part of
some greater entity and, if it is, which part of it. The metadata about the task can
be used to arbitrate the right task to do on the basis of some assigned goals and the
current situation. This is often called knowledge in the control of robots.

Many different types of tasks can be identified on the basis of their execution
process and goal, as shown in Table

Table 2.1: Task Types

Type of task Example

Continuous Follow a person

Do once Unlock the door, clear the yard

Maintain state Keep the door open, keep the yard clear
Manipulation Open the door, Pick up litter X from the yard
Information delivery Tell person X that the door is open
Observation Check if the door is open

11

These tasks have differences in terms of the level of abstraction, dynamics, and
the feedback needed. But a common feature is that a task has some purpose or goal
in itself. The task does not define exactly how it should be achieved. It may have
a plan of how to do it but the situation can change and the plan becomes invalid.
Tasks can be defined on different scales. Picking up a piece of litter from the ground
or removing litter from the whole city are both tasks but on different scales or levels
of abstraction.

A term related to the task and used many times in robotics is mission. The
term ’mission’ is not used extensively in this work, but typically it describes a very
abstract task with possible multiple goals. The term ’goal’ in the literature is some-
times analogous to a task in the sense that it can define the purpose of the task. In
this work we adopt a definition that the goal is just part of the task configuration.
The goal can change during the task, depending on the environment and parameters
of the task, while the purpose of the task can stay the same. The definition of a goal
typically leaves the way to achieve the goal completely open. Different tasks can
have the same goal and different plans may achieve the same goal.

In many cases the most challenging part of the task execution is confirming
when it is done, i.e. when the goal is achieved. For example, a simple ’goto’ com-
mand can have only a certain level of accuracy because of the uncertain pose and
limitations of the hardware and underlying position controller. As another example,
when an audible message is delivered, to make sure it was received and understood,
should the robot try to evaluate the facial expressions and direction of the gaze of
the person? Or should there be a defined way to acknowledge the message, which
in turn would not be intuitive and effortless robot usage?

Technically, many tasks can be done without explicit information about the final
end result. A task could be executed in an open-loop control and in some cases
coercion can be utilised, for example, delivering an audible message multiple times,
loudly and close enough to the person receiving the message. However, it is vital
for many functions, such as unsupervised learning, to observe the end result of the
task. If there is no way for the robot to evaluate the performance of the task, it
cannot learn from non-existent past experience.

The right performance level of the task is an essential feature to consider when
configuring and executing a task. The optimal performance level is a very vague
expression, despite the intuitive clear sound of it. Task performance can be pruned
into measurable numbers relatively easily on the basis of time, reliability, or energy
used, among other metrics. These measures often contradict each other and even
their relevance can change according to the time and situation. So it is important to
find designs and execution parameters that are “good enough” under a wide variety
of execution conditions, especially when the conditions are typically unobservable
to the robot.

12

ACTION

ACTION

ACTION

ACTION ACTION

GOAL

TASK i
ENVIRONMENT

METADATA
AL (P

ACTION

ACTION

PLAN

Figure 2.4: Relations of the terms used

Nested Tasks

As mentioned, tasks can be on different levels of abstraction. A more abstract task
can be constituted from less abstract tasks and this relation makes them sub-tasks
of a task with a wider scope. The abstraction can work in two directions. In the top-
down approach a task can be divided into sub-tasks and the most commonly used
formal way of doing this is the hierarchical task network (HTN) [26, [27] method.
Alternatively, a less commonly used and, arguably, a more natural bottom-up way
is finding common combinations of sub-tasks and merging them into one task.

When the task cannot be divided into smaller sub-tasks, an atomic operation
or action can be perfomed. An atomic operation can be defined as an operation
that can be controlled only by starting and stopping it. An atomic operation is also
subject to the viewpoint. If we break the task down into the smallest bits and follow
them down with our viewpoint, we can consider how a single electron is causing a
change in an electrical field and creating moment in an electric motor. The solution
for the viewpoint of selection is the definition of the layers of abstraction. That fixes
the viewpoint on some specific level. The division into sub-tasks is actually the plan
of the task. Figure [2.4]illustrates the relations between the terms.

2.4 Plan

The plan is a frequently used term in robotics. It defines how something is intended
to be done. The plan can be defined using actions, tasks, goals, or any entity de-
scribing some sort of activity. The plan also has some rules to define in which order
and combinations the activities are executed. A plan for picking up a piece of litter
from the ground can be a sequence to stretch the arm, grasp the litter, and lift the
arm up with the litter. On the other hand, a plan to remove litter from the whole city
can contain the task of picking up a piece of litter from ground. The plan does not
have a purpose in itself like the task has. The result of a plan is dependent on the
current situation when the plan is executed.

13

24.1 Planning

The right plan for the situation can be achieved in two ways. 1) It can be created
on the basis of the situation with a process of planning. 2) You can have a set of
plans that are already planned and choose the best one for the situation. Typically,
planning is a very expensive, slow, and difficult process. Thus these two methods
are a kind of trade-off between speed and applicability.

There is a hybrid method that humans are believed to follow. A coarse and
abstract plan is selected from a set of ready-made plans that best match the situation
and then the details are planned and defined as the execution of the plan advances.
This requires very high-level symbolic abstraction of the environment and plan in
order to find the best-matching coarse plan.

The inputs for the planning process are the current situation, the goal, and the
available operations. The planning process then outputs a sequence of operations
to achieve the goal from the current situation. In automated planning it is required
to express which goals a particular operation can achieve or the planner has to have
the ability to predict it. Then the search for a suitable sequence can start from the
current situation and/or from the goal, first by finding operations suitable for the
current situation or achieving the desired goal, then by estimating the following
situation after or before the selected operations. These steps are repeated until the
sequence between the goal and the current situation is found. Of course it might be
that such a sequence cannot be found.

Now, different ways of representing the operations and their relations can make
this planning problem easier and faster. The most inconvenient fact is that the output
of one operation or the activities of other agents in the same environment cannot be
guaranteed. There are many techniques to accommodate this. 1) The planning can
be done more frequently than the environment is changing. 2) The validity of the
plan is constantly monitored and planning can be done again when the plan becomes
obsolete. 3) The alternative operating sequences are considered and accommodated
into the plan. 4) If the environment cannot be observed in detail, blindly believe
that nothing will go wrong. If the plan is made beforehand, only options 3 and 4
can be used.

One technique is to divide the goal into sub-goals that are perhaps easier to
achieve. Again, this requires advanced understanding of the problem. When work-
ing on a layered architecture, the atomic operation on one layer has to have a plan
for execution on the next one. So the planning has to be done on all levels of abstrac-
tion, either in an automated manner or manually, and either in situ or beforehand.
Furthermore, the plan has to be ready on the lowest level before anything can be
done. In principle, in the case of a robot the very lowest-level plans are fixed be-
forehand by soldering them into the circuit boards and bolting them into degrees of
freedom.

The plan defines the process of execution of the task, but the planning process
does not define all the other information in the task. The process of defining all the
required information in the task is called configuring the task.

14

2.5 Multi-tasking

As already mentioned, there are multipurpose robots that can execute different kinds
of tasks. If the tasks can be under execution at the same time instant, it is called
multi-tasking. Actually, for multi-tasking it is not necessary to do different tasks
involving different objects; the task can be same but the object must be different or
the object can be same but just the tasks different. The last case is the most difficult,
because the tasks are likely to interfere with each other. The division into different
types of multi-tasking used in this work is defined in the following subsections.
The capability for multi-tasking is a very important feature. A proof of that is
its wide use in the world of nature. For example, a bird can eat and watch out for
predators at the same time. It can use its head to peck grains from the ground and
to glance around, or it can fly and look for a good place to land at the same time.

2.5.1 Time-sharing

Doing any kind of task requires the use of some kind of resource, be it computer-
processing power, energy, space, or time. When different tasks need to use the same
resource and it cannot be shared, they have to use it in turns. This is so-called time-
sharing multi-tasking. There are several ways to coordinate access to resources. A
major division is into co-operative time-sharing and pre-emptive time-sharing

In co-operative time-sharing the task voluntarily releases the resource after using
it for a while. This is prone to problems with, intentionally or not, selfish tasks that
can occupy the resource excessively. Pre-emptive time-sharing limits the time that
each task can use the resource and ensures a share of time for each task. Thus the
task can be suspended in the middle of its execution in order to share the resource,
but tasks are more independent of each other.

2.5.2 Concurrent

If different tasks use different resources, there are no conflicts for the resource. Thus
the tasks can effectively be executed at the same time and this can be called concur-
rent multi-tasking. A classical example is a human chewing gum and walking at the
same time.

2.5.3 Parallel

If several instances of the same resource exist, the tasks can be divided into elements
to be executed on any of these resources. This is called parallel multitasking. An
example could be a human picking up litter with both hands. The left hand can be
used to answer a mobile phone while the right hand continues picking and the left
hand can join the litter-picking task after the call finishes.

15

2.6 Task Knowledge Representation

Task knowledge is considered in this work as all required information related to the
task in order to execute the task. What is required depends on the infrastructure in
which the task is executed. The task knowledge or domain knowledge of Mataric
[28] is very important for the efficient utilisation of service robots. Thus, the way in
which the task knowledge is represented becomes a crucial problem. The process
of configuring and planning what the robot should do is a challenge in itself. There-
fore, the syntax of the representation should support the design process. In practice
this means that the elementary atomic operations of the robot should be abstracted
to functions on the same level as human thinking if a human is doing the planning
or wants to understand the plan. So the humans can concentrate on the real problem
of how the task should be performed.

When configuring a task, it is very difficult to get everything right from the
beginning. It is common to add new features to existing plans and it is just good
practice to start from simple things and make sure that they work before doing
something more complex. Thus the task configuration is an iterative process. The
initial plan is refined and new features are incrementally added at each iteration.
And in the case of a more complex system, with multi-tasking operation, individual
tasks should be able to be developed independently.

One viewpoint on the task is the data it contains. The task can be divided into
a static part and a variable part. For example, in a common ‘goto’ task the variable
parts are e.g. the goal pose, the margins within which the goal pose should be
achieved, and the maximum speed or acceleration for the motion or deadline when
the goal has to be met. On a general level, this variable part is common for all
representations within the myriad different ways to represent a task.

The static part of the representation depends on the underlying control architec-
ture of the robot. The task is like a computer program and the representation is its
source code. Each control architecture has its own instruction set for elementary
building blocks of the source code. Typically, you can combine these instructions
to form a higher-level abstract function or instruction. All in all, the static part is
different from robot to robot.

Service robots can be very different from each other, but they need to do the
same kinds of things. For example, the mobility of the robot can be based on wheels,
tracks, legs, or wings, but still it performs the same function, manipulating the
robot’s pose in the world coordinates. So on some level the task knowledge could be
transferred between different robots and enhance the usability of the robot. For this
the different levels of abstraction in the representation come in handy. Learning in
robotics has recently gained a lot of attention as a research topic. Task knowledge
representation is a vital part of the task learning process, because that is exactly
what the learning process works on. Typically, it tries to optimise the representation
on the basis of the minimisation of some cost function or maximising the reward
function.

The task knowledge is separated from the control logic. It defines the archi-

16

tecture’s control logic of how to execute a task. Distinctive requirements for the
representation of the task knowledge in this work are:

1. The task representation can be serialised to be saved or sent over a communi-
cation link, i.e. it is not an emergent behaviour of the system.

2. The task can be configured independently from the robot and the representa-
tion can be used to transfer it into the control architecture for the execution,
i.e. the plan is separate from the execution process.

3. The representation of one task can be transferred to another instance of the
same control architecture for execution, i.e. it is generic and robot-independent.

2.7 Non-Functional Requirements of Service Robot
Control Architectures

Environment Reliability

Hardware
Economics
Transparency
HMI
Development
process
Efficiency

Tasks

Figure 2.5: Constraints for service robot task execution causing the requirements

There are many factors that affect the use of a service robot and thus its control
architecture. There are requirements imposed by the hardware, environment, eco-
nomics, users, developers, tasks, etc (Figure @ In this section the non-functional
requirements identified by the author of this work and other authors are presented.
At the end all the quality characteristics are combined and analysed. The correspon-
dence between different authors is presented in a compilation table (Table[2.2).

The actual goals or non-functional feature requirements for service robots re-
ceive surprisingly scant consideration and are rarely well-motivated in the literature.
It is challenging to define a legitimate base to consider these requirements and list
them unambiguously and it requires extensive research in itself [29]. That is left
for future work and instead a consensus of other authors’ opinions is gathered up.
This is not intended to be a comprehensive and exhaustive list of requirements. The
purpose of this listing is to create some basis for the analysis of this work. So this
list is referred back to in Chapter[§]

17

First, a list of the most basic general requirements for the control architecture,
in the author’s opinion:

o the possibility of controlling the execution by suspending, resuming, and can-
celling the task execution

e responsive to changes in the environment and in the robot

e stable with a variable amount of uncertainties in the environment

When the efficiency and economics of the service robot are considered, the author
likes to raise the following requirements above others:

e multiple tasks under execution at the same time
e different resources of the robot in use at the same time

For easy human-machine interaction (HMI) with the system the author promotes
the following features:

e add and remove tasks at will
e set priorities for the tasks
e monitor tasks’ execution state

2.7.1 Non-Functional Requirements in Literature

Ingrand [30] and Alami [31] define the following requirements for an autonomous
planetary rover system:

programmability
autonomy and adaptability
reactivity

consistent behaviour
robustness

extensibility

Pattie Maes defines in [32] the following characteristics for action selection be-
haviour for an autonomous agent, such as a planetary rover:

goal- or multi-goal-driven actions

the selected action is relevant for the current world state
stick to a particular goal

plans to handle interacting and conflicting goals

robust even if parts break down

reactive and fast

In [33]] Laffey et al. expect the following classes of features from a real-time
expert system:

e cfficient integration of numeric-symbolic computing

18

continuous operation
focus-of-attention mechanism
interrupt-handling facility
optimal environment utilization
predictability

temporal reasoning facility
truth maintenance facility

In [34] Rodney Brooks identified a number of requirements of a control system
for an intelligent autonomous mobile robot:

multiple goals
multiple sensors
robustness
additivity

In [35] the following agent design problems are indicated by Atkin et al.:

processing sensor information

reacting to a changing environment

integrating reactive and cognitive processes to achieve an abstract goal
interleaving planning and execution

distributed control

allow code reuse within and across domains

using computational resources efficiently

Evan Drumwright and Victor Ng-Thow-Hing define the following design goals
for a task matrix [36] framework to describe tasks for a humanoid robot:

simple task programs can be treated as primitive components to perform more
complex tasks and behaviours.

the task matrix is independent of any particular approach to goal planning or
task sequence execution.

on-line additions to the matrix are allowed to facilitate continual learning or
the upgrading of skills

the task matrix should promote robot independence.

In paper [37] Christopher Parlitz et al. define the following indispensable key
issues for a robot framework:

modularity

platform independence
inter-process communication
resource management
configuration of the systems
robustness

tools for testing and debugging
performance analysis

19

2.7.2 Combined Feature Requirements

In the Table [2.2] the features identified by other authors are combined. Some of the
requirements grouped together are not exactly identical but close enough to be con-
sidered same in principle. The table also indicates classification of the requirements
into runtime qualities and development time qualities. In the following, the list of
distinguishable requirements are defined and motivated in detail. Some general re-
quirements such as autonomy, integrity or maintainability are considered as unions
of the requirements listed here:

In Table [2.2] the features identified by other authors are combined. Some of the
requirements grouped together are not exactly identical but are close enough to be
considered the same in principle. The table also indicates the classification of the
requirements into runtime qualities and development time qualities. Below, a list of
distinguishable requirements have been defined and elaborated on in detail. Some
general requirements, such as autonomy, integrity, or maintainability, are consid-
ered to be unions of the requirements listed here.

1. Programmability Programmability The robot should be able to achieve mul-
tiple different tasks described at an abstract level. The way to configure the
tasks has to be simple enough for a novice user without background experi-
ence to utilise it. The way to programme the task has to be expressive enough
to enable complex tasks to be performed.

2. Adaptability Adaptability The robot should select relevant actions for the
current state of the world. It should be possible to refine or modify the task
and its behaviour according to the current goal and execution context. The
changes and non-uniformity of the environment should not only be recognised
but exploited.

3. Reactivity Reactivity Reactivity to an outside stimulus has been considered
as a vital function for a robot for decades [34].

4. Predictability Predictability The reactions of the robot to the events must
be guided by the objectives of its tasks. If the robot decides to pursue some
task, it should stick to it and not spend all its resources switching between
tasks. Some tasks are more important or urgent than others. If one task is
prioritised, judgment can be subjective to the operator; its execution should
be more likely than that of the others.

5. Robustness Robustness All the information that the robot gets is plagued
with uncertainty. No sensors are perfectly accurate and the world tends to
change faster than the sensor readings are refined into observations about the
world. This variation in the operational environment has to be incorporated
for reliable functionality [38]. Sometimes parts of the robot may even break
down. It would be good to have redundancy in the robot’s functions or at least
the execution should continue with the parts that are still working.

20

6.

10.

11.

12.

13.

Extensibility The integration of new functions and configuration of new tasks
should be easy. This includes the configuration of the task just by re-organising
and adding parts from other tasks. Learning capabilities are important to con-
sider here: the architecture should make learning possible.

Multi-tasking Making and operating a robot capable of manipulating the
state of the world, which is shared with humans, requires a considerable
amount of material, energy, and space. It is economically justified only in
very few cases to have only one robot for one task. The robot should be
able to do many different kinds of tasks. It would be even more beneficial if
the robot could perform multiple tasks at the same time. Many tasks include
waiting periods and parts of the tasks are done in locations far apart from each
other. With rational task scheduling for multi-tasking execution, the operation
can be made more efficient.

Resource management Different parts, sensors, and actuators, of the robot
are relatively costly. When executing one task at a time, often only one part of
the robot is used. Again, when multi-tasking, with careful scheduling, better
utilisation of all robot parts could be achieved.

Attention control Perception functions are typically computationally the
most expensive operations of a service robot. The robot has to direct its atten-
tion, i.e. sensors and perception functions, on the basis of the tasks at hand.
Only the relevant parts of the environment should be observed.

World model The robot has to have an abstract representation of some parts
of its operational environment. This is required to interact and communicate
with the robot, to accommodate complex tasks, and even to enhance the sen-
sory readings.

Sensory information Even relatively simple sensors can generate consider-
able amounts of data. The data are rarely usable by themselves. They have to
be filtered from noise and pertinent information has to be extracted.

Interleaving planning and execution Planning competes with perception
for the title of the computationally most expensive operation. There is typi-
cally more room for adaptation in planning than in perception. The planning
horizon, level of detail, and level of branching and pruning of bad-looking
options can be adjusted. The planning and execution processes have to run in
parallel and the result of the planning should be joined smoothly to the execu-
tion. Safe robot operation should not be compromised by the computational
resources required for planning.

Modularity Many feature requirements mentioned above demand parallel
processing. The control of the service robot requires the division of the sys-
tem into more manageably sized units. The computing system has to be dis-
tributed over many processors to guarantee responsiveness and accommodate

21

14.

15.

16.

17.

the computational load. All this is best done by dividing the software into
modules. It is also beneficial for the hardware to be modular [39]].

Platform independence If the architecture can be independent of the plat-
form, the advances made and tasks created in one robot could be transferred
to another robot. The development of the system can be divided into many
independent parallel units.

Independent representation Because of the complexity of our world, in
our daily life many situations appear in a seemingly stochastic pattern. Some
tasks cannot be scheduled or anticipated but have to be set for execution or
cancellation ad hoc. For this the tasks have to be independent of each other. It
is an unsustainable situation if, while one task is being developed, other tasks
have to be explicitly considered.

Execution control Execution control This is an intuitive feature. For any sys-
tem physically operating in a shared environment, there has to be a possibility
of stopping the system if something goes wrong. This feature requirement can
also be found in many regulations regarding autonomous work machines and
the like [40]. Furthermore, suspending the execution instead of just cancelling
it is more of a usability feature.

Performance analysis For developing new tasks, to monitor the perfor-
mance, and to diagnose problem situations, it is vital to know what the robot
is trying to do and has already done.

22

SySe) JO Aqe)S

uonndoXd JOJIUOJN SISATeU’ 0UBULIONIOJ ad L1
uonnoAx3 Ay Jury Sur33nqap
-[onuod jo ANIqIssod Ppue Funsd) Ioj S[o0], d 91
M 1e uone)
SYSE) QAOWI PUE PPy -uesaxdar juspuadopuy ard st
surewop
QoUp SSOIOE puB UIIM
-uadopur wope[q juopuadopur-}0qoy 9SnaI 9pod MO[[Y a v
OdI “Kire[npoy [01U0d pANgINsIq a ¢i
uonnoaxa pue
Suruuerd Suraespryuy d
uoneuLIOy
-UI J0Suas JuIssao0Ig s1osuoas o[dnny d I11
Lo
-BJ QOURUIUIRW UINI], d 01
APUSIOIPQ S0IN0SAI WSTURYOW
reuonendwoo Jurisn UOTIUR)IB-JO-SNO0] d 6
Quin owes s[eo3
AU} 1 9sn ur 10qoI Ay} Juw (sTeo3 odnmnu Ayoey Sunorguod pue Juroe
JO S90INOSAI UYL -oSeuBwW 90INOSAY ‘S10SUS ordnnjy) Suruosear [erodwa], -IoJul J[puRYy 0) SUB[J d 8
own
Quies oY) Je UONNIIXd SUONOB UQALIP
1opun syse) odnny seo3 ordnny -[eo3-nnuw 1o -[eon) i L
Surpes3dn [[y§ Aanippy Apqsuaixy . a9
san
-UrelIooun JOo junowe umop Yeaiq
J[qelleA M 9[qeIS ssausnqoy ssoupsnqoy uonerodo snonunuo) sued JI U9Ad ISNQOY ssowpsnqoy ¥ S
syse) [eo3
oy 10y senuond 30§ Amqeiotperd Jemonied e 01 YOS INOIABYSQ JUAISISUOD) ¥ ¥
sa3ueyd JUSWUOIIAUD Ao
0) aatsuodsoy SuiSueys 0) Sunoeoy -e} Surppuey-jdnuojug JSBJ pUB 9A1ORY Amanoeay ¥ ¢
[eo3 joensqe
UB OAIYOE 0] SISSAD Aers
-oxd oanmu3od pue UONESININ PHIOM JULIND IOJ JUBA Anqiqe
oAnpoRar Suneideiuy juowuoIAud [ewnd(Q -o[aIsIuonoe pajoo[eg -idepe pue Awouojny Y 7
Sunndwod
woIsKs orjoquiAs-oLwINu - Jo
oy} jo uonem3yuo) UoroNISU0D YSeJ, uoneIgayur JudAdIPH Amqewweisoly q |
[T€lfogl
Jloyny [Z€] mpred [9€]] ueaqy [S€l uppy [#€] sxooag [cgll Aogey [€]l soeIn peJduj ‘ruery odfy ¢

(senirenb swm yuswdo[aasp (T senIrenb swuna 1) SIoYINE JULISYIP WIOIJ SJUSWIINDAI 9Injes) pauIquio)) :7°7 d[qeL

23

24

Chapter 3

State of the Art of Task Execution
Principles

In this chapter the different ways to fuse the perception of the current state of the
world and the desired task into motion commands to the robot’s actuators are shown.
These are commonly called control architectures or control paradigms; sometimes
the term “control schema” is used. From what is shown in Figure (reprint of
Figure [2.2) this chapter mostly handles the “controller” part and a little bit of the
“world model”. As mentioned in [2} the successful control of a service robot re-
quires a stack of cascaded controllers with different characteristics. The different
characteristics are discussed here.

Control architectures have been studied for decades now and similar classifi-
cations to the ones used here could be found in many robotics textbooks [41} 138,
42| 28]]. The division here is performed from the point of view of how the plan is
handled. Robotics, as a science, approaches the problem in a practical experimental
way. The closely related questions about the nature of knowledge and automated
decision making are studied from a more theoretical aspect in the science of Artifi-
cial Intelligence (AI). Al also has a long history behind it and many textbooks cover
the basic findings [26, 143} 44].

Disturbance

> Robot

Y

Controller World

Goal > Planning

world model

|) P measurement
Perception <

|_ — == = Control Architecture e

Figure 3.1: Task execution in elementary robot control

25

As it is a scientific field, many surveys related to the topic have been done.
One form of these surveys is the state of the art in doctoral dissertations [43, 46],
just like the one presented here. Some surveys can be found in conference and
journal publications [47, 48, 49, 50, 51]. The same structures for the principles
of controlling robots can be found in all of them. So it is not surprising to find
standardisation efforts in the field, too [52].

3.1 Tele-operation

Tele-operation is a functionality where the robot is controlled from a remote lo-
cation, relying only on telemetric information and not on direct human perception
of the situation. One theory for developing an autonomous functionality is to start
from full tele-operation and to gradually automate parts of the tasks and functions
until full autonomy is achieved [S3]]. One example is Sandvik Tamrock’s AutoMine
[54], where front loaders operate mostly autonomously and only a fraction of the
work cycle is still operated by humans. This is a good approach from the point of
view of abstracting the task. Easy, obvious, and repeated procedures can be pruned
out with automated execution and only the relevant information is brought to the
human user.

The automation and abstraction process leads to very application-specific solu-
tions that can be difficult to transfer into different tasks, or even the physical con-
struction of the automated system can be too application-specific to do anything
else. The key problem is that the whole system would be relying on phenomenal
human abilities in perception that will not be able to be reproduced with machines
in the foreseeable future. It is not enough just to automate all the basic functions in
the work cycle. Some form of responsive automated interrupt handling is required
too.

3.2 Deliberative

The deliberative Sense-Plan-Act (SPA) model has a long history. It is the first con-
trol scheme derived from the field of artificial intelligence (AI). It could also be seen
as an extension of traditional feedback control theory. In SPA the control process
has three distinct phases (Figure[3.2)) in one control cycle [20, 55]].

1. The current state of the world is modelled in detail or the model is updated.

2. The next action or a sequence of motions of the robot is carefully searched
for from among a myriad options. The search is based on the world model
and predictions made from it.

3. The action is executed.

26

—={sonse }-={ Pan }o{ e

Figure 3.2: Deliberative control scheme

Unfortunately, during the prime time of this scheme (the 1970s and 1980s),
the computing power was very limited and one control cycle could take minutes
to execute. This was a growing problem for practical implementations for the real
world, even in static environments. If the reaction times for humans are compared,
they are in the order of one second or fractions of a second. For the robot to survive
in our dynamic environment, the reaction time should be along the same scale. The
lack of computing resources could also be a reason for this scheme. Only a pre-
calculated sequence of movements could be controlled by the computers of those
days and that is what the control scheme had to provide.

The SPA model works as long as the world behaves as predicted. When, and, it
is hoped, if an unexpected change in the world is detected, re-planning is needed.
The original SPA scheme assumed that changes in the world between the control cy-
cles would be so small that they could be neglected. Any change would be included
in the next cycle. An expensive planning operation is required to be performed dur-
ing every cycle. With today’s computers this scheme could be more feasible. But
the world model would also be more detailed with today’s sensors and the search
process over all possible scenarios would be more difficult. Maybe, after all, today’s
computing resources could be utilised better with another scheme.

3.3 Reactive

The reactive and, especially, the subsumption model was the answer to the slowness
of the SPA scheme [34, 156, 132]. In the reactive model the control is based on sepa-
rate modules that react to a stimulus from the environment by exerting a command
based on the stimulus. It skips the whole planning process altogether (Figure [3.3).
As a consequence the perception process is lighter, too, because the world model
does not need the information for predictions.

Each module in a reactive system handles the sensor information independently.
This means that the information from the sensors has to be broadcast inside the
system somehow. This is usually easy, but the other end of the process is more
challenging. All the commands produced by the modules have to be somehow
combined together. There is only one robot to command, after all, and it cannot go

27

| sonse | Act_

Figure 3.3: Reactive control scheme

left and right at the same time. Generally, commands are combined together, either
by fusing them together, for example with a vector sum, or by arbitrating between
commands, for example, on the basis of priority.

There are many advantages to having the control process performed by separate
modules: 1) the development and testing of different modules can be done indepen-
dently. The control problem can thus be divided into smaller subproblems and the
system can be built incrementally bit by bit; 2) the system would be robust against
the failures of single modules. The other modules than the failed ones would still
be giving commands that were sensible in some manner; 3) the system can be im-
plemented on a distributed computing system. Separate processing units can handle
separate modules in parallel and the execution time can again be improved.

The command or output from one module does not have to be a command di-
rectly to the robot’s actuators. It can be an input for some other module. Fur-
thermore, some modules can inhibit or activate other modules. In this way a more
complex or higher-level response from the system could be achieved. If a network
of modules is constructed smartly, even the command combination problem can be
omitted. Sometimes an emergent behaviour can arise from this kind of network
without being explicitly programmed.

Still, a more complex task requires some plans. The task can have different
stages in task execution that are very difficult to sequence just by constructing a
smart network of reactions. Sometimes task execution requires interaction with
abstract concepts that cannot be directly observed, have been observed before, or it
is known will be observed in the future. But with simple tasks, the reactive paradigm
works like a charm.

28

Figure 3.4: Hybrid control scheme

3.4 Hybrid

The hybrid architecture combines the two paradigms described above and utilises
the good features of both [19, 157, 158, 59]. Working instantaneously or on a short
time horizon, the reactive scheme provides fast responses for the robot. The deliber-
ative scheme works on a longer time horizon and makes sure that the things that the
robot does are beneficial in respect to the goals that the robot has. The two different
time horizons can be seen as two feedback loops in Figure By planning ahead
it can avoid problematic situations beforehand and be proactive.

The combination of these two paradigms is not so straightforward. The output
of the deliberative part is a plan, typically as a sequence of actions, and the input
of the reactive part is measurements from the environment. In the hybrid scheme
these parts are layered and a sequencing layer is placed between them. The job
of the sequencing layer is to interpret the plan into reactive networks or network
parameters. Furthermore, it has to change the parameters or the network for the
reactive layer at the right time, according to the plan.

This forms three cascaded controllers. In a compressed form, the deliberative
top layer takes in goals and outputs plans. The sequencing layer takes in the plans
and selects the right reactive controller configuration for the time on the basis of
the plan. The reactive layer just takes measurements and outputs the control for the
actuators.

29

={sense |—={ ct

Plan

Figure 3.5: Behaviour-based control scheme

3.5 Behaviour-Based Control

The planning is really hard thing to do. As mentioned in the introduction, estimat-
ing the future events in our dynamic environment is a challenge. One way to divert
the difficult planning part is the behavioral based control paradigm [60} 42, 61]],
where the planning is integrated into the interactions of the behaviors (Figure [3.5)).
Behaviors can be considered as model for animals and humans alike to control their
activities. Depending on the internal state of the agent and stimulus from the en-
vironment some behavior can be activated or deactivated. Complex functionalities
can be achieved with large enough number of behaviors. The study of this is called
ethology in biology or behaviorism in psychology and in robotics it is just behavior
based control.

The planning is a really hard thing to do. As mentioned in the introduction,
estimating the future events in our dynamic environment is a challenge. One way
to divert the difficult planning part is the behaviour-based control paradigm [42,
60, |61]], where the planning is integrated into the interactions of the behaviours
(Figure [3.5). Behaviours can be considered as models for animals and humans
alike to control their activities. Depending on the internal state of the agent and
the stimulus from the environment, some behaviour can be activated or deactivated.
Complex functionalities can be achieved with a large enough number of behaviours.
The study of this is called ethology in biology or behaviourism in psychology and
in robotics it is just behaviour -based control.

Behaviour is conceptually close to reaction. They run in parallel and take inputs
and produce outputs on the basis of their own subjective intentions. The outputs
are fused, just like with reactions. Compared to reactions, instead of using just the
direct stimulus from the environment a behaviour can utilise some abstract concepts,
such as memory or the internal state of the robot. The behaviour itself can also
have internal states and change its output accordingly, even if the input from the
environment is constant.

For complex tasks temporal sequencing is required. One way to do this is to
combine the behaviours into a network where the input can come from the envi-
ronment or from the other behaviours and the output goes to actuators or other be-

30

Figure 3.6: Knowledge-based system

haviours. The network of behaviours can produce this by behaviours with activation
conditions from preceding behaviours. A task constructed from this kind of network
can become too complex to handle and design by hand. [62] proposes a solution
for this by introducing a “hierarchical abstract behaviour architecture”. It divides
the behaviours into primitive behaviours, whose output also goes to actuators, and
abstract behaviours, whose output goes only to other behaviours. A network made
up of abstract behaviours could be combined into one even more abstract behaviour.
In this way a hierarchical composition of the behaviours could be created, hence the
name.

Another way to utilise behaviours is to define their interaction and to sequence
them with a finite state automaton (FSA). FSA and state diagrams are discussed
more in the next chapter, but the basic difference from an interconnected network is
the fact that only one discrete state is active at a time. The state can be an individual
behaviour, updated weights and connections in a network, or a completely separate
state-specific network.

Control based on behaviours is still a complex and somehow rigid system. If
the objectives for the system change, it can be quite an endeavour to adjust the
control to the new objectives. Generally, a behaviour-based system is better suited
to a completely autonomous system than a system with external commands telling
it what it should be doing.

3.6 Knowledge-Based Systems

Knowledge-based systems (KBS) also arise from the studies of artificial intelli-
gence. They do away with the difficult planning by doing it offline. The plans or
knowledge about what to do in different situations are gathered beforehand. Typ-
ically, the information is gathered from an existing expert on the domain and not
explicitly planned at all. Thus a certain rule-based form of KBS is called expert
systems. Figure [3.6|illustrates KBS a little misleadingly, while trying to stay loyal

31

to the common way of representing SPA, reactive and hybrid controls. It emphasises
that the plans are not created on the basis of the current state of the environment.
But, of course, the plan selection does take account of the current state of the envi-
ronment.

KBSs have been applied in different domains for a couple of decades but their
use in robotics and especially in service robot domains has mostly been limited to
simulation cases. A good but slightly outdated survey can be found at [33]. The
tools, methods, and representations of the expert systems have been developed to
be very general and there is room for optimisation for the service robot domain. A
couple of knowledge-based systems are introduced below.

3.6.1 Expert System

Generally, an expert system means a system where the knowledge of an expert is
gathered. It is gathered into a representation that can be deduced by a machine. The
representation should support the collection of the information from several experts.
The expert system should solve a problem in a specialised field.

One way to represent the knowledge is to formulate it as logical rules. The rules
can then be expressed with so-called fuzzy logic (instead of crisp logial values, the
computing is done with variable levels of logical values) [63]], which can incorporate
some of the environmental uncertainty and contradictory advice from the experts.
The rules are then in “if-then” form, such as: “If the goal is left then turn left” or “If
something is too close in front then turn right”. The outputs of the different rules
can be summed and, for example, averaged to get the exact output value. In this
way a continuous non-linear mapping from the current state to the desired action
can be made.

3.6.2 Procedural Reasoning System

Procedural reasoning systems (PRS) come from the beliefs-desires-intentions (BDI)
model in agent theory [30, |64, 65]. Beliefs are the information gathered from the
environment. Desires are the goals for the system. Intentions are deduced on the
basis of the beliefs and desires. The PRS then further specifies an interpreter and a
knowledge library component. The knowledge library is a library of plans that can
fulfil specified goals. Furthermore, the plans have preconditions for when they can
be applied. Figure [3.7)illustrates the PRS components. The interpreter then fuses
the information from all the other components and generates the intentions for the
system. The outcome of the PRS is not a specific plan but a suggestion of what
would be a good thing to do or, in one word, intentions. Again there has to be a
cascaded structure, with another controller then generating actuator commands on
the basis of these intentions.

PRS is a good model for formally dividing the task control problem into compo-
nents and defining the interactions between components. The really hard problems
are still unaddressed. How can the environment be discretised into beliefs that can

32

3

AGENT MONITOR SENSORS

A J

GOALS BELIEFS
(Desires) (Knowledge base)

NS
N

REASONER
(Interpreter)

Knowledge Area INTENTION

‘K?gl';'l:’g‘” STRUCTURE

ki

COMMAND

GENERATOR ACTUATORS

Figure 3.7: Components of the procedural reasoning system (courtesy of Wikipedia)

be matched to the preconditions? What should those beliefs be? How can the un-
certainty about the consequences of the actions taken be expressed? How can that
information be used in the decision making?

3.7 Discussion

All the systems described above could be combined in many ways to achieve a
complete control system. Each behaviour in behaviour-based control could have a
KBS inside. Or the KBS could define the behaviour-based network for each time
instance and the behaviours can have deliberative control architectures inside them.
The best selection for the control problem at hand is not based only on the architec-
tural principles; the implementation also plays a crucial role. For the domain of this
work, a robot in an dynamic open environment, the common understanding is that
it requires reactive control for the lowest level.

Some characteristics of each control method are discussed below, specifically
from the viewpoint of the plan and the world model. The discussion is based on the
formalism defined in Section[2.2]and illustrated in Figure [3.1]

33

3.7.1 Plan

All the methods that are presented handle the plan differently and they are sum-
marised here. If it is assumed that the planning for complex tasks is too difficult for
today’s technology, we can rule out the deliberative and hybrid solutions. The com-
plexity of the problem can rule out the reactive method and, arguably, the behaviour-
based method. This leaves the knowledge-based systems as a viable option for the
problem-setting of this work.

e Tele-operation

The plan is in the operator’s head. Some parts of the plan can be given to the
robotic system, such as way points to a mobile robot. The plan can be pre-
sented to the human operator even in vague free-form text or speech and the
operator can produce accurate and specific operations on the basis of those.

e Deliberative

The plan is created from scratch during each control cycle on the basis of the
current situation.

e Reactive

There is no plan, or the plan is embedded into the construction of the reactive
components, i.e. it has to be pre-configured into the system in the design
phase.

e Hybrid

The plan is still created from scratch but the reactive layer makes sure that it is
safe to operate the robot, and meanwhile the planning takes place. The plan,
when ready, then alters the reactive layer on the basis of how the sequencing
layer interprets it.

e Behavioural

Behaviour-based control does not define the concept of the plan. The plan
can be embedded into the interactions of the behaviours or the plan can be
partly decomposed into smaller subtasks that the behaviours can accomplish.
It is said that the behaviour-based system does not need to do planning, but
individual behaviours can distribute the planning problem. Anyhow, the plan
should also be pre-configured in this approach.

e Knowledge-based

The plan is part of the knowledge. The other part of the knowledge is to
know when to use which plan. The pre-configured plans are in a kind of
lookup table and the one most suitable for the current situation is selected.

34

3.7.2 World model

All the world models that the control schema presented above expect are collected
into this section. It is important to notice the differences and the requirements for
the computing resources imposed by them.

e Tele-operation

For tele-operation, the system has to provide enough information from the
remote location for the user, so that the user can build the necessary world
model inside his head. The representation can be just visualised direct mea-
surement data. Some further filtering and abstraction to symbolic representa-
tion can be done to offload the requirements for human attention. For exam-
ple, for operating a car, it is not necessary to know what the exact oil level is
but if it is too low, some indication should be shown.

e Deliberative

In deliberative control the whole world the robot knows is modelled into a
data structure. The most important feature of the model is that it can be
simulated to obtain the outcome of different options. It is not just a passive
storage of information but also a simulation engine. The simulation should
model all the actors and dynamics of the whole environment.

e Reactive

In the reactive paradigm the world is its own model. The belief is that nothing
needs to be stored to represent the world and information about the state of
the world can be retrieved on a demand basis. The most notable weakness of
this model is that in many cases information needs to be gathered for a long
time to compensate for the noise in the measurements.

e Hybrid

In the hybrid model both of the above-mentioned world models are used.
Generally, with distinctively different control architectures there is the prob-
lem of data consistency and association. For example, is an object in the
world model the same and in the same place on all levels of control? Effi-
cient distribution of the sensory information has to be considered, as does the
possible management of directional sensors.

e Behavioural

Behavioural control does not dictate whether the world model should be dis-
tributed or centralised. Each behaviour still needs its own viewing angle to
the environment, which argues for a distributed world model, one for each
behaviour. On the other hand, from the viewpoint of the computational re-
sources, only the active behaviours need to have an updated world model and
actively filter the raw measurement data. That calls for a centralised model
because very often a world model would need to be constantly updated for

35

the sake of accuracy and consistency. In a centralised model, each perception
function would have only one instance, which necessarily would not be the
case with independent behaviours.

Knowledge-based

In the KBS the measurements from the environment should be filtered all
the way to (preferably discrete) beliefs. These abstract states of the environ-
ment require more processing power than the other models. Not only the
PRS, but many other knowledge-based systems too, rely on the world being
represented as discrete states or some other kind of extensive perception. It
all depends on the way in which knowledge is represented. The arbitration
mechanism for the suitable plan requires the world state to be assessed in one
way. The plans that are selected can view the world in another way. Naturally,
the arbitration mechanism can use a coarser and more abstract world model
than the plans.

36

Chapter 4

State of the Art in Plan
Representation for Service Robots

The control architecture or method dictates the syntax for the representation of the
plan. Similarly, the control architecture defines the perception process or, at least,
how the perceived world is represented in the architecture. Furthermore, several
representations are needed inside one architecture because of the cascaded nature
of the controllers.

The plan is an integral part of the task knowledge and thus it has to follow the
requirements set in Section The other parts of the task, the goal and meta-data,
are more difficult to define but easier to represent than the plan.

In this chapter several ways to represent the plan for the robot controller are
considered (Figure d.1). The following sections are divided on the basis of the plan
representation used, but are not purely just explanations of the representations. As
mentioned, the controller and world model have their influence too.

Disturbance

control\

> Robot World

Y

Goal > Planning Controller

A

world model

|) measurement
Perception <

|_ — == = Control Architecture e

Figure 4.1: Plan representation in elementary robot control

37

4.1 Analogous Systems

There exist multitasking systems and organisations that are analogous to the pro-
cesses studied in this work. Thus it is justified to ask why these systems are not
directly modelled for service robot use. In this section the most apparent concepts
are discussed.

4.1.1 Computer Operating System Architectures

The most obvious analogy could be found from computer operating systems divid-
ing the use of the central processing unit (CPU) between many programs. Programs
are started, stopped, and even paused and continued independently of CPU schedul-
ing [66]. Additionally, the system responds promptly to interruptions from several
peripherals. The computing tasks can even utilise parallel CPUs.

A relevant difference compared to robot task execution lies in the context switch.
For the context switching of a computer program, many things need to be done. A
program pointer, the location in the memory where the execution process reads the
next command from, needs to be stored. The state of the variables used by the
program needs to be stored. And, of course, the new program pointer and variables
need to be loaded for the new context. But even if the storing and reading has to
be done in RAM instead of the CPU cache, this is a fast operation compared to the
case of a service robot. In other words, the CPU time can be sliced into very thin
time slots for different programs, so fast that for a slower sampling rate perception
system, the human eye, the different programs seem to run simultaneously. A task
in the real world, especially involving physical material with a significant mass,
cannot be changed so fast.

When a program is paused and the current state of the program is stored to
memory, it does not matter what kinds of calculations are done before the program
is revoked. With robots, the paused task execution cannot start from exactly the
same state it was in when the task was paused, if some other task has been executed
during the pause. Additionally, CPU resources are often interchangeable from the
point of view of the calculation task.

Actually, the closest computer multitasking and resource shearing concept to the
ActionPool is the Grand Central Dispatch (GCD) of Apple [67]]. In GCD indepen-
dent parts of calculations are packaged into so-called Blocks. Blocks are organised
into queues to define their execution order. A queue can be scheduled to start im-
mediately or triggered by some event, for example a timer. Finally, there is a thread
pool symbolising the computing resources, from where a free thread or computing
resource is selected from the next block waiting in the queues.

4.1.2 Company Order/Deliver System

Almost any kind of commercial endeavour is a multitasking organisation. Concep-
tually, it is close to a service robot. There are requests for services or products

38

coming to the company at a rate which is not directly controlled by the company.
The requests can be taken back or priorities can be assigned to them.

The request process in the company context still exhibits differences compared
to the service robot. The company’s task space, i.e. its selection of services and
products, is not directly controlled by the user or customer. The company decides
by itself what to offer and the request is based on the selection provided by the
company. With a service robot, the user should be able to define what the robot
does. There is no description language of how to do it in the company context.
Maybe a food recipe for a restaurant might be an exception but it is applicable only
in a very narrow field of services and products.

Companies producing custom products or services do not have any formal de-
scription languages for their products or services, either. Instead, there is typically
an intensive negotiation situation to form an agreement on what the company has to
do [68]. And still the agreement does not describe uniquely what needs to be done
or how it should be done. This is not an applicable method for robotics.

4.1.3 Military Organisation

A military organisation is a strictly hierarchical structure where the chain of com-
mand is one of the key issues [69]. The structure has independently working units
where objectives are defined by a body that is higher in the command chain. The
organisation can execute multiple tasks concurrently and with different priorities.
Usually, the tasks are very well documented, including the way they should be done.
Tasks can be started and stopped, as well as paused and continued at will. The mil-
itary organisation is designed to be a self-supporting system. The organisation has
many features that are desirable for a service robot, but there is one fundamental
difference. All the resources in the military organisation that can affect the state of
the world are distributed and physically independent. The service robot is a single
unit whose resources are interdependent.

4.1.4 Computer GUI events

Many computer systems with a graphical user interface (GUI) are based on so called
event model. They accommodate multiple applications simultaneously and the re-
sources of the human machine interface (HMI) (the display, mouse, and keyboard,
for example) are shared between applications [70, [7/1]. The basic concept is to
assign functions to the GUI events and then just sit and wait for the events to oc-
cur. The concept relies on the fact that the functions related to the event would be
executed so fast that the users would not perceive a noticeable delay and thus the
function can be even blocking. With service robots this is not applicable because
all actuator-related functions take a noticeable amount of time to execute.
Computer GUI concepts are also adjusted towards user-driven execution. This
means that in principle all the actions, or event-function pairs, the system executes
are initiated by an event caused by the user. Sometimes events can be combined into

39

so-called macros for automatic sequential execution and sometimes the programs
can generate events themselves, such as an incoming email pop-up. Still, in the
GUI concept most of the functions and even macros are initiated by the user and
thus make the user’s attention a limited resource for the system execution process.
Moreover, the system does not define a plan; the plan is in the user’s mind and is
executed through the user’s actions.

4.2 Procedural

Procedural representation builds on a library of elementary functions of the sys-
tem. By combining these functions, more complex functions can be created. To
form a procedure, a sequence of function calls and flow control rules is defined.
The basic rules are conditional branching, forking, and merging. The procedural
representation can be visualised with a flow chart (Figure 4.2). Consequently, the
procedure’s sequence of function calls and flow control rules can be broken down
back to elementary functions for execution. This is the way in which most of the
general-purpose computer programming languages work.

A computer program listing is a good example of a task representation for a
computer. With the right compiler or an interpreter, one can translate the listing into
executable instructions for the CPU.

Procedural representation can be considered to be the most common type. Any
other representation can be reduced into this or any other representation in a way
that is already in a procedural form, since they are typically implemented in a proce-
dural programming language. Additionally, single-task systems can be considered
to use procedural representation since their “hard wiring” is often programmed di-
rectly in some procedural computer programming language, although in that case it
does not exactly meet the criteria of a plan representation being independent from
the controller.

There are many different plan representations that function in this procedural
way [[7, 13, 136, [72, [73| [74, [75] but they are notorious to construct and maintain.
Procedural representation is very expressive and as such it is a good general task
representation for any kind of actor. This comes with the trade-off between com-
plexity and length of representation. It does not take into consideration the unique
properties of the service robot case, in order to reduce the size of the instruction set.

Since procedural representation is so widely used in computer programming,
methods have been developed to overcome its shortcomings. There are de facto
standard ways of documenting, graphical representation [76], tools for work-flow
maintenance, and advanced Uls for editors.

4.3 Distributed

In the distributed plan representation the plan is defined as a set of independent
components, independent in the sense that they do not require the presence of other

40

Look for
Obj
Battery
low

Approach
object

Grasp
object

Hand over
object

Figure 4.2: A flow chart description of the procedural programming paradigm

components and in most cases do not know anything about them. Still, there has to
be a mechanism to integrate the output of independent components into the output
of one machine. This can be done in a myriad different ways but here they are
classified into four types: fused controls, centralised action selection, decentralised
action selection, and disconnected controls.

4.3.1 Fused Controls

In fused control the independent processes calculate the control from their own
perspective. The actual control for the robot comes from the fusion of all these in-
dependent controls (Figure 4.3)). The best-known technique for this is fuzzy control
[63]], although it is not used that much in service robot scenarios. Distributed rep-
resentation is an ideal way to use parallel processors and it is believed to be close
to the biological way of processing information because of the strong parallelism
inside the brain. Ideally, it could be independent controllers giving just vectors that
are summed to get a reference vector. The most notable early use of this represen-
tation was the motor schemes in [77]. In [34] a subsumption was used to control
competing controllers and avoid race conditions. Further on, the processing com-
ponents developed into more complex units called behaviours [42, [78]. This system
worked well in simple reflex kinds of survival behaviours, but proved to be difficult
to use in more complex scenarios: the manual construction of the plan can be very
tedious and difficult.

41

Figure 4.3: Distributed plan representation using fused controls

4.3.2 Centralised Action Selection

At some point of a more complex task (i.e. not only navigation), a decision has to
made. It is not sufficient to merge the outputs of the components but one of them has
to be selected in systems where only one action can be done at a time. The simplest
way to perform this action arbitration is to use priorities and the action or component
with the highest priority will be selected. A more complicated method would be
action voting from among a discrete set of responses [79]. And the complexity
goes on in [32], where activation energy was distributed in a system on the basis
of the current state of the world and the preconditions of the actions, as well as the
assumed effect of the action enabling other actions to take place. The action with
the most activation energy was selected.

4.3.3 Agents: Decentralised Action Selection

A kind of predecessor of networks of behaviours (discussed in [4.6) is agent-based
control. The robot’s functions are considered to be independent software agents that
communicate with each other. An agent could be imagined as a more developed and
independent behaviour. The agents can negotiate to avoid the race conditions [64]
and the whole control fusion element can be omitted. For example, the agents can
pass the control privilege token between each other [80].

What is common to both agents and behaviours, at least on the ideal level, is that
each agent or behaviour has its own understanding of the state of the world and they

42

only gather information that is relevant to their own decision making. This could
potentially reduce the processing needed for perception but similar agents often
process the same information many times. One of the strong points of distributed
control is its robustness. When one agent or behaviour is disconnected, the system
can still be operational with just that one particular feature lacking.

4.3.4 Disconnected Controls

When the underlying system can be further abstracted, the components do not di-
rectly compete for the control of the machine. The components are disconnected
from the direct control. The underlying infrastructure will handle the action alloca-
tion and scheduling to the resources. This comes with the trade-off that the compo-
nent does not know when or how its control takes effect. Besides, the component’s
control signal can be on a very abstracted level.

In classical Al this is done by utilising goals. The goal is not just an expression
of the desired outcome, but could also be utilised as an instruction. The boundary
condition is that the underlying infrastructure has to be able to interpret that goal.
The goal can be broken down into smaller sub-goals and several goals can exist
at the same time. It is very convenient to represent the tasks just as a set of goal
states for the world, such as “full cup of hot coffee on my desk” and “snow cleared
from the driveway”, and it would be intelligent if the robot could figure out how to
achieve those goals. And PRS tries to do just this [81].

In PRS there is a set of skills or knowledge of how to change the state from
one to the other with some preconditions. Then it is just a problem of finding a
matching chain of skills to apply in order to get from the current state to the goal
state. But the parameterisation of the world into comparable state presentation is a
great challenge.

Another classical Al technique called a partial-order plan is marginally or par-
tially distributed. It is defined by a set of actions, ordering constraints, and causal
links [26]. On the basis of the ordering constraints and the causal links, several
actions are issued at the same time but their execution order is defined by the under-
lying infrastructure. The Markov Decision Process (MDP) defines a plan or policy
as a set of state-action pairs. The policy defines an action to be taken in a certain
state or belief state and these state-action pairs can be seen as distributed compo-
nents. The effect or latency of the action does not impact on the policy as such.
One drawback of MDP for service robotics use is that it assumes the system to be
a Markov process with discrete unique states, which can be difficult to formulate.
Even with partially observable MDP (POMDP), with probabilistic multi-state hy-
pothesis, the action is based on only one state [82], although technically the policy
can be applied even when there are multiple simultaneous states.

Many robot control techniques deploy distributed components as a part of the
plan. In [59]] the RAP (Reactive Action Packages) plan spawns monitoring processes
or system-level patches that can create and terminate a monitoring process. The
approach in [83]] utilises a set of relations (signal or forward) and a directed acyclic

43

graph (DAG) of actions (fasks) as a plan. The DAG is a functional representation but
it is just half of the plan. The relations work as distributed components to propagate
events and interact with the DAG.

4.4 State Diagram

The state diagram, in its purest form, is a system described with a set of discrete
states and conditioned transitions between the states. In most cases a specific initial
state and final states are used. The system can be presented as a graph such as in
Figure4.4] The renowned problem with the state diagram is the state and transition
explosion. The complexity of the state diagram grows faster than the complexity
of the problem. The work by [84] addressed these problems by introducing espe-
cially the superstate and orthogonal state. With the superstate a common transition
for a group of states can be expressed, reducing the number of transitions. With
orthogonal states two simultaneous discrete states can be expressed and the num-
ber of states reduced. With the enhancements, the state diagram starts to approach
characteristics of a flow-chart. To highlight this distinction, the enhancements are
not considered here.

The state diagram can be used to describe a state machine. But here we are
discussing the plan representation and the distinction between it and the control
mechanism per se has to be recognised. The state diagram and its derivatives are an
intuitive and simple way of representing plan logic and they are used in robotics [85,
86]. The state diagram representation can even be abstracted into a state in a higher
level state diagram. The state diagram can be formulated into the mathematically
convenient form of states and connections, for example for automated processing
[45]).

Even though the state diagram is very suitable for some cases, such as describing
the task of automatic vacuum cleaning, it has serious drawbacks for more complex
tasks. In the state diagram it is assumed that the whole system is only in one of
the states at one time. This is a valid assumption if the robot’s only functionality
is mobility, as in the vacuum cleaning case. But with a more complex case of
mobile manipulators, there are parts that can change their state while the robot’s
mobile base stays in one state. In other words, the state diagram occupies all the
resources of the robot, whether they are needed or not. Furthermore, the robot can
have several distinct internal states, such as “the battery is low” or “the location
is unknown”. Of course, simultaneous distinctive states could be merged into a
single state representing their combination. Inevitably, this would lead to the state
explosion.

Another drawback of the state diagram becomes apparent when multiple tasks
need to be performed. Plans for the tasks have to be executed one after another,
because there is no defined interaction mechanism between two different plans. For
parallel task execution tasks have to be combined together in the plan definition
phase and multiple tasks have to be merged into one giant task representation. That
is difficult for the development because multiple developers cannot merge their work

44

Battery
low

Re- Battery (Search
charge full object

Something
In hand

Figure 4.4: An example of a state diagram describing a fetch task

easily. [87]] offers some help for this by introducing the so-called common state
concept, where different state diagrams can be merged together by combining them
from a common state point. In this way the developer has to specifically define the
merging points and the merging is limited to those points and the mechanism does
not allow priority adjustments.

Maybe the worst drawback of the state diagram in service robot use is that it
does not allow variable passing. The states and their transitions themselves hold
all the relevant information. In other words, by virtue of its general form, the state
diagram defines only the static part of the plan or task. To overcome this restriction,
the state diagram has been augmented in practical solutions [34, 84].

4.5 Tree structure

A tree structure is one type of graph that can be used to represent a plan. The
tree graph is constructed from nodes that are connected with edges. The tree graph
forms a tree-like structure with one root node to start from and edges dividing into
child nodes and finally ending up in so-called leaf nodes that are connected only to
their parent node. Compared to the tree analogy from nature, the tree graph is often
presented upside down, with its root at the top and leaves at the bottom.

The tree structure is used mainly in describing the plan decomposition based

45

Fetch object

Bring object

Get object

Deliver object

[Find user]

Find object
Approach object

[Select grasp]

[Grasp object] [Approach user]

[Extend arm] [Close ‘;ripper] [Fold arm]

Figure 4.5: Tree graph describing the Hierarchical Task Network of fetch task

on the hierarchical task network (HTN) concept. The HTN divides the task into
sub tasks until the division reaches the executable actions (the leaves in Figure 4.5)).
The plan can be divided into HTN automatically [88, [89] or manually [90, 91].
HTN representation has been used to document the program flow of task execution
[92,193],194].

The tree structure can also model the deduction of an action from the current
situation. Each node is a question about the environment and each branch is a
candidate for the answer. The leaves are then the final actions again[95]]. A binary
decision diagram (BDD) [27] can be used for similar mapping from a state to one
of the available actions.

In the tree structure it is assumed that the execution is not interrupted. When
the robot is operating in a dynamic environment, interruptions are unavoidable. No
mechanism is presented for re-evaluating the situation before one of the operations
is finished. The tree representation grows unnecessarily large in the case of loop-
type procedures, where parts of the tree have to be copied instead of backward links
being provided. In the event of the parallel execution of multiple tasks, there is no
defined mechanism for combining tree structures.

4.6 Functional

Increasing numbers of robots are controlled by using some middleware components
[9, 22, 23, 24, 25]]. Middleware is used to construct a hardware abstraction layer
(HAL) and build components that provide measurement data and accept control
signals. Furthermore, they may provide a signalling channel for higher-level control
modules and components for some basic functionalities. For example, components
can be added to filter the measurement data into the robot’s position and provide that
information to other components (Figure {.6). HAL and middleware components

46

Random |
generator ~
\

\Speed 2

Range 1 /N \Ringe 2 \ « Speed 1
/ \ \
| |)]

Laser Bumper Motors
driver driver driver

Figure 4.6: Component diagram of middleware components to achieve a random
walk behaviour

provide a so-called open architecture, where the floor is open for the organisation
and activation of the components according to any of the various control methods
presented in Chapter [3] Middleware is typically used underneath the “real” control
architecture.

Just by constructing and connecting components in some novel way, a task ex-
ecution performance can emerge from the system. This resembles the declarative
functional programming paradigm (such as Erlang or Haskell), where there are no
specific state variables and the execution is just based on the inputs and outputs of
the functions. When using a procedural programming paradigm (in C or Python)
you are in a certain state of the procedure. The functional paradigm is based on data
flow, while the procedural paradigm is centered on the control flow. LabVIEW [96]]
and Simulink [97] also utilise this functional paradigm.

This is a kind of special case of distributed representation. The difference is
that there are no competing control signals and no need to evaluate the appropriate
control from many options. That makes the functional representation more rigid
than the distributed one.

When the plan is composed just from these components, the system is typically
a single-task robot. Expansion to a multi-tasking robot would elevate the compo-
nent network to an unmanageable size. One way in which this is a very nice plan
representation is that typically the organisation of components is serialised into one
configuration file. Middleware uses the file in the start-up of the system. When
using this kind of file, changing to a different configuration can be difficult without
restarting the system.

In most middleware the components can be started and stopped independently
and dynamically. In this way the plan can be changed on the fly, but then again, the
mechanism to change the plan has to be represented somehow. In Saphira [98] it
is done with the procedural Colbert [75] language translated into a state diagram.
RAP [59] uses goals and the plan manager in [83]] uses conditional rules to activate
and deactivate the components.

47

4.7 Trajectory

In particular, when movements are planned for the robot’s base or the manipulator,
the resulting plan is typically represented as a trajectory. The trajectory can be
defined in several ways. It can be an ordered set of points or way points in the
operational environment or configuration space of the robot. It can be a continuous
function of time in the same space or it could be a set of points or a continuous
function in the robot’s joint space. Then the next point in the set or the value of the
function in the given time instant is used as a goal state for the robot [99, [100]. In
classical control theory [101] you have a myriad controllers to pursue the goal.

This is a method that works well in closed systems. For example, a factory
environment can be structured into a closed system, where you can control, observe,
and maybe even predict the state of the system. But in our problem setting we have
an open system. The complete state of the world cannot be controlled, observed, or
predicted very much and even if it could, it would be an impractically large vector
to work with.

One way to produce these motion sequences is to move the robot manually while
the robot logs the pattern. Another model is that the human moves and the robot
records, for example, the motion of the fingertip and creates a log of that. This is
called programming by demonstration [[102, 46]]. By following the log, the robot
can reproduce the motion. Plans can be constructed from a set of these logs. In
order to be able to execute different trajectories one after another, the final pose of
the first trajectory has to be the first pose of the second trajectory. This is achieved
by defining a home position from which all trajectories begin and finish. Naturally,
alternatively some limited set of fixed starting and finishing points can be used, but
the number has to be kept low to facilitate log or plan interoperability.

This representation has been used for a long time in closed environments and
with non-mobile robots such as a robot arm in a factory environment. Humans
also use a similar approach in some closed domains. For example, in the game of
badminton, a player tries to be in the middle of the court in the “home” position,
from where the player moves to hit the shuttlecock and returns to the “home” posi-
tion after doing so (ideally, at least). Logs are computationally light since they can
be produced offline and that must be one of the reasons for their early adoption in
industrial use.

As mentioned, planned trajectories are best suited for static or predictable en-
vironments. Furthermore, when the platform for the robot is mobile, the same arm
motion cannot be performed in every location of the environment. In a dynamic
environment with humans, motion patterns have to be adopted to the current situ-
ation. With the increase in computing power, these trajectories can be calculated
on a demand basis. But in a dynamic environment the trajectory becomes obsolete.
There are two common ways to overcome this problem: global re-planning or local
altering of the trajectory or path. Global re-planning is a computationally expensive
process and a local alteration, plan repair, is preferred. In a local alteration just the
proximity of the robot is considered in the state vector for the controller.

48

Going for object

Object
found

Grasp object

Going

Hand is Something
empty in hand

Battery full

Empty

Objet fetched hand

Robot at home

Hand over

Figure 4.7: Example of Petri-net describing a fetch task

4.8 Petri-net

Petri-net is a graph model used to represent a discrete event system (Figure [d.7). A
service robot operating in a dynamic environment is very much an event-based sys-
tem so the usage of a Petri-net sounds like a natural choice. Additionally, a Petri-net
can easily be formulated into a formal expression and manipulated mathematically
[103]. The Petri-net was developed by the young Carl Adam Petri for the purpose
of describing chemical processes. It has been used to describe a task behaviour of a
robot, for example in [[104, [105]].

A Petri-net is constructed from places and transitions. To traverse a Petri-net,
tokens are used to represent the current state of the system. When there is a to-
ken in every place with an arrow leading to a particular transition, the transition
can fire. Similarly, after the transition has fired, the tokens are removed from the
places leading to the transition and placed in places with an arrow coming from the
transition. There are variations of Petri-nets allowing multiple tokens in one place
and allowing multiple arrows or weighted arrows going between a transition and a
place.

The drawbacks of the Petri-net are similar to those of the state diagram, even
though it is more expressive than a state diagram. Tasks cannot easily be merged and
variables cannot be passed. The lack of abstraction in the Petri-net causes problems
from the usability point of view because the network can grow to be unmanageably
large.

49

A Complicated

c ." \

RS : :

® ‘Procedural

< 3 :

(0] . [l

2 | '-

s | . ; Target

e | Functional : ¢

o) : :

s [Disconnected : Not expressive

S | ;

e | o ——— = — —

o |t Centralised ; T~ o

2 | Iileze’ntralised : Petri-net RN .

@ . ;

[%2] v/ . \

=2 Y Fu:$ed State diagram \

x E N

L \\ ; //
‘. . . 7
™~ Trajectory Tree _ -

Simplicity of the representation

Figure 4.8: Comparison of plan representations in simplicity and expressiveness The
figure illustrates only the simplicity versus expressiveness paradigm. The mapping
of the different representations are based on author’s subjective evaluation from the
practicality point of view.

4.9 Conclusions

Figure 4.8 maps the presented plan representations on a simplicity versus expres-
siveness map. These are the trade-offs for the representations. It is difficult for a
representation to be expressive and simple at the same time. The representations
are either complicated or not very expressive. Another important matter is the prac-
ticality issue. Tasks need to be developed incrementally and independently of each
other. This is not a challenge only for the plan but also for the system executing the
plan.

Despite the myriad task representations described above, none of them alone
can be considered a good way to represent a plan. Parallelism, abstraction, tempo-
ral constraints, or ordering constraints, and, generally, the requirements mentioned
in Section [2.7]can not be met with just one formalism of plan representation. Repre-
sentations has to be mixed. For example, by defining a state diagram in two stages,
first as a regular state diagram defining ordering constraints and then tying down the
variables in the functional fashion. Still, the parallelism is not handled. The mixing
and merging of the basic representations aims to produce the simple and expressive
representation. Another interesting example is the IEC standard 61131-3 [106], in

50

Table 4.1: Summary chart of different plan representations

Plan representation Implementation

Controller

Procedural Set of functions, their or- Instruction interpreter or
dering and flow control compiler
components

Distributed:

Fused controls

Centralised se-
lection

Decentralised
selection

Disconnected

Set of independent compo-
nents

Fusion of component out-
puts

Arbitration of component
outputs

Components negotiate out-
put

Scheduling of component
outputs

State diagram

Set of states and transition
conditions

State machine

Tree structure

Dependencies in a tree
graph

Operations or decisions
travel through the tree

Functional Set components and their Emergent function from
typed connections the interaction of connec-
tions
Trajectory Desired state vector list- Classical feed back control
ings
Petri-net Petri-net diagram or set of Petri-net interpreter

places, set of transitions
and set of arcs

which the programming of the operations in the industrial setting is done utilizing
five different representations.

A popular way to merge different kinds of plan representations for service robots
is to use them in different layers. With the layers, the simple representation can be
isolated from the complex expressive representation. For example, in some estab-
lished control architectures: Saphira [107] uses functional representation on the
lower level and a procedural language [75] compiled into a state diagram on top
of that. The classical AuRA [61] architecture utilises distributed representation
with fused controls (motor schemes) combined with a state diagram on top of it
and inside the components (schemes). Similarly, 3T [108] has skills organised in
functional representation as the bottom layer. The skills are commanded by the pro-
cedural RAP [59!109]] language spiced with some distributed disconnected control,
as discussed earlier.

A summary of the different plan representations is provided in Table @.1]

51

52

Chapter 5

Representation and Control of Task
in ActionPool

Like most of the research today, this has a relatively long track record. The design
and motion control of service robots and work machines, the tasks to be conducted,
and the user interfaces have been studied for around two decades within the research
group. The group has now been formed into the Finnish Centre of Excellence in
Generic Intelligent Machines (GIM) Research. Currently, the research still revolves
around the same topics, but the hardware is changing and more complex and abstract
parts of the service robot scenario are being studied.

When the task execution was investigated further, a common feature became
evident. Almost in every task, the robot was first driven into some location, where
it did something, and then it was driven to another location to do something else.
All the tasks and phases of the tasks started with the same command, “go-to some-
where”. This became a cornerstone of the abstraction. For the task, a unit of op-
eration was formed from a location, together with something to be done in that
location. The location is, of course, relevant to that something to be done. The
location does not have to be an absolute co-ordinate in space. It can just be a refer-
ence to an object with a location. The unit of operation was named an Action in this
context and the something to be done was named aPlan (Action plan). The plan for
how to do the Task itself is formed of Actions and called tPlan (Task plan), in order
not to be confused to the aPlan. The tPlan of the Task together with metadata as a
header is called simply a Task.

Some terms specified and used in the ActionPool are words with some general
meanings. To identify that the word is actually the name of a term and does not
refer to the word’s general meaning, the first letter of the term is capitalized. Figure
[B.Ililluminates the relations of these terms.

In principle, the aPlan could be implemented utilising any of the representations
mentioned in Chapter 4] An expressive procedural representation is favoured to
compliment the simplicity of the tPlan representation. The aPlan is on the hardware
abstraction level, while the tPlan is on the level where the parts of the robot are
commanded by means of single operations.

53

Task Action

Action
afan
)
Plan
—
N)
Action Event List.
Sequence
—)
Action Event List.

tPlan
|

Task
Header

Figure 5.1: Breakdown of the Task structure

Another key observation was that only one resource was used at a time. The
common robot workflow went as follows: first the robot moves somewhere, then
it looks at something and then starts to move its manipulator. In principle, each
of these operations could be done simultaneously. In practice, the operation is re-
stricted by the actuated parts of the robot that it needs to use. The parts are bounded
into a restricted section of the space on the basis of where on the robot the part is
attached. Thus the only independent part of the robot is its mobile base, which is
still bounded by the environment. These robot parts are called Resources in this
context.

The architecture that is created could be classified as a knowledge-based system
with some resemblance to PRS [30]. It can perform time-sharing and concurrent
multitasking utilising an Action as a token to the robot’s resources with similarities
to the token-passing approach in [80]. An overview the ActionPool is given in

Figure [5.2]

5.1 Division into Resources

Resources naturally form a tree-like dependency structure, where the pose of the
robot’s mobile base is the root node. One definition of a Resource is that it occupies
space and can be actuated to change its pose in the space and is reusable, i.e. it can
only be in one place at a time. Thus the Resource is not only mutually exclusive
but different tasks would need it in different locations. Examples of Resources are
the above-mentioned mobile base, a camera with pan-tilt-zoom capabilities, and a
manipulation arm. The Resource division could go further down. For example, the
manipulation arm could be divided into arm segments and a gripper and each one of
these could be considered a Resource. When a Resource is utilised in the proposed
architecture, a fixed set of functions is used:

54

! Action pool ! Action pool
' '

'
Action ! . : : : i
H

aPlan of selected Action aPlan of selected Action

EL

aPlan execution aPlan execution

Perception ption btion
Agent ~—Int Jnt

|
Resource | Resource |
|

|
| Robot bod
(s A

{ Environment }

Figure 5.2: Overview of ActionPool method See the text and Table for explana-
tion of the component names.

e query for current state
e change the state
e cost estimate of state change

The state of the Resource is formulated into a pose in the space. The state
change function and the cost estimation function then need a pose as a parameter.
An explicit pose or reference object can be used for this purpose. The functions
can retrieve the pose related to the reference object from the world model database
(described in Section [5.4). In this way the system can adapt dynamically if the
pose of the object changes. When the resource is abstracted like this, the same
implementation of the ActionPool (which is described in Section [5.2) can be used
for managing different Resources.

5.1.1 Context Switch

Any multi-tasking system using limited resources has to share the resources be-
tween different tasks. This is time-sharing multi-tasking. The operation to release
the resource and pass it to the next resource is called a context switch and it needs
to be carefully designed. In the proposed architecture the command to change the
state of the Resource is the context switch function. It is noticeable that, unlike
in the computer architectures, the current state in Resource usage is not explicitly
stored anywhere at the time of the context switch. We cannot return directly to the
saved state of a robot in the same way as can be done with computers. For example,
in the Action of opening the fridge door, it is not necessary to remember if we were
already gripping the fridge door handle or still reaching towards it when interrupted.
To continue that, we would have to start from the beginning anyway. The state of

55

the Task, i.e. which Actions are executed and which are not, stores this information
implicitly.

Normally, a context switch occurs after an Action has finished. Actions nat-
urally form safe divisions of resource usage. If an Action using the Resource is
interrupted by some important event, the Action is just considered undone. The
next time the Action is selected for execution again, it starts from the beginning,
all the way from Resource reservation aka context switch. This is a way to ensure
the safe restoration of the state of the Resource. The aPlan of every Action has a
cancellation routine called at the time of the interruption for a safe winding-down
process. Potentially dangerous Actions should also have Event Listeners (described
shortly) that monitor the hazard in the case of internal or external interruptions to
the process.

A context switch is necessary to accommodate time-sharing multi-tasking. But
when considering the overall performance, the time spent on the context switch is
non-productive. The Action selection process in the proposed architecture favours
Actions with shorter context switch times from the state of the Resource at the time
of the selection. If the state after the Action could be estimated, some planning and
more far-reaching Action selection could be made on the basis of the minimisation
of the context switch times. Perhaps the location assigned for the Action could be
used as an estimate for the state after the Action too. Unfortunately, this has had to
be left for future studies.

5.2 Actions and Action Pool

Each Resource can execute Actions by itself, but only one Action at a time. After
all, one cannot be in two places at the same time. Although the Resources are phys-
ically interdependent, they can perform Actions independently. So, a robot with
multiple Resources can do concurrent multitasking. There can be several Actions
waiting for execution by the Resource. The data structure to keep track of and man-
age the set of Actions available for execution by a particular Resource is called the
Action pool (AP). The AP communicates with the other components of the system,
which will be described shortly. In effect, the AP is an abstraction of the Resource.
It manages the usage of the Resource by holding all the Actions pending admission
to use the Resource.

The granularity of the Action and its aPlan is defined as an operation with the
Resource that cannot be successfully completed if interrupted by some other oper-
ations with the Resource, i.e. it cannot divide the Resource. This is not a complete
definition but rather a design principle. There is no built-in system mechanism
to utilise contingency because of the the lack of understanding of the surrounding
world and the effects of Actions on that. The plan inside the Action should consider
the possibilities of fortunate occurrences, i.e. the Actions would not be skipped, but
they can be executed very fast when nothing needs to be done. In the case of more
common and significant contingencies the Event Listener could also be brought into

play.

56

Each Action is a part of some Task, which is also described in the following
sections. An Action is selected on the basis of a comparison value function eval-
uated for each Action in the pool. The behaviour of a robot can be adjusted by
varying the selection policy, for example, by being greedy and always selecting the
most valuable option or exploratory by favouring Actions that have not been taken
very often. Some human-like behaviour could perhaps be achieved by roulette se-
lection, where Actions with a higher value are more likely to be selected. The value
function could be seen as a predictive projection into the very immediate future and
thus as planning. On the contrary, the value function does not consider the possible
consequencies of the Action, except the time it would take, and thus this cannot be
considered to be genuine planning. Actually, with greedy selection this could be
close to minimum slack scheduling, which is considered a fairly competitive option
for fully-fledged planning in complex and dynamic domains [26]].

The value function of the Action is based on its importance and expected execu-
tion time. The importance is a user-given priority p. With the priority safety-critical
or otherwise urgent Actions can overrule some regular activities. The expected ex-
ecution time has two components with their respective uncertainties as standard
deviation.

1. Context switch time, which has two sub components:

(a) Resource reservation time (¢, and its variance v,), i.e. the time it takes
to move the Resource from the current state to the state where from the
aPlan can be started. This is a Resource-specific estimation function.

(b) Wind-up time of the Action currently being executed (#,, and its variance
vy). Currently, this is just a static estimate.

2. Expected execution time of the aPlan. This is statistically derived from all the
times the Action is executed. (7, and its variance v))

One example to evaluate the comparison value A is

=
A = p+eiae ,where (5.1
|ty Aty if running Action
fptir+by+ AVptV,+y, other Actions in the pool

To balance out the effect of a Resource’s temporal characteristics, the average
context switch time of the Resource (7,,.) can be used to normalise the expected
execution time. The priority p is initialised when a Task is started and is inherited
to its Actions. When the first Action from the Task is executed, the Task’s priority
p is raised to ensure that the executing system continues to focus on the current task
at hand. p can also be raised as a function of time to allow time-based scheduling.
Thus, even actions with a lower level of priority will be executed as long as their
execution time is significantly shorter than that of Actions with a higher level of
priority. For example, the robot is given a high-priority task of fetching water from

57

the kitchen, based on the above description, while in the kitchen it can also execute
the lower-priority Action of checking that the stove is turned off before taking the
Action of bringing back the water.

Action selection is initiated by the addition of an Action into the pool or by the
removal of an Action from the pool by a user or by the AP. The AP removes the
Action after it has been executed or as a reaction from the Event Listener, described
later on in this chapter. To manage the Tasks and the execution flow, some special
Actions are needed. One is a placeholder Action, which cannot be selected by the
Action selection process. Only some external event or intervention can remove it;
in this way the Task can be “on hold”. The other type of special Action is a remote
Action. That and some other aspects of the Actions are elaborated further in the
Task section, after some other components of the ActionPool method have been
explained.

5.3 Event Listener

Initially, the tasks were defined in a specific procedural language [12, [13]. The
next observation about the nature of the tasks was that there were a huge number of
repeated condition checks cluttering and complicating the plan. Typically, condition
checks needed to be executed very frequently and exactly the same condition check
was present in many different
tasks. An example of these

condition checks could be if o

a human comes too close to

the robot. This kind of condi- @@

tion check is typically an unex-

pected event that the task exe-

cution has to be aware of. datain)
The condition check and

related response was then en- @

capsulated into a component
called Event Listener (EL).
Event Listener acts in paral-
lel with the execution of the
aPlan. EL can be distributed

to other computers and its ex- ((send response)

ecution loop frequency can be
adjusted (Figure [5.3). EL also @
contains a response to the event

as a set of added Actions or

Actions to be removed. One Figure 5.3: Flowchart of the execution process
common procedure is to restart inside Event Listener

the Action and that would be

achieved by the removal of the

no event sleep/

wait for trig

event

58

Action currently being executed and adding it again to the AP. It would most prob-
ably be selected again since it was already selected and the context change time is
short. The EL could be compared to the exception-handling semantics in general
programming languages.

The starting and stopping of ELs is embedded into the Action before and after
the execution of the aPlan. The EL functionality is defined separately from the
Action and the Action carries just the reference to the EL, the threshold level for the
event, and the response. In this way the same EL implementation can be reused by
different Actions. The usage of the same implementation in several places ensures
the maximum number of iterations for the event recognition algorithm. This is
desirable for optimisation and learning algorithms that are dependent on a large
number of iterations, as one of the most fundamental abilities for the service robot
is to recognise these events.

5.4 World Model

A typical service robot has multiple sensors that can complement each other. The
information extracted from each sensor needs to be fused to build a picture of the
situation and utilise the heterogeneity of the sensors. The sensor sets and their
placement and fields of view are also different from robot to robot. Still, on a more
abstract level the system should see the sensors similarly, despite the diversity. To
accommodate the demands, a unified object-level world model database (DB) is
required.

The world model portrays the current situation and does not predict its future
states. The sensor readings are refined into observations about objects by a separate
process that only posts them into the model. If some predictions are needed, it is the
job of the process that needs the prediction to derive the estimate from data available
in the world model. A typical operation is to estimate the location of an object on
the basis of its last known position and velocity. This kind of DB separates the
representation and the process of collecting the data. The perception processes can
be allocated dynamically and the sensors of different robots, or even their databases,
could be incorporated transparently.

This type of sensor fusion has a few main challenges: a) the observation about
the object has to be correctly associated with the right instance in the database; b)
the object has to be recognised or classified correctly as being what it is; ¢) the data
from the sensors can support multiple hypotheses about the state of the world and
the database should accommodate this; d) the sensors that are used do not provide
absolute information and their limitations should be made clear.

These are partly tackled by the recognition process and partly by the database
offering statistical probability data about the spatial state, size, or existence of ob-
jects (see Table[A.2]in the appendices). The spatial state is defined as an estimate of
the current pose, velocity, and acceleration. The pose is represented as a union of
Gaussian distribution and uniform distribution. A multi-hypothesis for one object
with multiple Gaussians is being considered, but has not been implemented yet.

59

Figure 5.4: View of X3D file created from database as a snapshot of the robot’s
understanding of the world

Another feature of the world model is that objects are in a hierarchical tree
structure and their pose is indicated relative to the object’s parent node. This is
to prevent the error accumulation in the position of the object from co-ordinate
transformations when compared, everything being fixed in one world co-ordinate
frame. Tree structures have some other benefits related to the data updating and
handling, but these lie beyond the scope of this work.

As mentioned, for the ActionPool system the DB provides abstract sensor read-
ings. It can also hold other abstract data, such as the names of places. The other
components of the system can use the DB as a global memory and indirect commu-
nication channel to coordinate their interactions. As Brooks [56] said, “The world
is its best model” and promoted tasks and robots interacting through the environ-
ment instead of explicit coordination and communication. For a more abstract level
of control a more abstract representation than the world itself is used. Otherwise the
principle is the same; just a more machine-readable version of the world is provided.

The DB is also used to integrate a human user into the robot’s execution. It is
very convenient to view what the robot “sees” and manually input objects into the
world model, i.e. tell the robot where something is. Visual representations of the
world model can be created to observe the robot’s understanding of its environment.
A static snapshot of the world model was implemented using the X3D file format
[110] (Figure [5.4) and a more dynamic version that provided the possibility of a
human operator manipulating the world model was realised utilising the Panda3D

game engine [I11] (Figure [5.5).

60

Figure 5.5: Screen shot from dynamic presentation of the robot’s world

5.5 Perception Agents

Event Listeners rely mostly on the information in the database. So it is important
that the data are up to date. Initially, ELs updated the DB by themselves. This
seemed convenient for the computing resources because only the information that
was actually used at the given time was gathered. Unfortunately, several ELs from
different tasks executing the same perception process exhausted the computing re-
sources. Naturally, it is more efficient to use only one instance of one perception
process and just the output of the perception is evaluated via the DB.

For this purpose, independent Perception Agents were created. The Perception
Agent reads information from sensors and filters it to observations from the envi-
ronment and stores it to the DB. Currently, Perception Agents run continuously at
the rate at which information from measurements comes available. It is clear that
when the number of these agents grows, some scheduling for execution is required
or the computing resource would be exhausted again. The scheduling should be
dictated by the active ELs but it is also left for future work.

5.6 Task

The plan in the Task (tPlan) is represented as a series of sets of Actions. Conceptu-
ally, it is in the form of a partial-order plan [26] and with the taxonomy of Chapter
M]it is a combination of disconnected distributed and reduced procedural represen-
tations. The sequencing is a series of sets of Actions and the sets are ordered with a
combination of and and or rules. If an Action n in tPlan were represented as A,, an

61

example of a tPlan with three sets could be [Ag A (A1 V A2),A3 AAs A A5 AAg,A7].
This differs from the generic ordering constraints (A; comes before As), which re-
quire fewer declarations but lack some flexibility. Additionally, the representation
that is used allows alternative Action sequences, while a simple ordering constraint
assumes that all the Actions in the Task plan are to be executed.

For the Task execution all Actions from one set are added to the AP at the same
time. The next set is added after all the Actions from the previous set have been
executed. The so-called non-deterministic excluding configuration, i.e. ‘“or:ing”
of Actions, is managed by the AP component. For example, in the previous tPlan
representation sample, if A; is executed, A3 is also removed from the AP.

Actions themselves define the causal links of the partial-order plan as ELs. The
EL can protect the state in the world that the Action has achieved and, for example,
add the Action again if the state has been violated.

In addition to the plan, the Task always contains a priority and a description.
The priority indicates the importance of the Task, while the description is human-
readable documentation about the meaning of the task and its goal. Furthermore,
each Task can have a set of parameters that are forwarded to the Actions and their
aPlans. There is a special kind of parameter called a target, which can refer only to
a DB object which can be instantiated dynamically. A priority is assigned each time
the Task is started and all the Actions of the Task inherit this priority. An overview
of the Task’s structure was given in Figure 5.1}

The Actions have some fixed form of pre-conditions (possibility axioms) and
post-conditions (effect axioms) in them. Conditions are not explicitly described
but they are so common and universal in this context that there is a fixed way of
representing them (Table[5.1).

Table 5.1: Definition of conditions in the Action
Effect Axioms

Possibility Axioms

Location (explicitly stated in the
Action) or object (reference to the
DB)

Temporal order specified in the
tPlan

Conditions to be held during the
Action as a list of ELs to be started
or stopped before the aPlan

Temporal order specified in the
tPlan

Conditions to be held as a list of
ELs to be started or stopped after
the aPlan

Human-readable description of the
Action’s effects

The overall functionality of the AP architecture was presented in Figure [5.2]
From the figure two cascaded control loops from the environment can be seen:

62

first, the aPlan-level control loop with direct observations from the environment,
and second, the somewhat slower loop through Perception Agents and ELs for the
Task-level control.

5.6.1 Interdependency

As already mentioned, a service robot typically has interdependent Resources and
each Resource has its own AP to manage its use. A Task is started only in one of
the APs but sometimes the Task needs Resources managed by other APs. These
interdependent resources are also handled by Actions. The so-called remote Action
is sent to the AP of the desired Resource. The process starts with placing an Action
to the original AP, representing the request to the other AP (remote AP). When it
gets selected, there are three types of remote Actions that can be sent to the remote
AP.

1. Unmonitored Action The Action is just sent and it does not matter when it
will be executed; the Task can continue in the original AP without interfer-
ence.

If the unmonitored Action is interrupted, it is treated just like other Actions
in the remote Action pool. If the original task is removed, the remote Action
just stays in the remote pool.

2. Monitored Action A placeholder Action that cannot be selected is added to
the original pool and removed after the remote Action is executed. The Task
cannot add Actions from the next slot before all Actions, whether local or
remotely monitored, are executed.

If the monitored Action is interrupted, it is treated just like other Actions in
the remote AP. If the placeholder Action is removed, the remotely monitored
Action is also removed.

3. Mutual Action The original AP waits for the start of its execution. The
aPlan of the Action in the original AP just keeps the Resource reserved for
the mutual Action. This is used when the resources need tight cooperation
and the aPlan utilises both Resources.

The mutual Actions can be chained and sent to many remote APs one by
one, starting from the original Action. This facilitates the tight cooperation
of multiple Resources. If the mutual Action is interrupted, it is treated just
like other Actions in the remote AP, but the Action in the original will be
restarted. If the Action in the original pool is removed, the remote Action
will be removed too.

The Task is finished when all the Actions are executed or removed and the final

state reached. Then all remaining ELs are terminated too. In some cases the Task
is not episodic but continues (Table [2.T)). For this purpose the Tasks can be defined

63

as continuous or periodic. Episodic Task execution is the default option. Continu-
ous execution means that the Task will not remove the ELs and itself when all the
Actions are executed. In the periodic case the Task is restarted from the beginning
when all Actions are executed.

5.6.2 Graphical Representation of Task

The graphical representation (Figure [5.6) of a Task described here was developed
mainly for illustrative purposes. It does not carry information about the variables
that are passed. Its main purpose is to show the interactions between different Ac-
tions and ELs in the Task. It loosely follows the syntax of activity and sequence
diagrams of the Unified Modelling Language (UML) [[76].

The representation divides the Resources into separate lanes, so each AP has its
own lane with its name at the top. ELs have their own lane, which is somewhat
different from the others in order to indicate that it is not an AP. The graph flows
down from the top but is not tied to any time axis. An Action is represented by
a block divided into three. In the middle there is the name of the Action and the
rounded blocks represent the EL interaction before and after the plan. ELs are
rounded blocks in their own lane and with the name of the event written on them.
Their reaction to the event is indicated with arrows coming from the sides of the
block.

The Task is assigned to one AP. This is indicated with the typical sign of the
initial state in flow charts, a solid circle. In the same lane there are walls. The walls
divide the sets of Actions from each other; i.e. Actions for which the execution
order does not matter are placed between the walls. The end of the task, the final
state, is indicated by an open circle with a solid circle inside. A task can have
special conditions for its final state. They are indicated with text under the final
state symbol (Figure [7.4).

Naturally, the graph traverse starts from the initial state. Then the Actions in the
following set are considered. There are four different kinds of arrows to indicate
if something is going to be removed (dashed line) or added (solid line). When the
following set of Actions is studied, the Actions from previous sets can be considered
non-existent. But ELs that are not explicitly removed can be considered as still
existing, even when the Action that added them is gone. If an EL adds an Action
to the same pool with a task, it can be placed in a separate lane for the same AP
(Figure[7.15)). This is to indicate that the place of the Action between the sets is not
defined.

The non-deterministic nature of the representation is further indicated in Figure
with a “fetch drink” task. The alternative Actions are indicated by placing them
in parallel on the graph. So, in this case the drink to be fetched would only be one
of the alternatives. For example, water could be available in the corridor, but the
coffee and tea in the kitchen. Then the robot’s current location would decide the
drink to be fetched. If the location of the coffee is very uncertain, that would extend
the expected time needed to get to the coffee and again would alter the choice.

64

Difference in lines to indicate
that ELs are not in AP Name of Resource

; 4 for AP lane

EL interaction | . -

before aPlan : ELS PTU Base

r\!(S / Action
. Take Image Calculate

Images

Human too
close

Wall

Human too
far

D
EL interaction

D
after aPlan

Update Image
Remove — — —» to DB
Add unmonitored ——= C)
Add monitored ———

Add mutual ——» leaiaaaaaa

Figure 5.6: Explanation of graphical representation: Lanes represent different APs
and ELs. Walls separate sets of Actions. The graph is read from the top down, starting
from the round initial state symbol.

ELs Arm Base

C DENE D)
+—_Grasp Coffe Grasp Water

|
: .

Figure 5.7: Graphical representation example of “fetch drink” task: This graph
shows how to indicate alternative Actions by putting them in parallel on the graph.
EL is the ActionPool solution for the hand monitoring dicussed in [73].

65

5.7 Control of Action Pool

There are some basic mechanisms and details in the control of Tasks in the Action-
Pool method. In the following sub-sections these are described by going through
some usage scenarios. Generally the AP can be queried as to its current state and
a monitoring component can subscribe to the AP in order to receive status change
messages. The AP is an independent software component and it is controlled re-
motely by issuing commands to add Tasks, pause the operation etc.

5.7.1 Adding a Task

The Tasks are added by the user or ELs. The Task is assigned or started from a
specified AP. That AP instance then handles the Tasks. The first set of Actions
in the Task is added to the pool, with their inherited priorities. Several instances
of the same task can be added at the same time and each would have a unique
specifier to reference them. The user can also add just an Action into the pool.
Then a placeholder Task containing only that one Action is dynamically created. In
this way the Action would show up in the listing of all the Tasks in the pool and
possible ELs and remote Actions can refer back to it correctly.

5.7.2 Pausing

A Task can be paused by the user or by an internal error in the execution. When
one task is paused, other tasks can continue their execution. Pausing a Task causes
the abort of the Action that is currently being executed if it belongs to the paused
Task. In the next Action selection the Actions of the paused Task are omitted. The
ELs initiated by the Task are left running. After all, the world does not pause even
if the Task does. If the ELs add some Actions to the pool, they are also omitted in
the selection.

Aborting the Action can occur in one of three stages of the execution of the
Action:

1. if it occurs during the resource reservation, the reservation process can easily
just be halted;

2. the interaction of the ELs before the aPlan is a blocking operation, so the
abortion would take effect only after that. It would have the same effect as
abortion during the execution of the aPlan. The aPlan has an interruption
procedure to be called and the EL interaction before the aPlan is reversed;

3. finally, the abortion could occur during the very short window after the aPlan.
In that case, the Action is not aborted and the final EL interaction is conducted
because the assumed effect of the Action should already be in place.

The operation of the whole AP can also be paused by an internal error or user
intervention. If the whole robot pauses, all of its APs are paused. In effect, the

66

Action which is running is paused when AP is paused. Each aPlan has a pause
procedure which is then called to drive the process to a safe pause state. The ELs
are handled in a similar way to the Task case. If the Action that is currently running
is removed, then the AP waits for the resume signal before continuing to the Action
selection.

5.7.3 Removal of Task

A Task can be removed by the user or EL. If the Action that is currently running
belongs to the removed Task it is naturally aborted and all Actions already in the
AP are removed. All ELs that are initiated by the Actions of the removed Task are
also removed.

5.7.4 Error Handling

Errors can be initiated by the aPlan or EL. Naturally, the aPlan provides errors from
conflicts in the internal processes of the aPlan execution. Typical such errors are
missing files and invalid arguments. Error conditions can also be initiated by causes
external to the control process. Then the error is handled by the EL.

The consequences of an error regarding the control process depend on the sever-
ity of the error. A serious error from which there is no apparent recovery or which
is impossible to repair causes abortion of the Action. If there is a chance for the
Action to be recovered, for example by providing a missing parameter, the Action
can be paused. All the internal errors have an error string related to them. This
string describes the type and probable cause and source of the error. For external er-
rors the repairing Actions also have priority that would dictate the effect, depending
on the situation. The repairing Actions are added by the EL that notices the error
situation, just like in any other condition monitored by ELs.

67

5.8 Summary

ActionPool is a dynamic task scheduling method constructed from several compo-
nents. A summary of the main concepts is provided in Table [5.2] These are more
ActionPool specific descriptions than the ones in the Glossary. Figure[5.2]also sum-

marises the basic principles of ActionPool.

Table 5.2: Summary of essential ActionPool terms

Term Description

Task Element with metadata and a plan to do the Task
constructed from Actions

tPlan A plan to do the Task constructed from Actions

Action Elementary operation on abstracted Resource, con-
tains additions and removal of ELs and a plan for
how to use the resource (aPlan)

aPlan A plan for usage of the Resource in order to conduct
an Action

EL Monitoring software agent running simultaneously
with tPlan and aPlan execution, Can be used to pro-
tect a state or confirm some pre-condition

AP Component to schedule and manage Actions on a
Resource, Actions can be from different Tasks

Resource Physical and logical sub-system of the robot to be
controlled

Perception Agent An agent to store observation of objects from re-
fined sensor readings to DB

DB Centralised storage for robot’s understanding of the

current situation in its environment (world model)

68

Chapter 6

Implementation

Two fundamentally different mobile robots were used to show the feasibility of
the ActionPool method, the omni-directional MARY [10, [112] and the differential-
drive Rolloottori [11]. MARY was controlled through a PC connecting directly to
the actuator with a data acquisition card, while Rolloottori connects to the hardware
via microcontrollers communicating with the PC via serial links. So the real-time
control of MARY was calculated in the PC and that of Rolloottori on a micro-

controller. An overview of the main differences is shown in Table

Both robots were originally built for other purposes than these experiments, so
they both required some development work and maintenance before they could be
used for the experiments. That mainly involved the installation of some new sensors

and computing power for autonomous operations.

Table 6.1: Comparison of main differences between robots used

MARY Rolloottori
~ 150kg mass ~ 20kg
~ 1.4m height ~0.75m
~ 0.6m width ~0.42m
omni-directional mobility differential
3 #on-board computers 1
on PC real time control on micro controller
Player [9]] middleware GIMnet / MaClI [23]

69

6.1 Hardware

6.1.1 MARY

The base of MARY was originally an electrical wheelchair mechanism. The mech-
anism is based on four mechanum wheels that are controlled independently. Thus
the base has four degrees of freedom (DOF) to control the three DOF. This permits
omni-directional manoeuvres and the base is actually over-actuated. The manipu-
lator arm mounted on top of the robot has seven DOF. The Mitsubishi-made arm
(PA-10) weighs around 20 kg and has a workload of around 10 kg.

MARY is equipped with a Panasonic pan-tilt-zoom camera unit (PTU) and a
Hokuyo (URG-04LX) infra-red (IR) laser scanner. The base is controlled with an
industrial PC equipped with an IO card in a PCI bus to directly interface with the
encoders and motor drivers. Figure[6.I]shows the schematic hardware layout of the
main components of MARY. PC2 and PC3 are 2004 model laptop computers with
1.6-GHz processors. Figure [6.2] shows the placement of the components.

The PC1 was running on the QNX operating system and took care of the real-
time control of the base and arm. Unfortunately, the researcher’s limited exchange
time in Japan did not allow the utilisation of the arm. PC3 gathered the data and
connected to the real-time control program on PC1. PC2 and PC3 were running
Linux operating systems. PC2 then had the mission-level computations and inter-
faced with PC3 to gain some access on to the robot peripherals.

........................i VldeO

Arm controller

Proprietary
bC“S)
encoders TTL
pulses Arm

Figure 6.1: Layout of the hardware structure in MARY

70

On board computers
Manipulator arm

Camera with PTU

Laser scanner

Batteries

Omnidirectional
mobile base

Figure 6.2: Overview of MARY robot

71

6.1.2 Rolloottori

Rolloottori’s electrical hardware is originally from a ball-shaped robot with three
DOF and is controlled by a 16-bit microcontroller only. One of the DOF was used
to tilt a camera. The two remaining DOF were used to control the direction and
speed of the ball-shaped robot but have now been adopted to control the left- and
right-hand wheels on the robot. Commands to the robot were given through a wire-
less serial link and the camera image was wirelessly sent directly to an off-board
computer for processing.

To be used in the experiments, the robot needed some upgrading. It got an inde-
pendent three-DOF (pan-tilt-zoom) camera unit (Sony SNC-RZ30) and an onboard
computer (an Acer One ZG5 with an Atom processor). Other environmental sensors
were an infrared (IR) proximity sensor-based bumper and an IR laser scanner man-
ufactured by Hokuyo (URG-04LX). An overview of Rolloottori and the placement
of its components is presented in Figure[6.3]

The most important hardware components are organised as presented in Figure
The IR bumper is connected to the digital input of the microcontroller. The
microcontroller also counted the wheel encoder pulses and produced a PWM signal
to the wheel motor drivers. The camera and its pan-tilt-zoom unit (PTU) are con-
nected via Ethernet and a hub. The hub is also used to connect the system to a wired
network for maintenance and to connect an occasional extra computer onboard.

The microcontroller and the IO card are connected to the PC1 on board via a
USB-RS232 adapter. The laser scanner was connected to PC1 via USB. PC1 has
only USB ports built in. PC1 and PC2 were connected via a WLAN connection.
PC2 and the rest of the PCs were connected via a regular office Ethernet network.

72

Camera with PTU

Laser scanner

IR-bumpers

Batteries

Differential drive
mobile base

Voltage

Battery

Micro

controller

TTL signal

(unee
encoders

Figure 6.4: Layout of hardware structure in Rolloottori

73

i

\j/

Mission layer

Perception
agent
aPlan layer

Plan

L
k-

Player GIMnet

Components
Real-time layer

RS232 PWM
12.52vdc USB

[Robot hardware]

Environment

Figure 6.5: Layers of the software in the implementation of ActionPool method

6.2 Software

As mentioned in Chapter [2] the complex control problem of the service robot is
divided into layers and components. Three layers may be distinguished: 1) a Real-
time layer; 2) an aPlan layer, and 3) a Mission layer (Figure [6.5). The implemen-
tation of the Mission and aPlan layers is constructed with the Python program-
ming language and an object-oriented programming scheme. The Real-time layer
is mainly programmed in C++ or C, with some elements in Python.

The idea of isolating the software into layers is not only to have smaller sub-
problems but also to have interchangeable solutions for the subproblem, as, for
example, was the case with the Real-time layer using different hardware abstraction
techniques for different robots. The hierarchical layers isolate different time scales
in the control.

6.2.1 Mission layer

The mission layer is formed from Tasks, Event Listeners, and Actions in Action
pools. Using the terms from [19], the aPlan and Mission layer form the sequencing
layer. The deliberative layer is not implemented because it would require more
advanced situation awareness than is possible with today’s technology in the service
robot scenario. The control layer mentioned in [[19] is naturally the real-time layer.

Task

The tPlan is constructed from sets of Actions separated by “walls”. When the Task
is executed, one set of Actions is added to the AP for execution at the same time.
When all the Task’s Actions in the pool are executed or removed, the next set of
Actions is added. The Task is encoded using XML (Extensible Markup Language).
The general XML syntax is described here and the definitions regarding the Task
shortly afterwards.

XML is a systematic and formal way of representing information. It is machine-
readable, i.e. a computer system can parse the information with relative ease. It is
comprehensible to humans, too. The information is organised with so-called tags
and their attributes. In order to be understood, the meaning of the tags and their
attributes has to be defined. A hierarchical structure can be formed by placing tags
as information for a higher-lever tag.

For example, we could define an object, a blue ball, with XML. The information
start with a start tag describing what kind of information we are dealing with. The
tag name is placed between “smaller than” and “greater than” signs.

<object>

With attributes, some common features for all information of a particular type can
be expressed.

<object colour=“blue”>
Finally, the information can be placed between the start and stop tags.
<object colour=“blue”> ball </object>

A stop tag is denoted by a slash in front of the tag name. If just the attributes are
sufficient, the slash can be placed at the end of the start tag. Thus the end tag is not
needed

<object colour=“blue” />

75

In the listing below there is an example of a task in XML code as it is sent to the
AP. Table [6.2] explains the tags used and their attributes.

<Task name="sampleTask" id="12345" priority="0.123"
permanent="0" replay="0" description="does consecutive sleeps'>

<Target id="1" name="sleeper" description="pseudo db id ">

<Action filename="Sleep.xml" order="0" wall="0" last="0">
<Parameter type="Int" value="5" name="var_sleepTime"
description="time to sleep"/>

</Action>
<Action filename="" wall="1" order="1" last="0"/>
<Action filename="Sleep.xml" order="2" wall="0" last="0"/>
<Action filename="" wall="1" order="3" last="0"/>
<Action filename="" wall="0" order="4" last="1"/>
</Task>

Actually, this XML code is in a file on the same computer as the AP program.
Even though the AP could receive and act on the Task XML code sent over the
network, just the file name is sent instead for convenience. The directory where the
Task’s XML file resides can be found on the basis of the common configuration file.
The configuration file also describes the structure of the system and the addresses
of other components. With that information the AP knows how to connect to the
robot, where to send the ELs, and what the other APs are. The same configuration
file is used by all the APs and ELs of one robot.

Action and EL

The listing in Appendix [B]describes an example XML code representation of an Ac-
tion. The code also includes the Action plan, which is covered in the next section.
The Action can be found written in a file in a directory described by the configura-
tion file. The file name is found from the tPlan representation. Table describes
the tags that are used and their attributes inside an Action and its EL interactions.
Notice that some of the ID attributes in the code can be undefined. This XML
code is loaded by the AP when the Action is added. The AP assigns an ID number
for the Action. The Task also has a unique ID number within the AP and provided
by it. The Action then inherits the parent task’s task ID. In this way all the Actions
belonging to a particular Task can be identified, for example when the Task is re-
moved. The undefined attributes in the XML are filled by the AP accordingly and
the same file format is used to save and resume the state of the AP on the hard disk.

76

Table 6.2: Definition of XML tags and attributes for Task

Tag Attribute Description
Task Defines a Task
name Same as the file name, used mainly in user
interface to tell what tasks are running
id Place holder for an id assigned for the task by
the AP, can be used to save a state of the AP
priority Priority of the task that the Actions will in-
herit
permanent Tells if Task and related ELs should be re-
moved after all Actions of the Task are exe-
cuted
replay If task should be started over from the begin-
ning when all Actions are completed
description Free-form description of what the task does
Target Target object for the task; it is always a refer-
ence to DB
id Identification number of the object in DB
name Optional name of the variable
description Free-form description of usage of this object
in the task (or other relevant information)
Action Defines an Action in the Task
filename Complete name of the XML text file describ-
ing the Action
wall Indicates a virtual wall separating patches of
Actions
last Indicates that the task ends here
order Indicates the order in which Actions are
added into Action pool starting from 0. It
is preferable that order numbers are not
skipped. If there are actions with the same
order number it means that they are “or” con-
ditioned between each other
Parameter describes a task-level parameter to be used in
the Action, overrides the value specified in
the Action’s file
type Type of the parameter (Double, Integer,
String, or Unknown)
value Value of the parameter
name Name of the parameter
description Human-comprehensible explanation about

what the parameter or return value contains

77

Table 6.3: Definition of XML tags and attributes for Action and EL.

Tag Attribute Description
Action Describes an Action
name Name of the Action
objectID Reference to the database for resource reser-
vation
id Unique identification number inside Action
pool
taskID Unique identification number of Action’s par-
ent Task
priority Priority of the Action
location Location to start the aPlan if objectID-
attribute is not provided
sigma Variances for the location coordinates to de-
scribe how accurately it should be achieved
before starting the aPlan
lambda Update weighting for the execution time
time Expected execution time and its variance
description Human comprehensible explanation about
what the Action does
version Version control
ELstart What EL interaction is done before the plan
and after the resource reservation
ELfinal What EL interaction is done after the plan
ADD An EL is added or initiated
RM An EL is removed
taskID ID number of the task that this EL belongs to
actionID ID number of the Action that this EL belongs
to
EL_ID ID number of the EL
filename Filename of the XML file for EL if the XML
is not provided
ELheader Describes an EL
threshold Threshold for triggering the EL
objectID Reference to DB if Events related to specific
object are listened
exeFilename Filename of the executable code
description Human-comprehensible explanation about
what the EL does
RESPONSE Describes one response for triggering the EL
command What to do as a response
filename If something is added, its description
pool Defines which AP the command applies to
actionID If Action is removed, its ID number

78

Action Pool

For each AP and Resource pair there is an Action pool manager program that keeps
track of Tasks and manages the Action selection and Action execution process,
and through which communication to other components of the system goes. The
diagrams of the classes related to the AP are described in Appendix D} i.e., the AP
can be seen as a data structure containing Actions. The manager program contains
the Tasks and serves as a point of contact for the user to command the robot.

World Model

The robot’s current understanding of the world is modelled into a database. The
database (DB) is based on objects with some basic properties listed in the appen-
dices in Table[A.2] A noticeable feature of the properties is that the uncertainty of
the numerical properties is modelled with the first and second moments (u, %) of
the variable.

The DB is implemented utilising the mySQL database engine. The ActionPool
architecture is constructed from several distributed software components and this
kind of DB is known to be not the fastest option but it provides a simple and ac-
cessible interface for the data exchange. From the architecture point of view, the
implementation of the DB is irrelevant as long as some queries can be made and
data can be updated and retrieved.

To make the usage of the DB easier, a wrapper class for it was created. The
methods of the class allowed simple interaction with common chores, such as search
queries based on the distance from a specific point in the world model or a command
for uploading the texture of an object from an image file.

6.2.2 aPlan layer

The aPlan layer utilises a so-called micro task (uTask) concept [7, [12]]. uTasks are
functions utilising the HAL. They are atomic in the sense that you cannot divide
them without breaking their functionality. Still, they can be executed, paused, con-
tinued, and aborted. The output would be success or error, with a string defining
the source of the error and a code defining the severity of the error. Several uTasks
can be organised into functions called workTasks. The aPlan is then constructed
from the workTasks and uTasks with a parameter-passing mechanism and flow con-
trol components such as “if”” statements. The aPlan is also serialised into an XML
structure.

The aPlan layer communicates with the Real-time layer via uTasks. uTasks have
connections to the actuators and sensors via middleware. The aPlan layer just gets
aPlans from the Mission layer and sends some status messages back. A breakdown
of the Task implementation can be seen in Figure [6.6] The aPlan and uTasks are
parsed and executed in this layer.

79

Task Action aPlan uTask

uTask
Header

Algorithm

(code,
code,
code...)

Task Action
Header Header

Event List.

Plan
Header

Action

\

Action

Action

Action

tPlan
~——

Figure 6.6: Breakdown of Task into ulasks

uTask and aPlan

The aPlan is also defined in the XML format and an example can be found inside the
XML code example of the Action in Appendix [B| It includes the XML representing
the uTasks and their connections constituting the aPlan structure. The XML format
supports a graphical representation of the plan as a flow chart. The representation
closely follows the one presented in [12] and thus there are some elements that are
not used in this context. The Table [6.4] defines the tags and attributes that are used.

Perception Agent

Perception agents are independent programs and consequently they can easily be
distributed in the system. The basic structure of the agent is fairly simple, except,
naturally, the algorithm refining the data. Some very simple ones were created too,
just to forward, for example, the readily available pose data to the DB.

6.2.3 Real-time layer

In this implementation the so-called microtask paradigm was selected. It is a pro-
cedural representation used in [[7, [12] and loosely based on [13]. The microtask
(uTask) is an atomic operation of the robot on a hardware abstraction level.

The Real-time layer, as the name indicates, handles algorithms that need to have
a tight and deterministic control loop execution. They are constructed from different
middleware components, as described in Figure and [6.8] They are described in
more detail in the middleware section below. Basically, the role of the Real-time
layer is to provide a hardware abstraction layer (HAL). It contains algorithms to
control the different Resources safely.

80

Table 6.4: Description of XML tags and attributes for aPlan and uTask

Tag Attribute Description
Plan Describes an aPlan
SingleTask Describes a uTask
name Name of the uTask, the name of the exe-
cutable file is derived from this
PS Defines which resource this uTask is mainly
using and in which library it could be found
id Identifies the uTask in the aPlan structure
priority Not used in this context
description Human-comprehensible explanation about
what the uTask does
Parameter Parameter for the aPlan or uTask
ReturnValue Return value from the aPlan or uTask
type Type of the parameter or return value (Dou-
ble, Integer, String, or Unknown)
value Value of the parameter or return value
name Name of the parameter or return value
description Human-comprehensible explanation about
what the parameter or return value contains
Block Defines the graphical representation of the el-
ement
uiBlockType Graphical appearance of the element
uiPosX X-coordinate of the element on canvas
uiPosY Y-coordinate of the element on canvas
InitText Not used in this context
ExeText Not used in this context
EndText Not used in this context
ErrorText Not used in this context
Connections Defines the execution order and graphical
wiring of the uTasks in the aPlan
Connect Connection between two uTasks
From From which uTask the connection starts
FromPos From which part of the graphical representa-
tion the connection starts
To To which uTask the connection stops
ToPos To which part of the graphical representation

the connection stops

81

MARY MARY

base T — = — = driver * = =~ Ipgsition2d:0
1
:Laser :g

URG URG
Positipn2d:1
WRF ===~ driver = = = | »

jLaser
1
- - AMCL
I -
box.pgm mapfile Map

Positipn2d:2

IMap
- - wavefront
<<

Plapner

\
micro task
<~ —

Figure 6.7: Deployment of Player software components on MARY to control the pose

on2d:1

1
1
|
|
1
|
|
IPositi
|
|
|
1
|
|
1

Position2d:2

iti
|
|
1
|
|
1
|
|
|
1
|
|
1
|
|

Middleware

Two different middlewares were used, one for each robot. The middleware was
used to abstract the hardware and provide a method for the software components
to communicate with each other. The robotic middleware typically includes drivers
for the robotic peripherals, such as the camera or the joints of the robot arm. Most
importantly, the robotic middleware defines common data types for these peripher-
als and a way for them to communicate conveniently across a computer network. In
this way, for example, the camera can be changed and a program requiring the im-
age feed from the camera does not have to change. The only thing that it would be
necessary to change would be the driver for the camera. Another important feature
of the middleware is that the computing can be divided into software components.
Software components are independent processes that can be distributed over several
CPUs and which communicate during the run time.

As mentioned in [with robotic middleware the system definition is close to
functional programming or so-called data-driven programming. The system would
be built from modules that accept certain kinds of data and/or provide some type of
data. The modularisation makes the reuse of the components possible, or alternative
components could be used for testing and tuning the performance. Work done by
many programmers can be unified conveniently. The possibility of utilising ready-
made basic algorithms for localisation and getting some other software support was
the major motivator for the use of the middleware in this work.

The Player middleware components to control MARY’s pose are shown in Fig-

82

ejawed ——
10) [ood uondY

~0€Zz4DNSAuos []

1103300]|0Y M3IAJuUOL4
Jaydune ‘RIBWEeDZIVA

wenes-si []

jusbe
[L 4 =P
uewny

(JoAup @1eulpI0

1
comonpea) [K --=—=-=-—— - - " \
[
1 dlued - — - = butbuey 1
1 | :uonoojjoyoiuey L1 :oﬂﬁoa__ 1 " ,
1
! T 1 | @ATap|aieutpioodl !
1430paads! ! 1 | | 1
!] ! ! 1 ! oUﬂmcn_"
Butbuey ! ! SATIP 93euTpa00)! 1 . (1eqo|9)
I ! | : : I S 4 | senuaden
1 1 .
sonoojiod [< = = = =4 | 1 h uannaden
IIIII R U | |
Butbueyl X 1
H. o) [kKF----1-=-=-4 - — !
||||||||||||| - 2504-0019 D e &
! AXIYUMEFIX30a0 [] asod
N e (AP P I 1oy j00d uondy
1 UGTITS0d
1

afjefluswni

((3se4)
bujuueid - u |||||| f
:umn__mno_m&

Jauue|ddep]
:Jauue|ddepy

Jaydune

€ Od

for the Real-time layer. PC3 has

83

1
T
1
1 REVICINE]
ueim 1
1
(uonesijeso|
9000S qenny
:qnHdoy uansasdepaur]

teqoio) []
2019
:19z1|e207g49|eqo|o [

32149pIS101100]|0Y

Jayounet [~]

rgel. |

Deployment diagram of MaCl software components on Rolloottori to

the rest of the components to form the ActionPool architecture. PC2 acts merely as a
connection point.

Figure 6.8
form the control system: PC1 has the components

ure The map is read from a file and provided through a “map* interface. The
odometric data gathered by the computer driving the wheel motors were provided
through the position2d* interface. The laser scanner data were acquired via the
“Laser* interface. Then the data are refined by other computers to provide a ”plan-
ner* interface to command the robot intoa certain pose. The “planner* and “’posi-
tion2d* interfaces were then utilised by the microtask to control the robot.

A more comprehensive picture of the software components used in the case of
Rolloottori is provided in Figure[6.8] In this case, the components on PC1 constitute
the Real-time layer. The aPlan and Mission layers are both embedded into the
AP components in PC3. Not all the connections are shown; every component is
connected to one of the Launcher and tcpHub components. The fourth PC, which
runs the GUIs, is not shown either.

6.2.4 Supporting Components

Additionally to the software directly related to the implementation of the Action-
Pool components, a certain amount of supporting software has to be implemented.
The most essential elements are briefly discussed below.

Inter-Process Communication

The software components developed for the ActionPool method, APs, ELs, and user
interfaces, required some form of communication channel with each other. This is
known as the inter-process communication (IPC) problem. Because the data sent
between the components were not data to or from a typical robot peripheral, the
middleware could not be utilised for that purpose. The author developed a simple
TCP/IP-based IPC protocol and a Python class to utilise it. That was used in the case
of MARY. With Rolloottori, the GIMnet [23]] was used as middleware and the IPC
protocol was changed to take advantage of the communication stack provided by the
GIMnet. The functioning of the Python class stayed identical for the applications
utilising it.

Replacement of Player Components

The Player provided a complete set of tools for the navigation of MARY. In the case
of Rolloottori, some of the functions required their own implementations.

The dynamic obstacle avoidance was performed by a module named PanicRol-
loottori. PanicRolloottori follows the reactive control scheme. The module builds
up an instantaneous local occupancy grid map around the robot in polar coordinates
on the basis of the readings from the ranging devices. It also creates a rotational
and linear velocity towards the target position from the robot’s current pose. At the
target position it rotates the robot to the target orientation. The program is based on
several states that are selected according to the local map and the recent history of
the states. The states scale the velocities towards the target pose or override them
completely. The states are based on the following guidelines.

84

Algorithm 1 Obstacle avoidance

1. If something gets near, slow down the linear velocity.
2. If something gets close, steer away and slow down.

3. If something gets very close, stop and turn until the way ahead is clear and
then go ahead a little.

4. If something gets very, very close, stop, go back a little, and turn more than
45 degrees.

With these reactive controls the robot can navigate safely but could get caught
into a local minima. To prevent this, a so-called panic reaction was added. It uses a
so-called stress level* that is raised if the robot has to perform obstacle avoidance
manoeuvres and lowered when there is free space around the robot. If the robot has
to manoeuvre around obstacles for too long, the panic state reacts and causes one of
the three panic reactions.

e Go ahead for five seconds.
e Turn a lot and go ahead for three seconds.
e Wait for ten seconds.

Since the robot is relatively small and sturdy, these panic reactions work quite
well. It can push some small objects, like chairs or doors, out of the way and react
to people obstructing its way. Naturally, these panic reactions would not be feasible
in some other environment or with some other robot. The state of the "stress* level
for panic is intialised.

The Action selection process in the AP evaluates the cost of reserving the Re-
source for each Action in the pool. The process can occur relatively often, so The
lines in the roadmaps were formed from connected nodes for path planning pur-
poses the process of calculating the cost should be fast. When the Resource is the
pose of the robot, the reservation cost is directly related to the length of the path. In
this way the cost calculation is reduced to path planning between the robot’s current
location and the locations of the Actions in the pool. The wave front algorithm is a
good path planning algorithm but it takes too long in a slightly more complex en-
vironment than that used with MARY. Thus a faster roadmap-based path planning
was implemented. The cost of the speed is the reason for creating the roadmap be-
fore hand. The roadmap used and outline of the walls of the experimental space as
a vector line map are illustrated in Figure [6.9] The algorithm descibed below was
used with the roadmap.

85

Algorithm 2 Path planning based on roadmap

1. See if there is already a free path for the direct line between the start and end
points.

2. Find the closest node in the roadmap with a free path from the start point.
3. Find the closest node in the roadmap with a free path to the end point.

4. Find the shortest path within connected roadmap nodes between the previ-
ously found nodes. The famous Dijkstra algorithm is used for that.

Figure 6.9: Line vector map of walls with overlay of road map: The lines in the road
map were formed from connected nodes for path planning purposes

User Interface

To use and test the method that was developed, some way to access the AP and
EL modules running in the system was required. For this purpose three GUI pro-
grams were developed, one for APs and Actions in them (Figure [6.10)), one for
Tasks in APs (Figure [6.11]), and one for ELs (Figure [6.12)). The programs are quite
rudimentary engineering interfaces, just to gain some access to the system’s inter-
nal operations, apart from the endless log files. The experiments described in the
next chapter were conducted by commanding the robot through these interfaces. Of
course, today’s technology allows much more intuitive and elegant ways to interact
with the robot, but the user interface side was demarcated out from this work. Fur-
thermore, a more complex user interface would also have made the evaluation of
the proposed method more complex.

86

(o Action Pool Viewer x

aP2
AP
Set the action pool to connect

Log of AP
status /

messages
List of Actions

Mobile_takeImage 5 153 A i
Mobile_takeInage 5 154 [n AP
Mobile_takeImage 5 155 /
Mobile_takeInage 5 156 "
Mobile_takeImage 5 157

To manually Mobiletakenage s 1= To manually
Mobile_takeImage 5 159

add one Mobile_takeImage s 150 remove one

. Mobile_takeImage 5 181 .

Action Hobile_takeInags 5 162 Action

Mobile_takeImage 5 163]

Hobile takeInage
Hobile takeInage
Hobile_takeInage
Hobile takeInage
Hobile takeInage

Jactions/WatchOutHumans . xml

AT |
166
167 /

158
] /|
Mobile_takelmage 5 164 Remove
Control of the - AP to
Add

AP \ :aipalufduunitkoodifeclipse/workspace/GIM/sre/seros/AP/actions/greetHuman.xml Browse. ’
: connect

(S RL R R}

>IN

Pause Play Stop Pool Manager P2 ninect

Figure 6.10: Screen shot of graphical user interface for management of Action pool
and Actions in it

Action Pool Task Viewer [x]

name taskID
./tasks/LookatPeople . xnl
. /tasks/GetWall Texture . xnl
. ftasks/GetWallTexture xnl

./tasks/GetWallTexture xnl .
“——___ List of Tasks

in AP

wewn

To manually
remove one
Task

X Play Itasks/KeepUrsSelfCharged. xm| 6 Remove AP to

To manua”y add o pace/GIM/sr Irselfcharged.xml Browse — connect
add one /’ Pl [?t’
Task

Control of the
Tasks in AP N

Figure 6.11: Screen shot of graphical user interface for management of Tasks in
Action pool

87

EL manager GUI [x]

List of currently
. name inftiator eid aid tid (deseription
ACtIVe ELS e ToHuman ELpy AP2 2310 18 (if human is next to rabot too long)

ooClose ELpy ~ APL 1123 58 (when human gets too close, threshold is 1/

To manually
remove one EL | *— ' — EL manager
\ " component to
connect
To manually start ELL
another EL and /’mum T
define the
-
threshold _
for triggering If EL is started
manually from
W this GUI, its

response would
be logged here

Figure 6.12: Screen shot of graphical user interface for management of Event Lis-

teners

88

Chapter 7

Verification Through Experiments

Several experiments were conducted to verify the soundness of the ActionPool
method and task knowledge representation, as well as to prove the applicability of
the ActionPool method. The research problem was described as service robot con-
trol in an environment shared with humans. The environment shared with humans,
i.e. our world, is way too complex to model reliably by simulation. Additionally,
the inherent problems caused by the robot’s internal structure, such as communica-
tion delays, fluctuating sensor data, misalignments in the robot’s construction, non-
linear and fluctuating actuator responses, etc., are very hard to model, and those
problems are exactly what the ActionPool method should be tested against. This is
why it was seen as necessary to conduct the experiments with real robots instead of
simulations.

In the following sections a set of experiments (Table are described. The
selection of the experiments was made so that requirements specified in Section[2.7]
could be tested. In the next chapter, Chapter[§] the results of these experiments are
presented from the point of view of system performance analysis. The experiments
were repeated and the experimental setup refined until each one of the experiments
could be performed without interruptions caused by its inadequate implementation.

Table 7.1: Experiments conducted with two robot platforms
MARY Rolloottori

e pose reservation e pose reservation

e find object and take picture e texture mapping a wall seg-
of human ment

e texture mapping a wall seg-
ment with exception

e texture mapping of wall seg-
ments

&9

Figure 7.1: A path created with wave front path planning algorithm implementation
included in Player

71 MARY

The first experiments were done with a mobile manipulator robot called MARY
[10]. The experiments were done in the System Robotics Laboratory at Tohoku
University, Sendai, Japan.

7.1.1 Pose reservation

MARY'’s base is used as a Resource in the pose reservation experiment. The pose
reservation equate context switch of the base Resource. In this experiment the lo-
calisation and navigation are done utilising Monte Carlo localisation [38]], wave
front path planning [41] (Figure [7.1)), and the vector field histogram (VFH) obsta-
cle avoidance [41] of the Player [9] package. The algorithms that were provided
required refining for the measurement range of the laser scanner that was used. The
experiment was done in two stages: simulation and a real-world experiment. The
simulation was done with complex and simple environment models (Figure [7.2).
Naturally, a model of the robot had to be created for the simulation. The simula-
tion was done utilising the Stage simulation engine with the Player package. The
real-world experiment was done in a simple and safe environment (Figure [7.3). The
obstacle avoidance was tested with a human occluding the planned path.

The experiments went well after the parameter tunning of the VFH algorithm
for the real robot, because the algorithm assumed the location of the laser scanner
to be in the middle of the robot when in fact it was just at the front edge of the robot.
The dynamic obstacle avoidance worked well too. All in all, the base Resource of
MARY was successfully abstracted for Action pool (AP) use.

90

&

_ \\:‘,\Ww. TS

Figure 7.2: Experiments with MARY in simulated environment and sensor response

Figure 7.3: Experimental setup for MARY in pose reservation experiment

91

PTU | ELs | PTU PTU

Human too k
close .
Human too
far

Update .
Texture

(G

D
®
Permanent D

Object

Figure 7.4: Graphical representation of the tasks in the experiment: “photograph
human” on the left and “search for an object” on the right. The Update Texture
Action also includes image taking.

7.1.2 Find object and take picture of human

In the next experiment, the PTU Resource was divided between two tasks: to “pho-
tograph a human” and to “search for an object” (Figure[7.4)). The experimental setup
is presented in Figure In the “photograph a human” task humans are detected
and if one is found, the PTU is directed toward the human and a picture is taken.
This picture is then stored as a texture for the human object in the world model. In
this task, EL is responsible for watching whether a human has entered the scenel, in
which case it would add a picture-taking Action to the AP of the PTU. Meanwhile,
a human-detecting perception agent is continuously updating the world state. Only
the reference to the object in the database is communicated between EL and Action.

The perception agent localised and recognised humans on the basis of the laser
scanner (Figure [7.6). It detects the legs from around knee height and uses the fol-
lowing heuristics to differentiate humans from each other and from objects similar
to humans:

Minimum and maximum leg diameter

Leg’s cross-section is roundish

A human has two legs

Legs can not be too far from each other

The human COG is between the legs

Legs can move

Usually there is a minimum distance between two humans
Humans have a maximum velocity

92

Figure 7.5: Experimental setup for MARY in pose reservation experiment

Leg candidates

Detected human

Laser scanner hits
\\\\

Figure 7.6: Snapshot of laser scan and human detection

93

Figure 7.7: Testing of trained object features for search function

The perception agent utilised a Bayesian filter to differentiate humans from ob-
jects and to estimate their motion. The algorithm proceeds as follows:

Algorithm 3 Human detection with laser scanner

1. Detect clusters from laser scanner hits

2. Estimate the pose of previously located clusters

3. Match and pair the detected clusters from previous clusters

4. Use the heuristics to evaluate whether the cluster is a human leg
5. Update the legs to previously found humans

6. Use the heuristics to find humans from leg candidates

7. Update the likelihood of the humans found actually being humans

In the“search for an object” task, the PTU is randomly turned in different direc-
tions and the object in the camera image is searched for using SIFT [113] feature
points (Figure[7.7). A reference set of feature points is acquired beforehand as fol-
lows. Reference pictures of the object are taken at different angles and distances.
For each picture the SIFT feature points are detected. Only feature points found in
all images are used as a reference.

The scale part of the feature point is used, together with the knowledge of the
distance to the object in the reference image. By averaging the ratio of the detected
feature points’ scale and the ones from the reference a fairly good estimate of the
distance from the camera could be achieved. The bearing to the object was calcu-
lated from the average of the feature points in the image plane and from the known

94

orientation of the PTU. From the distance and bearing to the object its location
could be estimated.

This “search for an object” task is, by nature, continuous or permanent, meaning
that the task is started from the beginning after its execution. It also has a lower
priority than the previously described task of “photographing humans”. So, when
the latter task is added to the AP, action selection is triggered, resulting in a prompt
reaction.

7.1.3 Results

The base Resource reservation experiments were successful. The experiments with
the*“photograph a human” and ““search for an object” tasks were also successful. To
illustrate this a snapshot of the world model was recorded before (Figure and
after (Figure running the tasks with a human passing by. The snapshot was
saved as an X3D file and viewed with an X3D browser. The textures used for other
objects than a human (or in this case a mannequin) were obtained manually.

Naturally, there were some challenges on the way, mainly caused by the camera
and the PTU. The camera turns relatively slowly and if the human is passing the
robot too close and along a perpendicular trajectory, the PTU may not be able to
keep up with the human. The output of the camera unit was an interlaced analogue
composite video captured with a USB video capture module. Thus, the images of
the moving target were distorted. Furthermore, the PTU was designed for surveil-
lance use and its position information had some latency which made it difficult to
synchronise with the human position retrieved from the laser scanner data. These
limitations are natural shortcomings of the non-ideal hardware. This shows that the
ActionPool method can be implemented and utilised up to the limitations of the
hardware and it can cope with them.

95

Figure 7.8: World model with empty experimental space and MARY

Figure 7.9: Projection of MARY’s world model after having found person and object

96

Figure 7.10: Experimental setup for Rolloottori

7.2 Rolloottori

Rolloottori is a classic design of a differential drive robot originally built for home
automation for the elderly [11]. Rolloottori is equipped with a Sony PTU and a
Hokuyo URG laser scanner. The experiments with Rolloottori involve two APs,
Resources of the robot’s base and PTU corresponding to control of the robot’s pose
and the direction of camera. The GIMnet software [23] is used for reactive level
control. Localisation and navigation are based on the branch and bound localisation
method of [114]], road-map path planning, and reactive multi-stage obstacle avoid-
ance inspired by the vector field histogram. The experimental setup is presented in
Figure [7.10] Below, we explain four of the experiments conducted with Rolloottori
in greater detail.

97

Figure 7.11: A sample of the occupancy grid map of the experiment environment used
for localisation, as viewed from above: The darker regions correspond to areas with
greater occupancy such that an area in black is completely occupied, gray is unkown,
and white corresponds to free areas. Includes initial data from CAD drawings and
data from laser scans.

7.2.1 Pose reservation

The experimental space is an office environment. Four maps are used for the exper-
iment. The first one is a vector based line map of the walls used for visualisation in
the graphical user interface (GUI). The map was obtained from the CAD drawings
of the experimental space. With the GUI, the robot’s current location and sensor
readings could be monitored. An other simplified line map of the walls, where the
number of lines is reduced, is used to obtain an obstacle-free path in the experimen-
tal space. That is combined with a road-map, also represented as a line map (Figure
[6.9) to do the path planning between two arbitrary positions. The last map is an oc-
cupancy grid map illustrated in Figure[7.11] and created from numerous laser scans
in the environment. The last map is used for localisation purposes only.

The experiment consists of a number of manually added “Random goto” Ac-
tions in the base AP of the robot. The “Random goto” Action selects one of ten
predefined free locations from the environment and considers that to be the target
location for the Action. Naturally, the Action did not have any aPlan for the target
location.

The environment was in regular use as an office during the experiments. In
practice that means that there were dynamic and static obstacles present and the
robot was even slightly “harassed” from time to time.

98

7.2.2 Texture Mapping of a Wall Segment

The structure of the experimental space, with its walls divided into segments, is
stored in the DB. To have a more accurate model of the experimental space, these
wall segments need to be texture mapped. Considering the distance between the
robot and the wall, a wall segment is too big to fit into one frame. Therefore,
multiple pictures from different locations are needed to texture map a wall segment.
Only the DB references of untextured wall segments are given to the task by the
user.

In this second experiment, the robot ac-
quires a texture for a single wall segment. This
demonstrates the usage of interdependent Re-

sources of the PTU and robot base (Figure PTU Base
'/.12). The first Action in the task calculates ‘

the total number of images required for tex- | | ™)
ture mapping the wall segment and the loca- C y ¢ y
tion and angle from which each image has to %‘\ Caloulate

be taken. Figure [7.13]illustrates the calcula- C : 5

tion process. Next, for each of these images
a picture-taking Action is added to the base’s
AP. The Action corresponding to the image
whose location is closest to the robot, basedon | [roremeemermens -
the shortest expected reservation time, is se- O

lected first (the expected execution time for the

aPlan is the same for all Actions). The robot | |...oeieinl. .
then reserves the base Resource by traversing

. . . . ()

to the picture-taking location. At that location, Update Image
. . . to DB

the aPlan adds a picture-taking Action to the : :

pool of the PTU and waits for its execution.
The PTU’s AP then reserves its Resource by @
directing the camera to the desired section of
the wall segment. This process is repeated un-
til all the images have been taken and then an
image-stitching Action is added to the base’s
pool. The resulting image is stored in the DB.
The whole process is shown in Figure

The target for a Resource to reserve in an
Action can be expressed in two ways: 1) as a
reference in the DB or ii) in absolute world coordinates. A reference to the robot
itself is used for Actions, such as image stitching, which require only processing
power and where the Resource is irrelevant.

Figure 7.12: Graphical repre-
sentation of “texture mapping a
wall segment” task

99

>

y

>Wa|| segment

\/ \/ \/ \/
L1 L2 L3 L4

Figure 7.13: lllustration of the algorithm to define image-taking parameters in “tex-
ture mapping of a wall segment” task: Above is the wall segment from the robot’s
perspective and below is the wall segment viewed from above. The size of the wall
segment (w,h) is acquired from the DB. The overlap parameters i and j, as well as the
robot’s distance from the wall d, are parameters for the algorithm inside the Action.
The outputs are the locations L1...LN and the centre points of the images to be taken
from those locations. The distortion caused by the perspective is compensated for in
the image-stitching process. The image calculation order is defined with the arrows.
In the case illustrated, three images, from the bottom up, are taken from four different
locations, making a total of 12 images to be taken for the texture map.

100

ELs

Human too
close

Human too
far

Figure 7.14: Graphical representation of “texture mapping a wall segment with ex-

ception” task

7.2.3 Texture Mapping of a Wall Segment With Exception

It is inevitable that while Rolloottori is moving autonomously in the laboratory,
avoiding objects and taking photographs of walls, the random people in the corridor
would also show up in the captured images, which would corrupt the final texture of
the mapped wall image. In order to avoid this, a human-detecting EL is introduced
to be activated during the picture-taking Action. This demonstrates the exception
handling and the gradual evolution of the task in the ActionPool method. The task

PTU

C)
D

A—C
:
S CC

is described graphically in Figure[7.14]

101

Calculate
Images

)

D
l}
—)

Update Image
to DB

PTU |° ELs | PTU

Human too
close

Beware of
Human

_| Human too
far

\ Human |«

stopped
—

Greet Human

(G

Permanent

Figure 7.15: Graphical representation of “greet humans” task

7.2.4 Texture Mapping of Wall Segments

The last experiment involves two different tasks: wall segment texture mapping and
greeting humans. The “greet humans” task (Figure is similar to the “pho-
tographing humans” task, with the difference that one more EL is added. This EL
checks whether the human also stops by the robot and, as a response, greets him
with an audible greeting. Now there are two tasks involved in tracking the human.
The behaviour of these functions can be tuned by task priorities and ELs’ thresholds.

The experiment demonstrates time-sharing and concurrent multi-tasking. The
PTU resource is divided between the two tasks mentioned. The base resource is
divided between several instances of the “texture mapping a wall segment with ex-
ception” tasks working on different wall segments. The concurrent multi-tasking
occurs when the base Resource is occupied by the wall texturing tasks and mean-
while the PTU Resource is used for the “greet humans” task.

7.2.5 Results

The first pose reservation task was successful. The second experiment to texture a
wall segment worked out well too. The path the robot took is shown in Figure[7.16]
The texture created by the task can be seen in Figure The effect and usage
of the textures can be seen in Figures and The results of the last two
experiments are presented as time steps (Figures and describing what is
happening inside the Action pools while the task or tasks progress.

102

Figure 7.16: Path of Rolloottori robot while texturing a wall segment: the robot
approaches from the right and stops at five locations to take images

Figure 7.17: A sample of a stitched wall segment texture: The stitch marks in the
image are due to the auto gain of the camera but it can still be used as a texture map.

103

Figure 7.18: An empty world model of the Rolloottori

Figure 7.19: Textured world model of the Rolloottori

104

Texture Mapping a Wall Segment With Exception

Figure illustrates a part of the execution of a “picture-taking” task as a human
approaches the robot. Figure illustrates the same task in a timing diagram. The
detailed steps taken in this process are explained below.

Step 1 The first Action calculates the locations and angles from which to take
images and adds Actions to do just that to the base AP.

Step 2 On the basis of the
Action selected from the base

AP, the robot is driven to the _BaseActionpool PTU Action pool _ Event Listeners
’ M u M 1

t t . Th Pl f A - Calculate poses Step 1
arget pose e aPlan 0“ c | ((catcuate posesy I I I b
tion in base AP adds a “Take — — — — 4 — — — — — — — — _—

Image” Action to the PTU AP. | |
Base AP awaits for the Action |
in PTU AP to be executed. !
Step 3 Action in PTU AP !
is selected which initiates "Hu- |
man too close” EL. A human |
approaching the robot triggers |
the EL to add a “Track Human” |
Action to the PTU AP. |
Step 4 Because of the ad- |
dition of the above Action, the |
“Take Image” Action is inter- |
rupted and the “Track Human”
Action is started. This Action

I
[| |
tracks the human with PTU and L

Step 2

Take Image 1 Take Image 1 Step 3

Take Image 2

Take Image 1

Take Image 2

I
Human Step 4
too far |

I

Step 5

Take Image 1

Take Image 2

| Step 6
I

initiates a “Human too far” EL. —==d----L---

This EL is triggered once the

human moves further away and Figure 7.20: Content of different Action pools

as a response, it removes the and Event Listeners during different stages of

“Track Human” Action. “Texture mapping a wall segment with excep-
Step 5 The “Take Image” tion” experiment: See the text for an explanation

Action is reselected and the of the steps. The time steps go from the top to

camera is directed for picture- the bottom.

taking. The aPlan then saves
the image for stitching. After the execution, the Action is removed from both the
PTU and base AP.

Step 6 The Base AP selects a new action for execution. If there are any Actions
left in the PTU AP, both the base and PTU APs’ Actions would be selected and
executed in parallel.

105

vmuom_mwx

Bunrem

paajes/” Buniem

pajos|es

Bunrem
N

mc:_m@\vA

Buiuasi] «

Buiusisi Au\

Buiusisii Au\

%me

m%zmx

v%ﬁx

mnmumx NQEmVA

zabewi axe]
Tabewl axel
sesod” erejnafed
dv esod
uewiny oel|

1 obewi ayel
dv Nid

Jejy 00} uewnH

9S0[0” 00} UewWNH

s13

sdals

i3}

“Texture mapping a wall segment with exception

experiment: see the text for an explanation of the steps. Time goes from left to right.

Figure 7.21: Timing diagram of

106

Texture Mapping of Wall Segments

Figure shows the steps taken by the robot when it “texture maps a wall seg-
ment” (which was shown in Figure and “greets a human” in a multi-tasking
fashion. As a result of this additional task, the following would be added to the
previously described steps:

Step 1 The “human greet-

ing” task initiates the “Human
too ClOSC” EL Base Action pool PTU Action pool Event Listeners

r_—1r— 1 —

) Step 3 TIle ’flewly’ ailded | I I o
human greeting” task’s “Hu- — — — — 4+ — — — — — — =—"—

man too close” EL is triggered | !
and as a response the “Human |

too far” and “Human stopped” e N S Nl
ELs are triggered. | Take Image 1

Step 4 ! Take Image 2

a) Once the human stops by !
the robot the “Human stopped”
EL adds the “Greet Human”
Action.

b) The “Greet Human” Ac-
tion is selected and executed.
When the human moves away,
the “Human too far” EL is
triggered and it itself initiates
the “Human too close” EL in
preparation for the next repeti-
tion of the above cycle.

Step 2

Step 3

I

Take Image 1
I
I

Step 4a

Take Image 2

Take Image 1 Step 4b

Take Image 2

Take Image 1 Step 5

Take Image 2

Step 6

Take Image 2

r—-—T7T - ~—~T T~ 7
I
I
I

o I
o c
o3
o o
n 3
o

s

Figure 7.22: Content of different Action Pools
and Event Listeners during different stages of
"Texture mapping of wall segments” experi-
ment: See the text for an explanation of the
steps. The time steps go from the top to the bot-
tom.

107

108

Chapter 8

Analysis

The objective evaluation of the performance level of a complex system, such as a
service robot, is an undervalued challenge. The performance can be evaluated from
many perspectives. The evaluation cannot be done simply on one scale of good or
bad performance. As mentioned earlier, there are many measurable performance
criteria that contradict each other, such as speed and reliability. For reliable evalua-
tion several aspects of the performance should be assessed.

The dynamic operating environment dictates that the experiments should be
done with a great number of repetitions to statistically cancel out the effects of
uncontrolled variables. Unfortunately, these complex systems are always challeng-
ing to implement. As a result of limited time and material resources, even some
of the variables that are controllable in theory are not so in practice. So even if
numerical results are extracted they would not only reflect the ability of the archi-
tecture to execute tasks in the environment but also the quality of the overall system
implementation.

One objective evaluation method for overall performance, within the border con-
ditions used in this work, is presented in robocup’s @home league [17/]. The eval-
uation in robocup is still mainly against other robots in the same competition and
thus it can not be conducted independently. Some of the evaluation was based on a
collection of subjective opinions of peers. Furthermore, the target for the evaluation
in @home is the complete robotic system and the features isolated for evaluation
are related to perception, skills in using the actuators and the user experience, and
not the control architecture as such.

For the evaluation, the perspective should be based on the problem setting de-
scribed in Section @ In the following Sections, the ActionPool method is first
analysed independently and then the analysis is extended to related work.

109

8.1 Non-Functional Requirement Analysis

One evaluation method used in the literature involves setting a list of features and
seeing how well the system fulfils those features. Unfortunately, the creation of
the feature set and its evaluation is unavoidably a subjective process. Regardless
of that, this kind of feature set-based analysis is one of the most commonly used
methods and it is partly used here too. The feature set derived from the features that
motivated this work and the features identified by others were combined in Section
[2.7]into Table [2.2] The proposed method is now analysed on the basis of this table.

Programmability (1)

Many different tasks were demonstrated in the experiments. The Tasks and Actions
were programmed using an XML-based language that was interpreted during the
execution. In practice the Actions from a Task that are not already in the pool can
be modified when the Task is otherwise running. The programming of the Tasks can
occur on many levels. uTasks, aPlans, Actions, ELs, and tPlans are all programmed
separately.

Adaptability (2)

The Action selection process assesses the internal and external state of the world.
Actions in the pool and active ELs at any instant in time describe the internal state.
The internal state is modified by the recent changes in the environment through ELs
changing the priorities of the Actions and the Actions themselves. The external
status is then coded to the relationship between the current state of the Resource
and the locations of the Actions. The selection of the Actions then uses the cost
function to find a suitable Action for the situation. The Action selection itself is
triggered by changes in the operating environment, i.e. changes in the Action setup.

Reactivity (3)

The pose reservation experiments showed that the real-time layer responded to the
quick dynamic changes that are typically present in an environment shared with
humans. The fastest safety reflexes of the system, for example obstacle avoidance,
are, and should be, coded into the real-time layer. For higher levels the “Find object
and take picture of human” and “Texture Mapping a Wall Segment” experiments
clearly demonstrated the Event Listener mechanism reacting to the changes in the
environment.

Predictability (4)

The predictability has two flavours; 1) can the future operation be predicted from
the experience of what happened last time in the same situation and 2) can the future
operation be predicted from the current operation, i.e. is the behaviour stable?

110

The former is affected by the Action selection process. A greedy selection pol-
icy creates more predictable behaviour than the roulette selection. In some cases, an
exploratory and unpredictable behaviour could be desired and then the cost function
could consider how many times the Action has been selected previously. The latter
flavour is affected by two mechanisms. First, the cost function (Equation 5.1) con-
siders the wind-down cost of the Action that is currently running, making it more
likely to be selected. Second, when an Action from a Task is selected, the priority
of the Task’s other Actions is considered as being slightly higher.

Priorities are one of the key factors in the cost function of the Action selection
process. The effect of the priorities is demonstrated in the “Texture Mapping of
Wall Segments” and the “Find object and take picture of human” experiments. In
the first one, the “Greet human” task had a higher priority than the “Texture map
wall segment” task. In the second one, the “Take picture of human” task had a
higher priority than the “Find object” task.

Robustness (5)

There are many mechanisms in the proposed algorithm to cope with the uncertain-
ties and they proved to work in the experiments. The world model has uncertainties
measures for each object it contains. The Action selection process considers the
current probabilities of the resource reservation and plan execution at each selec-
tion. Event Listeners react to changes in the probabilities of whatever condition
they are set to follow.

Pose reservation could be done easily, while the variation in the pose informa-
tion changed all the time during the experiments. The target for the object search
was always originally unknown. The human detection merged several observations,
improving the certainty that the object observed was in fact a human and that he
was at the correct estimated place. The “Texture map wall segment with exception”
Task demonstrated how the known effects of the environment can be compensated
in the Task itself.

In a more serious case, an Action or a whole Task can fail. Thus the Action
is considered not done and can be placed back into the pool or it can be removed
altogether. In such cases, a new Action from the remaining ones is simply selected
for execution. The whole Task can be removed together with its Actions from the
pool.

The failure of one complete Resource will not affect the other Resources di-
rectly, but they are still interdependent. If a remote Action is sent for execution
into a failed Resource, the sending and thus the sending Action in the original pool
would fail. As a natural effect, only the Tasks dependent on the failed Resource
would be obstructed and other Tasks would continue uninterrupted.

Extensibility (6)

The incremental extension of the Tasks was demonstrated in the experiments with
the “Texture map a wall segment” and “Texture map wall segment with exception”

111

Tasks. Similarly, the addition of new Tasks was demonstrated in the “Texture map-
ping of wall segments” experiment in Section The AP itself is not aware of
other pools but the Tasks are. There are no architectural restrictions on adding new
APs, even during the execution of Actions in the old ones. In fact, that is exactly
the case during the system start-up. First, the base pool is started and and tested and
later the PTU pool is initiated. In some testing scenarios, it is sufficient to simply
start the PTU pool.

Multi-tasking (7)

This is one of the main motivations for the development of ActionPool. Time-
sharing the ActionPool divides the limited resources of the robot between different
tasks. This was demonstrated in many experiments. The “Find object and take
picture of human” experiment used a single resource for two tasks simultaneously.
The “Texture Mapping of Wall Segments” experiment used two resources of the
robot between the concurrent multi-tasking numerous instances of the “Texture map
wall segment” task and a single instance of the “greet human” task.

Resource management (8)

Different Resources can be used simultaneously by one or different tasks. The case
of different tasks is an inherent feature of the ActionPool method, where each Re-
source has its own independent Action pool. Unfortunately, Resources are interde-
pendent and it means that the use of Resources should be synchronised many times.
Three methods were mentioned in Section [5.6.1] for the case of a single task us-
ing different Resources at the same time. If there are different tasks there are two
options: 1) the Action for the Resource is independent of the state of the other Re-
sources and can be executed independently and 2) the Action is dependent on the
state of another Resource and thus the Resource(s) that is higher in the dependency
tree has to be reserved first, despite not being explicitly used. So, in other words,
the second case reduces to a single task case.

The “Texture Mapping a Wall Segment with exception” experiment demon-
strated the single task case, because both the pose and the PTU direction were
critical for the success of the task. The “Texture Mapping of Wall Segments” exper-
iment demonstrated the case of different tasks, while the “Greet human” task used
only the PTU Resource independently of the pose of the robot. The only critical
measure for the task was the distance of the human from the robot.

Attention control (9)

Separating the control of the perception was one of the original motivations for
creating the ELs.

Other computing units could be used to separate the slow and heavy perception
functions but the Task flow should stay responsive and be controlled by its own
computing unit. The information that ELs are observing is relevant to the situation

112

and thus controlling the robot’s attention. There is also a measure to adjust the
observation frequency of each EL in order to optimise the computing needs.

As will be mentioned in Chapter [9] having the parallel ELs calculate the same
observations from the same data was a very ineflicient method and thus the percep-
tion agents were created to improve the efficiency of the technique. The perception
agents now operate independently and future work will deal with controlling their
execution frequency on the basis of the active ELs and again gaining situation-aware
attention control and the more efficient use of computing resources.

World model (10)

When the complexity of the tasks grows, the need to remember things about the task
and the environment increases accordingly. If the task is considered to be a com-
mand or a request sentence in a linguistic sense, both the predicate and the subject
should be known and remembered. The tasks themselves could be considered as the
predicates and their parameters as subjects. In the proposed method, subjects are
objects in the world model. The world model is also utilised in the consideration of
the next Action. All this has been demonstrated in the experiments. For example,
the “greet humans” task has an EL that reacts to the change of human objects in
the world model. Furthermore, the “texture map a wall segment” task calculates the
poses from which to take the pictures on the basis of the world model, before the
direct perception of the wall segment.

Sensory information (11)

The perception agents utilise the sensory information to perceive information from
the environment. They compress the sensory information into observations about
the environment and store it into the world model database. In the real-time layer
of the system, the sensory information is utilised directly by the reactive control
modules. Typically, no higher-level observations are made in those cases. The
distributed simultaneous use of the sensory information was provided by the Player
[9] or GIMnet [23]] middleware.

Interleaving planning and execution (12)

The planning, as in the sense of creating a plan for the task, is currently done offline
by the user, so the expensive planning operation does not hinder the Task execution.
On the other hand, the Action selection process can be considered as some kind
of short-term inter-task planning based on the current situation. Action selection
is, though, a fast operation compared to the execution time of the Action itself.
Furthermore, the system is distributed and the Real-time layer and aPlan layer are
responsible for the execution of the aPlan. Typically, they are isolated on their
own processor to guarantee responsiveness. The distribution makes planning and
execution parallel processes. If the plan or Action for some particular task is not
ready by the time the Action is selected, an Action of some other Task can be

113

selected instead. If the computing power is available, a slightly more far-sighted
online planning could be done between the Action selections. That possibility is
elaborated further in the future work section in the next chapter.

Modularity (13)

The modularity helps in the development process and is also a strong motivator
in the proposed method. First, the same ActionPool method was implemented in
two different robots, so the whole method can be considered as a module. Second,
the architecture was divided into modular layers communicating with each other.
The whole layer is interchangeable if the communication interface is kept constant.
Third, an AP is a module communicating with other APs and EL modules. Fourth,
the perception agents are independent modules providing information through the
abstract shared memory, i.e. the database of the world model. Fifth, Tasks are
independent modules of software developed independently. Tasks are divided into
modules by the Actions and ELs related to them. The Actions inside a pool are
independent modules. The modularity that is used and the distribution of the control
are illustrated in Figures[6.8][6.7}[6.5] [6.6]and [5.2]

The modularity encourages code reusability. A new system or functions could
be created simply by rearranging the components. Two “human too close” ELs
from two different tasks were running simultaneously in the “texture map wall seg-
ments” experiment. They were just two instances of the same EL but with different
thresholds. At a later time instant in the experiment, there were two ELs, “human
too far” and “human stopped”, that were active at the same time. They utilised not
only the same algorithm and program code for the detection of a human but the very
same instance in the form of a perception agent.

Platform independence (14)

Platform independence has been designed to take place on discrete steps. The steps
are between layers (Figure [6.5)). If the robots are copies of each other, the whole
Task and everything related to it can be directly and completely transferred. The
transfer would be on the real-time layer level. For robots that are structurally close
to each other, i.e. similar in size, mobility, sensor placement etc., the Task can
be transferred from the aPlan layer. The aPlans could be the same but the uTask
(Figure[6.6) would need a robot-specific implementation. uTasks abstract away the
differences between the middleware and other implementation details. If the robots
are the same in terms of category but differ somewhat in size, sensor placement,
etc, the same aPlans are not most probably applicable any more. Then, the Task can
be transferred from the mission layer, of course with the prerequisite that the same
Actions are implemented for both robots.

The perception agents are more independent of the overall construction of the
robot, as long as the sensor required by the agent can be found. Thanks to the mid-
dleware the exactly same implementation could be used in several different robots.

114

Naturally, the implementation should be, for example, sufficiently advanced to con-
sider the placement of the sensor in the robot which is something that is provided
by the middleware.

The platform independence of the ActionPool method has been demonstrated by
utilising two different robots. The Tasks for the PTU pool could be transferred to the
plan layer and the Tasks for the pose pool could be transferred to the mission layer.
The transferred Tasks are the rather simple “random walk™ Tasks. Some plans for
further investigation regarding Task transfer are provided in the future work section.

Independent representation (15)

Task independence is the cornerstone of the proposed method. It is the fundamental
assumption. Task independence can have two levels: 1) independent development
and 2) independent execution. Independent execution translates into abilities to
multi-task and to start and stop Tasks arbitrarily.

Independent development is very important because it allows the integration
of efforts from several developers. In practice, this means modularity, discussed
previously, and inter-task interaction, handled by the AP and the abstraction level
of the Action. The multi-tasking has also been discussed previously. As described
previously, they have also been tested..

The ability to start and stop the Tasks arbitrarily was not explicitly tested, al-
though every time experiments were performed, the robot started in an idle state
and received the first task at an arbitrary time instant. The subsequent tasks were
added by the user at unspecified time instants, without any impact on the perfor-
mance of the system. During the course of the testing and developing of different
tasks, tasks were added and removed at will. This was done through the simple GUI
presented in Figure [6.10}

The proposed architecture was purpose-built for this kind of use. When a Task
is added, its first Actions are just added to the pool. When a Task is removed, its
Actions are removed from the pool. If the Action under execution belongs to a
removed Task, it is simply interrupted and a new Action from the remaining Tasks
is selected.

Execution control (16)

This feature has to be built into the lowest functional element possible in order
to provide a prompt response. All uTasks have methods for stopping, pausing,
and continuing them selves. In the case of a uTask that takes a very short time
to completely execute, the implementation of these methods may be omitted by
the creator. In the higher-level components, aPlan, Action, and AP, these same
methods and respective states are also implemented. The implementation for all
higher-level components is embedded into the execution system. This was tested
many times while the experiments were being performed and the whole system
developed, simply because of its practicality. There was no separate experiment
that was designed particularly for this feature.

115

Performance analysis (17)

As mentioned before, there was no specific experiment just for this feature. To
create this feature an AP has a query and an event-sending mechanism. The current
state of the pool could be queried and the answer would include the Tasks that had
been executed, Actions in the pool, and the Action currently under execution. For
monitoring purposes, a simple computer GUI element was created (Figure [6.10).
A utility program to connect to an AP instance and log its events in a file was also
created, along with logging of the messages sent by the AP process itself, even
though no further detailed analysis of the logs was performed.

A similar arrangement was made with the ELs. ELs are managed by one process
from which the current ELs could be queried and ELs manually manipulated. A
simple GUI program (Figure [6.12) then connects to the EL manager and presents
its information.

8.2 Analysis Compared to Other Works

There have been many architectures constructed to control service robots over the
years [86, 21} 98, [115]]. There has also been a number of languages defined to de-
scribe the tasks performed by service robots as well [13} 116, 59, 61, 92]. They
all try to achieve at least partly the same objectives. So it is not surprising to find
similar functional elements amongst them. Table [C]in appendices illustrates some
connections between these different approaches. Even though there are similar ele-
ments, their combination and co-operation in the ActionPool method is unique.

Table [C indirectly compares the performance of functionalities of the different
approaches in the literature. The selected terms or elements in the table also reflect
functions in the system. Not all the functionalities in different approaches have an
exact or identifiable correspondences to the elements in ActionPool and thus are
not listed in the table. Furthermore, some missing functions can be compensated
for by other functions. Still, the table gives a general picture of how the ActionPool
corresponds to the related work.

8.2.1 Comparison With Some Plan Representation Methods

The proposed method has a unique ability to mix the Tasks dynamically. The two
tasks “greet humans” and “texture map wall segment” are described with a state
diagram in Figure[8.1] The same figure shows a combination of the two tasks in one
state diagram. The combination had to be manually done to ensure the correct inter-
action between the tasks, while the proposed methods naturally fold them together
as if they were the same task. Some automation for the merging of state diagrams
can be carried out by utilising specific states that are common in both tasks [87], but
that is something that has to be explicitly considered during the development phase.

It is also worth noting that the state diagram cannot express, for example, “Take
any of these 16 photos in the order you see best.” With a state diagram, you would

116

Human
comes close

Human
goes away

Human Next

comes close pose
- - T~ - =~ -
-k \ - = (\- ‘(= .
H I Track | Take | Calc.
man \humei]l Human \/mage / Image \poseil_ \
- _goes away > taken _¥ No@
--- - - poses
Human
goes away

HSL:;ne;n Human Next
Y comes close pose
- - = - -

around ~ < ~ -
% v~ LN
{ Track

\humanl
_ Human

~ A s
oesaway 4 taken _9 N°@
g y _ ~ =% - poses

—_— -

~

Figure 8.1: State diagrams describing two tasks and their merged task

have to iterate through every photo individually or you would have to programme
the algorithms to asses the situation in each individual task.

The situation is not very different with Petri-nets. They are more difficult to
combine because of the non-unique state and tighter relations of the states and tran-
sitions, i.e. the transition can occur only from and to a specific state. With functional
representation it would be even more difficult. There, by definition, the represen-
tation does not limit the state of the robot in any way and thus there could be race
conditions between the tasks.

Procedural and trajectory-based representations more exactly dictate what has
to be done. They also have a shortcoming when it comes to task independence. The
representations do not convey any information about the abstract division of the
states, shattering the possibility of finding safe points for the context switch. Ad-
ditionally, the complexity of the general expressiveness causes considerable over-
heads.

8.2.2 Evaluation with Task Execution Principles

Seemingly the closest relatives to the ActionPool method are different derivatives
of the BDI paradigm [117], such as PRS [65, 30]. The fundamental difference
is that the proposed method survives without explicit notations for reasoning in
task’s metadata, i.e. using the goals to choose possible plans to use. Many other
knowledge-based systems have the same goal-oriented approach.

117

The knowledge about the task in behaviour-based systems is coded in the in-
teractions of the behaviours. Behaviour networks are more or less fixed and can
be seen as a form of situated automaton. Even if they work well for a fixed do-
main, it is still difficult to dynamically change the objectives or tasks of the robot
in a multi-tasking fashion. The reactive paradigm faces the same challenges as be-
haviour networks in dynamic task control.

Hybrid and deliberative systems generally fall short in their requirement to do in
situ planning. They can accommodate new tasks and remove others by replanning
[118] but it is a slow and difficult operation in the dynamic and open environment.

The task execution in the proposed method is quite an involved process. There
are numerous heterogeneous components that interact in the complicated system.
This can be seen as a cost of having an abstract and compact representation of the
task. It is also notable that there is no one single do-it-all solution for the service
robot control and several approaches have to be used. For example, the implementa-
tion of the proposed method uses the reactive control paradigm and, in the real-time
layer, a procedural plan representation in the aPlan layer and an augmented dis-
tributed plan representation to reserve the resources.

8.2.3 Related Work

A related and well studied problem is the so-called dynamic job-shop [119, 120].
It involves a shop with a selection of production machines and jobs that have to be
processed in a specific order on those machines. In the original job-shop problem,
all the jobs are initiated at the same time instant. In the dynamic version, this
border condition is relaxed. Since there are more requests from the jobs to use the
machines than there are machines available in the shop, some non-trivial scheduling
is required for optimal throughput. The biggest difference compared to this work is
in the job itself. In this work, the task (job) can have alternative solutions and one
phase of the task may fail or take an arbitrarily long time to complete. These times
are typically fixed in the job-shop scenarios. Additionally, the resources (machines)
are interdependent in this work while in the job-shop they are independent.

118

Chapter 9

Conclusions and Discussion

9.1 Conclusions

In this work, the ActionPool method of simultaneous multi-tasking for service
robots was created. That also incorporates a novel way of representing task knowl-
edge. The method is based on the division of the robot into interdependent Re-
sources and defining the Tasks as a sequence of atomic Actions on the Resource.
The Actions are scheduled to the Resource through the Action pool mechanism.
The ActionPool method could be classified as following the Belief, Desire and In-
tention (BDI) paradigm, even though that was not the source of inspiration. The
original inspiration for this work lay in the real problems faced in the execution of
a task with a service robot.

Six experiments utilising two different robots were conducted to verify the Ac-
tionPool method. Other approaches rely heavily on simulations or try to be overly
general solutions for a reactive real-time agent. By focusing on the service robot
domain and real robots, the author believes that he has found a novel control method
for the mission-level control of a service robot. It takes into account the slowness
and computational load of the perception process and restrictions of the robot plat-
form in a dynamic and open environment. Common hurdles in the utilisation of
the system, such as the independent development of different tasks and perception
algorithms, are also addressed.

The task knowledge representation is based on the interactions of Event Listen-
ers (ELs) and Actions. The sequence of Actions in the Task plan (tPlan) corresponds
to the classical notation of a plan. The sequence of Actions mainly represents the
expected or typical execution of the Task. Each Action carries some information
about its execution statistics, Resource usage and importance. This helps in the
classification of the Actions in the Action pool (AP). It could also easily be utilised
in looking further at the scheduling and classification of Tasks by summing the
statistics of the Actions within them. The representation includes the notation of
ELs. The EL carries the knowledge of exceptions: a) what an exception is and b)
what the response to that is. The knowledge needed to choose the right Task for
execution, i.e. the purpose of the Task, is currently only in human-readable form as

119

documentation included in the Task. The representation of the Task with Actions
and ELs can be considered a non-deterministic programming language, where the
exact course of execution is defined only at runtime.

9.2 Discussion

The task planning in the proposed architecture was intentionally left for the human
operator. The proposed architecture merely reacts to the environment according to
the Tasks. It simply defines and follows certain policies in order to deduce what to
do next, i.e. schedules. It does not have any higher intentions or urge to motivate
the Action selection and it does not have to deduce what to do in order to fulfil those
intentions. This is a very fundamental feature and makes a difference compared to
deliberative and hybrid control. This way, the ActionPool has some resemblance to
the reactive control but the selection of Actions in the pool is constantly changing
and the response to the same stimulus also changes over time. Furthermore, Actions
are decoupled, and the selection of Action does not occur in a continuous process
as is the case in reactive control. Thus, this work does not exactly fit under the
umbrella of the reactive control scheme, either.

This does not mean that the system should have no planning at all. The system
is designed simply to rely on planning as little as possible. Currently, the hard job
of planning is left for humans. The proposed system tries to make this planning
job easier by abstracting the task design to Actions and handling the co-operation
of different Tasks. With the technology advancement, there is no reason why an
automated planner could not do the planning part. In fact, ActionPool enables con-
tinuous planning to take place.

As mentioned in Chapter 8, there are numerous methods in the literature to
control service robots. In the author’s opinion, there is no need to highlight one
over another. Nature has shown on several occasions that diversity is essential for
survival in a highly dynamic and uncontrolled environment. So we would probably
be better off with a heterogeneous base of control methods for service robots, even
if that would make the job of task programmers more difficult.

The work in the literature has been surprisingly lightly motivated (declaration
and reasoning of the goals for the presented methods) and it is hoped that this work
will encourage other researchers to pay more attention to this issue. Another im-
pact of this work on robotics research is that it provides a different perspective to a
common problem. The focus in plan representation has been mainly either on the
whole architecture and component interaction or on automated planning. The actual
implementation and restrictions of the current technology should be incorporated.

Many of the beneficial features in the ActionPool method are derived from the
fact that the Actions are isolated from each other. An Action does not know which
other Actions are done before or after it. This gives us the freedom to choose any
one of the Actions in the pool but that does not come without a cost. There can be
undesirable side-effects of different Tasks interacting in the same environment and
acting against each other. Furthermore, an Action is assigned to one Task only, so

120

Actions that would be useful for more than one task can not be combined into one
or prioritised to be more important.

Likewise, the way the Tasks are presented also has its side-effects. Goal-based
planning or behavioural systems can, as an inbuilt feature, utilise favourable changes
in the environment or react to changes in the environment that invalidate the effect
of past operations. In the presented system, this functionality has to be explicitly
created with ELs and condition checks in aPlans.

In the course of this work, it became more and more evident that perception is a
field of technology which is the furthest away from its counterpart in nature (includ-
ing the sensors and the related signal processing). Perception needs to be developed
drastically to enable truly useful functions to be created for service robots.

This thesis work started from studying the problem of a service robot learning
to perform a task. Learning can be reduced to two problems: 1) the classifica-
tion problem and 2) the parameter or function estimation problem. Over the years,
many good algorithms for solving these two problems have been developed. The
real problem in service robotics task learning is how to or where to apply these
algorithms. Another feature of the learning algorithms is their requirement for nu-
merous iterations to converge to the right solution. Furthermore, as the problem
becomes more complex, the number of required iterations increases exponentially.

These challenges motivated the creation of several layers and isolation of the
different algorithms into ELs and perception agents in the ActionPool method. This
provided small-sized units to apply the learning algorithms to. Moreover, the mod-
ularisation helps to gather necessary iterations for the learning algorithms as the
same module can be used in different Tasks.

The Action sequencing in Task plan (tPaln) has not been as comprehensively
thought out as the other parts of the proposed architecture. It can be seen as a sep-
arate part from the main method consisting of APs, Actions and ELs. The tPlan
sequencing could be changed into the higher-level planner that decides which Ac-
tions are worth pursuing. This is similar to the PRS approach. Alternatively, a
completely different sequencing mechanism, such as Petri-net, could be utilised. A
prominent feature of the ActionPool method is its ability to manage Resources and
Task interoperability

9.3 Future work

Perception demands a lot of calculation resources from the robot control and it
is easy to exhaust any processing capacity with signal processing functions. This
is why some scheduling is also needed for the activation of the perception agent.
Some perception processes need some minimum amount of processing power to be
applicable at all. For example, the detection of movement from a video feed needs
to process two consecutive frames and provide the result before the information gets
outdated. Thus, we can not just slow down the not-so-urgent functions by assigning
a low priority to their execution process and let the operating system of the computer
do the heavy lifting of scheduling. It would not guarantee that consecutive frames

121

would be captured or that the dynamic information would be au-courant. Thus,
when considering more complex and a greater quantity of tasks, the attention of a
perception needs to be managed better for the situation at hand.

Currently, the Action selection process does not consider the interruption of an
Action being executed very gracefully. The wind-down cost of interrupting an Ac-
tion that is in the process of being executed is considered fixed. Of course, that is
not the case in the real world, especially if the Action execution gets to the aPlan
execution phase. In the implementation, there is only one function call telling the
Action being executed that it is time to stop. The wind-down process has to be im-
plemented into one function that can not be interrupted. Thus, a lengthy wind-down
process, such as putting down a glass of water that the manipulator arm is holding,
could block the operation of that particular Resource for that time. There should
be a mechanism to even skip the wind-down process if the reason for aborting the
Action is sufficiently urgent.

It is possible to estimate the wind down cost easily from the expected execu-
tion time and the time already used. Alternatively, the Action could maintain its
own wind-down cost value dynamically through the execution. That would be very
bothersome for the programmer, because it would be part of the design of every
aPlan. Perhaps the wind-down process could be an Action by itself, added to the
AP by an EL responding to the event of an aborted Action.

At present, some of the knowledge about the Actions and ELs is only in human-
readable form in its XML definitions. If a more computer-readable form for that
could be developed, it would not only help the possible automated planning process
but would also help the reactive behaviour of the system as well. An attempt could
be made to handle an unhandeled exception in the execution process by an EL used
in some other Action. This could be done by matching the EL’s preconditions with
the exception. By evaluating whether the Action could be finished after the cor-
rective Actions from the EL of the other Action, a partly automated error recovery
system or some learning could be developed.

As mentioned in earlier chapters, some more planning or slightly more far-
reaching Action scheduling could be done. Any planning would require the es-
timation of what is going to happen in the future on the basis of the actions the
system takes. In the Action-Pool method, a computationally low-cost estimation
could simply be the location of the Action. The location could be used as a predic-
tion of where the Resource would be after the Action and the estimated execution
time would give an idea of when that would be. Then, by making a hypothetical
Action selection at the new location, an estimate for the value of the best second
Action could be derived. That, in turn, could be used to weight the values of the
current Action selection. The process could continue deeper into the planning hori-
zon, if the computing resources are available. One possibility is simply to initiate
the Action selection before the running Action has been completed on the basis
of the estimate of the final location of the Action. If the estimate was too far off,
of course, a new selection could be made. Currently, the Action selection takes a
fraction of a second (with tens of Actions on a single 3.00 GHz processor). But if

122

the number of Actions in the pool is very large, the time would be longer and this
preemptive Action selection would be justified.

Currently, this research is funded by the Finnish Centre of Excellence in Generic
Intelligent Machines Research (GIM). One of the main objectives of the GIM is
the so-called Future Worksite concept, where intelligent machines try to take some
menial and arduous work off the shoulders of the human workers. The worksite
could be, for example, a construction site of a road or building, mining, tilling or
clearing. The proposed method could be used to control the tasks of a machine in
such a worksite.

123

124

Bibliography

[1]

(2]

(3]

[6]

K. Fogarty, “Korea puts usd750m in robotics, aims to lead market by 2018,”
2009, accessed 29.4.2010. [Online]. Available: http://www.roboticstrends.
com/service_robotics/article/korea_to_put_750m_in_robotics_industry

International Federation of Robotics IFR, “Executive summary,” 2009,
accessed 20.5.2010. [Online]. Available: http://www.ifr.org/uploads/media/
2009_executive_summary_01.pdf

M. Williams, ‘“Panasonic has big plans for robots,” Oct 2009, accessed
29.4.2010. [Online]. Available: http://www.pcworld.com/article/173788/
panasonic_has_big_plans_for_robots.html

C. Urmson, J. Anhalt, H. Bae, J. D. Bagnell, C. Baker, R. E. Bittner,
T. Brown, M. N. Clark, M. Darms, D. Demitrish, J. Dolan, D. Dug-
gins, D. Ferguson, T. Galatali, C. M. Geyer, M. Gittleman, S. Harbaugh,
M. Hebert, T. Howard, S. Kolski, M. Likhachev, B. Litkouhi, A. Kelly,
M. McNaughton, N. Miller, J. Nickolaou, K. Peterson, B. Pilnick, R. Ra-
jkumar, P. Rybski, V. Sadekar, B. Salesky, Y.-W. Seo, S. Singh, J. M. Snider,
J. C. Struble, A. T. Stentz, M. Taylor, W. R. L. Whittaker, Z. Wolkowicki,
W. Zhang, and J. Ziglar, “Autonomous driving in urban environments: Boss
and the urban challenge,” Journal of Field Robotics Special Issue on the 2007
DARPA Urban Challenge, Part I, vol. 25, no. 8, pp. 425-466, June 2008.

Telemedicine & Advanced Technology Research Center, TATRC, “Home
page, medical robotics,” 2009, accessed 15.6.2010. [Online]. Available:
http://www.tatrc.org/?p=ports/robotics/home

U. Nehmzow and K. Walker, “Quantative description of robot-environment
interaction using chaos theory,” Robotics and Autonomous Systems, vol. 53,
pp. 177-193, 2005.

S. Terho, M. Heikkild, T. Taipalus, J. Saarinen, and A. Halme, “A framework
for graphical programming of skilled tasks with service robots,” in Proc. of
The 9th Int. Conf. on Climbing and Walking Robots, Brussels, 2006, p. 8.

A. Halme, 1. Leppidnen, J. Suomela, S. Ylonen, and I. Kettunen, “Work-
partner: Interactive human-like service robot for outdoor applications,” The

125

http://www.roboticstrends.com/service_robotics/article/korea_to_put_750m_in_robotics_industry
http://www.roboticstrends.com/service_robotics/article/korea_to_put_750m_in_robotics_industry
http://www.ifr.org/uploads/media/2009_executive_summary_01.pdf
http://www.ifr.org/uploads/media/2009_executive_summary_01.pdf
http://www.pcworld.com/ article/173788/panasonic_has_big_plans_for_robots.html
http://www.pcworld.com/ article/173788/panasonic_has_big_plans_for_robots.html
http://www.tatrc.org/?p=ports/robotics/home

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

International Journal of Robotics Research, vol. 22, no. 7-8, pp. 627-640,
2003. [Online]. Available: http://www.ijrr.org

T. H. Collett, B. A. MacDonald, and B. P. Gerkey, “Player 2.0: Toward a
practical robot programming framework,” in Proc. Australasian Conf. on
Robotics and Automation (ACRA 2005), Wiirzburg, Germany, 2005, p. 8.

T. Taipalus and K. Kosuge, “Development of service robot for fetching ob-
jects in home environment,” in Proc. IEEE Int. Symposium on Computational
Intelligence in Robotics and Automation (CIRA2005), Espoo, Finland, 2005,
p. 6.

P. Harmo, T. Taipalus, J. Knuuttila, J. Vallet, and A. Halme, “Needs and so-
lutions - home automation and service robots for the elderly and disabled,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems 2005, 2005, p. 6, iIEEE/RS]J International Conference on Intelli-
gent Robots and Systems, Edmonton Canada 2005.

M. Heikkild, “Configuration of skilled tasks for execution in multipurpose
and collaborative service robots,” Ph.D. dissertation, Helsinki University of
Technology, Espoo, Finland, 2009.

I. Kauppi, “Intermediate language for mobile robots: A link between the
high-level planner and low-level services in robots,” Ph.D. dissertation,
Helsinki University of Technology, 2003.

T. Taipalus and A. Halme, “An action pool architecture for multi-tasking ser-
vice robots with interdependent resources,” in Proceedings of the Sth IEEE
international symposium on computational intelligence in robotics and au-
tomation 2009, 2009, pp. 228-233, the 8th IEEE international symposium on
computational intelligence in robotics and automation, Daejeon, Korea, Dec
15-18, 2009.

G. Bannock, R. Baxter, and R. Rees, The Penguin Dictionary of Economics,
3rd ed. Middlesex, Great Britain: Penguin Books, 1984.

Japanese Standards Association, Service robot - Vocabulary, JIS B
0187:2005 ed., Japan Robot Association, 2005.

RoboCup@Home Rules & Requlations, RoboCup@Home league, 2010,
69M, Accessed 29.4.2010. [Online]. Available: http://www.robocupathome.
org/documents/rulebook2010.pdf

L. Takayama, W. Ju, and C. Nass, “Beyond dirty, dangerous and dull: what
everyday people think robots should do,” in HRI ’08: Proceedings of the
3rd ACM/IEEE international conference on Human robot interaction. New
York, NY, USA: ACM, 2008, pp. 25-32.

126

http://www.ijrr.org
http://www.robocupathome.org/documents/rulebook2010.pdf
http://www.robocupathome.org/documents/rulebook2010.pdf

[19] E. Gat, R. P. Bonnasso, R. Murphy, and A. Press, “On three-layer architec-
tures,” in Artificial Intelligence and Mobile Robots. AAAI Press, 1998, pp.
195-210.

[20] G. McCain, H., R. Lumia, and JS Albus, “NASA/NBS standard refer-
ence model for telerobot control system architecture (NASREM),” Technical
Note, 1989.

[21] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das, “The
CLARALy architecture for robotic autonomy,” in 2001 IEEE Aerospace Con-
ference, Big Sky, MT, 2001, pp. 121-132.

[22] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K. Yoon, “Rt-
component object model in rt-middleware- distributed component middle-
ware for rt (robot technology),” in Proc. IEEE Int. Symposium on Computa-
tional Intelligence in Robotics and Automation (CIRA2005), Espoo, Finland,
2005.

[23] J. Saarinen, A. Maula, R. Nissinen, H. Kukkonen, J. Suomela, and A. Halme,
“Gimnet - infrastructure for distributed control of generic intelligent ma-
chines,” in Proc. The 13th IASTED Int. Conf. on Robotics and Applications
Telematics, Espoo, Finland, 2007.

[24] B. Gates, “A robot in every home,” Scientific American Magazine, no. 1, p. 8,
January 2007.

[25] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “Ros: an open-source robot operating system,” in /[EEE Inter-
national Conference on Robotics and Automation, 2009, open-Source Soft-
ware workshop.

[26] S.Russell and P. Norvig, Artificial Intelligence: A Modern Approach (Second
Edition). Prentice Hall, 2003.

[27] D. N. Malik Ghallab and P. Traverso, Automated Planning Theory and Prac-
tice. Morgan Kaufmann publishers / Elsevier, 2004.

[28] M.J. Matarié, The Robotics Primer. Cambridge, MA, USA: The MIT Press,
2007.

[29] L. Chung and J. do Prado Leite, “On non-functional requirements in software
engineering,” in Conceptual Modeling: Foundations and Applications, ser.
Lecture Notes in Computer Science, A. Borgida, V. Chaudhri, P. Giorgini,
and E. Yu, Eds. Springer Berlin / Heidelberg, 2009, vol. 5600, pp. 363—
379.

[30] F. Ingrand, S. Lacroix, S. Lemai-Chenevier, and F. Py, “Decisional autonomy
of planetary rovers: Research articles,” J. Field Robot., vol. 24, no. 7, pp.
559-580, 2007.

127

[31] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrad, “An architec-
ture for autonomy,” The International Journal of Robotics Research, vol. 17,
no. 4, pp. 315-337, 1998.

[32] P. Maes, “How to do the right thing,” Connection Science Journal, vol. 1, pp.
291-323, 1989.

[33] T.J. Laffey, P. A. Cox, J. L. Schmidt, S. M. Kao, and J. Y. Read, “Real-time
knowledge-based systems,” AI Mag., vol. 9, no. 1, pp. 2745, 1987.

[34] R. Brooks, “A robust layered control system for a mobile robot,” IEEE Jour-
nal of Robotics and Automation, vol. 2, no. 1-3, pp. 14-23, 1986.

[35] M. S. Atkin, G. W. King, D. L. Westbrook, B. Heeringa, and P. R. Cohen,
“Hierarchical agent control: a framework for defining agent behavior,” in

Proc. of the fifth international conference on Autonomous agents, Montreal,
Quebec, Canada, 2001, pp. 425-432.

[36] E. Drumwright and V. Ng-Thow-Hing, “The task matrix: An extensible
framework for creating versatile humanoid robots,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation, Orlando, FL, USA, 2006.

[37] C. Parlitz, W. Baum, U. Reiser, and M. Hégele, Human Interface and the
Management of Information. Methods, Techniques and Tools in Information
Design. Springer Berlin / Heidelberg, 2007.

[38] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge, MA,
USA: The MIT Press, 2003.

[39] S. Ylonen, “Modularity in service robotics,” Ph.D. dissertation, Helsinki Uni-
versity of Technology, Espoo, Finland, 2006.

[40] Finnish standards association SFES, Industrial Trucks. Finnish standards
association SFS, 1993.

[41] R. R. Murphy, Introduction to Al Robotics. =~ Cambridge, MA, USA: The
MIT Press, 2000.

[42] R. Arkin, Behavior-based robotics. Cambridge, MA, USA: The MIT Press,
1998.

[43] R. Sutton and A. Barto, Reinforcement learning: An introduction. Cam-
bridge, MA, USA: The MIT press, 1998.

[44] R. Akerkar and P. Sajja, Knowledge-Based Systems. Jones & Bartlett Pub-
lishers, 2010.

[45] M. Nicolescu, “A framework for learning from demonstration, generaliza-
tion and practice in human-robot domains,” Ph.D. dissertation, University of
Southern California, USA, 2003.

128

[46] S. Ekvall, “Robot task learning from human demonstration,” Ph.D. disserta-
tion, KTH School of Computer Science and Communication, Sweden, 2007.

[47] V. Verma, A. Jonsson, R. Simmons, T. Estlin, and R. Levinson, “Survey of
command execution systems for NASA spacecraft and robots,” in Workshop
at The International Conference on Automated Planning & Scheduling, 2005,

pp- 1-8.

[48] M. Amoretti and M. Reggiani, “Architectural paradigms for robotics appli-
cations,” Advanced Engineering Informatics, vol. 24, no. 1, pp. 4-13, 2010.

[49] O. Pettersson, “Execution monitoring in robotics: A survey,” Robotics and
Autonomous Systems, vol. 53, no. 2, pp. 73-88, 2005.

[50] L. Pettersson, “Control system architectures for autonomous agents,” 1997.

[51] G. Biggs and B. MacDonald, “A survey of robot programming systems,”
in Proceedings of the Australasian conference on robotics and automation.
Citeseer, 2003.

[52] RoSTA, “Rosta, robot standards and reference architectures, home page,”
2009, accessed 29.4.2010. [Online]. Available: http://www.robot-standards.
org

[53] C. Kemp, A. Edsinger, and E. Torres-Jara, “Challenges for robot manipu-
lation in human environments [grand challenges of robotics],” Robotics &
Automation Magazine, vol. 14, pp. 20-29, 2007.

[54] M. Woof, “Technology for Underground Loading and Hauling Systems Of-
fers Exciting Prospects,” Engineering and Mining Journal, vol. 206, no. 3,
2005.

[55] T. Heikkild, A model-based approach to high-level robot control with visual
guidance. Espoo: VTT, 1990.

[56] R. Brooks, “Intelligence without representation,” Artificial intelligence,
vol. 47, no. 1-3, pp. 139-159, 1991.

[57] R. C. Arkin and D. C. Mackenzie, “Planning to Behave: A Hybrid Delib-
erative/Reactive Robot Control Architecture for Mobile Manipulation,” in
International Symposium on Robotics and Manufacturing, Maui, HI, 1994,
pp. 5-12.

[58] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An architec-
ture for autonomy,” The International Journal of Robotics Research, vol. 17,
no. 4, p. 315, 1998.

129

http://www.robot-standards.org
http://www.robot-standards.org

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

R. J. Firby, “Modularity issues in reactive planning,” in In Proceedings of
the Third International Conference on Al Planning Systems. AAAI Press,
1996, pp. 78-85.

P. Maes and R. Brooks, “Learning to coordinate behaviors,” in Proceedings
of the Eighth National Conference on Artificial Intelligence, 1990, pp. 796—
802.

D. C. Mackenzie, R. C. Arkin, and J. M. Cameron, “Multiagent mission spec-
ification and execution,” Autonomous Robots, vol. 4, no. 1, pp. 29-52, March
1997.

M. Nicolescu and M. J. Mataric, “A hierarchical architecture for behavior-
based robots,” in Proc. First Int. Joint Conference on Autonomous Agents
and Multi-Agent Systems, Bologna, Italy, 2002.

L. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338-353,
1965.

L. Padgham and M. Winikoft, Developing intelligent agent systems: a prac-
tical guide. Wiley, 2004.

M. P. Georgefl and F. F. Ingrand, “Desicion making in an embedded reason-
ing systems,” in Int. Joint Conf. on Artificial Intelligence, Detroit, Michigan,
USA, 1989.

W. Stallings, Computer Organization and Architecture: Designing for Per-

formance. Prentice Hall, 2006.

Apple Inc., “Grand Central Dispatch (GCD) brief,” 2009, ac-
cessed 29.4.2010. [Online]. Available: http://images.apple.com/macosx/
technology/docs/GrandCentral_TB_brief_20090903.pdf

S. Chen and M. Tseng, “Defining specifications for custom products: a
multi-attribute negotiation approach,” CIRP Annals-Manufacturing Technol-
0gy, vol. 54, no. 1, pp. 159-162, 2005.

Staff Organization and Operations, Department of the Army, Headquarters,
1997, field Manual, 101-5.

Microsoft Developper Network, “Windows api,” 2007, accessed 29.4.2010.
[Online]. Available: http://msdn.microsoft.com/en-us/library/aa383750.aspx

R. W. Scheifler and J. Gettys, X Window system: the complete reference to
Xlib, X protocol, ICCCM, XLFD. Newton, MA, USA: Digital Press, 1990.

S. Ekvall, D. Aarno, and D. Kragic, “Task learning using graphical pro-
gramming and human demonstrations,” in I[EEE International Symposium on
Robot and Human Interactive Communication, Hatfield, United Kingdom,
2006.

130

http://images.apple.com/macosx/technology/docs/GrandCentral_TB_brief_20090903.pdf
http://images.apple.com/macosx/technology/docs/GrandCentral_TB_brief_20090903.pdf
http://msdn.microsoft.com/en-us/library/aa383750.aspx

[73] D. T. Nguyen, D. Kim, B.-J. You, and S.-R. Oh, “Nbha - a distributed
network-based humanoid software architecture,” in ICRA. 1EEE, 2006, pp.
456-461.

[74] M. Freed, “Managing multiple tasks in complex, dynamic environments,” in
Proc. National Conference on Artificial Intelligence, Madison, Wisconsin,
USA, 1998, p. 7.

[75] K. Konolige, “Colbert: A language for reactive control in sapphira,” in KI-
97: Advances in Artificial Intelligence. Springer, 1997, pp. 31-52.

[76] OMG, “UML (Unified Modeling Language), Home page,” accessed
27.9.2010. [Online]. Available: http://www.uml.org/

[77] R. Arkin, “Motor schema-based mobile robot navigation,” in Proceedings of
the IEEE International Conference on Robotics and Automation, 1987, pp.
264-271.

[78] M. J. Mataric, “Integration of representation into goal-driven behavior-based

robots,” IEEE Transactions on robotics and automation, vol. 8, no. 3, pp.
304-312, 1992.

[79] J. Rosenblatt, “DAMN: A distributed architecture for mobile navigation,”
Journal of Experimental & Theoretical Artificial Intelligence, vol. 9, no. 2,
pp- 339-360, 1997.

[80] A. Farinelli, L. Iocchi, D. Nardi, and V. Ziparo, “Assignment of dynamically
perceived tasks by token passing in multirobot systems,” Proceedings of the
IEEE, vol. 94, no. 7, pp. 1271-1288, 2006.

[81] F.F. Ingrand, R. Chatila, R. Alami, and F. Robert, “PRS: A High Level Super-
vision and Control Language for Autonomous Mobile Robots,” in In IEEE
International Conference on Robotics and Automation, Mineapolis, 1996,

pp. 43-49.

[82] P. Elinas and J. J. Little, “Desicion theoretic task coordination for a visually-
guided interactive mobile robot,” in Int. Conf. on Intelligent Robots and Sys-
tems (IROS 2007), San Diego CA, USA, 2007, pp. 4108—4114.

[83] S. Joyeux, R. Alami, S. Lacroix, and R. Philippsen, “A plan manager
for multi-robot systems,” The International Journal of Robotics Research,
vol. 28, no. 2, p. 220, 2009.

[84] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of
computer programming, vol. 8, no. 3, pp. 231-274, 1987.

[85] D. Kragic, S. Ekvall, P. Jensfelt, and D. Aarno, “Sensor Integration and Task
Planning for Mobile Manipulation,” in Workshop on ”Issues and Approaches

131

http://www.uml.org/

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

to Task Level Control”,(D. Botturi and P. Fiorini, eds.), IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, D. Botturi and P. Fior-
ini, Eds. Sendai, Japan: IEEE/RS]J, 2004, p. 8.

C. Arkin, Ronald and T. Balch, “AuRA: Principles and practice in review,’
Journal of Experimental & Theoretical Artificial Intelligence, vol. 9, no. 2,
pp- 175-189, 1997.

Y. Matsusaka, H. Fujii, and 1. Hara, “An extensible dialogue script for robot
based on unification of state transition models,” in CIRA’09: Proc. of the 8th
IEEE international conference on Computational intelligence in robotics and
automation. Piscataway, NJ, USA: IEEE Press, 2009, pp. 586-591.

M. P. Steffen Knoop and R. Dillmann, “Automatic robot programming from
learned abstract task knowledge,” in Int. Conf. on Intelligent Robots and Sys-
tems (IROS 2007), San Diego CA, USA, 2007, pp. 1651-1657.

K. Haigh and M. Veloso, “Planning, execution and learning in a robotic
agent,” in Proceedings of the 4th International Conference on Artificial In-
telligence Planning Systems (AIPS’98), 1998, pp. 120-127.

K. Erol, J. Hendler, and D. S. Nau, “HTN planning: Complexity and expres-
sivity,” in In Proceedings of the Twelfth National Conference on Artificial
Intelligence (AAAI-94. John Wiley & Sons Ltd, 1995, pp. 1123-1123.

H. Kim and D. Kwon, “Task modeling for intelligent service robot using
hierarchical task analysis,” in Proceedings of the 2004 FIRA Robot World
Congress, Busan, Korea, 2004, p. 6.

R. Simmons and D. Apfelbaum, “A task description language for robot con-

trol,” in in Proceedings of the Conference on Intelligent Robots and Systems
(IROS), Victoria, BC , Canada, 1998, pp. 1931-1937.

R. Levinson, “A general programming language for unified planning and
control,” Artificial Intelligence, vol. 76, no. 1-2, pp. 319-375, 1995.

S. Joyeux, R. Alami, and S. Lacroix, “A software component for simultane-
ous plan execution and adaptation,” in Int. Conf. on Intelligent Robots and
Systems (IROS 2007), San Diego CA, USA, 2007, pp. 3038-3043.

E. Uchibe and M. Asada, “Incremental coevolution with competitive and
cooperative tasks in a multirobot environment,” Proceedings of the IEEE,
vol. 94, no. 7, pp. 1412-1424, July 2006.

G. Johnson and R. Jennings, LabVIEW graphical programming. McGraw-
Hill Professional, 2006.

132

[97]

[98]

[99]

[100]

[101]

[102]

[103]
[104]

[105]

[106]

[107]

[108]

[109]

The MathWorks Inc., “Simulink - simulation and model-based design,
datasheet,” 2007, accessed 28.6.2010. [Online]. Available: http://www.
mathworks.com/products/simulink/?BB=1

K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti, “The saphira architec-
ture: a design for autonomy,” Journal of Experimental & Theoretical Artifi-
cial Intelligence, vol. 9, no. 2, pp. 215-235, 1997.

J. Tan and N. Xi, “Unified model approach for planning and control of mobile
manipulators,” in IEEE International Conference on Robotics and Automa-
tion, vol. 3. IEEE; 1999, 2001, pp. 3145-3152.

J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aertbelién,
K. Claes, and H. Bruyninckx, “Constraint-based task specification and esti-
mation for sensor-based robot systems in the presence of geometric uncer-
tainty,” Int. J. Rob. Res., vol. 26, no. 5, pp. 433-455, 2007.

G. Franklin, J. Powell, A. Emami-Naeini, and J. Powell, Feedback control of
dynamic systems. Addison-Wesley, 1994.

S. Calinon, Robot programming by demonstration: A probabilistic approach.
EPFL/CRC Press, 2009.

F. Bause and P. Kritzinger, Stochastic Petri Nets. Vieweg, 2002.

W. Chung, G. Kim, and M. Kim, “Development of the multi-functional in-
door service robot psr systems,” Auton. Robots, vol. 22, no. 1, pp. 1-17,
2007.

V. Ziparo and L. Iocchi, “Petri net plans,” in Proceedings of Fourth Interna-
tional Workshop on Modelling of Objects, Components, and Agents (MOCA),
2006, pp. 267-290.

International Electrotechnical Commission (IEC), IEC 61131-3: Pro-
grammable controllers - Part 3: Programming languages. Geneva, Switzer-
land: IEC, January 2003.

K. Konolige, “Saphira robot control architecture,” SRI International, Menlo
Park, California, Tech. Rep., 2002.

R. Bonasso, R. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack, “Ex-
periences with an architecture for intelligent, reactive agents,” Journal of Ex-
perimental & Theoretical Artificial Intelligence, vol. 9, no. 2, pp. 237-256,
1997.

R. J. Firby, “Task networks for controlling continuous processes,” in In Pro-
ceedings of the Second International Conference on Al Planning Systems,
1994, pp. 49-54.

133

http://www.mathworks.com/products/simulink/?BB=1
http://www.mathworks.com/products/simulink/?BB=1

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Web3D Consortium, “X3D, Home page,” accessed 29.4.2010. [Online].
Available: http://www.web3d.org/x3d/

The Panda3D Development Team, ‘“Panda3d, home page,” accessed
29.4.2010. [Online]. Available: http://www.panda3d.org/

T. Taipalus, “Using remote controlled service robot for fetching objects in
home environment,” Master’s thesis, Helsinki University of Technology, Es-
poo, Finland, 2004.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” In-
ternational Journal of Computer Vision, vol. 60, pp. 91-110, 2004.

J. Saarinen, “A sensor-based personal navigation system and its application
for incorporating humans into a human-robot team,” Ph.D. dissertation,
Helsinki University of Technology, Espoo, Finland, 2008. [Online].
Available: http://lib.tkk.fi/Diss/2009/isbn9789512299621/

M. Beetz, T. Arbuckle, T. Belker, M. Bennewitz, W. Burgard, A. B. Cremers,
D. Fox, H. Grosskreutz, D. Hahnel, and D. Schulz, “Integrated plan-based
control of autonomous service robots in human environments,”’ IEEE intelli-
gent systems, vol. 16, no. 5, pp. 56-63, 2001.

K. Konolige, “Colbert user manual,” SRI International, Tech. Rep., 2001,
v8.0a.

A. Rao and M. Georgefl, “Bdi agents: From theory to practice,” in Proc. of
the first international conference on multi-agent systems (ICMAS-95). San
Francisco, CA, 1995, pp. 312-319.

T. A. Estlin, D. Gaines, C. Chouinard, F. Fisher, R. Castano, M. Judd,
and I. Nesnas, “Enabling autonomous rover science through dynamic
planning and scheduling,” DSpace at Jet Propulsion Laboratory [http://trs-
new.jpl.nasa.gov/dspace-oai/request] (United States), Tech. Rep., 2007.
[Online]. Available: http://hdl.handle.net/2014/40571

M. Aydin and E. Oztemel, “Dynamic job-shop scheduling using reinforce-
ment learning agents,” Robotics and Autonomous Systems, vol. 33, no. 2-3,
pp. 169-178, 2000.

S. Lin, E. Goodman, and W. Punch, “A genetic algorithm approach to dy-
namic job shop scheduling problems,” in Proceedings of the Seventh Inter-
national Conference on Genetic Algorithms, 1997, pp. 481-488.

A. Olivé, Conceptual modeling of information systems. Springer-Verlag
New York Inc, 2007.

134

http://www.web3d.org/x3d/
http://www.panda3d.org/
http://lib.tkk.fi/Diss/2009/isbn9789512299621/
http://hdl.handle.net/2014/40571

[122]

[123]

[124]

[125]

[126]

F. Michaud, C. Coté, D. Létourneau, Y. Brosseau, J.-M. Valin, E. Beaudry,
C. Raievsky, A. Ponchon, P. Moisan, P. Lepage, Y. Morin, F. Gagnon,
P. Giguere, M.-A. Roux, S. Caron, P. Frenette, and F. Kabanza, “Sparta-
cus attending the 2005 aaai conference,” Auton. Robots, vol. 22, no. 4, pp.
369-383, 2007.

I. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. Estlin, and W. Kim,
“Claraty: An architecture for reusable robotic software,” in SPIE Aerosense
Conference, 2003, p. 12.

R. Arkin and D. MacKenzie, “Temporal coordination of perceptual algo-
rithms for mobile robot navigation,” Robotics and Automation, IEEE Trans-
actions on, vol. 10, no. 3, pp. 276-286, 1994.

R. Simmons, J. Fernandez, R. Goodwin, S. Koenig, and J. O’Sullivan,
“Xavier: An autonomous mobile robot on the web,” Robotics and Automa-
tion Magazine, 1999.

R. Bindiganavale, W. Schuler, J. M. Allbeck, N. I. Badler, A. K. Joshi, and
M. Palmer, “Dynamically altering agent behaviors using natural language
instructions,” in In Autonomous Agents. ACM Press, 2000, pp. 293-300.

135

Appendices

137

Appendix A

Description of an Object in the
World Model

The table for an object in the mySQL database is described in Table and details
of its “shape” parameter is given in Table[A.T]

Table A.1: Description of the shape construction in the world model data base

shape size | shape_ratio | description
(shape_ratio*size)

cube length of side -

box along Z-axis along X- and Y-axis

ball radius -

cone height along Z-axis radius of base place in middle of center
axis

plane along X-axis along Y-axis normal or “front” plane
points along Z-axis

cylinder | height along Z-axis radius of base place in middle of center
axis

139

20Ud}six@ Jo Ayjiqeqold S6°0 0’100 jeoy jeoy 9oUd)SIXd

Bdl-gynejep QMG9 uey ssg) qolq bdf yoeq oid

(uoneziensiA ul ainjxa} e Se pasn aq ued) 30alqo ayy jo abew sidwes Bd[4ynejep 3G9 uey} ssa| qo|q 6dl juouy oid
103[qo siy} 0} pajeloosse s}oa(qo aseqgejep ul saweu 09[qo (01)1eyd Buis guojeloosse

109[qo siy} 0} pajeroosse s3os(qo aseqejep ul saweu 08[qo (01)1eyd Buiys puoleloosse

109[go siy} 0} pajeloosse s}oalqo aseqejep Ul saweu 109[qo (01)4eyo Buinys guojeloosse

103[qo siy} 0} pajeloosse s}oa(qo aseqgejep ul saweu 09[qo (01)1eyd Buis zuoneloosse

103[go siy} 0} pajeroosse sjos(qo aseqejep ul saweu 08[qo (01)1eyd Buiys Luoneroosse

(00:00:00 L0-10-0.61 @duls SpU0ODSS) }03[qO WO} JOB BIUBPIAS UBYM B} ISE| (own [s] a|gnop 8|qnop awn
sixe-z Buoje Ajo0|aA Jeinbue 0 [s/peu] jeoy} ajgnop opaads

sixe-A Buoje Ayoojon 0 [s/wi] jeo|} a|gnop APpoaads

sixe-x Buoje Ajooon 0 [syw] jeo|} a|gnop Xpaads

L JEEL a|gnop JeA Inojod

(SAH un) anH S0 0'L°00 jeoy 8|gnop inojod

6'66 [6%] jeoy a|gnop Jen"jybram

109lqo 8y} 4o Jybrom L [63] Jeoy a|gnop wbiom

92|S JO uonnguisip ueissneb Jo Juswow jsiiy 666 [w] 1e0}} a|gnop Jen azIs

(au09 jo yibus|aybly ‘|leq e jo snipeJ ‘agnd jo apis ‘aul| jo ybiua|) adeys auy jo azis S0 [w] 1eoyy a|gnop azIs
Jaje| paquosap aq pjnom (Yipim aull axil) inquye s,sedeys 000 [w] jeoy a|gnop ones” adeys

uolezi[ensiA ul pasn ‘49a[qo ay} jo awnjoA Buipunoq jo adeys diseq Jeaq, " ‘auo9 ‘||eq ‘Japuljho ‘xoq (01)1eyd Buis adeys

6'66 [w] jeoy a|gnop Jen”z90e(d

6'66 [w] jeoyy a|gnop Jen” zxsoe(d

aoe(d Jo uonngusip ueissneb Jo Juswow }siiy 666 [w] 1eoyy a|gnop Jen” Axoaoe(d

6'66 [peJ] jeoy a|gnop Jen” 9ooe|d

6'66 [pel] jeoy a|gnop Jen geoed

UO[}E}JUSLIO JO UOIINQLISIP UelSSneD Jo Juswow Isily 666 [peJ] 1eoy a|gnop Jen yaoe|d

6'66 [w] jeoy a|gnop Jen"zooe(d

6'66 [w] jeoy a|qnop Jen” Aeoeid

aoe|d Jo uopngusip ueissneb Jo Juswow }siiy 666 [w] jeo|} a|qnop Jen xaoe|d

SlWel} 8)euIpIO-02 S,9p0u, Ul J13pIo (Z ‘A ‘X) ul 308[qo jo s|bue usjns sixe- 7z 00 [ped] jeo|} a|gnop o9oe|d
Wk} 8}euIpI0-02 ,S,9p0u, Ul Japlo (Z ‘A X) ul308[qo jo ajbue Jajna sixe- A 00 [peJ] 1eoy} a|gnop gooeld
awel} djeulplo-02 S,8pou, Ul Japlo (Z ‘A ‘X) ul10a[qo jo s|bue Jajna sixe- X 00 [peJ] 1eoyy a|gnop vaoe(d
wa)sAs 8jeulp10-02 ,s,8pou, Ul 303[qo sy} Jo (ZA‘X) 00 [w] jeo|} a|gnop zooe(d

wa)sAs 8jeulpI0-02 ,S,9pou, Ul 308[qo 8y} Jo (ZA°X) 00 [w] jeo|} a|gnop A9oe|d

wajsAs ajeulplo-09 S,8pou, Ul 308[qo ay} Jo (Z'A'X) 00 [w] jeoy a|gnop xooe|d

0} sbuojaq 303[qo jey} spou ayj Jo pI 8seq ejep auj |19} (3oqoJ) | 119 g¢ paubisun i 19693U1 apou

anbjun jou ‘}08[qo 8y} J0} BWEU SAIJRIO0SSE pue d|qepeal uewny e saAlb pl + 93lqo, (01)4eyo Buys aweu
(jogol=| ‘prom=Q) paniasay 10alqo ue Joj p1 anbjun sayoads L+l)19 Z€ paubisun i JEE] pI

uonduosag anjea jneja2q

abues anjep

adf) eyep ToSAIN a2dA) ejeq

aweu ainjeaq

aseq elep [9powW P[IoMm UI sanqrie 199(qo jo uonduose(7'V dqeL

140

Appendix B

Example of XML-Listing of Action

<Action name="Template" objectID="1" id="123" taskID="123"
priority="0.345" location="0.5, 0.3, 0.4" sigma="0.1, 0.2, 0.8"
lambda="0.08" time="123.4, 40.5" description="Does nothing"
version="0.1">

<ELstart>
<ADD taskID="" actionID="" EL_ID="1" comment= "IDs will get actions
IDs, Os will be independent">
<ELheader threshold="0.9" objectID="" exeFilename="test_EL.py"
description="randomly cause an event">
<RESPONSE command="addAction"
filename="Sleep.xml" pool="PS" actionID="999"/>
</ELheader>
</ADD>
</ELstart>
<ELfinal>
<ADD taskID="0" actionID="0" EL_ID="2" filename="ELtest.xml"/>
<RM taskID="" actionID="" EL_ID="1"/>
</ELfinal>
<Plan>
<Parameter type="String" value="Plan param" name="var_Namel"
description="Pseudo variable for plan"/>
<Parameter type="Integer" value="1" name="var_Name2"
description="Pseudo variable for plan"/>
<ReturnValue type="Unknown" value="" name="RETURNVALUEQ"
description=""/>
<Block uiBlockType="Action" uiPosX="0" uiPosY="0" InitText=
ExeText="" EndText="" ErrorText=""/>

<SingleTask name="STARTSTATE" category="FlowControl" id="0"
priority="" description="">
<Block uiBlockType="Start" uiPosX="-346" uiPosY="-861" InitText=""
ExeText="" EndText="" ErrorText=""/>
</SingleTask>

<SingleTask name="PS_uTaskTemplate" category="PS" id="1"

priority="NORMAL" description="Template to help writing micro tasks'">
<Parameter type="String" value="var_Namel" name="varNamel"

141

description="Pseudo variable 1"/>

<Parameter type="Integer" value="12" name="varName2"

description="Pseudo variable 2"/>

<Parameter type="Double" value="1.2" name="varName3

description="Pseudo variable 3" />

<ReturnValue type="Integer" value="var_Name2" name="retNamel"

description="return value from micro task"/>

<Block uiBlockType="MicroTask" uiPosX="-346" uiPosY="-911"

InitText="" ExeText="" EndText="" ErrorText=""/>
</SingleTask>

<SingleTask name="PS_uTaskSleep" category="PS" id="2" priority="NORMAL"
description="non busy Sleep/wait for given time, good for cooling down CPU">
<Parameter type="Float" value="5.0" name="sleepTime"
description="time to sleep [s]"/>
<Block uiBlockType="MicroTask" uiPosX="-346" uiPosY="-951" InitText=""
ExeText="" EndText="" ErrorText=""/>
</SingleTask>

<SingleTask name="IF" category="FlowControl" id="4" priority="Normal"
description="STARTING IF">
<Parameter type="Integer" value="var_Name2" name="IFINPUT"
description=""/>
<Block uiBlockType="TIf" uiPosX="-164" uiPosY="251" InitText=""
ExeText="" EndText="" ErrorText=""/>
</SingleTask>

<SingleTask name="FINALSTATE" category="FlowControl" id="5"
priority="" description="">
<Block uiBlockType="Final" uiPosX="-346" uiPosY="-861" InitText=""
ExeText="" EndText="" ErrorText=""/>
</SingleTask>

<Connections>
<Connect From="0" FromPos="3" To="1" ToPos="1"/>
<Connect From="1" FromPos="3" To="2" ToPos="1"/>
<Connect From="2" FromPos="3" To="4" ToPos="1"/>
<Connect From="4" FromPos="2" To="5" ToPos="1"/>
<Connect From="4" FromPos="3" To="2" ToPos="2"/>
</Connections>
</Plan>
</Action>

142

Appendix C

Features and their Terms in Different
Approaches

143

- - JOJIUOIA[- 1203 159) - uonounj Arowdpy Juade uondaorog
S[e03 1021391

- SOIAT[Og Qoeds a3po[mouy] - pue 1sse 9s9L, - - [opow PlIoA\

MOY-MUOY WAISAS

eaS ‘suonorpaxd am 10 oedsyrom
ogesn 90InNOSOY - -onns uonuaul ysel orweuA(q ydeis ysey, - UOI)OUNJ 9AT)OY [ood asog

sI01
IoAe] [euonouUNg - - - [oA9[[eUOIOUN] -ABUQQ OBIISQY - IoKe] owneay
Jeg ‘suonorpaid)
agesn 92INOSAY - -onns uonuAu[- [e03 1591, - uonodunj AIOWN 10od N.Ld
Jn [e03 urejurew uon

- - - -pour [euonowyqg IO JIBM ‘QAIISAI] -ouny SATjRULIOJU] T
(puewro))) - - - - JorAeyog - ysern
- - - ueld [0S 9ASIYOY YIOMISU JOIARYSG - ue[qd

MOU-MUOY W)
JseL, suonuAu| - -sAs 10 uonuouy - - uonoy

so[npowt
[eon soIs9(Qoeds a3pajmouyy [BUOIIBANOIA - - - Yyse],

[eznel [29]l s1o1aRY2q
AVIAVTID [ZTT] Tad [S9] sad (221l VAN [0g] SaduadQ [ed1dIR.IRTH (12T 9A110 pasodoag

(" sonunuod) seyoeordde JULISHIP UT SOINJBIJ UOUIWOD J0J SWIA) Jo uostredwio)) 1) I[qeL

144

aunnoy uorn
-eyo1dIo)u] JOSUSG

(ewayods
remdooiad)

juoge uondoorod

Joedg depy
[eqo[D pue 9oedg

- aseqeieq [emdadrdd [e00T] - - Alouraur [eqo[n) - [opow PTIOAA
191 3urouanbas ssa001d Juady - - - (9 19A9]) - [ood asoq
Sewayos [en)
[OA9] IS - I0)09Ja1 Je}S I0Ke] J01ARY9q - - -deoxad pue 10j0wr IoAe] ownRAY
Surppuey
uondooxa 10
IOITUOUI JUIAD - - s\l Iojruowt uonIpuOd U - (yuaSe 193311m) T
(ewayog sl ANVIN
IS - AIANOY) -INOD 10 TVOD 3 € [9A9] oe[quiasse JseLn
1an 3urouanb
-39S pue 9AIOBAI sdoys uonnoaxyg 1d11os 119q[0) - wei3ord ysey, - vSd ue[d
dvV¥) Mvdl Bweyds AIAnoy (uonoy) : ¥ [9A] (9Be[quuasse) uonoy
- dvdl - (921 Ysey) 3SEL, OB G [9A] VSd SBL
[SOZoTI 186l [#C11 (19 (98]
[801 .Le [9Z1l avd eanydeg [CTrcel voL [9¢] xtyew yysey, [OZ] INHISVN viny pasodoag

soyoroidde JULIOHIp UT S2INJLAJ UOWIWOD JOJ SWI) Jo uosLedwo)) (Sonunuod)

145

146

Appendix D

Class Diagram of the Action Pool
Implementation

147

action

+filename

+version

+name

+ID

+taskID

+priority

+parent: APManager
+location

+Sigma

+Lambda

+time

+age

+startTime
+exeStartTime
+description
+ELstart: List of EventListener classes
+ELfinal: List of EventListener classes
+weight

+running: bool
+parameters
+returnvals

+Plan: plan class
+done: bool

+__init__(filename=None,parent=None)
+parseHeader (xml)
+parsePlan(xml)

+update()

+runAction()

+startAction()

+runStep()

+finishAction()
+pauseAction()
+continueAction()
+stopAction()

-sendEL (EventListener class)
+toXML ()

+toDOM()

+rmEL (EventListener class)
+reportStatus()

action.py

+filename

+version

+name

+parent: action

+startTime

+ELstart: List of EventListener classes
+ELfinal: List of EventListener classes
+running: bool

+parameters

+returnVals

+nextMT

+MTs: Dict of MicroTask classes
+connections

+ifs

+GUIblock

+runningMT: MicroTask

+__init__(filename=None,parent=None)
+parsePlan(xml)
+update()
+startPlan()
+runStep()
+finishPlan()
+findNextMT ()
+manageIF()
+toXML()
+toDOM()
+runPlan()
+stopPlan()
+pausePlan()
+continuePlan()
+reportStatus()

plan.py

resource

+name

+Type

+bOperating: bool
+curPose: pose
+bOperational: bool

+_init_ ()

+CCTime(target:pose): (float, float)

+reserve(target:pose)
+getCurrentPose(taskID): pose
+shutdown ()
+abortReservation()

1

| resources/resource_*.py

L

o
*

ActionPool

+Actions: []
+resource: resource class

+__init__()

+addAction(action)
+removeAction(taskID,actionID)
+update()

+shutdown ()

+select(): action
-compValue(action)
-pathTime(action)

<@ . actMutex

actionPool.py

CParameter

+name: string
+description: string
+Type: string
+value
+_init_ ()

0...*

1
MicroTask

+parent: plan

+ID

+taskID

+actionID
+description
+parameters: dict
+returnvals: dict
+priority
+gategory

(I

+name

+running: bool
+GUIblock

+uTask: uTask
+__init__(parent=None)
+parse(xml)
+parseGUI (xml)
+execute(path=
+toXML()
+toDOM()

microTask.py

148

APManager

+Tasks: dict |
+TID: int
+running: bool |
+AP: ActionPool class
+paused: bool

+runningAction: action |
+conf
1 +ipc |

+__init_ () |
+addTask(Task)
+manageTasks ()
+removeTask(taskID) |
+shutdown ()
+mainLoop() |
+receive()

+sendStatus()
+actionSelection() |

AP.py |

Task

+Actions: dict |
+time: float
+startTime: float |
+filename: string
+ID: int |
+permanent: bool

+__init__ (filename=None)
+parse(filename="") |
+parseGUI(filename="")
+toXML () |
+nextActions()
+abort()

task.py

uTask

+state: int

+sleep: float

+errorStr: string

-resource: resource class
19imi: connected gimi instance

+__init__ (aResource,aGimi)
+go()

+stop()

+pause()

+cont()

_uTask.py

	Introduction
	Motivation and Background
	Problem statement
	Contributions
	Outline of the Thesis
	Author's Contribution within the Research Groups
	Declaration of Previous Work

	Introduction to Task Execution and Taxonomy with Service Robots
	Service Robots
	Control of Service Robots
	Task
	Plan
	Planning

	Multi-tasking
	Time-sharing
	Concurrent
	Parallel

	Task Knowledge Representation
	Non-Functional Requirements of Service Robot Control Architectures
	Non-Functional Requirements in Literature
	Combined Feature Requirements

	State of the Art of Task Execution Principles
	Tele-operation
	Deliberative
	Reactive
	Hybrid
	Behaviour-Based Control
	Knowledge-Based Systems
	Expert System
	Procedural Reasoning System

	Discussion
	Plan
	World model

	State of the Art in Plan Representation for Service Robots
	Analogous Systems
	Computer Operating System Architectures
	Company Order/Deliver System
	Military Organisation
	Computer GUI events

	Procedural
	Distributed
	Fused Controls
	Centralised Action Selection
	Agents: Decentralised Action Selection
	Disconnected Controls

	State Diagram
	Tree structure
	Functional
	Trajectory
	Petri-net
	Conclusions

	Representation and Control of Task in ActionPool
	Division into Resources
	Context Switch

	Actions and Action Pool
	Event Listener
	World Model
	Perception Agents
	Task
	Interdependency
	Graphical Representation of Task

	Control of Action Pool
	Adding a Task
	Pausing
	Removal of Task
	Error Handling

	Summary

	Implementation
	Hardware
	MARY
	Rolloottori

	Software
	Mission layer
	aPlan layer
	Real-time layer
	Supporting Components

	Verification Through Experiments
	MARY
	Pose reservation
	Find object and take picture of human
	Results

	Rolloottori
	Pose reservation
	Texture Mapping of a Wall Segment
	Texture Mapping of a Wall Segment With Exception
	Texture Mapping of Wall Segments
	Results

	Analysis
	Non-Functional Requirement Analysis
	Analysis Compared to Other Works
	Comparison With Some Plan Representation Methods
	Evaluation with Task Execution Principles
	Related Work

	Conclusions and Discussion
	Conclusions
	Discussion
	Future work

	Bibliography
	Appendices
	Description of an Object in the World Model
	Example of XML-Listing of Action
	Features and their Terms in Different Approaches
	Class Diagram of the Action Pool Implementation

