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Abstract
The theory of photon correlation is an established part of quantum electronics. However,
recently reported divergences in the theory of time correlated detection of photons show that
important details of cavity photon statistics are still incompletely understood. The quantum
jump superoperators of the SD photon counting model given by Srinivas and Davies (1981 J.
Mod. Opt. 28 981–96 ) do not fulfil the assumption of the bounded interaction rate. This has
raised doubts about the consistency of the SD photon counting model and especially about the
existence of coincidence probability density (CPD) functions (Dodonov et al 2005 J. Opt. B:
Quantum Semiclass. Opt. 7 99–108). In this work, we start from the first principles of the
quantum trajectory theory and show how the different coincidence probability densities and
coincidence probabilities (CPs) have to be calculated. CPDs derived by us are well defined,
and CPs are finite and correctly normalized for all fields with finite photon number expectation
value. Furthermore, we show that the SD model reproduces photon bunching and antibunching
phenomena when consistent derivation for the second-order coherence degree is used.

1. Introduction

Although photon detection theory is considered as a well-
known theory, some details such as the coincidence photon
counting probabilities of cavity photon statistics are still
incompletely understood. These problems were recently
pointed out by Dodonov et al [1] who reported divergences in
the coincidence probability densities (CPDs) of cavity photon
counting.

In their seminal work on cavity photon counting Srinivas
and Davies [2] introduced one-count and no-count quantum
operators by making a number of intuitive postulates which
guaranteed the consistency of their photon counting model
(SD model) with the general principles of quantum optics
and quantum measurement theory. Later Ueda et al [3, 4]
elaborated the SD model by calculating the time evolution
of photon statistics for a selected single-mode cavity fields
and also provided a microscopic theory of the SD model by
discussing the interaction of the cavity field with an atomic
beam. Their approach, based on the perturbation theory,
gave the same expressions for the one-count and no-count

operators as in the original work of Srinivas and Davies [2].
Ueda et al [3] also discussed some of the surprising (from the
classical physics point of view) features of photon statistics
within the framework of quantum optics and quantum theory
of measurement. They pointed out, in particular, that the
two-fold increase of the expectation value of the number of
photons predicted by the SD model after detecting one photon
from a thermal field state is both intuitively understandable
and quantum-mechanically correct since the measurement will
project out the vacuum state from the pertinent mixture of Fock
states.

The SD model gives a photon counting rate that is
proportional to the expectation value of the number of photons.
Recent experiments agree with the predictions of the SD model
[5, 6]. Parigi et al [5] measured the statistics of a thermal
field light pulse after photon addition and photon subtraction.
They added or subtracted a photon to/from the light pulse and
measured the photon statistics of the pulse with a homodyne
detector (see [5] for details). They were able to show that
after subtracting a photon from a thermal field the expectation
value of the number of photons doubled as predicted by Ueda
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et al [3] using the SD model. Furthermore, Parigi et al [5]
verified experimentally the non-commutativity of the bosonic
annihilation and creation operators (i.e., [â, â†] �= 0) and
showed that the simple view of the classical particle addition
and subtraction is incorrect in this case. The results of Parigi et
al show that the photon-added and the photon-subtracted states
are given by â†ρ̂â and âρ̂â† (unnormalized), respectively, as
predicted by the SD model.

Although the recent experiment [5] agrees with the
predictions of the SD model, the SD model has been previously
reported to be inconsistent [1, 7]1. As a consequence, the E
model was introduced [1, 7]. The E model is obtained from
the SD model by replacing the bosonic annihilation (â) and
creation (â†) operators by operators [1] (â†â + 1)−1/2â and
â†(â†â + 1)−1/2, respectively.

The claimed inconsistency is said to be related to the fifth
postulate used by Srinivas and Davies [2]. This postulate
assumes a bounded interaction rate [2]: there exists a real
number K < ∞ such that

∞∑
m=1

Trace{N̂t (m)ρ̂f } < Kt, (1)

for all t > 0 and all normalized density operators ρ̂f . In
equation (1), operators N̂t (m) have the following meaning:
if ρ̂f is the state of the system at t = 0 and m counts are
recorded during [0, t), the state of the system at time t is
N̂t (m)ρ̂f /Trace{N̂t (m)ρ̂f }. It follows that the probability of
m count is P([0, t),m) = Trace{N̂t (m)ρ̂f }. As already noted
by Srinivas and Davies [2], there are fields which do not satisfy
the postulate in equation (1) since the trace of the one-count
operator, γsd Tr{âρ̂f â†}, is unbounded. They pointed out later
in [2] that the fifth postulate is rather a mathematical curiosity
needed to show the existence of the one-count and no-count
operators.

We have recently proved that the SD model can be derived
consistently from the Lindblad equation [8] without further
approximations for nonsaturating detectors. In this work,
we show that the CPDs given by the SD model exist and
are well defined for all initial fields. We explain how the
SD model can be used consistently to analyse experiments
made by using resolving detectors corresponding to counting
exactly one photon and to analyse experiments made by using
nonresolving detectors corresponding to counting at least one
photon. We also show that the coincidence probabilities (CPs)
in the SD model are directly proportional to the factorial
moments of the initial field.
1 In [1] is written: ‘Recently [Ref. [27] in Ref. [1]], we have shown that
it is possible to get rid of inconsistencies, and still keep the structure of
the SD theory, by means of replacing the operators â and â† in equation
(Eq. (1) in Ref. [1]) by the special case of (Eq. (2) in Ref. [1])—
the so-called exponential phase operators [Ref. [28–31] in Ref. [1]]
Ê− = (n̂+1)−1/2â, Ê+ = â†(n̂+1)−1/2. Such a change was motivated by the
study of the role of the annihilation operator â in quantum optics [Ref. [32]
in Ref. [1]]. We have drawn attention to the fact (noticed also in [Ref. [10, 13]
in Ref. [1]]) that state â|ψ〉 is not always one whose mean number of photons
is necessarily less than in |ψ〉; this occurs, partly, because the presence of the
weight

√
n in â|ψ〉 = √

n|n − 1〉.’ In [7] is written: ‘Note that using the SD
definition, Ĵ ρ̂ = âρ̂â†, one obtains the weird result ñ = 2n̄. So one perceives
that using â and â† for constructing a continuous photocount measurement
leads to some inconsistent results.’

Since some of the conclusions on photon correlation
predicted by the SD and E models in [1] were not correct
we also compare the second-order coherence degrees and
waiting times given by the SD and E models. These
comparisons show that the SD model reproduces the well-
known photon bunching, antibunching and non-bunching
phenomena depending on the initial field.

2. Coincidence probabilities and photon statistics
predicted by the SD model

2.1. Quantum trajectories and coincidence probabilities

In the quantum trajectory approach, time is divided into so
short intervals δt that only the no-count event and the one-
count event are possible. For a differential increment δt, the
time development of the density operator is given by

ρ̂f (t + δt) = Ĵ ρ̂f (t)δt + Ŝδt ρ̂f (t), (2)

where [2, 3, 8] Ĵ ρ̂f (t) = γsdâρ̂f (t)â† is the SD one-count
operator and Ŝτ ρ̂f (t) = e(−iωâ†â− γsd

2 â†â)τ ρ̂f (t) e(+iωâ†â− γsd
2 â†â)τ

is the SD no-count operator with γsd being the SD model
parameter describing the coupling between the field and
detector system, and ω being the mode frequency. Note that
in the no-count operator δt can also be finite time, while
equation (2) is valid only for a differential time δt so short
that at most one photon can be absorbed during this time.
Equation (2) describes the evolution of the field as a sum of
these two quantum trajectories during time period [t, t + δt).
The one-count trajectory is defined by Ĵ ρ̂f (t)δt and the no-
count trajectory is defined by Ŝδt ρ̂f (t). From this definition
it follows that the probability of the one-count event (i.e.,
detection of a photon) per unit time is given by the count
rate r(t) = Tr{Ĵ ρ̂(t)} = γsdn̄(t). The product r(t)δt gives
the average number of counts during [t, t + δt). This implies
that δt is so short that r(t) can be considered constant during
[t, t + δt) and r(t)δt � 1. In order to the probability of
absorbing two or more photons during δt to be infinitesimal
the interval must fulfil δt � r−1 (see also [9]).

We next calculate probabilities for photon counting
sequences where one photon is counted at each of the
specific non-overlapping intervals [t1, t1 + dt1), . . . , [tk, tk +
dtk). Between these intervals, the system is assumed to evolve
according to the average evolution operator, i.e., any number
of photons can be absorbed from the cavity but the detector is
not recording. The average evolution operator is [2]

T̂t =
∞∑

m=0

N̂t (m), (3)

where

N̂t (m)ρ̂f (0) =
∫ t

tm=0
· · ·

∫ t2

t1=0
Ŝt−tm Ĵ Ŝtm−tm−1

· · · Ĵ Ŝt1 ρ̂f (0) dt1 · · · dtm. (4)

Furthermore, Trace{N̂t (m)ρ̂f (0)} is the probability of
counting m photons during [0, t).

The probability that the system undergoes the average
evolution during [0, t1) and the one count occurs during
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[t1, t1 + dt1) is Tr{Ĵ T̂t1 ρ̂f (0)}dt1. After the one-count
event the system is projected into the state ρ̂f (t1 +
dt1) = Ĵ T̂t1 ρ̂f (0)/Tr{Ĵ T̂t1 ρ̂f (0)}. The probability
of the second one-count event is Tr{Ĵ T̂t2−t1 ρ̂f (t1 +
dt1)}dt2 = Tr{Ĵ T̂t2−t1 Ĵ T̂t1 ρ̂f (0)}dt2/Tr{Ĵ T̂t1 ρ̂f (0)}, which is
a preconditional probability that the trajectory corresponding
to the operator Ĵ T̂t1 has occurred previously. The state now
becomes ρ̂f (t2 + dt2) = Ĵ T̂t2−t1 ρ̂f (t1 + dt1)/Tr{Ĵ T̂t2−t1 ρ̂f (t1 +
dt1)} = Ĵ T̂t2−t1 Ĵ T̂t1 ρ̂f (0)/Tr{Ĵ T̂t2−t1 Ĵ T̂t1 ρ̂f (0)}. By using
this result recursively we conclude that the probability of
the kth event and the density operator after this event are,
respectively, given by

p(tk|tk−1, . . . , t1) = Tr
{
Ĵ T̂tk−tk−1 · · · T̂t2−t1 Ĵ T̂t1 ρ̂f (0)

}
dtk

Tr
{
Ĵ T̂tk−1−tk−2 · · · T̂t2−t1 Ĵ T̂t1 ρ̂f (0)

} , (5)

ρ̂f (tk + dtk) = Ĵ T̂tk−tk−1 · · · T̂t2−t1 Ĵ T̂t1 ρ̂f (0)

Tr
{
Ĵ T̂tk−tk−1 · · · T̂t2−t1 Ĵ T̂t1 ρ̂f (0)

} . (6)

Equation (5) gives the conditional probability of kth count with
the conditions that k − 1 one-count events have occurred at
[t1 + dt1), . . . , [tk−1 + dtk−1), and any number of photons may
have been absorbed between these events.

The probability of the k-count quantum trajectory is the
product of the conditional probabilities giving

p(t1, . . . , tk) = Tr
{
Ĵ T̂tk−tk−1 · · · T̂t2−t1 Ĵ T̂t1 ρ̂f (0)

}
dt1 · · · dtk.

(7)

Equation (7) then gives the CP of the k one-count events
occurring at [ti , ti + dti), i = 1, . . . , k and any number of
photon absorptions between these events, i.e., the system is
under average evolution between the one-count events. We
point out that in defining the probability in equation (7)
we have used the one-count operator in such a way that
Ĵ ρ̂f (ti)δti � 1, i = 1, . . . , k, i.e., each of the one-count
probabilities must be small.

2.2. Coincidence probability densities of the SD model

We next derive a general CPD for the SD model. The CPDs
are also derived in [1, 2] but we will derive them using
the conditional probabilities and the time dependence of the
factorial moments, which allows us to show that the CPs
and CPDs are well defined. The CP gives the probability to
detect k photons, one at each of the non-overlapping intervals
[t1, t1 + dt1), . . . , [tk, tk + dtk). Between these intervals any
number of photons can be absorbed from the cavity. This
definition corresponds to an experimental setup where the
detector is recording photons during each interval [ti , ti + dti)

and switched off between these measurement intervals.
The probability of absorbing a photon at [tk+1, tk+1 +dtk+1)

with the condition that k photons have been absorbed at non-
overlapping intervals dti at specific times t1 < t2 < · · · < tk
(and between the times ti−1 + dti−1 and ti any number of
photons may have been absorbed) is given by γsdn̄(tk+1)dtk+1.
Here the expectation value of the number of photons n̄(tk+1)

(for this particular quantum trajectory) can be written using
equation (B.9) (see appendix B.2) as n̄(tk+1) =
n̄
(
t+
k

)
e−γsd(tk+1−tk), where t+

k = tk + dtk . Using equation (B.9)

which describes the average evolution of the factorial moments
and equation (B.10) which describes the change of the factorial
moments during a one-count event, we obtain

p(tk+1|tk, . . . , t1) = γsdn̄
(
t+
k

)
e−γsd(tk+1−tk) dtk+1

= γsd
n(n − 1)(tk)

n(tk)
e−γsd(tk+1−tk) dtk+1

= γsd
n(n − 1)

(
t+
k−1

)
n
(
t+
k−1

) e−γsd(tk+1−tk−1) dtk+1. (8)

By repeatedly applying equations (B.9) and (B.10) to
equation (8) gives

p(tk+1|tk, . . . , t1)

= γsd
n(n − 1)(n − 2)(t+

k−2)

n(n − 1)(t+
k−2)

e−γsd(tk+1−tk−2) dtk+1

= γsd
n(n − 1)(n − 2)(n − 3)(t+

k−3)

n(n − 1)(n − 2)(t+
k−3)

e−γsd(tk+1−tk−3) dtk+1

· · ·
= γsd

n(n − 1)(n − 2) · · · (n − k)(0)

n(n − 1)(n − 2) · · · (n − (k − 1))(0)
e−γsdtk+1 dtk+1.

(9)

Equation (9) divided by dtk+1 gives the absorption rate at tk+1

with the condition that a photon has been absorbed at each of
the intervals [t1, t1 + dt1), . . . , [tk, tk + dtk).

The probability of detecting photons at [t1, t1 +
dt1), . . . , [tk, tk+dtk) is obtained from equation (9) as a product
p(tk|tk−1, . . . , t1) · p(tk−1|tk−2, . . . , t1) · · · p(t1). This gives

p(t1, t2, . . . , tk)

= γ k
sdn(n − 1) · · · (n − (k − 1))(0) e−γsd(t1+···+tk) dt1 · · · dtk.

(10)

From equation (10) we see that the k photon CP in the SD
model is directly proportional to the kth factorial moment. The
CPDs for the Fock state, the thermal field and the coherent field
are obtained from equation (10) by dividing with the product
of dt1 · · · dtk and substituting the expressions of the factorial
moments:

f sd
Fock(t1, . . . , tk) = γ k

sd
N !

(N − k)!
e−γsd(t1+···+tk), (11)

f sd
ther(t1, . . . , tk) = γ k

sdk!n̄k(0) e−γsd(t1+···+tk), (12)

f sd
coh(t1, . . . , tk) = γ k

sdn̄
k(0) e−γsd(t1+···+tk). (13)

In equation (11) N is the number of photons in the initial Fock
state.

2.3. Coincidence probability densities of the E model

As a reference we also give the k-photon CPDs for the E model
[1] (note that these CPDs depend only on tk!):

f e
Fock(tk) = γ k

e

(N − k)!

∫ ∞

γetk

xN−k e−x dx, (14)

f e
ther(tk) = γ k

e

(
n̄(0)

n̄(0) + 1

)k

e−γetk/(n̄(0)+1), (15)
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Figure 1. (a) The coincidence probability densities (CPD) and
(b) the coincidence probabilities (CP) given by the SD model for the
Fock state, the thermal field and the coherent field. Following [1],
the measurement intervals [ti , ti + dti ) are chosen so that
ti = it1, i = 1, . . . , k with the condition γsdtk = 6. The
measurement intervals are dti = exp(t1)/(10kn̄(0)) (so that the
condition in equation (17) is fulfilled). The initial expectation value
of the number of photons is n̄(0) = 30. Note that in figure 2 of [1]
the values of the CPDs for the SD model are six orders of magnitude
too high.

f e
coh(tk) = γ k

e

(
1 − e−γetk

∞∑
i=0

(γetk)
i

i!(i + k − 1)!

×
∫ ∞

n̄(0)

xi+k−1 e−x dx

)
. (16)

In equation (14), N is the number of photons in the initial
Fock state. The probabilities are obtained by multiplying the
probability densities with dt1 · · · dtk .

2.4. Well definiteness of CPs and CPDs

In [1], Dodonov et al calculated the CPDs for the SD and
E models for the three field types above. They pointed out
that the CPDs given by the E model are always less than or
equal to unity, while the CPDs given by the SD model may be
larger than unity. However, neither physics nor the probability
theory requires the CPDs to be less than unity since CPDs
are not measurable quantities. It is only the CPs which can
be measured and have to be less or equal to one. Therefore,
the results reported in [1] neither prove that the SD model is
incorrect nor that the E model is correct.

Dodonov et al [1] demonstrated the rapid increase of the
k-photon CPDs given by the SD model by setting n̄(0) = 30
and γsdtk = 6. In this case, the absorption instant of the kth
photon is fixed and the other photons are absorbed at times
ti = 6i/(γsdk), i = 1, . . . , k. With this choice of absorption
times ti the measurement intervals [ti , ti + dti) are located
more and more densely when k increases. The results are
given in figure 1(a). Note that Dodonov et al (figure 2 in [1])
miscalculated the results and gave CPD values six orders of
magnitude too high.
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Figure 2. (a) The coincidence probability densities and (b) the
coincidence probabilities (CP) given by the SD model for the Fock
state, the thermal field and the coherent field. The measurement
intervals are equally spaced so that [ti , ti + dτ), ti = iτ + (i − 1)dτ,
i = 1, . . . , k with τ = 1/(10γsd) and dτ = τ/(2n̄(0)). The initial
expectation value of the number of photons is n̄(0) = 30.

From equations (10) to (13), it is seen that the k-photon
CPD is proportional to kth factorial moment. For example, for
the thermal field the kth factorial moment is k!n̄k(0), which
grows without a limit when k grows. However, one must bear
in mind that in the derivation of these CPDs it was assumed
that the time intervals must be so short that only zero or one
photon is counted at each time intervals, i.e., the probabilities
of the one-count events are much less than unity. The condition
p(tk+1|tk, . . . , t1) = γsd(k+1)n̄(0) e−γsdtk+1 � 1 for probability
in equation (9) gives for the thermal field:

γsd dtk+1 � e+γsdtk+1

(k + 1)n̄(0)
. (17)

Condition (17) does not limit the model but guarantees that
the CPs given by equation (10) for the three example fields are
well defined and less than unity even though the CPD values
may diverge for k → ∞ (see figures 1(b) and 2(b)).

As a second example, we consider CPDs and CPs of
observing k photons during intervals [ti , ti + dτ) (where
ti = iτ + (i − 1) dτ, i = 1, . . . , k) which are equally spaced
and have equal lengths. For comparison, we have taken the
measurement intervals to be dτ = τ/(2n̄(0)), which fulfils the
condition in equation (17) for all the measurement intervals.
Therefore, as seen in figure 2, the k-photon CPs are well
defined for the thermal field even though the corresponding
CPD grows rapidly and obtains very high values at large k.
The condition given in equation (17) ensures also well-defined
CPs for the coherent field and the Fock states (see figure 2), but
also less stringent conditions can be obtained using a similar
procedure.

2.5. Coincidence probabilities of counting at least one
photon and counting exactly one photon

If the measurement intervals are not differentially small, the
probability of detecting more than one photon during a single

4
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measurement interval is not vanishingly small. In a realizable
measurement the intervals are not necessarily differential.
Therefore, we calculate the CPs of detecting at least one photon
at each of the non-differential measurement intervals.

The operator describing counting of m photons during a
time [0, t) is the operator N̂t (m) in equation (4). It can be
shown that [2]

N̂t (m)ρ̂f (0) =
∞∑

n=m

n!

m!(n − m)!
(1 − e−γsdt )m

× (e−γsdt )n−mpn(0)|n − m〉〈n − m|, (18)

where pn is the probability of state |n〉 in the mixture.
The operator describing the average evolution is T̂t given in
equation (3) and the operator corresponding to counting at
least one photon is given by Ĉt = ∑∞

m=1 N̂t (m). In general,
we define the counting of m0 or more photons as

∑∞
m=m0

N̂t (m)

which gives for diagonal elements of the density operator:
∞∑

m=m0

N̂t (m)ρ̂f (0) =
∞∑

m=m0

∞∑
n=0

(n + m)!

m!n!
(1 − e−γsdt )m

× (e−γsdt )npn+m(0)|n〉〈n|. (19)

Therefore, after operating with the operator
∑∞

m=m0
N̂t (m),

the probability of the n photon Fock state is given by

pn(t) =
∞∑

m=m0

(n + m)!

m!n!
(1 − e−γsdt )m(e−γsdt )npn+m(0), (20)

which must be normalized with
∑∞

n=0 pn(t).
We define the measurement intervals as before by [ti , ti +

�ti), i = 1, . . . , k. The probability of detecting at least one
photon at the first measurement interval is Tr{Ĉ�t1 T̂t1 ρ̂f (0)},
and the density operator after the measurement is given by
ρ̂f (t1 +�t1) = Ĉ�t1 T̂t1 ρ̂f (0)/Tr{Ĉ�t1 T̂t1 ρ̂f (0)}. By replacing
Ĵ with Ĉ�ti we can now use equations (5)–(7) for the
calculation of the CPs of counting one or more photons at
each of the k intervals [ti , ti + �ti). Note for future reference
that the operator corresponding to measurement of exactly one
photon during a non-differential time interval �t is N̂�t (1).

In figure 3, we show a comparison of (a) CPs given by
equation (7), (b) CPs obtained using the operator N̂�t (1),

i.e., counting exactly one photon and (c) CPs of counting
at least one photon. The k measurement intervals are
chosen so that [ti , ti + �τ), ti = iτ + (i − 1)�τ, i = 1, . . . , k

with τ = 1/(5γsd) and �τ = τ . Note that now the
conditions in equation (17) is not fulfilled so the CPs given by
equation (7) are not well defined since the measurement
intervals are not differential (see figure 3(a)). In contrast, the
CPs obtained using operators N̂�t (1) and Ĉ�t are well defined
(see figures 3(b) and (c)). These probabilities correspond to
detecting exactly one and at least one photon, respectively, at
each of the non-differential measurement intervals.

We have also tested using numerical calculations that for
differential �t all the three counting operators (Ĵ , N̂�t (1) and
Ĉ�t ) give equal results. This is understandable since at a
differential measurement interval only the one-count and the
no-count event are possible, and the probability of the one-
count event is small.
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Figure 3. (a) The CPs of counting k photons one at each
measurement interval using the operator Ĵ (equation (7)), (b) the
CPs of counting exactly one photon at each measurement interval
using the operator N̂t (1) and (c) the CPs of counting at least one
photon at each measurement interval using the operator Ĉt given by
the SD model for the Fock state, the thermal field and the coherent
field. The measurement intervals are chosen so that [ti , ti + �τ),
ti = iτ + (i − 1)�τ, i = 1, . . . , k with τ = 1/(5γsd) and �τ = τ .
The initial expectation value of the number of photons is n̄(0) = 10.

3. Conclusions

We have derived the coincidence photon counting probabilities
using the quantum trajectory theory. The quantum trajectory
theory gives well-defined conditional counting probabilities
and, therefore, the CP obtained as product of the conditional
probabilities is also well defined and correctly normalized. In
particular, we have shown that even if the CPDs grow without
a limit the CPs are well defined and normalized if (1) the
measurement durations are chosen to be so short that only
the no-count and one-count trajectories are possible during a
single counting interval, or (2) operators that include also the
other trajectories are used.

We have also shown how to define the CPs corresponding
to counting exactly one photon (resolving detector) and at least
one photon (nonresolving detector) during a non-differential
measurement intervals. Again the CPs are well-defined and
normalized probabilities.

The comparison of the waiting times based on the photon
counting theory given by the SD model and the E model
for the cavity fields initially in the Fock state, the thermal
field and the coherent field is included for completeness in
appendix A.2. We point out that the waiting times given by the
SD model reproduce the photon bunching, non-bunching and
antibunching phenomena. In appendix A.1 we have also given
a consistent derivation of second-order coherence degrees.
The results given by the SD model also reproduce the photon
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Table A1. The second factorial moments (n(n − 1)(0)) of the fields
and the second-order coherence degrees, (g

(2)

sd (t1, t2)), given by the
SD model and (g(2)

e (0, 0)) given by the E model. The Fock state has
initially N � 2 photons. Note that g

(2)

sd is independent of time (see
equation (A.1)).

Initial state n(n − 1) g
(2)

sd g(2)
e (0, 0)

Fock N(N − 1) 1 − 1/N 1
Thermal 2n̄2(0) 2 1
Coherent n̄2(0) 1 en̄(0)−(n̄(0)+1)

en̄(0)+e−n̄(0)−2

bunching, non-bunching and antibunching phenomena while
those of the E model do not.

The main result of the paper is the operators defined
in section 2.5. These operators give the necessary tools to
analyse measurements done using resolving and nonresolving
detectors also in non-differential measurement intervals.

Appendix A. Correlation of photons

A.1. Second-order coherence degrees

The relation of the second-order coherence degree g(2)(t, t +τ)

to photon bunching and antibunching phenomena is the
following: if 0 � g(2)(t, t) < 1 the light is antibunched,
if g(2)(t, t) = 1 the light is non-bunched or random, and
if g(2)(t, t) > 1 the light is bunched [10]. Since a false
formula was used in [1] we give the derivation of the second-
order coherence degree formula in appendix B.3. By using
equations (10) and (B.13) we obtain for the SD model

g
(2)
sd (t1, t2) = n(n − 1)(0)

n2(0)
. (A.1)

Equation (A.1) states that for the single-mode field the second-
order coherence degree predicted by the SD model is governed
by the initial field photon statistics and it is independent of
time. The general expressions of g(2)

e (t1, t2) are time dependent
and complicated; the reader can elaborate them from
equations (14) to (16) and (B.13). To facilitate the comparison
of the SD and E models we, therefore, compare g

(2)
sd and g(2)

e

by taking t1 = t2 = 0. From table A1 we can conclude that
according to the SD model photons in the single-mode Fock
state are antibunched, in the thermal field photons are bunched,
and in the coherent field photons are non-bunched.

Note that the definition for the second-order coherence
degree given in [1] g

(2)
Dod(t1, t2) = Trace

{
Ĵ T̂t2−t1 Ĵ T̂t1 ρ̂f

}/
Trace

{
Ĵ T̂t1 ρ̂f

}2
is incorrect as shown in appendix B.3. This

definition gives for the SD model p(t1, t2)/p
2(t1) = n(n − 1)

(0)/n2(0) e−γsd(t2−t1). Thus it is incorrectly concluded in
[1] that the SD model always gives the photon bunching
phenomenon. The correct definition is (see appendix B.3)
g(2)(t1, t2) = Trace

{
Ĵ T̂t2−t1 Ĵ T̂t1 ρ̂f

}/(
Trace

{
Ĵ T̂t1 ρ̂f

}
Trace

{
Ĵ T̂t2 ρ̂f

})
.

A.2. Waiting times

The photon correlation can also be considered by comparing
the waiting time of next one-count event and the time interval

between the one-count events. The waiting time 〈t〉W is the
time from an arbitrary starting point to the next one-count
event while the time interval 〈t〉I is the time span between
two consecutive one-count events. The waiting times were
previously calculated for the SD model by Lee [11]. Lee [11]
obtained the following results for the SD model: (1) if the
field is initially in the coherent state, 〈t〉W = 〈t〉I and the
photons are non-bunched or random. (2) If the field is initially
in the thermal state, 〈t〉W > 〈t〉I and the photons are bunched.
(3) If the field is initially in the Fock state, 〈t〉W < 〈t〉I and
the photons are antibunched. These results agree with our
calculations of photon correlations in appendix A.1.

Dodonov et al [1] showed that the E model gives, in
contrast to the SD model, 〈t〉W = 〈t〉I for all initial fields.
Therefore, the E model cannot reproduce the cavity photon
bunching and antibunching phenomena in the one-count event
waiting times. We expect this to be a consequence of the
inherent saturation of the experimental detector setup the E
model is based on (see [8]).

Appendix B. Derivations

B.1. One-count and no-count operators

The one-count operator is ĴAρ̂f (t) = γAÂρ̂f (t)Â† and

the no-count operator is Ŝτ ρ̂f = eŶAτ/h̄ρ̂f (t)eŶ
†
Aτ/h̄, where

ŶA = −ih̄ωâ†â − 1
2h̄γAÂ†Â. Furthermore, in the SD model

Â ≡ â and in the E model Â ≡ (â†â + 1)−1/2â. The no-
count and one-count operations for the SD and E models give
[1–3]

Ŝsd
τ ρ̂(t) =

∞∑
n,n′=0

e−iω0(n−n′)τ−γsd
n+n′

2 τpn,n′ |n〉〈n′|, (B.1)

Ĵ sdρ̂(t) = γsdâ
†ρ̂(t)â = γsd

∞∑
n,n′=0

√
nn′pn,n′ |n − 1〉〈n′ − 1|,

(B.2)

Ŝe
τ ρ̂ = p0,0|0〉〈0| +

∞∑
n=1

[
p0,n|0〉〈n| e+iω0nτ− 1

2 γ τ

+ pn,0|n〉〈0| e−iω0nτ− 1
2 γ τ

]
+

∞∑
n,n′=1

pn,n′ e−iω0(n−n′)τ−γ τ |n〉〈n′|, (B.3)

Ĵ eρ̂(t) = γeÊ
†ρ̂(t)Ê = γe

∞∑
n,n′=1

pn,n′ |n − 1〉〈n′ − 1|. (B.4)

B.2. Evolution of factorial moments in the SD model

The density matrix evolves according to [1–3]

dρ̂

dt
= −iω(â†âρ̂ − ρ̂â†â)

+
(
γAÂρ̂Â† − γA

2
(Â†Âρ̂ + ρ̂Â†Â)

)
. (B.5)
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The probabilities of n-photon states are given by the diagonal
elements 〈n| · |n〉. Thus we obtain for the SD model

dpn(t)

dt
= γsd ((n + 1)pn+1(t) − pn(t)n) (B.6)

and for the E model

dpn�1(t)

dt
= γe(pn+1(t) − pn(t)), (B.7)

dp0(t)

dt
= γep1(t). (B.8)

The kth factorial moment is defined as
n(n − 1) · · · (n − (k − 1)) = ∑∞

n=0 n(n − 1) · · · (n −
(k − 1))pn. Thus, using the master equation (B.6) for photon
number, we can write

d

dt
n(n − 1) · · · (n − m)(t) =

∞∑
n=0

n(n − 1) · · · (n − m)
dpn(t)

dt

= γsd

∞∑
n=0

n(n − 1) · · · (n − m) [(n + 1)pn+1(t) − npn(t)]

= γsd

( ∞∑
n=0

n(n − 1) · · · (n − m)(n + 1)pn+1(t)

−
∞∑

n=0

n(n − 1) · · · (n − m)npn(t)

)

= γsd

( ∞∑
n=1

(n − 1)(n − 2) · · · (n − m − 1)npn(t)

−
∞∑

n=1

n(n − 1) · · · (n − m)npn(t)

)

= γsd

∞∑
n=1

(n(n − 1) · · · (n − m))(n − m − 1 − n)pn(t)

= −γsd(m + 1)

∞∑
n=1

n(n − 1) · · · (n − m)pn(t)

= −γsd(m + 1)n(n − 1) · · · (n − m)(t),

which gives for the kth factorial moment,

n(n − 1) · · · (n − (k − 1))(t)

= e−kγsdt n(n − 1) · · · (n − (k − 1))(0). (B.9)

The probability of n-photon state after the one-count event
is (see appendix B.1) pn(t

+) = (n + 1)pn+1(t)/n̄(t). Thus we
can find the following relation between the factorial moments
before and after the one-count event:

= n(n − 1) · · · (n − m)(t+)

=
∞∑

n=0

n(n − 1) · · · (n − m)pn(t
+)

= 1

n̄(t)

∞∑
n=0

n(n − 1) · · · (n − m)(n + 1)pn+1(t)

= 1

n̄(t)

∞∑
n=1

(n − 1)(n − 2) · · · (n − m − 1)npn(t)

= 1

n̄(t)

∞∑
n=1

n(n − 1)(n − 2) · · · (n − m)(n − m − 1)pn(t)

= n(n − 1)(n − 2) · · · (n − m)(n − m − 1)(t)

n̄(t)
. (B.10)

Equation (B.9) describes the average evolution of factorial
moments whereas equation (B.10) describes how the factorial
moments immediately after the one-count event are related to
those before the event.

B.3. Second-order coherence degree

The second-order coherence degree is [10, 12]

g(2)(r1, t1, r2, t2, r2, t2, r1, t1)

= G(2)(r1, t1, r2, t2, r2, t2, r1, t1)

G(1)(r1, t1, r1, t1)G(1)(r2, t2, r2, t2)
, (B.11)

where

G(2)(r1, t1, r2, t2, r2, t2, r1, t1)

= Tr{ρ̂f Ê(−)(r1, t1)Ê(−)(r2, t2)Ê(+)(r2, t2)Ê(+)(r1, t1)},
with Ê(−)(r, t) and Ê(+)(r, t) being the negative and positive
frequency parts of the electric field operator. The two-fold
delayed coincidence rate, i.e., the counting rate per unit time
squared is given by [12]

f (r1, t1, r2, t2, r2, t2, r1, t1)

= s2G(2)(r1, t1, r2, t2, r2, t2, r1, t1), (B.12)

where s is the sensitivity of the detector. We consider only
the temporal correlation so we assume that all of the position
vectors are equal and drop the spatial coordinate. We can
now use the well-known formula of conditional probability:
the probability that an event B occurs with the condition
that A has happened is p(B|A) = p(B ∩ A)/p(A) (see,
for example, [13]). Thus p(B ∩ A) = p(B|A)p(A) giving
f (t1, t2)(dt)2 = f (t2|t1) dtf (t1) dt . Furthermore, we can
write the second-order coherence degree using the count rates
(p(t) = f (t) dt and p(t1, t2) = f (t1, t2) dt2 dt2):

g(2)(t1, t2) = p(t1, t2)

p(t1)p(t2)
= f (t1, t2)

f (t1)f (t2)

= Tr
{
Ĵ T̂t2−t1 Ĵ T̂t1 ρ̂f

}
Tr

{
Ĵ T̂t1 ρ̂f

}
Tr

{
Ĵ T̂t2 ρ̂f

} . (B.13)

Note that using the conditional probabilities we can also
write g(2)(t1, t2) = p(t2|t1)/p(t2). Therefore, we can use
the CP formula in equation (9) or the CPDs in equations (11)–
(13) and (14)–(16) to calculate the second-order coherence
degree.
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