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Introduction

As highly reactive, the alkali metals are not found in elemental form in Nature. Al-
though certain alkali-metal compounds have been known since medieval times,
an alkali metal was isolated for the first time in 1807, when Sir Humphry Davy
extracted potassium through electrolysis of molten caustic potash (KOH) [1]. He
observed how the metallic luster of the element rapidly vanished as it reacted
with the water in the air and again formed hydroxide. Shortly thereafter he iso-
lated sodium from sodium hydroxide (NaOH) in a similar process [1]. Lithium
was discovered by J. A. Arfvedson in 1817 and soon isolated independently by
W. T. Brande [2] and Davy [3].

Also in the early 19th century, J. Fraunhofer invented the spectrometer and
used it to analyze hundreds of dark absorption lines in the optical spectrum of
the Sun [4]. In 1860 G. Kirchhoff and R. Bunsen published a study on chemical
analysis using a spectrometer [5], where they studied the flame test spectra of the
known alkali metals lithium, sodium, and potassium, and among other things
noted the bright yellow sodium D lines. This technique led to the discovery of
two new alkali metals, cesium and rubidium [6]. The study of spectral lines laid
the foundation for atomic physics and led to the Bohr atom model [7, 8].

The advances in vacuum technology during the late 19th century and early
20th century enabled experimental work in atomic physics. The first experiments
with molecular beams were performed by L. Dunoyer in 1911 [9], verifying that
sodium atoms travel in straight lines in vacuum. The molecular beam technique
was adopted and developed by O. Stern, which led to the classical Stern-Gerlach
experiments carried out during 1920-1923 [10-14]. These experiments proved
spatial quantization experimentally, demonstrated that silver atoms have an in-
trinsic angular momentum, and determined a value for the Bohr magneton.

Stern’s group continued its pioneering work with molecular beams and in 1933
O. R. Frisch reported the deflection of a sodium beam using resonant light from a
sodium lamp [15]. Although the radiation pressure on macroscopic surfaces had
been observed about 30 years earlier [16-18], this was the first demonstration of
radiation pressure on atoms and thus a ground-breaking step towards the field of
laser cooling and trapping.

In 1938 I. I. Rabi, who ten years earlier as a post-doc had worked in Stern’s lab-
oratory, invented the molecular beam magnetic resonance method [19, 20]. In this
method, a molecular beam passes through a homogeneous magnetic field strong



enough to decouple the nuclear magnetic moments from each other and from the
rotational moment of the molecules. A transversal oscillating field induces tran-
sitions to other magnetic states if its frequency is close to the Larmor frequency
of the nuclear moment in the strong homogeneous field. This new technique was
soon used to measure the hyperfine structure of the alkalis Li, K [21], Na, Rb, and
Cs [22]. In 1946 E. Bloch introduced the Bloch equations that describe how the
magnetization in nuclear magnetic resonance (NMR) evolves in time [23]. Much
of the formalism developed by Rabi and Bloch for NMR was later adopted to the
semiclassical description of laser-atom interaction as is described in Chapter 2.

The possibility of using the beam resonance method as a time and frequency
standard was considered by the Rabi group already in 1939 [24]. Ten years later
N. F. Ramsey invented the separated oscillatory field method [25, 26], which al-
lowed much narrower linewidths to be obtained. This method led to the first
practical laboratory cesium beam frequency standard in 1955 [27] and to the first
commercial model one year later [24]. Since 1967 the cesium atom is used to de-
tine the SI unit of time: “The second is the duration of 9192631 770 periods of the
radiation corresponding to the transition between the two hyperfine levels of the
ground state of the cesium atom 133" [24].

The method of optical pumping, i.e., the selective population or depletion of
certain atomic levels by absorption followed by spontaneous emission, was sug-
gested by A. Kastler in 1950 [28] and experimentally realized a few years later by
J. Brossel, Kastler, and J. Winter [29] and by W. B. Hawkins and R. H. Dicke [30].
These first experiments were carried out with sodium beams. Experiments in va-
por cells showed that alkali-wall collisions destroyed the polarization with nearly
100 % probability. Two techniques were developed to circumvent this problem:
the use of a buffer gas that increases the diffusion time between wall collisions
without destroying the polarization, and coating the inner cell walls with a nonre-
laxing material [31]. There was an extensive amount of work on optical pumping
in the 1950s and 1960s, e.g., measuring hyperfine structure intervals, Zeeman and
Stark splittings, as well as pressure shifts and different relaxation cross sections.
Many of these results are summarized in a review by W. Happer [31].

The maser (Microwave Amplification by Stimulated Emission of Radiation)
was developed in the 1950s and in the 1960s work with both hydrogen and ru-
bidium masers as frequency standards started [32]. In 1958 A. L. Schawlow and
C. H. Townes suggested the extension of maser techniques to the infrared and
optical region [33]. Soon the first optical maser, the laser (Light Amplification by
Stimulated Emission of Radiation), was realized using ruby as the active medium
[34]. The recently developed optical pumping technique enabled the achievement
of the population inversion required for lasing.

The development of tunable, narrow-linewidth single-mode lasers in the 1970s
was a major breakthrough in optical spectroscopy. In addition, the intense and
coherent light of the lasers gave rise to a whole new field, non-linear optics. The
possibility to use multiple phase-coherent laser modes also made it possible to
observe new coherence phenomena in atomic multi-level systems. One such phe-



nomenon is coherent population trapping (CPT), first discovered in sodium atoms
by G. Alzetta et al. in 1976 [35]. CPT occurs in atomic three-level A systems when
the atoms are pumped into a coherent, nonabsorbing superposition of the two
ground levels. The CPT resonances can be very narrow and are suitable candi-
dates for frequency references, as will be discussed in Chapter 5.

Laser cooling was proposed in 1975 by T. W. Hansch and A. L. Schawlow for
neutral atoms [36] and by D. J. Wineland and H. Dehmelt for trapped ions [37].
The first successful method to decelerate an atomic beam using a laser was the
so-called Zeeman slower, where the spatially varying magnetic field of a sole-
noid keeps the decelerating atoms resonant with the laser, developed and demon-
strated by W. D. Phillips and H. Metcalf in 1982 [38]. Optical molasses, the viscous
confinement and cooling (but not trapping) of atoms using radiation pressure was
demonstrated by S. Chu et al. in 1985 [39]. A major experimental breakthrough
occurred in 1987, when the first magneto-optical trap (MOT) was demonstrated
using sodium [40]. The MOT soon became a workhorse in the research of cold
atoms. Another milestone was the achievement of Bose-Einstein condensation of
rubidium-87 in 1995 [41]. During the past decade, one trend in atom trapping has
been the development of microscopic traps integrated on a surface, an atom chip,
see Chapter 6.4.

We have seen that the alkali metals have had an important role in optical and
atomic physics from the very beginning. The difficulty of handling these reac-
tive elements is outweighed by several beneficial properties. Their high vapor
pressures allow significant absorption at room temperature as well as simple gen-
eration of atomic beams. With a single valence electron they have a relatively
simple level structure. The transitions between the ground and the first excited
states are strong and lie in the visible or near-infrared regions, which have made
it easy to generate resonant light, first using alkali lamps, then using dye lasers
and more recently using inexpensive and readily available semiconductor lasers.
Their hyperfine structure and Zeeman sublevels make them well suited for ra-
diofrequency manipulation and creates multi-level systems that can be used to
observe nonlinear effects even at very low light intensities.

This thesis consists of seven chapters. Chapter 2 introduces the semiclassical
treatment of laser-atom interaction. A brief summary of the atomic and optical
properties of alkali-metal atoms and rubidium in particular is found in Chapter 3.
The topic of Chapter 4 is optical pumping in alkali-metal atoms and Chapter 5 de-
scribes coherent population trapping and its application for frequency standards.
Chapter 6 discusses laser cooling, with emphasis on micro-MOTs and atoms chips.
Chapter 7 summarizes the results and discusses their role within the framework
of related research.






Atoms in laser fields: semiclassical
description

In the semiclassical description of the interaction between laser light and atoms, a
classical electromagnetic field interacts with a quantized atom. After introducing
the density matrix, the simple case of a two-level atom interacting with a near-
resonant laser field will be considered as an example.

2.1 The density matrix

In textbook quantum mechanics all information about a pure state is given by the
state vector |¥), which can be determined, excluding the arbitrary overall phase,
by performing the measurements corresponding to a complete set of commuting
observables. However, a pure state is not the most general kind of state. In fact,
most systems observed in the laboratory are not in a pure state, but in a non-pure
or mixed state, also referred to as a statistical mixture of states. A frequent reason
is that only a part of the total system is observed. For example, for an atom that
undergoes spontaneous emission, it is usually neither possible nor desirable to
observe the state (wave vector and polarization) of the emitted photons. Although
the total system, the atom and the electromagnetic field, might be in a pure state,
the reduced system consisting of the atom alone will be in a mixed state.

To treat mixed states one needs to define the density operator or state opera-
tor [42, 43]. It can be written as

p= ZPi\lPi><lPi|f (2.1)

where, assuming that the states |¢;) are orthogonal, p; is the probability to be
in state |¢;). However, this way of writing the density operator as a statistical
mixture of pure-state density operators is not unique, but often there is natural
choice of states, e.g., the atomic eigenstates. The expectation value of an operator
O can be expressed as

(O) = }_pi(9ilOlypi) = TrpO. (2.2)
i
Some general properties of the density operator are:

5



e The density operator is normalized:' Trp = 1.
e The density operator is Hermitian (self-adjoint): p = pT.

e The density operator is positive: (¢|p|¢) > 0 for all |¢).

The evolution equation for the density operator can be derived from the Schro-
dinger equation and is given by the Liouville-von Neumann equation

ir% — [H, 0], (23)
where H is the Hamiltonian.

In practice it is often necessary to perform measurements on a large number
of identical systems in order to obtain an observable signal. All the systems are
generally not in the same state, but their statistical properties can be described by
the ensemble averaged density operator or statistical operator [44].2 The use of the
evolution equation (2.3) requires that all the systems have the same Hamiltonian,
so any summation over systems with different Hamiltonians must be performed
after the equation has been integrated [46].

The matrix representation of the density operator is called the density ma-
trix. It obviously depends on the basis {|¢,)} and its elements are given by
pij = (¢ilp|¢;). Often the terms density matrix and operator are used interchange-
ably.

The density matrix for a two-level atom in the basis {|e), |g) } is given by

p= (p“ Peg). (2.4)

Pge Pgg

The diagonal elements p,, and pge give the occupation probabilities of states |e)
and |g), respectively, and are hence called populations. For a pure state |¥) =
Ce|e) + cg|ihq), the populations are simply p;; = |c;;|. Still considering this pure
state, we see that in order for the nondiagonal matrix element p;; = cic;-‘ (i #j)to
be nonzero, the system must be in a coherent superposition of the two states |e)
and |g). Hence these elements are called coherences. If the system under considera-
tion is an ensemble, it is not enough that some of its members is in a superposition.
The phases of the individual members must be correlated, otherwise the matrix

element will average to zero in the ensemble average p;; = cic}k = |cic \ei(gi_"f ) [44].

2.2 Electric dipole interaction

As an example, we will study the interaction between a two-level atom and a
near-resonant laser field. The atomic Hamiltonian is

Ha = Ni(wele){e] + wg|2) (8]), (2.5)

This does not hold for an open (sub)system with decay to levels not included in p.

2Strictly speaking, an ensemble is the abstract infinite set of all systems that can result from a
particular state preparation procedure [45], but in practice it can be compared to measurements
performed on an ensemble of identical and noninteracting coexisting systems.

6



where fiw; is the energy of state |i). As the optical wavelength typically is several
hundred nm, while the effective size of atoms typically is less than 1 nm, one can
use the electrical dipole approximation to describe the atom-laser interaction,

V =—u-ER,1), (2.6)

where the field is evaluated at the center-of-mass position of the atom, R. The laser
field is described by a plane wave of frequency w and wave number k propagating
in the z-direction

E(R,t) = %ué’ei(“’t_kz) +cc., 2.7)

where u is the polarization vector, £ is the electric field amplitude, and c.c. stands
for complex conjugate. The electric dipole operator for the two-level atoms is

given by
0 I‘eg>
= , 2.8
H (,uge 0 (2.8)

The phase of the dipole element depends of the relative phase of the ground and

excited state wavefunctions, pre; = [ ¢ (r)erq(r)dr, and since the overall phases

are arbitrary, one can choose them so that y is real. For a two-level atom the dipole

moment is parallel to the polarization, and one can set preo - u = prge - u = pi.
Defining the two-level Rabi frequency

ué
O == 2.
=, 29)
the interaction Hamiltonian can be written as
hQ) Ceob—
V=== (le){gl + [8)¢el) <el(“’t k) 4 c.c.) : (2.10)

Using the total Hamiltonian H = Ha + V, the Liouville-von Neumann equa-
tion (2.3) gives the following evolution equations for the density matrix elements

% = iQ(0ge — peg) cos (wt — kz), (2.11a)
d .

ng = —iQ(pge — peg) cos (wt —kz), (2.11b)
d ' '

% = 10(pee — Pgg) cOs (Wt —kz) + ipgeWeg, 2.11¢)

where we have defined weg = w, — wy. One can get rid of the oscillation of the
optical coherence at the frequency of the laser field through a transformation to a
rotating frame pg, = pgee*i(“’f*kz). In addition, one usually employs the rotating
wave approximation®> (RWA) by neglecting terms oscillating at twice the optical fre-

3The term RWA originates from the equivalence between a two-level atom and a spin % in a
longitudinal static magnetic field interacting with a transversal oscillating field. The transversal
field can be decomposed into two components, rotating around the longitudinal axis in opposite
directions. If the frequency of the transversal field is close to the Larmor precession frequency of
the spin in the longitudinal field, the co-rotating component will follow the spin and be able to act
on it, whereas the counter-rotating component will rotate too rapidly relative to the spin to have
an appreciable effect and can be neglected.



quency, i.e., by setting e («“t=k2) cos (wt — kz) ~ % Note that if one wants to allow

for a complex Rabi frequency, Q = |Q[e?, it merely gives rise to an additional
phase shift in the transformation to the rotating frame.

If the atoms have a non-negligible velocity component along the direction
of the laser beam, this can be accounted for by using the convective derivative in
Eq. (2.3),

do [0 0
% _ (g T vzg) p. (212)

For moving atoms, using the RWA in the rotating frame, Egs. (2.11) become

dp Q. - i

dfe — ZE(PgE — peg) = —Qplge, (213&)
d Q B .
dp QO . ~

where ﬁfge denotes the imaginary part Im gg.. We see that the atomic resonance
frequency now has been replaced by the detuning 6y = w — w,g and that the
convective derivative included the Doppler shift —kv,. These can be combined to
the velocity dependent detuning 6(v;) = Jdp — kv,. The laser is said to be red-
detuned when Jy < 0 and blue-detuned when ¢y > 0.

2.3 Relaxation

Relaxation terms can be added phenomenologically to the evolution equations.
Spontaneous emission causes the excited state to decay at the rate I'. = I', whereas
the ground state is stable, I'; = 0. The relaxation rate for the optical coherence
consists of a non-adiabatic and an adiabatic part, I'g, = [pon-adiab- 4 adiab [37],
The term non-adiabatic refers to the fact that there is a net exchange of energy
with the environment, and this rate is obtained from the relaxation rates of the
populations, Fg?“'adiab' = 3(Te +Ty) = I'/2. The adiabatic part of the relaxation
is due to mechanisms that cause dephasing but no population transfer, such as
weak collisions, and will be considered in Section 5.3. With the relaxation terms,
Egs. (2.13) become

dpee

= = ~Op, — Tpee, (2.14a)
d .
% = Oph, + Tpee, (2.14b)
dp r . .0



2.4 Steady-state solution of the evolution equations

The steady-state solutions for Egs. (2.14) can easily be obtained by setting the time
derivatives to zero and using Tr p = pee + g = 1,

_ (0/2)?
Pee = ) T (T/22 1 2(0/27 (2.15a)
_ Pe) + (/2 + (Q/2) (2.15b)

P38 = 32(0) + (1722 +2(Q/2)7

A [6(v;) +i[/2]Q2/2
Pge = —52(02) (T[22 +2(0)2) (2.15¢)

A lot can be interpreted from these solutions. We see how both populations ap-
proach 1/2 if the laser intensity approaches infinity (strong saturation). The de-
nominators show that the power broadened linewidth is given by

0\? I
Tpower =T{/1+2( 5 ) =T4/1+, (2.16)
S

where we have defined the two-level saturation intensity Iy = mhcl /3A3 [47],
where c is the speed of light. The on-resonance saturation parameter is defined as
so = I/Is. As derived in Appendix A of Publication I, the imaginary part of the
optical coherence describes the absorption of an atomic vapor, whereas the real
part describes the refraction.

2.5 Time-dependent solution of the evolution equa-
tions

The time-dependent solution of Egs. (2.14) can easily be obtained by numerical
integration. Fig. 2.1 shows how the absorption (actually —ﬁige) approaches the
steady-state value given by Eq. (2.15¢) for the initial conditions pge = 1, pee =
pge = 0 at two detunings. At () = T, the Rabi oscillations are heavily damped at
resonance; off resonance a few oscillations can be seen.
The analytical time-dependent solution can be obtained using the Laplace trans-

form R(s) = |5 p(t)e*'dt. Using the initial conditions pge = 1 and pee = fge = 0,
Egs. (2.14) become

sRee = —ORj, — TR, (2.17a)

sRgg—1 = QR}, +TRe, (2.17b)
r . 0

SRge - - E + 15(02) Rge + lE(Ree - Rgg) (217C)
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Figure 2.1. Absorption (— ﬁfge) as a function of time for a two-level system with the initial

conditions pge = 1, pee = pge = 0 at resonance (solid line) and for 6 = I' (dashed line).
O=T.

The solution of this algebraic equation system is

2
Ree = 2(s+g) (%) D, (2.18a)
2 2
Ree = {(S-I—F) (s—l—%) + 6%(v,) —I—Z(s-l—g) (%) }D‘l,(2.18b)
Ree = —(s+7) {5(vz)+i<s+g)] %D‘l, (2.18¢)

where the common denominator is D = s* + 2I's® 4 [62(v,) + 502 /4 + %] s +
[(52(?}2) +T2/44+ 02/ 2| T's. If we can solve the roots s; of the equation D = 0,
we can write the solutions (2.18) as partial fractions R;; = Zézl Rijx/ (s — sk),
where the coefficients R;;x can be solved from R;j; = lims_.s, (s = sk)Rjj. The time
dependence is then given by

4
pij(t) = Y Rijre™. (2.19)
k=1

The exact analytic expressions for the roots s; are not very transparent. Simple
expressions can, however, be obtained in the following special cases:

e No spontaneous decay, I' = 0:

0? ,
Pee = W(l_COSQt)f (2.20a)
Do = —%Sinﬂ’t. (2.20b)
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The system undergoes undamped Rabi oscillations at the generalized Rabi
frequency () = vV Q? + 62, see Fig. 2.2(a). The amplitude of the oscillations
decrease off resonance.

e Weak intensity limit, ) < I*:

_ (9/2)? Tt ~,-Tt/2
Pee = 21 (T/2) (1 +e 2e cos 5t> , (2.21a)
i Q/2 I np(T _
1 _ o . — —
Pge = 2 (T/22 (T/2) {2 e 5 cos 6t —dsindt || . (2.21b)

Because the field is weak, the Rabi oscillations are heavily damped and oc-
cur only off resonance, at the frequency J, see Fig. 2.2(b). The figure also
shows that this approximation is good already for () = 0.1, except exactly
at resonance.

(@ 0.5 (b) . . :
o1l e
0.08}
0.06}
0
0.04}
0.02}}:
of e
-0.5 . . .
0 5 10 15 20
It

Figure 2.2. Absorption (—ﬁige) as a function of time for an atomic system with the initial
conditions pge = 1, pee = pge = 0. (a) No spontaneous decay: 6 = 0 (solid) and § = 20
(dashed). (b) Weak intensity limit, () = 0.1I': At resonance, the approximation (dashed)
rises slightly higher than the numerical solution (solid), but for § = 2I" the approximation
(dotted) and numerical solution (dash-dotted) cannot be distinguished.

2.6 Average over velocity distribution: Doppler broad-
ening

For a thermal vapor, the density matrix elements, steady-state or time-dependent,
must be averaged over the longitudinal velocity distribution

1 +oo — 02 /2
i = o [ i) oo, 222)
mp J —

11



where vyp = (2kgT/ m)!/2 is the most probable velocity. As an example, we
consider the velocity average of the steady-state solution for the imaginary part
of the coherence given in Eq. (2.15¢). Defining the integration variable x = kv,, it
becomes

FQ/4 /+00 e*xz/(kvmp)z

WBsele: = = o | (oo — 22+ (T/2)2 + 200722 ™ 223)

The resulting line shape is the convolution of the Lorentzian homogeneous line
and the Gaussian velocity distribution and is called a Voigt profile. The convo-
lution integral cannot be evaluated analytically, but if the Doppler width Awp =
2(In2)Y/ 2kvmp is much larger than the natural linewidth I', the exponential func-

tion will be approximately constant, e~/ (Komp)* ¢~/ (komp)® oyer the frequency
range where the Lorentzian is non-negligible. It can thus be taken out of the inte-
gral, which then can be integrated to give the Gaussian approximation

. VTQ/2 2/ (ko)
! - mp)”, 2.24
<pge>vz KOmp AT I/L I/Ise (2.24)

2.7 Absorption of a vapor

The absorption coefficient depends on the imaginary part of the optical coherence,
as derived in Appendix A of Publication I,

_ 2kNp 2kNu?

_ ~i _
“= 508 <|0ge>vz - Sth

(Pge)o.s (2.25)

where N is the number density of the atoms and ¢y is the permittivity of vacuum.
The absorption coefficient generally depends on the light intensity due to satura-
tion and optical pumping.
The absorption of light traveling in the z-direction in a medium is described
by the equation
dI(v,z)
dz
where I(v, z) is the light intensity at frequency v and a(v, I) is the absorption coef-
ticient at this frequency and intensity. If the absorption in the medium is small, the
intensity dependence and thus also the z dependence of the absorption coefficient
can be neglected and Eq. (2.26) can be integrated to give the relative transmission

=—a(v,I(v,z), (2.26)

T(v) = = et (2.27)

where Ij is the incident intensity and [ is the length of the absorbing medium.
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Alkali-metal atoms

The alkali metals have closed (filled) electronic shells with one valence electron.
The closed shells do not contribute to the electronic angular momenta, so the
atoms have the orbital angular momentum L = 1, spin angular momentum S ='s,
and total electronic angular momentum J = j. Here the capital symbols refer to
the angular momenta of the atom, whereas the lower-case symbols refer to those
of the valence electron. The total (electronic) angular momentum is J = L+ S
and so the corresponding quantum number | takes the values |L — S|, |L — S| +
1,...,L+ S. The states are labeled using the Russell-Saunders [47] or spectro-
scopic notation n*°1L;, where n is the principal quantum number of the valence
electron.

Because of the spin-orbit interaction, proportional to L - S, states with differ-
ent values of | have different energies. This so-called fine-structure splitting splits
the first excited state into the states n?P; /2 and n’Ps /2. The transitions from the
ground state n?S, /2 to these two states are known as the D; and D; lines, respec-
tively. From the point of view of laser spectroscopy, the fine-structure splitting is
very large, ranging from 0.5 THz for sodium to 16.6 THz for cesium, and thus the
two states are usually considered separately.

The level structure becomes a bit more complicated when one takes the in-
teraction between the total angular momentum of the electron J and the nuclear
spin I into account. These form the total angular momentum F = I +]J. Again,
states with different F, ranging from |I — J| to I + ], have different energies. This
is the hyperfine structure. The ground state is split into two hyperfine levels with a
separation of ~200-9200 MHz, depending on the particular element. The excited
state 2P /, is split into two hyperfine levels with a typical separation of the or-
der of 100-1000 MHz, whereas the 2P3 /, state is split into four levels with typical
separations of the order of 10-100 MHz.

Each hyperfine state is further split into 2F + 1 Zeeman sublevels, labeled by
the magnetic quantum number mr = —F, —F +1,... F. In the absence of a mag-
netic field these are degenerate, but a field lifts this degeneracy. For low fields the
Zeeman shift is approximately linear, AE = grupmprB, where gr is the hyperfine
Landé factor and up = efi/2m, is the Bohr magneton (e is the elementary charge
and 1, is the electron mass). The magnetic quantum number mr is the projection
of F on the magnetic field B; the field defines the quantization axis.

13



3.1 Light polarization versus quantization axis

In multi-level atoms, the orientation of the atomic dipole moment with respect to
the polarization of light has to be considered. The polarization experienced by the
atoms can be obtained by expanding the polarization vector of the light using the
spherical unit vectors [48]

U = :F%(ux tiuy), uy=u (3.1)
where u; is the direction of the quantization axis. The vectors u; correspond to
circularly polarized light (c*), whereas ug correspond to linearly polarized light
(77). As an example, a linearly polarized laser beam traveling in the u, direction
must be decomposed into its ¢ and ¢~ components and is referred to as ¢ light.

Because of the conservation of angular momentum, ¢ light drive transitions
with Amp = £1, whereas 7 light drive transitions with Amr = 0.

3.2 Rubidium

Rubidium has the atomic number Z = 37 and thus its electron configuration is
15%25%2p%3s23p®4523d104p®5s. Natural rubidium is an isotopic mixture of 3°Rb (rel-
ative abundance 72.17 %) with an atomic mass of 84.91178974 u and "Rb (relative
abundance 27.83 %) with an atomic mass of 86.90918053 u [49]. In principle only
85RD is stable, but 8 Rb has a half-life of 4.9 x 1010 years [49] and can for all prac-
tical purposes be considered stable, as it would take approximately 3 x 107 years
for its abundance to decrease by 1 %.

Since the two isotopes have different nuclear spins (I = 5/2 for ®Rb and
I = 3/2 for ¥ Rb), they also have different hyperfine splittings. The ground-state
hyperfine splitting of °Rb is 3.036 GHz, whereas that of 8Rb is 6.835 GHz. Also
the excited-state hyperfine splittings are approximately twice as large for % Rb.
The ground and the first excited states of ¥Rb and ®Rb are shown in Fig. 3.1.
The hyperfine splittings are calculated using the hyperfine constant values rec-
ommended in Ref. [50].

The natural linewidth is approximately 6 MHz for all the D line transitions
and the dipole moment of the closed transition |F = [ +1/2,mp = F) — |F =
F+1,mf = F') at 780 nm is ~2.5 x 107% Cm.

There are considerable differences between the different published vapor pres-
sure data and formulae for rubidium. A frequently cited source is Nesmeyanov’s
formula [51]

log(p/Pa) = log,,133.322 + A+ B(T/K) ' + CT/K + Dlog,, T/K,  (3.2)

where A = —94.04826, B = —1961.258, C = —0.03771687, and D = 42.57526
in the solid phase, and A = 15.88253, B = —4529.635, C = 0.00058663, and
D = —2.99138 in the liquid phase. The term log,,133.322 is added to convert from
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Figure 3.1. Level scheme for the ground and first excited states of 87Rb (3°Rb).

torr to Pa. However, it has been suggested that Nesmeyanov’s vapor pressures
may be in error by as much as a factor of 1.5 [52] and the 2008 CRC Handbook of
Chemistry and Physics [49] refers to Alcock et al. [53] and gives the formula

log(p/Pa) = 5.006 + A’ + B'(T/K) !, (3.3)

where A’ = 4.857 and B’ = —4215 for solid Rb (298-312.45 K) and A’ = 4.312 and
B’ = —4040 for liquid Rb (312.45-550 K). These equations reproduce the experi-
mental input data to +5 % or better in the temperature ranges mentioned, but the
experimental uncertainties may be larger [53].

At 298 K, the Rb vapor pressure is 5.2 x 10~7 mbar [53] (the value obtained
from [51] is about 25 % lower). It depends strongly on the temperature: a 1-K
increase (decrease) in temperature corresponds to about a 10 % increase (decrease)
in the pressure.

3.3 Collisions in alkali-metal vapor cells

At room temperature the rubidium number density N is of the order of 10® m—3

[53]. The cross section for Rb-Rb collisions is ogp.rp = 1.4 x 10717 m? [32], which
gives the mean free path /g, = 271/2(Nogprp) ' ~ 5m. As the typical dimen-
sions of atomic vapor cells are two orders of magnitude smaller, Rb-Rb collisions
are negligible compared to collisions with the cell walls.

For a typical vapor cell (diameter 25 mm, length 50 mm) the average time be-
tween wall collisions is about 70 us, whereas the excited state lifetime is 27 ns, so
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the probability of an excited atom colliding with a cell wall is small. The mean
kinetic energy for an atom at room temperature is (Ey)/h ~ 10' Hz. This is
small compared to the optical frequencies (104 ... 10> Hz) but large compared to
the ground-state hyperfine splitting (10% ... 10'° Hz). When an atom collides with
the cell wall it either sticks to it for some time, the average of which depends on
the temperature, or bounces elastically from the surface. For a bare glass surface
elastic collisions can be neglected and we can assume that complete relaxation
takes place, meaning that the atom loses coherence and that it will populate all
ground-state Zeeman sublevels (from both hyperfine states) with the same proba-
bility after the collision [32]. The rate of wall collisions is y = Avaye/4V, where A
is the surface area of the cell , V is the volume of the cell and vaye = (8kgT/ 7rm)1/ 2
is the average velocity [32]. For a cylindrical cell this becomes

1 R+L

Y= ﬁﬁvmpl (3.4)

where R is the cell radius and L is the cell length [32]. If the beam radius is smaller
than the cell radius, one should replace the cell radius by the beam radius, as
an atom exiting the beam inevitably collides with a wall before returning to the
interaction region.
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Optical pumping

Optical pumping refers to the redistribution of atomic level populations through
absorption of light followed by spontaneous emission. It can be divided into de-
population pumping and repopulation pumping [31]. Depopulation pumping is
due to selective excitation, e.g., the frequency of the light can be tuned to excite a
certain hyperfine ground level or the polarization can be chosen to address par-
ticular Zeeman sublevels. Repopulation pumping arises from spontaneous decay
of a polarized excited state. Different transition probabilities for decay to differ-
ent ground levels lead to a partially polarized ground state. In multilevel atoms,
many optical pumping processes are combinations of these two mechanisms. For
alkali-metal atoms, optical pumping is usually divided into hyperfine and Zee-
man optical pumping.

Note that some sources use the term polarization for any deviation from equal-
ly populated sublevels [31], whereas others use it only for states with a nonzero
magnetic moment and use the term alignment for the case of unequally but sym-
metrically populated sublevels [32]. In the latter case, polarization is typically
created by ¢ (or ¢7) polarized light, i.e., circularly polarized light traveling in
the direction of the quantization axis, whereas alignment is created by 7t or ¢ po-
larized light, i.e., linearly polarized light with the polarization vector parallel or
orthogonal to the quantization axis, respectively.

Optical pumping is the topic of Publications I-II. Coherent population trap-
ping (Publications III-IV) is a special form of optical pumping, where the atomic
population is pumped into a nonabsorbing superposition state of the ground lev-
els. Optical pumping is also responsible for the need of a repumping laser in the
magneto-optical trap (Publication V).

4.1 Optical pumping in alkali-atom Doppler spectro-
scopy

When one measures the Doppler-broadened D, spectrum of an alkali-metal va-
por, one notices that the amplitudes of the lines do not simply reflect the tran-
sition strengths and equilibrium ground-state populations even for intensities
much lower than the two-level saturation intensity, | < I. In particular, the
amplitude of the so-called A line (transitions from the lower hyperfine ground
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Figure 4.1. (a) o" excitation of the |F = 1) — |F’ = 1) transition in an atom with nuclear
spin I = 1/2. The magnetic sublevels belonging to each effective energy level are circled.
(b) The resulting three-level model.

mp= n, sublevels

level) compared to the amplitude of the B line (transitions from the upper level)
is noticeably smaller than predicted. This is due to hyperfine optical pumping,
which makes the relative contributions of the different hyperfine transitions vary
with light intensity and polarization, beam size and vapor cell length. In addition
to altering the amplitudes, optical pumping causes the center frequencies of the
Doppler lines to shift, as the contributions from the different hyperfine transitions
change.

Due to the hyperfine splitting and the magnetic sublevel structure of the alkali-
metal atoms, the number of involved levels is impractically high for an analytical
treatment. The number of levels can be reduced using the following assumptions:
(i) The excited-state hyperfine splitting is much larger than the natural linewidth
so that the laser field at moderate intensities (I < ) interacts with only one hy-
perfine excited state at a time. (ii) For a given excited state and polarization, we
average over the allowed Zeeman transitions to reduce the number of levels to
three. Fig. 4.1(a) illustrates this for ¢ excitation of the |[F = 1) — |F’ = 1) tran-
sition in a (fictitious) atom with nuclear spin I = 1/2. The ground-state sublevels
that are coupled by the light field form the ground state |¢) and the corresponding
excited-state sublevels form the excited state |e). The remaining ground-state sub-
levels, from both hyperfine levels, form the noncoupled state |n), to which atoms
can be optically pumped. The uncoupled excited state |¢’) can be neglected. C? is
the Zeeman-averaged transition strength and () is the two-level Rabi frequency,
both assumed to be real for simplicity. The excited state |¢) decays to the ground
states |g) and |n) at the rate I' with the branching ratios Aq and Ay, respectively
(Ag + A, = 1). These branching ratios are averaged over the sublevels of |e).

The parameters C?, Ag and Ay, as well as the number of sublevels ng, ny and
n., must be evaluated separately for different polarizations (7, o, o) and for each
hyperfine excited state. With the assumptions described above, the values will
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be the same for 7w and o light, even though the involved magnetic sublevels
and transitions are different. The numerical values are tabulated in Appendix C
of Publication II. At room temperature all magnetic ground-state sublevels are
equally populated and the thermal equilibrium populations (in the absence of
light) of the ground states are

i

P = L i=o,n. 4.1
A g (4.1)

4.2 Steady-state solution with ground-state relaxation

If we account for wall collisions using the relaxation rate y given in Eq. (3.4), we
can use the steady-state solution for the density matrix (Publication I). For the
three-level system in Fig. 4.1(b), the evolution equations in the rotating frame and
in the RWA are

d,oee

G = —COPe —Tpe, (4.22)
d .
d

Z;;n = AnFPee + 7 (Pnpgg — ngnn) , (4.2(:)
dpge r . N .CQ
ar {5 * 1‘5(02)1 Pge +i—~(Pec — Pgg). (4.2d)

The steady-state solution is obtained by setting the time derivatives equal to zero
and using the trace, Tr p = 1. The absorption is then governed by

(T/2)(CO/2)P
82(v,) + (I /2)*

where I" is the linewidth, broadened by saturation and optical pumping,

2
I = F\/l - (?) (2Pg + Py + %An). (4.4)

If A, # 0, optical pumping is significant at intensities a factor of I'/y lower than
saturation. For rubidium at room temperature and a beam radius of 10 mm this
factor is as large as 3000.

The velocity average in Eq. (2.22) can be integrated numerically, calculated
using fast Fourier transforms, or expressed using the complex error function [54]
as is done in Publication I.

Pre(02) = (4.3)

4.3 Interaction-time averaged optical pumping

The steady-state solution in Section 4.2 is convenient, but optical pumping is ac-
tually a transient effect and the density matrix should be averaged over the distri-
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(b)

Figure 4.2. (a) Geometry of the interaction region. (b) Interaction time distributions
pt(t|v;) for the velocity groups v, = 0 (solid), v, = Ump (dashed) and v, = 20, (dot-
ted). The average over v, is also shown (dash-dotted). R = 10 mm, L = 50 mm.

bution of interaction times between the atoms and the laser field (Publication II),

(pi)e(o:) = [ pilen, Dpe(tlo: . (45)

Only after this can the velocity average, Eq. (2.22), be evaluated.

4.3.1 Distribution of interaction times

When the atoms enter the interaction region determined by the laser beam and the
vapor cell, the ground-state populations obey Eq. (4.1). If we neglect the decrease
of the laser intensity over the length of the cell, we can assume that the internal
state of the atoms inside the interaction region at any time depends only on how
long they have interacted with the laser field. The distribution of interaction times
can be derived from the geometry of the interaction region and the atomic velocity
distribution.

We consider an atom at a position rg = (p cos ¢, p sin ¢, z) inside the interaction
region, defined by the radius R of the laser beam and the length L of the glass cell,
see Fig. 4.2(a). It is traveling in the direction fi = (cos ¢ sin 6, sin ¢ sin 6, cos §) and
has traveled the distance d inside the beam. Using the geometry, the distribution
of atoms inside the interaction region, and the conditional velocity distribution,
we can derive the distribution of interaction times for a fixed v, (Publication II),

1 R T2 T2 2 % T2
Pt(t’Uz) = [— {1 —e 2 [IO (—5) + 31 (—5) } +Ze 2L _122
T, f f ! f

xXO(t < T,). (4.6)
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Here I, is the nth order modified Bessel function of the first kind and we have
defined the characteristic transversal interaction time g = V2R / Ump and the
velocity-dependent longitudinal interaction time ©,, = L/|v;|. ©(T) is a truth
function, equal to one when T is true and zero otherwise. Fig. 4.2(b) shows this
distribution for different velocity groups. If L approaches infinity, only the last
term in Eq. (4.6) remains: the time distribution is independent of longitudinal
velocity and identical to the v, = 0 distribution in Fig. 4.2(b). This is also the
distribution obtained from a two-dimensional treatment. On the other hand, the
smaller the ratio L/R, the more the distributions for the different velocity groups
will differ.

A simpler distribution has been derived in Ref. [55] and used also in Refs. [56,
57]. However, it only considers the two transversal dimensions and holds for
the total time-of-flight through the beam, not for the interaction time of all atoms
inside the beam at a certain time.

4.3.2 Time-dependent absorption

In the time-dependent case, there will be no ground-state relaxation and the sys-
tem can be treated as an open two-level system neglecting the non-coupled state
|n). The density matrix equations are thus

d ¥

% = —COp, —Tpee, (4.7a)
Wss _ copl, + AT (4.7b)
o = OOt A -
dp r . .co

dtge = — {E -+ 15(02)] Oge + 1T(pee — 0gq)- (4.7¢c)

This equation system can be solved by numerical integration using the initial con-
ditions pge = Pg, pee = pge = 0. Fig. 4.3 shows —ﬁ(ige as a function of time for
two values of the detuning. For low intensities, () < T, the time dependence can
be divided into three regions: a rapid growth at small ¢, none or a few heavily
damped Rabi oscillations depending on the parameters, and then a slow decay
at the optical pumping rate. The slow optical pumping, compared to the atomic
lifetime, of several microseconds is in agreement with [58], where saturated ab-
sorption spectra were studied.

Obtaining the density matrix elements through numerical integration of Egs.
(4.7) and then evaluating the integrals (4.5) and (2.22) numerically makes the cal-
culation of complete absorption spectra extremely time consuming and is not very
convenient for comparison with experimental data. Another motivation for find-
ing an approximate analytical solution for Egs. (4.7) is that the numerical solution
tends to become unstable as the detuning |§| increases, unless the integration time
step is decreased.

A first estimate for the optical pumping rate can be obtained by assuming that
the optical coherence and the excited-state population follow the changes in the
ground-state population due to optical pumping. This approximation neglects the

21



0.06

0.06
0.05 0.051
0.04}
0.04
0.03}
0.03 0.02}
0.01}
0.02 )™ cQ)™
O L L PR L L
0 01 02 03 04 05
t (us)
0.01

0 10 20 30 40 50
t(us)

Figure 4.3. Numerically integrated absorption coefficient (actually —ﬁige) as a function of
time for 6 = 0 (black solid line) and § = I (red solid line). The analytical approximations
(black and red dashed lines, respectively) cannot be distinguished from the numerical
curves. The inset shows the initial rise and Rabi oscillations for small ¢. The time scales
(I/2)~!and (CQ)~! are shown. I/I; = 10~!. Figs. 43-4.6: C = P, = A, = 0.5, other
parameters as for 8Rb at T = 300 K.

initial rise and possible Rabi oscillations and is valid for t > Q=1 > T~ It gives
(Publication II)

(T/2)(CQ/2)P,
62(0,) + (I'/2)% 4 (CQ/2)>

Pye(t) = — e Topest, (4.8)

where the optical pumping rate is

(CQ/2)* A,T

52(v;) 4+ (T/2)% + (CQ/2)* (*9)

1—‘op,es’c -

We see that the expressions (4.8) and (4.9) lack the familiar factor of 2 in front of
the saturation term in the denominator.

The full time-dependence can be solved using Laplace transforms as in Sec-
tion 2.5. This leads to solving the roots of a fourth-order equation. The exact
solutions are not very transparent, but Publication II shows how to use series ex-
pansions to obtain the approximative time dependence

. 3
Pee(t) = Y Bje%i" = Bie®' + 2Re(Bye™), (4.10)
j=1
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where

2
A ()
ST = — 5 o)A/ 5/ (4.11a)
2 T [ T/2
0(v:) + (3)" + [2+ P2 (
AT £2i6(v 2
525 = —LTis(v,)— : 22) o (4.11b)
2 52(v;) + ) 2
and
L CO
5P,
B, = — - 2 22 8 5 (4.12a)
2 T 36 (Z)Z) (F/Z) cO
1 i5(v _Q
Bys = = [z Fid(v:)] 5 . (4.12b)
2 r *(o 2)75(r/2) ca
Y (UZ) + (2) + |:2+ 52(vz)+(r/2)2 Ai’l} ( 2 >
The optical pumping rate is I'op = —s1. Writing the root s; and the amplitudes

in this form, we can associate the terms 2(C()/2)? in the denominators with sat-
uration, whereas the terms that are proportional A, describes the effect of optical
pumping. Fig. 4.3 shows that this solution hardly can be distinguished from the
numerical solution.

4.3.3 Average over interaction-time and velocity distributions

With the time-dependence of Egs. (4.10—4.12), the average over interaction times
(4.5) cannot be evaluated in closed form. Hence we have to evaluate this integral
as well as the integral over the velocity distribution numerically.

Homogeneous lineshapes for different atomic velocity groups are shown in
Fig. 4.4. For a moderate intensity and large beam (I/Is = 10~! and R = 10 mm),
the lineshape, and in particular the amplitude, depend strongly on the longitudi-
nal velocity, see Fig. 4.4(a). The interaction time of atoms with small |v;| is limited
mainly by transversal motion, and they experience more optical pumping than
atoms with larger |v;|. Even after the lineshapes are scaled by the velocity dis-
tribution, there is a slight dip at zero velocity (right-hand figure). On the other
hand, for a lower intensity and smaller beam size (I/Is = 1073 and R = 1 mm),
the lineshape is practically independent of v, and no dip occurs, Fig. 4.4(b).

Fig. 4.5(a) compares the absorption coefficient, Eq. (2.25), obtained by numer-
ically integrating the time-dependent absorption, Eq. (4.10), over t and v, to the
one calculated using the steady-state approach (Section 4.2) for different intensi-
ties. The dependence on the beam radius is similar, see Fig. 4.5(b). The behav-
ior of the absorption coefficient can be described using the on-resonance optical
pumping rate [op(6 = 0) ~ A,(CQ)?/T, the inverse of the transversal interac-
tion time T 1= Omp/ V2R, and the ratio of cell length to beam radius L/R. For
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Figure 4.4. Homogeneous lineshapes (—ﬁige) for the velocity groups v, /vmp = 0,0.2,...,2.
The left figures show the lineshapes on top of each other, the figures on the right-hand
side show the lineshapes at their Doppler-shifted positions and scaled by the velocity
distribution, which is also shown (dashed curve, in arbitrary units). (a) I/Is = 107!,
R=10mmand (b) I/I; = 1073, R = 1 mm. L = 50 mm.

L/R>TandTop(d =0) < 11 !, the absorption coefficient is practically identical
to the result using the steady-state approach (see the highest curves in Figs. 4.5(a)
and 4.5(b)). When [op(6 = 0) ~ 13!, the difference between the amplitudes is
maximum (middle curves in Fig. 4.5(a) and second lowest curves in Fig. 4.5(b)).
Keeping the ratio of the two rates constant, the difference increases with intensity.
Finally, when T'op (6 = 0) > 1 !, the amplitudes are again close, but the curve
obtained using the time-dependent approach is clearly not a Voigt profile, but has
a flatter top or even a dip at the center (lowest curves in Figs. 4.5(a) and 4.5(b)).

Fig. 4.6 shows the absorption coefficients for different cell lengths. The curve
obtained using the steady-state approach is always a Voigt profile and its ampli-
tude increases when the length decreases (y increases, which counter-acts optical
pumping). In the time-dependent approach, on the other hand, atoms with a lon-
gitudinal velocity close to zero exit the interaction region mainly in the transversal
direction. They are therefore almost unaffected by the cell length, whereas atoms
with nonzero longitudinal velocity experience less optical pumping for shorter
cell lengths. Again, this causes a dip in the Doppler profile as the cell length ap-
proaches the beam diameter.
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4.4 Rubidium D, spectra

D line spectra for the alkali-metal atoms can be obtained by summing over all
transitions between the involved hyperfine levels. As an example, we consider
the D, spectrum of natural rubidium.

4.4.1 Position-dependent absorption

Equation (2.26) cannot usually be solved analytically for an intensity-dependent
absorption coefficient. It can be integrated numerically, or one can formally divide
the absorbing medium of length L into M thin slices of thickness d, L = Md. If
d is small enough, the absorption coefficient can be assumed constant over each
slice and the intensity after the jth slice is given by

[ =1 e 4 j=12..M, (4.13)

where I is the incident and I is the transmitted intensity. Fig. 4.7 shows the ru-
bidium D; spectrum for M = 50 and M = 1 using the steady-state approach (Sec-
tion 4.2). One can see that the effect is small for an absorption length of 50 mm at
room temperature, in agreement with recent theoretical results by Shin et al. [57].
As a large M makes the calculation of time-averaged spectra very time consum-
ing, the spectra in Section 4.4.2 have been calculated using Eq. (2.27).
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4.4.2 Transmission spectra

The dependence of the rubidium spectra on the parameters follow the behav-
ior outlined for a single transition in Section 4.3.3, but the lineshape details are
smeared out by the overlapping hyperfine transitions. Fig. 4.8 compares Rb D,
spectra obtained by numerically integrating Eq. (4.10) to spectra obtained using
the steady-state approach and by neglecting optical pumping but including satu-
ration. In Fig. 4.8(a) the optical pumping is strong, but the lineshape details seen
in Figs. 4.5(a)—4.5(b) are smeared out as each Doppler line consists of three over-
lapping transitions. In Fig. 4.8(b), Top(6 = 0) ~ T ! and the difference between
the two approaches to treating optical pumping is largest. The two curves are still
close compared to the spectrum neglecting optical pumping. Fig. 4.8(c) shows
how the two results again approach each other as the optical pumping is reduced
when the intensity and beam radius are decreased.

4.4.3 Doppler line shifts

The frequency shifts of the Doppler-spectrum minima as functions of different
parameters can be obtained using the steady-state approach (Section 4.2). Fig. 4.9
shows the shifts as function of intensity and beam radius. Of particular interest is
the different behavior of the A lines for 7 or ¢ versus ¢ polarization.

4.5 Comparison to related research

The influence of optical pumping on the absolute absorption on the rubidium D
lines has recently been experimentally studied by Siddons et al. [59]. They used a
linearly polarized laser beam without nulling or controlling the laboratory mag-
netic field. In this case, the polarization experienced by the atoms depends on the
local magnetic field, consisting of the field of the Earth and the fluctuating fields
caused by electronic equipment. Fig. 4.10 shows rubidium D, spectra obtained
using the time-dependent approach for parameters corresponding to Fig. 6 in [59]
and for the following cases: 7t or ¢t polarization, ¢ polarization, and randomly
distributed quantization axis (equal amounts of 7r, ¢ and ¢~)!. The more po-
larization components that are involved, the fewer uncoupled magnetic sublevels
there will be in the ground state and the less prominent the optical pumping will
be. The experimentally obtained spectrum in Fig. 6 of [59] agrees well with our
results for the following parameters: a polarization which consists of about 80 % o
and 20 % 7, and a vapor pressure about 10 % higher than that from [51] and about
20 % lower than that from [53]. This seems reasonable given the uncertainties of
the vapor pressure formulae, see Section 3.2.

!n this case, the only difference between ¢ and random polarization occurs for the |F = 1) —
|F’ = 0) transition of the 87A line, where the ground sublevel mp = 0 is uncoupled for ¢, but
coupled for random polarization.
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Figure 4.8. Rubidium D, spectra for 7t or ¢ polarization obtained from (4.10) (black
solid curves), using the steady-state approach (red dashed curves), and neglecting optical
pumping, but including saturation (blue dotted curves). (a) I/I; = 0.1, R = 10 mm, (b)
I/l=01,R=1mm,(c) I/l =0.01, R =1mm. L =50 mm, T = 300 K.

As pointed out in Publication I, Zeeman pumping can make the approach of
averaging over the mp sublevels fail for ¢ polarization. Some recent results [56,
57] indeed indicate that this is the case. Shin et al. show that for o™ excitation of
the cycling transition |F = [ +1/2) — |F' = F + 1), there is Zeeman pumping
to the mp = F sublevel, which causes the absorption to increase with intensity
before saturation sets in. On the other hand, Vanier has studied the effect of op-
tical pumping on the rubidium D; spectrum in the presence of a buffer gas and
observed good agreement between the three-level model and the experimental
spectra for both o and ¢ polarization [60]. This is apparently due to the lack of
cycling transitions in the Dj line, but there might be an additional depolarizing
effect by the buffer gas [31].

The method of averaging over the distribution of interaction times, Eq. (4.6),
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can be used also when the full system including all excited-state hyperfine lev-
els and magnetic sublevels is considered, although it would require considerable
computational effort. This would take into account both Zeeman pumping and
optical pumping that occurs via several close-lying excited levels simultaneously.
The latter has been reported to cause asymmetry of the absorption profiles [58], as
discussed in Publication I.
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Coherent population trapping

The phenomenon of coherent population trapping (CPT) was first observed by Al-
zetta et al. in 1976 [35]. In this work the fluorescence of sodium atoms pumped
by a multimode laser in an inhomogeneous magnetic field was studied. In com-
bination with an excited level the two hyperfine ground levels of sodium form a
three-level system in the so-called A configuration. A strong decrease in the fluo-
rescence was observed at the positions in the sodium cell where laser modes were
resonant with both of the Zeeman-shifted transitions of the A system. This gave
rise to terms like dark resonance and nonabsorption resonance. Soon it was theoreti-
cally shown that the dark resonances occur because the atoms are pumped into a
nonabsorbing superposition of the ground states [61, 62]. In 1979 Orriols reported
on the exact steady-state solutions for the density matrix together with a numeri-
cal analysis [63]. The actual term coherent population trapping arose in the early
1980s [64].

In addition to frequency standards discussed here, CPT has several other ap-
plications. Velocity-selective coherent population trapping (VSCPT) is used in
laser cooling [65] and CPT is utilized for lasing without inversion (LWI) [66, 67],
electromagnetically induced transparency (EIT) [68], slowing down light [69], and
in magnetometer applications [70-72]. An extensive review on CPT has been pub-
lished by Arimondo [64] and a review on precision spectroscopy using CPT by
Wynands and Nagel [73, 74].

5.1 Superposition states

The three-level A system used to describe CPT is similar to the one used to treat
optical pumping, but there is now one laser field coupling each of the ground
levels to the excited state, see Fig. 5.1(a),

1 .
Ej(R 1) = sui&e! i) ee, j=1,2. (5.1)

In the electric dipole approximation and the RWA, the interaction Hamiltonian is
then given by

_ % e—ilwnit—kizte1) 3y ¢ (wiat=kaz+¢2)13) (2| 4+ H.c., (5.2)

n,
V= 1| - =7
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where H.c. stands for Hermitian conjugate and the Rabi frequencies are (}; =
i3 - u;&i/ N, again assumed to be real.

Let us define the following two orthogonal linear superpositions of the ground
states, the coupled and the noncoupled states, which evolve in time as they are not
energy eigenstates,

1 . ‘
O = et (1) +elenttoDly)2)), (5.3a)
NC(t) = pe it (1) —elent+olay o)), (5.3b)

where

O =4/ +03. (5.4)

The transition dipole matrix elements between the coupled and noncoupled states
and the excited state are

<3’V‘C> _ _%ei(éltklzﬂpl) (Q%+Q%€i[6Rt—Ak2+A¢+¢(z)]), (5.5a)
<3‘V’NC> — _%ei((sltthﬂpl) (1 . ei[(SRthkZ+A<P+<p(Z)}> , (55b)

where the detunings from the optical resonances are 6; = wr; — ws; and the Raman
detuning is 0 = d1 — &». In addition, Ak = k1 — kp and Ap = ¢1 — ¢». We see that
at two-photon resonance (0g = 0) and for the phase condition ¢(z) = Akz — A¢,
the matrix element for the nouncoupled state is equal to zero. As both the coupled
and noncoupled states are populated by spontaneous emission from the excited
state, this causes a buildup of population in the noncoupled state.
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5.2 CPT frequency standards

Since the nonabsorbing state in CPT is a superposition of two ground-state sub-
levels, it is radiatively stable and the CPT resonance can be very narrow. The
possibility of using this resonance as a frequency standard was soon realized. The
tirst attempt to realize an all-optical—i.e., without a microwave cavity—frequency
standard based on the hyperfine splitting of sodium was presented in 1982 by
Thomas et al. [75]. In this experiment, two laser beams, each containing both
modes of the A system, were incident on a sodium atomic beam at two separated
interaction regions like in the Ramsey configuration, but without microwave cav-
ities. In 1993 Cyr et al. proposed a simple all-optical microwave frequency stan-
dard with only one interaction region, based on CPT using a diode laser frequency
modulated at a subharmonic of the 8 Rb hyperfine splitting [76]. A few years
later serious efforts in this field were started by Vanier, Godone, and Levi [77] and
Wynands et al. [73, 78-80].

Vanier et al. has worked with both a CPT maser [81] and a passive, optical CPT
frequency standard [82]. Both of these approaches have been further developed
and commercialized by Kernco Inc. [83, 84]. In collaboration with Wynands et al.,
the Hollberg group from NIST (National Institute of Standards and Technology,
CO, USA) started working on CPT frequency standards [85, 86]. The Hollberg
group has concentrated on developing a micro-fabricated chip-scale CPT clock,
where a vertical-cavity surface-emitting laser (VCSEL), the optics, the alkali cell,
and the detector are integrated in a package of volume 1 cm3 [87-89].

CPT based frequency standards have potential to be utilized in applications
where an intermediate step between the Cs atomic clock and crystal oscillators is
needed, such as in global navigation and telecommunications. A general review
on CPT based atomic clocks has been published by Vanier [60] and a review on
microfabricated atomic clocks by Knappe [90].

5.3 Buffer gas

The linewidth of the CPT resonance essentially depends on how long the atoms
can interact coherently with the laser fields. For a cell with pure rubidium vapor at
room temperature, the interaction time is limited by collisions with the cell walls,
or by the radius of the laser beam if this is smaller than the cell radius. For typical
cell sizes, the rate of collisions 7 is of the order of 10* s~1. One way to increase the
interaction time is to use a coating, e.g., paraffine [91], on the inner cell walls. This
makes the collisions soft and the relaxation rate can be decreased by as much as a
factor of 1000 [32].

Another technique to increase the interaction time is to use an inert buffer gas,
e.g., a noble gas or nitrogen. The alkali-metal atoms have to diffuse through the
buffer gas which reduces the rate of wall collisions. The buffer gas also reduces
any residual Doppler broadening, as the mean free path between collisions with
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buffer-gas atoms is shorter than the CPT wavelength (Dicke narrowing [92]') [94].

However, the buffer gas collisions also shift and broaden the lines as the inter-
action shifts the energy levels of the atom. The optical D, transitions experience a
red-shift of the order of a few MHz/mbar for Rb in the noble gases. The broaden-
ing is of the order of 10 MHz/mbar. This can be described as the collisions caus-
ing phase shifts in the radiation emitted or absorbed by the alkali-metal atoms.
The net phase shift causes the pressure shift, whereas the dispersion of the shifts
gives rise to the broadening.

When an alkali-metal atom collides with a buffer gas atom, the interaction
Hamiltonian can be expressed as [32]

Vap = U(r) + 6A(r)S -1+ 4(r)S-N+6(r)I- N, (5.6)

where it has been assumed that the buffer gas atom has no nuclear spin®. The
different terms will be explained in the following.

U(r) represents the electrostatic and exchange interactions and can be approx-
imated by a Lennard-Jones or 612 potential

Cn G
U(r) = 2T 67 (5.7)

where the second, negative, term represents the attractive dipole-dipole or van der
Waals interaction and the first, positive, term represents the repulsive interaction
that appears when the atoms are close enough for the electronic clouds to over-
lap. This potential causes the scattering phenomenon and can also give rise to
formation of van der Waals molecules. These molecules are formed by three-body
collisions, i.e., a rubidium atom collides with two noble gas atoms and forms a
molecule with one of them. The relaxation rate due to molecule formation is small
for the lighter noble gases but for krypton and xenon it can be dominating [32].
0A(r)S - I1is a shift in the hyperfine interaction AS - I, where A is the hyperfine
constant, due to a distortion of the orbital of the alkali S electron in the collision.
First, the van der Waals forces pull the electron away from the nucleus, which de-
creases the hyperfine interaction. Then, at smaller distances, the exchange inter-
action increases the electronic density at the nucleus and the hyperfine interaction
increases [32]. The net effect is a positive or negative pressure shift, depending
on the particular atoms involved. As highly polarizable, the heavy noble gases
Kr and Xe generally give rise to large van der Waals forces and thus a negative
pressure shift, JA < 0, whereas the lighter ones He and Ne are not very polariz-
able and cause a positive shift, A > 0 [31]. This effect does not cause transitions
between the hyperfine states, but the dispersion of the shifts causes broadening.

!Dicke narrowing occurs when the motion of the atoms is restricted to a region of space smaller
than the wavelength of the radiation. The collisions between the optically active atoms and the
buffer gas atoms must be elastic and the lifetime of the upper level has to be much longer than the
mean time between collisions. Thus the effect occurs mainly in the infrared and microwave range,
where both the wavelength and the lifetime are long [93].

2This is true for all noble-gas atoms, except for the following isotopes (natural abundance in
parenthesis): *He (0.00014 %), 'Ne (0.27 %), 3Kr (11.5 %), 12°Xe (26.4 %), 131 Xe (21.2 %) [95].
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¥(r)S - N is the coupling between the alkali-metal atom spin S and the angular
momentum of the colliding atom pair,

N = 11‘ X p, (5.8)
h
where r and p are the relative position and momentum of the two atoms. This
term is believed to be the main cause of relaxation [32].

¥(r)I- N is the coupling between the alkali-metal atom nuclear spin I and the
angular momentum of the colliding pair. The ratio of this interaction to the y(r)S -
N interaction is of the order of the ratio between the electronic and nuclear mass,
so for practical purposes it can be neglected.

As the buffer gas reduces broadening due to wall collisions, but causes an
additional pressure broadening, there is a certain buffer gas pressure that gives a
minimum linewidth.

The pressure and temperature dependence of the pressure shift is complicated,
but the shift of the hyperfine splitting can in a limited temperature interval around
a reference temperature Ty be approximated by [32]

SVngs = Po [/30 +60(T — To) + vo(T — To)?| - (5.9)

Here py is the buffer gas pressure at the reference temperature T and By, Jp and
Yo are coefficients that can be measured. For a multi-component buffer gas, the
contributions of the gases are simply added [91].

At higher alkali-metal atom densities (above room temperature for Rb), reab-
sorption of fluorescent light can destroy the ground-state coherence. In this case
one can use nitrogen to quench the fluorescence [31]. In a quenching collision,
the excitation energy of the alkali-metal atom is absorbed by the rotational and
vibrational degrees of freedom of the diatomic nitrogen molecule.

5.4 Electron spin exchange

When two alkali-metal atoms come close to each other due to their thermal mo-
tion, they can exchange their electrons or spins [32]: as the electron clouds overlap
it cannot be distinguished which electron belongs to which atom. This causes re-
laxation of both the ground-state populations and the ground-state coherence at
the rates
Y% = NUravelse (5.10)
and 6 +1
se __ se
72 T84
respectively [32]. Here N is the density of the alkali-metal atoms, vy ave is the aver-
age relative velocity of the two atoms, and o5, is the spin-exchange cross section.
The spin-exchange broadening sets a fundamental lower limit on the obtain-
able linewidth in alkali-metal vapor based frequency standards. Spin exchange

(5.11)
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collisions also cause a frequency shift which is proportional to the alkali density
and the population difference between the two clock levels. This is important in
atomic clocks which rely on a population imbalance between the two levels, but
negligible for CPT clocks as no population imbalance is created in this case [96].

5.5 Density matrix for CPT in a cell with buffer gas

For the interaction Hamiltonian in Eq. 5.2, the rapid time dependence of the den-
sity matrix equations can be eliminated using the following transformations:

P = ppe @uthiEte) - j=12, (5.12a)
b = plze*i[(wu*wm)t*(kl*k2)2+¢1*¢2]. (5.12b)
For the case of a buffer gas, the density matrix equations become
d ~i ~i
d
L= Ol + 2p33 + L (o2 = p11), (5.13b)
d
% = Oopys + 2P33 + 2 5 (P11~ p22), (5.13¢)
dap r« .. () Dy
% = - {7 + 151} 013 + 17(P33 —pn) — 172P12, (5.13d)
dap -« .. Q) ),
% = — {? + 1(52:| 023 + 172<p33 - PZZ) - 171()12, (5.13e)
dap s O,
R = —lya +i0k] pro+ i P — i s (5130

The excited state decays at the rate I', whereas the dephasing rate of the optical
coherences includes contributions from radiative dampening and collisions with
buffer gas atoms [97]: I'* is the collisionally broadened linewidth. The decay rates
for the ground-state populations and coherences are 71 and ;, respectively. For
simplicity, it has been assumed that the spontaneous emission branching ratios
and the equilibrium populations of the two ground states are equal.

For a typical frequency standard application, we can make the following as-
sumptions in order to simplify the equations [91]:

e The laser field is weak, ()1, < I',T"™.

e The excited-state population is small compared to the ground-state popula-
tions, p33 < p11,22, which implies p11 + p22 =~ 1.

e The Raman detunings considered are small compared to the optical line-
width, ér < T™.

e Adiabatic approximation: the optical coherences are assumed to evolve ra-

pidly and we can use the steady-state expressions obtained by setting Eqgs.
(5.13d-5.13e) equal to zero.
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By using these assumptions and defining the ground-state population difference
wy1 = p22 — p11 and the average optical detuning 5y = (61 + 02) /2, Egs. (5.13) are
reduced to

doss 1 M +05 B-032 2010 ,
—_— — —r 7
dt 0 o/ T 2 | 207 T T are AT e P
(5.14a)
dw 1 0?2 + 03
=2 = T+ 5r5 1 2 5 | W21
dt 20 1 + (260 /T%)
1 02 —0F 60
+ ot |, (5.14b)
dp1y 1 O+ , O2-0% 5 \].
—= = — |+ +i|dr+ =
at [’)/2 2" + (250/r*)2 R 1+ (250/F*)2 2 P12

1 00 . 00 5
~5r B2 2 D . (5.14¢)
1+ (250/T%) 14 (200/T*)°T

For the special case when §y = 0 and () = () = (), Egs. (5.14) simplify to

d 0? -

—5:3 = —FPBS + F(l + 2,012)/ (515&)
dw 0?

dpra Q. O

3 (’Yz + T +i0R | P12 — T+ (5.15¢)

We can define the pumping rate I, = Q?/2I'*, which creates a ground-state co-
herence without affecting the ground-state populations [91]. The steady-state so-
lution of Egs. (5.15) is

r +2r
o = 2B 1—orp 2 TR | (5.16a)
r O + (72 +2Ip)
w1 = 0, (5.16]3)
5 Lp (5.16¢)
= — —, déc
P12 Y2 + er + iR

and the imaginary part of the optical coherences becomes

~i p Y2 +2Ip ,
P _ L i=1,2. 5.17

Egs. (5.16-5.17) show that the full width at half maximum of the CPT resonance is
Awpwam = 2(72 + 2Fp). One can also see that the relaxation rate 7, determines
the contrast of the CPT resonance: the absorption vanishes completely for 7, = 0
only.
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One can also obtain the time-dependent solution of Egs. (5.15). For the initial
conditions p33(0) = wy1(0) = p12(0) = 0, we easily obtain wy;(t) = 0 and

1 — o~ (12 +2lp+idR)t

515(f) = —T - 5.18
pia(t) P, 2T, + idg (5.18)

whereas p33(t) is more complicated. Note that for g = 0, the time constant of the
coherence is directly related to the CPT linewidth.

In the general case (§y # 0 and () # (), the algebraic solution of Egs. (5.14) is
complex. One important feature is the light shift term in Eq. (5.14c), which shifts
the CPT resonance by

P2 -0 5

Awg = — =0

(5.19)

However, the theory leading to Egs. (5.14) assumed that each field interacts with
only one transition. Thus there will be a light shift due to the influence of each
tield on the other, nonresonant, transition even when the Rabi frequencies are
equal. Assuming ()1 = ) = () and wp; > JR, dp, I'*, this shift is approximately
Awis = 02/2(4.)21.

5.6 CPT frequency standard using *Rb

For the work of Publications III-1V, the D, line of ®Rb, Fig. 5.1(b), was chosen,
as laser diodes operating at 780 nm were readily available and because the modu-
lation bandwidth of edge-emitting diode lasers covers the ground-state hyperfine
splitting of 3.036 GHz. In frequency standards a A system involving the mr = 0
ground levels, which experience no linear Zeeman shift, is preferred. The differ-
ent Zeeman A systems are separated using a homogeneous longitudinal magnetic
field and o light, see Fig. 5.1(c). The |F’ = 3) excited state was chosen because
the transition probabilities for transitions from the two ground states only differ
by a factor of ~ 1.6, whereas for the |F' = 2) excited state they differ by a factor
of ~ 12.

5.6.1 Experimental setup

The laser source was a 780-nm commercial edge-emitting diode laser equipped
with an integrated microlens. The optical feedback from the closely mounted mi-
crolens ensures single-mode operation even under heavy current modulation and
improves both the beam geometry and the frequency tunability.

Edge-emitting diode lasers have intrinsically low intensity noise, which is ben-
eficial as the intensity noise at the detection frequency essentially determines the
signal-to-noise ratio. Since the two CPT laser modes are generated from the same
laser by frequency modulation, their frequency noise is nearly perfectly correlated
and has a negligible effect on the decay rate of the ground-state coherence [64].
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However, frequency noise can be converted to amplitude noise [98] and thus de-
crease the signal-to-noise ratio. In this case the frequency noise is determined
by the properties of the laser diode, as the optical feedback from the microlens
is too weak to narrow the linewidth. Fortunately the high output power of the
laser diode (~20 mW) and the properties of its cavity yield a relatively small fun-
damental linewidth of approximately 2 MHz. The power of the first-order red
sideband used as wy was 30 % of the carrier power.

The laser frequency was locked to the cross-over resonance between the tran-
sitions |[F = 2) — |F/ = 1) and |F = 2) — |F’ = 2) of the D, line using a laser
frequency stabilization scheme similar to the one described in Ref. [99]. This res-
onance was used as it gives the strongest signal and partially compensates the
—130 MHz pressure shift [100] caused by the buffer gas.

The experimental setup is schematically shown in Fig. 5.2. The clock part of
the optical setup consists of a Rb cell, polarization and beam-expansion optics and
a large-area, high-quantum yield (90 %) photodiode. The Rb cell is placed inside
a long solenoid, which generates a homogeneous 6-uT field that lifts the Zeeman
degeneracy. This is in turn enclosed by a magnetic shield. The laser beam is
expanded to give a nearly uniform intensity over the cell cross section.

to frequency |

measurement radiofrequency

—  locking

optical Ebﬁcell +
LD uLL isolator BS ND w4 L L Pultergas

m e [y noo:%o

solenoid magnetic
shield

PD

— laser locking /
M

Figure 5.2. CPT clock setup: LD = laser diode, yL = microlens, L = lens, BS = beam
splitter, ND = neutral density filter, A /4 = quarter-wave plate, PD = photodetector, and M
= MIrror.

5.6.2 Neon-argon buffer gas

The first-order temperature dependence of the pressure shift, Eq. (5.9), can be re-
duced using a mixture of two buffer gases having temperature coefficients with
opposite signs. Of the noble gases, He and Ne have positive temperature coef-
ficients, whereas Ar, Kr and Xe have negative.> He is not a practical choice be-
cause it easily diffuses through the cell walls and the heavy noble gases Kr and
Xe cause additional broadening due to the formation of van der Waals molecules,

3Ref. [101] gives the values for 87Rb, but it has been shown that the relative shift is the same for
the two isotopes 85Rb and 8Rb [102].
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see Sec. 5.3. For a Ne-Ar mixture the optimum pressure ratio pa,/pne ~ 0.87 is
obtained [101].

In a cylindrical Rb cell with a Ne-Ar two-component buffer gas the ground-
state coherence decay rate is given by [32]

(2

No, _ _
+ %(URb-I\Ie‘T%\I *PNe + URb-ArU? "Par) +

P DNeDAr

DnNepar + DarpNe
6141
8I+4

Y2 =

NRbTRb-RbTse, (5.20)

where the three terms originate from wall collisions, pressure broadening, and
spin-exchange collisions, respectively. A description of the symbols, their numer-
ical values and references are given in Table 1 of Publication III.

Minimizing Eq. (5.20) using the pressure ratio pa,/pne ~ 0.87 gives the opti-
mal partial pressures pa, ~ 16 mbar and pne ~ 19 mbar. These parameters give
a calculated CPT linewidth of év = 7,/7 ~ 17 Hz. The uncertainty is, however,
large due to the uncertainties of the experimentally obtained decoherence cross
sections and diffusion constants.

5.6.3 CPT resonances

The CPT resonances are very sensitive to saturation, as the coherence saturation
intensity is much smaller than the saturation intensity for the optical transitions
[64]. Brandt et al. [78] have measured the CPT linewidth in cesium as a function of
intensity with a minimum linewidth of 42 Hz. Their results indicate a coherence
saturation intensity of the order of 10 yW/cm?. Earlier a coherence saturation
intensity of 70 yW/ cm? has been reported for 87Rb [64]. In this work, saturation
broadening was avoided by using very low light intensities, < 1 #W/cm?, which
was possible due to the good noise properties of the laser source and the expanded
beam.

Frequency-modulation (FM) spectroscopy was used for frequency stabiliza-
tion. Typical experimental parameters were: 1.3 uW /cm? intensity, 325 Hz mod-
ulation frequency (between the 6th and the 7th harmonic of the line frequency in
order to minimize interference), and a modulation index of 0.4. With these val-
ues it was possible to obtain a reasonable signal-to-noise ratio in detection and
a sufficient feedback loop bandwidth. The lock-in amplifier output is shown in
Fig. 5.3(a) as a function of the Raman detuning.

In order to measure as narrow CPT resonances as possible, a very low inten-
sity of 0.3 uW/cm? was used. Using wavelength modulation spectroscopy the
resonances can be obtained directly through numerical integration of the lock-in
amplifier output signal, see Fig. 5.3(b). Lorentzian lineshapes were fitted to esti-
mate the FWHM of the resonances. The linewidth measured using a 19 Hz peak-
to-peak modulation amplitude is 23 Hz, corresponding to a Q-value of 1.3 x 108,
comparable to Q-values in cesium atomic clocks [103]. The poor signal-to-noise
ratio of the measurement with 10 Hz peak-to-peak modulation amplitude makes
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Figure 5.3. (a) FM spectroscopy signal of the CPT resonance. (b) CPT resonances of 23-Hz

and 14-Hz widths measured using a 5-Hz lock-in frequency and peak-to-peak modulation

amplitudes of 19 Hz and 10 Hz, respectively. The error estimates +0.5 Hz and +1 Hz

refer to the uncertainty in fitting, the overall uncertainty being larger especially for the

narrower line.

it difficult to determine the zero-level and thus to evaluate the linewidth. How-
ever, the linewidth is clearly below 20 Hz (Q-value 1.5 x 108), apparently the
smallest optically-induced hyperfine CPT linewidth measured and in good agree-
ment with the calculated linewidth of 17 Hz. The results of other authors include
42 Hz wide CPT resonances in cesium with neon buffer gas using a pair of phase-
locked lasers [78] and 128 Hz wide CPT resonances measured in cesium with neon
buffer gas using a single VCSEL, modulated to produce sidebands [80].

5.6.4 Frequency shifts
Light shift

The light shift of the CPT resonance was mentioned in Sec. 5.5. As the laser modes
are obtained through frequency-modulation, the effect of all the sidebands have
to be accounted for [104, 105]. The situation is further complicated by the fact
that there are four hyperfine excited-state sublevels, two of which (F/ = 2 and
F’ = 3) are coupled to both ground levels, thus contributing to the CPT. The F' =1
(F' = 4) excited level is coupled only to the lower (upper) ground level. Because
of the 400-MHz pressure broadening [100], all the excited levels are overlapping.

In Publication IV, the light shift was experimentally studied as a function of
total intensity, laser mode intensity ratio, and optical detuning. With a 50-MHz
detuning from the pressure-shifted |[F = 2) — |F’ = 3) resonance a linear in-
tensity dependence of 0.3 Hz(uW/cm?)~! was obtained. The dependence of the
CPT frequency on the laser-mode intensity ratio is shown in Fig. 5.4(a) and the
dependence on the detuning is shown in Fig. 5.4(b).
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Figure 5.4. (a) Frequency shift of the CPT resonance as a function of the laser-mode in-
tensity ratio. A linear fit gives a shift of —1.3 Hzx7. The total intensity was 2 yW /cm?
and the detuning was 50 MHz. (b) Frequency shift of the CPT resonance as a function of
the laser detuning from the —130-MHz pressure-shifted |F = 2) — |F’ = 3) transition.
The intensity was 1.3 yW/cm?. A linear fit yields a 1.4 mHz/MHz dependence on the
laser detuning. These shifts are generally not linear and the linear fits are valid only in the
small ranges studied here.

Pressure and temperature shifts

The pressure shift, described by the coefficient By in Eq. (5.9), is by far the largest
deviation from the unperturbed hfs frequency. The measured shift is 2.6 kHz,
in reasonable agreement with the 2.3-kHz shift that can be calculated using the
values from [102]. Even though the cells used in this experiment are produced in
the same batch, the observed frequency difference is 40 Hz, which is within the
limits of the +1 % pressure tolerance given by the manufacturer. The pressure
shift makes this type of an atomic clock a secondary frequency standard, as it is
necessary to characterize the frequency of each cell individually.

The Rb cell is thermally insulated but no active temperature stabilization is
used in order to avoid stray magnetic fields from e.g. Peltier-element currents.
Since the buffer gas mixture is optimized to minimize the temperature depen-
dence, the residual temperature dependence is caused mainly by the uncertainties
of the measured temperature shifts [101] and is expected to be small.

Magnetic field shift

The Zeeman-shifted energies of the alkali-atom ground-state sublevels can be cal-
culated exactly using the Breit-Rabi formula [32]

Ehfs 1 \/ 4mF
E(F,mp) = —= % o ugB.mp + = Epgey /1 2 521
(F,mF) 21 1) SiHeBeme S Ers 14 5 (5.21)

for F=141/2. Here
x = (g7 + 81)iBBz/ Engs, (5.22)
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where g7 is the nuclear g-factor, and Ey is the unperturbed hyperfine splitting
energy. When mp = 0, Eq. (5.21) is simplified and the 0-0 frequency for °Rb
(I =5/2) becomes

Eo.o(B:) = E(3,0) — E(2,0) = EpgeV/1 + 22, (5.23)

This shift is plotted in Fig. 5.5(a) using the unperturbed hfs frequency v =
3.035732440 GHz and the experimentally obtained g-factors g; = 0.293640 x 102
and g; = 2.002331 [32]. The measured shift agrees very well with the calculated,
except for an offset caused by the magnetic field of the Earth (the Rb cell was
incidentally aligned in the north-south direction, allowing the field of the Earth
to partially couple in through the optical windows). As the nonlinear Zeeman
shift has a relatively strong effect on the CPT resonance frequency, all unneces-
sary magnetic fields in the cell should be carefully minimized.
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Figure 5.5. (a) Nonlinear Zeeman shift. (b) Relative frequency stability (square root of
Allan-variance) of an RF signal generator locked to the 0-0 resonance (o). The stability of
a high-quality crystal oscillator (M) [106] and a commercial Cs atomic clock (A) are shown
for reference.

5.6.5 Frequency stability

As no better frequency reference was available at the time, another setup, essen-
tially identical except that the laser was stabilized using Zeeman locking [107],
was constructed in order to measure the frequency stability by comparing the
two setups. The relative frequency stability of an RF signal generator locked to
the CPT resonance is shown in Fig. 5.5(b) as the square root of the Allan variance.
The relative frequency stability of a free-running crystal oscillator and a commer-
cial cesium atomic clock are given for reference. The relationship describing the
relative frequency stability of the frequency synthesizer locked to the 0-0 CPT res-
onance is 3.5 x 1071 771/2 (1 s < t < 2000 s), and the best stability of 6.4 x 1071
is reached at an integration time of ¢ = 2000 s.
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The short-term stability was limited by the measurement technique used. Fac-
tors that are likely to limit the long-term stability include temperature fluctua-
tions, despite the temperature-compensated buffer gas, and external magnetic
fields.
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Laser cooling

6.1 Light forces

The forces exerted on atoms by light can be derived using the semiclassical for-
malism of Chapter 2. Using the Heisenberg equation of motion for the time-
independent Hamiltonian Hyx = p?/2m + Ha + V(r) on the position and mo-
mentum operators gives

dr i
5 = E[Htot,r]:%, (6.12)
d i
d—lt’ = = [Hiot,pl = =VV (1), (6.1b)

respectively. From Egs. (6.1) follows

d’r  dp
where F is the force operator. Taking the averages (expectation values) in some
time-independent Heisenberg state, one obtains

d*(r) _ d{p)
which holds in both the Heisenberg and the Schrodinger picture. The Ehrenfest
theorem [108] states that if the position probability distribution is small compared
to the length scale over which the force varies, we can replace the expectation
value of the force operator by its value evaluated at the average position,

(E(r)) ~ F({r)). (64)

When this is valid, the quantum-mechanical expectation values (r) and (p) obey
the classical equation of motion. This is essentially the same assumption as the
electric dipole interaction, Eq. (2.6), and also allows us to interchange the gradient
with the expectation value, yielding the force

E((r)) ~ =V (V(r)). (6.5)
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With V(r) as in Eq. (2.10), but with position-dependent Rabi frequency Q(r), and
applying the RWA the expectation value becomes

hQ) i(wt—kz)

(V1)) =Tr [pV(r)] = ——-(pege + pgeeWTR)), (6.6)

The force is then given by

F = 1, VQ — kO
B 2h6 2 (Q/2)2
NSV (E) K 27+ 2002

(6.7)

where Eq. (2.15¢) and the identity ((2/2)VQ = V(Q/2)? have been used.

The first term in Eq. (6.7) is the dipole force (also known as the reactive, disper-
sive, or gradient force). It is caused by the light shift of the atomic levels and is
proportional to the gradient of the intensity (I « Q?). Its sign is determined by
the detuning; red detuning corresponds to an attractive force, blue detuning to a
repulsive. For a plane wave the dipole force is zero, whereas a beam with a Gaus-
sian intensity profile creates a force in the two transversal dimensions. A simple
three-dimensional dipole trap can be created by a tightly focused red-detuned
laser beam.

The second term in Eq. (6.7) is the spontaneous force (also known as the dis-
sipative, absorptive, scattering, or light pressure force). It is due to the absorption of
photons from the laser beam followed by spontaneous emission. The spontaneous
emission is isotropic and there is thus a net momentum transfer in the direction of
the wave vector. Note that the spontaneous force can be written as Fs, = ikl 'pee,
i.e., the photon momentum times the scattering rate I'sc = I'p.

Although the spontaneous force always points in the direction of the wave
vector, its strength depends on the detuning, which for a moving atom depends
on the velocity. This can be used to slow down atoms. For a red-detuned laser
beam, atoms traveling opposite to the beam are shifted closer to resonance and
absorb more photons, whereas those traveling in the direction of the beam are
shifted away from resonance.

6.2 Magneto-optical trap

6.2.1 One-dimensional model

Consider an atom with the ground state J; = 0 and excited state [, = 1. In
a linearly inhomogeneous magnetic field, B(z) = bz, the excited-state sublevels
me = —1,0, and +1 (excited by ¢~, 7, and ¢ polarization, respectively) expe-
rience a position-dependent Zeeman splitting as shown in Fig. 6.1. Incident on
the atom are two red-detuned (6 < 0) laser beams: a ot polarized beam traveling
in the positive z direction and a ¢~ polarized beam traveling in the negative z
direction.
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Figure 6.1. One-dimensional MOT. Due to the Zeeman shift, an atom at z = z’ is closer to
resonance with the 0~ beam (|d_| < |64 |) and experiences a force towards the center. The
circular inset illustrates how an atom traveling to the left is Doppler-shifted into resonance
with the 0" beam and experiences a decelerating force.

As mentioned in Section 6.1, due to the Doppler shift an atom traveling in the
negative direction will scatter more photons from the beam propagating in the
positive direction, and vice versa. In addition, for an atom to the left of the origin,
the position-dependent Zeeman shift tunes the ¢ transition closer to resonance.
The total force on the atom is F = F; + F_, where the spontaneous forces exerted
by the two beams are

(Q/2)?
Fy = £hkl , 6.8
- 52+ (T/2)2 +2(Q1/2)? (6.8)
where the detunings of the two beams are
0+ = 0o F kv, F geupbz/n, (6.9)

where g, is the excited-state Landé factor. When the Doppler and Zeeman shifts
are much smaller than the detuning, the total force can be expanded to be linear
in v, and z

F = —Bu, — xz, (6.10)
where the damping coefficient is given by
— kT 50
B = 0 (6.11)

(3 + (T/2)2 +2(Q/2)7)?

and the spring constant by

_ Zepsb
K= o B. (6.12)

47



The first term in Eq. 6.10, the Doppler cooling term, is a viscous damping force.
This gave rise to the term optical molasses [39]. The theoretical limit for Doppler
cooling, the Doppler temperature or Doppler limit Tp = hI'/2kg, can be obtained
by equating the cooling rate to the heating rate associated with the atomic recoil
at absorption and emission and is typically of the order of 100 uK [47].

6.2.2 Three-dimensional MOT

A three-dimensional MOT can be realized using a quadrupole magnetic field, cre-
ated by a pair of coils in the anti-Helmholtz configuration, and three pairs of
counter-propagating beams, see Fig. 6.2. Although there is no simple theoreti-
cal model for the 3-D MOT, it is a robust trap: not very sensitive to small intensity
imbalances between the counter-propagating beam or impure polarizations.

For magneto-optical trapping of alkali-metal atoms, the strong and cycling D,
transition from the upper hfs ground level |F, = I 4 1/2) to the highest hfs level
of the P3,, excited state |F, = Fy + 1) is used. Although this transition is closed,
there is a finite probability to excite atoms to the lower hfs excited levels, mainly
|F, = F;), that leads to a loss of atoms through optical pumping to the lower hfs
ground level \Fé = [ —1/2). To solve this problem, another laser, the repumper, is
;c)unlid to the |Fg) — |Fg) or |Fy) — |Fg + 1) transition to optically pump the atoms
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Figure 6.2. Three-dimensional MOT.

6.2.3 DPolarization gradient cooling

A few years after the demonstration of optical molasses, temperatures much lower
than the Doppler limit were measured [109]. This is due to polarization gradient

48



cooling (PGC) [110], a cooling effect that relies on optical pumping between the
Zeeman sublevels of atoms as they move in the polarization gradient.

In the lin L lin PGC configuration, where the two counterpropagating beams
have perpendicular linear polarizations, the resulting polarization changes from
linear at45°, to o, to linear at —45°, to ¢~ over half a wavelength. This causes the
different Zeeman levels to experience different spatially-dependent light shifts.
In addition, the polarizations are such that a moving atom is likely to always be
optically pumped into the (locally) lowest Zeeman level. Hence it always “has to
move uphill” and loses kinetic energy, a process referred to as Sisyphys cooling.

Another type of PGC is the c"-0~ configuration. In this case, the resulting
polarization is always linear, but rotates spatially like a cork screw with a period
of one wavelength. A moving atom is unable to follow this polarization adiabati-
cally. Using a [J; = 1) — |Jo = 2) model, it has been shown that atoms traveling
towards the o beam will have a larger population in the m, = +1 state than in
the my = —1 state, and vice versa for atoms traveling towards the ¢~ beam [110].
This results in a damping force.

Polarization gradient cooling (also referred to simply as molasses cooling) is
usually applied as a separate stage after the atoms have been trapped in the MOT,
by turning off the magnetic field and increasing the detuning of the cooling laser,
see for example Ref. [111].

6.24 MOT loading

The first MOT [40] was loaded from an atomic beam decelerated by a Zeeman
slower [38], which is a fairly massive apparatus. The discovery that atoms could
be trapped in a MOT directly from a low-pressure vapor in a small glass cell [112]
was a great simplification and lead to a massive increase in the number of research
groups working with laser cooling. In both cases, the source of atoms was a piece
of alkali metal, either inside the oven that generated the atomic beam or in a sep-
arate part of the vacuum system, temperature-regulated in order to control the
vapor pressure.

Hot background atoms limit the lifetime of the MOT. This problem has been
solved by using a shutter to block the atomic beam after the MOT is loaded, or
by transferring a vapor-loaded MOT into a lower-pressure part of the vacuum
system through a differentially pumped line.

Today alkali-metal dispensers (AMDs) are the most commonly used source
of atoms. An AMD is a small metal container containing an alkali-metal chro-
mate and a reducing agent. When a dispenser in vacuum is heated above a thres-
hold temperature of several hundred °C by running a current of several amperes
through it, the reduction reaction starts and alkali-metal vapor is emitted through
a slit in the container. Dispensers were first used in a simple and inexpensive
vapor-cell MOT setup intended for student laboratories [113]. They were located
relatively far from the trapping region and operated continuously to provide a
sufficient background pressure.
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Alkali-metal dispensers can also be used in pulsed mode [114]. In this case the
dispensers are usually located a few centimeters from the MOT and the thermal
atoms emitted from the dispenser are prevented from impacting the MOT cen-
ter by a thin wire in front of the dispenser slit or, in the case of atom chips, see
Section 6.4, by mounting the dispensers “behind” the edge of the chip. A large
number of atoms (of the order of 10%) can be loaded into the MOT using a cur-
rent pulse of the order of 10 s and after five to ten more seconds the background
pressure can be low enough to facilitate magnetic trapping [115-117]. However,
this requires a good base pressure, large vacuum pumps, and careful design of
the vacuum system, otherwise repetitive MOT loading will lead to an increased
background pressure due to alkali-metal atoms that adsorbs to the cell walls and
are pumped away very slowly.

Another method to quickly modulate the alkali metal pressure for MOT load-
ing is light-induced atom desorption (LIAD) [118]. In this method, there is a low
alkali metal pressure in the vacuum chamber and a pulse of light is used to desorb
atoms from its inner walls. Reported methods include desorption from stainless
steel [118] and glass [119] using white light from a halogen bulb. Later ultraviolet
light has been used [111]. In Ref. [111] it was also reported that desorption from
quartz glass is not efficient enough, which was solved by adding a helix of Pyrex
into the cell. Improved LIAD performance has also been reported using a pyrex
cell coated with polydimethylsiloxane, a polymer with a very low adsorption co-
efficient [120].

6.3 Magnetic traps

In an inhomogeneous magnetic field B, an atom with a magnetic moment u expe-
riences the force

F=V(u-B). (6.13)
If the magnetic field is sufficiently strong, the magnetic moment will follow the
changes in the field adiabatically, and the force simplifies to F = uVB. Lo-
cal magnetic-field maxima are forbidden [121], but atoms in so-called low-field-
seeking states, i.e., states with positive Zeeman shift, can be trapped in local min-
ima. Magnetic traps are relatively shallow and are typically loaded with atoms
from a MOT or optical molasses.

The quadrupole trap, consisting of two identical coils with opposite currents,
like the quadrupole field in the MOT, is the simplest magnetic trap. The drawback
with this trap type is that the magnetic field is zero at the center, which at lower
temperatures leads to trap loss through Majorana spin-flip transitions.! The most
commonly used trap type with non-zero magnetic field everywhere is the Ioffe or
Ioffe-Pritchard trap. The basic design consists of four rectilinear currents that cre-
ate a two-dimensional quadrupole field. Two circular end coils with the currents

IProcesses where an atom passes through a region of weak magnetic field where adiabatic
following is not fulfilled and ends up in another magnetic sublevel when it re-enters a region of
stronger field.
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running in the same direction provide the axial confinement and the non-zero
field in the center [47].

Magnetic traps can be realized also using permanent magnets. Of special in-
terest is here traps based on magnetic thin films, where the trapping potential
is obtained by adding an external magnetic field to the stray field from the do-
main pattern of the film. For a film with out-of-plane magnetization (preferred
direction of magnetization normal to the surface), the stray field can be calculated
using the equivalent current density [122]: a boundary where the magnetization
reverses its direction corresponds to a current sheet with a total current I = 2Mh,
where M is the magnetization and # is the thickness of the film. As an example,
a quadrupole field can be created above the film surface by writing a circular do-
main of reversed magnetization into the film, corresponding to a circular current

“coil”), and superimposing an external field normal to the surface.

6.4 Atom chips

Microscopic magnetic traps based on planar current geometries were first sug-
gested by Weinstein and Libbrecht in 1995 [123]. Miniaturization makes it pos-
sible to achieve large magnetic field gradients using relatively modest currents.
The first experimental results were obtained using free-standing wire traps loaded
from ordinary magneto-optical traps [124, 125]. The use of a so-called mirror MOT
made it possible to collect the atoms in the near vicinity of an atom chip, a mi-
crofabricated wire structure on a planar substrate [126, 127]. This development
eventually led to Bose-Einstein condensation in surface microtraps [116, 119].

Several problems associated with atom chips based on current-carrying wires
have been reported. Fragmentation of the atomic clouds in the traps has been ob-
served [128, 129]. This is due to deviations of the current path inside the wires that
cause a varying longitudinal magnetic field component parallel to the wires [130].
These deviations have later been shown to be caused by local properties of the
wire, such as inhomogeneous conductivity or top surface roughness, and not
only the roughness of the wire edges [131]. Another problem is technical radio-
frequency noise in the wires [128, 129]. Noise at the Larmor frequency of the atoms
cause spin-flip transitions to untrapped Zeeman sublevels and noise at harmonics
of the trap frequencies cause heating. A more fundamental problem is the trap loss
at small distances that is caused by thermal current fluctuations (Johnson noise)
in the conducting solid [132-135]. Also the issue of ohmic power dissipation must
be addressed.

Atom chips based on permanent magnets offer several advantages. Ohmic
heating and technical noise are lacking completely. Several different technolo-
gies have been investigated. Floppy discs have been used to create atom mir-
rors [136-138] and audio- and videotape has been used for atom mirrors [139],
and to produce BEC in microtraps [140]. However, the tape has to be patterned
outside the vacuum chamber and because of the in-plane magnetization, arbi-
trary two-dimensional patterns cannot been created. Other approaches include

51



an atom mirror created using an etched hard disc [141] and atoms traps, used for
Bose-Einstein condensation, based on a hard disc with a periodic magnetization
perpendicular to the plane [142].

Also permanent magnetic films have been used. One method is to have the
film cover only part of the chip. This can be achieved by applying the film se-
lectively [143] or by removing parts of the film by cutting or lithographic pat-
terning [144, 145]. Both methods have been successfully used for Bose-Einstein
condensation. Another possibility is to use magneto-optically patterned films. In
this case the film is first magnetized in one direction perpendicular to the sur-
face. By selectively heating spots above the Curie temperature while applying a
weak external field in the opposite direction, the magnetization of the heated spot
will flip. An early experiment with an atom mirror consisting of a periodically
magnetized magneto-optical (M-O) TbFeCo film was successful, but the regions
of un-flipped polarization contained striped domain patterns due to heat conduc-
tion [146]. Micrometer-scale M-O patterning of multilayer Co/Pt films designed
for atom trapping has also been reported [147], but apparently not used for actual
trapping.

A clear advantage of wire traps over permanent magnet traps is of course that
the currents, and thus the fields, can be varied in time. With M-O films, an addi-
tional degree of freedom can be achieved if the film can be rewritten and erased
inside the vacuum chamber, preferably during the experiment.

Regarding trap loss due to thermal currents, previously used M-O films have
been metallic or have relied on a metal top layer to collect atoms in a mirror MOT,
so the main advantage has been that the metallic layers have been thin compared
to those used on wire chips. On the other hand, if we can use a dielectric magnetic
tilm, the trap would be free of not only technical, but also thermal noise, as the
dielectric does not affect the atoms significantly until the attractive Casimir-Polder
potential [148, 149] limits the trap depth [135].

Atom chips loaded from a mirror MOT require a reflective metal top layer that,
albeit thin, will cause some thermal noise. A transparent dielectric M-O film that
could be loaded from a standard MOT, on the other hand, would be completely
free from conducting layers.

Unfortunately, fragmentation of the atom cloud has been reported also for per-
manent magnet atom traps based on video tape [150], a hard disc platter [142], and
the edge of a TbGdFeCo film [151]. For video tape, the corrugation of the poten-
tial is due to small, deep holes in the surface of the tape, probably formed during
manufacture, and appears at a distance of 50 ym from the surface [150]. Also for
the hard disc platter, the imperfections were attributed to manufacture and frag-
mentation occurred for distances below 40 ym [142]. For the TbGdFeCo film, the
corrugation was due to long range inhomogeneity in the film magnetization and
not the irregularity of the film edge [151]. The inhomogeneity was mainly caused
during the vacuum bake-out and could be reduced by a factor of 10 by remagne-
tization, although the corrugation still remained larger than for microwires [131].

For M-O films, no results concerning corrugation of the potential has been
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reported. The problem of deterioration of the magnetization during bakeout can
be solved by magnetizing the film inside the chamber, but corrugation due to the
finite size of the magnetic domains is to be expected.

6.5 Microscopic magneto-optical traps

The purpose of the microscopic MOTs reported in Publication V was to demon-
strate the potential of transparent dielectric permanent-magnet films for atom
chip applications.

6.5.1 Ferrite-garnet films

Magnetic garnets are ferrimagnetic insulators that are transparent over a broad
spectral range [152]. In Publication V, a thin film of the bismuth-substituted fer-
rite garnet (BiYTmGd);(FeGa)501; is used. Itis fabricated on a 500 pm Gd3GasO12
(gadolinium-gallium-garnet, GGG) substrate using liquid phase epitaxy (LPE).
The GGG substrate is transparent and paramagnetic. The ferrite garnet (FG) film
is ferrimagnetic with the preferred direction of magnetization normal to the sur-
face (out-of-plane magnetization). The minimum domain size is less than one
micrometer [122].

The 1.8-ym thick FG film has a saturation magnetization of approximately
20 mT and a coercivity larger than 10 mT. A boundary where the magnetiza-
tion M reverses its direction can be modeled as carrying the equivalent current
I = 2Mh =~ 60 mA, where h is the film thickness. The film can be patterned using
a magnetic recording head or magneto-optically. Also all-optical switching of the
local magnetization has been demonstrated [152].

The FG is transparent at near-infrared and infrared wavelengths (absorption ~
10 % at 780 nm) and exhibits large Faraday rotation of visible light, which makes
it possible to image the domains using polarization spectroscopy. Details about
the FG films can be found in [122].

6.5.2 Experimental setup

The vacuum system is shown in Fig. 6.3. It consists of a custom-made six-way
cross with the glass cell, where the actual experiments take place, attached to the
bottom and a large viewport on top. The other ports are occupied by the ion
pump, the titanium sublimation pump (TSP), the ionization gauge for measuring
the pressure, and the all-metal valve, which closes off the turbomolecular pump,
backed by a membrane pump, and the nitrogen valve used to vent the chamber
before it is opened.

After the initial pump-down, the vacuum chamber is covered with heating
tapes and insulated with aluminum foil. The voltages of the heating tapes are
slowly ramped up until the temperature of the glass cell is just below 200 °C
and the other parts around 210 °C. Then the chamber is baked for a few days
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Figure 6.3. Vacuum system: VP—viewport, [IP—ion pump, TSP—titanium sublimation
pump, IG—ionization gauge, AMV—all-metal valve, TP—turbomolecular pump, MP—
membrane pump, and NV—nitrogen valve. Coils: AHC—anti-Helmholtz coils and CC—
compensation coils. Optics: OH—optics head, RH—retro-reflection head, and CCD—
CCD camera. The inset on the left shows the FG film inside the cell, the one on the right
the dispenser assembly.
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with the turbopump running. During the bakeout all filaments (dispenser, ion-
ization gauge, and TSP) are degassed thoroughly. Then the ion pump is started,
the all-metal valve is closed and the temperature of the chamber is slowly ramped
down. Once room temperature is reached, the pressure has dropped to about
5 x 1071 mbar and after using the TSP it drops below the minimum pressure
1 x 10~ mbar of the ionization gauge. Fig. 6.4 illustrates the vast range of atomic
densities encountered in atom cooling and trapping.

N (cm*)4

10®+ solid material

1021<>

1019: gas at atmospheric pressure
1017:
]

| Bose-Einstein condensate
10130

10"+ maximum density in MOT
T Rb vapor pressure at room temperature

10° +
107 +

10° 4 ultra-high vacuum 10" mbar

Figure 6.4. Atomic densities in atom cooling and trapping.

The lasers are located on another optical table. The cooling light is produced by
three single-mode diode lasers injection-locked to a transmission-grating external-
cavity diode laser [153], locked one natural linewidth below the |F = 3) — |F =
4) transition of ®Rb. The three beams are coupled into polarization-maintaining
single-mode optical fibers and delivered to three compact optics heads, contain-
ing beam expansion optics, quarter-wave plates and photo diodes to monitor the
beam intensities, see Fig. 6.3. The three beams are retro-reflected by similar heads.
The repumping light is created by a separate laser locked to the |F = 2) — |F = 2)
transition and coupled into one of the optical fibers. The anti-Helmholtz coils for
the MOT are mounted close to the glass cell, and the larger compensation coils,
used to null the background field, are square-shaped in a cubical configuration in
order to enable optical and physical access to the cell. Two CCD cameras are used
to image the trapped atoms parallel and perpendicular to the surface of the FG
film.

A scanning mirror is used to magneto-optically pattern the FG film inside the
chamber and a polarization-microscopy (PM) setup is used to image the magnetic
domain patterns using the CCD camera that is aligned perpendicular to the film.
The scanning mirror and PM setup are not shown in Fig. 6.3.
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The MOTs were loaded from rubidium vapor produced by a Rb dispenser
above and slightly behind (on the substrate side) the FG film, see the insets in
Fig. 6.3. During the experiments, it was heated continuously with a relatively low
current.

6.5.3 Results

Atoms were trapped in a number of different micro-MOTs as well as in arrays of
micro-MOTs. Because of the small spatial extent of the quadrupole field created
by the magnetized pattern, the capture volume of the micro-MOTs is small and
only around 7 x 10* atoms could be trapped. By adding a weaker but more ex-
tended quadrupole field using the anti-Helmholtz coils, the capture volume was
increased and the number of trapped atoms exceeded 10°.

When the auxiliary quadrupole field was not used, atoms could be trapped
in micro-MOTs 3 mm apart, as far as the size of the MOT beams allowed. More
closely adjacent multiple micro-MOTs could be loaded with the auxiliary quadru-
pole field centered at the MOT array. Using purely optical patterning [152], pat-
terns of reversed magnetization could be added to increase the number of micro-
MOTs in the array.

The magneto-optical trapping is quite insensitive to the exact geometry (cir-
cular, square-shaped etc.) of the magnetized pattern. We were also able to trap
atoms in a ring-shaped trap above a toroidal pattern, Fig. 6.5(a—c). By modulating
the x and y components of the external field created by the compensation coils,
the trap could instead be translated around the toroid, Fig. 6.5(d-g).

(d)

Figure 6.5. (a) Toroidal magnetization pattern. (b) Front view of the trapped atoms. (c)
Side view of the trapped atoms. The left-hand image is the reflection from the chip surface
and can be used to determine the distance of the atoms from the surface. (d—g) A MOT is
translated around the toroid.
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Conclusions

In this thesis, different aspects and applications of alkali atoms, in particular ru-
bidium, in atomic and optical physics have been studied.

In Publication I, the significant influence of optical pumping on the Doppler-
broadened D-line spectra of alkali-metal vapors is shown. The atomic system with
numerous sublevels is reduced to an effective three-level system, and an analyt-
ical expression for the absorption of the atoms is derived by taking into account
the finite interaction time and collisions with the vapor-cell walls in the form of
ground-state relaxation. The result gives physical insight on the significance of
optical pumping compared to saturation, and constitutes a computationally effi-
cient way to compare theoretical spectra to experimental results.

Publication II deals with the same topic as Publication I, but considers the dy-
namics of the optical pumping process. A distribution for the interaction times of
all atoms momentarily interacting with the laser field is derived from the three-
dimensional geometry and the atomic velocity distribution. The time-dependence
of the atoms entering the laser beam is solved numerically and an analytical se-
ries approximation is obtained. The time-dependent absorption is then averaged
over the interaction-time and velocity distributions to obtain absorption spectra.
The coupling between the Doppler shift and the interaction times through the
longitudinal velocity of the atoms gives rise to velocity-dependent homogeneous
lines and dips in the Doppler-broadened spectra. The interaction-time-averaged
approach can be directly applied to the complete system including excited-state
hyperfine sublevels and Zeeman sublevels with more numerical effort only.

In Publications III-IV, an all-optical atomic clock is realized using coherent
population trapping in rubidium. A buffer-gas mixture was optimized for nar-
row CPT resonances with reduced temperature dependence, and the theoretical
predictions were later verified by an experiment where ultranarrow CPT reso-
nances below 20 Hz were measured, apparently the narrowest optically induced
hyperfine CPT resonance ever measured. The narrow linewidth was made pos-
sible by the the good noise properties of the diode laser and by using a very low
light intensity. The Q value of this resonance, 1.5 x 108, is comparable to Q values
in cesium clocks and the stability of the CPT clock is sufficient for many high-
precision applications.

Publication V demonstrates trapping of Rb atoms in microscopic magneto-
optical traps a few hundred micrometers from the surface of an optically trans-
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parent permanent-magnet atom chip. The required magnetic fields are created
by magnetic patterns magneto-optically written into the ferrite-garnet film. The
transparent chip allows the use of a conventional MOT geometry, as one of the
beams pass through the chip. The magnetic patterns can be erased and re-written
in situ even during the experiments. Magnetic traps with a trap depth up to 1 mK
could be realized using this type of atom chip.
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Abstracts of Publications I-V

I

IT

ITI

IV

Using a three-level model and semiclassical density matrix formalism, we
show that optical pumping influences both line positions and amplitudes
in Doppler-broadened alkali-atom D; and D; spectra for intensities much
lower than the two-level atom saturation intensity. The influence on the
D, spectrum is particularly interesting due to the presence of closed hyper-
tine transitions unaffected by optical pumping. This effect is of importance
for example when lasers are frequency stabilized using linear absorption or
when the alkali-atom vapour pressure is determined using absorption mea-
surements.

We study the influence of optical pumping on Doppler-broadened alkali-
metal-atom D line spectra by solving the time-dependent density matrix for
an open two-level system. The time-dependent absorption is averaged over
the distribution of interaction times obtained from the three-dimensional
beam geometry and atomic velocity distribution and over the longitudinal
velocity distribution. The optical pumping is significant at much lower in-
tensities than saturation and depends strongly on the intensity, beam radius,
vapor cell length, and spontaneous-decay branching ratio. The result is in
agreement with our earlier steady-state solution for a wide range of param-
eters and predicts two interesting line-shape features.

An all-optical RF standard based on dark states of Rb atoms has been
developed. With this system we were able to measure ultra-narrow op-
tically induced hyperfine dark resonances below 20Hz (Q-value > 1.5 X
10%). The frequency of a signal generator was stabilized to the dark reso-
nance giving a relative frequency stability (square root of Allan variance) of
3.5 x 10711771/2 (1s < t < 20005s). The best stability reached at an integra-
tion time of t = 2000s was 6.4 x 10713, which is sufficient for many high-
precision applications. The frequency shifts caused by various experimental
parameters were also studied.

An all-optical microwave frequency standard based on coherent population
trapping (CPT) in Rb is developed. The CPT resonances are detected by an
ordinary edge-emitting diode laser in a simple optical setup. A buffer-gas
mixture is carefully optimized to yield a narrow linewidth and a reduced
temperature dependence of the resonance frequency. With the developed
system we are able to measure ultranarrow optically induced hyperfine CPT
resonances at < 20 Hz, which is in good agreement with the linewidth cal-
culated from experimental parameters. The frequency of an RF-signal gen-
erator has been stabilized to the CPT resonance between the two mp = 0
magnetic sublevels. The relative frequency stability (square root of Allan
variance) follows a slope of 3.5 x 10~ 7712 (1 s < T < 2000 s). The best
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stability of 6.4 x 10712 is reached at an integration time of T = 2000 s. This
stability is sufficient for many high-precision applications. Frequency-shift
measurements were made to evaluate the frequency dependencies on the
operation parameters.

We describe experiments on the trapping of atoms in microscopic magneto-
optical traps on an optically transparent permanent-magnet atom chip. The
chip is made of magnetically hard ferrite-garnet material deposited on a di-
electric substrate. The confining magnetic fields are produced by miniature
magnetized patterns recorded in the film by magneto-optical techniques. We
trap Rb atoms on these structures by applying three crossed pairs of coun-
terpropagating laser beams in the conventional magneto-optical trapping
geometry. We demonstrate the flexibility of the concept in creation and in
situ modification of the trapping geometries through several experiments.

67



Erratum

In Publication II, the caption for Fig. 9 should read:

Rubidium D, spectra for 7t or ¢ polarization obtained from Eq. (22) (black solid curves),
from [16] (red dashed curves), and neglecting optical pumping, but including saturation
(blue dotted curves). (a) I/Is = 0.1, R =10mm, (b) [/l = 0.1, R = 1 mm, (c) [ /Iy = 0.01,
R=1mm.L=50mm, T = 300 K.
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