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1 Introduction 

Atomic defects in semiconductors often play an important role in the electrical and 
optical properties of the material. Intrinsic point defects such as atomic vacancies exist 
naturally in the lattice, although equilibrium concentrations are low at room 
temperature. However, defects can be introduced through different mechanisms during 
the growth and processing of the material.  Vacancy defects can be produced, e.g., in 
particle irradiation or ion implantation. Like other point defects, vacancies and their 
complexes can affect electrical properties by introducing electronic levels in the 
forbidden energy gap. They can also limit electrical performance by acting as 
electrically passivating compensation centres or as electron scattering centres. 
Regarding optical properties, vacancy-type defects can often have optical emission and 
absorption states. 

Positrons provide a unique tool for non-destructive solid-state materials 
characterisation, and have been used in a number of different experimental techniques 
for studying both bulk materials and thin layers and surfaces (see, e.g., Refs. [2–10] for 
introductions). Positrons implanted in a solid live shortly in thermal equilibrium in the 
atomic lattice before annihilation with one of the electrons. Information on the 
annihilation site is then carried by the gamma photons emitted in the reaction. During its 
lifetime and diffusion through the lattice, the positron can probe up to 106 lattice sites. 
Since especially atomic vacancies and other open-volume defects often act as effective 
“traps” for positrons, these can be detected and identified with a sensitivity often 
unmatched by other experimental techniques. The method is furthermore strongly 
supported by theory, adding to its power in defect studies. By varying sample 
temperature or illumination, one can also study vacancy charge states, optical 
transitions, and thermal stability. 

Perhaps the most common technique in the family of positron annihilation is lifetime 
spectroscopy, where one can observe and identify different annihilation states from the 
positron lifetime distribution, or spectrum. The annihilation rate is characteristic for 
each positron state in the lattice. Trapped states in vacancies generally have longer 
lifetimes due to the reduced local electron density. Lifetime spectroscopy hence gives 
information on the open volume and concentrations of vacancies. Typical positron 
lifetimes in crystalline solids are in the range of 100–500 ps. 

Another common technique in atomic defect studies uses the Doppler broadening of the 
511 keV annihilation line due to the momentum of the positron–electron (e+e−) pair. The 
electron momentum states are reflected in the energy line-shape, allowing one to 
distinguish between the chemical surroundings of different trapping defects, e.g., 
decorations. Vacancy concentrations can also be estimated to some extent from the 
Doppler broadening. Especially together the lifetime and Doppler-broadening 
techniques are a powerful combination in vacancy studies. 
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High-energy positrons from β+ decay or other nuclear reactions penetrate deep into the 
bulk of the sample, and therefore cannot be used as such when studying thin material 
layers, such as epitaxial films, or surfaces. To overcome this, slow-positron beams are 
used to produce monoenergetic low-energy positrons [4, 9, 11–15]. Since the positron 
affinity, or work function, can be negative for many common materials, high-energy 
positrons can be moderated to a beam within the eV-range by simple means [16]—the 
fast positrons are implanted in the moderator material, where they can achieve thermal 
equilibrium with the lattice and then be re-emitted from the surface with a kinetic 
energy roughly equal to the work function. However, only a small fraction, typically of 
the order of 10−4, of the initial fast positrons can be converted. Depending on the 
moderator geometry, most of the positrons are either annihilated inside the moderator or 
manage to escape the moderator before slowing down. Hence, in slow-positron beams, 
much stronger β+ sources are required than in bulk studies using fast positrons. 

Regarding lifetime spectroscopy, the drawback of the moderation process and the 
necessary transport stages in slow-positron beams is that the “birth” time (more strictly, 
the moment of implantation in the target sample) information is lost. However, several 
approaches to overcome this have been presented [17–33]. To date, the most prominent 
method has been established by the radio-frequency (RF) velocity-modulation of an 
initially direct-current (DC) beam of slow (~0.1–1 keV) positrons. These so-called 
pulsed beams can achieve characteristic time resolutions down to ca. 250 ps in full-
width at half-maximum (FWHM), comparing well with conventional (fast positron) 
lifetime spectrometers [34–38]. 

Nevertheless, regarding the application of positron lifetime spectroscopy to metals and 
semiconductor materials, nearly three decades since the introduction of the first pulsed 
positron beam, the scientific community is still—in view of existing facilities—
somewhat restricted to the study of bulk materials only. The evident complexity and 
budget of suitable lifetime beams are unfortunately often beyond the capacity of the 
typical (e.g., university) research unit. Indeed, worldwide there exist today only two 
slow-positron lifetime beams that can achieve sufficient time resolutions for 
applications in semiconductor materials research, one in Germany [36] and the other in 
Japan [38]. In this work, a new laboratory-scale pulsed slow-positron lifetime system, 
intended especially for studies in thin epitaxial semiconductor layers, is presented 
(Chap. 3) [1, 39–41]. The technical design is discussed and the performance 
characteristics of the instrument are demonstrated. 

Also in this work, slow-positron Doppler-broadening and lifetime spectroscopy have 
been applied in the investigation of point defects in indium nitride (InN) layers grown 
by molecular beam epitaxy (MBE) (Chap. 4). InN is under increasing investigation due 
to its potential in optoelectronics, telecommunication, high-speed and high-power 
electronics, and multi-junction solar cells [42–61]. Here, vacancy defects in different 
InN films are studied. In particular, effects of different growth factors and particle 
irradiation on the formation of In vacancies are investigated. 
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Results of this work show that indium vacancy (VIn) formation in plasma-assisted MBE-
grown wurtzite InN with In surface-polarity is quite insensitive to growth temperature 
and stoichiometric conditions (Publs. III & IV). On the other hand, GaN buffer layer 
optimisation appears to lead to smaller VIn concentrations in In-polar material, 
supporting the view that structural properties play a more important role in VIn 
formation than growth kinetics and thermodynamics. In N-polar films, the smallest VIn 
concentrations are recorded in samples grown under stoichiometric conditions. 

In He-irradiated MBE-grown InN, rapid thermal annealing is found to have notable 
effects on the irradiation-induced defects (Publs. V and VI). Near the film–substrate 
(Al2O3) interface, where structural imperfections such as extended defects are present 
due to the lattice mismatch, In vacancies are reorganised during the heat treatment. 
Elsewhere in the layer, a partial recovery of the VIn and negative-ion type defects is 
seen. These effects are possibly in connection with the improved electron mobility in 
the annealed films. 

The overview is divided as follows. In Chap. 2, an introduction to the positron 
annihilation techniques is given. The pulsed positron beam, with emphasis on the 
author’s contribution, is presented in Chap. 3. The studies in InN are discussed in Chap. 
4, followed by a short summary of this thesis in Chap. 5. 
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2 Positron annihilation in atomic vacancy-defect 
studies 

This chapter is based on Refs. [4, 6, 8, 10, 62, 63] and references therein. In this 
chapter, the two most common defect characterisation techniques within the field of 
positron annihilation, namely the Doppler broadening technique and positron lifetime 
spectroscopy, are introduced. Both techniques are based on the localisation of positrons 
at atomic lattice defects and detecting the resulting e+e− annihilation gamma photons. 
They are briefly illustrated in Figure 1. 

 

Figure 1. Simple illustration of the positron lifetime and Doppler broadening 
techniques. Based on Ref. [40]. 

Positrons implanted in a sample act as probes for open-volume atomic defects, such as 
atomic vacancies, because of the missing ion core repulsion at the defect site. Such 
defects are effective at trapping thermal positrons, diffusing through the atomic lattice 
as free charge carriers, into localised bound states. The vacancy detection range in 
semiconductor materials is roughly 1015–1019 cm−3, which coincides with typical carrier 
concentration ranges. Under varying temperature and illumination, charge states, 
thermal stability, and optical activity of vacancies can also be studied. 

The techniques are strongly supported by theory, since the positron states in the lattice 
can be calculated from first principles (see, e.g., Ref. [63]). Positron annihilation is 
especially powerful in complementing other experimental techniques, such as 
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photoluminescence, electron paramagnetic resonance, etc. In the following, the 
theoretical basis is shortly described. 

2.1 Positrons in solids 

Positrons can be implanted into bulk samples directly from β+-active isotope sources. 
The kinetic energy is quickly lost to the host lattice through ionisations and core 
electron excitations [64]. In the eV range, energy loss occurs mainly via electron–hole 
excitations and phonon emission, until the positron reaches thermal energy [64]. For 
positrons in the MeV range, the thermalisation time after impact on the surface is only a 
few ps [65, 66].  It then behaves as a free charge carrier in a delocalised state. In the 
following, it is assumed that only a single positron is present in the lattice, thereby 
omitting positron–positron interactions and excited states. 

The thermal positrons behave as free charge carriers and can be described by diffusion 
theory, presented below [63]. The positron diffusion length is 

( ) ,6 21τDL =  (1) 

where  denotes the positron diffusion constant and D τ  the lifetime in the lattice. 
Typical diffusion lengths are of the order of 100 nm, which corresponds to a few 
hundred atomic layers [67–70].  Trapping centres such as neutral or negatively charged 
vacancy defects have deep bound positronic states, and hence act as efficient “drains” 
for the diffusive positron, decreasing the diffusion length and affecting the lifetime [63, 
71]. Eventually, annihilation takes place with one of the electrons. The annihilation rate, 
or inverse positron lifetime, is related to the e+ and e− densities by [63, 72–75] 

( ) ( ) ( )[ ] ,d22
0

1 ∫ −−+
− == rrrr nncr γψπτλ  (2) 

where  is the classical electron radius,  the speed of light, and 0r c γ , a functional of the 
electron density, is an enhancement factor of the electron density at the positron. The 
positron lifetime is thus a direct measure of open volume. The typical lifetime in the 
free lattice state is in the range of 100–200 ps. 

Annihilation takes place mostly through the 2γ branch, resulting in the emission of two 
mec2 = 511 keV photons in (nearly) opposite directions [76]. Due to momentum 
conservation, the momentum of the e+e− pair is carried by the annihilation photons, 
causing a deviation in the emission angles of the photons and the broadening of the 511 
keV line. This is used in the Doppler broadening technique to investigate essentially the 
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electron momentum states at the annihilation site, which can be used in, for example, 
identifying the sublattice and chemical surroundings of vacancy defects. The 
momentum distribution depends on the total e+e− overlap in the form [63] 

( ) ( ) ( ) ( ) ( ) .expd
2

,
0 ∑ ∫ −+⋅−=

i V
iii

V
cr

rrrrprp γψψ
π

ρ  (3) 

2.1.1 Diffusion, trapping, and kinetics 

The thermal free positron density ( )tuB ,r  in the lattice can be statistically modelled 
with diffusion theory [63, 77]. In the presence of an electric field , the positron 
diffusion equation, or diffusion–annihilation equation, reads 

( )rE

( ) ( ) ( ) ( ) ( ) ( )( ) .,,,,, tStututuDtu
t BBBB rrrrErrrr +−−∇⋅∇=
∂
∂ λμ ( ) ( )  (4) 

Here, μ  is the positron mobility, λ  the annihilation rate, and S  the positron source 
term. In the presence of trapping defects, the decay rate λ  is 

,
1
∑
=

+=
N

i
iB κλλ  (5) 

where Bλ  is the annihilation rate in the delocalised (free) state, and iκ  are the transition, 
i.e., trapping rates to defects i . In the conventional trapping model [N,,1K=

D DDc
78, 79], 

the trapping rates depend on the defect concentrations c  as κ μ=

D

, and the 
coefficient μ  is called the trapping coefficient (discussed below). The source term 
contains the contribution from the thermal escape from defects, termed detrapping, and 
depends on the trapped positron densities as [80, 81] 

( ) ( ).,,
1
∑
=

=
N

i
Di tutS

i
rr δ  (6) 

Here, iδ  is the detrapping/escape rate from defect i . It should be noted that the source 
term does not describe the external positron source; instead, the implantation of the 
positrons in the sample is taken into account in the initial conditions of Eq. (4), as will 
be clarified below. 
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Equation (4) is of the Fokker–Planck type, to which analytical solutions are known only 
in some special cases. In bulk studies, one usually assumes spatial homogeneousness 
and considers the lattice infinite. If no electric field is present, the drift term vanishes 
and Eq. (4) can be integrated over space. Denoting the free and trapped positron state 
populations respectively as 

( ) ( )
( ) ( ) ,d,

,d,

∫
∫

=

=

rr

rr

tutn

tutn

ii

BB
 (7) 

one arrives at the conventional kinetic equations (see, e.g., Ref. [62]) 
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with initial conditions  and ( ) 10 =Bn ( ) 00 =in . Solving Eq. (8) yields for the total 
positron number the form [62] 

( ) ( ) ( ) ( )∑ ∑
=

+

=

−=+≡
N

i

N

j
jjiB tItntntN

1

1

1

.exp λ  (9) 

Hence, the positron lifetime spectrum, ( ) ( )∑ −=− tItN jjjt λλ expd
d , is a superposition 

of exponential decay rates. One speaks of lifetime components τ , and the 
weights  are called lifetime-component intensities. For instance in the simplest case, 
in the presence of a single trapping defect with no detrapping, Eqs. (8) & (9) give the 
following relations (

1−= jj λ

jI

aveτ  denotes the average/mean positron lifetime, corresponding to 
the centre-of-mass of the lifetime spectrum) [62]: 
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(10) 

The trapping coefficient Dμ  depends on the type of defect and its charge state, and the 
temperature (see Ref. [71]). In semiconductors, neutral and negative vacancies usually 
have room-temperature trapping coefficients in the range 1014–1016 s−1at., and can thus 
be detected at concentrations above 1015–1016 cm−3. The dominant energy release 
mechanisms in trapping are electronic excitations and phonon emission. For positively 
charged vacancies, the trapping coefficient is much lower (~1010 s−1at.) due to the 
Coulomb repulsion, and they therefore cannot be observed at room temperature. For 
neutral vacancies, the square-well-potential model leads to a temperature-independent 
trapping coefficient. The charge of the vacancy, however, modelled with an additional 
long-range Coulomb potential superimposed on the square-well potential, induces a 
temperature-dependence in the trapping coefficient. The attractive Coulomb potential of 
the negatively charged vacancy introduces shallow positron Rydberg states that provide 
a fast two-stage trapping mechanism in addition to direct trapping to the ground state. 
For negative vacancies, the coefficient increases with decreasing temperature due to the 
increased Coulomb-wave amplitude of the positron at the vacancy. At room-
temperature, the trapping coefficient is about an order of magnitude larger than for the 
neutral vacancy. The positron ground state in vacancies is deep, ~1 eV, so that thermal 
detrapping from vacancies rarely occurs at room temperature. Other point defects, such 
as negatively charged interstitials, can also have Rydberg states, and are termed 
negative ions. These have smaller binding energies of 10–100 meV, and are therefore 
also referred to as shallow traps. Detrapping from shallow traps occurs already at room 
temperature, but they can compete with vacancies at positron trapping at low 
temperatures, ca. below 100 K.  [8, 10, 62, 71] 

2.1.2 Surface processes 

As in the case of electrons, positron backscattering can occur at impact with a surface, 
especially for high-energy positrons [82–84]. The elastic scattering cross sections from 
nuclei are generally smaller for the positron than for the electron. Also, the 
backscattering angle distribution is narrower. The backscattering probability increases 
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with atomic number, and can reach tens of % in the 10 keV range. Secondary electron 
emission is also generated in the impact [85]. 

Low-energy incident positrons can get directly trapped at the surface in their own image 
potential [63]. Some materials, on the other hand, possess a negative positronic work 
function, in which case a positron can be spontaneously emitted from the surface [16]. 
This can of course also occur to positrons returning to the surface from inside the lattice 
after implantation, which is utilised extensively in fast-to-slow positron moderation 
[86], as discussed in Sec. 2.4.1. Another surface phenomenon to be mentioned is 
positron diffraction, which is used, analogously with electrons, in low-energy positron 
diffraction (LEPD) [85]. 

At the surface, the positron can also bind with an electron into the e+–e− bound state, 
positronium (Ps, ionisation energy 6.8 eV), and the Ps atom can then escape from the 
surface [11, 87]. Ps has two ground states, the singlet state with antiparallel spins 
(parapositronium, p-Ps) and the triplet state with parallel spins (orthopositronium, o-Ps), 
with lifetimes in vacuum of 125 ps and 142 ns, respectively. Ps can form also inside 
insulating or porous materials, but has not been observed to occur in the lattice in metals 
or semiconductors. Conservation laws dictate that the intrinsic annihilation of p-Ps 
results in 2γ emission, while o-Ps decays through the 3γ branch. Due to the long lifetime 
of o-Ps, an important related surface process is so-called pickoff annihilation, where the 
positron in the o-Ps atom is instead annihilated (through 2γ emission) with another 
nearby electron with opposing spin. [8] 

2.2 Positron lifetime spectroscopy 

The conventional experimental setup for determining the positron lifetime in bulk 
samples consists of a small amount (~1 MBq/30 μCi) of 22NaCl pressed between two 
pieces of the sample material, and surrounded by two fast scintillation detectors with 
associated signal processing units (see, e.g., Refs. [88, 89]). Along with other benefits, 
22Na is a convenient β+ emitter because it provides a birth signal for the positron 
through the 1.275 keV de-excitation of the daughter 22Ne nucleus, by photon emission 
practically simultaneously (3.7 ps decay time) with the positron. The positron lifetime in 
the sample can therefore be determined from the detection time delay between the birth 
and annihilation photons. The scintillation detectors are coupled to either a chain of 
analogue nuclear timing electronics followed by a multichannel board, or, more 
recently, to a high-speed digitiser commanded via a personal computer (PC) workstation 
[90–94]. 

In practice, usually a total of a few million events need to be collected per spectrum for 
sufficient statistics. According to Eq. (9), the spectrum is a weighted superposition of 
exponential decay rates, with a fixed offset from the cable delays and electronics. The 
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typical time response, or resolution function, of the experimental setup is around 200–
250 ps FWHM, depending heavily on the size of the scintillators [89]. Since this is 
comparable to typical positron lifetimes, the resolution function needs to be taken into 
account in the decomposition of the experimental histogram. To facilitate the data 
analysis, the setup is fine tuned so that the resolution function resembles a Gaussian 
function as closely as possible. The experimental histogram is then a convolution of the 
positron lifetime distribution and a Gaussian distribution, and the lifetime components 
are extracted from the data by seeking the best fit to the data [8]. Figure 2 shows an 
example of an experimental lifetime spectrum. Despite the limited resolution, lifetimes 
of the order of 100 ps and longer can be determined. Within practical data collection 
times, the statistics allow for reliably extracting usually at most three lifetime 
components from the histogram [10, 62]. A so-called source correction is needed to 
filter out the contribution from annihilations that take place in the source packet instead 
of in the sample. Even in cases where the decomposition cannot be performed, the 
average lifetime, , is a statistically relatively reliable measure of open 

volume, and can be determined with an accuracy of less than 1 ps. The positron lifetime 
is most sensitive to the open volume for vacancies of up to a few missing atoms. 
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Figure 2. Example of experimental positron lifetime spectra in GaN grown by hydride 
vapour-phase epitaxy. No vacancy-trapping is observed in the Ga-polar material, while 
in the N-polar layer, the average lifetime is longer due to the presence of Ga vacancies. 
The finite resolution of the experimental setup can be seen in the rising edge of the 
spectrum. Based on Ref. [95]. 
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2.3 Doppler broadening technique 

In the laboratory frame, the transversal momentum  of the ezp +e− pair causes a Doppler 
shift in the energy of the annihilation photons. The positron momentum is small in the 
ground state, so the major contribution is from the electron. The shift is given by 

.
2
1 cpE z≈Δ γ  (11) 

The transversal electron momentum distribution at the annihilation site can therefore be 
measured with energy-sensitive detectors. The high-momentum region is dominated by 
the core electrons of the surrounding atoms, which enables the identification of the 
chemical surroundings of atomic vacancies. [10] 

Electronically stabilised high-purity Ge detectors, with typical energy resolutions 
around 1.5 keV FWHM (at 511 keV), are used [8]. Since the resolution is comparable to 
the typical linewidth of 2–3 keV, the lineshape is often parameterised by ascribing 
energy windows corresponding to the low- and high-momentum regions, termed S and 
W parameters, respectively (see Figure 3 for an illustration) [10]. Typical windows are 

a.u.4.0≤zp  ( keV75.0keV511 ≤−γE ) for S, and a.u.4.2a.u.6.1 ≤≤ zp  

( keV4.4keV511keV9.2 ≤−≤ γE ) for W. 
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Figure 3. Doppler-broadening lineshape parameters S and W. a.u. stands for atomic 
units. Based on Ref. [40]. 
Again following from the trapping model, the lineshape is a superposition of different 
annihilation states i , weighted by their intensities [10]: 

.1,, === ∑∑∑
i

i
i

ii
i

ii WWSS ηηη  (12) 

The electrons surrounding vacancies generally have lower momentum states, which can 
be seen directly as an increase (decrease) in the S (W) parameter. Absolute values from 
different experimental setups are obviously not comparable due to experimental 
variations and the freedom in parameter definition, but relative values BSS  and 

BWW , where B  refers to the bulk state, are less sensitive to such factors. [10] 

It is also common to use S vs. W plots, where the ( )WS,  values are parameterised by a 
measurement variable such as implantation depth, temperature, etc. Each annihilation 
state, including trapped states and the free state, has its characteristic point on the 

 plane. For instance, in the presence of a single type of trapping defect D , the 
parameterised points will fall on the line between the points corresponding to the bulk 
and defect state,  and ( , respectively, since 

( WS, )

)( )BB WS , DD WS ,
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( ) ( ) .1,1 BDBD WWWSSS ηηηη −+=−+=  (13) 

The position on the line is determined by the intensity of the defect signal, which in turn 
depends on the defect concentration. [10] 

Also lineshape ratio curves are used in data analysis [8]. Different variants and 
combinations of momentum and lifetime techniques also exist, such as coincidence 
variants with multiple detectors, angular correlation of annihilation radiation (ACAR), 
age–momentum correlation (AMOC), etc. [8, 88] The simplest enhancement is the 
coincidence setup, in which both annihilation photons are detected using two detectors 
on opposite sides of the sample. This improves the signal-to-noise ratio in the lineshape 
histogram significantly—although at some cost in collection efficiency—thereby 
improving the resolution especially for examining the high-momentum regions of the 
lineshape. 

2.4 Slow-positron beams 

For studying surface layers, fast positrons from nuclear reactions are unsuitable as such. 
Radioisotope sources have β+ ranges of the order of 0.1–1 mm in solids. In order to 
examine well-defined near-surface regions, the fast positrons need to be moderated to 
the eV range. These monoenergetic slow positrons can then be accelerated to the desired 
implantation energy using an electromagnetic transport system and high-vacuum 
conditions to convey the particles to the target sample. Typically, acceleration energies 
between, e.g., 0.1–40 keV are used, although even lower kinetic energies are used in 
other surface studies and techniques, such as positronium studies, LEPD or positron 
Auger-electron spectroscopy (PAES) [4]. At higher energies, the depth resolution 
becomes smeared by the broadening of the implantation depth distribution . The 
implantation profile for monoenergetic e

( )zp
+ is given by the semi-empirical form [8, 96] 
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known as the Makhov profile, which relates to energy through the mean implantation 
depth by nAEzz == 20π  keV. A usual value for n  is 1.6, and A  is given by 

,gcm4 2-A μ
ρ

=  (15) 
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where ρ  is the specific mass of the host lattice. Figure 4 shows the implantation profile 
in silicon for different energies. 
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Figure 4. Positron implantation profile for different energies in silicon. The 2 keV curve 
has been scaled for illustrative purposes. Based on Ref. [81]. 

2.4.1 Positron moderation and slow-positron beams 

Fast-positron moderation is simple to accomplish with a fast-to-slow positron converter 
composing of a suitable material that has a negative work-function for positrons (see, 
e.g., Ref. [86]). The fast positrons are targeted at the converter where they are allowed 
to thermalise. By diffusion, some of the thermal positrons reappear at the surface of the 
converter and are spontaneously emitted, ideally with a kinetic energy equal to the 
work-function (~1 eV) of the converter material. 

Appropriate materials include several elemental metals, of which thermally annealed W 
has become the de facto choice owing to its high moderation, i.e., fast-to-slow positron 
conversion efficiency [13, 97–108]. A heat treatment is applied to the converter, on one 
hand, to remove lattice imperfections and impurity atoms that shorten the diffusion 
length, and on the other hand, to remove surface contaminants, such as carbon. 
However, it is clear that due to the short diffusion length, inevitably a large number of 
the positrons are lost via annihilation in the converter. 
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In the usual laboratory geometry, a thin (~1 μm) converter foil is placed on top of the β+ 
source, and the slow positrons are extracted from the outer face of the foil. The β+ 
endpoint energy for 22Na is 546 keV, so most of the fast positrons penetrate the foil at 
high energies [109]. Hence, the fast-to-slow conversion efficiency is low, typically only 
10−5–10−4. A stronger source (~1 GBq/30 mCi or more) is therefore needed in order to 
keep data collection times reasonable. The slow positrons are filtered from the fast ones 
just after the moderation stage with a velocity selector. The moderation efficiency can 
be slightly improved by using creative geometries that increase the converter’s surface 
coverage [86, 110]. In the simplest case, the use of tungsten mesh instead of foil has 
been observed to improve the efficiency slightly, although this introduces some energy 
spread to the beam because of the larger emission angles [111, 112]. In any case, the 
sample and detectors need to be placed far (~meters) from the source/moderator due to 
the high background from the primary source and from the fast (unmoderated) positrons 
that are annihilated at the velocity selector. Therefore, an electromagnetic transport 
system and high-vacuum conditions are needed to convey the slow positrons to the 
target sample [113–115]. These instruments are hence termed (slow) positron beams [4, 
116]. 

The energy width of the spontaneously emitted slow positrons is narrow, nearly equal to 
the thermal spread [98, 107]. Other converters such as solid rare-gas moderators [117–
125] and modified Penning traps [118, 126, 127] offer sources for cold positrons at high 
conversion efficiencies. In a Penning trap, large numbers (up to 107) of positrons are 
accumulated and cooled in a magnetic bottle containing a low-pressure cold buffer gas, 
from which they can be released in short (~10 μs), dense bursts by applying a gate 
potential. Storage times can be up to the order of 103 s, and presently the plasma density 
can reach 105 cm−3, and can be released in bunches containing 105 particles. The 
positrons are very cold, reaching widths of 18 meV. These traps are commercially 
available and have gained popularity in other applications such as fundamental physics 
and antimatter research (see, e.g., Refs. [128–130]). 

2.4.2 Beam timing 

Monoenergetic DC beams suitable for Doppler broadening studies are relatively simple 
to construct. Regarding timing, however, the positron “birth” information is lost, firstly 
due to the huge rate of false START gamma signals, and secondly due to the time 
variations in the moderation process. To perform lifetime spectroscopy, the particles 
need to be time-stamped by appropriate means. The most common way is by 
modulating the velocity of the DC beam using electric fields to compress the beam into 
short bunches [34–38]. The beam is periodically accelerated and decelerated, causing it 
to compress in time at a specific focal distance. The arrival time of the bunch at the 
target is then provided by the bunching electronics, short of some fixed delay. The beam 
bunching techniques have been adopted from ion and electron beam bunching [131–
133], and these beams are commonly referred to as pulsed positron beams. The best 
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existing setups can achieve time resolutions comparable to ordinary fast-positron 
spectrometers used routinely in bulk studies [36, 38]. 

Also secondary electrons emitted in the impact of the positron with the sample have 
been used to obtain a timing signal [25, 32]. While this is a simpler method from the 
technical point of view, it suffers from somewhat poor time-resolution. Also, several 
effects related to the secondary electron emission process complicate the data-analysis, 
because they produce undesirable artefacts in the experimental data. 

2.4.3 Lifetime depth-profiling 

A fundamental difference in slow-positron lifetime spectroscopy is that, due to the 
contribution of surface states and material interfaces, the lifetime distributions are not 
generally of the sum-of-exponentials form as in bulk studies (Sec. 2.1 & Eq. (9)) [80, 
134–137]. This approximation can, however, be used in homogeneous layers at a 
sufficient distance from the surface or other interfaces. In near-surface layer and depth-
profiling studies, the diffusion equation (Eq. (4)) needs to be solved in one dimension 
(depth from the surface) to fit the experimental spectra in a physically meaningful way. 

In the case of a single, semi-infinite material layer ( ), the diffusion–annihilation 
equation becomes [

0>z
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with the initial and boundary conditions 
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where ν  is the transition rate to surface states, and ( )tzJ ,  denotes the positron flux 
towards the positive z  axis. The surface transition rate can further be divided into the 
transition rates to the trapped surface state  and surface Ps, S Psννν +S . =
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In addition, the kinetic equations for the total transition rates between different states are 
[81] 
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Note that, for simplicity, different trapping defects are represented here by a single 
defect, denoted with the subscript D . Furthermore, the p-Ps and o-Ps states are also 
represented by a single state. The kinetic equations hold also for the densities u . 
The measured quantity, the lifetime spectrum, is the total annihilation rate 
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The problem reduces to seeking the free-positron density ( )tzuB , , because the 
occupation density/numbers of the defect, surface, and Ps states, and, by Eq. (6), also 
the source term, can be expressed with  as following [Bu 81]: 
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Thus, the task is to seek the solution to the nonlinear problem 
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where ( ) ( ),zDz =α  ( ) ( ) ( ) ( ),d
d zDzEzz z−= μβ  ( ) ( ) ( ) ( ) ( ) ,d

d
d
d λμμγ ++= zzEzEzz zz  

and ( ) (( )( ))ttttg D −+= 'exp', κ λ δδ . An example of the time evolution described by Eq. 
(21) using typical material characteristics and implantation energies is shown in Figure 
5. It can be seen that for high energies, the evolution is dominated by annihilation, while 
with lower energies, diffusion has a strong effect. 
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Figure 5. Time-evolution of the positron density described by the diffusion equation, 
plotted for two different (low and high) implantation energies. Based on Ref. [81]. 
Generally, Eq. (21) needs to be solved numerically, which makes the data analysis 
computationally more tedious. Also, because the values of the additional material 
parameters , D μ , E , Sν , Psν , and Sλ  are often also unknown, the number of free 
parameters in experimental data fitting can become unreasonably large with respect to 
the statistical accuracy of the data. The situation is somewhat improved if one can make 
some sophisticated assumptions on the material properties. Therefore, it is useful to 
complement lifetime data with slow-positron Doppler-broadening, since lineshape data 
is simpler to analyse, as one needs to solve only the steady-state diffusion equation, 
which can be used to gain information on the material-specific parameters [13, 138, 
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139]. However, in multilayered structures, the implantation profile presents further 
difficulties, and we thereby restrict ourselves here to single layers [140]. 
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3 Pulsed slow-positron beam 

In this chapter, a new laboratory-scale pulsed positron beam, constructed at the 
Department of Applied Physics, Aalto University, Finland, is presented and discussed, 
with emphasis on the author’s contribution. 

3.1  Overview 

An operational diagram and a drawing of the pulsed positron beam are shown in Figure 
6 and Figure 7, respectively, and Figure 8 shows photographs of the instrument. The 
system achieves a characteristic overall time resolution of roughly FWHM = 270 ps, 
with an energy range selectable from 2 to 25 keV. A conventional ~20–50 mCi 
encapsulated  22Na laboratory source, coupled to a heat-treated W-foil moderator, is 
used as the source for the slow-positron (~1 eV) beam [141]. The beam is magnetically 
transported to a three-stage radio-frequency (RF) beam-bunching system (termed 
‘pulsing system’), which time-compresses the beam into bunches shorter than 200 ps 
FWHM in 30 ns repetition periods. The pulsing system consists of a prebuncher, a beam 
chopper, and a main buncher, including their accompanying (pre)acceleration stages. 
After the bunching stages, the beam is electrostatically accelerated to the selected 
implantation energy. The typical data collection time for a single lifetime spectrum is in 
the range between 1 to 10 hours, and a full depth-scan can be performed in 1–10 days, 
depending on the source activity. 
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Figure 6. Diagram illustrating the operational principle of the pulsed positron beam. 
For illustrative purposes, the radio-frequency electronics have been simplified. At 
present, the two-stage final acceleration in the accelerator-decelerator is not used—in 
the present configuration, the decelerator electrodes are grounded. Based on Refs. [1, 
39, 142]. 
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Figure 7. Scale drawing of the beam. 1. Positron source and moderator. 2. Velocity 
selector. 3. Prebuncher. 4. 1.0 keV preaccelerator. 5. Chopper. 6. Main buncher. 7. 
Main accelerator. 8. Decelerator. 9. Room-temperature sample holder. 10. Scintillation 
detector. 11. Load-lock sample entry chamber. 12. Room-temperature sample transfer 
stage. 13. Polyoxymethylene (POM) high-voltage (HV) feedthrough. 14. POM vacuum-
pump feedthroughs. 15. HV platform Faraday cage. 16. Earth Faraday cage. 17. Ion 
pumps. 18. Standoff insulators. From Ref. [142]. 
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Figure 8. Photographs of the pulsed positron beam. 
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A novel feature of the instrument is that the lifetime measurement is performed entirely 
digitally, using a high-speed digitiser accompanied by in-house signal processing 
software [90–94]. The digital setup enables versatility in data processing far beyond the 
reach of conventional analogue electronics. The lifetime START and STOP signals are 
obtained from the anode output of the fast scintillation detector and the crystal oscillator 
of the RF pulsing system. A fast micro-channel plate (MCP) detector can be used in 
calibration and beam diagnosis in place of the scintillation detector [143]. 

Another unique feature is that the specimen is maintained at ground potential during 
measurements to facilitate sample manipulation, i.e., moving, heating, cooling, biasing, 
etc. [142, 144, 145]. This is accomplished by floating the source and pulsing system 
instead. As a drawback, this realisation naturally places heavier requirements to ensure 
device and personnel safety, which, in this case, have been fulfilled by robust 
mechanical and electrical design, real-time status monitoring, and automatic shutdown 
procedures in fault situations, along with sufficient safety precautions. 

The final beam diameter, determining the minimum sample size, is ∅3–4 mm. There 
are two separate sample holders—one for measurements at room temperature, with a 
magazine accommodating up to six samples, and another one for variable sample-
temperature (~20–600+ K). There are open ports in the specimen chamber to 
accommodate for additional sample manipulation. It would in principle be 
straightforward to include a Ge detector for momentum studies, but this is not being 
planned at the moment. For example, sample illumination could be synchronised with 
the pulsing system, enabling the observation of transient effects in photoexcitation. 

Ideally, a positron lifetime beam enables the study of positron diffusion and other time-
dependent phenomena [80, 135]. In practice, however, the positron pulse width is 
comparable to typical lifetimes, and the beam bunching process itself introduces a 
number of parameters that affect the overall instrument time-response/resolution. This 
makes data analysis more complicated and error-prone than in the case of fast-positron 
spectrometers, since the resolution function is of a more complex nature. In addition, the 
diffusion equation inevitably requires numerical solving techniques, which brings a 
further source of error [81]. These issues are discussed in Sec. 3.5. 

3.2 High-voltage design 

In order to hold the sample at earth ground, a large proportion of the instrument needs to 
be floated at the implantation voltage. The high-voltage (HV) platform, comprising 
most of the beam line itself and the accompanying electrical cabinets, is surrounded by 
an earth-potential Faraday cage, realised with stainless-steel expanded-metal fencing, to 
protect personnel from electric shock and the system from breakdowns and 
electromagnetic interference [146, 147]. The portion of the beam line situated in the 
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platform is also entirely enclosed in a similar Faraday cage, supported by standoff 
insulators. Polyoxymethylene plastic is applied to great extent as a high-vacuum 
compatible insulator material in vacuum feedthroughs, accelerator structures, etc., 
further owing to its good machining properties. To ensure the HV withstand of the 
platform and to prevent breakdown-related phenomena, special attention has been payed 
in mechanical and geometrical design to avoid excessive local field strengths. The 
surfaces of the HV platform are cleared of sharp edges that otherwise might induce 
corona. Also, the HV resistors are air-insulated, which eliminates the risk of partial-
discharge effects. 

Figure 9 shows the HV circuit. In the event of a breakdown, the load resistors R2 and R3 
in the outputs of the HV power supplies limit the peak current to the sub-mA range. The 
bypass resistors R1 and R4 are needed because of the sourcing-only nature of the power 
supplies. More information on the HV design can be found in Ref. [142]. 

U1 = 2 - 30 kV

R1 = 330 MΩ

R3 = 200 MΩ

U3 = 1.0 kV

R6 = 3.3 GΩ

R7 = 3.0 GΩ

U2 = 32 kV

R2 = 100 MΩ

R4 = 6 MΩ

GROUNDED
SAMPLE

CHAMBER

BaF2 Detector

Decelerator
AcceleratorBuncherChopper

HV PLATFORM

U4 = 1.6 kV

R5 = 120 MΩ

GROUNDED FARADAY CAGE  

Figure 9. HV floatation circuit. The HV platform is floated at the positron implantation 
potential U1 by a Glassman EH series HV power supply. Resistors R1–R3 are air-
insulated series resistor chains in acrylic tubing. The in-vacuum resistors R5–R7 are 
non-magnetic, vacuum compatible precision HV resistors (Ohmite MOX-1125-22 and 
MOX-750-23). Based on Ref. [142]. 
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3.2.1 Overvoltage protection 

A considerable amount of the electronics equipment is situated in the HV platform. The 
mains power is fed via a 100 kV/5 kVA AC (alternating current) insulation transformer 
(Hipotronics Ruby series IT100-5E). The capacitive energy stored in the platform can 
be up to about 1 J—the capacitance between the HV platform and earth is about 1 nF. 
Regarding signal transit times, the physical dimensions of the platform are relatively 
large. An electrical breakdown could hence induce transient overvoltages between 
electronics ground and input/output. Therefore, several precautions have been taken to 
protect the electronics from breakdown-induced damage. These include multi-stage 
transient-surge suppressors both in mains and DC and RF lines, along with thorough 
electromagnetic interference (EMI) shielding of electrical enclosures and transmission 
lines. The output lines from the cabinet are individually coaxially screened by stainless-
steel mesh, and the cabinet enclosure (Figure 8) itself is also EMI shielded, with 
shielded feedthroughs and heavy ground connections. The DC lines are each separately 
protected at their outputs with triple-stage transient protection devices, consisting of an 
LC suppressor, a gas-discharge tube, and a Zener diode. Furthermore, transient 
absorbers are placed near the inputs of the coil magnets. The inputs of the 
preaccelerators are equipped with HV gas discharge tubes. The RF high-power 
amplifiers in turn are protected by commercial transient absorbers (Fischer Custom 
Communications Spikeguard Suppressor FCC-550-20 and FCC-250B-230). 

3.2.2 Safety interlock 

The platform is equipped with an electromechanical safety interlock, which shuts down 
the HV power supplies and grounds the platform upon attempt-of-entry to prevent 
injury to personnel (Figure 10). The interlock is realised with a combination of relays, 
gravity-operated solenoid-latch switches, and industrial micro-switches that 
instantaneously ground the platform and disconnect the mains of the relevant power 
supplies when the entrance door to the platform is opened. The solenoid latches fall 
upon the roof of the electrical cabinet, one forming contact to ground and another 
disconnecting power to the HV power supplies U2–U4 in Figure 9 by hitting a micro-
switch placed on the roof. The mains of U1 is behind a common switch with the 
solenoid DC supply, so that it is also switched off when the door is opened. 
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Figure 10. Photograph showing some of the HV safety features. The warning lights 
indicate that the platform is energised. On the top-right of the picture, above the 
electrical cabinets, are the interlock solenoid latches (see text). The insulator rod on the 
bottom-left is for switching off the decelerator power supply (U2 in Figure 9) from 
outside of the platform in case of emergency. 

3.2.3 Control system 

The pulsing system and acceleration stages are controlled from a PC workstation using 
the National Instruments LabVIEW platform. The software, described in Ref. [148] and 
illustrated in Figure 11, commands two banks of National Instruments FieldPoint I/O 
modules—one situated in the HV platform, and one in ground potential, communicating 
via optical-fibre and twisted-pair Ethernet—which in turn remote-control and monitor 
the relevant DC power supplies and RF electronics. Vacuum levels are also monitored, 
since the accelerator-decelerator and bunching elements are not designed for operation 
at elevated pressures. To safeguard the components, the program reacts to abnormal 
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readings from the HV circuit and to failure in mains power or vacuum by shutting down 
the acceleration and bunching voltages in a controlled fashion. The mains supply to the 
relevant electrical equipment, including vacuum pumps, is battery-backed by a 3 kVA 
UPS (uninterruptable power supply) in case of power failure. The automatic shutdown 
procedures could be initiated by communication with the UPS, but at the moment they 
are triggered via a relay output from one of the non-power-backed vacuum gauge 
controllers. 
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Figure 11. Block diagram of the control system. The sample temperature is controlled 
by a Lakeshore 331 temperature controller coupled to a closed-cycle He cryocooler 
(Advanced Research Systems DE-202). The temperature of the coldhead is measured 
with a silicon diode sensor and a thermocouple. The HV platform FieldPoint bank also 
monitors the cabinet temperature by a set of thermocouples. 
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Also, four K-type thermocouples monitor temperatures inside the electrical cabinets. To 
minimise the risk of overheating, the cabinets are air-cooled with a redundant set of 
long-life (200,000 h) 120 mm case fans. Additionally, to prevent vacuum-related 
problems from damaging the MCP detector, the software also responds in fault 
situations by automatically shutting down the detector bias. 

3.3 Beam pulsing and transport 

3.3.1 Source and transport 

The W-foil moderator is used in transmission geometry, i.e., the slow positrons are 
extracted from the opposing face of the film. The foil has a thickness of 1 μm and is 
mounted on top of the source capsule right above the active window. The 
source/moderator has an active area of ∅4 mm. The foil is thermally annealed prior to 
use by electron bombardment at above 2000°C to increase the conversion efficiency. 

The slow positrons emitted from the foil have a kinetic energy corresponding to the ∼3 
eV positron work function of W, ideally with thermal energy width [98, 101]. However, 
due to surface roughness and other effects, the initial energy spread of the beam can be 
up to some hundreds of meV. The positrons are extracted from the foil with a low-ripple 
36 V bias voltage applied to the source–moderator assembly. The particles are then 
magnetically guided by a collection of current-solenoids, Helmholtz coils, and steering 
coils. The coils generate a magnetic field of 5–10 mT coaxially with the vacuum tubing, 
which confines the particles into parallel with the beam line. The field forces the slow 
positrons on helical trajectories along the magnetic flux lines, with Larmor radii in the 
sub-millimetre range. A bend in the beam line (see Figure 6) near the source acts as a 
magnetic velocity selector, removing the remaining high-energy positrons that penetrate 
the moderator foil through impact with the vacuum tubing [149]. 

A high vacuum around 10−6 mbar is required for a sufficient mean free path from the 
source to the sample. This is produced by two turbomolecular pump stations and two 
ion pumps (75 l/s and 300 l/s nominal capacities). The Helmholtz coil magnets from the 
end of the drift tube onwards are separately cooled with long-life fans. 

The initial fast-positron flux is determined by the nominal activity of the source and the 
positron yield of the source capsule. The capsule is described in detail in Ref. [141]. The 
β+-decay branching ratio of 22Na is 90%, but the finite escape probability from the 
capsule also needs to be taken into account. Positron yields of typical sources were 
therefore determined in Publ. I. The first method was a coincidence gamma-detection 
setup, where a collimator was placed in front of the source, and the positron flux 
through the collimator aperture was determined by detecting the annihilation radiation 
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at a target located behind the collimator. The method suffers from imprecision, since it 
is sensitive to many geometrical factors such as the solid angles spanned by the 
detectors and the angular distribution of the positron flux from the source. Therefore, a 
more precise and also simpler method was also used, in which the electrical current to 
the source induced by the positron emission was measured. Based on the results of both 
methods, a typical fast-positron yield of around 30% was concluded. 

Also the moderation efficiency of the W foil was measured with a similar coincidence 
setup. Despite several heat-treatments, only an efficiency in the lower 10−5 range (for 
the encapsulated 22Na) could be achieved. Depending on the source activity, the initial 
beam flux is thus in the range 103–104 s−1. It should be mentioned that in the literature, 
the efficiency is often defined simply as the ratio of the slow-positron flux and the 
nominal activity of the source. This is somewhat ill-defined, since as shown in Publ. I, 
the source yield can vary individually due to factors in the manufacturing process. Here, 
the yield is taken into account in the definition. Since the yield is typically much less 
than 100%, moderation efficiency values reported in the literature are not necessarily 
comparable. 

3.3.2 Beam bunching 

This section is based on Refs. [1, 40, 143]. Figure 12 depicts the pulsing system and the 
time structure of the beam at the different stages. The fundamental frequency of the 
pulsing system is 33.3 MHz. The repetition period needs to be sufficient to allow for the 
positrons to annihilate completely (within statistical accuracy) before the following 
cycle. The 33.3 MHz repetition rate corresponds to a period of 30 ns, which is more 
than sufficient for lifetimes in solids. 
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Figure 12. Simplified illustration of the pulsing system and the time structure of the 
beam at different stages. Based on Ref. [40]. 
The first stage is an impedance-unmatched double-gap prebuncher, where the beam 
undergoes energy modulation by a 33.3 MHz sine wave and its first harmonic, 
representing the first two Fourier terms of the ideal bunching waveform, presented 
below [150]. The prebunching stage is illustrated in Figure 13. The positrons receive a 
longitudinal acceleration/deceleration over the gaps, depending on their arrival time 
with respect to the modulation phase. The particles that arrive at the prebuncher early in 
the repetition period are slowed down, while those arriving later are accelerated. During 
their flight in the (electric-field-free) drift region behind the prebuncher, the particles 
thus begin to “catch up” with each other (see Figure 13). This periodically time-
compresses the beam into narrow bunches at a specific focal distance behind the 
prebuncher [151–154]. In this case, the time focus is set at the subsequent beam chopper 
and the phase is set to match the acceptance time of the chopper. This way, the overall 
bunching efficiency, i.e., the portion of the DC beam that is utilised for time-
compression, is increased [155–157], since a smaller portion of the beam is then 
suppressed in the chopping. The improvement is around a factor of 5. 
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Figure 13. The prebunching stage. The prebuncher time-compresses the incoming DC 
beam into short (a couple of ns FWHM) bunches before the second stage, the chopper. 
This improves the overall bunching efficiency. Based on Ref. [158]. 
The arrival time of a particle at a distance L  beyond the prebuncher is given in the 
classical regime by 
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where t  is the arrival time at the prebuncher, τ  is the flight time over the distance L , v  
is the modulated velocity, E  is the initial kinetic energy, and (0 )tU  is the modulation 
potential. It is approximated in Eq. (22) that the modulation occurs instantaneously over 
the gaps. This yields for the ideal modulation waveform [151], i.e., ( ) 0τ=tT  (constant), 
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Realising such a waveform at a frequency in the range 107–108 Hz is difficult. On the 
other hand, deviations from the ideal form induce background between the pulses, 
which must then be eliminated with a beam chopper. Ordinarily, the ideal waveform 
(Eq. (23)) is approximated with either a single or a few first Fourier terms. The first-
order approximation gives 

( ) ( )
( )

,1
1

12
sin 2

0

0

0

0
00

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
≈=≈=

ττ
ωω

te
E

t
e

E
tUtUtU  (24) 

where ω  is the angular frequency. The required amplitude is then given by 
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and the arrival time (Eq. (22)) becomes 
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Above, χ  is called the (dimensionless) bunching parameter, which is essentially a 
normalised distance to the time focus, 1=χ . Around the zero crossing of the 
modulation waveform, ( ) 0τ≈t 1T . In the case <χ  ( 1>χ ), the beam is said to be 
underbunched (overbunched). Increasing the bunching parameter is analogous to 
moving along the direction of the beam, i.e., increasing L , or, equivalently, increasing 
the bunching amplitude and/or frequency. The time evolution of the beam after 
bunching is illustrated in Figure 14. Before reaching the time focus, i.e., when 1<χ , 
the ”late” particles have not gained on the “early” ones sufficiently, so the bunch is 
rather broad.  When the beam is overbunched, i.e. when 1>χ , on the other hand, the 
late particles begin to pass the early particles, resulting in the appearance of two 
separating peaks in the arrival-time distribution. 
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Figure 14. The time evolution of the positron beam in sinusoidal bunching. The upper 
figure shows the particle arrival time T at a distance L from the buncher (bottom axis) 
as a function of the arrival time t at the buncher (left axis) for different values of the 
bunching parameter χ. The lower figure shows the arrival-time (T) distribution, i.e., the 
bunch shape. 
Physically, the prebuncher consists of three subsequent parallel tubular electrodes 
mounted inside the vacuum tubing. The modulation waveform is applied to the central 
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tube, and hence the incoming particle is either accelerated or decelerated over the 
electrode gaps, depending on which stage of the cycle it arrives at. Commonly, a transit-
time factor is included in the bunching parameter χ  that takes into account the flight 
time through the buncher [151]. The length of the central electrode corresponds to a 
change of sign in the waveform during the unmodulated time-of-flight, so that the 
acceleration (deceleration) occurs over both gaps. Since the beam energy needs to be 
kept sufficiently narrow for the final pulsing stage, i.e., the main buncher, the 
prebuncher is driven at low amplitude, in this case a few eV. The beam is also 
simultaneously statically accelerated over the gaps to 60 eV by applying additional low-
ripple DC voltages to the electrodes. 

The prebuncher is followed by a drift tube of roughly L = 1 m to allow for the beam to 
compress (cf. Eq. (26)). At the end of the drift tube, the beam is further accelerated to 1 
keV just before the chopper. It is worth noting at this point that the 33.3 MHz repetition 
rate of the pulsing system is much higher than the average beam flux. Therefore, the 
terms ‘bunch’ and ‘pulse’ can be misleading, since, in fact, the majority of the cycles 
are empty, while the populated cycles in practice contain only a single particle. It is 
rather that the beam is compressed in the time domain instead of in space. Hence, space 
charge effects need not be taken into account. 

The chopper (Figure 15) is a “sandwich” structure consisting of two parallel-plate 
electrodes, and a thin centre electrode between them. The incoming beam is split into 
two by the centre plate. A sinewave is fed to the central electrode, so that the beam can 
pass through the electrodes only during a short interval around the zero-crossing of the 
wave. Otherwise, the beam is deflected by the electric field and collides with the 
chopper structures. [1, 39] 
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Figure 15. Exploded view of the chopper with examples of particle trajectories. A 
sinewave is applied to the deflection plate, allowing the beam to pass (dashed-line) only 
around the zero-crossing of the waveform. During the rest of the cycle, the beam is 
deflected to the chopper walls (solid and dotted lines). The saw-tooth patterns suppress 
scattering effects that increase the leakage outside the choppers acceptance time 
window. Based on Refs. [1, 159]. 
The outer electrodes of the chopper are machined from copper bricks. The sawtooth 
patterns are designed to prevent backscattered particles from leaking through the 
chopper [159]. The centre electrode is made from thin copper-clad plate. The chopper 
requires a signal amplitude of the order of 100 V, which is generated with an LC tank 
circuit connected in parallel with the chopper. A low loaded Q-value improves the 
temperature stability. The practical time window of the chopper is around 1.5–2.5 ns 
FWHM. [1] 

In the ideal case, the chopper allows the beam to pass undisturbed during a selected 
interval [ 2,2 00 TT Δ+Δ− ]ττ , and fully suppresses it during the rest of the cycle. The 
chopper determines the overall bunching efficiency, defined as 

,
2π
ω tp Δ

=  (27) 

where  is the initial time width that satisfies tΔ
[ ]( ) [ ]2,22,2 00 TTttT . Approaching time focus Δ+Δ− = τ Δ− τ + Δ 1=χ  from 

below, Eq. (26) gives by series expansion 
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The nonvanishing term sτΔ  is due to the deviation from the ideal waveform, and can be 
categorised as spherical aberration. In terms of efficiency, it reads as 

.3.10
3

333

s ω
χ

ω
πχτ pp

≈=Δ  (29) 

Thus, the aberration increases quickly with efficiency, but on the other hand decreases 
inversely with bunching frequency. The bunching efficiency can be increased by adding 
higher harmonics [151, 152, 160, 161]. The addition of the second Fourier term in the 
waveform improves the efficiency by [1] 

( ) ,481
3
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s ω
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ω
πχτ pAAp

−+=Δ  (30) 

where A  is the relative amplitude of the second harmonic. 

Another way of improving the efficiency is by overbunching the beam. In this case, the 
spherical aberration becomes [132] 
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s ω
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ω
πχτ pp

≈≈Δ  (31) 

However, from the viewpoint of data analysis, overbunching can be undesirable, since it 
complicates the expression for the pulse shape (see Publ. II). This is essentially because 
in the overbunched case, the expression in Eq. (26) for ( )tT  becomes only piecewise 
invertible, with the additional problem of the singularities being transcendental, making 
the time distribution inconvenient regarding data analysis (see Sec. 3.5). 

Another source of time spread are chromatic aberrations [151]. If the initial beam has an 
energy spread EΔ , then the chromatic aberration of the beam is defined as 

.
2
1

0
0

c ττ
E
EΔ

=Δ  (32) 

Sources of chromatic aberrations include the moderator, gradients in the magnetic field, 
and geometrical factors in the bunching and acceleration stages. The chopper for 
instance induces an estimated residual transverse modulation of roughly 10 eV [39]. It is 
seen in Eq. (32) that the chromatic aberrations can be reduced by increasing the beam 
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energy. Considering the bunching parameter (Eq. (26)), either the bunching frequency, 
drift length, or amplitude then have to be increased accordingly. 

The final pulsing stage is the main buncher [1], which is a double-gap sinewave buncher 
similar to the prebuncher but operating at five-fold frequency. It compresses the beam 
further into pulses around 175–200 ps FWHM. The bunching element is likewise 
coupled to a low-Q-value (~50) LC resonator to produce a sufficient amplitude. 
Because the (pre)acceleration stages are DC-floated, the RF lines to the chopper and the 
main buncher are DC-isolated by series-capacitance coaxial HV “double-DC blocks” [1, 
142]. 

After the pulsing stages, the beam is de-elevated to ground potential by an electrostatic 
accelerator-decelerator [162]. The two-stage design has two purposes, firstly to extract 
particles that are backscattered from the sample, away from the sample and detector, 
and secondly to reduce the variation in time-of-flight over the implantation energy 
range. The latter can, however, be compensated by adjusting the lifetime signal time 
delay, which is especially effortless with the digital signal processing chain. The 
specimen is situated behind a ∅10 mm aperture in the last decelerator electrode. The 
sample chamber is deliberately oversized to suppress unwanted signals from 
backscattered particles. 

Currently, however, the original acceleration–deceleration concept is not in use. Instead, 
at the time of writing, the decelerator is shunted to ground. This modification was made 
after a long-term instability was observed in the accelerator structures in the original 
configuration. The in-vacuum voltage divider circuit began to show abnormal behaviour 
after the first months in operation. The electrical resistance began to collapse 
occasionally depending on the voltage and magnetic field strength. A visual inspection 
revealed metallic sputtering marks and traces of breakthrough on the accelerator 
structures, i.e., the POM insulators and stainless steel electrodes, shown in Figure 16. 
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Figure 16. Traces of breakdown found on the main accelerator after long-term use. a) 
Accelerator (blue discolouration), b) decelerator (darkening around centre), and c) 
POM vacuum feedthrough housing the accelerator (brown burn marks on inner surface, 
top and bottom of picture). The marks suggest metal ion sputtering and resulting 
electrical breakdown due to conductive channels forming on the POM surface. 
It was interpreted that the high electric-field strength between the final accelerator 
electrode/first accelerator electrode and the chamber wall generated field-emission 
electrons and ions that sputtered the insulator surface, thereby forming conducting 
surface channels. These two electrodes are both at the lowest (most negative) potential 
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with respect to ground, and also physically closest to the wall of the grounded target 
chamber. It was concluded that the HV withstand tests performed on the accelerator 
prior to its installation had been incomplete, since the effect of the magnetic field was 
underestimated. The field alters the trajectories of the field-emission particles, and it 
was also observed by adjusting the coil currents that the breakdown strength depended 
on the magnetic field strength. 

The problem currently awaits further work. It was thus circumvented by grounding the 
entire decelerator, which in turn grounds the final accelerator electrode. In the present 
configuration, the decelerator, roughly 0.5 m in length, is electric-field-free, so 
backscattering effects are still small. 

The pulsing system is driven with a common 166.7 MHz crystal oscillator. The signals 
are tuned with adjustable 180° phase shifters and biphase variable attenuators [158, 
163–165], and then amplified by high-power RF amps (Mini-Circuits ZHL-5W-1 and 
LZY-1) (see Figure 17 for the RF circuit). The inputs of the pulsing elements are 
matched to 50 Ω using stub elements and attenuators. A fibre-optic link consisting of 
two 125 Mbaud transmitter/receivers (Hewlett-Packard HFBR-15X7 and HFBR-25X6) 
is used to transfer the clock signal from the HV platform to earth. The RF electronics 
(excluding the power amps) are cased in standard NIM rack modules (Figure 18). 
Autocalibration of the pulsing system, i.e., seeking the optimum phases and amplitudes 
for each pulsing element, was considered too formidable a task, so the calibration is 
performed manually. In practice, it suffices to use, for example, 1 keV energy steps. 
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Figure 17. Simplified block diagram of the pulsing system RF circuit. Based on Ref. 
[158]. 
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Figure 18. Pulsing system RF electronics in NIM casings (bottom). Also visible are the 
RF power amplifiers (top). 

3.3.3 Performance 

A Hamamatsu F4655-12 fast MCP, coupled to a linear transfer stage, is mounted on the 
target chamber [41]. Because of its good timing properties and insensitivity to gamma 
radiation, the MCP detector is well suitable for calibration and beam diagnosis. Also, 
the positron source can be replaced with a thermionic emitter by simple polarity 
reversal. An electron gun with a BaO disc cathode (Kimball Physics ES-015) is used for 
this purpose. The choice of cathode is based on its narrow emission energy and small 
area (∅0.84 mm). Both qualities guarantee a low initial phase-space volume by 
minimising chromatic aberrations in the electron beam. [143] 

The throughput of the beam line in DC mode was measured to be about 90% for the 
electron beam. This was determined by a simultaneous measurement of the electron 
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emission and target absorption currents. A phosphor screen was also used in aligning to 
observe the beam spot visually. The pulsing causes a loss between 65–85%, depending 
on the tuning. 

Figure 19 shows the time distribution of the beam after each of the pulsing stages 
separately, as measured with the MCP. The performance of the prebuncher is 
considerably worse compared to the main buncher, as can be clearly seen in Figure 19, 
and cannot be attributed to the lower fundamental frequency alone. A possible reason is 
the larger relative energy width of the beam (cf. Eq. (32)). While this limits the 
bunching efficiency, it has not been observed to deteriorate the overall time resolution 
significantly, which would be a more severe drawback. 
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Figure 19. The time structure of the beam induced by each pulsing stage separately. 
Note the different time scales. The theoretical time-distributions are shown in the 
almost-critically bunched case, since the critical case (χ = 1) results in a singularity at t 
= 0. 
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An example of the final pulse shape is shown in Figure 20. Its form is discussed in more 
detail in Sec. 3.5.  A slightly narrower (by ~10 ps FWHM) pulse was obtained with the 
electron beam, evidently due to the narrower phase-space volume of the electron source.  
The signal-to-noise ratio is more than 1000:1. The asymmetry of the pulse is partly due 
to imprecise calibration—the chopper phase is slightly mismatched to the main buncher. 
While the FWHM varies between 175–200 ps depending on energy, the pulse has rather 
broad “wings”, and is accompanied by small satellite pulses 6 ns away on both sides. 
These are in magnitude about 1:1000 of the main pulse, and result from leakage through 
the chopper into the preceding and succeeding cycles of the five-fold frequency main 
buncher (cf. Figure 19). Due to the finite time-of-flight from the main buncher to the 
target, the “time zero” shifts with energy, being most sensitive at low energies due to 
the E -dependence of the flight time. 

 

Figure 20.  The time structure of the positron pulse, measured at 2 keV with the MCP. 
The dashed line is a (non-optimal) fit based on the ideal time structure (see 3.5.1). The 
satellite bunches are due to leakage from the chopper—ideally, the beam would be fully 
suppressed during the remaining four cycles of the five-fold frequency main buncher. 
The asymmetry is due to improper phase-matching of the chopper; the chopper 
acceptance time window is slightly misaligned with the main buncher pulse. Based on 
Publ. II. 
The broadness of the wings is proportional to the chopper time-window, which in turn, 
however, is proportional to the bunching efficiency, and hence also to the event rate. 
Thus, there is a trade off between time resolution and collection time, and in fact, also 
signal-to-noise ratio. Specifically, the laboratory background radiation causes a constant 
background level in the lifetime spectra, so decrease in event rate also results in 
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worsened statistics. This follows from the non-coincidence nature of the measurement 
principle; for each START signal that passes the energy discrimination, whether it 
originates from an annihilation event or a background radiation photon, a STOP signal 
from the clock is registered within 30 ns, and the event is included in the spectrum. 
Hence, the signal-to-noise ratio is directly proportional to the ratio of annihilation event 
rate and background photon rate. This is different compared to (coincidence) fast-
positron spectrometers, where the signal-to-noise ratio is, in the zeroth-order 
approximation, independent of the background radiation level [166]. 

The total transversal energy spread introduced by the pulsing stages is estimated to be at 
most around 0.5 keV, although this remains to be confirmed by experiment. For this 
purpose, a residual potential analyser can be used. If confirmed, the effect of the spread 
on depth resolution is marginal, since the positron implantation profile (Eq. (14)) would 
dominate the resolution already at very low (a few keV) energies. 

The time structure was observed to drift with temperature, with the peak drifting 25–30 
ps/˚C (in the range ~23–27˚C), in good agreement with estimates from stability tests 
performed on the RF electronics [163]. The fibre-optic link has a notable drift of 20–30 
ps/˚C. The laboratory air-cooling oscillates at roughly 1˚C per day. So far, the long-term 
drift has been observed to be roughly 100 ps per month. 

3.4 Lifetime detection and signal processing 

3.4.1 Scintillation detector 

A truncated-pyramid (40×40 mm2 bottom, 25 mm height, 25×25 mm2 top) barium 
fluoride (BaF2) scintillator [167–170], coupled to a Philips/Photonis XP2020Q 
photomultiplier tube (PMT) (type B’ base as per Philips photomultiplier data handbook 
[171]), is used in detecting the annihilation photons, and is situated in a retractable 
vacuum well just behind the sample. The overall detection efficiency for annihilation 
events was determined to be in the range 20–35%. However, some inevitable signal 
discrimination is required, as discussed in more detail in Sec. 3.4.2, reducing the overall 
count rate in lifetime measurement to the order of 102–103 s−1. The detector was 
evaluated to have a Gaussian response of around 200 ps FWHM. 

The PMT requires rather heavy magnetic shielding to suppress the field strength from 
around 5 mT to an acceptable level of 0.1 mT or less. The shield, placed inside the 
vacuum well, is made of magnetic alloys (Ad-Vance Magnetics AD-MU-00 & AD-MU-
80), with an overall thickness of 7 mm, surrounding the PMT. It composes of two 
separate layers of cylindrical shielding housings. The outer layer is made of a medium-
permeability alloy to coarse-attenuate the field, in order to protect the inner layer from 
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saturation. The inner layer, in turn, is made of conventional high-permeability material, 
commonly referred to as mu-metal. The cylinders are open-ended to allow, at the 
scintillator end, for minimum gamma ray attenuation, and at the other end for the 
electrical feedthroughs. The shield design was based on finite element simulations [172, 
173]. The drop in PMT gain due to the small residual field inside the shield is roughly 
8% in signal amplitude at the applied bias (−1.8 kV). It was estimated that the effect in 
the total FWHM was at most 25 ps. 

The Curie points of the shielding alloys have not been confirmed, but are estimated to 
be around 600°C or higher. This ultimately presents an upper limit to the sample heating 
temperature, since, as the shield is situated close to the sample holder, some amount of 
radiant heat is absorbed by the shield. The limit is nevertheless sufficiently high for 
usual temperature ranges. [174] 

3.4.2 Signal processing 

To measure the positron lifetime, the timing signals are taken from the detector anode 
and the 33.3 MHz clock. Due to the high repetition rate, the detector output is used as 
the triggering START. The signals are fed to a 1-GHz, 8-bit digitiser (Agilent 
U1071ATM1), sampling both channels at 1 GS/s. The time delay between the signals is 
determined by applying digital (differential) constant-fraction timing [90]. With the 
MCP, the hardware configuration is equivalent.  The conventional constant-fraction is 
determined from a smoothing-spline fit to the data samples. Because the signal rise-
times are short (PMT: ~2 ns, MCP: ~0.4 ns, clock ECL (emitter-coupled logic): less 
than 1 ns), in-built 20 MHz low-pass filters are used in the input channels. The filtered 
signals provide a sufficient number of samples (at least 4) to be taken from the leading 
edge for fitting without observable loss in timing accuracy [90]. Figure 21 illustrates the 
effect of the filtering. 
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Figure 21. The sampled PMT and clock ECL signals, both raw and 20 MHz low-pass 
filtered. The filtering increases the signal rise time, so that enough samples can be 
taken from the leading edges for optimum timing. 
BaF2 has two scintillation decay channels, both in the near-ultraviolet range. The fast 
component (0.6 ns decay constant), suitable for timing, is only around 10% in branching 
ratio. The slower channel (600 ns) introduces a long tail to the anode signal, which can 
cause pileup distortions at high detection rates (see Figure 22). At the present event-
rates, however, it is not necessary to pay special attention to pileup effects. Instead, the 
slow component affects signal-height discrimination, in such that the signal peak value 
becomes a statistically notably worse measure of energy than the time integral, i.e., the 
charge. Because the laboratory background radiation increases the false-event rate 
linearly, it is necessary, due the 1/f-nature of the background, to choose the acceptance 
energy window only around the 511 keV line (photopeak), since this maximises the 
events-per-background ratio. Figure 23 illustrates the situation. For this purpose, 
optimum energy resolution is beneficiary. The γ energy is thus in this case determined 
from the time integral (sample sum) over the signal, in principle as in analogue charge-
sensitive preamplifiers. In practice, it suffices to take only, for example, 200 ns (200 
samples) to the right of the leading edge, so that the computation time does not become 
a limiting factor. Compared to taking the signal peak-value as energy measure, the 
improvement in signal-to-noise (events per background) ratio in lifetime spectra is 
around a factor of 4/3 in, e.g., silicon. 
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Figure 22. The sampled PMT anode signal. The trail is due to the long (600 ns) decay 
channel of BaF2. 
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Figure 23. Radiation energy histograms of annihilation events including laboratory 
background, and plain background, determined from the BaF2 scintillation detector 
signals by signal-peak three-point average, and by summation (time integral) 200 
samples (200 ns) over the peak. The peak in the energy histogram is the 511 keV 
annihilation photopeak, and to its left is the Compton continuum. Due to the high-
intensity slow scintillation channel in BaF2, the signal peak value is a worse measure of 
photon energy; the photopeak is enhanced when integrating the PMT anode signals. 
The solid lines indicate the energy discrimination lower and upper levels that more or 
less maximise the signal-to-noise ratio in lifetime spectra. 
In place of the digital setup, analogue NIM electronics could easily also be used. In that 
case, the timing signals would be fed to a conventional set of constant fraction timing 
discriminators, time-to-amplitude converter, and multichannel board. A fast-slow 
configuration using a charge-sensitive preamplifier would be preferable over fast-fast 
due to the energy discrimination described above. 
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3.5 Data analysis 

3.5.1 Instrument function 

As discussed in Sec. 2.4.3, lifetime data analysis is more difficult and error prone with 
slow positrons due to the inclusion of surface and interface effects. If the material layer 
in question is inhomogeneous, for example, in trapping-defect distribution, the situation 
is worsened still. Unfortunately, the beam bunching itself introduces another set of 
parameters that affect the pulse shape and thereby also the instrument resolution 
function. In bulk studies, the variations in scintillation photon and PMT electron transit-
time together with the electronic resolution are represented by a single Gaussian to 
model the detector response. In this case, however, the non-trivial positron pulse shape 
also needs to be accounted for. In Ref. [1] and Publ. II, the shape of the positron pulse is 
analysed. An expression for the final pulse shape is derived. However, even excluding 
the effect of bunch aberrations, the closed-form expression of the overall instrument 
function, described below, is not known, so it must be computed numerically. Some 
common fitting programs offer the possibility to use a set of weighted Gaussians to 
describe the instrument function, yet experiences in this approach indicate that it 
generally does not reduce the required number of fitting parameters. 

Considering a single-frequency beam buncher, the particle arrival-time distribution at 
the time focus is, by Eq. (26), denoting ( ) ( )tTtg ≡  and setting without loss of generality 

00 =τ , given by 
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Neglecting for simplicity the second harmonic of the prebuncher, Eq. (33) applies to 
both the prebuncher and the main buncher. We shall denote the prebuncher and main 
buncher angular frequencies with 1ω  and 2ω , respectively, and similarly, their bunching 
parameters with 1χ  and 2χ . Apart from the scattering artefacts, the chopper 
acceptance-time window is very close to Gaussian. Let its standard deviation, 
determined by the chopping waveform amplitude, be cσ , and its phase/time offset with 
respect to the prebuncher pulse, determined by the chopper waveform phase, cμ . Using 
the fact that the flight time from the chopper to the main buncher is short, and therefore 
the time structure of the prebunched and chopped beam does not change significantly 
before reaching the main buncher, and modelling the response of the detector chain with 
a Gaussian, it can be shown that the instrument function is, short of a normalisation 
factor, 
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where  is the detector response and the functions  and  are defined as in Eq. 
(33) with the addition of the main-buncher phase-mismatch 
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Using a Gaussian for the detector response, Eq. (34) reproduces the actual instrument 
function fairly well, less the aforementioned aberrations (see Figure 20 and Publ. II). 
Hence, with the inclusion of the standard deviation of the detector response, the 
instrument function depends on a total of six variable parameters 
( 1χ , 2χ ,ϕ , cμ , cσ , dσ ), as opposed to just the detector parameter dσ . Since only the 
flight time from the main buncher onwards depends on the implantation energy, only 
one parameter, the main buncher parameter 2χ , is varied with energy. An additional 
variable, also present in bulk studies, is the lifetime spectrum time-offset, determined by 
the delay between the START and STOP signals. 

Fortunately, the values of the parameters can be roughly determined a priori by 
examining the time structures produced by the pulsing stages individually. In addition, 
with the fast MCP, the pulse shape can be determined within the limits of the MCP time 
jitter. The time response of the MCP is not known precisely, but is estimated to be 
around 100 ps FWHM or less. 

3.5.2 Data fitting 

The natural approach in data fitting is to first determine the resolution function using 
some well-known calibration sample. This needs to be performed separately for each 
energy step. Due to drift, it is advisable to include the calibration sample in each 
measurement run. At present, however, such samples are scarce, since as discussed in 
Sec. 1, slow-positron lifetime has remained an uncommon technique to date. Also, the 
spectrum artefacts, namely in this case the satellite peaks and the non-constant 
background, disturb the data analysis. The simplest solution is to neglect in the fitting 
procedure the regions of the experimental spectrum where these artefacts appear. 
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A Matlab-based program for fitting the lifetime data is currently under development 
[81]. The program solves the diffusion equation (Eq. (21)) numerically using a 
‘backward in time, centred in space’ finite difference method. It then computes the 
instrument response (Eq. (34)) using a Gaussian as the detector response , and 
convolves this with the computed lifetime spectrum (Eq. (19)). The routine uses a trust-
region fitting algorithm. This has the benefit of allowing limiting the search regions of 
the parameters. The free parameters are selectable. For analysing depth scans, the 
program needs to be capable of fitting multiple spectra, i.e., the entire implantation 
energy range, simultaneously. As mentioned in Sec. 

df

2.4.3, deep in the material layer, 
i.e., for high implantation energies, one can approximate the lifetime distribution with 
the conventional sum-of-exponentials form of Eq. (9). This can be used as a 
complementary method in the analysis, since many commonly used fitting programs are 
based on this approach. Since the software was still under development during the time 
of writing of this thesis, the following data fitting has been done this way using the 
PALSfit program. 

p-type silicon is used as an example. For comparison, the sample was also characterised 
with the Pulsed Low-Energy Positron System (PLEPS) at NEPOMUC at Forschungs-
Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 
Germany, which is a similar instrument. The PLEPS lifetime spectra were decomposed 
using two-component exponential fits. The data decomposition was done with in-house 
software (POSWIN 2.x) of Institut für Angewandte Physik und Messtechnik, 
Universität der Bundeswehr München, Germany [175]. The second lifetime was kept 
constant at 2τ  = 387 ps, which is a typical value for the positron surface-state [134, 
176]. The resulted decompositions are illustrated in Figure 24. For increasing 
implantation depths, the first lifetime component 1τ  approaches the well-established 
bulk lifetime in Si of 220 ps with increasing intensity . The slow convergence of the 
intensity is due to the long diffusion length in crystalline Si [

1I
87, 135, 177]. 
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Figure 24. Results from lifetime spectra in p-type Si measured with PLEPS. The spectra 
were decomposed with two-component exponential fits keeping the second lifetime 
component fixed at 387 ps representing the positron surface state. 
Figure 25 shows as an example lifetime spectra measured with the Aalto University 
pulsed beam with low (4 keV) and high (18 keV) implantation energies. The constant 
laboratory background has been subtracted in order to reveal the shape of the resolution 
function and the background structure caused by the pulsing system. By comparing the 
two spectra, it can immediately be seen that the average positron lifetime is longer with 
4 keV, i.e., closer to the surface of the sample, as expected due to surface states. 
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Figure 25. Examples of lifetime spectra in silicon measured with the pulsed beam. 
Fixing the lifetimes and intensities obtained with PLEPS, we first attempt to model the 
resolution function with a conventional sum-of-Gaussians. Figure 26 shows the 
reduced-χ2 statistics of the fits, and Figure 27 shows as an example one of the fits. The 
weights of the Gaussians were kept constant at 2:1:1 and 1:1:1:1 in the three- and four-
Gaussian fits, respectively. For comparison, those of the PLEPS data fits are included. 
We find that statistically, a sum of three Gaussian distributions is adequate to model the 
resolution. However, it should be noted that the decompositions of the spectra from 
PLEPS are somewhat poor to begin with. This is likely due to the improper calibration 
of the PLEPS pulsing system. 
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Figure 26. Reduced-χ2 values of fits to lifetime spectra obtained from the silicon sample. 
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Figure 27. Example of fit to lifetime spectrum using three Gaussians in modelling the 
instrument resolution. The implantation energy was 10 keV. The residual plot (below) 
shows no patterns, indicating that the model is appropriate. 
However, if even the two lifetime components are left free in the fits, thus 
simultaneously fitting the resolution function and the lifetime spectrum, we arrive at a 
different result (Figure 28). The number of free parameters is now very large, but the 
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resulting lifetimes are nevertheless credible. The first component 1τ  converges towards 
around 235 ps with increasing intensity towards higher implantation energies. However, 
the intensity scale of  is quite different than in the previous. Also, the second 
component is much longer, around 900 ps. The average lifetime, 

1I

aveτ , is about 20 ps 
longer than with PLEPS at nearly all energies. 
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Figure 28. Results of the free two-component decomposition. The divergence of the 
second lifetime component τ2 at the highest implantation energies is likely a fitting 
artefact due to the vanishing intensity I2. 
Since both lifetimes were longer than expected, also a three-component fit was 
performed. However, the second lifetime was fixed at ps3802 =τ  to represent the 
surface state, since otherwise the number of free parameters became too large. The 
resolution function was fitted with three Gaussians in this case. The results are shown in 
Figure 29. Now 1τ  approaches ps220Si =τ , while its intensity  increases from 25% 
at 2 keV to 80% at 20 keV. There is a diminishing third lifetime of roughly 1.1 ns, 
which begins to diverge heavily at high energies when its intensity drops to less than a 
couple of %. This may be an instrument artefact at least at the highest energies, but its 
otherwise more or less constant value and decrease in intensity with increasing 
implantation energy suggests that it could be associated to surface Ps [

1I

87, 177]. 
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Figure 29. Results of the three-component decomposition keeping τ2 fixed at 380 ps. 
Finally, although the sum-of-Gaussians model for the resolution function is 
demonstrated to produce statistically good fits to lifetime data, it is in actuality quite 
poor for reproducing the pulse shape (Figure 20). It was observed that three or even four 
Gaussians is insufficient to obtain good fits to the pulse shape. The goodness of the 
lifetime fits above owes partly to the large total number of free parameters, and partly to 
the “smoothing out” of the resolution function in the convolution. It should be noted 
that with a single-Gaussian resolution function, as in fast-positron spectrometers, the 
“slopes” (on a semilogarithmic scale) of a spectrum of the form of Eq. (9) do not 
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change, but in general, this does not hold for a more complex resolution function. Also, 
the number of free parameters is by no means smaller than with Eq. (34); while the first 
Gaussian component is defined by its standard deviation alone, additional components 
introduce three more parameters each, namely standard deviation, relative intensity 
(weight), and offset/shift. Thereby, the use of three Gaussian components already 
introduces more parameters (seven) than when using Eq. (34). 

3.6 Concluding remarks 

The relative complexity of the HV design is rewarded by ease in sample manipulation, 
since the sample is not floated during measurements. For example sample motion, 
biasing, heating, and cooling are greatly facilitated. A future task is to include sample 
illumination, which could additionally be time-synchronised with the beam to enable 
transient studies. 

Because of the asymmetry of the beam chopper, the chopper time-window is slightly 
different (not shown) between the two zero-crossings of the waveform. This is a minor 
disadvantage of the chopper design, although its effect on data analysis is buried by 
statistical uncertainties. A more severe problem is the leakage, which induces the 
satellite pulses 6 ns away from the main pulse. The background from the chopper is also 
non-constant, causing further complications in data analysis. Although the pulse shape 
can be somewhat improved by increasing the chopping amplitude, the benefit is 
counterbalanced by increased collection time and worsened statistics. 

Regarding bunching efficiency, it is under consideration to replace the present two-
harmonic prebuncher waveform synthesiser with an arbitrary waveform generator. The 
present limit of roughly 20 mCi minimum source activity could also easily be reduced 
with an improved moderator, which would additionally benefit the data collection time. 
The count rate could safely be increased by at least one order of magnitude before 
detector pile-up effects begin to require attention. However, despite several attempts to 
improve the efficiency using several W foils and heat-treatments, the efficiency is more 
than an order of magnitude less than values reported in the literature, see, e.g., Refs. [30, 
100, 103, 178]. A promising candidate for improving the efficiency is the 
semiconductor field-assisted moderator [86]. 

It should be mentioned that shielding the scintillator from background would not 
improve the counting statistics in significant amounts. Simply due to geometric 
constraints even the theoretical maximum solid angle spanned by the shield could only 
be 2π, so the reduction in background would be limited to at most a factor of two. Even 
then, significant changes would need to be made to the design. 

 



 85

As a final note, in conclusion to all the issues discussed related to the analysis of 
measurement data, it should be stressed that data analysis with a slow-positron lifetime 
beam is hardly straightforward. This is partly due to the complex and limited resolution 
of the instrument, and partly to the larger variety of positron-related phenomena that 
occur in layered materials compared to bulk. On the contrary, data analysis requires 
sophistication, experience and often much insight from the user. Otherwise, there is a 
risk of false interpretations. 
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4 Vacancy-defect studies in indium nitride 

4.1 Background 

Indium nitride has gained attention in semiconductor science with much potential in 
optoelectronic, high-power and high-speed electronics, and photovoltaic applications 
[52, 55, 57]. The (direct) band gap, now estimated around 0.7 eV, is in the infrared 
region [42, 44, 46, 49, 50, 54, 59, 60]. Together with the other III–nitrides, GaN (3.4 eV 
[179]) and AlN (6.2 eV [180]), the III–N ternary alloys cover the solar spectrum from 
near-infrared to deep ultraviolet. Bulk InN is not yet available, but high quality films 
can be grown by molecular beam epitaxy (MBE) [181–185] and metal-organic chemical 
vapour deposition (MOCVD) [186–188]. 

The electrical and optical properties of the material are under intense research. The 
effective electron-mass in InN is very small [53, 59], and high electron mobilities and 
peak velocities have been achieved [43, 45, 51, 56, 58]. The material has also displayed 
high resistance to radiation damage, having prospects in space applications [61]. So far, 
InN has suffered from a strong propensity for n-type conductivity, however, p-type 
films have recently been reported [47]. Although much progress has been made in 
growth, one problem is the lack of well-suited substrates. The lattice mismatch between 
the commonly used sapphire (Al2O3) is large, necessitating the use of buffer layers such 
as GaN [189]. 

The crystal quality has been found to depend on the film thickness strongly in the sub-
micron region [1, 190–193]. On the other hand, growth stoichiometry has been observed 
to have little effect on indium vacancy (VIn) formation in MOCVD-grown films [194]. 
In Sec. 4.2 and Publs. III & IV, the role of growth conditions, such as stoichiometry, 
temperature, substrate, polarity, and dislocation density on VIn formation in InN grown 
by plasma-assisted molecular beam epitaxy (PAMBE), investigated using slow-positron 
Doppler broadening, is discussed. 

According to the amphoteric defect model (ADM) [195], the reason for the strong 
tendency for n-type conductivity of unintentionally doped InN lies in the position of the 
conduction band minimum relative to a Fermi stabilisation energy, EFS. In the ADM, the 
Fermi stabilisation level is an intrinsic property of the material, i.e., it is insensitive to 
the band edges and thus also to the doping level, that originates from the localised 
nature of intrinsic point defects. Native defects can behave amphoterically, in that they 
can act as donors or acceptors. The nature (donor or acceptor) is determined by the 
Fermi level EF with respect to EFS. When EF is below (above) EFS, the defects tend to be 
n(p)-type, pulling the Fermi level up (down), until it pins to EFS. In InN, the Fermi 
stabilisation level lies high in the conduction band (0.9 eV above the conduction band 
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minimum [61, 196]), so that in undoped material, intrinsic defects act predominantly as 
donors. [57] 

Nevertheless, the dominant donors in unintentionally doped InN remain unidentified. 
Candidates so far include native nitrogen vacancies, interstitials, and antisites [197, 
198], indium-related defects [199, 200], and unintentional impurities such as oxygen, 
silicon, and hydrogen [181, 201–206]. Threading dislocations have also been suggested, 
although their role is disputed—however, there is much evidence supporting the view 
that threading dislocations are the dominant scattering centres limiting the electron 
mobility in undoped InN [205, 207–212]. 

It has previously been found that high-energy particle irradiation provides a controllable 
way to increase the free-electron concentration in undoped InN by introducing donor 
defects [196, 213, 214]. The electron mobility drops in the irradiation, but was 
discovered to be nearly fully restored by subsequent rapid thermal annealing (RTA), 
while the carrier concentrations remained nearly unaltered [215]. This was ascribed to 
the partial recovery and spatial reordering of triply charged defects in the annealing. 

The effects of He irradiation and subsequent rapid thermal annealing on point defects in 
MBE-grown InN are presented in Sec. 4.3 and Publs. V & VI. For this purpose, slow-
positron lifetime was utilised using the PLEPS setup, since at the time, the Aalto 
University pulsed positron beam was still under construction. Results on Doppler-
broadening experiments performed on the as-irradiated samples have been published in 
Ref. [216]. It was found that VIn were produced in the irradiation at a much lower rate 
(100 cm−1) than VGa (3600 cm−1) in similarly irradiated GaN grown by MOCVD. Also, 
the VIn concentration was seen to saturate in the mid-1017 cm−3 range when the 
irradiation fluence exceeded φ = 2×1015 cm−2. On the other hand, also intrinsic negative-
ion type defects were observed to be produced in the InN films, at a much higher rate of 
2000 cm−1. These were tentatively ascribed to N interstitials, which possibly act as 
important compensating centres ultimately limiting the n-type conductivity in the films. 

4.2 Effects of growth conditions on indium-vacancy formation 
in InN grown by plasma-assisted molecular beam epitaxy 

Slow-positron Doppler-broadening was applied to study vacancy formation in a set of 
different InN layers grown by PAMBE. The In-polar layers were grown either directly 
on a semi-insulating GaN template or using a MBE-GaN buffer layer. The growth 
temperatures were between 430°C to 470°C. The N polar layers, in turn, were grown at 
550°C on MBE-GaN grown on c-face SiC or N-polar freestanding GaN. The electron 
concentrations in the samples varied from low-1017 cm−3 to low-1018 cm−3, and the 
carrier mobility ranged from 2000 to 800 cm2/Vs, as determined by single-field Hall 
measurements. The samples are labelled In(x) or N(x) for In- and N-polar growth, 
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respectively, with x giving the growth regime In (In-droplets), s (stoichiometric) or N 
(N-rich), and are described in Table 1. More details on the growth procedures and 
electrical characterisation can be found in Refs. [181, 182]. 

Table 1. Description of the PAMBE-InN samples and VIn concentrations determined in 
this work. 

Sample Growth temp. (°C) Thickness (nm) Template [VIn] (1016 cm−3)

In(In)-1 430 980 MBE-GaN 2 

In(In)-2 450 250 MOCVD-GaN 6 

In(In)-3 450 750 MOCVD-GaN 3 

In(In)-4 470 1000 MBE-GaN 2 

In(N)-1 430 830 MBE-GaN < 1 

In(N)-2 450 300 MOCVD-GaN 5 

In(N)-3 450 1400 MOCVD-GaN 5 

N(In) 550 1000 GaN / free-st. GaN 5 

N(s)-1 550 500 GaN / SiC 3 

N(s)-2 550 2000 GaN / SiC 4 

N(N) 550 1000 GaN / SiC 7 

Figure 30 shows the S parameter measured as a function of positron implantation energy 
in selected InN layers. When positrons are implanted close to the sample surface, in the 
energy range of 0–1 keV, an S parameter of S = 0.490–0.495 is recorded in all the 
samples. These values characterise the defects and chemical nature of the near-surface 
region of the samples (~0–5 nm). The region where S is constant can be taken as 
characteristic of the InN layer, illustrated by the dotted line in Figure 30. The plateau of 
constant S varies from sample to sample due to the different thicknesses of the layers, 
and extends from a few keV to 7 keV in the 250-nm-thick sample and up to 20 keV in 
the thicker samples. The decrease of the S parameter at higher implantation energies in 
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the In-polar samples is due to the increasing fraction of positrons annihilating in the 
GaN template/buffer layer, for which the characteristic S parameter is roughly S = 0.46, 
while the increase at high energies in the N-polar sample is due to the slightly higher S 
parameter of SiC (S = 0.485). 
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Figure 30. Doppler-broadening lineshape S parameter as a function of positron 
implantation energy (depth) in selected PAMBE-InN samples. 
An increased (decreased) S (W) value in the InN layer indicates that the electron 
momentum-distribution is narrower than in the perfect InN lattice, and is a clear sign of 
the presence of vacancy defects. To identify the vacancies, the layer-average ( )  
values, i.e., averaged over the energy ranges corresponding to the InN layers, are shown 
in 

WS,

Figure 31. In nearly all the samples, the points fall on the line between the two states 
previously identified as the delocalised state in the InN lattice and the trapped state in 
VIn (cf. Eq. (13)), by combining Doppler-broadening and lifetime data [193, 216]. Since 
the  values of the sample In(N)-1 coincide with the InN lattice values ( ) , 
these values were additionally confirmed to indeed correspond to the delocalised InN-
lattice-state by lifetime measurements in the sample, which showed practically only a 
single lifetime component of around 184 ps, equal to the calculated lifetime in the InN 
lattice [

( WS, ) BB WS ,

193, 200]. The VIn concentrations can be estimated from the data with the 
positron trapping model assuming a trapping coefficient for VIn of 3×1015 s−1. The 
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concentrations ranged from below the room-temperature detection limit of about 1×1016 
cm−3 to 7×1016 cm−3, as shown in Figure 31 and Table 1. 
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Figure 31. (S, W) plot of the average values in the InN layers (scaled to the InN lattice 
values (SB, WB BB

)

)). 
It can be seen that the growth temperature clearly does not have an effect on the 
vacancy concentration. Also, in the In-polar samples, the growth stoichiometry does not 
seem to play a role either. Instead, the use of an MBE-GaN buffer layer in the In-polar 
growth appears to result in smaller VIn concentrations compared to growth on MOCVD-
GaN. Another correlation that can be observed in the In-rich In-polar samples is that the 
vacancy concentration decreases with increasing layer thickness, similar to what has 
been observed in InN grown by MBE on sapphire [193]. On the other hand, in the N-
polar films, the sample grown under N-rich conditions has a clearly higher vacancy 
concentration than those grown in stoichiometric conditions. The (  point 
corresponding to the In-rich grown N-polar sample appears off the line connecting the 
InN lattice and In vacancy in 

WS,

Figure 31. This has been observed also in MOCVD-InN 
grown in the In-droplet regime, where the effect was attributed to vacancy clustering 
[194]. 

The difference between the above observations in In-polar MBE-InN compared to Ga-
polar MBE-GaN [217] is substantial—the more N-rich the growth, the more Ga 
vacancies are formed, while no such effect on In vacancy formation is seen in InN. A 
similar difference has also been observed in the case of MOCVD growth [194, 218]. A 
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plausible explanation for the differences in cation-polar material can be found in the 
vacancy formation energies and the growth temperatures. In n-type material, the 
calculated formation energy of Ga vacancies is about 1 eV, while it is almost 3 eV for 
the In vacancy [206, 219]. On the other hand, the growth temperature of GaN is 200–
300ºC higher than that of InN in MBE growth, and up to 500ºC higher in MOCVD 
growth. As the concentrations of the Ga and In vacancies are similar in samples in near-
stoichiometric conditions, the formation of the In vacancies must be dictated by other 
factors related to the structural quality of the material rather than thermal formation (and 
subsequent stabilisation by, e.g., impurities). On the other hand, the observed Ga 
vacancy concentrations in samples with low dislocation densities are of the same order 
of magnitude that could be expected from the growth temperature and the calculated 
formation, given that the vacancies (which are mobile already at relatively low 
temperatures) are stabilised by impurities (such as O) or other defects relatively close to 
the growth temperature [95, 216, 220, 221]. Hence, it may be understood why the 
stoichiometric conditions affect the final In vacancy concentration in InN less than the 
Ga vacancy concentration in GaN. 

Additionally, as mentioned, the In vacancy concentration is lower in the samples where 
a MBE-GaN buffer layer has been used instead of growing directly on a MOCVD-GaN 
template. This is in good agreement with results of optimising the MBE-GaN buffer for 
InN growth [181], further supporting the view that even in state-of-the-art InN, the 
structural quality of the material dictates the In vacancy formation. Interestingly, even if 
the higher temperature in N-polar growth does not lead to higher In vacancy 
concentrations compared to In-polar growth, the growth stoichiometry seems to have 
some effect. This can be understood by the thermodynamical formation of vacancies 
becoming more important owing to the higher temperature, even if the structural effects 
are still dominant. 

Another difference between MBE InN and GaN can be found when comparing N-polar 
and In/Ga-polar growth. In the case of InN, the vacancy concentrations are similar for 
both polarities, while in GaN, very high vacancy concentrations are observed in N-rich 
N-polar layers [217]. Interestingly, in Ga-rich N-polar MBE-GaN, on the other hand, 
efficient clustering of vacancies was observed in Ref. [217], and a similar (although 
very small) effect is seen in the present data on In-rich N-polar MBE-InN. A possible 
explanation could be that the formation of N vacancies is strongly enhanced in Ga/In-
rich N-polar growth, where a larger number of N sites are available to be left empty at 
the growth surface, but as the formation of In vacancies is much less probable than that 
of Ga vacancies, clustering is less efficient in InN. 

Finally, although in earlier work a connection between VIn and carrier mobility has been 
proposed [193], here we find no apparent correlation between VIn concentration and 
mobility. Instead, this is supportive to the view that extended defects are the dominant 
scattering centres in as-grown, nominally undoped InN [207].  
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4.3 Vacancy defects in InN after He irradiation and rapid 
thermal annealing 

Doppler-broadening studies were performed on a set of MBE-grown, nominally 
undoped wurtzite InN films that were irradiated with 2-MeV 4He+ ions at different 
fluences in the range φ = 5.6×1014–1.8×1016 cm−2. The films were grown on c-sapphire 
with an AlN and/or GaN buffer layer, and their thickness was 0.6 μm, except for the one 
irradiated at 2.2×1015 cm−2, which was 2.7 μm thick. The penetration depth of the He 
ions is about 7 μm, so the irradiation damage was roughly uniform throughout the films. 
After irradiation, the films were rapid-thermal-annealed at temperatures between 425–
475°C for 5 to 10 minutes. More information on the samples can be found in Refs. [213, 
215]. In addition to the Doppler-broadening technique, positron lifetime measurements 
were also performed using a pulsed slow-positron beam. For comparison, similarly 
treated GaN films grown by MOCVD were also studied. 

Figure 32 shows the Doppler-broadening parameters in selected InN samples as a 
function of energy, measured at room temperature. The data from an as-grown film are 
also shown as a reference. The pre-RTA data are from Ref. [216]. The increased 
(decreased) S (W) parameter in the irradiated InN layers is due to the presence of VIn. 
The heat treatment is clearly seen to change the behaviour of the S parameter, indicating 
a depth profile in the vacancy distribution. The W parameter, on the other hand, shifts in 
the annealing more evenly throughout the layer back towards the value of the as-grown 
sample. It should be noted that in the sample irradiated with the highest fluence, the S 
parameter exhibits a slightly similar profile already before the RTA. 
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Figure 32. Doppler-broadening parameters S and W as a function of positron 
implantation energy in selected He-irradiated InN samples, before and after thermal 
annealing. The low-energy range roughly below 4 keV is dominated by annihilations 
from surface states, while in the thinnest films, the substrate is reached at energies 
above 12 keV. The RTA treatment introduces a clear depth profile in the InN-layer S 
parameter, indicating a redistribution of the irradiation-induced In vacancies. 

The room-temperature Doppler-broadening ( )WS,  plots are shown in Figure 33. The 
data from the annealed samples has been separated into two regions, one corresponding 
to the InN layer away from the film–substrate interface, where the S parameter is 
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smallest, and another corresponding to the region close to the interface. In the layer 
region, the points fall on the same line connecting the InN bulk state and VIn as before 
the RTA, indicating that VIn are still present [193, 216]. Their concentration, however, is 
clearly lower than before the RTA process, since the points lie closer to the bulk value. 
Near the interface, on the other hand, a different type of In vacancy appears to be 
present, since the points lie on a different line with a gentler slope. A similar effect has 
been observed in studies of Si-doped InN [222] and in MOCVD films grown with low 
V/III ratios [194], where the possibility of vacancy cluster formation was proposed. 
Since the sample irradiated at φ  =  1.8×1016 cm−2 exhibited a mild depth profile already 
prior to the RTA, the values corresponding to the as-irradiated sample were taken from 
the near-interface region. However, we see that they clearly fall on the bulk-InN–VIn 
line, indicating that in the as-irradiated sample, the defect profile is due to a slight 
accumulation of the VIn towards the interface. 
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Figure 33. (S, W) plot of the InN samples. In the layer region, the points are closer to 
the bulk value after the heat treatment, indicating that the irradiation-induced VIn are 
partially removed in the RTA. Near the interface, however, the points no longer fall on 
the line connecting the InN bulk state and the trapped state in VIn, which suggests that a 
different In-vacancy defect is present. 
In the GaN films, on the other hand, the Doppler-broadening data showed simply a 
partial recovery of the irradiation-induced VGa in the RTA. This is in agreement with 
earlier studies on electron-irradiated GaN [223]. Especially, no depth profiles were 
observed in the defect distribution in the GaN films. 
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For further investigating the unidentified In vacancies, lifetime measurements were 
performed on the most heavily irradiated InN film. The lifetime spectra were 
decomposed with a conventional sum-of-exponentials fit (Eq. (9)), and the best fit was 
obtained with three lifetime components. The results of the decompositions are shown 
in Figure 34. Throughout the InN layer, the second component 2τ  is very close to the 
previously determined lifetime in VIn of 260 ps [193, 200]. Also, its intensity as a 
function of depth follows a similar trend as the S parameter. This indicates that the 
vacancies near the interface have an open volume close to the In monovacancy. The 
third component has values typical to larger vacancy clusters. However, due to its very 
small intensity, it may also be an instrument or fitting artefact. 
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Figure 34. Slow-positron lifetime data from the most heavily irradiated InN film after 
thermal annealing. The solid line represents the lifetime in VIn, which is seen to coincide 
well with the second lifetime component throughout the InN layer. Its intensity increases 
from about 50% to 70% towards the interface. The magnitude of the third lifetime 
component is typical of larger open-volume defects such as vacancy clusters, but its 
intensity is too small for reliably determining its origin. 
Since negative-ion type defects were observed in the irradiated samples by variable-
temperature Doppler broadening [216], the temperature-dependence measurements were 
repeated in the annealed films. Figure 35 shows the S parameter in the one of the 
samples as a function of temperature in the range 30–300 K. The behaviour is typical of 
when negative ions, i.e., shallow traps, are present. The shallow traps begin to compete 
with vacancies in trapping at low temperatures (see Sec. 2.1.1). Since they produce the 
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characteristic lineshape of the lattice, the S (and W, not shown) parameter converges 
towards the bulk value as the temperature decreases. 
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Figure 35. The S parameter as a function of temperature in the InN film irradiated at φ 
= 8.9×1015 cm−2. In both regions of the annealed film, the behaviour is similar as 
before the RTA, indicating that negative ions are still present. 
The layer-region VIn concentrations were estimated from the temperature-dependent 
data using the positron trapping model [224]. A room-temperature trapping coefficient 
of 3×1015 s−1 was used for both VIn and the shallow traps. Figure 36 shows the 
calculated defect concentrations, including the concentrations before the RTA. The VIn 
concentrations were also determined from the room-temperature data and were found to 
be in consistence. The negative-ion concentrations are seen to decrease in the annealing 
process by roughly half an order of magnitude, while the In-vacancy concentration 
drops slightly less. 
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Figure 36. Indium vacancy and shallow trap concentrations in the layer region of the 
irradiated InN films. 
In conclusion, we observe a reorganization of point defects in the rapid-thermal-
annealing of the InN films. The heat-treated InN layers are found to contain decreased 
concentrations of irradiation-induced VIn and negative ion defects, while on the other 
hand, different In vacancy defects not observed in the as-irradiated samples are 
observed near the growth interface. In transmission electron microscopy, on the other 
hand, the RTA has been observed to cause structural changes in the irradiated InN films 
[225]. The as-grown layers were found to contain elevated dislocation densities near the 
growth interface, while small dislocation loops were found after the irradiation. After 
the thermal treatment, increased densities of dislocation loops were observed, possibly 
resulting from the agglomeration of irradiation-induced vacancy defects, and large voids 
were found at the interface with the GaN buffer layer. 

We observe a decrease of roughly half to one order of magnitude in the irradiation-
induced VIn and negative ion concentrations in the RTA (Figure 36). However, as 
proposed in Ref. [216], because the irradiated films are heavily n-type, the negative ion 
concentrations might be underestimated due to electron screening. Since the RTA has 
little effect on the carrier concentration (Sec. 4.1), the screening effect in the annealed 
films should be similar to the as-irradiated samples. It is hence plausible that these 
defects could ultimately limit the electron mobility in the irradiated films. 
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The behavior of the InN layers is quite different compared to the GaN films. As 
discussed previously, the formation of In vacancies in InN is considered to be 
dominated by the structural properties of the material, such as extended defects that 
form especially near the growth interface [193, 194, 226], rather than growth kinetics. It 
is therefore interesting that the growth interface seems to play an important role in the 
behavior of the irradiation-induced point defects during the RTA, suggesting that their 
behavior is influenced by the local material structure. The unidentified near-interface 
vacancies might hence be associated with extended lattice defects such as dislocations 
[207]. Further work is underway to better identify these defects. 
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5 Summary 

In this work, a new laboratory-scale pulsed slow-positron beam for positron lifetime 
experiments in thin material layers is presented. Using a combination of two RF beam 
bunchers and a chopper, the initial low-energy DC positron beam is time-compressed 
into short (~200 ps FWHM) bunches and accelerated to an implantation energy 
adjustable between 2–25 keV. The repetition period of the pulsing system is 30 ns, 
making it suitable especially for lifetime studies in semiconductor materials. The target 
sample is held at ground potential during measurements, which facilitates sample 
manipulation. The lifetime is measured using a high-speed digitiser, which has several 
benefits over the traditional analogue electronics chain. The technical design and 
performance characteristics of the instrument are presented. Also, the analysis of 
experimental data is discussed. 

Also in this work, positron annihilation techniques are applied to study vacancy defects 
in indium nitride. InN shows much potential as a semiconductor material for 
optoelectronic, photovoltaic, and high-speed electronic applications. Here, the role of 
indium vacancies in different InN films is studied. Effects of growth conditions on VIn 
formation in PAMBE-grown films are investigated. The results suggest that, contrary to 
what is observed in the more thoroughly studied III–nitride, GaN, the formation of In 
vacancies in InN is—at the present level in material synthesis—less dependent on the 
growth conditions than on the crystal quality. In addition, He irradiated and rapid 
thermal annealed MBE-grown InN is studied in this work. The positron annihilation 
results show a reorganisation of the irradiation-induced defects in the thermal annealing. 
The VIn and negative ions present in the irradiated films are partially recovered in the 
heat treatment, while near the growth interface, the data shows a change in the chemical 
environment of the In vacancies. The observed restructuring is suspected to be 
connected with extended defects at the growth interface, and might be responsible for 
the improved carrier mobility in the post-irradiation annealed InN films. 
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