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1 Introduction 

Climate change is one of the central energy challenges and it could become the main 

driver of energy policy in the coming decades (IEA, 2009a). In the Copenhagen Accord 

(2009), an even stronger statement was made: “Climate change is one of the greatest 

challenges of our time.” In Copenhagen, the world‟s leaders agreed to reduce global 

emissions so that the increase in global temperature is limited to 2°C compared to pre-

industrial levels. However, legally binding emission reduction targets were not agreed. 

The European Union is a leader in taking action to mitigate climate change (IEA, 

2008a). The European Union has set so-called 20-20-20 targets for (1) reducing its CO2 

emissions by at least 20%, (2) increasing the proportion of renewable energies in its 

energy mix to 20% and (3) reducing its energy consumption by 20% by 2020. In the 

Action Plan for Energy Efficiency (EC, 2006a), the target for reducing energy 

consumption is specified as a 20% saving in annual consumption of primary energy by 

2020 compared with the energy consumption forecasts for 2020.  

The targets to reduce emissions and increase the share of renewable energy are legally 

binding targets (EC, 2009a; EC, 2009b), whereas the target to reduce energy 

consumption is not. The Energy Services Directive (EC, 2006b) is the only document 

that sets an indicative energy-saving target of 9% between the years 2008 and 2016. 

However, this target does not apply to the actors involved with the European Union 

Emissions Trading Scheme (EU ETS), such as the pulp and paper industry and the iron 

and steel industry. 

Renewable energy and energy efficiency improvement are key measures to reduce CO2 

emissions. Actually, the improvement of energy efficiency is regarded as the fastest and 

cheapest way of reducing CO2 emissions (IEA, 2007a). Energy efficiency also plays an 

important role in reducing dependence on energy resources and lowering energy costs 

(EC, 2009c).  

Although energy efficiency has been a high priority of energy regulations and 

policymakers for decades, it has not fully met the level of emissions reduction expected 

by experts (Vine & Hamrin, 2008). Neither has improvement in energy efficiency led to 

energy savings, regardless of the tendency for new plant and appliances to be more 

efficient than those they replace (Herring, 1999). Instead, some of the savings due to 

energy efficiency improvement have taken the form of higher consumption of products 

or a higher level of services. For example, industrial output increased 39% in the 21 

IEA
1
 countries between 1990 and 2005, and regardless of big improvement in energy 

efficiency, the final energy use in industry increased 5% (IEA, 2008b). The growth of 

                                                 
1
 21 IEA countries include: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, 

Greece, Italy, Japan, Republic of Korea, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, 

Switzerland, United Kingdom and United States 
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the production of energy-intensive industrial products is expected to continue with 

increased population and income per capita (Bernstein et al., 2007).  

Since the 1970s there has been a strong correlation between economic growth and 

primary energy consumption: each 1% increase in global gross domestic product (GDP) 

was accompanied by a 0.7% increase in primary energy consumption (IEA, 2009a). 

According to IPCC (Bernstein et al., 2007), industrial sector final energy, primary 

energy and energy-related CO2 emissions
2
 increased between 1990 and 2004 by 18%, 

22% and 18%, respectively.  

Among others, Campbell (1996) and Ainoa et al. (2009) have pointed out the conflicts 

between different aspects of sustainable development, i.e. economic growth, 

environmental protection and social equity. Hueting (2010) has stated that 

environmental sustainability cannot be attained with a growing production. Instead, 

recent evidence suggests that the economic recession triggered by the financial crisis, 

which started in mid-2007, has led to a drop in energy use, CO2 emissions and energy 

investment (IEA, 2009a). Lately, the efforts towards continuous economic growth and 

overconsumption has been criticised by, among others, the degrowth thinkers 

(Wikipedia, 2010). 

There might be conflicts between energy efficiency and emission reduction, too. 

Technologies such as wastewater treatment and flue gas cleaning reduce environmental 

burdens but may complicate processes and increase the internal energy consumption of 

an industrial plant. For example, tightened environmental requirements have increased 

the specific electricity consumption in the pulp and paper industry (Siitonen & Ahtila, 

2002). Increased primary energy demand leads often also to higher CO2 emissions. Also 

some new technologies under development that are expected to contribute towards 

meeting the CO2 emissions reduction targets, such as carbon capture and storage (CCS), 

increase energy consumption: depending on the power plant type, the fuel consumption 

increases by 10-40% compared to a conventional power plant (Teir et al., 2009). 

At the company level the decision-making is typically based on economic optimisation. 

Therefore, the motivation to protect the environment is often related to economic 

benefits or obligations dictated by environmental legislation. Since 2005, the CO2 

emission reduction target has been allocated to the industrial operators under the EU 

ETS and CO2 emissions have had a monetary value. Therefore, the price of an EU 

allowance (EUA) is an additional variable taken into account in the economic 

optimisation. Also, the motivation to improve energy efficiency is often related to cost 

savings.  

As shown above, depending on the case, the targets to reduce CO2 emissions and reduce 

energy consumption may be convergent or may compete with each other or some other 

targets. Although these targets are challenging and the timetable is tight, there is not yet 

a clear understanding of how energy efficiency improvement contributes towards to 

meeting emission reduction targets. This question is especially interesting from the 

                                                 
2
 Energy-related CO2 emissions including indirect emissions from electricity use. 
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industrial sector point of view, because of highly integrated processes and high energy 

consumption. In 2005, industry accounted for one third of the global primary energy use 

and around 25% of global energy and process CO2 emissions (IEA, 2008c). In Finland, 

the share of manufacturing industry in final energy use has been as high as 50% 

(Statistics Finland, 2008).   

Therefore, the main research question of this study is:  

How does energy efficiency improvement in industrial processes contribute towards 

achieving CO2 emissions reduction?  

Evaluating the implications of energy efficiency improvement for CO2 emissions is 

based on the measurement of energy efficiency, which has been shown to be a 

complicated task in industry (Tuomaala, 2007). Among others, the following challenges 

related to the measurement of energy efficiency have been identified: variables affecting 

energy efficiency, the allocation problem, system boundary definitions and energy 

valuation (Patterson, 1996; Ahtila et al., 2010).  

The realisation of the CO2 emission reduction potential of individual energy efficiency 

projects has been monitored under the Kyoto mechanisms. However, the factors 

affecting the realisation of the emission reduction potential have not really been studied 

before. Therefore, in this thesis the main research question is considered with two 

different approaches: 

1. The evaluation of different challenges involved in measuring energy efficiency and 

the related CO2 emission reduction; 

2. The analysis of the realisation of the energy conservation and CO2 emission 

reduction potential in energy-intensive industries. 

In section 2 the objective and scope of the thesis are presented in greater detail. Section 

3 defines the concepts of energy efficiency, energy saving and energy use, and also 

reviews previous energy efficiency studies found in the literature. Section 4 presents 

and discusses the results of the individual papers. Finally, conclusions drawn from the 

key findings are presented in section 5.  
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2 Objective and scope of the thesis 

The objective of this thesis is to contribute to the understanding of the implications of 

energy efficiency improvement for CO2 emissions in energy-intensive industries. In this 

study the focus is on the pulp and paper industry and the iron and steel industry, because 

they are the major industrial energy consumers in Finland: their shares of the total 

energy used in all manufacturing were 51% and 15%, respectively (Statistics Finland, 

2010a). In 2008 those industries together accounted for around 27% of total energy 

consumption and around 38% of electricity consumption in Finland (Finnish Energy 

Industries, 2009a). In 2008, industry was responsible for about 25% 

(18 Mt CO2 equivalent) of the total anthropogenic greenhouse gas emissions in Finland. 

Compared to energy use, the share of CO2 emissions is low because of the high 

consumption of renewable carbon-free energy in the forest industry (Statistics Finland, 

2010b). 

This thesis includes five appendix papers: 

I Siitonen, S., Tuomaala, M., Ahtila, P., Variables affecting energy efficiency and 

CO2 emissions in the steel industry, Energy Policy, 38 (2010), 2477-2485. 

II Siitonen, S., Tuomaala, M., Ahtila, P., Influences of material recycling on energy 

efficiency, Case: iron and steel industry & pulp and paper industry, Proceedings of 

International Conference of Applied Energy 2010, Singapore, 794-805.  

III Siitonen, S., Holmberg, H., Estimating the value of energy saving in industry by 

different cost allocation methods, International Journal of Energy Research (2010). 

Accepted for publication. 

IV Siitonen, S., Tuomaala, M., Suominen, M., Ahtila, P., Implications of process 

energy efficiency improvements for primary energy consumption and CO2 

emissions at the national level, Applied Energy, 87 (2010), 2928-2937. 

V Siitonen S., Ahtila P., The influence of operational flexibility on the exploitation of 

CO2 reduction potential in industrial energy production, Journal of Cleaner 

Production 18 (2010), pp. 867-874. 

Different challenges involved in measuring energy efficiency and the related CO2 

emission reduction have been evaluated as follows: 

- Variables affecting energy efficiency and CO2 emissions are considered in Paper I. 

Paper II concentrates on only one factor, i.e. material recycling, affecting energy 

efficiency.  

- The allocation problem has been studied in two different papers: in Paper II how to 

allocate the benefits of material recycling between primary and secondary         
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production and in Paper III how to allocate the fuel consumption of a CHP plant to 

heat and electricity so that plant level decision-making would support energy 

efficiency improvement. 

- Definition of the system boundary is an essential basic step in all energy studies and 

therefore this issue is widely considered in papers I, IV and V. Also in Paper III 

different decision-making perspectives are related to the system boundaries. 

- The valuation of energy is discussed in papers III and V. Paper III concentrates on 

the thermodynamic value of energy in relation to the exergy allocation method and 

paper V focuses on the monetary value of energy.  

The realisation of the energy conservation and CO2 emission reduction potential in 

energy-intensive industries is analysed in the following papers: 

- Paper IV analyses the effects of system boundary selection on the realisation of 

primary energy savings and CO2 emission reduction. 

- Paper V studies how operational flexibility and changes in energy prices affect the 

realisation of the energy conservation and CO2 reduction potential of an energy 

efficiency investment. 

Paper I focuses on the iron and steel industry and papers III, IV and V on the pulp and 

paper industry. Both the iron and steel industry and the pulp and paper industry are dealt 

with in Paper II.  

In Paper I specific energy consumption is considered at the mill site and mill levels, 

whereas national level analysis and international benchmarking are used in Paper II. 

Papers III-V concentrate on energy production in industry and its integration into the 

system; the focus is on CHP production because on-site energy production in the 

Finnish pulp and paper industry is widely based on CHP production. 

This study is based on constructive case studies. The following methodologies and 

source data have been used in the case studies documented in the appendix papers I...V:  

- In Paper I, the partial least squares projection to latent structures (PLS) analysis is 

used to analyse the correlations between the selected variables. Process data from 

the iron-ore-based steelmaking process were used as the basis of that analysis.  

- Paper II is based on statistical analysis where various international statistics were 

used for collecting the input data.  

- In Papers III-V process data from pulp and paper mills were used as input data in 

the process modelling of industrial power plant processes. In addition, the energy 

analysis reports, including real energy conservation data from five Finnish pulp and 

paper mills, were used as a source material in Paper IV. The process modelling was 

made by Solvo®, which is a commercial software application developed by Fortum 

for modelling and simulating the heat balances of a power plants. 



18 

 

 

3 Literature review: energy efficiency and CO2 in 
industry 

In this chapter the definitions of energy efficiency and energy use are presented. Then, 

the energy efficiency and CO2 indicators used in industry are described and the results 

of relevant earlier studies reviewed. 

3.1 Definitions of energy efficiency and energy saving 

The terms „energy efficiency‟, „efficient use of energy‟ and „energy conservation‟ are in 

many contexts seen as synonyms or partly overlapping concepts (VTT, 2007). However, 

there are differences between these terms: 

- Energy efficiency is defined by the Energy Services Directive (EC, 2006b) as “a 

ratio between an output of performance, service, goods or energy, and an input of 

energy”.  

- Efficient use of energy is defined by VTT (2007) as “the minimum possible energy 

used to produce some specified useful output through a process, product or 

service”. 

- Energy conservation (also called energy saving) is defined by VTT (2007) as “a 

decrease in energy consumption in absolute terms over some period of time”. 

Energy efficiency improvement can either mean that 1) an unchanged output is obtained 

with lower energy input, 2) an increased output is obtained with an unchanged energy 

input or 3) the relative increase in output is greater than that of energy input (EC, 

2009c). Actually, 1) and 2) are special cases of 3). However, there might be different 

variables behind energy efficiency improvement if the output changes instead of the 

energy input. 

Energy conservation can be achieved by improving the energy efficiency or by reducing 

the amount or quality of the produced services (VTT, 2007).  

The definition presented above for efficient use of energy represents the ideal case 

where there are no losses in the process. However, in the real world there are losses in 

all processes, and this applies also to the potential for energy conservation. Tuomaala 

(2007) and VTT (2007) divided energy conservation potentials into theoretical, 

technical and economic potentials. Theoretical potential represents the maximum 

improvement opportunities available. Technical and economic potentials consider 

technological restrictions and economic constraints, respectively. In addition, Tuomaala 

(2007) stated that the potential for improvement is greatest in the process design phase. 

In the operational phase, when the structure of the process and its connections to the 

external environment have already been determined, the efficiency can be improved 
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mainly through adopting better operational practices (Tuomaala, 2007). Retrofitting an 

existing facility of an existing system can provide bigger improvements, but often it is a 

more expensive alternative. A new facility would show even greater improvements with 

higher capital costs. However, the operational costs are often lower, so sometimes the 

replacement of an old facility is a reasonable option. 

Despite the existence of significant potential for cost-effective investment in energy 

efficiency, market barriers and market failures prevent its exploitation (IEA, 2007b; 

Brown, 2001). Brown (2001) named this difference between the cost-efficient 

investments in energy efficiency and the actual level of investment as the „„efficiency 

gap‟‟. VTT (2009) uses the term “expected energy efficiency potential” for the potential 

where the effects of barriers and obstacles have been taken into account. The IEA 

(2007b) lists the following market barriers: low priority of energy issues, lack of access 

to capital, and the incomplete market for energy efficiency. Market failures occur when 

markets do not operate efficiently. Examples of market failures are split incentives, i.e. 

different goals or incentives of participants in an economic exchange, and insufficient 

and inaccurate information. Also low energy prices may weaken the profitability of 

energy efficiency improvement and prevent investments. 

Realisation of emission reduction potential requires different policy measures in 

different cases, such as regulation, economic control, sustainable planning, guidance or 

their combination (Vehviläinen et al., 2008). Energy savings certificates, also called 

white certificates, can be used in reducing greenhouse gas emissions (Vine & Hamrin, 

2008). In addition, standardisation provides tools to follow legislation (EC, 2010). The 

European standardisation organisations CEN and CENELEC published a new standard 

EN 16001 on energy management in July, 2009. In addition, there are many standards 

under development including EN 15900 on energy efficiency services and standards on 

benchmarking methodologies for energy uses and energy audits (Gindroz, 2009).  

3.2 Definitions of energy use 

Energy use can be measured as „primary energy use‟ and „final energy use‟ (IEA, 

2008c). Also the terms „primary energy consumption‟ or „final energy consumption‟ are 

used. The use of terms such as „energy production‟ or „energy consumption‟ is 

sometimes criticised because the first law of thermodynamics states that energy cannot 

be created or destroyed, only transformed from one form to another. However, these 

terms are widely used and they can basically be understood to mean the transformation 

of energy (EC, 2009c). 

The Organization for Economic Cooperation and Development (OECD, 2010) defines 

primary energy consumption as „the direct use at the source, or supply to users without 

transformation, of crude energy, that is, energy that has not been subjected to any 

conversion or transformation process‟ The source publication for this definition is the 

United Nations‟ Glossary of Environment Statistics (UN, 1997). According to IEA 

(2009b) primary energy includes hard coal, lignite/brown coal, peat, crude oil, natural 
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gas liquids (NGL), natural gas, combustible renewables and waste, nuclear, hydro, 

geothermal, solar and the heat from heat pumps that is extracted from the ambient 

environment. Usually the term „total primary energy supply (TPES)‟ is used. In this 

thesis primary energy consumption has been interpreted to include the energy 

consumption of the plant in question but not the energy consumption during the 

previous stages of the fuel cycle, such as fuel production, transportation or storage.  

Primary energies are converted to secondary energies, such as electricity, steam or oil 

products, in transformation processes. From the energy consumer point of view, for 

example the waste heat from the industrial processes can also be called secondary 

energy. 

Final energy can be either primary (e.g. natural gas) or secondary (e.g. electricity) 

energy (EC, 2009c). IEA (2008b) defines final energy as „the energy supplied to the 

consumer in each end-use sector, which is ultimately converted into heat, light, motion 

and other energy services‟. However different definitions and terms are used in 

different statistics. 

Eurostat (2009) uses the term „gross inland consumption‟ instead of primary energy 

consumption and divides final consumption into „final non-energy consumption‟ and 

„final energy consumption‟. Non-energy consumption includes mainly energy used for 

oil refining in the chemical industry. 

In Finnish energy statistics the terms „total consumption of energy‟ and „final 

consumption of energy‟ are used. Total consumption of energy describes fuels used in 

the production and processing of energy, and energy used in direct, final consumption. 

Total consumption of energy includes data on the use of fossil fuels, energy peat, 

renewable energy sources, nuclear energy and net imports of electricity. Final 

consumption of energy measures the consumption of final energy products, i.e. 

electricity and heat and fuels used for space heating of buildings, transport and 

industrial processes. (Statistics Finland, 2010c) 

The organisations supervising the interests of different industries, such as Confederation 

of European Paper Industries (CEPI), have their own ways to collect and present 

statistics. CEPI (2009) presents total primary energy consumption, including the 

fraction of biomass in total primary energy consumption. In addition, total electricity 

consumption – divided into total electricity produced at the site, purchased electricity 

and sold electricity – is presented. 

Regardless of the different terms used in different statistics, basically they all consider 

both primary and final energy consumption. Final energy consumption differs from 

primary energy consumption or total energy consumption in that it does not include 

energy transformation / conversion and transmission / distribution losses. In this thesis 

the terms „primary energy consumption (PEC)‟ and „final energy consumption‟ are 

used. 
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3.3 Energy efficiency and CO2 indicators 

There are a number of indicators which can be used to monitor changes in energy 

efficiency (Patterson, 1996). In industry, specific energy consumption (SEC) is the most 

commonly used measure of energy efficiency. Sometimes, the terms „energy intensity‟ 

(IEA, 2007c, NRCAN/CSPA, 2007), ‟energy intensity value‟ (Worrell et al., 2008) or 

„energy consumption intensity‟ (Tanaka, 2008) are used instead of SEC. 

SEC is a physical-thermodynamic indicator defined as (EC, 2009c) 

producedproducts

ortedexpenergyimportedenergy

producedproducts

usedenergy
SEC  (1) 

where SEC is measured in GJ/t, i.e. the indicator reflects the ratio of energy input and 

output as physical products. SEC can be used to analyse trends in energy efficiency in a 

manufacturing process, sector or even at the national level. 

Industrial processes often use energy in different forms, such as fuels, steam and 

electricity, and the SEC of such processes is calculated as (EC, 2009c) 

producedproducts
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where EFuels is fuel consumption, ESteam is steam consumption and EElectricy is the 

electricity consumption of the process. Eq. (2) defines SEC as final energy 

consumption. If the energy consumption of steam and electricity production is taken 

into account, the SEC as primary energy consumption is defined as (modified based on 

EC, 2009c) 
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where Steam is the efficiency of steam production and Electricity  is the efficiency of 

electricity production.  

In order to monitor the progress of energy efficiency, an energy efficiency index (EEI) 

is defined as 

 
SEC

SEC
EEI

ref           (4) 

where SECref is the reference value for the specific energy consumption. The reference 

value can be defined on the basis of the best available technology (BAT), a benchmark 

value of the product in question, or a specified reference period. 



22 

 

 

Similarly, the specific CO2 emissions, also called CO2 intensity (IEA, 2007c) or CO2 

emission-intensity indicator (NRCAN/CSPA, 2007), of industrial products can be 

calculated as 

producedproducts

emissionsCO
COSpecific

2

2
       (5) 

where specific CO2 is measured in  t CO2/t product.  

Many organisations have developed national level energy efficiency indicators (WEC, 

2008; APEC, 2001) and energy indicators for sustainable development (IAEA, 2005) to 

allow international comparisons. The Odyssee project has defined energy efficiency 

indicators for the EU countries (ADEME, 2007). Often, economic indicators, also called 

energy intensities, such as energy consumption per GDP, are used. A detailed 

description of different energy efficiency indicators has been presented by, among 

others, Patterson (1996) and VTT (2007). 

There are many indicators or methodologies that can be used to evaluate CO2 emissions, 

other environmental impacts and sustainability. Like energy intensity, emissions per 

GDP can be called emission intensity. For example, China measures its CO2 emission 

trend based on emission intensity: when the economy is growing fast, the emissions per 

GDP decline. Antikainen (2010) lists the following methodologies than can be used to 

evaluate ecological sustainability: life cycle assessment (LCA), ecological footprint, 

carbon footprint, water footprint, material and mass balances, LCA based on input-

output analysis, exergy analysis and other thermodynamic methods. Lovins (2004) 

presented a methodology to analyse the energy efficiency of the fuel cycle, i.e. along the 

chain of energy conversions. Lovins (2004) stated that the downstream savings, nearest 

the customer, are the most important because the saving in energy end-use reduces 

energy consumption and environmental impacts at all stages before the end-use stage.  

3.4 Previous studies related to energy efficiency and CO2 
emissions in industry 

The oil crisis in the 1970s increased the interest to find energy efficient solutions and 

energy savings. Since then, the tightening climate policy has increased this interest even 

more.  

IPCC lists the following sector-wide energy efficiency measures for the industrial 

sector: benchmarking; energy management systems; efficient motor systems, boilers, 

furnaces, lighting and heating, ventilating and air conditioning (HVAC) and process 

integration (Bernstein et al., 2007). In addition, there are numerous industry-specific 

energy conserving technologies such as dry quenching of coke in the iron and steel 

industry and the shoe press in the pulp and paper industry.  
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At the European Union level, the energy efficiency measures are widely covered in the 

Reference Document on Best Available Techniques for Energy Efficiency, also called 

the BREF-document of energy efficiency (EC, 2009c). Based on the BREF-document 

of energy efficiency the Finnish energy efficiency BAT reference document was drawn 

up (Heikkilä et al., 2008). 

Opportunities to improve energy efficiency and reduce CO2 emissions have been 

studied widely both in the pulp and paper industry and the iron and steel industry. 

Energy efficient pulp and paper making is studied in countries with significant pulp and 

paper production, such as Finland, Sweden, Canada and the USA. The research of the 

steel industry is more diverse. 

In Finland, Tekes, the Finnish Funding Agency for Technology and Innovation, has 

financed many technology/research programmes related to the pulp and paper industry 

since the 1980s. These include Raina (1988-1992), Kuitu (1988-1992), Sustainable 

Paper (1993-1998) and Process Integration Technology Programme (2000-2004). 

Climate issues have been studied in the ClimTech (1999-2002) and ClimBus (2004-

2008) programmes. Biorefining technologies are studied and developed in the 

BioRefine technology programme of Tekes (2007-2012) and the Future Biorefinery 

research programme of Forestcluster Ltd
3
. At the turn of the millennium the Finnish 

Paper Engineers Association and TAPPI published the Papermaking Science and 

Technology Series. The recently updated issue 6 (Part 2) considers energy issues 

(Tikka, 2008), updated issue 19 environmental issues (Dahl, 2008) and updated issue 9 

energy management in drying (Ahtila et al., 2010). Among others, the Technical 

Research Centre of Finland (VTT) and Aalto University School of Science and 

Technology have conducted numerous studies concerning energy efficiency and CO2 

emissions in pulp and paper production. Process integration
4
 has been one of the main 

topics of energy efficiency research (Laukkanen, 2003; Tuomaala 2007). 

Tekes has also had research programmes related to the iron and steel industry, such as 

Sula2 (1993-1998), where energy-efficient production of base metals was studied. 

Fimecc, Finnish Metals and Engineering Competence Cluster, has a programme called 

LIGHT (Light and Efficient Solutions) that finds solutions to reduce the energy 

consumption and CO2 emissions of metal products by minimising their weight. Also, 

the Academy of Finland has a programme called SusEn (Sustainable energy, 2008-

2011) under which the project GREENSTEEL studies the hidden potential for gross 

reduction in energy demand and emissions in steelmaking.  

In Sweden, the optimisation of industrial energy systems and the development of 

process integration tools, such as advanced pinch analysis and mixed-integer linear 

programming (MILP), have been the focus areas of energy research in industry. 

Chalmers University of Technology, the Royal Institute of Technology, Linköping 

University and Mälardalen University have studied energy efficiency and CO2 

                                                 
3
 Forestcluster Ltd  is the forest sector‟s strategic centre in Finland. 

4
 Process integration can be defined as a collection of strategies, methods and tools that focus on the 

efficient use of resources (energy, raw materials, water, and capital) on a systems level. 
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emissions in the pulp and paper production for years (Axelsson, 1998; Bengtsson et al., 

2002; Heidari Tari & Söderström, 2002, Möllersten et al., 2003, Axelsson & Berntsson, 

2008, Zhang et al., 2009). 

In Canada, the Pulp and Paper Research Institute of Canada (Paprican) and Canmet are 

the central organisations doing energy research in industry. Under the Canadian 

Industry Program for Energy Conservation (CIPEC), Paprican studied the energy cost 

reduction aspect of energy efficiency in the pulp and paper industry (Francis et al., 

2002). The CanmetENERGY Industrial Process Optimization group collaborates with 

manufacturing sub-sectors such as pulp & paper and iron & steel (Canmet, 2010). In the 

USA, the Lawrence Berkeley National Laboratory has studied the energy efficiency 

improvement and CO2 emission reduction opportunities of various industrial sectors, 

including the paper and pulp industry (Martin et al., 2000) and the iron and steel 

industry (Worrell et al., 2001). 

Energy consumption and CO2 emissions in the steel industry have been studied at the 

national level in many countries, such as Japan (Gielen & Moriguchi, 2002), China 

(Price et al., 2002), Canada (NRCAN/CSPA, 2007), Mexico (Ozawa et al., 2002) and 

Sweden (Sandberg et al., 2001). Also mill- and process-specific analyses (Petela et al., 

2002; Worrell et al., 2008) have been made.  

International benchmarking studies on energy efficiency performance and CO2 

emissions have been made for manufacturing industries (Farla et al., 1997; Eichhammer 

and Mannsbart, 1997; Lehtilä et al., 1997; Karbuz, 1998; Farla and Blok, 2001; 

Phylipsen et al., 2002; IEA, 2007c; JISF, 2007). The World Steel Association 

(worldsteel) benchmarks the improvements in energy use and material efficiency of its 

member companies (worldsteel, 2008). Benchmarking studies are typically based on a 

comparison with the best performance data, i.e. best practices. The most recent world 

best practice energy intensity values for selected industrial sectors have been collected 

by Worrell et al. (2008).  

National energy efficiency benchmarking for industries has been applied in the 

Netherlands and Belgium. In 1999, the Dutch government concluded an Energy 

Efficiency Benchmarking Covenant with the energy-intensive industry (IEA, 2009c). 

Also in Belgium, in the Flanders region, a benchmarking covenant was made with large 

energy-intensive industrial companies (IEA, 2006). Under both covenants, companies 

undertake to be among the top world performers in terms of energy efficiency by 2012. 

In the Netherlands and Belgium the benchmarking approach has also been applied to 

allocate emission allowances under the EU ETS. The possibility of using an EU-wide 

benchmark-based allocation methodology for the industrial sectors under international 

competition, such as the iron and steel industry, from 2013 onwards has been studied 

(Neelis et al., 2008). 

At the international and national level the potentials for improving energy efficiency 

and reducing CO2 emissions are typically evaluated on the basis of scenario studies. For 

example, the International Energy Agency (IEA) is using this methodology in the World 

Energy Outlook (WEO) reports (IEA, 2007a; IEA, 2009a). Also the Intergovernmental 
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Panel on Climate Change (IPCC) has developed emission scenarios to analyse the costs 

and benefits of different approaches to mitigating climate change (IPCC, 2007). Energy 

efficiency plays a key role in CO2 emission reduction across both IEA and IPCC 

scenarios.  

The Finnish Ministry of Employment and the Economy (MEE, 2008) has created the 

Long-Term Climate and Energy Strategy, which aims to meet the EU‟s 20-20-20 

targets. The Finnish Prime Minister‟s Office (2009), Finnish Energy Industries (2009b) 

and VTT (2009) have presented their scenarios and visions to reduce Finland‟s 

greenhouse gas emissions by 2050. The report by the Finnish Energy Efficiency 

Committee (2009) lists 20 measures to save energy and improve energy efficiency in 

industrial and service sectors, including, among others, the improvement of economic 

support mechanisms and providing information on the energy efficiency of products. 

Also, non-governmental organisations (NGOs), such as Greenpeace (2008) and Friends 

of the Earth (Heaps et al., 2010), have presented their own scenarios. Energy efficiency 

is high on the agenda in all of those scenarios. However, the emission reductions 

achieved by energy efficiency improvements of different scenarios are difficult to 

compare, because the background information presented in the reports is restricted.  

The costs of emission reduction options, such as energy efficiency improvement, have 

been analysed in many studies. McKinsey (Enkvist et al., 2007; McKinsey, 2009) has 

presented the widely referenced global greenhouse gas abatement cost curves beyond 

business-as-usual 2030, which revealed several opportunities to improve energy 

efficiency with negative abatement cost, such as motor systems efficiency and 

insulation retrofit. Also, the IEA found end-use efficiency having negative marginal 

emission reduction costs when CO2 emissions reductions relative to the baseline for the 

global energy system in 2050 were evaluated (IEA, 2008c). Similarly, in Stern Review 

(Stern, 2006) an illustrative marginal abatement cost curve and aggregate carbon 

abatement cost curve for the UK show negative marginal abatement costs for energy 

efficiency. Villa (2007) found that also in the Finnish forest industry it is possible to 

achieve carbon emission reductions based on energy saving investments with negative 

costs (the payback time of energy saving investment is less than one year). Although 

marginal abatement cost curves are powerful for analysing emission reduction options, 

there exist a number of methodological problems, such as the abatement costs are not 

always clear and there is no unique baseline reference technology (IEA, 2008c). 

3.5 Challenges related to measuring energy efficiency and CO2 
emissions 

Regardless of multiple energy efficiency indicators, the evaluation of energy efficiency 

improvement and related CO2 reduction potential is not so straightforward. In many 

studies, the principles upon which the energy consumption and CO2 emissions have 

been calculated are not presented unambiguously.  
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It has been found that there are many issues causing problems when energy efficiency 

and its development are measured. Karbuz (1998) and Farla and Blok (2001) emphasise 

the selection of appropriate data when energy efficiency indicators are used as a basis 

for policymaking or international comparisons. Among others, the following potential 

problems were identified: the definition of system boundaries, the calorific values used, 

the non-energetic use of fuels, the fuel classification and utilisation of unconventional 

fuels, as well as the quality of data collection. The following challenges listed by Ahtila 

et al. (2010) are discussed in greater detail below: variables affecting energy efficiency, 

the allocation problem, system boundary definitions and energy valuation. 

Various factors other than the development of energy efficiency affect changes in the 

energy consumption of industrial processes (Eichhammer and Mannsbart, 1997). In 

addition to process specification, the SEC and specific CO2 emissions of an industrial 

plant depend on process performance parameters such as the production rate, operation 

time and product quality. In addition, the utilisation of recycled materials is a major 

factor affecting the product mix and energy consumption of the industrial sector. 

Therefore, differences in indicators between countries may reflect the difference in 

product mix, i.e. the structure of an industrial sector (IAEA, 2005; Farla et al., 1997; 

Farla and Blok, 2001; Phylipsen et al., 2002; Möllersten et al., 2003). For example, 

Finland is a net exporter of energy-intensive products, such as paper and steel (CEPI, 

2007 and worldsteel, 2009) and also a net exporter of emissions (i.e. production of 

exported products causes more emissions in Finland than production of imported 

products abroad), which makes Finland an exception among the EU countries (Heaps et 

al., 2010). Outside the EU there are other countries similar to Finland losing the benefit 

of recycling, such as the pulp and paper sector in Canada. It is noteworthy that Canada 

does not face the same emission reduction targets as Finland has to meet under the EU 

ETS, which may have effects on the competitiveness of the industrial products in the 

international markets. 

In order to allocate the benefit of CHP production, i.e. fuel conservation between heat 

and electricity, many different methods have been developed. First, different allocation 

methods were used to price the heat and electricity produced. Recently, the allocation of 

CO2 emissions in CHP power production has also become an important issue. The cost 

allocation is needed when different products of a CHP plant are sold to the market. The 

allocation of CO2 emissions to electricity and heat is not needed under the EU ETS, 

since the CO2 emissions are monitored on the basis of realised fuel consumption at the 

plant level. However, nowadays an increasing number of consumers are interested in the 

environmental impacts and carbon footprint of products. In order to calculate the 

specific CO2 emissions of different industrial products, the CO2 emissions of the 

electricity and heat consumed have to be determined and allocated to different products. 

Analogically, in LCA and environmental/carbon footprint analysis raw materials, 

energy consumption, CO2 emissions and other environmental burdens have to be 

allocated to different products. González et al. (2003) stated that the allocation of 

environmental loads in processes with several useful products (co-products) is one of 

the most important and frequent methodological problems to be tackled when carrying 

out the life cycle inventory.  
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The recyclability of products is not usually considered when the SEC and CO2 

emissions of industrial production are monitored. Therefore, one aspect of the allocation 

problem is the allocation of the benefits of material recycling between primary and 

secondary production. Ekvall and Tillman (1997) have analysed different allocation 

procedures that can be considered in open-loop recycling, i.e. in a recycling process that 

produces material or energy for use in more than one product. 

The importance of clearly defining the system boundary has been noted in some studies, 

such as Larsson et al. (2004), IEA (2007c) and Tanaka (2008). The study made by 

Tanaka (2008) showed that the specific energy consumption of crude steel production in 

Japan can range from 16 to 21 GJ/t, depending on the system boundaries set for the 

analysis and the conversion coefficient used for electricity production. One problem 

related to the definition of system boundaries is that the losses from self-production (or 

auto-production) of electricity might be included in the specific energy consumption of 

the industrial sector or, alternatively, in the energy sector (Farla and Blok, 2001). In the 

real estate sector, the wider system boundary and the thermodynamic value of energy 

have already been taken into account in legislation and standardisation. The standard 

EN 15603 (CEN, 2008) describes the methodology for calculating the integrated energy 

performance of buildings presents informative values for primary energy factors and 

CO2 production coefficients. Such factors and coefficients are not yet available for 

industrial sectors. 

Widening of the system boundary requires consideration of the industrial plant‟s 

connections to the outside society, such as the demand for external electricity. This 

creates an additional allocation problem, i.e. how the CO2 emissions of the electricity 

purchased from the markets should be taken into account. The way in which the 

purchased electricity is assumed to be produced affects the emissions considerably 

(Siitonen & Ahtila, 2002; Wolf & Karlsson, 2008). Sometimes the average grid-based 

electricity production is used. For example, Motiva‟s instructions for calculating the 

CO2 emissions of an individual energy consumer in Finland suggest the use of the 

average emission factor for grid-based electricity production if the real emission factor 

for purchased electricity is not obtained from the electricity supplier (Motiva, 2004). 

However in economics, rational decisions are based on weighting up marginal costs and 

benefits (Sloman, 2000). There is a common view that the marginal approach should be 

used for change-oriented studies, since the marginal data represent the effects of a small 

change in the output of products or services (Wolf and Karlsson, 2008; Ekvall et al., 

2005). This approach has been used in many previous studies (Möllersten et al., 2003; 

Karlsson et al., 2009). 

The value of energy can be measured in monetary terms or thermodynamic criteria. 

Nowadays renewability and environmental-friendliness, especially low CO2 emissions, 

have become important valuation criteria, too. In thermodynamics, the concept of 

exergy enables the consideration of different qualities of different energy products. 

Exergy represents the ability to do work, i.e. the maximum mechanical work output that 

can be obtained from a certain energy input. In reality, all processes are irreversible, 

generating entropy and reducing the maximum mechanical work output. The exergy 

analysis is described in the literature (Bejan, 1996; Szargut, 2005) and widely applied to 
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thermodynamic evaluation of thermal power plants (Ferdelji et al., 2008; Wølneberg & 

Ertesvåg, 2008; Siitonen & Rauhamäki, 2009). The exergy of electricity is equivalent to 

its energy content (equal to 1) because it can be fully converted into other forms of 

energy. The exergy value of primary energy is also around 1; for example the standard 

chemical exergy of natural gas is 1.04 times the lower heating value of fuel (Szargut, 

2005). However, the thermodynamic value of heat depends on temperature and is 

therefore lower: for example, the exergy of district heat at a temperature of 120 C is 

only 0.29 times its energy content. Energy analysis considers the value of electricity and 

heat to be equal, which may favour heat conservation investments. 

Both fuel and electricity prices are typically determined in open energy markets. 

Therefore the economic value of energy is a major source of uncertainty in the 

evaluation of energy investments. Recently, climate policy has become an additional 

source of uncertainty. In response to increasing uncertainty industrial actors increase the 

flexibility of their operations, for example by investing in multi-fuel energy systems. 

Laurikka (2004) stated that the value of flexibility in energy investments grows as the 

uncertainty caused by climate policy increases. Based on Ashby‟s Law of Requisite 

Variety (Ashby, 1958), strategic flexibility increases the company‟s capability to 

generate the variety of responses required to maintain stability in a dynamic 

environment (Sanchez, 1995). 
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4 Results and discussion 

4.1 The evaluation of different challenges involved in 
measuring energy efficiency and the related CO2 emission 
reduction 

4.1.1 Variables affecting energy efficiency and CO2 emissions in 
industry 

The SEC and specific CO2 emissions of an industrial plant depend on process 

specification and process performance parameters such as the production rate, operation 

time and product quality. The case study in Paper I showed that the most important 

variables affecting the specific energy consumption of a steel mill were the production 

rate of crude steel and the ratio of utilised hot metal and recycled steel. Increasing the 

mill‟s own electricity production due to more efficient use of process gases seems to 

decrease the SEC of the mill site. Also, sales of energy outside the mill improve energy 

efficiency.  

Naturally, the most significant variable affecting specific CO2 emissions is coal 

consumption, since the coal used at the mill is the major source of CO2 emissions. 

However, the confidence interval of coal consumption in the PLS analysis was wide, 

which can be partly explained by the variation in coal quality. In addition, the PLS 

analysis does not take cross-effects between different variables into account. So, in 

reality the variation in recycled steel consumption, purchased coke and crude steel 

production might have a greater influence on the specific CO2 emissions. The increasing 

utilisation of recycled steel and crude steel production decrease the specific CO2 

emissions.  

The influences of material recycling on energy efficiency were analysed in greater detail 

in Paper II also from the pulp and paper industry point of view. The analyses show 

clearly that the use of recycled material as a substitute for primary raw materials reduces 

average specific energy consumption both in the iron and steel industry and in the pulp 

and paper industry. The recyclability of industrial products differs from sector to sector. 

Usually, the recycling affects the raw material quality. Such is the case in paper 

recycling, where the fibre quality is reduced and the fibre becomes shorter. These 

products can be recycled a limited number of times. However, for some products, such 

as steel, the quality of the material remains almost unaffected. 

Paper II also showed that the utilisation rate of recovered materials of industrial 

products should be taken into account when the specific energy consumptions of 

industrial sectors are compared internationally. However, it has to be noted that there 

might be other differences in the production mix, such as the quality of the end-

products, between different countries. 
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4.1.2 Allocation problem 

In Paper II it was shown that the use of recycled materials improves energy efficiency. 

Often, the products that utilise recycled materials get the whole benefit from recycling. 

For example, the EU ETS gives the whole benefit to the plant using recycled materials 

and thus having lower emissions. Therefore, emissions trading promotes the use of 

recycled materials but gives no incentive to develop or produce recyclable products. 

From the Finnish point of view, it should be noted that large exports of highly energy-

intensive products weaken the availability of recycled materials for domestic markets. 

Therefore, the structural change towards secondary production is not easy and some part 

of the energy and CO2 emission benefits of exported recyclable materials should be 

allocated to primary production. Paper II presents one way to allocate the benefits of 

material recycling between primary and secondary production. Allocation in cascade 

gives lower specific energy consumption and CO2 emissions to primary production, 

which would give an incentive to produce recyclable materials. However, recovered 

materials should have some advantages over virgin raw materials – such as lower price, 

greater ease of use, higher quality or some other beneficial properties - to provide an 

incentive for their use. 

Paper III discusses the allocation of fuel consumption and costs between heat and 

electricity in CHP plants. There is no consistent way to valuate the process steam in 

industry, and no single useful method for allocating fuel costs to heat and power. 

Instead, the most suitable method may vary, depending on 1) the system boundary 

selected, i.e. the decision-making perspective 2) the type of CHP plant and 3) energy 

prices. Based on the results of this paper, the exergy method fits well with the combined 

cycle gas turbine (CCGT) plant with a condensing unit and constant fuel input. On the 

other hand, it is reasonable to conclude that the market-based method is the most 

appropriate way to valuate the heat price when heat conservation reduces the production 

of CHP electricity.  

 

Both the energy method and the benefit distribution method typically used in Finnish 

industry overestimate the profitability of heat conservation investments from the mill 

perspective. The differences between the allocation methods should be understood and 

the most suitable method for each case should be selected on the basis of an analytical 

review of different allocation methods. 

4.1.3 Definition of the system boundary  

The analyses made in Paper I show that many common problems identified in energy 

efficiency studies of the steel industry can be avoided by a clear definition of the system 

boundaries. At the same time it is easier to see the difference between the final energy 

consumption and primary energy consumption of an industrial plant with its own energy 

production. 
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Figure 1 shows the different system boundaries considered in this study: A) process; B) 

mill and C) mill site. 
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Figure 1. System boundaries of a steel mill 

Paper I pointed out that depending on the perspective, different system boundaries are 

needed for energy efficiency and emission reduction studies. From the benchmarking 

point of view, it is essential that the system boundaries of compared systems, such as 

industrial plants, are defined in a similar way. Each steel mill has its individual 

configuration and in particular, there are differences in the process integration of the 

mills. Typically, the more integrated the mill, the more self-sufficient it is in 

intermediate products and energy. However, regardless of efficient utilisation of process 

gases, the energy consumption and CO2 emissions of an integrated mill might be higher 

than in a mill using more intermediate products. 

Under the EU ETS allowances are allocated at the plant level, so the definition of the 

system boundary should be clear. However, the self-production of energy, especially 

CHP production, raises the question of whether it should be part of the electricity sector 

or the heat-consuming industrial sector (IEA, 2008d). Another challenge is how the 

integration rate of the mill can be taken into account in the allocation of emission 

allowances. The increased process integration typically improves energy efficiency at 

the mill site, but may increase CO2 emissions. For example, energy sales seem to 

improve the energy efficiency, but increase CO2 emissions at the site. Also own coke or 

sinter production increases CO2 emissions at the mill site and consequently the mill‟s 

need for emission allowances. 

Although reducing the integration rate of an industrial plant might seem an attractive 

option for cutting CO2 emissions at the mill site, the global effects of lowering the 
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integration rate might be negative. Therefore, the integration rate of an industrial plant 

should be taken into account in policymaking by widening the system boundary. For 

example, if a benchmark-based allocation methodology is applied in the future to 

allocate emission allowances to the energy-intensive industries for free, the clear 

definition of system boundary and the inclusion of the climate effects of intermediate 

products used in the production process are crucial questions. Because the emission 

allowances have economic value, the accuracy and fairness of the allocation 

methodology have significant effects on the competitiveness of those industries. For 

reaching the global reduction of CO2 emissions, the energy efficiency of industrial 

plants should be the central criterion also in CO2 emission benchmarking as well. 

Papers IV and V discuss the effects of heat conservation on CHP production. Depending 

on the design of the power plant, heat conservation can affect fuel consumption, 

electricity production or/and district heat production. If a reduction of the heat load 

lowers electricity production, this reduction may have to be compensated for at the 

national level. When there are implications outside the mill site, a wider system 

boundary than the mill site has to be used when energy conservation or CO2 emission 

reduction is analysed.  

In Paper III different system boundaries are used to describe different decision-making 

perspectives. The effects of a heat conservation investment as well as the profitability of 

the investment seem different from the mill, power plant and mill site perspectives. In 

addition, Paper III states that widening of the system boundary helps to avoid the fuel 

allocation problem. 

4.1.4 The valuation of energy 

Paper III discusses both the thermodynamic value and monetary value of energy. 

Depending on the power production type, either thermodynamic value (exergy method) 

or monetary value (market-base method) is suitable to evaluate the profitability of a heat 

conservation investment.  

Paper V studies what kind of effects operational flexibility and changes in energy prices 

have on the realisation of the energy conservation and CO2 reduction potential of an 

energy efficiency investment.  The paper shows that energy prices affect the selection of 

operational option when there is flexibility in the process. Producing additional 

electricity has been the most feasible option during periods of high electricity prices. 

When the EUA and electricity prices collapsed in 2007, the sale of biomass was the 

most feasible option. Overall, after introducing the EU ETS at the beginning of 2005, 

the variation of cost saving in the different operational options has been larger than in 

the previous years. The results showed that high EUA prices give an incentive to reduce 

CO2 emissions at the mill site and to achieve the CO2 reduction potential identified in 

the investment phase.  
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4.2 The realisation of the energy conservation and CO2 
emission reduction potential in energy-intensive industries  

4.2.1 Effects of system boundary selection 

Paper IV shows that a heat conservation investment in a single industrial process may 

have different implications for primary energy consumption and CO2 emissions at the 

mill site and national levels. Therefore, the national-level potential for energy 

conservation or emission reduction cannot be estimated by summing up mill-site effects, 

but also the connections to the outside society have to be taken into account. In the case 

of internationally integrated energy systems, such as the Nordic electricity market, there 

might be some transboundary effects, too. 

4.2.2 Effects of operational flexibility and changes in energy prices 

The case study in paper V shows that increased operational flexibility increases the cost 

savings of an energy conservation investment but may weaken the realisation of the 

energy conservation and CO2 reduction potential. In the case of high operational 

flexibility in the system, the operator of an industrial power plant has greater ability to 

optimise in a number of different ways and consequently it is more difficult to estimate 

the CO2 reduction. Therefore, increased operational flexibility may lead to less than 

optimum CO2 reduction when the optimisation is made in the economic dimension – in 

our case study only around 70% of the expected CO2 reduction potential was realised in 

the flexibility cases.  

Uncertainties in the energy markets, such as fluctuating energy prices, increasing 

dependence on imported fuels and changing climate policy, increase the interest of 

industrial actors in investing in the operational flexibility of energy production. From 

the policymaking point of view it is important to understand that increasing operational 

flexibility has the potential to enable improved sustainability but that the flexibility can 

also be used to maximise short-term profitability. Such maximisation may result in less 

than optimum CO2 reduction. 

4.3 Discussion 

The results above indicate that the effects of the challenges involved in measuring 

energy efficiency have to be understood and analysed before any conclusions on the 

contribution of energy efficiency towards reducing CO2 emissions can be made. These 

results can be exploited in understanding the complicated interdependence between 

energy efficiency and CO2 emissions as well as developing monitoring systems and 

economic incentives to support energy efficiency improvement and CO2 emission 

reduction. 
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The known limitation of case studies is that the results cannot be necessarily 

extrapolated to other systems because each industrial plant has its own configuration. 

However, the selected case mills here represent typical Finnish industrial plants and 

Finland is acknowledged as an energy efficiency country internationally (IEA, 2007d), 

especially for good results achieved by voluntary energy conservation agreements 

between the Finnish authorities and industrial companies and the high share of 

combined heat and power (CHP) and district heating and cooling (DHC) production 

(IEA, 2008e). In Finland, CHP production has a very important role in industry, and 

therefore it is covered widely in this thesis. These results can be applied also to 

industrial plants in other countries with industrial CHP production. 

This thesis includes cases from the pulp and paper industry and the iron and steel 

industry, but excludes some other energy-intensive industries like the chemical industry. 

Many of the results presented here, such as those related to the system boundary 

definition, could also be applied to the chemical industry. However, the utilisation of 

recyclable materials is not so relevant in the chemical industry: for example, many 

plastic products cannot be recycled. 

The basis of this study has been the EU energy and climate policy and legislation. 

However many other countries have their own energy efficiency and emission reduction 

targets and, for example, in Japan a national emissions trading system is under 

development. So, the differences in policy framework should be remembered when 

these results are evaluated. Another aspect, mentioned in paper IV, is that the emission 

factor for grid-based electricity has a big influence on the evaluation of emission 

reduction at the national level: in the Nordic countries the difference between the effects 

at the mill site and national level is large, because coal-based condensing power with a 

high emission factor is the marginal production most of the time. In countries where no 

emissions trading or high carbon taxes exist, coal-fired power plants are often among 

the cheapest, so emissions reduction based on the marginal approach might give a lower 

emissions reduction than the approach based on average grid-based electricity 

production.  

The scope of this study is limited to impacts at the national level. However, the Nordic 

energy system is integrated, so there might be some transboundary effects, too. 

This study discusses the importance of an appropriate system boundary when 

implications of changes in electricity purchase for CO2 emissions are evaluated. The 

same question is relevant in the case of other raw materials and intermediates, such as 

chemicals used in pulp and paper production or pellets, sinter and coke used in steel 

production. This issue is considered from the steel industry perspective in Paper I. 

Paper II analyses the effects of recycling on the energy efficiency of iron and steel 

production and pulp and paper production. In the steel sector, the CO2 emissions of 

primary production are considerably higher than those of secondary production. In the 

pulp and paper sector this is not necessarily the case. Unlike mills producing virgin 

pulp, mills using recycled fibre have no internally produced heat available. Whereas the 

energy production of virgin pulp mills is based on renewable biomass, mills using 
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recycled fibre may have no other choice than the use of fossil fuels. So, although the 

energy efficiency of secondary production is better, the CO2 emissions may be higher. 

One source of uncertainty is the reliability of the used input data. Especially, in Paper II, 

where international statistics have been used, more information on the accuracy of the 

statistics and the reasons for statistical differences would be needed to compare the 

energy efficiencies of industrial sectors in different countries. 
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5 CONCLUSIONS 

The aim of this thesis was to clarify how improvements in industrial processes 

contribute towards reduced CO2 emissions. The statement, that energy efficiency 

improvement is the fastest and cheapest way of reducing CO2 emissions generalises and 

oversimplifies the reality. There are different energy efficiency measures and some of 

them are not economically attractive. Secondly, it is a known fact that due to market 

barriers and obstacles the expected energy efficiency potential is lower than the 

economically feasible potential. This thesis clearly concretises the challenges of 

measuring energy efficiency and evaluating CO2 reduction potential in relation to it. 

Based on the key findings of the study the following conclusions can be made:  

- Many variables affect specific energy consumption in the steel industry. Therefore, 

it is difficult to know what the effects of energy efficiency on CO2 emissions are 

and what the consequences of other factors, such as changes in production rates, 

are. The utilisation of recycled material can reduce the specific energy consumption 

of steel production and pulp and paper production significantly. Therefore, it is a 

variable that has to be taken into account when the energy efficiencies of different 

mills are compared. 

- The selected cost allocation method used to valuate heat in CHP production 

significantly affects the profitability of heat conservation investments from the mill 

perspective. Therefore, some allocation methods, such as the energy method and 

the benefit distribution method, typically overestimate the feasibility of heat 

conservation. Due to heat conservation, i.e. reduced heat load, the production of 

CHP electricity at the mill site may be reduced, which increases the demand for 

external electricity.  

- The realised CO2 reduction of a heat conservation investment may seem totally 

different from the mill site and national level. Mill site analyses can either 

overestimate or underestimate the potential for primary energy conservation and 

CO2 emission reduction from the national perspective. Therefore, an adequate 

system boundary should be used when the contribution of an individual energy 

efficiency investment towards meeting the targets for energy efficiency 

improvement and CO2 emission reduction is evaluated: 

  The energy efficiency target has been set at the national level, so the 

connections of an energy efficiency investment to the outside society should be 

taken into account. 

  Climate change is a global challenge, so it should be ensured that emission 

reduction measures, such as energy efficiency improvement, implemented in 

an individual plant reduce emissions also globally. 

  The emission reduction potential of an energy efficiency improvement is not 

realised automatically; it has to be made economically attractive. So, it should 
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be ensured by proper regulation and supporting systems that mill site decision-

making leads to the desired results from the national perspective, too.  

- To avoid the economic risks of changing policy, industrial actors increase the 

flexibility of their operation. Increased operational flexibility and changing market 

conditions, such as energy and emission allowance prices, complicate the 

evaluation of the emission reduction potential and often reduce the exploitation of 

the expected emission reduction potential.  

In addition, the following conclusions, especially from the point of view of Finnish 

industry, can be made: 

 

- A high export rate of industrial products lowers the possibility to utilise recycled 

materials. Therefore, part of the benefits of recycled material utilisation should be 

allocated to primary production – for example, in the allocation of emission 

allowances. 

- The potential for energy conservation and CO2 emission reduction in Finnish 

industry cannot be estimated by summing up the energy conservation measures 

reported in the energy analysis reports under the voluntary energy efficiency 

agreement scheme for the energy-intensive industry sector. 

- In the case of an individual energy efficiency investment the CO2 emissions of 

purchased electricity should be evaluated based on the marginal approach instead of 

the approach based on average grid-based electricity production. 

- Both the energy method and the benefit distribution method typically used in 

Finnish industry to allocate fuel consumption to electricity and heat production in 

the CHP plant overestimate the profitability of heat conservation investments from 

the mill perspective. The most suitable method in each case should be selected on 

the basis of an analytical review. 

Additional research work is needed to develop extended indicators and methodologies 

to monitor CO2 emissions and energy use concurrently. At the EU level the targets to 

reduce emissions and increase the share of renewable energy are legally binding and 

therefore improvement of energy efficiency may be regarded as a secondary goal. 

Energy efficiency improvement and CO2 reduction can often be achieved concurrently, 

but some emission reduction technologies, such as CCS, increase energy consumption. 

Therefore, combined energy efficiency and emission indicators should be developed. 

One option is to consider the change in energy use in relation to CO2 emission 

reduction. In this way the energy input curve of emission abatement - similar to the 

emission abatement cost curve - could be developed. That kind of curve would show 

clearly what emission reduction measures favour emission efficiency, too. Another 

challenge is to develop primary energy factors and CO2 production coefficients for 

industrial sectors. Energy use is typically used as input data in LCA and ecological and 

carbon footprint analyses. The intrinsic value of energy efficiency could be emphasised 

by analysing the energy footprints of industrial products. 
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