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1. Introduction

The Internet is an integral part of everyday life and therefore its security is crucial for 

society. If a serious attack would disable a large part of the Internet, communications, 

monetary transactions, trade, and other important functions would be severely disrupted. 

Currently, users and the Internet infrastructure, such as routers, servers, and important 

services,  are  vulnerable  to  different  kinds of malicious  behaviour  such as  denial-of-

service attacks, break-ins, phishing attacks, and unsolicited e-mail (Spam). Distributed 

denial-of-service attacks are especially dangerous and difficult to protect against.

Due to such frequent attacks, it is becoming increasingly difficult for benevolent users 

to use the Internet effectively, basically the signal to noise ratio is becoming too low. 

The reason for  the  Internet's  vulnerability to  various  attacks  lies  within  its  original 

design goals, which assumed that the network would be used in a very different way 

than  it  is  being  used  today.  Originally,  the  Internet  was  designed  to  be  used  by a 

relatively small number of benevolent parties, thus the possibility of attacks originating 

from within the network was mostly ignored in its design. Nowadays, the situation is 

very different: the Internet is used by a large number of different users and virtually all 

attacks  against  it  originate  from within  the  network.  Protecting  the  Internet  against 

attacks is very difficult, since effective security measures against such attacks mostly do 

not exist. 

In traditional end-to-end security solutions, only the end hosts can verify the validity and 

integrity of the traffic, which leads to several problems. First, they are not effective if 

the network infrastructure itself is under attack and unable to deliver packets. Second, 

they are not enough to provide sufficient security by themselves. The large amount of 

traffic on the current Internet is just unsolicited e-mail or other garbage, and the culprits 

behind attacks are rarely caught. Therefore, we feel that there is a clear need for security 

solutions,  where the security policies  are applied at  every hop as the packet  travels 

through the network. If the network infrastructure can verify the validity of the traffic, 

countermeasures against various attacks could be taken within the network, and not only 

by the end hosts. This would allow attacks to be stopped quickly and more efficiently, 

and would increase the chance of catching perpetrators. 
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After the network infrastructure has been secured, end-to-end solutions will be able to 

secure end-users and their services. The high level of security would greatly improve the 

efficiency of the network since only benevolent traffic would be forwarded, and make 

the network much more usable to end users who would not receive garbage traffic any 

more.

1.1 Problem statement

Before a problem statement can be presented, some key concepts related to network 

security and cryptographic systems need to be defined. From the network's and user's 

point of view, malicious and unwanted traffic can be classified into two categories. The 

first category includes the traffic that violates commonly accepted rules of the network 

(acceptable use policy). For example, traffic that has been forged in any way, or traffic 

that  aims to overload or otherwise damage the recipient  or the network falls  in this 

category. The second category contains traffic that has been subjectively classified as 

being irrelevant by the recipient.  Unsolicited e-mail  (Spam) is  one example of such 

traffic.

There exist  several  types of cryptographic systems.  In symmetric  cryptography, both 

sending and receiving parties share the same secret key. While symmetric cryptography 

is computationally efficient, it  requires that the shared secret key is distributed to all 

recipients  in a secure way. Public-key cryptography [34],  also known as asymmetric 

cryptography, uses two keys: a public key that can be freely shared and a private key, 

which is mathematically tied to the public key. In public-key signature schemes [92], the 

creator of the content uses the private key to sign the content. Afterwards the public key 

and the signature are distributed along with the content, allowing the recipient to verify 

the content's authenticity.

The main objective of this thesis is to develop a mechanism for improving the security 

of the Internet by providing availability on the network layer. The mechanism aims to 

protect the network infrastructure and its users from various attacks, such as denial-of-

service attacks, and is based on per-packet cryptographic signatures.

To  achieve  this  objective,  this  thesis  presents  and  evaluates  a  Packet  Level 

Authentication  (PLA)  protocol,  a  novel  method  for  improving  the  security  of  the 
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Internet by providing availability and protecting the network infrastructure and its users 

from various attacks. The solution presented in this thesis guarantees that benevolent 

users can use the network without disturbance, while the malicious and unwanted traffic 

in the network is detected and blocked as quickly as possible. The described solution 

works  by  giving  every  node  in  the  network1 the  ability  to  verify  each  packet 

independently without existing trust associations utilizing public key cryptography and 

digital signature mechanisms. As a result, various attacks against the network and its 

users  can  be  more  easily  detected,  before  they  can  cause  significant  damage  or 

disturbance. Furthermore, a higher level trust management system is used to remove 

attackers from the network, and prevent them from causing further disturbance. Thus, 

the network will be able to fulfil its basic goal better: to deliver packets of valid users in 

a reliable and timely manner in all situations. 

When high availability is achieved on the network layer, end-to-end security solutions 

can effectively protect network users against other threats by providing integrity and 

confidentiality at higher layers. Furthermore, a strong network layer security solution 

can be utilized by the higher layers to provide flexible user authentication and other 

functions.

This work assumes that public key cryptography can be used on the Internet scale, due 

to  new  cryptographic  algorithms  and  advances  in  semiconductor  technology.  It  is 

important to note that the aim of this work is to investigate how modern cryptographic 

solutions can be applied for securing the network infrastructure and services, and the 

advancement of cryptography is out of the scope of this thesis.

The original Internet was built on several assumptions, such as the scarcity of network 

resources, which are not valid any more. According to the Global Internet Geography 

report  [107],  the growth of  average Internet  traffic  in  2008 was 53%, the  available 

bandwidth grew by 62%, and the average network utilization was only 29%. Therefore, 

the Internet contains plenty of unused bandwidth. In addition, public key cryptography is 

becoming  relatively  less  computationally  intensive  because  of   new,  more  efficient 

cryptographic  algorithms,  rapid  advances  in  the  semiconductor  technology,  and 

increases in the processing power. Therefore, this thesis assumes that it is feasible for a 

1 In  this  thesis  the  network  includes  the  network  infrastructure  and  all  other  nodes  located  in  the 
network.
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network security solution to consume some amounts of bandwidth and computational 

resources.

Using modern public key cryptography algorithms, it is possible to build a network layer 

solution where every transmitted packet in the network carries a digital signature and 

has an undeniable owner. Such a system protects the network from various attacks and 

provides strong accountability that makes catching attackers much easier. This thesis 

aims to prove that the public key-based security solution is feasible and scalable to small 

portable mobile devices and high-speed Internet core network links with speeds of 40 

Gbps1 and above.

1.2 Scope of this thesis

The network security problem can be divided into three distinct levels [62] presented 

below.  Each  of  these  levels  tries  to  answer  different  questions  and  solve  different 

problems.

Technical-level security:  How are threats and attacks noticed in the network, how can 

they  be  blocked  or  prevented  on  the  network  level?  For  example,  a  firewall  is  a 

technical-level security solution.

Policy-level  security: How  should  the  network  be  configured  to  decrease  risks  of 

attacks?  Which  actions  should  be  taken  in  case  of  an  attack?  For  example,  the 

configuration of the firewall, implementing a security policy, falls into this category.

Juridical-level  security: Which  legal  measures  can be taken against  attackers,  e.g., 

after the firewall has detected an attack?

This work concentrates mostly on technical-level security solutions: how to detect and 

stop security threats on the network level. Some policy-level issues are also covered in 

the thesis, while the juridical level is mostly out of the scope of this research.

1 40 Gbps speed is the fastest commonly used network interface speed today. Faster routers usually use 
several 40 Gbps network interfaces in parallel.
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1.3 Own contributions

The author's personal contributions in this thesis include:

● The  PLA  architecture  is  presented  in  Chapter  3.  The  architecture  includes 

advanced means for stopping the unwanted traffic and reporting misuse in the 

network.

● Deployability analysis of PLA, including a consideration of the migration path 

towards  PLA,  as  described  in  Chapter  9,  and  a  performance  and  energy 

efficiency analysis presented in Section 5.3.

● Applicability of PLA to control incoming connections. Using PLA, it is possible 

to  build  a  flexible  system  where  connections  are  denied  by  default  unless 

explicitly authorized as described in Section 6.1.

● Analysis  of  using  PLA  for  implementing  strong  accountability,  and  secure 

billing  and  roaming  on  the  Internet  scale,  additionally  a  trade-off  between 

privacy and accountability is discussed. The study in Section 7.1 shows that a 

correctly implemented PLA-based network architecture provides better privacy 

with stronger accountability than the current Internet. Furthermore, Section 7.2 

describes how PLA can be used to secure media independent handover (MIH) 

protocol.

● Applicability  of  PLA for  securing  the  future  data  oriented  publish/subscribe 

networks  is  discussed  in  Chapter  8.  Since  PLA  is  based  on  cryptographic 

identities  and signatures,  it  is  a  natural  option  to  secure also future network 

architectures.

● Comparison  of  PLA with  hash chain  and hash  tree  based security solutions. 

Section  5.4  includes  an  analysis  of  the  security  properties  and  power 

consumption of these solutions in a wireless environment. The results show that 

if  an  efficient  cryptographic  accelerator  is  available,  PLA actually  uses  less 

energy in a wireless environment due to its lower bandwidth overhead.

● A proof of concept open-source implementation of PLA for Linux and FreeBSD 

(libpla), as described in Chapter 4.

Many of these results  have been published in reviewed international  conferences.  In 

[69],  the  author's  contributions  include  a  mechanism how the  rights  for  controlling 

incoming connections can be granted and revoked using PLA, and a comparison of such 

a mechanism against existing similar solutions.. 
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In [70], the author described how the PLA-based network architecture can be used for 

providing strong accountability on the Internet, and compared the PLA-based system to 

the  current  IP  address-based  data  retention  mechanism  in  terms  of  accountability, 

security, and privacy. The author also investigated other applications of the PLA-based 

network architecture, including user authentication and roaming.

In [68], the author's contributions include a method for securing the rendezvous process 

in the publish/subscribe networking using PLA and cryptographic certificates, and an 

analysis of the security properties of such method.

In [71], the author's contributions include a comparison between PLA and lightweight 

hash  tree  and  hash-chain-based  security  solutions  in  terms  of  security  properties. 

Furthermore,  the author analytically analyzed the security-related energy overhead of 

these methods in a wireless environment.

In [94], the author designed and analyzed a method for securing the media independent 

handover (MIH) process with PLA, in a co-operation with the first author.

1.4 Structure of the thesis

The thesis is  organized as follows. Chapter 2 contains related work and background 

discussion, including the original design goals of the Internet, current security threats, 

and solutions. It also describes a set of new design goals for the next generation Internet. 

Chapter 3 introduces Packet Level Authentication (PLA), presents its design goals, and 

describes  its  architecture.  Cryptographic  solutions  used  by  PLA  and  software  and 

hardware implementation of PLA are described in Chapter 4. Chapter 5 analyses how 

PLA satisfies its design goals, analyses the performance and scalability of PLA, and it 

also includes a comparison with hash tree and hash chain based solutions. Network-

level applications of PLA are discussed in Chapter 6, while Chapter 7 describes how 

PLA may be  used  at  higher  layers.  Suitability  of  PLA for  the  future  data-oriented 

publish/subscribe  networks  is  studied  in  Chapter  8.  Chapter  9  analyses  PLA's 

deployment, Chapter 10 contains discussion about PLA and also discusses future work. 

Finally, conclusions are presented in Chapter 11.
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2. Background

This chapter covers the original design goals, and their underlying assumptions, of the 

Internet and discusses its current security threats. Also previous work for solving these 

threats is presented. The aim is to highlight situations where current security solutions 

are inadequate and present requirements for the secure next-generation Internet.

2.1 Original design goals of the Internet

The Internet was originally designed for military use during the cold war era. In 1967, 

the Advanced Research Project Agency (ARPA), part of the US Department of Defence, 

proposed plans for a packet-switched network called ARPANET [119]. The proposal 

was approved, ARPANET started in 1969, and eventually ARPANET evolved into the 

Internet.

The original design goal [28] of the network, which later became the Internet was to 

connect different existing networks together. Other secondary design goals are listed 

below in order of importance:

1. The communication must continue despite the loss of networks or gateways

2. The network must support multiple types of communications services

3. The network architecture must accommodate a variety of networks

4. The network architecture must permit distributed management of its resources

5. The network architecture must be cost effective

6. The network architecture must permit host attachment with a low level of effort

7. The resources used in the network architecture must be accountable

Furthermore, one of the most important design principles of the Internet was the end-to-

end principle [95][13]. The principle states that end-hosts should be responsible for end-

to-end communication, while the lower network layers should be as simple and generic 

as  possible,  and  that  the  more  advanced  application-dependent  functionality  should 

reside at higher layers.

Since the network was originally designed with military use in mind, the communication 

survivability was the top goal while accountability was at the bottom of the list. Had it 
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been developed for commercial purposes, accountability would have had a much larger 

importance.

It is important to note that protection from internal threats or attacks, which are caused 

by nodes attached to the network,  was never mentioned in the list of design goals. Since 

the Internet was designed originally for military use,  it  was assumed that  a possible 

attacker would always attack the network from the outside and would only try to destroy 

or  sabotage  the  network  infrastructure  using  a  physical  attack.  All  nodes  that  were 

connected to the network were assumed to be benevolent and always working for the 

common good of the network, never trying to intentionally cause any damage to the 

network. The design goals explicitly mention that the Internet must continue to operate 

despite the loss of infrastructure, like gateways. However, they completely ignored the 

situation where the gateway, or some other node in the network, is controlled by the 

attacker and is used to attack the network from the inside, for example, by broadcasting 

incorrect routing information or other means. 

The original design goals also contain other assumptions. There was not any need to 

handle privacy and accountability since the Internet was to be used only by a small 

benevolent group. Eavesdropping was not an issue either because it was assumed that all 

communication would be transmitted using fixed lines that would be inaccessible to the 

external attacker.

It  can be seen that  many problems  that  affect  the current  Internet  come from these 

original design goals and assumptions. Currently, the Internet is no longer solely used by 

military or government agencies, and virtually all attacks against the Internet originate 

from within the network itself, from nodes or routers that are attached to the Internet. 

Efficient mechanisms to defend against these attacks do not really exist, since they were 

not considered to be relevant in the original design goals.

Additionally,  eavesdropping  is  a  significant  problem  today,  especially  as  wireless 

networks become more popular. Privacy issues on the Internet are also very important as 

the  Internet's  popularity  is  growing and  the  amount  of  personal  data  stored  on  the 

Internet  is  also increasing rapidly.  Finally,  the lack of  accountability in  the Internet 

prevents authorities from catching culprits behind attacks.
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2.2 Current threats on the Internet

There exist several types of attacks that can be launched against Internet's users, servers, 

and infrastructure. A detailed description of these attacks, concentrating on attacks that 

target the Internet's infrastructure, follows below.

In a denial-of-service (DoS) attack, the attacker disturbs the victim in a such way that 

the  victim is  unable  to  continue  normal  operation.  This  can be  accomplished  using 

flooding: the attacker sends a large number of meaningless packets to the victim and 

these packets will use all or a majority of the victim's bandwidth or computing power, 

making it difficult or impossible for the victim to communicate with legitimate nodes. A 

DoS attack can also be accomplished by flooding the victim with legitimate requests. 

For example,  the  attacker  could  make  thousands of  requests  for  a  web-page that  is 

located on the victim's server. 

By itself,  a  denial-of-service  attack  is  usually  not  very  dangerous.  However,  in  a 

distributed  denial-of-service  attack  (DDoS)  [100]  a  large  quantity  of  nodes 

simultaneously  attack  a  single  victim.  Since  a  DDoS  attack  may  originate  from 

thousands of nodes that are located in different parts of the Internet, defending against 

such attacks is currently very difficult. 

Denial-of-service attacks are usually launched against WWW servers, but there have 

been cases of DDoS attacks against DNS root servers. For example,  statistics of the 

Finnish national Computer Emergency Response Team (CERT-FI) [23] show that the 

number of DoS attacks has increased fivefold between years 2006 and 2008.

A good example of a serious DDoS attack is an attack launched in Estonia in May 2007 

[82]. This attack was launched against several government web sites, including the sites 

of different ministries. Overall, the attack consisted of 128 unique DDoS attacks that 

lasted from less than a minute to over ten hours. This attack highlighted two major 

problems that exist on the current Internet: the inability to react quickly to an attack and 

the inability to catch the perpetrators. The authorities were powerless to stop the attack 

which lasted more than one week overall. Years after the attack the culprits have yet to 

be caught.
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In spoofing attacks, forged packets are used to attack the network. There exist different 

kinds  of  spoofing  attacks.  The  Address  Resolution  Protocol  (ARP)  is  used  on  the 

network layer to resolve a node's hardware address based on the network layer address 

like an IP address. In the ARP spoofing attack [8], the attacker sends fake ARP reply 

messages  containing  incorrect  hardware  address/network  address  mappings.  The 

attacker can use ARP spoofing, e.g., to map his own hardware address to the gateway's 

network address, and thus a victim will send his packets to the attacker instead of the 

proper gateway. This would allow the attacker to launch a man-in-the-middle attack or 

simply cut all communications to the victim altogether.

TCP (Transmission Control Protocol) is the most commonly used transport protocol on 

the Internet. There are several TCP-related attacks such as TCP reset attacks and TCP 

SYN flooding attacks. In the TCP reset attack [114], the attacker attempts to terminate 

established TCP connections by sending spoofed TCP packets with an RST bit set. A 

TCP SYN flooding attack [98] is a form of denial-of-service attack where the attacker 

creates a large number of partially opened TCP connections to the victim, draining the 

victim of computational resources such as memory. The TCP protocol uses a three-way 

handshake to  establish  the  connection:  the  initiator  first  sends  a  SYN message,  the 

recipient replies using a SYN-ACK message, and finally the initiator sends an ACK 

message. The recipient also allocates resources to handle the connection after receiving 

the initial SYN message. These resources are freed after the recipient receives an ACK 

message and the connection is established. In a SYN flooding attack, the attacker sends 

a large amount of SYN messages using spoofed source addresses. This causes the victim 

to  allocate  resources  to  handle  these  connection  requests,  and  because  the  source 

addresses are spoofed, the victim will never receive ACK messages and subsequently 

runs out of resources. 

In a replay attack [104], the attacker captures valid communication between victims and 

replays it at a later stage. In the simplest form of a replay attack, the attacker simply 

creates several  copies of a valid  packet  and sends the copies to a valid  destination, 

consuming extra resources in the network. Such an attack can cause significant damage 

in wireless networks where resources like bandwidth and battery power are often scarce. 

Usually, the aim of a replay attack is to gain unauthorized access by replaying valid 

packets.  In  a  classic  replay attack,  the  attacker  intercepts  a  message  exchange  and 

replays  it  fully  at  a  later  stage.  For  example,  the  attacker  could  intercept  packets 
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containing a password exchange between a client and a server and then gain access to 

the server by resending intercepted packets. In more complex replay attacks, the attacker 

replays some part of a message exchange (which can be an exchange of cryptographic 

keys) simultaneously with an actual message exchange to gain unauthorized access or 

impersonate a victim. Usage of timestamps or one-time session tokens during message 

exchange offers protection against replay attacks. Such measures aim to guarantee that 

valid messages can be sent only once.

The Domain Name System (DNS) is  used,  among other things,  to  determine  the IP 

address of a node based on its  hostname.  In a typical  case,  the client  sends a DNS 

request containing an unknown hostname to the DNS server, and the server replies with 

the corresponding IP address using a DNS reply message. In the DNS cache poisoning 

attack [9], an attacker feeds incorrect hostname/IP address mappings to the DNS server. 

For example, the attacker could map a legitimate site like a website of a bank to his own 

IP address.  As a result,  clients  wishing to  access the bank's  website  will  access the 

attacker's own server instead.

There are also other ways to attack the DNS. The DNS system is vulnerable to spoofing 

attacks  because  currently  DNS  messages  are  not  authenticated  or  protected  by any 

means. Thus, the recipient of a DNS reply message can not guarantee that the received 

message is authentic. There exist a DNS Security Extensions (DNSSEC) [7] mechanism 

to protect  DNS messages using cryptographic signatures and other means.  However, 

DNSSEC is not yet widely used on the Internet.

Phishing  attacks  differ  from other  attacks  mentioned  previously because  they target 

users directly instead of targeting the network infrastructure or protocols. The aim of a 

phishing  attack  is  to  lure  users  to  voluntarily disclose  confidential  information  like 

passwords. For example, the attacker can contact a victim by phone, pretend to be a 

system administrator from the victim's place of work, and ask for a victim's password. 

On the Internet, one commonly used phishing approach is to create a look-a-like web 

page of an on-line bank and send its URL by e-mail to a large number of people in order 

to lure victims to reveal their bank account usernames and passwords. The amount of 

phishing cases has significantly increased in the last few years and in September 2009 

alone over 40,000 phishing cases were reported [6].  Phishing attacks are often quite 
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effective since it is currently difficult for an ordinary user to guarantee the authenticity 

of a web page or the real sender of an e-mail message. 

2.3 Current security mechanisms in the Internet

There are three main principles of information security which various security solutions 

aim to provide: confidentiality, integrity, and availability. The aim of confidentiality is 

to  guarantee  that  only authorized  parties  can  access  data;  confidentiality  is  usually 

accomplished via encryption. Integrity ensures that data is authentic and has not been 

tampered with. Availability aims to guarantee that data and services are available for 

legitimate users in all possible situations.

The Internet architecture can be divided into several  layers according to the TCP/IP 

model; the application layer, transport layer, internet layer, and the network access layer 

as  shown in  Figure  1,  the  figure  also  contains  a  comparison  to  the  Open  Systems 

Interconnection (OSI) model [54].

The network access layer of the TCP/IP model contains the physical and link layers 

from  the  OSI  model  while  the  application  layer  of  the  TCP/IP  model  includes 

application, presentation, and session layers from the OSI model. 
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There exist several solutions that work on the application layer of the TCP/IP model, for 

example,  an  application-level  gateway  (ALG)  [101]  that  augments  firewalls  and 

network  address  translation  (NAT)  mechanisms.  However,  such  application-level 

solutions are not covered here in detail, since this thesis concentrates on the network-

layer security. Security solutions can also be classified based on their applicability as 

shown in Figure 2.

In this  figure,  content-level  solutions  refer  to  security solutions  which  work  on  the 

application layer in the TCP/IP model and aim to secure specific content, such as e-mail 

messages. End-to-end solutions usually work on the application and network layers and 

aim to protect all content which is transmitted between two end points. Infrastructure-

level solutions aim to secure the underlying infrastructure on the link and physical layer 

against threats such as jamming or eavesdropping. 

Existing security solutions for lower layers of Internet and countermeasures against DoS 

attacks are explained in more detail below.

2.3.1 Transport-layer mechanisms

The Transport Layer Security (TLS) [33] protocol and its predecessor, Secure Socket 

Layer  (SSL),  are  end-to-end  security  solutions  which  aim  to  provide  secure 

communication on the transport layer. They provide authentication and confidentiality 

using encryption and are widely used to secure web browsing and instant messaging 
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communications. In the case of web browsing, usually only the server is authenticated. 

During the establishment of such TLS connections, the server provides the client with a 

certificate  that  is  signed  by some  trusted  certificate  authority  (CA);  the  client  may 

optionally contact the certificate authority to verify the certificate's validity. The client 

and the server also agree on a cryptographic cipher and hash function, and generate key 

material for encryption and decryption during the establishment phase. Since TLS works 

on the presentation layer of the OSI model, it does not protect traffic from attacks that 

occur at lower layers.

2.3.2 Network-layer mechanisms

The IP Security Architecture (IPSec) [63] protocol aims to improve the security of IPv4 

and IPv6 protocols  by providing  integrity and  confidentiality  on  the  network  layer. 

IPSec  extends  the  IP  header  and  uses  the  Authentication  Header  (AH)  and 

Encapsulating  Security  Payload  (ESP)  protocols  to  accomplish  its  goals.  The  AH 

protects the packet's integrity while the ESP provides confidentiality through encryption. 

IPSec provides end-to-end security, allowing two hosts to establish a secure, encrypted 

IPSec  connection  between  them.  IPSec  is  a  widely used  protocol  to  secure  virtual 

private networks (VPN) [45]. 

One  major  problem with  IPSec  and  other  traditional  security  solutions  is  that  they 

concentrate  on providing  end-to-end security but  they cannot  protect  the  underlying 

network infrastructure. If the packet protected by IPSec or a similar solution has been 

modified,  duplicated,  or  delayed,  only the  end point  of  the  security association  can 

detect this, and intermediate nodes will continue to forward these invalid packets. As a 

result,  such packets will  unnecessarily consume network resources. In addition,  such 

end-to-end  security solutions  are  useless  if  the  underlying  network  infrastructure  is 

attacked and is unable to deliver packets to the destination as a result of a DoS or other 

kind of attack.

The Host Identity Protocol (HIP) [80] aims to provide confidentiality, better support for 

mobility, and support for multihoming. Traditionally, an IP address determines both the 

topological location of a host in the network and its identity. This can cause problems in 

case of mobility where the host receives a new IP address upon changing networks. To 

solve this problem, HIP introduces host identifiers (HIs) to describe the identity of the 
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host, therefore the IP address is only used for describing the topological location of the 

host. Under HIP, connections are initiated to host identifiers instead of IP addresses and 

the  host  identifier  is  actually  a  hash  over  the  host's  public  key,  HIP  also  supports 

interoperability between IPv4 and IPv6. HIP provides confidentiality by encrypting all 

data traffic using the host's private key and the IPSec's ESP protocol. 

HIP uses  puzzles  during  its  4-way base exchange,  which  authenticates  hosts  before 

establishing  a  connection.  The  idea  behind  the  puzzle  is  to  require  much  more 

computational  power  from  the  initiator  than  from  the  recipient,  this  protects  the 

recipient from some DoS attacks. However, such a puzzle mechanism can be abused in 

certain situations to launch DoS attacks against peers that are communicating with the 

victim  using  HIP.  Imagine  a  situation  where  several  devices  with  very  low 

computational power are communicating with a certain HIP server. If an attacker starts 

flooding the HIP server with connection requests, the server will increase the difficulty 

of  its  base  exchange puzzle,  and  those  devices  with  very limited  resources  will  be 

unable  to  solve  the  puzzle  quickly enough  to  continue  normal  operation.  HIP also 

possesses other security related disadvantages. While HIP offers some protection for the 

recipient during the establishment phase, it  does not protect a recipient or underlying 

network after the connection has been established. After an attacker has discovered a 

victim's IP address, the attacker can freely launch, for example, a DoS attack against the 

victim. The attacker can also disclose IPSec's security association to other parties. The 

multihoming feature of HIP also improves the user's security, since a victim can change 

to another network interface and therefore stop the attack. However, this approach does 

not protect the network infrastructure since the malicious traffic sent to the victim will 

still reach the victim's previous network.

The experimental HICCUPS draft [19] defines a HIP DATA packet type, which allows 

secure  communication  by  using  cryptographic  signatures  without  establishing  base 

exchange. However, in this case hosts are not mutually authenticated. 

Accountable  Internet  Protocol  (AIP)  [5]  aims  to  improve  the  Internet's  security  by 

providing accountability on the network layer. AIP uses globally self-certifying unique 

end-point identifiers (EID) to identify and address the source and the destination of the 

connection,  while still  being based on IP. EIDs contain hashes of hosts' public keys 

which are communicating within the network. The network under AIP is divided into 
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several  accountability  domains  (ADs),  each  of  which  has  its  own  unique  identifier 

which is also a hash of a corresponding public key. ADs can form a hierarchy within the 

network  and  the  AIP  address  takes  the  form  of  AD1:AD2:...:ADn:EID.  By  tying 

connection endpoints to public keys, AIP enforces accountability, since the initiator of 

the connection will be responsible for sent data.

AIP aims to prevent source address spoofing in the following way. If the router receives 

a packet from the unknown EID, the router will send a verification message back and 

the node will reply with a message signed by its private key. Since EID is a hash of the 

node's public key, this proves that the node owns a corresponding private key and thus 

has a right to use the EID. A similar method can also be used to authenticate ADs when 

a packet crosses the AD boundary. The downside of this approach is that additional 

control messages are required for source address spoofing protection.

Cryptographically Generated Addresses (CGA) [10] is a method to tie an IPv6 address 

to the user's public key. Basically, the hash of the user's public key is used to construct 

an interface identifier part of the IPv6 address. In order for CGA to be effective, packets 

must be signed by the user's private key and they must contain the corresponding public 

key. The main aim of CGA is to offer protection against IP address spoofing; every 

other  node in  the  network can verify whether  a  hash of  the public  key matches  an 

interface identifier.

2.3.3 Link-layer mechanisms

Link-layer security solutions aim to improve security by providing confidentiality and 

authentication on the link layer. They are mostly used in wireless networks, because 

wireless networks are very vulnerable to eavesdropping and are easy to attach to. Wired 

Equivalent Privacy (WEP) was the original solution to enhance the security of  IEEE 

802.11 wireless networks. However, WEP is a poor security solution for several reasons 

[20]. First, WEP uses shared secret keys for encrypting traffic and these keys are often 

stored in an insecure way on the device. In addition, WEP also lacks a key management 

protocol making it difficult to distribute new keys to all nodes. The biggest drawback of 

WEP is that its encryption can be easily broken by capturing enough encrypted packets. 

Several methods to break WEP encryption have been published and the fastest method 

[108]  can  discover  the  encryption  key in  less  than  one  minute.  To  overcome these 
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limitations,  WEP has  been  largely replaced  by Wi-Fi  Protected  Access  (WPA) and 

WPA2 technologies.  WPA and WPA2 offer  significantly better  encryption  and also 

support the Extensible Authentication Protocol (EAP) [1] for user authentication. EAP 

is a more secure and scalable way to manage authentication as compared to using pre-

shared secret keys.

Frequency hopping [36] is a mechanism that is often used in military environments to 

protect wireless networks against jamming and to a lesser extent against eavesdropping. 

When  frequency  hopping  is  employed,  the  transmitter  and  receiver  change  their 

communication frequency rapidly across a wide frequency range.  Since the attacker 

most likely has limited resources for jamming, the attacker will only be able to jam a 

small portion of the used frequency range. Thus, most communications will go through 

despite the jamming. In order for frequency hopping to be effective,  the mechanism 

employed to select new frequencies must not be known by the attacker, therefore it can 

not be used for securing publicly available wireless networks.

Link-layer security solutions offer protection from external attacks, although they are 

not effective against internal attacks. For example, if the attacker can compromise the 

node that is communicating using pre-shared keys with an IEEE 802.11 base station, the 

attacker will gain access to relevant encryption keys and will be able to listen to traffic 

between other clients and this base station. A similar problem exists when  frequency 

hopping is used; if the attacker compromises one node, the attacker is likely to be able 

to deduce the method for selecting new frequencies and will  thus be able to jam or 

eavesdrop on the communication in the rest of the network.

Overall, existing security solutions have two main drawbacks. First, they do not protect 

the end user from receiving “garbage” traffic from the Internet.  Second, they do not 

provide  availability  and  do  not  effectively  protect  the  network  infrastructure  from 

attacks,  especially  if  these  attacks  occur  within  the  network  itself.  For  example,  a 

traditional principle to protect the network against a denial-of-service attack is to have 

more resources available  compared to  the attacker.  Naturally,  this  principle  will  not 

work  against  a  distributed  denial-of-service  attack  where  the  attacker  can  control 

thousands of nodes.
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2.3.4 Defences against distributed denial-of-service attacks

Several  solutions  have  been  proposed  for  preventing  and  mitigating  DDoS attacks. 

Stateless  Internet  Flow  Filter  (SIFF)  [117]  aims  to  prevent  DDoS  attacks  with 

capabilities  that  are  bound to  the  sender's  IP address.  During  the  negotiation  phase 

routers  on the path mark capabilities  and later  verify that  data  packets  posses  valid 

capabilities.

In a basic capability scheme hostile senders can flood capability request packets to the 

sender and simply limiting the amount of bandwidth reserved for capability requests 

may prevent valid users from communicating. Traffic Validation Architecture (TVA) 

[118] improves the basic capability approach by queuing capability requests based on 

path identifiers, which are approximate source locators. This reduces the possibility that 

a hostile sender can prevent valid users from sending capability requests.

The Fastpass [115] scheme uses cryptographic tokens together with capabilities. In this 

scheme each domain has its own public key, which is globally distributed through the 

BGP [91] protocol to each domain and router. The sender must first receive a token 

from  the  destination  domain,  this  token  is  basically  a  certificate  to  some  arbitrary 

identity, signed by the domain private key. The sender includes this token in the setup 

request packet that is sent to the destination. Routers on the path verify the token and 

mark the packet's  capability header in  a similar  fashion as  TVA or  other capability 

scheme.

Fastpass  allows  tokens  to  be  distributed  separately from data  traffic  allowing  more 

flexibility. It also prevents using setup messages for DoS attacks against the destination, 

since these setup messages must include a valid token. As a downside, the tokens are 

domain-specific, allowing the sender to send setup messages to any node within the 

domain with a valid token. The security of the scheme is not very strong either, since 

only the token is protected by the signature. This allows an attacker to reuse a valid 

capability given to another node in the same source network, and a malicious router can 

modify capabilities without chance of discovery.

ICING [99] is based on a policy that a consent is required from the receiver and every 

intermediate domain before the communication can take place. In order to enforce this 
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policy, the ICING packet header contains a public key and consent from each domain on 

the  path.  Instead  of  using  cryptographic  signatures,  ICING  uses  a  weaker  MAC 

(message authentication code) to express the domains' consent in packets. Even though 

ICING uses public keys based on the elliptic curve cryptography, including a public key 

from each domain together with the consent produces a high bandwidth overhead.

The existing DoS protection mechanisms have several downsides. First, the capability to 

communicate is often given to the whole subnet or a domain. This allows attacks to 

originate from the subnet or domain with valid senders, and introduces a problem with 

mobility. The security is also questionable, since in most cases security mechanisms are 

weak. For example, in some approaches the capability field within the packet's header 

can be modified by a hostile router without others noticing. While Fastpass uses signed 

tokens,  it  has  the  same  basic  problem as  other  schemes  that  rely only partially on 

cryptographic signatures. The attacker can flood routers with connection setup packets 

that  contain invalid  signatures,  and routers must  verify all  these signatures to  check 

whether such packets are valid.  Such an attack will  overload the routers,  since it  is 

assumed that routers are not able to perform signature verifications at wire speed.

The  current  Internet  architecture  where  by default  anyone  can  contact  anyone  else 

makes it difficult to implement flexible and efficient mechanisms against DoS attacks. 

According to [47] several changes must be made to the Internet's architecture in order 

for  it  to  be  really  secure  against  denial-of-service  attacks.  The  study proposes  the 

following changes: 1. Separation of client and server addresses, 2. Non-global client 

addresses, 3. Reverse path forwarding checking of server addresses, 4. State setup bit to 

distinguish different types of traffic, 5. Nonces and puzzles, 6. Middlewalls in addition 

to firewalls, and 7. Efficient multicast.

2.3.5 An example of a real-life security solution

This  section describes  a proposal  for a secure Internet  banking solution,  which was 

described in [90]. The proposal includes a duplicated infrastructure and several layers of 

security to  secure the service.  In the proposal,  the computing system of the bank is 

duplicated on three levels. First there exist two copies of the bank's computing centre 

located in different geographical locations. This is necessary to protect the system from 

physical attacks and natural disasters. Secondly, ISP connections are duplicated; there 
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are two ISPs which provide services to both computing centres. Therefore, even if one 

ISP goes off-line, the service is not interrupted. Thirdly, each computing centre has at 

least two sets of identical hardware (firewalls, routers, servers, mainframes) in order to 

cope with hardware failures. An overview of the proposal is shown in Figure 3 above.

At the top layer there are front end routers that are connected to both ISPs. These routers 

forward traffic to IPS (Intrusion Prevention System) [96] systems that reside in the front 

of firewalls. The aim of these systems is to stop trivial flooding attacks before they can 

cause damage to other components. On the fourth layer there are separate servers to 

handle  SSL  decryption.  Since  SSL  encryption  and  decryption  are  computationally 

intensive  operations,  it  is  better  to  handle  these  operations  in  dedicated  servers. 

Otherwise the attacker could flood mission-critical servers with a high amount of SSL 

connection  requests.  There is  another  set  of  IPS systems  in  front  of  load balancing 

switches. Load balancing switches forward traffic to an available front-end server which 

20

Figure 3. An example of a security solution for Internet banking [90]



is connected to the actual application servers. Finally, there is another set of firewalls in 

front of the mainframes that contain the critical data. 

Such a security solution is very complex,  but this  complexity is  necessary to ensure 

good protection against different kinds of attacks. Duplication of servers means that a 

single server failure will not interrupt operations, while having multiple security layers 

adds protection for servers that are actually handling critical transactions.

2.4 Consequences of the insecure Internet

Due to insecurity of the current Internet, users are susceptible to various attacks that are 

very easy to launch. This problem exists on many levels; not only are attacks easy to 

launch, but stopping or limiting the attack quickly is difficult from the victim's point of 

view.  Finally,  the  culprits  behind  those  attacks  are  rarely caught,  allowing them to 

continue attacks in the future without fear of retribution.

There  are  also  additional  problems.  Insecurity of  the  Internet  has  led  to  overuse of 

firewalls to curtain attacks. Firewall rules are often so strict that they block valid traffic 

making the Internet less usable for benevolent users. For example, currently there are no 

good means to verify whether the incoming traffic is desired or malicious,  therefore 

firewalls often block all incoming traffic to end hosts, making it difficult to initiate a 

remote session to the personal computer. These strict firewall rules also contradict the 

fundamental  goal of the network: to convey data for benevolent users. For example, 

voice over IP (VoIP) applications like Skype must use various tricks to circumvent strict 

firewall rules in order to make their services usable [97].

 

Furthermore,  a  flexible  user  authentication  is  difficult  to  implement  in  the  current 

Internet, since there is no strong network-layer security solution available. Therefore, 

different services often use their own authentication solution, and as a result users must 

have multiple  different  usernames and passwords that  are  difficult  to  maintain.  One 

good example of this  problem is an authentication to the publicly available wireless 

LAN network. Even thought some progress has been made in this area, wireless LAN 

authentication is often still a time-consuming process that requires the user to navigate 

thought multiple pages before access to the network is granted.
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2.5 Redesigning security of the Internet

Since the Internet suffers from serious inherent security problems, simply patching the 

current system is not good enough [74]. Instead, a novel network-layer security solution 

should be created.

This  section  describes  the  requirements  for  the  secure next-generation  Internet.  The 

fundamental goal is availability: to deliver packets of valid users in a reliable and timely 

manner in all situations. Other requirements for the secure next-generation Internet are 

listed  below.  The  network  should  support  these  requirements,  although  the  applied 

security policies  will  determine  how strictly these  requirements  will  be  enforced  in 

various situations. 

Only  valid  packets  are  forwarded  in  the  network  and  the  malicious  traffic  is 

stopped as soon as possible

Since the Internet is currently very vulnerable to internal attacks, it is very important to 

detect and react to those attacks as soon as possible. Thus, only valid, verified packets 

should be allowed to  be transmitted  in  the  network.  Invalid  packets  that  have been 

modified, delayed, or duplicated are considered malicious since they can be a sign of 

DoS, replay or other attacks. Therefore, these packets should be discarded by the first 

possible entity of the network before they can cause damage or unnecessarily consume 

network resources elsewhere.

This  requirement  is  analogous  to  detecting  forged  currency as  quickly as  possible, 

instead of verifying its authenticity only at end-points, i.e., banks.

Every packet has an owner and all packets originate from trusted entities

Vehicles  are  allowed to  use  roads  only after  they pass  an inspection  and receive  a 

numberplate that uniquely identifies the car and its owner. Similarly, there should be a 

way to determine the owner of every packet that is sent on the network.

This is an important requirement in order to limit various attacks and effectively remove 

entities behind those attacks from the network. In addition, every entity that sends data 

to the network must be authorized by a some authority that is responsible for managing 
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the network. It is important to provide such traceability and accountability in order to 

make it easier to catch attackers, and to offer protection against phishing attacks.

Malicious nodes should be removed quickly from the network

A benevolent  node  may become dangerous  to  the  network  for  several  reasons.  For 

example,  the  node  could  be  hijacked  by  a  malicious  party  or  its  software  could 

malfunction. Therefore, there should be an effective way to quickly remove malicious 

nodes from the network before they can cause significant damage.

This requirement would especially help against DDoS attacks that can utilize millions of 

compromised nodes. Removing these nodes from the network mitigates the attack and 

makes future attacks more difficult to launch with the same compromised nodes.

Prioritizing traffic

In case of emergency, the network's bandwidth may become very limited. Therefore, 

there should be a way to prioritize traffic in order to make sure that high priority traffic 

will get through in all situations. This is analogous to giving a priority to emergency 

calls in mobile phone networks.

Manageability

The whole network cannot be managed by a single entity. Hence, there should be a way 

for  different  operators  and  authorities  to  effectively  manage  different  parts  of  the 

network without requiring centralized control. There should also be an easy and flexible 

way to add new nodes and users to the network. This requirement resembles the fourth 

requirement of the original Internet but covers a wider scale. The network may be very 

dynamic containing a large amount of nodes which are constantly leaving and entering 

the network.

Controlling incoming connections

In  the  current  Internet  architecture  the  initiator  of  the  connection1 is  completely in 

control  of  the connection.  The initiator  of the connection can decide whom he will 

contact  and  when  a  connection  is  made.  However,  such  a  policy  presents  many 

problems. The recipient of the connection might be using a wireless access network with 

a limited bandwidth, and the recipient might even have to pay for all incoming traffic. In 

1 In this context, the term connection denotes the situation where the initiator is sending data to the 
recipient over the network by any possible means.
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addition, the recipient might be in a situation where he does not want to be disturbed by 

unnecessary connections, while at the same time, the recipient may want to receive very 

important connections from specific initiators.

This  requirement  would  also  make  DoS  attacks  more  difficult  to  launch,  and  is 

analogous to the “do not call” registry for telemarketers.

Privacy protection

The  accountability  requirement  mentioned  above  does  not  mean  that  users  should 

completely  abandon  their  privacy.  For  example,  users  must  have  a  way  to  create 

pseudonyms  in  such  way that  they can  maintain  their  anonymity to  the  network in 

normal  situations.  Basically,  the  user  should  not  be  forced  to  disclose  unnecessary 

information to other parties in the network, for example, it is not necessary to disclose a 

real identity to participate in an online discussion, and even the access network provider 

does not always need to know the real identity. However, if the user breaks the law, 

authorities  should  have  a  way  to  determine  the  real  identity  behind  the  user's 

pseudonym.

Compatibility with future data-oriented networks

Traditionally,  the Internet  architecture  has  been a host-  and connection-oriented one 

where  users  establish  connections  to  specific  hosts.  Such  a  model  is  awkward  and 

unnecessarily  complex  for  many  applications  since  users  are  more  interested  in 

receiving  the  actual  data  content  than  in  establishing  a  connection  to  some  host. 

Furthermore, an efficient multicast [31] is practically impossible to implement on the 

Internet scale. Data-oriented publish/subscribe networks aim to solve these problems by 

giving users the means to retrieve relevant data without having the information about its 

topological  location  within  the  network.  The  future  network-layer  security  solution 

should also be compatible with principles used by data-oriented networks.

None  of  the  existing  security  solutions  completely  satisfy  the  above-mentioned 

requirements. For example, end-to-end security solutions, such as IPSec and HIP, do not 

allow intermediate nodes to detect malicious or unwanted traffic without pre-existing 

trust  associations  with  the  sender.  Furthermore,  while  IPSec  and  HIP tie  traffic  to 

cryptographic identities, there is no way to determine a real identity behind it, or verify 

that the cryptographic identity can be trusted.

24



In  addition  to  these  security-related  requirements,  the  next-generation  network 

architecture must naturally take other issues into account, such as compatibility with 

different  kinds  of  access mediums,  these other requirements  are not  covered in  this 

thesis.
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3. Packet Level Authentication (PLA)

In order to solve the aforementioned security problems, we introduce the Packet Level 

Authentication  (PLA) protocol  [21].  The  main  aim  of  PLA is  to  enhance  network 

security by providing  availability and protecting  the  network  from several  kinds  of 

attacks,  like  denial-of-service  attacks.  The  main  principle  is  that  benevolent  traffic 

should go through while malicious traffic should be detected and stopped as quickly as 

possible. The major difference between traditional security solutions and PLA is that 

PLA  gives  the  ability  for  nodes  in  the  network  to  detect  attacks  immediately  by 

checking the authenticity and integrity of every packet. In comparison, when traditional 

end-to-end security solutions  like IPSec are used,  only the end point  of the security 

association  can  verify  the  authenticity  of  the  packet.  Unlike  traditional  link-level 

solutions, PLA allows every node to verify the packet independently without having to 

trust nodes that have previously handled the packet. It is important to note that PLA 

aims to complement existing security solutions instead of completely replacing them. 

The security measures in Packet Level Authentication resemble those present in paper 

currency. Anyone can verify whether or not a paper bill is authentic without having to 

contact the bank that issued the bill.  It is enough to verify various security measures 

inside the bill, such as its watermark, a metal strip, or a hologram. The same principle 

applies to PLA. When PLA is used, any node in the network can verify the authenticity 

and the integrity of every packet without having any kind of contact with the sender of 

the packet because PLA includes in every packet all the necessary data to carry out such 

verification.  Such  a  system  has  a  significant  advantage  compared  with  traditional 

security  solutions  that  concentrate  on  providing  end-to-end  security.  Because  PLA 

allows  various  attacks  to  be  immediately  detected,  the  network  can  take 

countermeasures  against  them in  a  more  effective  way,  before  attacks  can  cause  a 

significant amount of damage. To accomplish its goals, PLA utilizes digital signatures 

based on public key cryptography. The public key cryptography is very computationally 

intensive, but it can be used with a sufficient performance as long as dedicated hardware 

is used to handle cryptographic operations.

Integrity  protection  allows  nodes  in  the  network  to  easily  detect  modified  traffic, 

however, detecting the situation where a benevolent node has turned hostile is a more 

difficult problem and therefore PLA contains two distinct layers:
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● The integrity protection through digital signature techniques and cryptographic 

identities.

● The  trust  management  layer  for  granting,  delegating,  and  revoking  rights  to 

above-mentioned cryptographic identities.

This chapter is organized as follows: Section 3.1 discusses design criteria behind PLA 

and  an  overview  of  the  PLA architecture  is  presented  in  Section  3.2.  Section  3.3 

introduces the PLA header structure while Section 3.4 describes a lightweight variant of 

the  PLA  header  that  can  be  used  to  reduce  PLA's  bandwidth  and  computational 

overhead. Section 3.5 describes trusted third parties in the context of PLA. Section 3.6 

describes how the authenticity of the packet is verified using the information contained 

in the PLA header, and Section 3.7 shows how the network may react to attacks. Finally, 

the bootstrapping of a new node is discussed in Section 3.8. 

3.1 PLA design criteria

The design criteria of PLA are listed below. They are classified as either mandatory 

criteria, that are essential, important criteria that are important to have, but not essential, 

or optional criteria that are less important but are still useful.

Mandatory

Compatibility  with  the  existing  Internet.  The  system shall  work  with  existing  IP 

networks without requiring any major changes to the network. The system shall also be 

compatible with existing security solutions like IPSec. This requirement is essential to 

allow a gradual deployment of the system to the current IP networks.

Deployability. The system must be easy to deploy on a wide scale. It shall be possible 

to easily add more nodes to the system and the system must  also work without any 

additional security association setup between nodes.

Malicious nodes should be removed quickly from the network.  A benevolent node 

can become hostile for the network for several reasons. For example, the node could be 

hijacked by a malicious party, or the node's software could malfunction. Therefore, to 

mitigate severity of attacks there shall be a way to remove malicious nodes from the 
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network  effectively  and  quickly  before  they  can  cause  significant  damage  to  the 

network. This requirement was also present in Section 2.5.

Validation  of  packets.  Every  node  in  the  network  must  be  able  to  validate  the 

authenticity of every packet without prior communication with the sender of the packet. 

This is especially important in wireless ad-hoc networks where packets take different 

routes.

It should be possible for any node to detect if a packet has been modified, duplicated, or 

delayed. The last two validation requirements are important to protect the network from 

replay attacks which use duplicated or delayed packets.

Important

Scalability. The system should be scalable from small wireless ad-hoc networks to large 

networks on the Internet scale. The system should also be usable with small and portable 

devices. This requirement is not mandatory, since the system would still be useful in 

certain situations, such as in mission critical networks, even if this requirement is not 

satisfied.

Optional

Small power consumption and bandwidth overhead. It is preferable for the system 

not  to  introduce  significant  bandwidth  overhead and not  consume large amounts  of 

power. This requirement is especially important for mobile networks and small mobile 

devices,  because  such  networks  and  devices  are  usually  bandwidth  and  energy 

constrained. The requirement is marked as an optional, since it is not compulsory for the 

functionality of the system. Even without fulfilling this requirement, the system would 

still  be  useful  in  certain  situations,  e.g.,  wired  networks  with  plenty  of  available 

bandwidth and no shortage of power.

Free  of  patents. The  system  should  not  use  patented  technologies.  Fulfilling  this 

requirement would ease the widespread adoption of the system.
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It is important to note that the PLA is not designed to provide confidentiality in end-to-

end  communication.  Other  security  solutions  such  as  IPSec  and  HIP  can  be  used 

together with PLA to provide confidentiality.

3.2 Overview of the PLA architecture

The basic idea behind PLA is to ensure the authenticity of packets by using public key 

digital  signatures  to  sign  every  packet  sent  over  the  network.  When  public  key 

cryptography is used, only the holder of the private key can sign the packet, but every 

party can  verify the  authenticity of  the  packet  using  the  packet's  signature  and the 

sender's public key. PLA accomplishes its goals by adding its own header to the every IP 

packet,  which  contains  all  necessary information  for  verification  of  the  packet.  An 

overview of an example PLA architecture is presented in Figure 4.

In a simplified case, the PLA architecture consists of four major elements: a source and 

destination that are communicating with each other, routers between them and of trusted 

third parties (TTPs). In comparison to the plain Internet architecture, PLA adds trusted 

third parties and the ability to verify the PLA header information at every node. The 

example figure is vertically divided into four networks; the network of the source, the 

Internet core network, the network of the destination's operator, and the destination's 

local network. Solid lines denote the actual data connection while dashed lines denote 

trust relations between different entities. 
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The basic operation of PLA is as follows. The source that sends a packet adds a PLA 

header to each sent packet. This header is added just after the IP header using a standard 

IP header extension mechanism [32].  As the packet travels  through the network, all 

routers that handle the packet verify the packet's validity using information from the 

PLA header1. If this validity check fails, the packet is discarded immediately. Finally, 

the packet arrives at the destination, which will also perform the validity check. 

In addition, there exist entities called trusted third parties (TTPs) which will authorize 

the sender. In this example, it is assumed that such authorization between the TTP and 

sender has already been carried out. In the scope of PLA, a TTP is responsible for the 

tasks of a certificate authority (CA) and registration authority (RA) from a traditional 

public key infrastructure architecture [24]. While TTPs are not necessary for checking 

the validity of  the packet,  they add another  layer  of  security.  As the packet  travels 

through the network, intermediate routers and the destination can contact trusted third 

parties to verify that the sender of the packet is a valid and trusted entity in the network. 

The position of PLA in the TCP/IP model is shown in Figure 5 below. 

PLA is completely transparent to higher layers, thus PLA is able to work along with any 

current or future higher layer protocols like TCP, UDP, and HIP. In this figure PLA is 

1 In case the router does not understand a PLA header,  it routes packets simply based on IP header 
information. This enables a gradual deployment of PLA.

30

Figure 5. Position of PLA in the TPC/IP model



positioned on top of a network layer as the PLA header resides after the IP header. 

However, PLA is not dependent on the network-layer protocol used, thus it could be 

argued that PLA can also be positioned below the network layer. Such a case would 

require that every router in the network would support PLA.

It is important to note that PLA is a simple and basically stateless protocol that relies on 

public key digital cryptographic signatures, which are assumed to be strong. Unlike the 

stateful and quite complex TCP protocol, PLA is resilient against attacks on itself. The 

security  analysis  of  higher  level  protocols  that  utilize  PLA,  and  cryptographic 

algorithms and their hardware implementations is out of the scope of this thesis.

3.3 PLA header

Figure  6 describes  an  example  of  how the  addition  of  the  PLA header  affects  the 

structure of a normal IP packet which also utilizes IPSec. 

In  this  figure,  “IP  header”  refers  to  a  standard  IPv6  header  containing  source  and 

destination addresses and ports among other fields as described in RFC 2460 [32]. In an 

IP  header  extension  mechanism,  the  newest  extension  header  is  always  added 

immediately after the IP header. In order to protect a whole packet, the PLA header must 

be added last, and thus it is positioned in the packet directly after the IP header before 

any additional  extension  headers  like  an  IPSec  header.  Finally,  the  example  packet 

contains a standard TCP header and a payload. The aim of this figure is also to show 

that PLA does not affect any higher level protocols.
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An  overview  of  the  PLA  header  structure  is  shown  in  Figure  7.  More  detailed 

specifications of the header can be found in Appendix D.  The actual PLA header is 

marked as a bold box and it contains the following fields.

Trusted Third Party certificate

Usage: This is a certificate from the TTP to the sender. Its aim is to corroborate the 

binding between the sender's identity and its public key. It is also used to guarantee 

that the sender is a valid, trusted entity that has been authorized by some trusted third 

party. A TTP certificate is described in more detail in the next section.

To  reduce  computational  and  bandwidth  overhead,  PLA  uses  identity-based 

implicitly certified keys which are described in more detail in Section 4.1. Thus, the 

sender's public key is not explicitly present in the header, but can be calculated using 

information present in the TTP certificate. The sender's public key,  together with a 

signature, protects the integrity of the packet and guarantees that any modifications of 

the packet will be detected, it also guarantees that the sender cannot deny sending a 

packet.

Example: The task of a TTP can be handled by a network operator, organization or a 

state authority.
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Timestamp

Usage:  The  aim  of  the  timestamp  field  is  to  detect  packets  that  have  been 

significantly delayed. Delayed packets can be a sign of a replay attack.

Sequence number 

Usage:  A monotonically increasing  sequence  number  makes  it  possible  to  detect 

duplicated packets. It can also be used for per packet billing purposes.

Signature 

Usage: The packet is cryptographically signed by the sender with the sender's private 

key. The signature guarantees the integrity of the packet; any future modification of 

the packet will  be detected because such modification would break the signature. 

Since the signature is also calculated over the PLA header, the attacker will not be 

able  to  modify  other  fields  in  the  PLA  header  like  the  timestamp  or  sequence 

number.  PLA uses  elliptic  curve  cryptography (ECC)  [65][79]  for  cryptographic 

operations because ECC offers good security with small key sizes.

The signature calculation ignores some fields in an IP header, like the hop limit field, 

since  that  field  can  change  during  the  lifetime  of  the  packet.  The  PLA packet  is 

considered fully valid if all fields in the PLA header are in order. The signature must be 

correct, the TTP certificate must be correct and issued by a valid trusted third party, the 

sequence number must be a monotonically increasing number, and the timestamp should 

be recent enough according to the security policy used.

Figure  8 describes relationships  between various  identities  in  the UML format.  The 

trusted third party is responsible for storing the user's real identity. Both the TTP and the 

user  may posses  an  arbitrary number  of  cryptographic  identities,  which  in  turn  are 

included in the PLA header. Such an approach allows a good trade-off between the 

anonymity and security since the user's cryptographic identities act as pseudonyms. In a 

case  of  misuse,  the  user's  real  identity  can  be  determined  using  the  PLA  header 

information and TTP records.
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3.4 Lightweight PLA header

In order to reduce both the bandwidth and computational overhead of PLA, there is an 

option  to  use  a  lightweight  PLA  header.  Otherwise  it  contains  the  same  security 

properties as the full PLA header, but the TTP certificate is omitted.  The idea is that 

nodes which are handling packets cache information about the TTP certificate and thus 

the sender does not need to include those fields in each header. However, it is up to the 

sender  to  decide  how many packets  are  sent  with  a  lightweight  PLA header.   The 

lightweight PLA header is presented in Figure 9.

As a  downside,  the  lightweight  PLA header  increases  the  complexity of  the packet 

handling in routers, since they need to cache the TTP certificate. However it decreases 

the bandwidth overhead, and since the sender's public key is included directly in the 
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lightweight PLA header it  also decreases the computational complexity of the packet 

verification. In order to make it possible for routers to validate the packet, the sender 

must  naturally include  a  full  PLA header  in  the  first  packet  of  the  connection  and 

occasionally send packets with a full PLA header to refresh routers' caches.

3.5 Trusted Third Parties

Simply including a sender's public key with signature in a PLA header is not enough. An 

attacker could generate a large amount of different public keys for itself and launch an 

attack using thousands or even millions of different keys. Therefore, even if only a small 

amount of packets are sent using a single public key, the attacker could paralyse its 

victim or  the network by flooding.  To protect  the network infrastructure from such 

attacks, separate trusted third parties are required.

In the scope of PLA, a trusted third party (TTP) is an entity that provides a binding 

between  the  user's  identity  and  its  public  key  and  authorizes  users  who  want  to 

communicate using PLA by granting them certificates1. The TTP can be, for example, 

an  operator,  in  which  case  the  TTP  would  grant  certificates  to  valid  users  of  this 

operator, or a state authority, which would grant certificates to its citizens.  The TTP 

certificate is included in the PLA header and it can be viewed as proof that the node is a 

well behaving entity that can be trusted. The TTP certificate has a limited validity time, 

after which it must be renewed. If the user has engaged in malicious behaviour, then its 

TTP certificate will simply not be renewed and the user will not be able to communicate 

using PLA. A TTP certificate  information  is  utilized  when validating packets  going 

through the network, the packet must have a valid TTP certificate from a trusted TTP in 

order for it to be considered fully valid.

An  overview  of  the  TTP  certificate  format  is  shown  in  Figure  10.  More  detailed 

certificate  specifications  are  presented  in  Appendix  A  using  the  S-expressions  [93] 

format. Fields of the TTP certificate are:

Signature part of TTP certificate. This field is used for calculation of the sender's 

public key, and it  also implicitly signs the TTP certificate.  If the calculated sender's 

1 In  the  scope  of  PLA,  TTP  certificates  contain  rights  and  are  similar  to  standard  authorization 
certificates.
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public  key successfully verifies  the  whole  packet,  then  it  also  means  that  the  TTP 

certificate is valid.

Identity number. This is the unique identity number given by the TTP to the user. The 

identity number is necessary for identity-based implicitly certified keys and it is utilized 

during the calculation of the sender's public key.

Rights granted by the certificate. TTP certificates can have different rights that are 

expressed in this field.

Delegatable rights. This field contains information about which rights can be delegated 

forward to another party. Delegation of rights is useful in some cases. For example, if a 

user wants to use another device temporarily as his own, he could delegate his existing 

TTP certificate to that device.

Validity time of the certificate. This field contains not-before and not-after timestamps 

that denote the time frame during which the certificate is valid.

Public key of the TTP. The TTP's public key is used for calculation of the user's public 

key.
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Locator of the TTP. Which contains the IP address of the TTP in order to allow nodes 

to contact the TTP that has authorized the sender.

In order for the TTP system to be effective, there should exist a way to guarantee that 

malicious users will not be able to have a valid TTP certificate for a prolonged period of 

time. Since there are hundreds of millions of users on the Internet, having a centralized 

revocation mechanism for all TTP certificates is not feasible. On the other hand, users 

who have been offline for extended periods of time should be able to continue normal 

communication  without  major  issues.  This  problem  can  be  solved  using  multiple 

certificate types with different rights and validity times. The type of the TTP certificate 

is  checked  at  every  node  and  the  packet  is  prioritized  accordingly.  Different  TTP 

certificate types are subsequently explained.

Since PLA relies on public key signatures, it is important that the private key is kept 

private. There are several mechanisms to accomplish this. For example, the private key 

can be stored in cryptographic hardware, or on a external start card of memory stick, 

encrypted by the user's password. PLA is indifferent to how private keys are stored, as 

long as they are stored securely. In case the private key is lost, the user should contact 

the TTP that has issued the key to revoke the corresponding certificate. Basically, this is 

equivalent to cancelling a lost credit or SIM card.

3.5.1 TTP certificate types and their usage

Table 1 shows an overview of TTP certificate types and their usage. The basic aim of 

the TTP certificate types is to allow the network to distinguish different kinds of traffic. 

Then the network's policy can decide how exactly different traffic should be handled. 

Table 1: Overview of the most common TTP certificate types

Certificate Type Rights Validity time Usage

Normal Normal traffic Hours or minutes Normal end-user traffic

Signalling Limited bandwidth Years or months Retrieval  of  the  normal 
TTP certificate

Self-signed Only allowed to the first 
PLA enabled router

Any Beginning  of  the 
bootstrapping phase

Priority Highest priority Hours or minutes Network  management, 
emergency traffic
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It is important to note that the TTP certificate mechanism is flexible, and it is easy to 

create  additional  certificate  types.  For  example,  in  addition  to  the  normal  TTP 

certificate, the operator may offer its users a certificate with a higher service quality and 

priority. The most common certificate types are explained below in detail.

A signalling certificate with limited bandwidth and long validity time.

This certificate type is designed to be used for retrieval of short-term certificates instead 

of normal traffic. Such a certificate is needed in cases where a device has been offline 

for a long time and its normal certificate has expired. The signalling certificate has a 

long validity time but a very limited bandwidth in order to reduce risks associated with 

such a long-term certificate. For example, routers can reserve a small amount of their 

bandwidth, such as 1%, for traffic that uses long-term TTP certificates1.

Since the validity time of the certificate is long, there should be a method to revoke 

certificates. Each TTP should maintain a list of signalling certificates that have been 

issued and revoked by this TTP. Then, the status of the certificate can be verified by 

querying the TTP that  has  issued the certificate.  This  method resembles  the Online 

Certificate Status Protocol (OCSP) [81] revocation method. The validity time for such a 

long-term certificate is on the order of months or years. For increased security, an issuer 

of the long-term TTP certificate  may require that  the user renews such a certificate 

offline in person, or by other means.

Self-signed (issued by the sender) certificate

A self-signed certificate is designed to be used in situations where the node does not 

have  any kind  of  TTP certificate.  This  can  occur  when  a  signalling  certificate  has 

expired or when a new node is connected to the network for the first time. The traffic 

sent  using  self-signed certificates  should  be  allowed  only to  the  nearest  router,  for 

example, a WLAN access point. Afterwards, the router should encapsulate these packets 

in its own PLA header. The PLA encapsulation mechanism is discussed in more detail 

in Section 3.5.3. 

Such  encapsulation  provides  several  benefits.  There  will  be  no  packets  in  public 

networks that cannot be traced since the sender of every packet will be authorized by 

1 Routers can detect different TTP certificate types and prioritize traffic accordingly.
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some  valid  TTP.  In  addition,  the  router  will  be  responsible  for  the  packets  that  it 

encapsulates, which means that it will choose carefully how much traffic that uses self-

signed  certificates  the  router  will  encapsulate.  The  router  could  allow  only  a  few 

connections per minute using self-signed certificates with a very limited bandwidth per 

connection. This should be sufficient to retrieve a valid TTP certificate for those who 

need it,  like  a  completely new computer  or  a  computer  whose long-term certificate 

expired while it was offline.

Priority certificate

This certificate type has the highest priority in the network, otherwise it resembles the 

normal  traffic  certificate.  The priority certificate  can  be used internally for  network 

management  messages since these messages should be transmitted in  a reliable  way 

even when the network is under attack and has limited resources.

This certificate type may also be used by authorities in case of emergencies, to guarantee 

that relevant messages get through even if the network is overloaded.

3.5.2 Management of Trusted Third Parties

In order for the TTP system to be effective, there must be a way to check the validity of 

the TTP itself.  Otherwise, the attacker could create its  own TTP which would issue 

valid TTP certificates to a large amount of the attacker's nodes.

We use a system where TTPs form a tree-like hierarchy similar to DNS servers. Each 

TTP is trusted by some other TTP that resides on a higher level. On the top level the 

number of TTPs is relatively small and thus they can form explicit security associations 

between them.  When a new TTP enters the network, it  must be authorized by some 

existing TTP using the TTP certificate format discussed previously. As a result, each 

TTP has a certificate chain that contains certificates for all TTPs in the chain starting 

from the root TTP.

Figure 11 contains an example of how the validity of the unknown TTP can be verified. 

In this example, a router or a destination has received a packet with an unknown TTP X 

and wants to verify its validity. First, the router sends a verification request to its local 

TTP E containing the public key and locator of the unknown TTP X. If TTP E does not 
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have the validity information about the unknown TTP X in its cache, it forwards the 

verification request to its  parent. If the parent has the validity information about the 

requested TTP X it sends it back in a reply, otherwise it sends a request upwards to its 

parent and so on. When the request reaches the top, the top level TTP A  will contact 

TTP X to request X's certificate chain. This chain contains a list of TTPs from the top 

level  down to  TTP X,  i.e.,  TTP R => S  => U => X.   TTP A checks  that  all  the 

certificates in the chain are valid and have not been revoked. Since TTP A trusts the top 

level TTP R, it can also trust other TTPs in the chain including X. TTP A adds validity 

information about X in its cache and sends a reply to the verification request downwards 

and the reply eventually reaches the router that made the original request. When a TTP 

or a router receives a verification reply, it stores the verification information (validity 

status and duration) in its cache, thus it will not be necessary to send another request as 

long as the cached validity information does not expire.

The large-scale management, revocation, and renewal of cryptographic keys is a very 

challenging task. The mechanism described above is a one possible way to accomplish 

it, and this field requires a further study.

3.5.3 Encapsulation of PLA headers

The overall number of TTPs on the Internet can be very high (several millions), which 

presents a problem with the performance and scalability of PLA. If a router receives 

packets from senders that have been authorized by a large number of unknown TTPs, 
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the router must verify each TTP independently and such verifications will use a lot of 

time  and  network  resources.  This  problem can  be  mitigated  by encapsulating  PLA 

packets that travel through the Internet into another PLA header. After a packet has been 

encapsulated,  only the outer  PLA header  will  be verified,  significantly reducing the 

number of trusted TTPs. An example of such encapsulation is shown in Figure 12. 

In the figure, clouds denote different networks which form a hierarchy: customers are 

connected to the Internet through their operators, small tier-3 operators are connected to 

larger tier-2 operators  and a limited  amount  of the largest  tier-1 operators form the 

Internet core network. For simplicity,  only two layers of operators are shown in the 

figure; in reality, the hierarchy would be deeper and big operators would serve a large 
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number of smaller operators. Thin lines in the figure denote ordinary PLA connections 

while bold lines denote encapsulated connections where two layers of PLA are used. 

The lower part of the figure shows PLA headers of packets in different parts of the 

network.

In this  example,  a node in the “source” network which is  connected to  the Internet 

through operator A1 is communicating with a node in the “destination” network, which 

uses operator B1 for Internet connection. The sending node is authorized by a local TTP 

S. The encapsulation works as follows: as the packet arrives to router R1, which is an 

edge router of operator A1, the router verifies the packet's validity including the validity 

of   TTP S  which has  authorized  the  sender  of  the  packet.  If  this  validity check is 

successful, the router R1 encapsulates the packet in its own PLA header and sends the 

packet  forward.  This  means  that  the  new header  includes  R1's  public  key and TTP 

certificate  received  from  TTP  A1,  since  TTP  A1  is  responsible  for  operator  A1's 

network1.  As the packet travels through A1's network, intermediate routers will  only 

check the outer PLA header of the packet, thus they will not need to trust TTP S that has 

authorized the original packet. Eventually the packet reaches router R2 which resides at 

the edge of operator A's network. Router R2 performs a validity check on the packet, 

including a check on validity of the TTP A1, strips the outer PLA header from the 

packet, encapsulates the packet in its own PLA header and sends the packet forward. 

The new PLA header naturally contains a TTP certificate from TTP A. The example 

continues  in  a  similar  way,  as  the packet  arrives  in  a  new network,  an edge router 

replaces the outer PLA header with its own header. Eventually the packet arrives to the 

operator of the destination network, where router R6 strips the outer PLA header and 

sends the original packet to its final destination. 

The advantage of such a system is that only the end point of the connection needs to 

perform the costly validity check of TTP S that has authorized the sender of the packet, 

this  validity check resembles  a reverse DNS check performed today.  Operator  edge 

routers  need  to  trust  in  the  TTPs  of  their  “child”  and  “parent”  operators,  while 

intermediate routers inside operator networks need only trust in their own local TTP, 

since the encapsulation guarantees that every packet that is transmitted in an operator's 

1 Use of encapsulation would also mean that CGA address checks would fail, since CGA addresses are 
generated from the sender's public key which is different from the public key used for encapsulation. 
However, this does not pose a significant problem if the CGA address check is performed only in 
access networks where packets are sent without encapsulation.
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network is sent by a node which is certified by that operator's own TTP. Inside the core 

network, routers would only need to trust the TTPs of major operators. In this example, 

router R3 would need to trust TTP A. Therefore, this approach significantly reduces the 

amount of TTPs that intermediate routers must trust, in most cases a router need only 

trust  its  local  TTP,  and thus  the  overhead produced by TTP verification  queries  is 

greatly reduced. On the downside, the encapsulation produces some extra bandwidth 

overhead  because  there  are  two  PLA  headers  in  each  packet,  and  requires  more 

computational power in routers which perform the encapsulation since a new signature 

must be generated to every packet. However, encapsulation is still feasible to use within 

operator networks since they usually have a large amount of bandwidth available and 

routers will have powerful dedicated hardware to perform cryptographic operations.

Theoretically, routers could remove the original PLA header altogether and just replace 

it with their own header. Such a system would satisfy the requirement that only valid 

packets  are  forwarded  in  the  network.  However,  in  order  to  satisfy the  rest  of  the 

requirements  presented  in  Sections  2.5  and  3.1,  the  sender  of  the  packet  must  be 

identifiable and thus the original PLA header must be present in every packet.

The  use  of  encapsulation  also  means  that  there  is  no  need  to  have  a  centralized 

revocation  scheme  for  TTPs  of  major  operators.  If  an  operator's  TTP  becomes 

compromised, then the operator simply informs its “parent” and “child” operators of this 

and their nodes will stop trusting the compromised TTP. The number of minor TTPs 

can be very high, and thus it is more effective to use certificates with short validity times 

(couple of hours) to manage TTPs. Each TTP will receive a short-time certificate from 

its parent TTP and this certificate must be renewed. If the TTP becomes compromised, 

its parent will not renew the certificate and the TTP will not be trusted by other parties.

3.6 PLA header verification procedure

The verification of the PLA header consists of several steps and a basic case is shown as 

a state diagram in Figure 13. The aim of this example is to show what steps are always 

present in full PLA header verification and what are possible outcomes. This example 

assumes that  the TTP certificate  inside the header is  a normal  short-term certificate 

without bandwidth limitations. 
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The exact order of steps may differ, in certain cases performing header verification in 

different order might be more efficient  in terms of computational  resources or offer 

better  protection  against  denial-of-service  attacks.  The  main  aim  of  PLA  header 

verification is to check whether a packet is authentic and how much a sender of the 

packet can be trusted. Based on the outcome of these tests, a node will determine how to 

handle the packet.

In the beginning of the verification procedure, the timestamp and the sequence number 

are checked. If either of them is invalid then the packet has been significantly delayed or 

duplicated and is thus discarded. In the second step, the sender's public key is extracted 

from the TTP certificate and the cryptographic signature of the packet is verified using 

the  extracted  public  key.  If  this  verification  fails,  the  packet  is  inconsistent  and  is 

therefore discarded. In the third step, other fields of the TTP certificate,  such as the 

validity time and rights of the certificate, are checked. If the TTP certificate has expired 

or if it does not have valid rights, the packet is also discarded. 
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In the final step of the verification procedure, the validity of the TTP which issued the 

certificate is checked. If the TTP is invalid (cannot be trusted), the packet is discarded. If 

the TTP is known to be valid, everything is in order and the packet is forwarded with 

full priority. If the TTP's validity is unknown, the node checks the validity of the TTP by 

sending a request to a TTP of its own. While waiting for a response, the node forwards 

the packets in  question  with low priority,  or alternatively,  the node could delay the 

packets  while  awaiting  a  reply regarding  the  TTP validity.  The latter  option  would 

enhance security, although it would introduce an additional latency for the initial packet. 

Finally, if the TTP certificate is generated by the sending node of the packet (i.e., it is 

self-signed), the node has two options. Either the node simply discards the packet, or the 

node can encapsulate the packet in its own PLA header and forward it. Encapsulating 

the packet would mean that the node is taking the responsibility for the packet, and thus 

the node should only allocate a small portion of bandwidth for such packets with self-

signed TTP certificates. Self-signed certificates are only used when the sending node 

has just started operating and does not have any valid certificate from a TTP yet.

The  router  has  a  lot  of  flexibility  in  terms  of  performance/security  trade-off  when 

deciding how to prioritize packets. The router can adopt a “paranoid” policy, in which 

case it would:

● Delay or discard packets which were sent by a user that has been authorized by 

an unknown TTP, until the validity of the TTP has been verified.

● Query the  status  of  encountered  signalling  certificates  from TTPs  that  have 

issued those certificates, and allocate very limited bandwidth to packets that use 

a signalling TTP certificate.

● Discard all packets that use self-signed TTP certificates.

Or a more relaxed policy, like:

● Forward all packets immediately, even if their TTP is unknown.

● Encapsulate packets that use self-signed certificates in router's own PLA header.

● Allocate more bandwidth to self-signed and signalling certificates.

Most importantly, PLA offers routers a consistent way to decide how different kinds of 

packets should be handled. Routers can then make a decision depending on their policy. 

The  optimal  policy for  each  router  depends  on  several  factors  and  determining  the 

optimal policy is beyond the scope of this thesis. For example, routers in civilian and 
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military networks may have a very different policy for handling packets, just like routers 

in access networks may have a different policy compared to routers in core networks.

3.7 Reacting to attacks and reporting misuse

To achieve a high level of security in the network, two goals should be fulfilled. First, 

the  attack  should  be stopped as  quickly as  possible,  preferably close to  the  source. 

Secondly, there should be a way to identify culprits behind the attack in order to prevent 

them from continuing the attack, and to make them responsible. This section provides 

an overview how attacks can be stopped and misuse reported with PLA. Sections 6.2 

and 7.1 contain more detailed description of these issues.

3.7.1 Stopping attacks

If  the  network  utilizes  CGA  addresses  or  some  other  mechanisms  to  tie  the 

cryptographic identities into network-layer identifiers, such as IP addresses, stopping the 

attack with PLA is straightforward. A node that has come under an attack sends the 

following  STOP message back to the attacker, indicating that the node does not want 

any additional traffic from the attacker.

Routers on the path will verify the integrity of such a message, and will check that the 

source  IP  address  is  not  spoofed.  If  everything  is  in  order,  routers  would  add  the 

<PKATTACKER, IPVICTIM> pair to the internal blacklist, therefore stopping the traffic from 

the attacker to the victim. Naturally, it is not reasonable to expect every router on the 

path  to  co-operate  with  such  messages.  The  return  path  may differ  in  some  parts, 

fragmentation  may  occur  within  the  network,  the  size  of  the  blacklist  may  be 

significantly limited  in  intermediate  routers,  or  some routers  may just  ignore  STOP 

messages. However, such a scheme does work even if just one router takes note of the 

stop message,  and therefore the traffic to  the victim is  stopped before it  reaches its 

destination. Since the amount of intermediate hops on the Internet is usually about ten or 
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more,  there  is  a  high probability that  at  least  one router will  conform to the  STOP 

message and will stop the unwanted traffic.

Even if  only one  router  conforms  to  STOP the  effectiveness  of  the  scheme can  be 

gradually improved. Suppose the traffic between the attacker A and the victim V flows 

along the path: A – X – Y – Z – V. Router Z near the destination conforms to the STOP 

message, while other routers ignore it. Router Z can easily notice the situation, since it is 

receiving traffic that should have been blocked already. In this situation, router Z would 

send another STOP message towards the attacker, either its own STOP message or the 

cached  original  STOP message  from  the  victim.  As  a  result,  the  point  where  the 

unwanted traffic is stopped would be moving towards the source of the traffic, freeing 

resources in the rest of the network.

Using  STOP messages  also  introduces  accountability between the  operators.  Let  us 

assume  for  simplicity  that  in  the  previous  each  router  is  managed  by  the  distinct 

operator. If operators W, X and Y would continue to ignore the stop message, then 

operator Z would have proof of such negligence, since operator Z would possess both 

the  original  STOP message  from the  victim  containing  the  attacker's  cryptographic 

identity and the timestamp, and subsequent packets from the attacker to the victim with 

later timestamps.  Such a strong accountability provides incentives to all  operators to 

behave according to the rules.

3.7.2 Reporting misuse

Since  PLA  is  based  on  cryptographic  identities  and  signatures  it  provides  strong 

accountability features. The victim of the attack possesses packets sent by the attacker, 

which contain the attacker's cryptographic identity together with the TTP's public key 

and locator. Therefore, the victim can report misuse to the TTP that has certified the 

attacker, and present the original packet sent by the attacker as proof. Such reporting can 

be automated to some extent, and handled by, for example, the firewall software.

If the TTP receives enough proof1 against the attacker, it will not renew the attacker's 

certificate,  preventing  him  from  continuing  the  attack  after  the  current  certificate 

1 There is no one correct solution for how the TTP should determine whether it should not renew the 
user's certificate. This is more of the policy- and legislation-level issue, which is out of the scope of 
this thesis.
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expires. The rights of the attacker can be revoked either permanently or temporarily by 

the TTP depending on the policy. For example, if the misuse is serious, the TTP may 

require  the  user  to  contact  the  TTP  offline  before  a  new  certificate  is  granted. 

Additionally, packets sent by the attacker provide evidence to start an investigation if 

the misuse has been serious enough.

In some cases, for example if the computer has been infected with viruses, it may not be 

possible  to  reveal  identities  of the real  attackers.  However,  in this  case the infected 

computer will be prevented from sending data to the network, and therefore PLA still 

fulfils its goal of providing availability.

3.8 Bootstrapping a new node to use PLA

PLA relies on certificates from trusted third parties and a new device must somehow 

retrieve all relevant certificates for communication. This section describes one possible 

bootstrapping  procedure  for  a  new  device,  i.e.,  how  a  new  device  can  retrieve 

certificates to communicate fully using PLA. There are basically three distinct use cases 

for bootstrapping. First, the TTP certificate can be already pre-installed, for example, 

the customer buys a laptop or makes a contract with the operator. In this case the TTP 

certificate would be present on the device or the SIM card. The second alternative is that 

the user is a completely new customer of the TTP. The last case is the situation where a 

new device is acquired by the user that already possesses a valid TTP certificate.

The first use case where the certificate is pre-installed on the device is trivial from the 

bootstrapping point of view, therefore this section concentrates on the second and third 

case. The bootstrapping example shown in Figure 14 assumes that the device is brand 

new,  it  does  not  have  any  certificate  from  a  TTP  and  it  does  not  even  have  a 

public/private key pair. It is also assumed that the device stores its private key locally. It 

would also be possible to store a private key in some kind of secure portable device, in 

which case the user could carry his private key with him and use it with several devices.

After the new device is turned on, it moves to the key generation state where it generates 

a public/private key pair for itself. In step 2, the device generates a self-certificate that 

has the same format as a TTP certificate but is signed with the device's own private key. 

Now the device has all of the necessary keys and certificates for limited communication, 
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and it can retrieve a long-term signalling certificate from a TTP with its own self-signed 

certificate  in state 3. Afterwards,  the device retrieves a normal  short-term certificate 

from  a  TTP  using  the  previously  received  signalling  certificate.  If  this  retrieval  is 

successful, the device enters normal state 5, where it can communicate normally using 

PLA without  any bandwidth  limitations.  When  this  normal  short-time  certificate  is 

about to expire, the device needs to request renewal from the TTP in state 6. If the 

renewal fails or if the normal certificate has already expired, for example because the 

device was turned off for a long period of time, then the device moves back to state 4 

where  it  needs  to  retrieve  a  normal  certificate.  Theoretically,  also  the  long  term 

signalling certificate can expire, in which case the device would move back to step 3. 

This step (retrieval of the initial  signalling certificate  from the TTP) is  discussed in 

more detail in the next section.

3.8.1 Retrieval of the initial certificate from the TTP

Figure 15 illustrates how a new device can retrieve an initial certificate from the TTP. 

The certificate format used in the figure is an S-Expression format which is described in 

Appendix A. In this case, the TTP service is provided by an operator with whom the 
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owner of a computer has a contract and the user requests a TTP certificate for his PC. 

The idea is that the operator provides an authentication token to the user, and the token 

is used by the user to prove his identity during the certificate retrieval. The token acts as 

a one-time password which is  bound to  a specific  public  key and the token can be 

exchanged offline between the user and the operator. 

The retrieval process proceeds as follows. In steps 3.1 and 3.2, the user retrieves the 

public key1 of the PC and sends it together with some kind of user id, such as a customer 

number, to the operator. In step 3.3, the operator gives the user an authorization token 

containing service information such as the address of the operator's TTP. Then in step 

3.4 the user enters the service information to their PC while the operator sends the given 

authentication token, user id, and the public key to its TTP. In step 3.5, the request for a 

new certificate is sent. This request contains a public key, a requested validity time for 

the  certificate,  the  authentication  token,  and  a  signature.  The  operator's  TTP  now 

verifies that the public key and authentication token in the request match the values sent 

by the operator. If they match, the TTP sends a final TTP certificate back to the user in 

step 3.62. In the final step 3.7, the user and the operator are notified that the certificate 

has been issued and received successfully.

1 The public key mentioned here is the preliminary key used during the certificate retrieval process. A 
final public key is extracted from information received from a TTP in step 3.6 based on formulas 
mentioned in Section 4.2.2.

2 To protect privacy, traffic in steps 3.5 and 3.6 must be encrypted by some means, such as TLS.
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3.8.2 Delegation of TTP certificate to another device

In some cases it is useful to have the ability to delegate rights to communicate, such as 

rights  to  request  a  valid  TTP  certificate,  to  another  device  either  permanently  or 

temporarily. For example, if a user wants to use a friend's computer as his own for a 

while, he could temporarily delegate his rights to that computer. Or if the user wants to 

take into  use some home appliance which lacks traditional  input  methods,  he could 

permanently delegate his rights to that appliance.

In principle,  delegation  of  rights  works  as  follows.  A valid  user  authorizes  another 

device with a certificate, thus creating a certificate chain: TTP => user => device. Using 

this certificate chain, a third party can then request a new certificate from the user's TTP. 

An example of such delegation is shown in Figure 16.

In the first step, an appliance generates a public key for itself which is then transmitted 

to the user. The means by which data is transmitted in steps 1 and 2 is irrelevant, it can 

be transmitted using a network or offline using a separate memory stick. In the second 

step,  the user  transmits  two certificates  to  the appliance:  the  first  is  the  user's  TTP 

certificate which states that the user is a valid and trusted entity, and the second is the 

certificate issued by the user to the appliance. These certificates form a certificate chain: 

TTP => user => appliance and thus with these certificates, the appliance can request its 
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own certificate from the TTP in steps 3 and 4. After this certificate C3 has been received 

in step 4, the appliance will be able to communicate using PLA.
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4. Implementing PLA

This chapter describes cryptographic solutions used by PLA. It also describes proof of 

concept software and hardware implementations of PLA.

4.1 Software implementation

A proof-of-concept Linux implementation of PLA has been made [86]. The aim of this 

implementation is to show that the basic idea of PLA is implementable in practice, and 

PLA can be used together with existing applications. The implementation uses IPv6 and 

supports packet authenticity checking and offers support for hardware acceleration for 

signature verification. The Linux implementation consists of a kernel module and user 

space applications. The implementation supports three modes of operation: 

1. The PLA header is added to a plain IP packet and the PLA-enabled packet is sent 

forward.

2. The PLA header is removed from an existing PLA-enabled packet (after checking the 

packet's validity) and the plain IP packet is sent forward.

3. The PLA-enabled packet is simply forwarded after performing validity checks.

The implementation also supports several PLA layers (PLA encapsulation). The proof-

of-concept implementation makes it possible to build a network consisting of non-PLA-

enabled  nodes  and PLA-enabled  nodes.  A general  architecture  of  the PLA software 

implementation is presented in Figure 17.

As the packet arrives to the network interface, it is handled by the network stack of the 

operating system. The operating system contains a PLA module which will handle PLA-

related operations such as adding a PLA header to a plain IP packet and verifying the 

validity of  the PLA header.  The PLA kernel  module  communicates  with  a  separate 

cryptography  module  which  resides  in  the  user  space.  For  testing  purposes  this 

cryptography  module  supports  both  software  and  hardware  based  cryptographic 

solutions. In addition, the implementation supports adding a PLA header to packets with 

a blank signature without making any cryptographic computations. This feature is useful 

for testing the non-cryptographic overhead of the PLA implementation.
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To allow easy experimentation, the PLA functionality has also been implemented as a 

separate user space libpla library that runs under Linux and FreeBSD [87]. The libpla 

library provides functions for adding and verifying a PLA header over a memory area. 

Therefore separate libraries, such as  libpcap [106] and libnet [72], should be used for 

sending and receiving packets from the network interface.

4.2 Cryptographic solutions

Since  PLA  is  based  on  public  key  cryptography  with  public  keys  and  signatures 

included in every packet,  the cryptographic solution used should offer good security 

with  relatively small  key and  signature  sizes.  Therefore,  instead  of  using  the  most 

commonly used public key algorithms such as RSA [92] or DSA [43], PLA uses Elliptic 

Curve Cryptography (ECC) for cryptographic tasks. ECC is a very efficient algorithm in 

terms  of  security  per  key  size,  since  a  163-bit  ECC  key  has  roughly  the  same 

cryptographic strength as a 1024-bit RSA key or an 80-bit symmetric key [77]. PLA 

itself  is  not  dependent  on  the  cryptographic  solutions  used  and  can  be  used  with 

different  cryptographic  algorithms  and key lengths.  However,  the  ECC algorithm is 

currently the only feasible  solution,  since other solutions  would require significantly 

longer cryptographic keys and signatures to achieve the same level of security.

The PLA implementation uses a standardized Kobliz curve K-163 [43] defined over a 

binary field because binary field operations are fast in both hardware and software. PLA 
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uses 164-bit compressed public keys, 163-bit private keys, and 326-bit signatures. These 

key sizes provide security roughly equivalent to that of 80-bit  symmetric algorithms. 

According  to  the  U.S.  National  Institute  of  Standards  and  Technology  (NIST) 

recommendations [11], such a level of security is sufficient for data storage until the 

year  2010.  However,  in  the  case  of  PLA,  a  somewhat  lower  level  of  security  is 

acceptable, since most of the keys and packets in the network are relatively short lived.

As computational power increases in the future it will become easier to use a brute force 

attack to break cryptographic algorithms and stronger cryptographic solutions will be 

required. In this respect, ECC is a good solution because its efficiency in comparison to 

RSA increases as key sizes become larger. For example, increasing an ECC key size 

from 163 to 233 bits (an increase of 43%) would increase security as much as doubling 

a  key size  in  the  RSA algorithm  from 1024  to  2048  bits.  According  to  the  NIST 

recommendations, such security should be sufficient until the year 2030.

4.2.1 Per packet signature generation and verification

Per packet signatures are generated as follows using ECC. Let a base point generator G 

and prime  order  r be  elliptic  curve  related  global  parameters,  s  a  private  key,  and 

u∈R ℤ
*
r

. A public key W is generated by multiplying the base point and the private 

key: W = sG. A cryptographic signature on message m consists of two values (c,d) and 

is computed using the private key as follows:

c = [uG]x + H(m) (mod r)   (1)

d = u – sc (mod r), (2)

where [P]x is the x-coordinate of the elliptic point P converted to an integer and H is a 

collision-resistant hash function. The PLA implementation uses a 160-bit RIPEMD [35] 

as the hash function. It would also be possible to use other hash functions offering the 

same level of security, such as a 160-bit SHA-1 [44]. In the case of PLA the hash is 

computed over the whole packet ignoring the hop limit field of an IPv6 header. 

Any other party can verify the packet's signature (c,d) with a public key W by checking 

that: 

H(m) = c – [dG + cW]x (mod r). (3)
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4.2.2 Trusted Third Party certificates

In order to reduce packet overhead and save computational power, PLA uses identity-

based implicitly-certified keys [17], which means that it is not necessary to include the 

sender's  actual  public  key in  the  PLA header.  Generating public  keys  with  implicit 

certificates for the sender works as follows. Let G and r again be elliptic curve related 

global parameters,  ID the user's identity1,  sTTP a TTP's private key, and  WTTP a TTP's 

public  key.  At  the  beginning,  the  user  generates  and  sends  kG to  the  TTP  where 

k ∈R ℤ
*
r

. The TTP calculates:

r , b=COMPRESSkGk T  , where k T ∈R ℤ
*
r

(4)

r u=rH ID  (5)

s=k T−ru sTTP mod r  , (6)

where COMPRESS is the point compression function giving the x-coordinate of kG + 

kT and the compression bit  b. The TTP sends its signature ru , b  , s back to the user 

who calculates his private key s=ks mod r  and public key W = sG. The signature 

part of a TTP certificate which is included in the PLA header is (ru,b). In this approach 

the TTP does not learn the user's private key even though the TTP is involved in the key 

generation process, therefore the user's privacy is not compromised.

Afterwards,  a  verifying  party  can  extract  the  user's  actual  public  key  W from  the 

signature part of the TTP certificate (ru,b), the user's identity ID, and the TTP's public 

key WTTP by calculating:

W = DECOMPRESS(ru – H(ID), b) – ruWTTP, (7)

where DECOMPRESS is the point decompression function given an  x-coordinate and 

compression bit  b. If the extracted public key W successfully verifies the packet, then 

also the TTP certificate is valid. On the other hand, if the signature verification fails, it 

is not possible to determine whether the signature or the TTP certificate is incorrect. The 

signature  verification  would  fail  if  the  signature  is  authentic  but  TTP  certificate 

information incorrect, or vice versa. This does not actually matter in the case of PLA, 

since the packet must contain both the valid TTP certificate and signature in order to be 

considered valid.

1 String ID contains  several  fields  of  the  TTP  certificate  presented  in  Figure  10:  identity,  rights, 
delegatable rights, and validity time.
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4.2.3 Improving the efficiency of cryptographic operations

Cryptographic solutions developed for PLA also utilize novel ideas for increasing the 

efficiency of various ECC-related calculations. A new method for performing the public 

key  extraction  and  verification  mentioned  above  using  only  a  single  three-term 

simultaneous scalar multiplication is described in [14]. Another method for improving 

the performance is discussed in [15]. PLA also utilizes a new method of computing the 

integer equivalent of random Frobenius expansions [16], which significantly speeds up 

the generation of cryptographic signatures. Fast signature generation is beneficial  for 

nodes that are sending a large amount of PLA packets and for nodes that encapsulate 

PLA traffic.

Overall,  the  most  computationally  complex  operation  in  the  ECC  algorithm  is  the 

elliptic  curve  point  multiplication.  Other  operations  including  hash  calculations  are 

significantly  less  complex.  The  ECC  signature  generation  requires  a  single  point 

multiplication, the standard signature verification used by a lightweight PLA requires 

two point multiplications,  and the full  PLA verification consisting of the public key 

extraction and signature verification requires three point multiplications. Therefore, the 

signature generation is theoretically three times as fast as the full PLA verification.

4.3 Hardware acceleration of cryptographic calculations

Since public key cryptography is very computationally intensive, it is not feasible to use 

general purpose CPUs for such cryptographic computations. One of PLA's design goals 

is to scale to high capacity networks and to devices with low computational resources, 

thus dedicated hardware acceleration is required to handle cryptographic tasks. In the 

future,  such  a  cryptographic  accelerator  can  be  integrated  into  technologies  such as 

Trusted Platform Module (TPM) [110]  and Trusted Network Connect  (TNC) [109], 

which aim to enhance the security of personal computers and networking by using an 

additional security hardware module.

There  are  two  computationally  intensive  problems  where  hardware  acceleration  is 

useful:  validation of packet signatures, and generation of signatures for packets. The 

former operation is performed by any node that forwards PLA traffic while the latter is 

performed by nodes that send packets or encapsulate traffic. Both problems are very 
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parallel in nature since packets received by a node can be verified independently. Thus, 

the throughput (the amount of packets that a node can process in a given time frame) is 

more important than the speed of a single operation (the latency) as long as the latency 

is low compared to the latency of the network itself.

Figure  18 describes  one  possible  architecture  for  the  PLA hardware  accelerator.  It 

assumes that the accelerator is integrated on a networking hardware and PLA-related 

operations are performed in a transparent manner. The left side of the figure contains 

PHY and MAC interfaces that are also present in normal network interface chips, the 

right  side  contains  a  generic  network  processor  and  buffers,  and  the  PLA-related 

functionality is located in the middle. While Figure 18 shows the PLA accelerator as a 

separate  module,  the  accelerator  could  also  be  integrated  inside  the  main  network 

processor.

The example PLA hardware accelerator works as follows. After an incoming packet 

passes  the  PHY  and  MAC  interfaces,  it  arrives  at  the  PLA  front  end,  which  is 

responsible for performing various PLA-related operations including the PLA header 

extraction  and  modification,  verification  of  timestamp  and  sequence  numbers,  and 

queuing.  For incoming packets,  the front  end extracts  relevant  information  from the 

PLA header, such as the TTP's public key, TTP's implicit certificate, identity string and 

the packet's signature.
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Afterwards, the relevant information from the packet is forwarded to the hash unit and 

ECC  modules  that  perform  ECC-related  operations,  and  finally  to  the  signature 

verification module. The module calculates equations (7) and (3) to extract the sender's 

public key and to verify the packet's signature, and sends the outcome of the verification 

back to the front end. If the verification is successful, the front end forwards the packet 

to the generic network processor.

Outgoing packets follow the reverse path. After passing through a network processor, 

they arrive at the PLA front end, and are forwarded to the hash unit and ECC modules. 

There also exists  a storage for private  keys that  are used for signing.  The signature 

generation module calculates the signature according to equations (1) and (2), and sends 

the corresponding signature to the front end. The front end adds the signature to the 

packet's header and the packet is sent out through the MAC and PHY interfaces.

Such an accelerator would work without an active intervention from the host computer. 

The host would just need to set up policies on how packets should be treated if they do 

not pass all verifications fully, and signal what private keys should be used for signing 

outgoing packets.

4.3.1 Proof of concept PLA hardware accelerator

A  proof  of  concept  implementation  of  the  hardware  accelerator  for  ECC-related 

calculations has been implemented for PLA [59].  The initial  hardware accelerator is 

based on a field programmable gate array (FPGA). An FPGA is a chip containing a 

large amount of programmable logic, including logic gates, I/O, and memory. The main 

advantage of an FPGA is  its  flexibility.  The FPGA can be programmed to perform 

different  tasks,  therefore  FPGAs are  very suitable  for  prototyping  purposes.  On the 

downside,  FPGA offers significantly lower performance than the application-specific 

integrated circuit (ASIC) [67]. An FPGA usually runs at relatively low clock speeds but 

contains a large amount of computational units which can perform several computations 

in  parallel,  making it  a  suitable  solution  for  the  acceleration  of  PLA cryptographic 

computations.

The  proof-of-concept  accelerator  supports  the  calculation  of  an  elliptic  curve  point 

multiplication Q = kP, where Q and P are points on an elliptic curve and k is an integer. 
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The elliptic  curve point  multiplication is  the most  demanding operation of the ECC 

algorithm. Basically, the proof-of-concept accelerator covers ECC modules from Figure 

18. An overview of the accelerator is presented in Figure 19.

The accelerator is divided into two main parts: an I/O part and the actual elliptic curve 

cryptography  module  which  accelerates  ECC  calculations.  The  elliptic  curve 

cryptography module  consists  of  tau-adic  converters  and  field  arithmetic  processors 

(FAPs). A FAP processor is the part of the accelerator that is responsible for performing 

the elliptic curve point multiplication. 

Koblitz curves, which are used in the ECC implementation,  require that the scalar  k 

used in the point multiplication Q=kP is converted into a so-called tau-adic expansion 

[64]. This conversion is non-trivial and needs to be performed by the hardware in order 

for the accelerator to achieve its full potential. Hence, the elliptic curve cryptography 

module contains separate tau-adic converters that are described in more detail in [60]. 

A Nios II soft-core processor is connected to the cryptography module over an internal 

bus and is used for I/O communication with the host computer over Ethernet. This I/O 

part  is  necessary  for  the  proof-of-concept  implementation  where  a  majority  of  the 

workload is done on a main CPU. In a final accelerator design, the cryptography module 

would be directly connected to the network hardware. 

The proof-of-concept accelerator consist of a separate board containing the FPGA chip. 

This board is connected to the host computer by Ethernet and communication between 
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the host and the accelerator is handled using TCP. At a high level, the accelerator works 

as follows; the host computer sends values of k and P to the accelerator, which performs 

the point multiplication and returns Q to the host computer. 

Currently, the proof-of-concept hardware accelerator has some limitations. The Ethernet 

interface of the accelerator is limited to 100 Mbps speed, which becomes a bottleneck in 

certain situations. Furthermore, the PLA software implementation is not optimized and 

the communication latency between the host PC and the proof-of-concept accelerator is 

relatively high.

4.3.2 Performance of the proof-of-concept PLA hardware accelerator

An optimized design for performing verifications has been implemented based on an 

Altera Stratix II EP2S180C3 FPGA board. The FPGA chip used is built on a 90 nm 

manufacturing  process  and  it  contains  96  digital  signal  processing  elements  and 

approximately 1 Megabyte of memory. According to simulations the FPGA accelerator 

achieves 166,000 verifications per second with a latency of 114 μs per verification [61] 

when optimized for throughput. In this case, 19 FAP processors are used in parallel at a 

clock  speed  of  164MHz.  The  improved  design  increases  the  performance  to  about 

242,000 verifications and this design can also be optimized for latency, in which case 

the latency per verification decreases to 35 μs [58].

The  same  design  can  also  be  used  for  performing  signature  generations  and  for 

lightweight  PLA  verifications  where  the  public  key  extraction  is  not  necessary. 

Theoretically,  the  performance  should  increase  by  50%  and  200%  for  lightweight 

verifications and signature generations respectively, since these operations require two 

and one point multiplications instead of three. However, due to optimizations, the actual 

performance  increase  is  17%  and  166%  respectively,  i.e.,  the  design  can  perform 

283,000  lightweight  verifications  or  645,000  signature  generations  [58].  The 

performance  implications  and scalability of  cryptographic  operations  is  discussed in 

Section 5.3.
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4.4 Summary

The PLA functionality has been implemented as a software-based prototype that runs 

under  Linux  and  FreeBSD  in  user  space.  There  also  exists  a  kernel  space 

implementation for Linux.  Furthermore,  a FPGA-based hardware prototype has been 

created to accelerate generation and verification of cryptographic signatures.

The software-based proof-of-concept prototype shows that PLA can be implemented 

and  deployed  in  real-life  systems.  The  hardware  accelerator  achieves  a  promising 

performance, and its performance implications on the scalability of PLA will be further 

evaluated in the next chapter.
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5. Analysis of the PLA implementation

The first two sections of this chapter analyse how well PLA meets its design criteria 

presented in Section 3.1 and the requirements for the next-generation Internet presented 

in Section 2.5. Section 5.3 contains an analysis of PLA's performance and an energy 

overhead.  Finally,  Section 5.4 includes a comparison with hash tree and hash chain 

based security solutions in terms of security properties and energy efficiency in wireless 

networks. Hash tree and hash chain based solutions are included in the comparison since 

they offer similar hop-by-hop security properties as digital signatures.

5.1 PLA design criteria analysis

The design  criteria  of  PLA are  divided  into  three  parts:  mandatory,  important,  and 

optional criteria.

5.1.1 Mandatory criteria

Compatibility

Since  PLA simply adds  its  own header  to  an IP packet  using  a  standard  extension 

mechanism, it is compatible with existing IP networks. Routers that do not support PLA 

can forward PLA packets simply based on IP header information. In such cases, traffic 

would continue as usual but features of PLA would not be utilized. PLA can also be 

used together with other IP-based protocols and security solutions such as IPSec or HIP. 

In a hypothetical situation, a router could add a new header on top of the PLA header, 

i.e., between the IP header and the PLA header. In such cases, there are two possible 

outcomes for the rest of the network. The first alternative is that the packet is forwarded 

as a plain IP packet, ignoring the PLA header altogether. Alternatively, if the routers are 

intelligent enough, they can retrieve the PLA header from the packet even if there exist 

other additional headers between the IP header and the PLA header. Thus, they could 

still  use information from the PLA header to check the integrity of the original PLA 

secured packet.  However,  in  such situations  it  would  not  be possible  to  protect  the 

integrity of additional headers, because these headers would have been added after the 

PLA header.
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Deployability

PLA is  compatible  with  current  IP networks,  thus  it  can  be  deployed gradually.  In 

addition, PLA does not require separate security associations between nodes because all 

information required for packet verification is included in the PLA header. This is very 

useful in dynamic network environments such as ad-hoc networks, where the network 

topology can change frequently. Even if the path along which packets travel changes 

significantly, every node along the path can fully verify packets if PLA is used.

To facilitate easier deployment, two different kinds of PLA-enabled routers can be used 

during the early deployment phase as shown in Figure 20. The network would contain a 

limited amount of smart routers which can fully verify PLA header information and are 

able to perform signature verifications at wire speed. In addition, there would be simple 

routers  without  dedicated  hardware  for  cryptographic  operations  that  could  verify 

various PLA header fields like timestamp and sequence number. Simple routers would 

also support traffic throttling and blocking based on various parameters like the sender's 

public  key  or  the  trusted  third  party  that  has  authorized  the  sender.  They  can  be 

implemented by making small modifications to existing IP routers. Since PLA is based 

on the IP header extension mechanism, the network can also contain ordinary routers 

that are not aware of PLA.

In the early stage of deployment, most PLA-enabled routers in the network would be 

simple routers, while smart routers would be located on the border of the network and at 

strategic points. Therefore, all traffic coming to the network from outside sources will 

be  verified  by  smart  routers  and  smart  routers  inside  the  network  would  improve 

detection of attacks originating within the network.
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To improve security in the rest of the network the following approach can be used. After 

detecting invalid or malicious traffic, the smart router sends a control message to stop or 

limit the flow of such traffic to simple routers which reside on the return path as shown 

below. This message is similar to the  STOP message described in Section 3.7.1. The 

message is protected by PLA and therefore contains the sender's signature1. 

Simple routers will verify that such a STOP or LIMIT message has arrived from a local 

smart router and will limit or block the flow described in a message accordingly. This is 

just  one possible  case of  the control  message format;  traffic  can also  be limited  or 

blocked based on an IP addresses,  or the trusted third party that  has authorized the 

source. Basically in this approach smart routers control the behaviour of the rest of the 

network  by  using  PLA-protected  control  messages.  Such  a  system  would  work 

regardless whether the attacker is located within the local network or not. The main 

advantage of this approach is the ability to stop or limit unwanted traffic as close to the 

source as possible, even when a majority of routers are not fully PLA-enabled smart 

routers.

Such a scheme can be attacked by sending a large amount of bogus  STOP or  LIMIT 

messages to simple routers. Since simple routers have limited resources for performing 

signature verifications, they would not be able to process authentic control messages 

coming from smart routers. To alleviate this problem, simple routers can be configured 

to accept control messages only from trusted sources. It is reasonable to assume that the 

amount of smart routers within the network is relatively small, and their IP addresses 

and identities are known by other routers within the network.

Overall, such a system offers better security compared to a plain network without PLA 

support and it requires only a low initial investment, since a vast majority of routers in 

the network can be slightly modified ordinary routers. The system would also work with 

ordinary, non-PLA-aware routers, in which case smart routers would use SNMP [22] or 

1   Other mechanisms like a shared secret or hash message authentication code (HMAC) can also be used 
to authenticate control messages.
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a similar protocol for traffic management. The security of the  network can be improved 

in a straightforward way simply by adding more smart PLA-enabled routers.

Malicious nodes should be removed quickly from the network

TTP certificates with a limited validity time offer a way to remove malicious nodes 

from the network. If a node becomes dangerous to the network, i.e., it does not behave 

according to the rules, the TTP will not renew its certificate and without a valid TTP 

certificate, the traffic that the node sends will be blocked at the first router. In addition, 

routers can block public keys which are used to send large amounts of invalid packets, 

thus preventing malicious nodes from communicating further.

The validity time of short-time TTP certificates is basically a trade-off between security 

and overhead. A shorter validity time means better security since a potential attacker has 

a smaller window of opportunity to launch an attack, although it would also increase the 

overhead because certificates would need to be renewed frequently across the whole 

network. A longer validity time increases the window of opportunity to launch an attack, 

but it decreases the overhead of the certificate-renewal process. The effect of different 

TTP certificate validity times on security and PLA-related overhead is discussed in more 

detail in Chapter 10. The validity time could be changed on the fly depending on the 

situation, for example if the network is under constant attack, decreasing the validity 

time of TTP certificates would make sense. 

A mission critical network, like a military network with a limited amount of nodes and 

plenty of available bandwidth, could use a centralized revocation scheme to instantly 

revoke certificates of compromised nodes or TTPs. In this case revocation messages can 

be sent through the one-way channel, such as a radio link or a satellite connection, that 

covers a large area.

Validation of packets

The  PLA  header  contains  all  necessary  information  to  perform  validity  checks  on 

packets. The signature together with the public key allows detection of forged packets. 

The timestamp and the sequence number can be used to detect delayed or duplicated 

packets.
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5.1.2 Important criterion

Scalability

The most crucial matter regarding the scalability of PLA is the amount of certificate-

related  traffic.  Nodes  and  TTPs  within  the  network  must  renew  their  certificates 

periodically and their certificates may be revoked, and the amount of this type of traffic 

should remain reasonable even with a very large number of nodes and TTPs. In the most 

extreme case, every TCP session could utilize different TTP certificate. The effect of 

this  traffic  is  analysed  in  the  next  section  in  more  detail  under  the  topic  of 

manageability.  The  performance  of  cryptographic  operations  also  affects  PLA's 

scalability and will be discussed in Section 5.3.

The TTP architecture presented in Section 3.5 allows TTPs to be added and removed in 

a flexible manner. In order to limit the overhead of TTP certificate verification traffic, 

two PLA layers should be used within Internet core networks as mentioned in Section 

3.5.3. While using encapsulation and two PLA layers will produce higher bandwidth 

overhead in core networks, it will significantly decrease the amount of TTPs in which 

routers must trust. This reduces the overhead produced by TTP verification requests and 

will thus improve overall scalability. In addition, a router which encapsulates traffic into 

its  own PLA header  basically also takes  responsibility for that  traffic,  meaning that 

routers  should  only  encapsulate  traffic  in  which  they  fully  trust  either  directly,  or 

through the chain of trust.

The  scalability  of  PLA  for  small  and  portable  devices  depends  on  the  power 

consumption produced by PLA and it is discussed below.

5.1.3 Optional criteria

Small power consumption and bandwidth overhead

The overhead caused by PLA can be divided into two main categories: a bandwidth 

overhead, which is caused by the addition of the PLA header to each packet, and a 

power consumption overhead, which is caused by public key cryptography operations 

like signing and verifying the packets. PLA's power consumption is analysed in Section 

5.3.
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Since PLA adds its own fixed-length header to every packet, the average size of sent 

packets determines the relative bandwidth overhead of PLA. To estimate an average 

bandwidth  overhead  of  the  PLA,  network  traffic  traces  from  the  Cooperative 

Association  for  Internet  Data  Analysis  (CAIDA)  [113]  were  used  to  determine  an 

average packet size.  Traces from year 2009 contained information about 5.6 million 

packets and an average packet size was about 581 bytes or 4650 bits. The size of the 

PLA  header  with  all  IP  header  extension  fields  and  padding  is  80  or  136  bytes, 

depending on whether the TTP certificate is included. If we assume that 10% of packets 

are sent with a TTP certificate, then the average overhead produced by PLA would be 

about  86  bytes  per  packet.  This  means  that  the  PLA  header  adds  roughly  a  15% 

bandwidth overhead per PLA layer compared to plain IP traffic. The overhead would 

increase to 30% in cases where two layers of PLA are used as a result of encapsulation. 

If  packets  are  fragmented  during  their  journey,  and  the  node  performing  the 

fragmentation  adds an own PLA header  to  fragmented  packets,  the overhead would 

increase further. However, such overhead is not critical, considering that the Internet has 

a  spare bandwidth  available,  especially in  core networks  [107]  where  encapsulation 

would be used. Figure  21 describes the bandwidth overhead of the PLA header with 

different packet sizes.
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Since PLA adds a fixed-length header, the relative overhead is larger with small packet 

sizes and decreases as the packet size increases. When the packet size is between 500 

and 1000 bytes, the relative overhead is roughly 13-27% for the full PLA header and 

8-16% for the lightweight PLA header. An increase in the relative bandwidth overhead 

occurs with packet sizes of about 1400 bytes and above since adding a PLA header 

increases the packet's size above the commonly used maximum transmission unit  of 

1500 bytes. Therefore, the packet needs to be fragmented and additional PLA and IP 

headers are needed. The figure assumes that the packet contains only a standard IPv6 

header of 40 bytes in addition to the PLA header; if other headers are also present, the 

overhead produced by fragmentation would slightly increase.

To further reduce a bandwidth overhead caused by PLA, a method similar to a TCP 

header  compression  [55]  can  be  used.  In  the  TCP  header  compression  mechanism 

communicating parties store constant fields of the TCP and IP headers in their cache and 

transmit only fields that change, saving bandwidth. The same principle can be used to 

omit  the  sender's  public  key  from  the  lightweight  PLA  header  and  transmit  only 

timestamp,  sequence  number  and  signature  fields  in  each  packet.  This  would  save 

roughly 20 bytes of header space in comparison to the lightweight PLA header.

In order to maintain compatibility with the Internet the compressed header should be 

reconstructed at the first non-bandwidth constrained node, such as a base station. For 

example, a mobile node with limited bandwidth would send the first packet with a full 

PLA header. Afterwards, it would calculate the signature over the full PLA header, but 

would  only transmit  timestamp,  sequence  number  and  signature  fields  in  the  PLA 

header. The base station would take the static PLA header information from its cache, 

reconstruct the header, and then forward the packet with a full PLA header. Since the 

original  signature was calculated over the full  PLA header,  nodes in  the rest  of the 

network can verify these packets normally.  The same principle would also work for 

receiving data. In that case the base station would perform the header compression and a 

mobile node would reconstruct the header based on cached information.

Free of patents

Various implementation  of ECC algorithms  are covered under several  patents.  Most 

ECC-related patents are owned by the Canadian company Certicom, which claims to 

have over 300 issued and pending patents related to ECC and public key cryptography. 
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Most  ECC-related  patents  are  set  to  expire  by the  year  2020,  thus,  for  now,  PLA 

implementation uses algorithms that are patended and does not satisfy this requirement. 

While PLA is not dependent on the cryptographic solution used, ECC is currently the 

only  feasible  solution  for  PLA  because  ECC  can  achieve  a  strong  security  with 

relatively small  key and signature sizes.  Therefore,  it  would be necessary to license 

ECC-related patents for a commercial PLA implementation, which could hamper the 

PLA's  deployment.  However,  the  existence  of  patents  does  not  necessarily  pose  a 

significant threat to the wide scale deployment of PLA. There exist several system such 

as  modern  mobile  phones  and  cellular  networks  that  extensively  utilize  patented 

technologies.

Overall,  PLA  satisfies  its  design  requirements  well.  Mandatory  criteria  are  fully 

satisfied. The scalability and low power overhead requirements are satisfied quite well 

and these can be further improved in the future. The free-of-patents requirement is the 

only requirement that cannot be satisfied until ECC-related patents expire. 

5.2 Redesigning security of the Internet criteria analysis

This section contains an analysis of how PLA satisfies the requirements for the secure 

next-generation Internet that were presented in Section 2.5. Some of these requirements 

are  equivalent  to  those  presented  in  the  previous  section  and thus  they will  not  be 

covered here again.

Only valid packets are transmitted in the network

PLA fully satisfies this requirement, every node that forwards the packet is capable of 

checking the integrity of the packet using the information contained in the PLA header. 

Only unique,  authentic  packets  will  be sent  forward.  Delayed,  forged,  or  duplicated 

packets are discarded immediately.

Every packet has an owner and all packets originate from trusted entities

PLA satisfies this requirement by including information for calculating a public key of 

the sender in  every packet  and by using trusted third parties.  Since every packet  is 

cryptographically signed by the sender of the packet and contains the sender's public 

key, the sender is not able to deny sending the packet. Thus, every sent packet in the 

network has an owner which can be traced. The aim of the trusted third parties is to 
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guarantee that the sender is really a valid and trusted entity in the network. Therefore, 

untrusted entities will not be able to send data through the network.

Prioritizing traffic

PLA allows  traffic  to  be  divided  into  different  groups  which  can  be  prioritized  as 

necessary. These traffic groups are: valid data traffic from valid users, priority traffic 

from valid users, valid data traffic from unverified users (the TTP which has authorized 

the user has not been fully verified yet),  and valid  signalling traffic.  A router could 

reserve a small amount of bandwidth for the latter two categories and allocate a majority 

of available bandwidth for valid traffic originating from valid users.  Such a mechanism 

is very flexible, and would enable the network to prioritize traffic more effectively. In 

case  of  a  serious  emergency when only a  small  amount  of  bandwidth  is  available, 

routers could delay or even discard low-priority packets.

Using this principle, PLA could be used to implement a more secured version of Virtual 

LAN  (VLAN)  [50]  technology.  The  main  aim  of  VLAN  is  to  make  network 

management easier by allowing LANs in different physical locations to be grouped into 

virtual LANs. VLAN adds a separate tag to the Ethernet frame containing a VLAN 

identifier and a priority level of the frame. The downside of the current VLAN solution 

is poor security; any router can change the value of the VLAN tag within the Ethernet 

frame,  potentially  disrupting  the  network.  Since  the  VLAN  tag  is  included  in  the 

Ethernet frame, network-layer security solutions like IPSec cannot be used to protect it. 

In the scope of VLAN, PLA could help as follows. Each virtual LAN would be managed 

by a separate TTP and the TTP's public key would act as a VLAN identifier. Since the 

TTP's  public  key and locator  are  included in  a  full  PLA header,  a  separate  VLAN 

identifier would not be necessary. Priority information of the frame could be expressed 

using the rights field of the TTP certificate. Basically, all VLAN-related information 

would be included in a PLA header, and thus it would be protected against forgery by 

the packet's signature. Such a mechanism would also prevent unauthorized access to the 

VLAN network since all users wishing to use the network would need to receive a valid 

TTP certificate from the TTP that manages the VLAN.
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Manageability

The TTP certificate mechanism presented in Section 3.5 allows an efficient management 

of a large number of nodes. The TTP certificate includes a validity time and several 

levels of rights and it is also possible to specify which rights can be delegated forward. 

Section  3.8  presents  a  mechanism for  bootstrapping  and managing various  devices, 

including devices which lack traditional input methods.

Since  users  will  continuously renew their  TTP certificates,  they will  use  the  TTP's 

bandwidth and computational resources. However, the load produced on the TTP is not 

significant, especially since the TTP can use the same PLA's hardware accelerator for 

cryptographic  operations.  Let  us  assume  that  a  major  TTP would  have  around one 

million customers.  If each customer requests  a new TTP certificate  every hour, then 

there would be roughly 278 certificate requests per second, which is not a high amount 

of  requests  to  handle  for  a  large  server.  The  bandwidth  overhead  would  not  be 

significant either. A certificate request and reply would each require a single packet, 

consuming roughly 3000 bits of bandwidth in total (2000 bits for two PLA headers and 

1000 bits for other information including a new TTP certificate). Thus, 278 requests per 

second would consume less than 1 Mbps of bandwidth.

Even if users will use a different TTP certificate for each TCP session, and renew their 

certificates every few seconds generating 1 Gbps of traffic related to certificate requests, 

the computational load caused by cryptographic operation will  still  be minor. In this 

case there will be about 278,000 certificate requests per seconds, and this amount of 

cryptographic operations can be easily handled by a dedicated cryptographic accelerator.

Controlling incoming connections

PLA together with traditional certificates can be used to control incoming connections. 

The recipient of a connection could grant certificates to trusted initiators allowing them 

to make incoming connections. PLA is used to enforce that only the data from valid 

initiators  is  allowed to  be transmitted  to  the  recipient.  Section  6.1 contains  a  more 

detailed discussion about using PLA to control incoming connections.

Privacy protection

Including information about the sender's public key together with an identity number 

given by a TTP in every packet naturally produces a privacy risk, since the sender of the 
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packet can be easily tracked in the whole network using a unique public key and identity 

received from a TTP. However, this problem can be solved by using multiple public 

keys for each user which will act as pseudonyms. For example, the user can generate a 

large amount of public keys and request short-time TTP certificates for these keys from 

the TTP using his main public key which is already authorized by the TTP. After the 

user makes a connection using his new public key, he will be practically anonymous to 

the rest of the network. The user's TTP will be the only entity in the network that will 

know the mapping between the user's real  identity and all  of  his  public keys. Thus, 

privacy will not be a problem as long as the user changes his public key frequently and 

as  long  as  the  above-mentioned  TTP  certificate  retrieval  processes  is  protected  by 

encryption. Such a process could also be automated in software to make it easier to use 

for the user. The user's key management software could be configured to periodically 

generate a new public key, request a TTP certificate for it, and use it for future traffic 

without any user interaction.

Another option to enhance privacy and provide flexibility is to utilize several public 

keys simultaneously for performing different tasks. For example, the user could use one 

public key to read work-related e-mail, while using another for instant messaging with 

his friends. Based on the desired level of privacy the user can decide how many key 

pairs to use and how often to change keys. Thus, with the help of PLA, it is possible to 

produce a good trade-off between the security and privacy. If the user engages in illegal 

behaviour, the authorities can determine the real identity of the user by contacting the 

TTP that has authorized his public keys. Otherwise, the user will be able to maintain 

reasonable privacy1.

One problem with privacy in the current Internet is the lack of trust during anonymous 

communication.  It  is  hard  to  communicate  effectively  while  retaining  complete 

anonymity  because  other  parties  on  the  Internet  do  not  have  the  means  to  verify 

effectively whether that anonymous person can be trusted or whether the data is really 

coming from the same anonymous person or from someone else that impersonates him. 

PLA provides help to this issue because it allows for users to have several pseudonyms 

that  can be validated by other  parties.  For  example,  suppose that  A and B want  to 

communicate with each other. A wants to retain his anonymity, thus he discloses one of 

1 It is important to note that a network layer solution like PLA cannot offer a complete privacy solution 
by itself. Higher layer protocols and applications may leak information about the user. Therefore, also 
other methods must be used together with PLA to provide a complete privacy.
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his  numerous  public  keys  together  with  the associated  TTP certificate  to  B without 

disclosing any personal details. Now B can contact A's TTP and verify that A is really a 

valid entity and his TTP certificate  is  still  valid.  As a result,  B can trust  A without 

knowing A's real identity. Since A has numerous public keys in use, he can allocate one 

for  communication  with  B  and  A  will  not  need  to  change  that  key frequently.  In 

addition,  by checking  the  signatures  of  received  packets,  B  can  be  sure  that  those 

packets are coming from A and not from some other party that impersonates A.

Compatibility with future data-oriented networks

Since PLA utilizes cryptographic signatures and identities extensively, it  is a natural 

solution for securing data-oriented networks.

Most data-oriented networking approaches rely on self-certifying identifiers, meaning 

that the receiver of the data item should be able to verify its authenticity and integrity. 

PLA accomplishes  the same functionality on the packet  level  through cryptographic 

signatures.  Similarly  to  the  idea  of  controlling  incoming  connections,  data-oriented 

networks aim to prevent unwanted traffic by transferring control to the receiver. Using 

PLA to secure data-oriented networks is further discussed in Chapter 8.

5.3 Performance and energy consumption of PLA

This section discusses the performance and power consumption of PLA's cryptographic 

operations in various situations. The performance should be high enough in order for 

PLA to scale  to  Internet  core networks.  While  the power consumption  is  especially 

important  in  wireless  environments,  it  should  also  be  at  reasonable  levels  in  core 

networks.

5.3.1 Performance of cryptographic operations

In stand-alone simulations, the FPGA-based cryptographic accelerator achieved 166,000 

full signature verifications per second [61]. This corresponds with verifying 2 Gbps of 

traffic if maximum sized 1500-byte packets are used. With a minimum packet size of 

about 1000 bits (a minimal IPv6 packet with a PLA header), such an accelerator could 

handle 166 Mbps of traffic. According to Altera's PowerPlay simulation tool, the power 

consumption  for  this  FPGA  implementation  would  be  about  18.6  W  under  load. 
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Therefore, the energy consumption per validated packet is about 112 μJ. It is important 

to note that these results were achieved with a programmable FPGA, which achieves 

significantly lower performance compared to a dedicated application specific integrated 

circuit (ASIC) made on the same manufacturing process. In addition, the FPGA used in 

testing was released in 2005 and is manufactured on a relatively old 90 nm process and 

is thus not the fastest FPGA available on the market today.

Altera  offers  a  Hardcopy structured  ASIC technology [4]  which  allows  an  existing 

FPGA design to be easily converted into a structured ASIC. Such a structured ASIC 

would  achieve  a  significantly  higher  performance  and  lower  power  consumption 

compared to a programmable FPGA. However, the structured ASIC would still not be 

as an efficient solution as a fully customized ASIC. Based on Altera's simulation tools, 

converting the existing FPGA PLA accelerator design to a Hardcopy II HC240F1508I 

90nm  structured  ASIC  would  result  in  a  performance  of  850,000  verifications  per 

seconds with an estimated power consumption of 22.4 W [41].  The Hardcopy ASIC 

contains four times as many computational units and runs at the higher clock speed of 

210 MHz, therefore the latency of a single verification would decrease to about 89 μs. 

Hence, such an ASIC could verify 0.85 - 10 Gbps of traffic depending on the packet 

size, while the energy consumed per packet would decrease to about 26 μJ.

These results are based on the power consumption under a full load and due to idle 

power  consumption  of  ASICs,  the  power  consumption  of  a  single  cryptographic 

verification  may  be  higher  under  a  low  load.  However,  since  the  cryptographic 

accelerator is based on multiple parallel computational blocks, it  is relatively easy to 

lower the idle power consumption by turning off unnecessary computational units.

Currently, the most modern manufacturing process available is the 32 nm process which 

is  three  generations  ahead  of  the  90  nm  process  used  in  the  current  FPGA 

implementation.  The transistor  density of  an integrated circuit  roughly doubles  with 

each new process generation while the supply voltage of the circuit decreases, which 

reduces  overall  power  consumption.  Thus,  due  to  a  more  advanced  manufacturing 

process and because a customized ASIC achieves better performance and lower power 

consumption  than  a  structured  ASIC,  it  is  reasonable  to  estimate  that  a  customized 

ASIC solution manufactured on a 32 nm process would be able to verify tens of gigabits 
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of average traffic with a power consumption of less than a couple of watts per gigabit of 

traffic1.

Another important PLA-related performance issue is the additional latency produced by 

PLA. This latency can be divided into three main parts: the latency of cryptographic 

computations, the latency produced by communication between the main processor and 

cryptographic accelerator,  and the latency added by non-cryptographic tasks such as 

checking  the  timestamp  and  the  sequence  number  within  a  packet.  The  latency of 

communication between the network processor and the cryptographic accelerator would 

not be significant in an optimized case, since in a dedicated PLA-enabled router, the 

hardware  accelerator  would  reside  either  on  a  PCB connected  directly  to  the  main 

network processor by a fast,  low latency bus, or inside the network processor itself. 

Thus, when measuring the latency impact of the PLA in an optimized case, the latency 

of actual cryptographic operations is the most crucial. This latency amounts to 90 μs per 

verification using a structured Hardcopy ASIC and this latency depends linearly on the 

clock speed of the circuit. Thus, in an optimized case this latency would be decreased 

further. 

Overall,  the  latency impact  of  PLA is  not  significant.  If  we  assume  that  a  typical 

connection uses about 12 hops and the total latency impact of packet verification in an 

optimized case is around 100 μs per router (70 μs for cryptographic operations and 30 

μs for other operations including communication overhead), then this would produce 

only a 1.2 ms extra delay in one direction and a 2.4 ms increase in round-trip time.

5.3.2 Improving the efficiency of PLA

One way to further increase the efficiency of the PLA implementation at high network 

speeds is to use jumbo or super jumbo frames, which have a frame size of 9000 or even 

64,000 bytes instead of a normal frame size of 1500 bytes. Therefore, inside high speed 

networks,  several  PLA  packets  could  be  encapsulated  into  a  single  jumbo  frame, 

significantly  decreasing  the  amount  of  verifications  needed  per  unit  of  traffic.  For 

example, if six packets are encapsulated into a single jumbo frame, then the amount of 

1 The current FPGA design is optimized for a specific elliptic curve type and length, this is feasible 
since the FPGA design can be easily updated. A customized ASIC should include support for several 
ECC related  parameters  which  would  slightly  decrease  its  efficiency,  still  it  would  be  far  more 
efficient than an FPGA solution.
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PLA verifications would drop to one-sixth of the original. Using jumbo frames would 

provide three main benefits: less computational resources would be required for packet 

verification,  power  consumption  would  also  be  decreased,  and  bandwidth  overhead 

produced by encapsulation would be lower, since an additional PLA header would use 

only a very small part of a jumbo frame payload. 

Depending on the security policy used, routers do not necessarily need to check every 

passing packet. In a normal situation, it could be sufficient to check every tenth or every 

twentieth packet randomly without significantly reducing the security of the network. If 

the attacker floods the network with a large amount of invalid packets, routers would 

catch at least some of the invalid packets sent by the attacker even if they do not check 

every packet that they forward. In addition, connections usually go through more than 

ten routers, and thus it is probable that every packet will still be checked at least once as 

it travels through the network.

According to the International Technology Roadmap for Semiconductors (ITRS) [53] 

the performance of semiconductors will continue to exponentially increase in the near 

future while costs will continue to decrease. On average between 2009 and 2024, the 

amount of transistors per price unit will increase by 41% per year while the clock speed 

of circuits will increase by 8% per year. As a result, the overall performance at a given 

price point will increase by about 52% per year, which is in line with the growth of the 

Internet's traffic. These results shows that per-packet cryptographic signatures used by 

PLA are a viable solution also in the future. Furthermore larger MTU sizes are likely to 

be adopted in the future, which would further increase PLA's efficiency for the reasons 

mentioned above.

Overall,  PLA is a very scalable solution which can be used in very high bandwidth 

networks  as  long  as  dedicated  hardware  is  used  for  accelerating  cryptographic 

operations.

5.3.3 Energy consumption in core networks

High-speed core network routers have plenty of available electrical power. However the 

power consumption is  still  important,  since there is  a limit  to how much power the 
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router can consume with reasonable cooling. Preferably, PLA should not significantly 

increase the power consumption of the current routers. 

Table  2 below presents a summary of the performance and power consumption of a 

proof-of-concept hardware acceleration in core networks. For comparison, the table also 

includes the Cisco CRS-1 core network router [25], which supports sixteen full-duplex 

40 Gbps interfaces offering 640 Gbps of bandwidth in one direction and 1280 Gbps of 

bandwidth in total.

The average packet size is assumed to be 4650 bits for normal packets and 70,000 bits 

when jumbo  frames  are  used.  While  some  traffic  on  the  Internet  uses  significantly 

smaller packets, the average packet size is the most important for the performance of 

PLA, since it determines the average load on routers. It is important to note that these 

results show the performance of the Hardcopy ASIC manufactured on the old 90 nm 

process. An optimized ASIC on a modern 32 nm manufacturing process would achieve 

significantly higher energy efficiency.

Table 2. Performance and power consumption of cryptographic operations in core networks 

Hardware Verifications 
per second

Throughput  Power 
consumption

Power/  
throughput

90 nm FPGA 166,000 0.77 Gbps 18.6 W 24.2 W/Gbps

90 nm Hardcopy ASIC 850,000 3.95 Gbps 22.4 W 5.67 W/Gbps

90 nm Hardcopy ASIC, 10% 
of packets verified

850,000 39.5 Gbps 22.4 W 0.57 W/Gbps

90 nm Hardcopy ASIC with 
jumbo frames 850,000 59.5 Gbps 22.4 W 0.38 W/Gbps

90 nm Hardcopy ASIC with 
jumbo  frames,  10%  of 
packets verified 850,000 595 Gbps 22.4 W 0.04 W/Gbps

Cisco CRS-1 Carrier Routing 
System with 16 slots [25]

1280 Gbps 9,630 W 7.52 W/Gbps

Even with the 90 nm Hardcopy ASIC, the power consumption of PLA's cryptographic 

verifications  is  lower than the power consumption  of current  core routers.  If jumbo 

frames are used, or only 10% of packets are fully verified, then adding PLA support to 

the core network router would increase the total  power consumption by about 5-7%. 

Therefore PLA does not consume excessive amounts of power and is scalable for core 

networks.
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In this case the power efficiency is actually more important than the raw performance, 

since as long as the power efficiency is good, the performance can easily be increased by 

using larger ASICs or multiple  ASICs in parallel.  These results  show that  a 90 nm 

Hardcopy ASIC provides enough performance for the currently used 40 Gbps network 

interface as long as jumbo frames are used, or only 10% of packets are verified. With a 

more optimized ASIC built on a modern 32 nm manufacturing process, the performance 

should easily scale to 100 Gbps interfaces.

Next we investigate how much energy PLA consumes on the Internet's scale. According 

to Cisco the total IP traffic will amount to 21,367 PB per month in 2010 [26], this figure 

also  includes  non-Internet  traffic  and  traffic  generated  by mobile  devices.  With  an 

average packet size of 4650 bits, this equals to about 14,182 million packets sent every 

second. Based on the energy consumption figures mentioned in Section 5.3.1, signing 

this amount of traffic with a 90 nm Hardcopy ASIC would use only 142 kW of power. If 

we assume that an average flow on the Internet goes through 12 hops, then the total 

power consumption of using PLA for signing and verifying every IP packet in the world 

would be about 4567 kW, which is the power output of a large wind turbine. On a yearly 

basis  this  would  imply  the  energy  consumption  of  about  40  GWh,  which  is  an 

insignificant amount on a worldwide scale.

5.3.4 Energy consumption in wireless networks

Before PLA's energy overhead in wireless networks can be discussed it is important to 

determine energy consumption of the wireless transmission itself. This is not an easy 

task. Several power-efficient transmission methods for IEEE 802.11a/h wireless LANs 

were analysed in [89] and the best method achieved a power efficiency of approximately 

70 Mbits of traffic per Joule of consumed energy over a transmission range of 10 meters 

using the star network topology. This is equivalent to a power consumption of about 

14.3 nJ/bit.  As the transmission  distance was increased to  25 meters,  the efficiency 

dropped to about 9 Mbit of traffic per Joule corresponding to 111 nJ/bit. However, this 

result  assumes  that  the  networking  hardware  utilizes  a  special  power  conservation 

scheme, and does not take into account interference from weather or buildings.

In a simulated study of IEEE 802.11 power-saving mechanisms [57], 50 nodes were 

placed in a 1000 x 1000 meter area. The best case energy consumption was about 2.22 
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μJ/bit.  According to [120],  power consumption for a GSM cell  phone is  about 13.8 

μJ/bit for the upload and 5.6 μJ/bit for the download. For wireless LAN these numbers 

are 1.1 μJ/bit and 0.75 μJ/bit respectively.

As  a  comparison,  the  verification  power  consumption  of  the  Hardcopy ASIC PLA 

cryptographic accelerator would be significantly lower, only around 26 μJ per packet, or 

5.6nJ/bit if average 4650-bit packets are used. The power consumption of a customized 

ASIC  manufactured  on  a  modern  manufacturing  process  would  be  even  lower. 

Therefore,  the power consumption of PLA's cryptographic operations is  much lower 

than  even  theoretical  results  for  the  wireless  LAN  power  consumption.  It  is  also 

important to note that signature generation uses less computational power, while in the 

wireless networks the opposite holds true; sending packets consumes more power than 

receiving it. Therefore, for a wireless sending or forwarding node the energy overhead 

of cryptographic operations is even less significant.

The  power  consumption  of  cryptographic  operations  is  also  insignificant  when 

compared to the battery capacities of ordinary cell phones. A standard cell phone battery 

rated for 3.7 V operating voltage and 1000 mAh capacity contains about 13,320 Joules 

of energy. Even with the power efficiency of a cryptographic accelerator based on the 

Hardcopy ASIC, this amount of energy would be enough to validate about 512 million 

packets, which would correspond to 298 Gigabytes of average-sized traffic. With a 1 

Mbps  network  connection  it  would  take  almost  one  month  of  continuous  usage  to 

receive such an amount of data. 

The real-life power consumption of a Nokia N810 Internet tablet was studied in [121]. 

N810  consumes  0.509  W  of  power  when  using  power-saving  mechanisms  and 

downloading data through a wireless LAN interface at the rate of 16 kB/s. When the 

download rate is increased to 256 kB/s, the power consumption grows to 1.057 W. The 

rate  of  256  kB/s  corresponds  to  about  451  4650-bit  packets  per  second,  verifying 

signatures of these packets with Hardcopy ASIC would consume less than 12 mW of 

power, increasing the total power consumption only by about 1%. Actually, the major 

part of PLA's related energy overhead in wireless networks comes from the fact that 

PLA  produces  some  bandwidth  overhead,  and  this  extra  data  must  be  transmitted 

wirelessly, consuming some extra energy. For example, with a 4650-bit average packet 
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size and full PLA header, PLA's bandwidth overhead is about 23%, and therefore the 

total energy overhead with N810 is about 24%.

Even thought PLA produces some power and bandwidth overhead, it may achieve better 

power  efficiency in  mobile  networks  in  certain  cases.  For  example,  mobile  ad-hoc 

networks  are  very vulnerable  to  various  attacks  such  as  DoS  or  route  spoofing.  A 

successful attack can quickly drain the whole ad-hoc network of its  resources like a 

battery power or bandwidth. Thus, if the ad-hoc network is frequently attacked, PLA can 

actually save power in the network by limiting attacks quickly, before they can bring the 

whole network down by consuming all its available energy.

According to these results, PLA is an energy-efficient solution, which scales from small 

mobile devices to Internet core routers. The next section evaluates the power efficiency 

of PLA in wireless networks with hash chain and hash tree-based security solutions.

5.4 Comparison with hash tree and hash chain-based solutions

Hash tree and hash chain-based security methods are comparable to PLA, since they 

offer hop-by-hop integrity protection on the network level. This section compares the 

security properties of these approaches and also includes an analytical analysis of the 

power consumption  in  a wireless  environment.  This  comparison  assumes  that  every 

packet  is  verified  at  every hop,  since  it  is  the  worst  case  situation  for  PLA. More 

detailed discussion is available in [71].

5.4.1 Hash trees

The hash tree is  a tree where leaves are hashes of data  blocks,  like packets.  Nodes 

higher in a tree are hashes of their respective children. A Merkle tree [78] is a complete 

binary hash tree.

Hash trees can be used to protect the integrity of the network traffic [116], [73]. The 

idea is to create a Merkle tree which consists of packets' hashes, calculate the root hash 

of the tree, and sign it with a cryptographic signature. Then packets are sent along with 

the tree's root signature and the necessary amount of tree hashes to reconstruct the root 
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hash.  The  verifier  of  the  packet  can  reconstruct  the  root  hash  and  verify  the  root 

signature. 

As  an  advantage,  using  hash  trees  reduces  the  amount  of  required  cryptographic 

signature verifications to verify the integrity of the packet. This saves computational 

resources,  since  hash  calculations  are  significantly  faster  to  perform than  signature 

verifications. In order to give the ability to independently verify the integrity of a single 

received packet, additional hashes along with a root signature must be included into 

every sent packet. A hash tree with width  w requires  log2(w) additional hashes to be 

included in sent packets.

5.4.2 Hash chain-based solutions

A hash chain is formed by hashing a random seed value s multiple times with a one-way 

hash function H. The result of the hash operation is used as an input for the next element 

of hash chain, i.e., h1 = H(s), h2 = H(h1) = H(H(s)), and so on. The final element of the 

hash chain is the anchor. The hash chain is used in the reverse order to create signatures, 

if the length of the chain is n, then the anchor, hn, is used first, followed by hn-1 and hn-2.

By tying identities to hash chains, hash chains can be used to authenticate nodes and 

traffic in the network [48]. Security properties of hash chains come from the fact that the 

hash function H is a one-way function, therefore it is not possible to determine x if only 

H(x) is known. Therefore, only the owner of the hash chain can know previous values of 

the chain, while any other party can easily verify that hn = H(hn-1) after the value hn-1 has 

been disclosed. There exist three different secure ways to distribute values of the hash 

chain to other parties: one-time signatures, time-based approaches and interaction-based 

approaches.

An  example  of  a  time-based  hash-chain  approach  is  Timed  Efficient  Stream Loss-

Tolerant  Authentication  (TESLA) [88],  which is  a protocol  designed to  authenticate 

broadcast and multicast traffic. TESLA assumes that sender and receiver have loosely 

synchronized clocks. 

Adaptive and Lightweight Protocol for Hop-by-hop Authentication (ALPHA) [49] is an 

interaction-based hash chain scheme. ALPHA uses a three-way signature process where 
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both the sender and receiver use two hash chains, it also allows any node on the path to 

verify  and  authenticate  the  protected  traffic.  First,  the  sender  sends  an  S1 packet 

containing its hash chain anchor and a message authentication code (MAC) calculated 

over the payload with a previous hash chain value.  The receiver replies  with an  A1 

packet indicating that he is willing to receive the packet. Finally, the sender sends the 

actual data together with a previous hash chain value. Intermediate nodes can verify the 

payload's  integrity  using  the  MAC  from  the  cached  S1 packet.  Therefore  ALPHA 

requires  two control  packets  to  be transmitted  for  each data  packet,  to  reduce such 

bandwidth overhead there exist two variants of ALPHA. ALPHA-C transmits  multiple 

MACs in a single S1 packet, while ALPHA-M constructs a hash tree over w packets and 

the whole tree is authenticated with a single S1 packet. 

5.4.3 Security Properties of PLA, hash tree and hash chain-based 

approaches

In this section we evaluate the security properties of PLA, the lightweight PLA that does 

not contain a TTP certificate in the header, the basic hash tree approach described in 

Section 5.4.1, ALPHA-C, and ALPHA-M. Another authentication scheme, TESLA, was 

omitted from the comparison since it depends on the synchronized clocks and is a less 

flexible  solution,  while  the basic  ALPHA scheme would produce a high bandwidth 

overhead. The results of evaluation based on various criteria are summarized in Table 3. 

The width of the hash tree and the amount of MACs sent simultaneously in ALPHA-C 

is denoted by w. By authentication we do not mean simply tying the packet to a specific 

cryptographic identity, but determining whether the cryptographic identity is a trusted 

one and has permissions to use the network. For measuring the bandwidth overhead we 

assume that a 163-bit ECC public key and 160-bit hash function are used for adequate 

security [11]. With a compression bit, the public key uses 164 bits of the header space.

The first criterion (C1) is the independent transmission of packets. This is especially 

important for a real-time communication, like a video or voice conferencing, where a 

low latency is preferred. PLA allows each packet to be sent immediately, while other 

approaches utilize hash trees or cumulative transmissions of MACs, which require that 

the sender must cache w packets before sending the first one. 
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The C2 criterion evaluates the support for the fully independent integrity verification in 

intermediate  nodes.  PLA  and  a  basic  hash  tree  approach  allow  every  node  to 

independently verify each packet, since all necessary information is already present in 

every sent packet. However, a basic hash tree approach must cache intermediate hashes 

and already verified root signatures for an optimal performance. ALPHA-M and -C do 

not support this criterion and require states for integrity verification.

With  the  C3  criterion  we  evaluate  whether  the  solution  supports  fully independent 

sender authentication. The results are the same as above, except that lightweight PLA 

does not satisfy this criterion since it does not include a TTP certificate in every packet.

Table 3: Evaluation of security mechanisms

Criteria Lightweight  
PLA

PLA Basic hash trees ALPHA-M ALPHA-C

C1. Independent 
transmission of 
packets.

Yes Yes No No No

C2. Independent 
integrity 
verification

Yes Yes Yes, but needs 
caching for best 
performance

No No

C3. Independent 
authentication

No Yes Yes, but needs 
caching for best 
performance

No No

C4. Transit path 
independence

Yes Yes Yes, at a lower 
performance 

No No

C5. Bandwidth 
overhead per 
data packet

Lightweight 
PLA header 
(586 bits)

Full PLA 
header (1024 
bits)

Public key (164 bits) 
+ root signature (326 
bits) + log2(w) hashes

1 + log2(w) 
hashes

1 hash (160 
bits)

C6. Other 
bandwidth 
overhead

None None None 4/w hashes (w + 3)/w 
hashes

C7. Per packet 
computational 
requirements

Signature 
verification 

Key 
extraction 
and signature 
verification

At most 1 + log2(w) 
hash calculations,   1/
w signature 
verifications

At most 1 + 
log2(w) hash 
calculations

1 hash 
calculation

C8. Load on 
verifying node

Constant Constant Variable Constant Constant

The  C4  criterion  evaluates  whether  packets  can  travel  along  multiple  transit  paths 

between the sender and receiver. PLA allows every node to independently verify each 

packet, regardless which path the packet takes. A basic hash tree-based approach also 

supports independent verification, but the performance will degrade if packets belonging 

to the same hash tree will take multiple paths. ALPHA schemes require intermediate 
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nodes to cache  S1 packets and therefore all further data packets must travel along the 

same path in the network.

The C5 criterion is about bandwidth overhead per data packet. A simple PLA header 

contains  the  sender's  public  key,  signature,  timestamp,  and  a  sequence  number.  In 

addition to the above, a full PLA header contains trusted third party (TTP) certificate. In 

order to  support  independent  verifications  using a basic  hash tree approach,  log2(w) 

hashes must be included in packets in addition to the public key and the root signature. 

ALPHA-M requires the undisclosed hash chain element to be present in data packets in 

addition to  log2(w) hashes. For ALPHA-C including the undisclosed hash element is 

enough. In all cases some extra fields are necessary for IP extension headers, these are 

not included in comparison.

The next criterion (C6) contains other bandwidth requirements. Both ALPHA schemes 

require two control packets (S1 and A1) to be transmitted per w packets. In ALPHA-M 

w denotes the width of the hash tree while with ALPHA-C it is the amount of MACs 

transmitted in a single S1 packet. ALPHA-C transmits a MAC for every packet, while 

ALPHA-M uses a single MAC for the whole tree.

The criterion C7 is per-packet computational requirements, excluding minor checks like 

verification of a timestamp or sequence number. Lightweight PLA requires a signature 

verification to be performed. Full PLA utilizes implicit certificates, where the sender's 

public key is extracted and the packet's signature is verified in a single operation, which 

also verifies the TTP certificate. Basic hash tree and ALPHA-M approaches require 1 + 

log2(w) hash  calculations  if  the  received  packet  is  the  first  one  from  the  tree. 

Intermediate hashes can be cached and therefore verification of subsequent packets will 

require  less  hash calculations.  Additionally,  the  basic  hash  tree approach requires  a 

single  signature  verification  per  hash  tree.  ALPHA-C  does  not  utilize  hash  trees, 

therefore only a single hash calculation needs to be performed.

The last  criterion (C8) evaluates  whether the load on verifying nodes is  constant  or 

variable.  For PLA and ALPHA approaches, the load is  constant;  intermediate  nodes 

must perform a signature verification or hash calculations per each packet respectively. 

In the basic hash tree approach the signature must be verified for each packet from a 
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previously unknown hash  tree.  Therefore  the  verifier's  load  may differ  significantly 

depending on the order in which packets arrive.

This drawback introduces a significant denial of service vulnerability. The attacker can 

simply flood packets belonging to different hash trees, since the verifying node will not 

have the packets' hashes in its cache, it  must must calculate the whole hash tree and 

perform  the  root  signature  verification  for  each  malicious  packet.  As  a  result,  the 

verifying node will  be overloaded,  since it  does  not  have the capacity to  verify the 

signature of each packet1.

The  main  difference  between  PLA  and  hash  chain-based  approaches  is  that  PLA 

supports fully independent verifications of packets by any node in the network: a node 

which has received the packet can verify its authenticity independently without having 

any kind of contact with the sender of the packet. This feature is especially useful in ad-

hoc networks. In addition, PLA does not require nodes to store per-packet or per-sender 

states for the basic authentication. While ALPHA supports hop-by-hop authentication, it 

requires that some data is cached by intermediate nodes and all packets take the same 

path in the network. A basic hash tree approach supports independent verifications of 

packets, but its performance will degrade unless all packets take the same path in the 

network and verifying nodes cache intermediate hashes. Basically all solutions are trade-

offs between usage of bandwidth, computational resources, features and implementation 

complexity.

ALPHA is a less robust solution in a case of route changes or failures. If the route 

changes after the first  S1 packet,  the rest  of the packets from the same hash tree or 

cumulative transmission cannot be verified unless the S1 packet is retransmitted. Since 

intermediate route changes are usually not visible to the recipient or the sender of the 

traffic,  further data  packets in the session will  probably be dropped by intermediate 

nodes located on the new path.

Using large values of w with ALPHA or a hash tree approach increases the latency of 

communication and therefore is not suitable for real-time traffic. For example,  VoIP 

applications send usually from 34 to 50 packets per second [27]. Therefore, using a 16 

1 This is the fundamental assumption of hash tree based approaches.
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packets wide hash tree, or sending 16 MACs simultaneously with ALPHA-C, would 

introduce up to 470 ms of extra latency in one direction.

In  order  to  support  the  strong  source  authentication  with  ALPHA,  the  hash  chain 

anchors used must be authenticated by some other means, e.g., public key signatures. 

ALPHA  requires  different  hash  chains  to  be  used  for  every  sender/receiver  pair, 

therefore  such  authentication  can  introduce  a  significant  overhead if  the  receiver  is 

communicating with a large number of senders.

5.4.4 Energy consumption in a wireless environment

This section investigates energy requirements of various security solutions for wireless 

communication.  In  order  to  make  the  analysis  thorough,  energy costs  for  wireless 

transmission,  reception  and  forwarding  are  evaluated  separately.  For  wireless  LAN 

power consumption,  the absolute best case values from Section 5.3.4 are used; 14.3 

nJ/bit for a 10-meter transmission distance and 111 nJ/bit for a 25-meter distance [89]. 

We also include higher wireless LAN power consumption values that are much more 

realistic [120], marked as “real-life WLAN” in the figures. PLA is assumed to use a 

cryptographic  accelerator  based  on  a  90  nm  Hardcopy  ASIC  technology,  which 

consumes 26 μJ of energy per signature verification and 10 μJ of energy per signature 

generation [41].

Since we do not have a real ASIC available for cryptographic calculations, the following 

results  are  calculated  analytically.  We  calculate  the  bandwidth  overhead  of  various 

security  approaches  and  compare  the  energy cost  of  transmitting  such  extra  traffic 

versus  the  cost  of  performing  cryptographic  operations.  The  energy  cost  of  hash 

calculations  was ignored since it  is  not significant  compared to  the cost  of wireless 

transmission  or  signature  verifications.  The  per-packet  energy advantage  of  various 

approaches in comparison to PLA can be summarized using the following formula.

Etotal = B*Ewireless + Ecrypto . (1)

Where B is an average per-packet bandwidth advantage in bits against PLA (negative 

values denote bandwidth disadvantage), Ewireless is the energy cost of wireless reception 

per bit, and Ecrypto is the energy cost of the signature verification.
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5.4.5 PLA versus hash tree approach

First we compare PLA with a basic hash tree approach for integrity protection, since 

both  techniques  support  fully  independent  packet  verification  by any node.  In  this 

respect, they offer identical security properties.

In the hash tree approach a single signature is generated and verified for the whole hash 

tree while with PLA every packet's signature is verified separately. In order for both 

schemes to offer the same level of protection and thus to make comparison fair, the PLA 

header information, like a sequence number, timestamp, and TTP certificate,  must be 

included  in  every packet  in  the  hash  tree  approach.  In  this  respect,  the  bandwidth 

overhead is the same for both of these two approaches. The only difference is the size of 

extra  hashes  that  must  be  included  in  the  hash  tree  approach to  make  independent 

verifications of packets possible.

The results are shown in Figure 22, when the hash tree width w = 1 hash trees are not 

used and the signature verification is performed for each packet. Y-axis values denote 

per-packet  energy advantage,  positive values mean that  a hash tree approach has an 

energy advantage over PLA, while negative values describe the reverse situation.
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The  following  observations  can  be  made  from  the  figure,  if  the  cost  of  wireless 

transmission is very low then hash trees save energy in some cases. However, as the 

width of the hash tree grows to  thousands of packets,  the total  energy consumption 

actually  increases  in  comparison  to  PLA,  since  large  hash  trees  have  a  significant 

bandwidth  disadvantage  due  to  inclusion  of  extra  hashes.  As  the  cost  of  wireless 

transmission  increases,  even  using  narrow  hash  trees  increases  the  total  energy 

consumption. If real-life estimates for the power consumption of wireless LAN are used, 

the total  energy consumption becomes completely dominated by the cost of wireless 

communication. As a result, the hash tree approach becomes very energy inefficient due 

to their large bandwidth overhead.

Due  to  the  nature  of  elliptic  curve  cryptography,  the  signature  generation  requires 

significantly less resources than the signature verification, while in wireless networks 

upload energy consumption is usually higher than download consumption. Therefore, a 

wireless  reception  is  actually  the  worst  wireless  scenario  for  PLA.  If  the  data  is 

transmitted,  then the  PLA's energy advantage grows since the cost  of  cryptographic 

operations decreases while the transmission costs of extra hashes required by hash trees 

increases. The same applies for forwarding nodes that need to perform two wireless 

operations, reception and transmission, per single signature verification.

These calculations do not include the energy required for performing hash calculations, 

and they also do not take into account packet fragmentation, which is introduced by the 

inclusion of extra hashes to the packet. Fragmentation would increase the amount of 

sent  packets,  and  therefore  the  amount  of  signature  verifications,  since  additional 

packets must be protected by hash tree signatures. Both of these would further increase 

the energy consumption of the hash tree approach.

5.4.6 PLA versus ALPHA-M and -C

ALPHA  variants  use  additional  control  packets  that  have  their  own  headers.  For 

bandwidth overhead calculations,  we assume that  packets contain standard IPv6 and 

UDP  headers,  therefore  the  length  of  these  control  packets,  excluding  IP  header 

extension fields, is 704 bits. 
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In addition, ALPHA-M includes hashes to data packets. As a result, if the width of the 

hash tree  w is  very small,  the bandwidth overhead per packet becomes large due to 

additional  control  packets  per  each tree.  While  with big values  of  w the bandwidth 

overhead is  also  large due to  extra  hashes  included to  data  packets.  In the  case of 

ALPHA-C, w denotes the number of MACs sent simultaneously in the S1 packet. Due 

to IP packet size limitations roughly 70 MACs can be included in a single  S1 packet, 

therefore w is limited to 64 in the figure for ALPHA-C.

In order to make an apples-to-apples comparison, we compare the bandwidth overhead 

of ALPHA-M to the lightweight PLA ignoring PLA's timestamp and sequence number 

fields. I.e, for PLA we take into account the bandwidth overhead of a public key and 

signature. This is fair, since ALPHA does not contain these security measures but they 

can be added to ALPHA at the expense of additional bandwidth overhead. Similarly, 

ALPHA lacks a TTP certificate and trust mechanism, therefore a comparison to full 

PLA  would  not  give  an  accurate  picture.  Using  a  lightweight  PLA  decreases 

computational requirements of signature verification by about 17%  compared to the full 

PLA verification as mentioned in Section 4.3.2.

Results are shown in figures  23 and  24 in the same format as before, positive values 

denote the situation  where ALPHA has  an energy advantage over  lightweight  PLA. 

Situations where w = 1 denote the case of basic ALPHA where hash trees or cumulative 

transmission are not utilized at all. It can be seen in the figure that ALPHA-M achieves 

the smallest bandwidth overhead per packet when w = 8. When the width of the hash 

tree is smaller, the bandwidth overhead is higher due to control packets, while large 

trees introduce higher overhead because of extra hashes in data packets.

If the cost of wireless communication is very low, then ALPHA-M has a small energy 

advantage when the hash tree is not very wide, and the traffic is received wirelessly. 

When the cost of wireless communication is closer to real-life figures, then it once again 

dominates  the overall  energy costs  and PLA becomes a much more energy-efficient 

solution.  Once again, wireless transmission and forwarding favours PLA even more, 

since the energy cost of wireless operations increases in those cases. These results do 

not take into account the energy costs of hash calculations and packet fragmentation, 

which would slightly increase the energy consumption of ALPHA-M.
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Figure 24: Per packet energy advantage of ALPHA-C versus lightweight PLA in a wireless  
LAN

Figure 23: Per packet energy advantage of ALPHA-M versus lightweight PLA in a wireless  
LAN



Because the bandwidth overhead of ALPHA-C in data packets is constant, increasing w 

decreases  the  overall  overhead.  It  can  be  seen  in  the  figure  that  lightweight  PLA's 

bandwidth overhead becomes higher than ALPHA-C's when w is 8 or higher. ALPHA-C 

achieves the best energy efficiency when the maximum amount of MACs is included in 

a single S1 packet.

It is important to note the disadvantages of ALPHA-C. It is a path-dependent solution 

that does not support independent verifications, and it also requires intermediate nodes 

to cache one MAC per each data packet. ALPHA-C offers a significant bandwidth and 

energy advantage only when  w is 12 or higher, such large values can cause problems 

with a latency sensitive communication. For example, to keep the latency of VoIP traffic 

below 100 ms, not more than four or five packets can be buffered, and in that  case 

ALPHA-C has an energy disadvantage against PLA.

5.4.7 Summary of the comparison

In the past it has been assumed that public key-based security solutions are inherently 

inefficient in terms of energy consumption and therefore are unsuitable for mobile and 

wireless  devices.  The analysis  shows that  with an efficient  hardware accelerator for 

cryptographic  operations,  the  cost  of  wireless  transmission  will  dominate  the 

verification-related power consumption. Therefore PLA, which is based on public key 

digital  signatures,  is  actually  more  energy  efficient  since  it  uses  less  bandwidth 

compared to hash tree or hash-chain-based solutions like ALPHA.

The reason for PLA's advantage is the following. In real-life cases wireless reception 

uses almost 1 μJ/bit of energy, while the cost of performing a signature verification is 

only 26 μJ. Therefore, even if the PLA can reduce a bandwidth overhead only by 100 

bits per packet, it already becomes a much more energy-efficient solution. While some 

studies  [89]  have  achieved  orders  of  magnitude  better  energy efficiency,  they have 

achieved those in a special simulated environment without taking into account natural 

obstacles  and buildings,  therefore they can not  be considered a  realistic  estimate  of 

energy consumption of the wireless communication.

Due  to  the  nature  of  elliptic  curve  cryptography,  a  signature  generation  requires 

significantly less resources than a signature verification, while in wireless networks the 
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upload energy consumption is usually higher than download consumption. Therefore, 

for a sending node the energy consumption of cryptographic operations would be even 

less. The same applies to the wireless ad-hoc networks where nodes often forward the 

traffic and perform two wireless operations,  reception and transmission,  per a single 

signature verification. In these cases the PLA is an even more attractive solution.

The idle power consumption of the chip performing signature verifications has not been 

taken into account here. If the node receives only a handful of packets per second, then a 

power consumption per signature verification will be higher. On the other hand, in this 

case the power consumption  would also increase for a wireless reception,  since the 

wireless interface also has a fixed idle power consumption.  In any case,  the cost  of 

wireless communication would still  dominate the overall power consumption in most 

cases, even if we double or triple the energy consumption of a signature verification.

In the future, the power consumption of semiconductors will likely continue to decrease 

at a rapid pace [53]. The same does not apply to the energy cost of wireless transmission 

since it also depends on physical properties of the transmission medium that can not be 

changed. Therefore, the energy consumption of cryptographic computations will likely 

decrease  faster  in  the  future  compared  to  energy  consumption  of  the  wireless 

communication.  This  would  make  PLA even  more  attractive  in  the  future,  since  it 

decreases the bandwidth overhead at the expense of the computing power.

If  buffering  a  large  amount  of  packets  is  feasible  then  ALPHA-C becomes  a  very 

energy-efficient solution due to its lower bandwidth overhead. However, PLA is overall 

a much more flexible solution, since it does not depend on the transit path and does not 

require caching of packets at the sender's end for optimal performance. Therefore, PLA 

can also be used with a latency sensitive communication and dynamic wireless ad-hoc 

networks where the network topology changes frequently.

5.5 Summary

Overall  PLA  satisfies  most  of  requirements  presented  in  chapters  2  and  3.  The 

performance and power consumption of PLA is also good. With a dedicated hardware 

acceleration built on the modern manufacturing process PLA is scalable to future 100 

Gbps network interfaces. PLA is also suitable for mobile devices since the per-packet 
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power  consumption  of  cryptographic  operations  is  lower  than  the  energy  cost  of 

transmitting  an  average-sized  packet  wirelessly.  PLA  also  achieves  better  energy 

efficiency in wireless networks than hash tree and hash chain-based security solutions, 

due to PLA's lower bandwidth overhead.
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6. Network-layer applications of PLA

This  chapter  describes  PLA's  applications  on  the  network  layer.  These  applications 

include prevention of unwanted traffic  on the network through controlling incoming 

connections and securing the network infrastructure.

6.1 Controlling incoming connections

One way to solve the problem of unwanted incoming connections presented in Section 

2.5 is to block all incoming connections to the recipient that are not explicitly allowed. 

Such blocking can be naturally done in a personal firewall, but in that case incoming 

connection attempts  would still  consume resources in the recipient's access network. 

Thus,  the  network  should  provide  means  to  block  unwanted  incoming  connections 

already at  the  access  network level,  before the  unwanted traffic  can even reach the 

destination.  Such  blocking  would  also  make  it  much  more  difficult  to  launch  DoS 

attacks against the recipient or the recipient's network.

PLA together with a traditional certificate mechanism can be used to solve this problem 

[69].  Such a  method  would  work  as  follows:  the  potential  recipient  grants  explicit 

certificates to trusted initiators to initiate incoming connections to the recipient. PLA is 

used to guarantee on the packet level that connections to the recipient really originate 

from trusted initiators. An example of such a system is shown in the figure below.

The system presented in Figure 25 consists of four main parts. The initiator is the party 

that initiates the connection. The proxy is an entity in which the recipient trusts. The 

task  of  the  proxy  is  to  give  certificates  to  trusted  initiators  for  making  incoming 

connections to the recipient. The proxy also keeps track of the recipient's IP address if 

the recipient is changing networks. In order to eliminate a single point of failure, proxies 

form a Distributed Hast Table (DHT) [46] network. There are two firewalls located in 

the initiator's and recipient's access networks. They take notice of certificates that are 

passing through it  and firewalls  block all  outgoing and incoming connections  to the 

network  unless  the  recipient  is  a  valid  entity within  the  network  and the  incoming 

connection to the recipient has been explicitly allowed via certificates.
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In  the  very  beginning,  the  recipient  authorizes  the  proxy  using  a  certificate.  The 

recipient also authorizes a trusted initiator by giving him a certificate that certifies the 

initiator's  public  key,  this  certificate  exchange can also  be carried  off-line  and it  is 

shown as step 1 in the figure.  After the initiator  has received a certificate from the 

recipient,  the initiator  can contact  the proxy to  request  all  necessary certificates  for 

making an incoming connection. These certificates include a certificate that was given 

by the recipient to the proxy in step 0, a certificate from the recipient to the initiator, and 

a certificate from the firewall (i.e., the access network) to the recipient. In addition, the 

proxy reports  the  recipient's  current  IP address  to  the  initiator.  In the  last  step,  the 

initiator first sends all those certificates to the recipient using a control message and 

afterwards the data connection can be established. Firewalls check that the certificates 

form a valid certificate chain: recipient's firewall => recipient => proxy => initiator. 

Such a chain shows that the recipient, which has a right to use the access network, has 

authorized the proxy that has authorized the initiator. If this certificate chain is in order, 

firewalls will allow the initiator to establish a connection to the recipient. The main task 

of the initiator's firewall is to stop unwanted connections as soon as possible. Naturally, 

revocation  and  delegation  of  certificates  for  making  incoming  connections  is  also 

supported under such a system.

In such an application, PLA is necessary to ensure that the data sent to the recipient is 

really coming from a trusted initiator. The initiator's public key inside the PLA header of 

data packets must match the initiator's public key present in a certificate chain, only in 

that case will the firewall let traffic through. Hence, a malicious party will not be able to 
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make incoming connections  by using captured certificates  that  have been granted to 

other trusted initiators.

Subsequent sections contain examples of how such a system works in practise, and how 

rights for creating incoming connections can be delegated and revoked.

6.1.1 Controlling incoming connections example

Figure  26 presents a more detailed example of controlling incoming connections. The 

certificate format is explained in Appendix B.

In the first step, the recipient gives a C1 certificate to the proxy1, therefore the proxy can 

disclose  the  recipient's  location  to  certain  trusted  initiators  and  the  proxy can  also 

authorize them to initiate connection to the recipient.  Based on traditional certificate 

formats, in this certificate the recipient is the issuer of the certificate, the proxy is the 

subject and the certificate is signed by the recipient.

1 The proxy may be protected by additional firewalls not shown here.
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In steps 2 and 3 the recipient authorizes the initiator, these steps can also be carried out 

offline. The public key given in step 2 can either be a real public key, or the signature 

part of the TTP certificate as described in Section 3.5. The aim of the C2 certificate 

given in step 3 is to allow the initiator to request the recipient's current location (IP 

address) and necessary certificates from the proxy (the right for session initialization 

management bit is set to one in C2 certificate).

In step 4 the recipient changes the access network. The recipient gets a certificate Cf 

from the network as part  of the network's AAA procedure (denoted in the figure as 

"firewall") that allows the recipient to use the new access network. The recipient sends a 

location update together with this new Cf certificate to the proxy in step 5.

Steps  6-9  describe  establishment  of  a  data  connection  between  the  initiator  and 

recipient. In step 6, the initiator contacts the proxy. The initiator sends a C2 certificate to 

the  proxy  and  requests  the  IP  address  of  the  recipient  together  with  all  required 

certificates. The recipient might change the network frequently, thus the initiator must 

retrieve the recipient's latest IP address from the proxy. 

Based on the C2 certificate, the proxy knows that the initiator is authorized to get the 

recipient's latest IP address and to receive a certificate for sending data to the recipient. 

As a result, the proxy creates a new C3 certificate in step 7 that allows the initiator to 

initiate the incoming connection to the recipient. Certificates Cf, C1, C3 together with 

the recipient's IP address are then sent to the initiator.

In step 8, the initiator first sends a control message, using e.g. an ICMP or TCP SYN 

message, with certificates Cf, C1 and C3 to the recipient. This allows the firewall of the 

recipient's network to check that the recipient is a legitimate node in the access network 

and the recipient is willing to receive the incoming traffic from the initiator. The Cf 

certificate tells the firewall that the recipient is authorized by the access network and the 

recipient is a valid entity. The C1 and C3 certificates create a certificate chain together: 

recipient => proxy => initiator, which denotes that the initiator has the right to initiate 

the connection to the recipient. Finally, the data connection is established in step 9.

The C3 certificate that allows the initiator to create an incoming connection is given 

through the proxy because that way the recipient can easily revoke it. For example, if 
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after step 2 the recipient does not trust the initiator any more, the recipient can notify the 

proxy that  the C2 certificate  is  revoked and thus  the initiator  would not  be able  to 

receive  the  C3 certificate  from the  proxy.  If  the  recipient  would  have  sent  the  C3 

certificate directly to the initiator, then the revocation of the C3 would be much more 

difficult.

If the recipient uses several network interfaces simultaneously, the proxy could return 

several different IP addresses and associated Cf certificates to the initiator. In addition to 

permitting certain initiators to send data to itself, the recipient could also specify more 

general policies to the proxy, such as "now I do not want to be disturbed, do not allow 

anybody  to  contact  me"  or  "anybody  can  contact  me,  even  without  a  valid  C2 

certificate".

6.1.2 Revocation of rights for incoming connections

Figure 27 describes a situation where the recipient revokes and later reinstates a right for 

incoming connections. The revocation is done by notifying the proxy, firewall and the 

initiator. It is possible for the recipient to change rights by sending a new version of the 

C2 certificate (called C2N and C2N2 in this example) to the proxy. The proxy will keep 

only the newest version of this  kind of certificate  in its  database and this  certificate 

always  overrides  the  certificate  received  from  the  initiator.  The  example  goes  as 

follows.
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Figure 27: Revocation of rights for making an incoming connection



In the  first  step,  the recipient  creates  a C2N certificate,  which is  similar  to  the C2 

certificate in the previous use case but all rights are cleared. This C2N certificate is then 

sent to the proxy and it  will  override any previous similar certificate. If the initiator 

requests  the  recipient's  IP  address  or  C3  certificate  from  the  proxy (step  6  in  the 

previous  use  case),  the  proxy denies  the  request  because  it  possesses  a  valid  C2N 

certificate that has its rights set to zero. In order to stop the data flow from the initiator, 

the recipient also uses a STOP message as outlined in Section 3.7.1.

In the second step the recipient wants to give rights back for a different time period. A 

new certificate, C2N2, is created and this certificate has a right for session initialization 

management bit set to one. This certificate is sent to both the proxy and the initiator. 

This certificate will also pass the firewalls which will take note of it.

In step 3, the initiator can request the recipient's IP address with necessary certificates 

from the proxy. If the initiator will make a request to the proxy using the original C2 

certificate outside the validity time of the C2N2 certificate, the request will be denied 

since the proxy has the C2N2 certificate in its database and this certificate automatically 

overrides other certificates.

Just like in a previous case, the proxy sends the recipient's IP address with necessary 

certificates to the initiator in step 4. In step 5 certificates Cf, C1 and C3 show that the 

initiator has a valid rights for making an incoming connection to the recipient and the 

C2N2 certificate does not refute this right. Finally, the data connection is established in 

step 6.

6.1.3 Delegation of rights

The previous examples assumed that the recipient always has a direct trust relationship 

with the initiator.  However,  such a  requirement  is  often not  necessary.  Most  of the 

people are members of some organizations, such as companies, schools, hobby groups, 

social networking groups etc., and the basic idea of controlling incoming connections 

can be easily extended to handle indirect trust relationships. For example, instead of 

authorizing all initiators directly, the recipient could authorize all members of a trusted 

organization.
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The example in Figure 28 describes how the rights for controlling incoming connections 

can be delegated between different  organizations  in  a flexible  way.  In the first  step 

preliminary authorizations take place. The recipient authorizes the proxy with the C1 

certificate as in previous examples, he also indicates with the C2 certificate that he trusts 

organization  B,  and  wants  to  receive  connections  from members  and friends  of  B. 

Additionally,  organization  B  authorizes  A  with  the  C3  certificate,  meaning  that 

members  of  A can contact  members  of  B,  and A authorizes  that  the initiator  is  its 

member (C4 certificate).

In the second step, the initiator contacts the proxy and presents certificates C3 and C4. 

The proxy, which already possesses the C2 certificate, checks that certificates C2, C3, 

and C4 are in order and form the chain of trust: Recipient => B => A => Initiator. As a 

results, the initiator receives a traffic certificate and can start the data connection as in 

previous examples.

Such delegation is  very flexible  and can be suitable  for a wide range of real-world 

applications.  The  recipient  can  control  how  far  memberships  propagate,  e.g.,  the 

recipient  can  decide  to  accept  connections  from  members  of  B,  but  not  from  A's 

members.  It  is  also  possible  to  build  a  traditional  blacklist-based  system where  all 

connections are allowed by default unless the sender has been explicitly blocked.
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Figure 28: Delegation of rights for incoming connections between different organizations



6.1.4 Implications of controlling incoming connections

While  the  idea  of  requiring an explicit  permission  for  connections  may sound very 

radical, it  is suitable for many applications. For example, almost all e-mails received 

from  completely  unknown  senders  are  Spam.  Valid  e-mails  usually  originate  from 

people with whom the receiver has at least some kind of relationship or contact through 

work,  family ties,  or  common  friends  and hobbies.  Therefore,  controlling  incoming 

connections with a flexible delegation system as outlined above does not prevent valid 

communication.

In the first phase, such a method could be used to prevent unwanted traffic in e-mail 

applications,  instant  messaging  systems,  VoIP  calls  and  other  similar  application. 

Controlling incoming connections for most of Internet's traffic would produce higher 

overhead, but it would also prevent most denial-of-service attacks since malicious nodes 

could not freely send traffic to the target.

6.2 Securing the network infrastructure

PLA can be effectively used to secure the network infrastructure due to its ability to 

immediately  detect  and  react  against  different  kinds  of  attacks.  In  contrast,  on  the 

current Internet, unwanted or malicious traffic is usually detected and blocked in the 

firewall near the destination. Therefore, such traffic consumes resources in the whole 

network  and induces  the  load  on  the  destination's  network,  possibly preventing  the 

destination from serving benevolent users. 

The PLA-enabled node that receives a forged, duplicated, or delayed packet can discard 

the packet immediately, preventing this packet from consuming resources in the rest of 

the network and stopping a possible attack quickly. Furthermore, since the PLA header 

contains information for calculating a sender's public key which is certified by some 

trusted third party, the attacker can be traced and caught easier compared to current 

solutions. 

In the current Internet, reacting to attacks, i.e. trying to remove malicious nodes from the 

network, requires a lot of manual work and communication, which consumes some time 

and makes  it  difficult  to react to the attacks quickly.  Since PLA is  based on strong 
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cryptographic  techniques,  and  PLA  headers  contain  all  necessary  information  for 

verification,  it  is  possible  to  detect  and  react  to  attacks  in  a  more  automatic  way, 

lowering  the  window  of  vulnerability  to  attacks.  The  applicability  of  PLA for  the 

prevention of different kinds of attacks is discussed below.

6.2.1 Denial-of-service attacks

PLA  offers  protection  against  denial-of-service  attacks  on  many  levels.  First,  the 

mechanism for controlling incoming connections presented above can be used as a pre-

emptive measure against most of the denial-of-service attacks, since potential attackers 

can not freely attack a random victim. Furthermore, STOP messages offer a way for the 

victim to mitigate the attack by blocking the traffic from the attackers. Finally, the TTP 

mechanisms  allow  wrongdoers  to  be  removed  from  the  network,  shortening  the 

timespan of attacks and preventing the same attacker from attacking multiple targets in a 

row. It is important to note that these security mechanisms are independent from each 

other and it is not compulsory to use all of them at the same time. The network's security 

would be significantly improved even if only one or two of these mechanisms are used. 

A more detailed explanation of  these security mechanisms offered by PLA follows.

STOP messages, which are outlined in section 3.7.1, offer a flexible way for the victim 

to prevent the attacker from sending further traffic. Since it is not feasible for all routers 

to maintain a blacklist for all passing connections, STOP messages should be stored at 

the PLA-enabled router closest to the source.

Figure  29 describes  the  situation  where the source from domain  A sends  unwanted 

traffic to the destination in domain D, and the destination replies with a STOP message 

stating that it does not want to receive any further traffic from the destination. Such a 

STOP message is stored at the router that is closest to the destination. In this way the 

unwanted traffic is stopped close to the source before it can consume resources in the 

rest of the network.

Since it is not realistic to assume that all networks on the Internet always conform to all 

STOP messages,  routers located in other domains  on the path may also store STOP 

messages  in  order  to  check  whether  other  parties  are  really  conforming  to  these 

messages. For example, if domain C receives a packet from domain B that has been 
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blocked  by  a  previous  STOP message,  then  domain  C  has  undeniable  proof1 that 

domains A and B have not respected the STOP message. 

Such checks do not need to be done for every  STOP message or the packet. On the 

public Internet it  should be enough for the intermediate  routers to store just  a small 

fraction of  STOP messages to the blacklist, and check a fraction of incoming packets 

against the blacklist. Since packets travel through multiple domains, and serious attacks 

consist of large amounts of packets, the non-conformance to  STOP messages will be 

likely to be noticed at some point of the network. After a domain has noticed that other 

domains are not conforming to STOP messages, it can take their traffic under a stricter 

scrutiny  and  consider  sanctions  against  these  for  not  adhering  to  the  rules.  Such 

accountability offers a strong incentive for every domain to obey rules, and to block 

unwanted traffic near its origin.

A hostile node can try to poison a router's caches by sending invalid  STOP messages. 

Such an attack can be mitigated by various means. Since the goal of STOP messages is 

eventually to stop the unwanted traffic as close to the origin as possible, the router near 

the edge can use aggregation techniques to reduce the necessary state. For example, if a 

node sends a large amount of separate  STOP messages to every node located in the 

subnet, the router can block all traffic from the subnet to the node. Hence, there is no 

need to store each STOP message separately.

1 Since  all  traffic  is  protected  by timestamps and  cryptographic  signatures,  it  is  easy to  detect  the 
situation where an incoming packet violates the previously sent STOP message.
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Figure 29: An example of stopping unwanted traffic with STOP messages



The TTP mechanism provides several means to fight against DoS attacks. In case of 

misuse, a user's short-term TTP certificate will not be renewed, preventing him from 

continuing  the  attack  after  expiration.  Additionally,  there  is  a  bigger  chance  that 

perpetrators will be caught since the TTP knows each user's real identity. Section 7.1.5 

contains a more detailed discussion on catching culprits in the case of misuse. Routers 

inside domains may be also configured to only accept traffic authorized by a local TTP.

The TTP mechanism also offers benefits to the end user. In a situation where the user's 

computer has been compromised, and floods the network with garbage, one currently 

used policy is simply to cut off the user's Internet access altogether. With PLA, only the 

infected computer would lose access to the network. The user's other computers with 

different cryptographic identities would be able to access the network normally.

A denial-of-service attack can also be launched by an attacker who resides in the middle 

of the network and makes a large amount of copies of valid packets. Such an attack is 

especially dangerous and easy to carry out in wireless networks where the attacker can 

easily intercept valid traffic. Even if a traditional security solution like IPSec is used, 

intermediate  nodes  can  not  determine  that  the  extra  packets  are  just  copies  of  the 

original,  because  they  cannot  look  inside  an  encrypted  IPSec  packet.  With  PLA, 

intermediate nodes can easily detect duplicates by checking the timestamp and sequence 

number fields in the PLA header. 

It is important to note that protection against DDoS attacks is an extremely challenging 

task on the Internet, which is composed of thousands of distinct domains and hundreds 

of  millions  of  users.  While  the  presented  mechanisms  prevent  and  mitigate  DDoS 

attacks in most cases, they may not offer complete protection against DDoS attacks in 

all real-life situations. Nevertheless, significantly reducing the amount and severity of 

DDoS  attacks is a major improvement compared to the current Internet.

PLA  implements  some  of  the  key  principles  presented  in  the  study  that  outlines 

necessary changes  for  the  DoS-resistant  Internet  [47].  The  rights  field  of  the  TTP 

certificate  is  basically a more flexible  version of the state  setup bit  proposed in  the 

study, and it is used to distinguish various types of traffic. Stopping unwanted traffic 

near its origin using the PLA header information and STOP messages is equivalent to 

the  proposed  middlewalls.  Since  PLA is  based  on  strong  cryptographic  signatures, 

105



which  can  be  independently verified  at  wire  speed,  we feel  that  using  puzzles  and 

nonces  during  the  connection  establishment  phase  as  proposed  in  the  study  is 

unnecessary. Other methods mentioned in the study, such as the separation of client and 

server addresses, and efficient multicast are out of the scope of this work.

Several existing DoS protection solutions are based on capabilities  that  are tied to a 

sender's IP address or the subnet. Such an approach is problematic when users utilize 

mobile  devices  and  are  changing  networks  frequently.  Since  PLA  is  based  on 

cryptographic identifiers, it does not have this limitation.

6.2.2 Phishing attacks

PLA helps protect against phishing attacks in several ways. First, combining PLA-level 

cryptographic  keys  with  application-level  identities  would  offer  protection  against 

identity thefts which are often used in a phishing attack, since the attacker would be 

unable  to  send  packets  in  the  victim's  name  without  gaining  access  to  the  victim's 

private key. Second, since the sender's public key is included in every packet, a recipient 

can  check  the  validity  of  packets  that  it  receives  from,  e.g,  a  WWW  server.  The 

recipient can also check whether the server's public key is trusted by a reliable TTP. 

This  decreases  the  probability  of  a  successful  phishing  attack,  since  the  attacker 

participating in a phishing attack would eventually lose its TTP certificate.

6.2.3 Spoofing-related attacks

PLA includes  information  about  a sender's  public  key in  every packet  along with a 

signature that is generated using the sender's private key. This offers good protection 

against various spoofing attacks. The attacker is unable to send spoofed packets in the 

victim's name and the attacker will also be unable to launch an attack by taking a valid 

packet  and  changing  some  fields  in  it  because  such  modification  would  break  the 

signature of the packet. 
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6.2.4 Replay attacks

Replay attacks can be easily detected with PLA, since the PLA header contains a time 

stamp  and  a  sequence  number.  Thus,  packets  which  are  duplicated  or  significantly 

delayed will be detected and discarded.

6.3 Benefits of PLA in a real-life security solution

In  this  section,  we  will  revisit  the  Internet  banking  security  example  which  was 

presented  in  Section  2.3.5 to  discuss  what  benefits  PLA could  provide in  a  such a 

situation.  In order to provide maximum security and reliability,  the original proposal 

contained several layers of security solutions. With the help of PLA, it is possible to 

reduce the number of security layers as presented in Figure 30.

The original  proposed security solution had five security-related layers before actual 

application-related servers: front-end routers, two Intrusion Prevention Systems (IPS), 
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Figure 30. An example of a security solution for Internet banking utilizing PLA



firewall,  and  SSL  decryption  servers.  Having  PLA-enabled  front-end  routers  could 

simplify the solution by removing the need for a separate IPS and a firewall.  These 

front-end routers would check the authenticity of incoming packets and the validity of 

users and let only valid packets from trusted users through. Because SSL decryption is a 

resource-intensive  operation,  having  dedicated  servers  to  handle  decryption  tasks  is 

preferred in any case. In this example, PLA-enabled traffic would be transmitted all the 

way to  the  front-end  servers,  which  would  then  remove  the  PLA header  from the 

incoming traffic and send plain IP packets forward to the application servers.

To further improve security, the public key of the PLA header could be utilized during 

the user authentication process of an online banking session. When obtaining an online 

banking  account,  a  user  would  present  his  public  key  to  the  bank  and  the  user's 

username/password combination would be usable only if it is accompanied by the user's 

public key in the PLA header. This would provide additional security, since even if a 

hostile party is able to capture the username/password combination, it would not be able 

to gain access to the victim's bank account without having access to the private key of 

the victim. Such a system would naturally support delegation of rights as presented in 

Section 3.8.2, thus a user could temporarily transfer his rights to another computer and 

use it to access his bank account.
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7. Using PLA at higher layers

This chapter describes how PLA can be used to provide security and accountability at 

higher layers. Potential use cases of PLA include flexible billing, securing the mobility 

management related signalling, and Internet-wide user authentication and roaming.

7.1 Strong accountability, Internet-wide roaming and flexible billing

This section describes how PLA can be used to implement strong accountability, and a 

secure and flexible Internet-wide roaming and billing. More discussion is available in 

[70].

To alleviate the lack of built-in accountability on the Internet, several countries have 

introduced or proposed data retention laws that require Internet service providers (ISPs) 

to store their users' identity and information related to users' communication for months 

or  years.  Such  legislation  is  problematic  for  several  reasons;  first  it  introduces  a 

significant privacy issue, since users' private details  are stored in multiple places for 

long periods of time. It also increases costs of the ISPs since they must maintain and 

store sensitive records. And finally it  is not really secure, since the data retention is 

based on IP address records and not on strong security mechanisms.

7.1.1 Status of the current data-retention legislation

According to European Union (EU) directive 2006/24/EC [37],  providers of publicly 

available  electronic  communications  services  or  of  public  communications  networks 

must  store  data  related  to  communication  for  6-24  months.  In  case  of  computer 

networks this data includes the user's name, address, the IP address allocated to the user, 

duration of the communication and other related information. 

EU  defines  the  communication  network  as  “transmission  systems  and,  where 

applicable,  switching  or  routing  equipment  and  other  resources  which  permit  the  

conveyance of signals by wire, by radio, by optical or by other electromagnetic means,  

including satellite networks, fixed (circuit- and packet-switched, including Internet) and  

mobile terrestrial networks, electricity cable systems, to the extent that they are used for  

the  purpose  of  transmitting  signals,  networks  used  for  radio  and  television  
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broadcasting,  and cable  television  networks,  irrespective  of  the  type of  information 

conveyed” [38]. Basically, even a public wireless LAN base station would fall under this 

definition. 

Similar  legislation  has  also  been  proposed in  the  United  States  [30],  requiring  any 

network access provider to store communication-related data for at least two years.

The current EU data-retention legislation presents several problems. First,  it  places a 

heavy burden on the access network providers, i.e. ISPs, since they must securely store a 

large  amount  of  private  data  for  several  months  or  even  years.  Such  an  additional 

overhead increases costs and significantly increases the barrier of entry to become an 

access network provider. This in turn decreases the competition since small ISPs may 

not  have  sufficient  resources  to  conform with  the  legislation.  Such  legislation  also 

makes  community  networks  [42],  [40]  impractical  in  many  cases,  since  the 

administration overhead of running the network becomes very high.

The second issue is the privacy of users, since personal details of users will be stored in 

all access networks that they use. For users that travel a lot there may be tens or even 

hundreds of such networks. This significantly increases the possibility that at least one 

of  the networks  leaks  users'  personal  details.  Such leaks  can occur  for  a  variety of 

reasons, e.g, through discarded or lost computers [51], [12]. The access network may 

also leak or sell personal information on purpose. Since the amount of access networks 

on the Internet is very large, it is not possible to effectively monitor every one of them to 

guarantee that they are handling users' personal information in a secure manner.

Finally,  the  security  of  such  a  system  is  questionable.  The  legislation  relies  on 

identifying  users  through  their  IP  addresses,  however,  IP addresses  can  be  spoofed 

relatively easily defeating the main goal of the system. Furthermore, the current data 

retention mechanism only tries to prove that a user has been using a certain IP address at 

a certain time frame. Data related to the actual communication is not covered by the 

legislation, therefore there is no way to prove that the user has really participated in the 

attack and sent  malicious  packets to  the victim.  This  opens a  possibility for  parties 

connected to the Internet to frame a certain user by faking their logs and claiming that an 

attack  has  occurred  from  the  user's  IP  address.  In  order  to  provide  a  strong 

accountability  through  data  retention,  the  access  network  would  also  need  to  store 
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information about destination IP addresses and the amount of transferred data for each 

connection that the user establishes. This would not be a feasible approach since the 

amount of collected data would be very large, and such an approach would also produce 

huge privacy risks.

7.1.2 Implementing strong accountability with PLA

Figure  31 describes identity relationships between the traffic and users on the current 

Internet and when PLA is used. In the current Internet the network traffic is not directly 

tied to any user's identity, the traffic just contains a sender's IP address. Therefore, the 

data retention  legislation  often requires  network access providers  to  establish  a link 

between these IP addresses and users' real identities through retention of necessary data. 

Basically ISPs must store “user's IP address – user's real identity” mappings. This link is 

marked as a dashed line in the figure, since it is not a strong one. It is possible to spoof 

IP addresses and additionally, not all ISPs may have a sufficient knowledge or resources 

to accurately register their users and securely store data for an extended time period. As 

a result, some of the stored data may be incorrect or can be lost.

By introducing cryptographic identities PLA separates this  problem into two distinct 

cases:  mapping  the  network  traffic  into  cryptographic  identities,  and  mapping 

cryptographic identities into real ones. The PLA header ties all traffic sent by the user to 

the user's cryptographic identity with a cryptographic signature. This signature offers 

non-repudiation; the sender of the packet can not deny sending it. The task of the trusted 

third party is to link the user's cryptographic identity with his real identity. Both of these 

bindings are strong since they are based on cryptographic techniques and are marked as 

a solid line in the figure. To allow the use of pseudonyms, a single user may possess 

multiple cryptographic identities, but a single cryptographic identity always refers to the 

single user.
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This approach significantly reduces the burden of the access network providers since 

they do not  need to  store  users'  real  identities  for accountability purposes.  Also the 

privacy of the system is improved. The network access provider does not necessarily 

need to store users' private information for months or years. Actually, in some cases the 

access network provider does not need to see users' real identity at all. Similarly, the 

TTP does not see the actual traffic, hence, there is not a single entity in the network that 

sees a direct mapping between user-generated traffic and the user's real identity.

PLA also improves the security properties of the system since the user's cryptographic 

identity  is  bound  to  every  sent  packet  by  the  cryptographic  signature  providing 

inherently strong accountability. This prevents spoofing attacks that are relatively easy 

to perform for IP addresses. 

With  PLA, the  network  access  provider  may,  but  is  not  obliged to,  provide  a  TTP 

service. Therefore, it would be logical for TTPs to be significantly outnumbered by the 

access network providers;  large companies  with more resources would provide TTP 

services, but small access network providers could opt out. As a result, parties providing 

TTP services would have much stricter requirements regarding identifying their users 

and storing personal identities securely for a long period of time. In addition it would be 

easier to audit and control that TTPs are really storing personal data securely.

7.1.3 Managing user identities

PLA allows a flexible trust-management system where TTPs act as identity providers. A 

single user can use services of multiple TTPs, and access network providers are also 

connected to the global TTP system through the trust relationship with their own TTP.

Figure  32 describes an example of the trust architecture of the system. The left side 

contains access networks marked as grey clouds. Each access network has at least  one 

customer relationship with a TTP, for example the access network AN2 is a customer of 

TTP D while AN3 is a customer of both TTP A and B. These customer relationships are 

marked as a bold line. TTPs also form a global system through trust relations with each 

other.  Finally,  users  are  customers  of  one  or  several  TTPs.  Basically,  TTPs  act  as 

middlemen  between  the  users  and  providers  of  access  networks  to  facilitate  trust 

relations between them. For example, all users can use access network AN1 since its 
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TTP A has direct or indirect trust relationships with all TTPs that have authorized the 

users.  Such  an  approach  eliminates  the  need  for  users  to  establish  direct  customer 

relationships with access network providers. TTPs can also be used to handle billing in a 

transparent manner, further increasing the flexibility and reducing the burden of access 

network providers.  The system also works on an international  scale since TTPs can 

create contracts with foreign users and access network providers.

Such a system would allow users to use access networks without revealing their real 

identity to the access network owners. In principle, this would work as roaming with 

current mobile phones. For example,  GSM phones utilize SIM cards [39] to identify 

users on the network, and other mobile phone systems use similar technologies. The 

SIM card does not contain the user's real identity, instead it contains an IMSI number, 

which identifies both the user and its operator. The mobile phone user is able to utilize a 

foreign network as long as the network owner has an agreement with the operator that 

has issued the SIM card, there is no need to have a direct customer relationship between 

the user and the foreign operator. Billing is handled directly based on IMSI number and 

the  real  identity of  the  user  is  not  revealed  to  the  foreign access  network.  Another 

analogy to the system is an international credit card. Users can utilize their credit cards 

abroad as long as the store has a direct or indirect customer relationship with the credit 

card provider.
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7.1.4 Authentication and bootstrapping

Section 3.8 described the general case of bootstrapping a completely new node to use 

PLA. This section describes how the authentication and bootstrapping is handled when a 

PLA-enabled node arrives to the foreign access network.

The bootstrapping shown in Figure  33 is basically equivalent to the AAA procedure. 

First, we assume that the user has already received a certificate (C1) from some TTP, in 

this case a home TTP H. The C1 certificate denotes that the user is a valid entity and is 

authorized to use the network. This certificate exchange is shown as step 0 and it can 

also be carried out offline. We do not describe in detail how the user is authenticated 

when acquiring the initial certificate, an Internet banking account, showing a physical id 

in  person,  or  some other  form of  identification  may be used in  this  case.  The user 

initiates  the  bootstrapping  procedure  by  presenting  its  C1  certificate  to  the  access 

network. Before the access network can grant access, it must verify the integrity of the 

certificate itself, the validity of the TTP H that has authorized the user, and check the 

revocation status of the certificate. In step 2 the access network checks TTP H's validity 

by contacting the global TTP system through its own TTP. The access network will 

receive a reply whether TTP H can be trusted.  After  receiving a  positive  reply,  the 

access network contacts  TTP H directly using its  locator that  is  present in the PLA 

header, and checks the revocation status of the C1 certificate. If the certificate has not 
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been revoked, the access network grants access to the user as shown in step 3. As a 

result, the user is able to start communicating globally by using the C1 certificate in his 

PLA header.

When such an approach is used, the network access provider does not need to store any 

kind of data about the user to guarantee security and accountability. The responsibility 

of the access network provider will  be limited to checking that the user has a valid 

certificate from a valid trusted third party. While the TTP validity check and certificate 

revocation check introduce some latency, they are not performed frequently. The access 

network can also cache the TTP validity information.  Therefore, it  does not need to 

perform a TTP validity check per every user if multiple users certified by the same TTP 

are accessing the network.

It is important to note that the C1 certificate is issued to the user and is not tied to the 

hardware. Therefore the user can utilize any available device, like a computer in the 

Internet cafe, for accessing the network with his credentials.

On the current Internet, billing is another reason why access network providers need to 

store users' personal information, and this requirement can also be removed with the 

help of PLA. As described before, in a mobile phone network billing is handled using a 

SIM card and IMSI number. With PLA, the certificate from a  trusted  third party to the 

user is equivalent to the SIM card. As the user enters a foreign network, it presents its 

own TTP certificate as a part of the authentication process. The owner of the network 

checks that it has an agreement with the TTP that has issued the certificate. The network 

owner also checks during step 2 that  the user is  able  to  pay for network access.  If 

everything  is  in  order,  the  user  is  granted access  to  the  network,  and the  billing  is 

handled by periodically sending necessary information to the user's TTP as shown in 

step 5.

Since PLA is based on cryptographic techniques,  billing can be simply and securely 

implemented to prevent abuse by both the access network and the user. The PLA header 

itself  allows  flexible  billing  options  on  traffic  or  time  basis  since  it  contains  a 

monotonically increasing sequence number and a timestamp. To provide proof that the 

user has been using network services, the access network simply sends a copy of the 

user's  first  and  last  packet  to  the TTP.  Since all  PLA packets  are  protected  by the 
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signature signed by the user's private key, the access network can not forge any billing-

related information to overcharge the user1. At the same time, the user can not deny 

sending packets to the access network. This prevents cheating in both ways.

Some large access network providers may want more control over traffic, which can be 

accomplished by issuing a separate traffic certificate (C2) to their users. In that case, the 

user's initial C1 certificate would only be used for bootstrapping, and all further data 

traffic sent by the user would use the C2 certificate in the PLA header. This would allow 

the network provider to filter out all data traffic that does not have its own certificate in 

the PLA header, potentially simplifying the network management. On the downside, the 

access network provider would need to securely store C1 – C2 certificate mappings for 

billing and accountability purposes since the original C1 certificate would not be present 

in the data traffic.

7.1.5 Catching culprits and revocation of certificates

The previous section described a bootstrapping procedure for accessing the network. 

This section and Figure 34 describes how misuse is handled in the system.

In the first  step of the example,  the culprit  initiates the attack by sending malicious 

packets P1...Pn to the victim. After the victim notices the attack, it caches at least some 

1 The signature also protects the source IP address, therefore the access network cannot take a packet 
sent by the same user from a different network, and claim that it was sent from its network.
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malicious packets and sends a STOP message back to the culprit. This message contains 

the  culprit's  IP address  and victim's  signature,  and  it  signals  to  the  culprit's  access 

network and other routers on the path that  the victim does not want  to  receive any 

further traffic from the culprit. The culprit's access network will take note of this STOP 

message  and  will  prevent  further  traffic  from the  culprit  to  the  victim.  The  STOP 

message prevents unwanted traffic even if  just  one router on the path adheres to it, 

therefore it is quite an efficient solution even if the return path is partially different. In 

step 3, the victim notifies the culprit's trusted third party (TTP) and authorities of the 

attack, providing them with cached packets P1, Pi,  and Pj as a proof. These packets 

contain  the TTP's  cryptographic identity,  the culprit's  cryptographic  identity and the 

culprit's  signature making it  impossible  for the culprit  to  deny sending them.  If the 

attack  is  considered  to  be  serious  enough,  authorities  will  request  the  culprit's  real 

identity from his TTP as described in steps 4 and 5. If the misuse has been a very serious 

one, the culprit's TTP may also revoke the culprit's certificate and notify the culprit's 

access network of the revocation. This would prevent the culprit from sending traffic to 

any destination.

This approach has several advantages. First, the victim is able to stop an attack on itself 

quickly. As long as there is a single router on the path which conforms to the  STOP 

message, the victim will not receive further traffic from the culprit. It will also become 

more  difficult  for  the victim to  frame other  parties  for  the  attack.  In many cases  a 

lengthy investigation  of  the victim's  logs  is  not  necessary if  cached packets  already 

contain proof of the attack. It is also important to note the role of the access network. 

Since the culprit's identity is stored by the TTP, the access network does not need to 

store any personal details of the culprit or to be in a contact with authorities, it just needs 

to  perform PLA validity  checks  on  outgoing  and  incoming  traffic  and  conform to 

received STOP messages.

As a result,  there is no need for data retention by the access network provider. The 

proposed system is both much simpler and much more secure compared to the current 

solution,  where  access  network  providers  store  identity  –  IP  address  mappings  for 

months or years.

The scheme outlined above is flexible and gives a lot of power to the user. However, it 

requires that the user's private key is kept safe and no other party can access it. Since the 
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user might lose his private key for various reasons, or his computer can be infected with 

viruses or malware, there should be a way to revoke the certificate tied to that key.

The revocation process is straightforward: first the user contacts the TTP that has issued 

the certificate, e.g., using a phone or other means, and informs it of the revocation. The 

exact details of are not covered here, since this step is equivalent of cancelling a lost 

SIM or credit card. The TTP in turn sends a revocation notice to access networks where 

the certificate  has  been recently used.  This  step is  useful,  since some recently used 

access networks may still  trust  the certificate.  After  receiving the revocation notice, 

these access networks will  prevent further traffic with a revoked certificate.  If some 

party tries to access a new network with the revoked certificate,  then the revocation 

check during the bootstrapping phase will fail and the access will not be granted.

7.1.6 Wireless LAN authentication with PLA

PLA would be especially useful  in  wireless LAN authentication,  since users change 

wireless networks frequently, and are often using a single network only for a limited 

period of time. Therefore, the authentication in wireless networks must be a flexible and 

lightweight process. For example, while currently most larger airports provide Internet 

access through a wireless LAN, it is usually not free and in most cases users are required 

to  use  a  credit  card  to  handle  the  authentication  and  billing.  This  creates  several 

problems; e.g., the user's personal details are stored by the access network provider, the 

access network provider has an opportunity to overcharge the user or the user can try to 

evade the charges. With PLA, the situation would become much simpler, the users could 

authenticate with a certificate from the TTP that has an indirect trust relationship with 

the wireless LAN provider at the airport.

Another  use  case  would  be  wireless  LAN  network  at  a  university  campus.  The 

university would issue TTP certificates to its students and employees, and the network 

traffic sent with those certificates will be automatically allowed to the wireless LAN 

network. Such a system would not need a complicated authentication solution and users 

would not need to perform a time-consuming sign-in process when they want to access 

the network. The system can also be easily extensible, for example, the wireless LAN 

base stations can be configured to accept TTP certificates issued by other universities, 

also allowing their students and employees to utilize the wireless network. 
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During the authentication  process  PLA can also be used to  secure initial  link  layer 

network discovery and bootstrapping messages.  Therefore,  the user authentication  is 

performed in a transparent manner before the client even receives an IP address, which 

provides extra security to the wireless network. The authentication would also work 

even if PLA is only used during the bootstrapping phase. After the bootstrapping has 

been completed, the mobile node and the base station will generate a symmetric session 

key to secure the rest of the traffic. Basically, a PLA-based authentication system would 

be  simpler,  faster,  and  more  efficient  than  currently  widely  used  EAP-based 

authentication solutions.

7.1.7 Analysis

The current Internet is inflexible since the access network provider has two tasks. First, 

it must convey traffic on behalf of its users, and secondly, it must store users' personal 

details and bind them to IP addresses. These two tasks are very different in nature, and it 

is not sensible to always manage them with the same entity. The PLA-based network 

architecture uses principles from cellular networks; the user should be able to utilize 

multiple physical networks using a single contract. However, we extend this principle 

on the Internet scale using PLA as the enabling technology. With the proposed system, 

the  access  network  provider  can  concentrate  on  its  fundamental  task,  to  provide 

telecommunication services to customers. Billing and mapping between cryptographic 

and  real  identities  would  be  handled  by  TTPs.  While  some  larger  access  network 

providers can offer TTP services, such services can also be offered by other parties, such 

as banks or credit card companies.

From a security point of view, the biggest difference is that under the current system the 

access  network  provider  is  practically responsible  for  its  users'  traffic.  In a  case of 

misuse,  the provider must  be able  to  point  to  the guilty user through data retention 

mechanisms.  By using per-packet  cryptographic techniques  and trusted third parties, 

PLA transfers the responsibility from the access network provider to the user and TTP. 

The access network is just responsible for performing PLA-related checks: to verify that 

the sent packet is valid, has been sent by the authorized entity, and is not delayed or 

duplicated. If the packet passes these checks, then the access network provider is not 

responsible for the consequences, even if the packet is used for malicious purposes. As 
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outlined  in  a  previous  section,  the  authorities  can  determine  the  user's  real  identity 

without any additional co-operation from the access network provider.

Naturally, no system is completely secure. While the PLA ties traffic to cryptographic 

identities, these identities might leak to a hostile party, for example if the computer has 

been  compromised.  Therefore,  the  purpose  of  network  accountability,  whether  it  is 

accomplished by PLA or by a traditional data retention mechanism, is to provide a clue 

towards the origin of the attack.  Evidence provided by such accountability may not 

always be decisive in a legal sense. In a case of key leakage, using PLA may not be able 

to reveal the real culprits behind the attack, but PLA limits the scope of the attack, since 

routers can easily block the traffic sent with a compromised cryptographic identity and 

the misused user's certificate can be revoked.

PLA would  also  make  it  much  more  difficult  for  hostile  parties  to  frame  users  for 

imaginary attacks. If the victim of the attack can not present packets signed by a user's 

private key as evidence, then the user will be innocent by default. On the current Internet 

it  is possible for the service provider to frame the user by forging its  own logs and 

claiming that an attack originated from the user's IP address.

There is always a trade-off between security and privacy: if complete privacy is allowed, 

then most of the attacks on the network can be stopped to a certain degree, but it will not 

be  possible  to  catch  perpetrators  behind  those  attack.  PLA actually improves  users' 

privacy through the use of multiple cryptographic identities acting as pseudonyms. If 

PLA is also used for billing, the access network provider does not need to know the 

user's real identity, and there is no single entity in the network that can directly tie the 

user-generated traffic to his real identity. This offers a good balance between security 

and  privacy;  as  long  as  users  are  behaving  well,  they  can  maintain  their  privacy. 

However, real identities of users engaging in malicious behaviour can be retrieved with 

the help of trusted third parties.

The  proposed scheme  would  also  increase  the  competition  between access  network 

providers since the barrier of entry to market will be significantly lower for two reasons. 

First, access network providers do not need to store users' personal details for security 

purposes, and additionally, PLA and the TTP system can be utilized for handling billing 

in  the  network.  Basically  this  would  decouple  the  ownership  of  the  transmission 
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medium from billing  and  higher  level  services,  allowing  TTPs  and  access  network 

providers to compete for customers independently of each other. Such a method would 

allow the emergence of very lightweight access network providers, which do not need to 

directly identify their  users  at  all.  For  example,  a  person could  share  their  Internet 

connection with neighbours or passers by for a nominal fee, and communal networks 

would once again become a viable option.

The solution relies on indirect trust relationships between operators and TTPs. Since it 

is not feasible to require all parties to trust in each other for billing purposes, the amount 

of trust hops between TTPs can be a deciding factor whether to trust them to do the 

billing. For example, the access network can decide that it will accept customers from 

its  own  TTP  and  from  TTPs  that  form  a  direct  trust  relationship  with  the  access 

network's TTP.

The latency of the bootstrapping phase is also low. The access network needs to consult 

its own TTP and the user's TTP before the access can be granted and under normal 

circumstances such checks would take a few seconds of time. Actually, using a PLA-

based certificate mechanism would significantly reduce the overall latency compared to 

current commonly used solutions where the user is authenticated by manually entered 

passwords  or  credit  card  information.  For  example  in  case  of  a  wireless  LAN,  the 

mutual  authentication  can  be  performed  during  the  network  discovery  and  initial 

bootstrapping  messages,  and  the  client  is  already authenticated  when  it  gets  an  IP 

address.

7.1.8 Potential weaknesses in the solution

Using PLA for Internet-wide roaming and billing is based on trust relationships between 

access  network  providers,  trusted  third  parties  and  users.  Potential  situations  where 

various parties may try to abuse the system with corresponding solutions are presented 

below.

User

● Trying  to  evade  charges  for  using  the  access  network.  The  PLA  header's 

signature effectively prevents this, the operator will possess packets signed by 

the user's private key.
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● Engaging  in  illegal  behaviour.  Malicious  traffic  can  be  filtered  based  on 

cryptographic  identities.  The  authorities  can  also  determine  the  user's  real 

identity  with  the  help  of  the  trusted  third  party.  Therefore,  the  user  can  be 

prosecuted for his actions.

Access network provider

● Overcharging the user. The PLA header's signature effectively prevents this.

● Not performing PLA-related checks for outgoing packets, or not conforming to 

received  STOP messages1.  Such behaviour  will  eventually be  noticed  by the 

parent operator of the access network provider since there will be a large amount 

of invalid or undesired packets originating from the access network. Therefore, 

the  parent  operator  can  take  actions  against  the  access  network  provider  by 

charging  higher  fees  for  transit  or  limiting  the  bandwidth  until  the  access 

network provider will start to perform the necessary checks.

● Not performing necessary checks during the bootstrapping procedure, i.e.,  not 

checking the revocation or balance status of the user's certificate. Such behaviour 

would have the following consequences on security and billing. First, if the user 

manages to cause damage with a revoked certificate,  then the access network 

provider could also be held responsible, since it allowed the user to send traffic 

to the network without a valid certificate. Secondly, the access network provider 

will  not  be  compensated  by  the  TTP  for  the  user's  traffic  since  necessary 

revocation and balance checks were not performed.

Trusted third party

● Not  compensating  access  network  providers  for  the  network  usage.  Access 

network providers would break the contract with the TTP and would not allow 

users of such a TTP to access their networks anymore.

● Not revoking certificates of malicious users. In such cases other trusted third 

parties in the network may lose trust in the TTP in question. Therefore the TTP's 

customers would not be able to access as many networks as before, and in the 

long run the TTP in question would lose customers.

It can be seen from these examples that  all parties have strong incentives to behave 

according to the rules of the system. The user must not engage in illegal behaviour in 

1 STOP messages can be independently verified by any router on the path, therefore a co-operation of 
the access network is not strictly necessary to stop the undesired traffic to the receiver.
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order to retain the ability to use the network. The access network provider must perform 

necessary checks during the authentication and for outgoing data packets in order to get 

compensated  for  the  user's  traffic.  The  trusted  third  party  must  co-operate  with 

authorities and other TTPs in order to retain its customers. 

The existence of three distinct parties and strong cryptographic identities and signatures 

makes it easier to detect the abuse in the system and resolve potential disagreements. Let 

us consider a previous example where the user accesses the wireless LAN network at 

the airport,  and the credit  card is  used for the user authentication and billing. If the 

network tries to overcharge the user, or the user tries to evade charges, then the process 

of resolving disagreements on the current Internet is complex and time consuming. It 

will require a lot of manual work, since both the user and the access network provider 

must try to prove their points with evidence, like IP address mappings and traffic logs, 

which are not inherently strong. Therefore, the evidence must be thoroughly investigated 

by an actual person. However, if PLA is used, the situation becomes much more simple. 

The access network provider simply sends a copy of the user's first and last sent packet 

to the user's TTP and billing will be handled based on these packets as was discussed in 

Section 7.1.4. The access network can not claim any additional compensation and at the 

same time the user can not deny sending that packet since it was signed by his private 

key. This makes the process of resolving disagreements more automatic and reduces the 

overhead of all involved parties: the user, the access network provider, and the entity 

that is responsible for billing.

7.2 Securing media independent handover (MIH)

Media  independent  handover  (MIH) [76]  is  a  framework to  enable  handovers  in  IP 

networks  between various  link-layer  access  technologies.  For example,  MIH can be 

used to transfer the connection seamlessly from the 3G cellular network to the wireless 

LAN, or between two different wireless LAN networks. However, MIH does not define 

concrete security measures to protect such handovers. 

In order for MIH to be useful, both the end user and point of access of the new network 

should mutually authenticate each other. Otherwise, the user could utilize the network's 

resources without permission, or a bogus point of access could trick users to initiate the 

handover to itself. The handover signalling should also be tamper-proof.
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A method for securing MIH with PLA is described in [94]. In the example presented in 

Figure 35 it is not compulsory to use PLA for all traffic, protecting the signalling traffic 

with PLA is enough.

In this  example,  the mobile  node (MN) is  connected to network X and initiates  the 

handover to network Y, which has an agreement with X. The example assumes a normal 

PLA architecture,  where  the  mobile  node  already possesses  the  certificate  from the 

certificate authority X, which basically is the trusted third party (TTP). The rights field 

inside a TTP certificate are used to distinguish the network access points from ordinary 

users. All signalling messages in the example are protected by PLA.

In the first step, the mobile node initiates the handover by sending a MIH message to the 

existing point of access (PoA X). Since this message is protected by PLA, it contains a 

certificate from the CA-X to the mobile node. PoA X verifies the message, and checks 

that the mobile node has been certified by the same operator. In step 2 PoA X replies 

with a link parameter report message. The MN can now verify that the reply is valid, 

and has arrived from the infrastructure node of the same operator.
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In steps 3 and 4 the handover is initiated.  It is assumed that operators, which allow 

handovers between themselves, already know the cryptographic identities of each others' 

TTPs. Such an identity is given to the mobile node in step 4. In step 5 the new point of 

access verifies MN's certificate and optionally verifies the identity of CA-X if it is not 

already trusted. Finally, in step 6 the mobile node can verify that the new access point 

has  really  been  certified  by  CA-Y.  Such  a  check  prevents  MN  from  making  the 

handover to the bogus point of access. After the handover has been completed, there is 

an option to generate session keys to encrypt the wireless traffic.

Using PLA to secure MIH signalling messages offers good security without a need for 

extra messaging and external authentication.  For example,  in steps 1 and 2 both the 

mobile node and the point of access authenticate each other directly based on contents 

of the PLA header, while the similar authentication between the MN and the point of 

access (PoA Y) happens in later steps. The authentication occurs as a part of the normal 

MIH signalling, and does not require any extra packets to be transmitted. Furthermore, 

there  is  no  need  to  contact  an  external  authentication  server.  PLA  also  protects 

signalling messages from being tampered with.
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8. PLA and future data-oriented networks 

This  chapter  explores  the  applicability  of  PLA  for  securing  future  data-oriented 

networking approaches.

Data-oriented  networking  aims  to  solve  the  inefficiency  of  the  current  host-  and 

message-oriented Internet. Instead of making connections to individual hosts, operations 

are  performed  to  data.  In  practice  data-oriented  networks  are  based  on  the 

publish/subscribe principle  and work as follows.  First,  the publisher  publishes  some 

data to the network, usually identified by a flat label identifier. Then interested parties 

may subscribe to the identifier to receive the data item. If there are multiple subscribers 

for the same data, multicast  is automatically used for an efficient data delivery. The 

rendezvous service acts as a middleman between publishers and subscribers.

Identifiers used within data-oriented networks are often self-certified in nature, they are 

derived from cryptographic identities in order to give subscribers a mechanism to easily 

verify that the data item is valid and has originated from the correct publisher. Since 

data items are uniquely named, caching within the network becomes straightforward. 

Caches can be added to  the network dynamically,  and because of the self-certifying 

nature of identifiers, the subscriber do not need to care whether the data has been sent by 

the original publisher or the cache, the subscriber can verify the authenticity of the data 

in any case.

Data-oriented  networks  adhere to  the  trust-to-trust  principle  [29],  which argues  that 

users on the Internet are interested in communicating with trusted entities, instead of 

arbitrary hosts.  Data-oriented approaches also aim to transfer some control  from the 

initiators of the connection to the receivers since users request relevant data instead of 

contacting other hosts directly.

Well-known data-oriented systems include Internet Indirection Infrastructure (i3) [102], 

Data-Oriented  Network  Architecture  (DONA) [66],  Routing  on Flat  Labels  (ROFL) 

[18], Content Centric Networking (CCN) [56] and Publish-Subscribe Internet Routing 

Paradigm (PSIRP)  [2].  PSIRP  differs  from other  similar  solutions  since  it  aims  to 

implement a publish/subscribe-based network from scratch, without relying on existing 

network-layer technologies such as the IP protocol.
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8.1 PSIRP background

One example architecture for PSIRP is presented in [112]. The main components of the 

system are: 

● Namespace  owners manage  namespaces  for  publication  identifiers.  The 

namespace owner authorizes publishers to use part of the namespace for their 

publications.

● Publishers create  the  actual  publication,  which  in  turn  is  delivered  to 

subscribers.

● Data sources serve the actual publication in the network.

● Scopes control the dissemination of data. Scopes have trust relationships with 

data sources and rendezvous system.

● Rendezvous  system is  used  by  data  sources  and  subscribers  to  register  and 

subscribe to the publication.

In many cases the namespace owner, the publisher, and the data source are a single 

entity.  However,  for  additional  flexibility  they  may  be  separate.  For  example,  the 

namespace owner may be a big newspaper, which would authorize writers to use part of 

the namespace for their articles. These articles would then be served by dedicated data 

sources.

On the network layer, PSIRP publications are identified by rendezvous identifiers (Rid), 

while  scope identifiers  (Sid) denote scopes,  both of these identifiers  are 256-bit  flat 

labels. To access the data the subscriber must know both the Rid and Sid1. Rids and Sids 

have  a  <P:L>  (public  key:label)  structure  similar  to  DONA  [66].  In  the  payload 

messages  the  label  part  of  Rid  contains  a  hash  of  the  arbitrary  label,  while  the 

rendezvous requests and subscription messages can include the original variable length 

label to enable dynamically generated content. Similarly to PLA, PSIRP also utilizes 

ECC-based keys, therefore unlike in DONA, the whole public key can be included in the 

identifier simplifying the system.

The rendezvous process goes as follows. At the beginning, the data source publishes the 

publication to the rendezvous system. The interested subscriber first sends a rendezvous 

request and receives the topological location of the data in reply from the rendezvous 

system.  Next,  the  subscriber  sends  a  separate  subscription  request  towards  the  data 

1 A separate mechanism is necessary to resolve human readable names into <Sid:Rid> pairs
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source.  Caches  on the  path can take note  of  this  request,  and serve the  publication 

directly to the subscriber if it is already in cache.

8.2 Securing the PSIRP rendezvous process with PLA

As mentioned in Section 5.2, PLA is  a natural  alternative for securing data-oriented 

networks  since  it  is  based  on  cryptographic  identifiers  and  signatures.  This  section 

discusses in more detail  how PLA can be used to secure a data-oriented networking 

system. A more detailed discussion about various aspects of PSIRP security is available 

in [68].

Figure 36 shows an example of how PLA can be used to secure the rendezvous process, 

which covers the most important functions of the publish/subscribe networking.

When a node, for example a data source or subscriber, is bootstrapped, it will receive a 

certificate from the local access network, basically this certificate is equivalent to the 

PLA's TTP certificate.  In the  figure,  CX denotes  such a  certificate  from the  access 

network to the subscriber and CY denotes a similar certificate to the data source.

In step 0, the scope authorizes the data source to serve the publication (<Sid:Rid>) with 

a  C1  certificate,  while  the  data  source  acknowledges  its  willingness  with  a  C2 
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certificate. The C2 certificate is required since without it a hostile scope could induce 

load to the data source by claiming that the publication can be found from the target data 

source.

In the first step, the data source sends a publication advertisement concerning <Sid:Rid> 

to the rendezvous system. This message contains the data source's certificate from the 

access network (CY) along with C1 and C2 certificates. The whole message is protected 

by the data source's signature. In the next steps, the subscriber initiates the subscription 

process and the rendezvous system returns a data source's location within the network 

along with all relevant certificates.

The final subscription message is sent in step 4. This message contains CX, CY, C1 and 

C2 certificates, which together with the <P:L> structure of identifiers offer a proof to 

intermediate nodes that this message is valid. Any node on the path can verify that the 

scope and data  source have authorized  each other  to  serve <Sid:Rid>,  and the data 

source is really a valid entity in the network.

Finally, in step 5, the publication is delivered from the data source to the subscriber. The 

payload delivery may be optionally protected by the data source's signature using PLA.

For some use cases, it is important to have access control for subscribers for a certain 

scope, therefore unauthorized subscription messages must not reach the data source. If it 

is also important to keep the location of data sources confidential, additional checks can 

be implemented in the rendezvous system.

The example presented in Figure 36 can be augmented to support the access control. In 

this case the C1 certificate would contain different rights, denoting that access control is 

required and therefore a subscriber must possess a separate certificate (C3) from the 

scope. This C3 certificate acts as a capability. In step 2 the rendezvous request will go 

all the way to the scope, and the subscriber must authenticate itself using a password or 

other means. Such authentication may require additional signalling that is not shown in 

the example. After a successful authentication, the subscriber will receive the above-

mentioned C3 certificate from the scope, and will include it to the subscription message 

in step 4.
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In step 4 intermediate nodes will  see from the C1 certificate  that  the access control 

check is present, and will verify that the subscription message will contain a valid C3 

certificate. The issuer field of the C3 certificate must match the public key present in 

Sid, while the subject field must match the subject field of the CX certificate. This way 

a hostile subscriber can not reuse a valid C3 certificate.

8.3 Analysis

Basic  PLA  security  features,  such  as  integrity  protection,  detecting  duplicated  and 

delayed  traffic,  removal  of  malicious  users  from  the  network  through  the  TTP 

mechanisms,  and  strong  accountability  also  apply  to  data-oriented  networks.  No 

significant  modification  of  PLA is  necessary.  While  the  above-mentioned  example 

applies to PSIRP, PLA can also be used to secure other kinds of data-oriented networks.

Furthermore,  PLA allows  nodes  on  the  path  to  independently verify the  validity of 

rendezvous and subscription messages, and distinguish those messages from the data 

traffic. In this case, validity means that subscriber and data source are valid entities in 

the network, the subscriber wants to receive the publication, the data source is willing to 

serve  the  publication  and  is  authorized  by the  scope.  Independently  verifiable  per-

subscriber  capabilities  are  also  supported.  Invalid  messages  can  then  be  dropped 

immediately.

PLA's cryptographic identities and signatures allow the network to differentiate users 

and traffic easily. Therefore the access network can limit  the amount of subscription 

messages sent by a single node within a given timeframe, and subscription messages can 

also be  limited  per  destination.  Since  the  size  of  the  subscription  message  with  all 

certificates is a few kilobits at most, this effectively prevents severe DoS attacks against 

the data  sources.  Subscription  messages can also be prioritized  higher than the data 

traffic. Therefore in a case of congestion, subscriptions will get through at the expense 

of  bulk  data  transfer,  improving  the  overall  availability  of  the  network.  A  similar 

limitation  can  be  enforced  for  rendezvous  messages  to  prevent  hostile  nodes  from 

overloading rendezvous nodes.

Since  PSIRP already includes  cryptographic  keys  as  a  part  of  identifiers,  the  extra 

bandwidth overhead of certificates  and PLA is  lower,  since keys do not need to be 
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included  twice.  For  example,  when  the  scope  authorizes  the  data  source  to  host 

<Sid:Rid>, the certificate and the PLA header does not need to explicitly contain the 

scope's public key since it is already a part of the Sid.

In a publish/subscribe approach such as PSIRP, the rendezvous system is a crucial part 

of architecture since basic publish and subscribe operations depend on it.  Hence, the 

rendezvous  should be able  to  function  properly in  all  possible  situations.  Using the 

above-mentioned principles, PLA can also be used to secure rendezvous-related control 

traffic.
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9. Deployment of PLA

This chapter explores incentives and challenges related to the large-scale deployment of 

PLA. Real-world deployment of new networking protocols on the Internet scale is an 

extremely challenging task. For example, the IPv6 specification was completed over 10 

years  ago,  and  in  spite  of  a  serious  IPv4  address  space  shortage  a  wide-spread 

deployment of IPv6 still has not happened yet. Host Identity Protocol (HIP) is another 

example of a promising technology that has been under development for over a decade, 

but has not yet been widely deployed.

In order for a new protocol to be deployable, incremental deployment should be possible 

in a flexible way, since it is not realistic to assume that everyone is willing to adopt the 

new  technology  at  once.  Furthermore,  the  benefits  of  the  new  solution  should 

significantly outweigh drawbacks to justify the cost of transition.

9.1 Incentives for PLA deployment

PLA offers several  benefits  to the network operators and users.  It provides integrity 

protection,  protection  against  DoS  attacks,  ability  to  stop  unwanted  traffic,  QoS 

possibilities,  and  it  also offers  flexible  billing  options  and the  strong accountability 

without extensive data retention.

According to the analyses presented in Section 5.3.3, using PLA globally in every router 

for every packet would consume about 40 GWh of energy annually. For comparison, 

activities  related to  unsolicited  e-mail  (Spam) consume 33 TWh of energy annually 

according to McAfee estimates [75]. Therefore, even if PLA could reduce the amount of 

Spam by 10%, it would produce massive energy savings.

9.1.1 Availability and DoS protection 

PLA provides availability on the network layer by offering an integrity protection and 

strong authentication. This allows network operators to quickly detect and block invalid 

or malicious traffic.
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PLA improves availability and prevents unwanted traffic in multiple ways. First,  the 

unwanted  traffic  can  be  blocked  based  on  the  sender's  cryptographic  identity,  the 

destination or the TTP that has authorized the sender. Additionally, the malicious node 

can be removed from the network by revoking or not renewing its TTP certificate; this 

limits  the time  frame when the  malicious  node can cause the load  on the network. 

Finally, strong accountability provided by PLA allows culprits to be caught, preventing 

them from carrying out future attacks.

9.1.2 Quality of service and traffic prioritization possibilities

The current Internet lacks support for fine-grained packet prioritization and therefore it 

can  not  be used  for  conveying really critical  messages.  In a  case of  DoS attack  or 

congestion, there is no guarantee that these important messages will go through. As a 

result,  several  countries have built  dedicated networks for authorities and emergency 

services.

The TTP certificate mechanism used by PLA offers a great flexibility for prioritizing 

traffic and implementing the quality of service (QoS) support. The rights field within the 

TTP certificate can be used to denote a traffic priority. Routers would allocate a small 

amount of the bandwidth to high priority packets, and in case of congestion they would 

drop low priority packets first.

Such an approach can be used in multiple ways. First, the higher priority can be sold to 

users as an extra service. Furthermore, the operator can reserve highest priority to itself 

and for authorities. This would allow transmission of critical messages, such as network 

control messages or emergency announcement,  in virtually all  situations,  even if  the 

network is under a severe load or a DoS attack. Therefore, such a system would reduce 

the  need  for  having  a  separate  dedicated  network  infrastructure  for  authorities  and 

emergency use.

9.1.3 User authentication, accountability and billing

Currently  operators  face  increasing  requirements  from  authorities  regarding  data 

retention and user identification. These requirements significantly increase the costs and 

reduce the  flexibility of  operators.  For  example,  the  current  EU legislation  requires 
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operators to provide accountability through data retention. Such a requirement raises the 

barrier  of  entry and  effectively  prevents  lightweight  operators,  which  only want  to 

convey traffic, from functioning.

As  mentioned  in  Section  7.1,  PLA  provides  strong  data-origin  authentication  and 

accountability, which eliminates the need for data retention by operators. This reduces 

the  costs  of  operators  and adds  flexibility to  the network.  PLA allows operators  to 

concentrate on their fundamental  task, to convey traffic on behalf of their users, and 

leave other tasks, such as the user identification and authorization, to other parties. The 

basic  responsibility  of  operators  would  be  limited  to  performing  PLA  checks  for 

outgoing traffic. In a case of misuse, the real identity of the culprit can be determined 

with  the help of the TTP; co-operation of the operator is not required.

Since  PLA offers  non-repudiation,  it  can  be  used  for  flexible  billing  schemes.  For 

example, the user could be charged based on the amount of sent packets or bandwidth 

used. Tariffs may also depend on time and operators could offer a cheaper bandwidth at 

night. PLA's certificate mechanism together with the sender's signature guarantee that 

such a billing scheme is secure. The user can not evade charges since his signature is 

present in every sent packet, and the operator can not impose additional charges on the 

user since it can not forge the user's signature. The non-reputability also to some extent 

allows  an  automatic  resolution  of  disagreements  between  various  parties,  such  as 

operators and end-users.

9.2 Challenges for PLA deployment

The biggest challenge for PLA deployment is the cost associated with the additional 

hardware for cryptographic operations. While the cost of the actual accelerator ASIC is 

not very high [53], significant resources are needed to develop, evaluate and deploy new 

routers and computers on the Internet scale. These costs mostly affect the early PLA 

deployment, as the production volumes of the necessary hardware grow, the costs will 

be greatly reduced. Furthermore, there is a tendency to support cryptographic operations 

through  dedicated  hardware  in  general  purpose  products.  Even  though  the  ECC 

algorithm  is  not  widely  supported,  VIA  and  Intel  processors  accelerate  some 

cryptographic algorithms  in  hardware [111][52],  and the Symbian^3 [103]  operating 
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system developed  for  mobile  phones  provides  support  for  hardware  acceleration  of 

cryptographic algorithms.

There are also additional challenges. Some of the current Internet routers often block 

packets that use less known IP extension headers, therefore there is a risk that also PLA 

packets  will  be  blocked.  A  simple  configuration  modification  is  required  for  these 

routers to let PLA packets go through.

Some  parties  can  view  PLA's  advantages  as  disadvantages  and  may  hinder  PLA's 

deployment.  For  example,  since  PLA  offers  flexible  and  secure  billing  and  user 

management, it lowers the barrier of entry for the operators and increases competition. 

Therefore, some dominant operators may view PLA as a threat to their position. Some 

countries may also oppose the idea of the Internet-wide roaming that was presented in 

Section 7.1, since it allows users to be authorized by TTPs residing in a foreign country

Since  PLA  is  based  on  a  strong  cryptographic  techniques,  identity  spoofing  and 

impersonation becomes much more difficult to achieve. This might annoy intelligence 

agencies and other entities.

9.3 Wireless PLA

Wireless PLA [3] combines the principles of PLA, such as integrity protection, with 

hash chain-based solutions to reduce computational overhead of PLA. In order to fully 

use  hash  chains  to  protect  packets,  hash  chain  anchors  must  first  be  authenticated. 

WPLA accomplishes this by using a full PLA header with initialization packets. 

Afterwards, WPLA offers two modes of operation. In the lightweight verification mode 

only hash chains are used to secure the traffic. In the adaptive mode, WPLA includes 

both the PLA header and the hash elements in its header. Therefore, the intermediate 

nodes can decide whether to use hash chains or signatures to verify the traffic. While the 

adaptive mode increases the bandwidth overhead, it is very flexible. For example, the 

downside of hash chain-based security solutions is path dependency. However, if some 

packets protected by adaptive WPLA take another path in the network, intermediate 

nodes can still verify their authenticity by using PLA's public key signatures.
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WPLA  also  provides  support  for  confidentiality.  In  this  case  the  sender  creates  a 

separate hash chain, which is used as a keying material for symmetric key encryption. 

The sender periodically changes the encryption key by using the next element from the 

chain. Afterwards, the sender reveals the previously used symmetric key to the receiver 

by encrypting it with the receiver's public key. When the receiver receives an encrypted 

packet,  it  can verify their  integrity using either  the hash chain or signature method. 

However,  the  receiver  can  not  decrypt  those  packets  until  the  sender  reveals  the 

encryption key used.

While  wireless  PLA is  a  more  complicated  solution,  it  does  not  require  dedicated 

hardware for performing cryptographic operations. Therefore it is a suitable alternative 

to the full PLA in the early adoption phase.

9.4 Migration path to PLA

PLA does  not  require  support  from every node in  the network,  making incremental 

support possible as described in Section 5.1.1. 

PLA provides benefits to several parties, therefore migration paths originating from both 

the end users or small  operators,  and large operators are possible.  For example,  the 

flexible user authentication offered by PLA would be especially useful for small access 

network providers. It also allows companies that already manage user identities, such as 

banks and credit card companies, to enter a new field and manage user identities for the 

access network providers. In this case migration towards PLA would start from these 

companies and their users, and eventually grow into the global system envisioned in 

Section 7.1.

Larger  operators  could  deploy PLA inside  core  networks  to  utilize  QoS  and  other 

possibilities offered by PLA. For example, PLA can be used to implement a resilient 

control plane for the Internet without building a separate network. Afterwards, PLA can 

be gradually deployed to the forwarding plane.

Overall, it is reasonable to assume that PLA needs to achieve a critical mass after which 

widespread adoption would happen naturally. For example, since PLA simplifies the 

network security problem and saves resources in various ways, such as stopping attacks 
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quickly,  a  major  operator  that  is  already  using  PLA  would  save  resources  if  its 

customers would also adopt PLA. Therefore, the major operator could demand higher 

charges from its customer operators and users if they are not using PLA. Eventually, 

after the critical mass is reached, everybody would need to adopt PLA in order to get a 

network connectivity at a reasonable price.
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10. Discussion and future work

This chapter discusses various aspects of PLA and outlines future work. Overall, PLA 

offers strong technical-level mechanisms for securing the network infrastructure. PLA 

provides strong integrity protection and accountability and allows every packet to be 

independently verified by any node in the network. This work shows that mechanisms 

offered by PLA are technically solid, can be used in real-life environments, and also 

benefit higher-layer protocols and applications. 

Widespread adoption of PLA would have several implications on everyday life.  The 

increased security would make the network more efficient, and decrease the amount of 

Spam and other garbage on the Internet. Users would be able to use transparent, simple 

and secure authentication methods that do not require excessive manual intervention. 

For example, the user possessing a valid certificate would be able to log into wireless 

networks in all parts of the world without entering passwords or credit card information. 

Usage of cryptographic identities also makes identity management and delegation much 

easier. For example, it would be easy to delegate rights to use a computer or the network 

connection to another person in a secure manner.

With a strong technical-level solution in place, the next step is to create efficient and 

flexible policies to take full advantage of the security features offered by PLA. While 

this  work  has  also  covered  some  policy-level  issues,  i.e.,  necessary  types  of  TTP 

certificates, an example of scalable TTP trust architecture for the Internet, and examples 

of using PLA at higher layers, there is still a lot of work to be done in this area. For 

example, in some cases alternative trust management solutions, such as OpenID [85], 

can be used instead of the example TTP architecture.

Since  PLA  significantly  changes  the  security  and  accountability  properties  of  the 

Internet,  legislation  should  also  be  updated  to  take  this  into  account.  For  example, 

legislation should reflect that operators do not need to store information about the IP 

addresses used to achieve good accountability in the PLA-based network architecture.

As more and more personal information is transmitted over the Internet, privacy on the 

network becomes increasingly important. This work has outlined several mechanisms 

for achieving a good anonymity and privacy in a PLA-based network architecture, such 
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as the use of pseudonyms and the separation of user identity management and network 

provision.  However,  the  security  and  accountability  features  of  PLA can  be  easily 

misused,  therefore  a  great  deal  of  care  must  be  used  when  creating  policy-  and 

legislation-level mechanisms in order to achieve good privacy in the whole system. For 

example,  the user should be able to use multiple  cryptographic identities in parallel, 

access network providers should not be required to identify their users, the user should 

be able to choose the TTP provider independently from the access network, and the 

TTPs themselves must be well secured.

The  TTP  certificate  system used  by PLA is  flexible  and  there  are  several  options 

regarding certificate  validity times.  One possible  way to  further  improve  security is 

either to make normal TTP certificates revocable or reduce their validity time. The first 

alternative would be to keep the current validity time of hours, but make certificates 

revocable (thus other routers should verify the revocation status of the certificate). A 

second alternative would be to use irrevocable traffic certificates with a validity time of 

only a few minutes. Since the validity time is so short in this case, good security can be 

achieved without support for revocation of such certificates. The bandwidth required for 

requesting a new certificate and checking the revocation status of a certificate is roughly 

equivalent, in both cases two packets are sent containing a TTP certificate and some 

additional information. In the first case, nodes with whom the user is communicating 

must contact his TTP to check the revocation status of the user's TTP certificate, while 

in the second case, the user must contact his TTP frequently to renew his certificate. 

Thus overall, the load on TTPs is quite similar. However, in the first case where the 

TTP certificate has a longer validity time and can be revoked, the user can more easily 

attempt to attack his TTP by sending a large amount of garbage data to a large number 

of different recipients. Those recipients in turn would verify the validity of the user's 

TTP certificate and thus create a load on the user's TTP.

In order to offer protection against replay attacks, PLA-enabled routers should check the 

timestamps  of  packets  and  only forward  packets  which  have  not  been  significantly 

delayed.  Thus,  PLA assumes that  all  participating nodes have their  clocks somehow 

synchronized.  How strict  a  synchronization  is  necessary depends  on  the  policy and 

applications  used.  For  example  in  a  military  network  clocks  should  be  strictly 

synchronized,  but  in  a  normal  Internet  differences  of  a  few  seconds  would  be 

acceptable. While the clock synchronization can be managed easily with the Network 
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Time  Protocol  (NTP)  [84]  or  a  similar  solution,  in  certain  cases  the  clock 

synchronization requirement may cause some problems. A node might have an incorrect 

clock and it will  not be able to send data to the network, and therefore will also be 

unable to synchronize its clock. One way to overcome this problem is to allow limited 

traffic using certain protocols, such as NTP, even if the sending node does not have a 

properly synchronized  clock.  Use of encapsulation would also mitigate  this  problem 

since  only  the  router  in  the  access  network  would  see  the  incorrect  timestamp. 

Afterwards, the router would encapsulate the packet in its own PLA header containing a 

valid timestamp.

There are further ways to reduce the PLA's overhead. For example, an idea for selecting 

the cryptographic algorithm and the key length at runtime depending on the application 

is presented in [105]. The same idea could be used by PLA especially in a resource 

constrained networks. When a higher level of security is required, a sending node would 

apply a stronger PLA signature, and a weaker signature could be used when a lower 

level security is sufficient. Since such a mechanism requires that all parties support all 

possible cryptographic alternatives, it is not really suitable for the Internet but could be 

used in closed networks.

10.1 Additional uses of PLA

The strong security properties offered by PLA can also be used for various other tasks. 

Since the PLA header already includes information for calculating the sender's public 

key, PLA is suitable to be used together with Cryptographically Generated Addresses 

(CGA). A PLA packet along with an CGA IP address would provide proof that  the 

sender has the right to use his IP address. Actually, the principles of CGA addresses can 

be taken further. Including a subnet prefix in the CGA address calculation would tie the 

created address to the subnet, and offer proof that the user has the right to use a specific 

subnet.  This  would  benefit  mobility management  schemes  since  sending  a  mobility 

update with a bogus subnet prefix would become much more difficult. Furthermore, the 

MAC address of the network interface could also be derived from the public key. These 

mechanisms would simplify the network attachment process since there would not be a 

need for a separate IP address negotiation when entering the network, and prevent the 

MAC and IP address spoofing.
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To provide stronger protection against phishing attacks, cryptographic identities used by 

PLA could  be stored in  DNS records,  using the idea  of  HIP DNS extensions  [83]. 

Therefore, during the DNS lookup a client would receive a server's public key and could 

immediately verify whether  the  server  is  authentic.  The  TTP certificate  mechanism 

provides an additional way to verify that the server's public key is valid and authentic. 

The same principle can also be applied to subnets; when querying the subnet through the 

DNS, the client would receive the public key of the router that manages the subnet. This 

information can then be used to verify the authenticity of the network management and 

control messages.

The cryptographic hardware accelerator utilized by PLA can also be used to perform 

various  tasks  on  the  operating  system  and  application  levels.  For  example,  all 

documents such as web pages and spreadsheets could be automatically signed by their 

creators, and the file system could automatically sign all files stored on the hard drive. 

Basically, a traditional cyclic redundancy check (CRC) mechanism could be replaced by 

strong cryptographic signatures improving overall security. The performance would not 

be a problem in this case, since applications and operating systems operate on larger 

data blocks than IP networks. For example, if the Hardcopy accelerator that can perform 

850,000 verifications  per second would be applied to  verifying a file system with a 

standard 4 kilobyte  block size,  it  would be able  to  verify almost  4  GB of  data  per 

second. Such a speed is significantly higher than the performance of the hard drives.

10.2 Future work

As mentioned before, PLA requires efficient policies to utilize it fully. Important policy-

related questions include: how should the router handle packets whose senders have 

been  authorized  by  unknown  TTPs?  How  much  traffic  should  routers  reserve  for 

different  TTP  certificate  types?  What  percentage  of  packets  should  be  checked  at 

routers,  for  a  reasonable  security?  How  quickly  should  potential  hostile  nodes  be 

removed from the network? The answers to these question will depend on the network's 

usage,  for  example,  civil  and  military networks  would  have  very different  security 

policies, and other circumstances like whether the network is under attack.

The deployment process of PLA must be studied further. For example, standardization 

of  PLA's  core  functionality  would  help  future  adoption.  Furthermore,  the  future 
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deployment would benefit from the large-scale validation of the system taking various 

network environments into account, including wireless and sensor networks. It would 

also be beneficial to perform a more rigorous security analysis on potential higher layer 

protocols that utilize PLA.

The current PLA implementation is a proof of concept one, and can be significantly 

optimized. The hardware accelerator used by PLA can be improved by transferring the 

design  to  more  modern  and  faster  FPGAs.  The  current  performance  and  power 

consumption estimates are based on FPGA and Hardcopy ASIC simulations. An ASIC 

design on a more modern manufacturing process would offer more accurate information 

about the cost, performance and power consumption of the cryptographic accelerator.

Currently, a full TTP certificate contains a TTP public key and its locator which is a 

128-bit IPv6 address. Such a separate locator is necessary for contacting the TTP in the 

current solution. A more efficient solution could utilize a DHT overlay network. The 

public key of the TTP could be used as its DHT key and a DHT network would be used 

for  contacting  TTPs,  decreasing  the  space  requirements  of  the  TTP certificate.  The 

downside of such a solution would be increased latency when contacting TTPs.

PLA could also be combined with the Host Identity Protocol (HIP). In a such case PLA 

would guarantee the integrity of packets while HIP would provide confidentiality and 

support for mobility and multihoming. Combining HIP with PLA could also simplify 

HIP. The 4-way base exchange mechanism of HIP will not be necessary, since the PLA 

header already authenticates the initiator. PLA and HIP headers could also be merged 

into a single header to reduce bandwidth overhead.
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11. Conclusions

The security problems of the Internet are a result of its design, which lacked built-in 

security mechanisms and assumed that all network nodes are benevolent. In order to 

really improve  the security of the Internet  a novel  network-layer  solution  should be 

sought,  using  higher  layer  security  mechanisms  to  patch  up  the  drawbacks  of  the 

network layer is not enough.

This thesis described the Packet Level Authentication architecture and investigated its 

applications.  PLA is  a novel  way to  secure the  network infrastructure by providing 

availability  on  the  network  layer.  The  fundamental  principle  of  PLA is  that  every 

transmitted packet in the network has an undeniable owner and every node within the 

network can verify the authenticity and validity of the packet independently. PLA allows 

any node in the network to verify that a passing packet has not been modified, has not 

been delayed and is not a duplicate of another packet. This gives PLA an advantage 

compared to traditional end-to-end security solutions in which only the end points of the 

connection can verify the validity of the packet. 

PLA is based on public key cryptography and it protects every packet in the network by 

a cryptographic signature. PLA is compatible with existing IP networks and can be used 

together  with  other  security solutions,  such as  HIP or  IPSec;  PLA is  also a  natural 

security solutions for future data-oriented networking approaches.

The main benefit of PLA is that various attacks against the network and its users can be 

detected immediately. Hence, attacks can be confined before they can cause significant 

damage to the network. PLA also provides strong accountability that allows removal of 

malicious nodes from the network, and offers a way to catch culprits behind attacks 

without  extensive  data  retention  by operators.  Despite  the accountability features  of 

PLA, users are able to maintain their privacy through the use of pseudonyms.

Public  key cryptographic operations  consume a significant  amount  of  computational 

resources, but this work shows that PLA is scalable to high-speed networks and low-

power devices as long as a dedicated hardware accelerator is  used for cryptographic 

operations. The energy overhead of PLA is very insignificant compared to the overall 

energy cost of wired and wireless networking. Since various security problems, such as 
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unsolicited e-mail  and denial-of-service attacks,  waste a large amount  of energy and 

other resources, PLA often saves overall energy since it is able to stop attacks in a more 

efficient way.

The strong security mechanisms offered by PLA can also be utilized to enhance security 

at higher network layers. PLA can be used as an enabling technology to implement a 

flexible user authentication and Internet-wide roaming, and a system where incoming 

connections are denied by default without an explicit authorization.

Overall, this work has shown that PLA is a technically valid solution and is useful for 

several purposes. However, deployment and a commercial adoption of novel network-

layer solutions is always a significant challenge. Hence, future work should concentrate 

on real-life deployment issues and pave a way towards adoption of PLA.
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Appendix A: TTP certificate format

The high level structure of the certificate is presented below in the S-expressions format.

<cert>:: "(" "cert" <issuer> <subject> <identity>

<validity> <rights> <deleg> <sig> ")";

The  certificate  is  granted  by  <issuer> to  <subject>  and  <validity> 

determines  the  time  period  when  the  certificate  is  valid.  Fields  <rights>  and 

<deleg>  determine  what  rights  the  certificate  contains  and  which  rights  can  be 

delegated to other parties. Finally, there is an issuer's signature over the certificate. Each 

field is described in more detail below.

PLA uses identity-based implicitly-certified keys, thus the actual subject's public key is 

calculated using information present in a TTP certificate as described in Section 4.2, and 

the subject's public key is not physically included in the certificate.

The “issuer” field

<issuer>:: "(" "issuer" <issuer­details> ")";

<issuer­details>:: "(" "pub­key" <pub­key> "locator" 

<locator> ")";

<pub­key>:: <byte­string>;

<locator>:: <byte­string>;

The  <issuer> field consists of two elements, the public key of the issuer and the 

issuer's locator (e.g., an IP address). If the certificate is issued by a normal user instead 

of a trusted third party, the locator field is zero. 

The “subject” field

<subject>:: "(" "subject" <pub­key> ")";

Subject's  public  key  is  calculated  using  information  of  other  fields  of  the  TTP 

certificate. 

The “identity” field

<identity>:: "(" "identity" <id> ")";

<id>:: <byte­string>;
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This field contains a user's identity which is given by a trusted third party. The TTP 

gives  an unique identity to each of its users.

The “validity” field

<validity>:: "(" "valid" <not­before> <not­after> ")";

<not­before>:: "(" "not­before" <timestamp> ")";

<not­after>:: "(" "not­after" <timestamp> ")";

<timestamp>:: <byte­string>;

The validity field contains timestamps that determine the period when the certificate is 

valid.  Both  fields  <not­before> and  <not­after> are  always  present.  If  the 

<not­before> field is zero, the certificate is valid immediately. The <timestamp> 

uses Unix timestamp format and it contains number of seconds after 1st January 1970.

The “rights” field

<rights>:: "(" "rights" <bits> ")";

<bits>:: <string>;

The  <rights> field determines the rights given by the certificate. For trusted third 

party certificates, there are three different rights expressed as bits:

xxx1 – The right to delegate other rights.

xx1x – The right to request a new certificate.

x1xx – The right to send data to the network at a normal priority.

1xxx – The right to send data to the network at a high priority.

The “deleg” field

<deleg>:: "(" "deleg" <bits> ")";

This field determines which rights can be delegated to other parties. The format is the 

same as with the <rights> field:

xxx1 – The right to delegate the right to delegate rights.

xx1x – The right to delegate the right to request a new certificate.

x1xx – The right to delegate the right to send data to the network at a normal priority.

1xxx – The right to delegate the right to send data to the network at a high priority.

The aim of the first right is to let the issuer have more control over delegability of other 

rights. If the “rights” field is in a form of xxx1 and the “deleg” field is xxx1 then it 
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means that the rights can be delegated indefinitely forward. If the “rights” field is xxx1 

but the “deleg” field is xxx0 then the subject can delegate rights to another subject, but 

this another subject cannot delegate rights forward any more. If both fields are in a form 

of xxx0 then it means that no rights can be delegated to other parties. Thus, the issuer 

can allow rights to be delegated only once or indefinitely or not allow delegation at all.

The “signature” field

<sig>:: "(" "signature" <signature> ")";

<signature>:: <byte­string>;

The  signature  field  contains  the  <issuer>'s  cryptographic  signature  over  the 

certificate ignoring the <issuer> field.
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Appendix B: Certificate format for controlling incoming 
connections

The structure of the certificate is presented below in the S-expressions format.

<cert>:: "(" "cert" <issuer> <subject> <validity> <rights> 

<deleg> <sig> ")";

The  certificate  is  granted  by  <issuer> to  <subject>  and  <validity> 

determines  the  time  period  when  the  certificate  is  valid.  Fields  <rights>  and 

<deleg>  determine  what  rights  the  certificate  contains  and  which  rights  can  be 

delegated to other parties. Finally, there is an issuer's signature over the certificate. Each 

field is described in more detail below.

The “issuer” field

<issuer>:: "(" "issuer" <issuer­details> ")";

<issuer­details>:: "(" "pub­key" <pub­key> "locator" 

<locator> ")";

<pub­key>:: <byte­string>;

<locator>:: <byte­string>;

The  <issuer> field consists of two elements, the public key of the issuer and the 

issuer's locator (e.g., an IP address). If the certificate is issued by a normal user instead 

of a trusted third party, the locator field is zero. 

The “subject” field

<subject>:: "(" "subject" <pub­key> ")";

The subject field contains a public key of the subject.

The “validity” field

<validity>:: "(" "valid" <not­before> <not­after> ")";

<not­before>:: "(" "not­before" <timestamp> ")";

<not­after>:: "(" "not­after" <timestamp> ")";

<timestamp>:: <byte­string>;

The validity field contains timestamps that determine the period when the certificate is 

valid.  Both  fields  <not­before> and  <not­after> are  always  present.  If  the 
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<not­before> field is zero, the certificate is valid immediately. The <timestamp> 

uses Unix time format and it contains number of seconds after 1st January 1970.

The “rights” field

<rights>:: "(" "rights" <bits> ")";

<bits>:: <string>;

The  <rights>  field  determines  the rights  given by the certificate.  There are five 

different rights expressed as bits:

xxxx1 – The right to delegate other rights.

xxx1x – The right to send the data to the network.

xx1xx – The right to request a new certificate.

x1xxx – The right to create an incoming connection.

1xxxx – The right for session initialization management. This right might be necessary 

when creating an incoming connection.

 

The “deleg” field

<deleg>:: "(" "deleg" <bits> ")";

This field determines which rights can be delegated to other parties. The format is the 

same as with the <rights> field:

xxxx1 – The right to delegate the right to delegate rights.

xxx1x – The right to delegate the right to send data to the network.

xx1xx – The right to delegate the right to request a new certificate.

x1xxx – The right to delegate the right to create an incoming connection.

1xxxx – The right to delegate the right for session initialization management. This right 

might be necessary when creating an incoming connection.

The aim of the first right is to let the issuer have more control over delegability of other 

rights. If the “rights” field is in a form of xxxx1 and the “deleg” field is xxxx1 then it 

means that the rights can be delegated indefinitely forward. If the “rights” field is xxxx1 

but the “deleg” field is xxxx0 then the subject can delegate rights to another subject, but 

this another subject cannot delegate rights forward any more. If both fields are in a form 

of xxxx0 then it means that no rights can be delegated to other parties. Thus, the issuer 

can allow rights to be delegated only once or indefinitely or not allow delegation at all.
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The “signature” field

<sig>:: "(" "signature" <signature> ")";

<signature>:: <byte­string>;

The  signature  field  contains  the  signature  over  the  whole  certificate  with  the 

<issuer>'s private key.
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Appendix C: Format for certificate requests

<request>:: "(" "request" <subject> <validity> <token>  

<sig> ")";

<request>:: "(" "request" <subject> <validity> <sig> ")";

The certificate request contains subject's public key and requested validity time. The 

request  may also  contain  an  optional  authorization  token.  Token  field  is  explained 

below while subject and validity fields are identical to fields mentioned previously.

The “token” field

<token>:: "(" "token" <t> ")";

<t>:: <byte­string>;

This field contains an authorization token which may be present in a certificate request. 

The aim of the token is to guarantee that the requesting party has a right to request a 

certificate.
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Appendix D: PLA header

The PLA header is added on top of an IPv6 header using an extension header id 143, 

there was no specific reason for choosing this  number, it  was just a first id number 

available.  The next header and the header extension length (Hdr Ext  Len) fields are 

standard fields from the IPv6 extension header format, they contains the id of the next 

header and the length of the PLA extension header. The type field refers to PLA header 

type, 00 denotes a full PLA header while 01 denotes a lightweight header without the 

TTP certificate information. The size of PLA related fields in the header is 1024 bits 

(128 bytes). Since the length of the IPv6 extension header must be divisible by 64, the 

total size of the header with IPv6-related fields and padding is 1088 bits (136 bytes) as 

presented below.

 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Next header   |  Hdr Ext Len  |Typ|        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +

|     |

+     +

| Signature part of the TTP certificate     |

+ from which sender's public key is calculated (164 bits)   +

|     |

+     +

|     |

+                 +-+-+-+-+-+-+-+-+-+-+

|                                       |    Rights |   |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Del. rights|      |

+-+-+-+-+-+-+ Identity  (64 bits)     +

|      |

+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | Validity time (not before)  (32 bits)     |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|   | Validity time (not after)  (32 bits)          |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|   | Timestamp (32 bits)           |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|   |            |

+-+-+-+-+-+-+ Sequence number (64 bits)     +

|              |

+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |            |
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+-+-+-+-+-+-+     +

|       |

+     +

| Trusted Third Party public key (164 bits)     |

+     +

|         |

+     +

|     |

+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|         |     |

+-+-+-+-+-+-+-+-+-+-+     +

|                       |

+     +

| Trusted Third Party locator (128 bits)     |

+     +

|         |

+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|               |     |

+-+-+-+-+-+-+-+-+-+-+     +

|     |

+     +

| Sender's signature (326 bits)     |

+     +

|     |

+     +

|     |

+     +

|     |

+     +

|     |

+     +

|     |

+     +

|     |

+         +

|     |

+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                           |            |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +

|         Padding             |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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Below is presented a lightweight PLA header with the total length of 640 bits (80 bytes)
 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Next header   |  Hdr Ext Len  |Typ|     |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +

|     |

+     +

| Sender's public key 164 (bits)     |

+     +

|     |

+     +

|     |

+                 +-+-+-+-+-+-+-+-+-+-+

|                                       |     |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Timestamp (32 bits)   |       |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +

| Sequence number  (64 bits)     |

+       +-+-+-+-+-+-+-+-+-+-+

|       |     |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +

|     |

+     +

|     |

+     +

| Sender's signature (326 bits)     |

+     +

|     |

+     +

|     |

+     +

|     |

+     +

|     |

+     +

|     |

+     +

|     |

+         +-+-+-+-+

|                   |       |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       +

|   Padding     |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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