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Teppo Häyrynen,* Jani Oksanen, and Jukka Tulkki
Department of Biomedical Engineering and Computational Science, Aalto University School of Science and Technology,

Post Office Box 12200, FI-00076 AALTO, Finland
(Received 15 April 2010; published 3 June 2010)

We derive a generalized quantum jump superoperator that can be used in the quantum trajectory description
of single photon detectors, light-emitting diodes (LEDs), and lasers. Our model describes an optical single-mode
cavity field coupled to a reservoir through a two-state quantum system and includes three physical parameters:
the coupling of the field to the two-state system, the coupling of the two-state system to the reservoir, and the
cavity loss rate. In this setup, the two-state system can act as a photodetector or as an energy-adding mechanism.
In the first case, we assume that the reservoir acts as a damping mechanism for an ideal cavity and derive
reduced field operators describing the photon detection events. Our model coincides with the commonly known
quantum trajectory based photon counting models at the weak- and strong-coupling limits and is, furthermore,
also applicable between their validity regimes. In the second case, we assume that the reservoir injects energy
into a lossy cavity through the two-state system. Again we derive the reduced field operators describing photon
creation events into the lossy cavity. We show that this setup can act as an LED or as a laser depending on the
strength of the injection. We also investigate how the setup operates at the close proximity of the lasing threshold.
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I. INTRODUCTION

Recent progress in experimental quantum optics has
enabled more detailed quantum optical measurements and
experiments that have given new insight into photon counting
and photon detection. Several recent experiments have focused
on photon creation and destruction [1,2], on the statistics of
the collapsed field [3], and on the photon correlation properties
[4–6] of the generated photon fields. All these experiments
make use of very high quality photodetector schemes [7–9].
Detailed theoretical analysis of these experiments usually
requires numerically solving the equation of motion of the
full density operator of the optical field interacting with
the detector. The introduction of reduced quantum jump
superoperators (QJSs) for the optical field in the limiting cases
of weak [10,11] and strong [11,12] coupling by tracing over
the detector states has given more detailed insight into the
properties of the optical field.

In this work we derive the generalized field evolution
operators for all coupling parameter regimes by considering
the commonly used detector setup [11], where a two-state
quantum system is coupled to a cavity field and an absorbing
reservoir.

We also derive the operators for a setup where a two-state
quantum system is coupled to a cavity field and an energy
source. We apply our model to describe a light-emitting diode
(LED) and a laser activity of a cavity and show that the reduced
operators can reproduce a thermal field or a coherent field
depending on the strength of the coupling parameters and
losses.

II. DETECTOR MODEL

We derive the generalized field evolution operators for a
dissipative system by considering the detector setup where an

*teppo.hayrynen@hut.fi

optical field (f ) is coupled to a two-state quantum system (s)
with a ground state |g〉 and an excited state |e〉. The reservoir
(R) acts as a dissipative energy drain. The detection event in
this setup is the transfer of an energy quanta from s to the
reservoir, which can be implemented, e.g., by injecting a beam
of atoms initially in the ground state through a cavity or with a
setup where an atom in a cavity is coupled to the cavity mode
and to a reservoir mode.

Evolution of the combined f -s density operator interacting
with the reservoir is governed by the Lindblad equation with
coupling parameter γ describing the coupling of the field to
the two-state system and coupling parameter λ describing the
coupling of the two-state system to the reservoir. The Lindblad
master equation for this setup is [12]

dρ̂s(t)

dt
= − i

h̄
[Ĥ ρ̂s(t) − ρ̂s(t)Ĥ

†] + 2λσ−ρ̂s(t)σ+, (1)

where the density operator ρ̂s(t) describes both the field
and the two-state quantum system. In Eq. (1) the system
Hamiltonian Ĥ is the standard Jaynes-Cummings Hamiltonian
of a two-state system with eigenstates ±h̄ω0/2 coupled to the
photon mode with E = h̄ω with an additional dissipative term
−ih̄λσ+σ−, given by

Ĥ = 1
2h̄ω0σ0 + h̄ωâ†â + h̄γ (âσ+ + â†σ−) − ih̄λσ+σ−, (2)

where σ+ = |e〉〈g|, σ− = |g〉〈e|, σ0 = |e〉〈e| − |g〉〈g|, and
furthermore, we assume exact resonance ω = ω0 in the
following. Equation (1) is the Lindblad master equation, which
is known as the most general form of a memoryless coupling
between a system and an (infinite) reservoir [13]. Master
equation (1) implies a linear coupling between the system
and the reservoir but does not otherwise limit the strength of
the interaction as long as the state of the reservoir remains
unchanged. In this formalism the events recorded by the
detector are the emissions of energy quanta by the two-state
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system into the reservoir which corresponds to the collapse of
ρ̂s(t) to the ground state.

Assuming that the full setup at time t is described by ρ̂s(t),
its evolution in an infinitesimal time dt may be described by a
decomposition of the form

ρ̂s(t + dt) = Ĵsρ̂s(t)dt + Ŝs(dt)ρ̂s(t), (3)

where the two terms describe the quantum trajectories of the
f -s system. These trajectories describe the events where the
emission of an energy quantum is either detected Ĵsρ̂s(t)dt or
not detected Ŝs(dt)ρ̂s(t) during [t,t + dt]. The one-count and
no-count operators in this formalism are

Ĵsρ̂s(t) = 2λσ̂−ρ̂s(t)σ̂+, (4)

Ŝs(dt)ρ̂s(t) = Û (dt)ρ̂s(t)Û
†(dt), (5)

where the time evolution operator Û (t) is defined as Û (t) =
exp(−iĤ t/h̄) using the dissipative Hamiltonian in Eq. (2). If
we detect the one-count event (i.e., the emission of an energy
quantum into the reservoir) the system is projected into state
ρ̂s(t + dt) = Ĵsρ̂s(t)/Tr{Ĵsρ̂s(t)}. Similarly, after an observed
no-count event, the system collapses into state ρ̂s(t + dt) =
Ŝs(dt)ρ̂s(t)/Tr{Ŝs(dt)ρ̂s(t)}.

We have previously shown [11,14] that in the (weak cou-
pling) limit λ � γ

√
n̄, the photon count rate is proportional

to the mean number of photons n̄, and in the (strong coupling)
limit λ � γ

√
n̄, the count rate is proportional to the probability

that photons exist, i.e.,

rλ�γ
√

n̄ = (2γ 2/λ)n̄, (6)

rλ�γ
√

n̄ = λ(1 − p0), (7)

where p0 is the probability of the vacuum state. In the first case,
the absorption rate of the detector is not limited by the photon
statistics (as long as the condition above is met), and the model
in Ref. [10] [the Srinivas-Davies (SD) model] is reproduced. In
the second case, the detector is saturated and absorbs photons
with maximum rate of λ, and the model in Ref. [15] [the model
based on Ê operators, (E) model] is reproduced. Between
these regimes, no previously known reduced photon counting
models that correctly describe the average time evolution of
the field have been introduced. In the next section we will
derive a general reduced operator that describes the average
evolution of the field.

A. General reduced operator

Next we will identify a new quantum jump superoperator
that reproduces the average time-dependent photon count
rate and the photon statistics for all coupling strengths. We
calculate Û (t) following the approach given in Ref. [16]. The
probability of the first one-count to occur during [t,t + dt)
for the system initially in the ground state is dt times the
probability density given by the trace of the operator [11]

Ĵ Ŝ(t)ρ̂ = 8λe−λt

∞∑
n=0

(n + 1)pn+1|n〉〈n|

×
∣∣ sin

[
γ t

2

√
4(n + 1) − (λ/γ )2

]∣∣2

|4(n + 1) − (λ/γ )2| . (8)

The probability of the one-count, Tr{Ĵ Ŝ(t)ρ̂}dt , decays ex-
ponentially due to the longer no-count event preceding the
one-count, and also it contains an oscillating term due to the
interaction of the field with the two-state system.

The reduced quantum jump superoperator is formally
defined as the time average 〈Trs{ĴsŜs(t)ρ̂s}/Trs,f {Ŝs(t)ρ̂s}〉
[11]. This average has an accessible analytic value only in
the limit of weak and strong coupling. A good approximation
of the reduced quantum jump superoperator can, however, be
obtained by considering the following properties of Eq. (8).

Equation (8) states that starting from the initial state |g,n〉
(n > 0) the probability density for the time of the first one-
count event taking place is

f D
n (t) = 8λe−λtn

∣∣ sin
[

γ t

2

√
4n − (λ/γ )2

]∣∣2

|4n − (λ/γ )2| . (9)

The probability density is 0 if the initial state is |g,0〉 and∫ ∞
0 f D

n (t)dt = 1 for n > 0. The mean value for the time when
the first one-count takes place is then

t̄Dn =
∫ ∞

t=0
tf D

n (t)dt = 2
(

γ

λ

)2
n + 1

2 γ 2

λ
n

. (10)

The average count rate at which the one-count events occur is
the inverse of time t̄Dn . Thus, the average one-count rate from
state |g,n〉 is

r̄D
n = 2 γ 2

λ
n

1 + 2
(

γ

λ

)2
n
. (11)

The total average count rate is obtained as a sum of the rates
r̄D
n weighted with the probabilities pn of the initial states |n〉

r̄D
tot =

∞∑
n=0

2 γ 2

λ
n

1 + 2
(

γ

λ

)2
n
pn. (12)

Comparing the rate obtained from Eq. (4) [r(t) = 2λpe(t)]
with Eq. (12) shows that the average excited-state probability
and the average ground-state probability needed to reproduce
Eq. (12) are

p̄e =
∞∑

n=0

(
γ

λ

)2
n

1 + 2
(

γ

λ

)2
n
pn, (13)

p̄g = 1 − p̄e =
∞∑

n=0

1 + (
γ

λ

)2
n

1 + 2
(

γ

λ

)2
n
pn. (14)

Note that the rates and probabilities in Eqs. (8)–(14) hold for
all coupling strengths and therefore allow us to deduce the
form of the general quantum jump superoperator.

Let us now define a new QJS for the reduced system as
Ĵ ρ̂ = AÔρ̂Ô† with operator Ô operating only on the field
states being defined as (see also the Appendix)

Ô = (1 + Bââ†)−1/2â. (15)

Using it to evaluate the photon count rate from state ρ̂ results
in

Tr{Ĵ ρ̂} =
∞∑

n=1

An

1 + Bn
pn, (16)
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=
{

An̄, if Bn̄ � 1,
A
B

(1 − p0), if Bn̄ � 1.
(17)

By setting A = 2γ 2/λ and B = 2γ 2/λ2 we obtain the same
photon counting rates as in Eqs. (6), (7), and (12) and see
that operator Ĵ ρ̂ = AÔρ̂Ô† predicts the same count rates as
previously known SD and E models at the weak and strong
coupling and is additionally able to produce the average rate
given by Eq. (12).

The Lindblad master equation (1) can now be reduced
to describe only the photon field by using operator Ô. The
reduced master equation is

dρ̂(t)

dt
= −A

2
(Ô†Ôρ̂ − 2Ôρ̂Ô† + ρ̂Ô†Ô)

= −A

2

∞∑
n,n′=0

[(
n

1 + Bn
+ n′

1 + Bn′

)
pn,n′ |n〉〈n′|

− 2

√
nn′

(1 + Bn)(1 + Bn′)
pn,n′ |n − 1〉〈n′ − 1|

]
,

(18)

and it can be easily used to calculate, e.g., the photon number
master equations in the form

dpn

dt
= − An

1 + Bn
pn + A(n + 1)

1 + B(n + 1)
pn+1. (19)

Note that our reduced model is applicable at all regimes
of coupling parameters λ and γ . At the limit λ � γ

√
n̄ also

the adiabatic approximation [17,18] can be used to eliminate
the atomic states from the density operator. The adiabatic
approximation of Eq. (1) reproduces the SD model and,
therefore, agrees also with our model, since at this regime
our model coincides with the SD model.

B. Comparison of the full system and reduced models

To quantify the differences between the previous reduced
photon field models and the generalized model, we compare
the f -s-R setup and the reduced photon field models by
numerical calculations of the count rates and expectation
values of the number of photons. Figure 1(a) shows the count
rates for a field initially in the Fock state |25〉 with λ/γ = 5
as a function of time for the three reduced operators and the
full setup. Figure 1(b) shows the mean photon numbers for
the same models. Figure 2 shows the same data as Fig. 1
but for a field initially in the thermal state with n̄ = 1 and
λ/γ = 2. Note that the initial states have been selected so
that the conditions in Eqs. (6) and (7) are not met and neither
the SD nor the E model is accurate. Figure 1 shows that our
model accurately reproduces the average rate and the mean
number of photons. In Fig. 2, due to the Rabi-like oscillation,
the rate has a strong peak which decays fast as the mean
photon number decays. Our reduced model naturally cannot
reproduce the Rabi oscillations, but still our model is able
to reproduce the average behavior of the rate and the mean
number of photons. In Fig. 3, we show a comparison of the
ground-state and the excited-state probabilities of the two-state
system calculated (i) numerically from the full setup and (ii)
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FIG. 1. (Color online) (a) Photon counting rates and (b) expecta-
tion values of the number of photons for a setup with λ/γ = 5 and
the field initially in the Fock state |25〉. The coupling strength in the
figures are between the strong- and weak-coupling regimes where
neither the SD nor the E model are accurate. As a result they are
unable to correctly predict the average dissipation rate and the photon
number in the cavity. In contrast, our model accurately reproduces
these average quantities.

using the averaged formulas (13) and (14). We see that our
averaged formulas follow smoothly the average behavior of
the oscillating probabilities.

0

0.2

0.4

0.6

0.8

1

ra
te

/γ

(a)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

γ t

〈n
(t

)〉

 

 
(b) O

SD
E
exact

FIG. 2. (Color online) (a) Photon counting rates and (b) expec-
tation values of the number of photons for a setup with λ/γ = 2
and the field initially in the thermal state with n̄(0) = 1. Note that
in this special case, the SD and the E models coincide. Again, the
coupling strength in the figures has been chosen in the region where
neither the SD nor the E model applies. However, our model is able
to predict qualitatively the field evolution, although its accuracy is
slightly reduced due to the relatively strong peak in the rate caused
by the Rabi-type oscillation combined with the fast decay rate.
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FIG. 3. (Color online) Comparison of the excited-state probabil-
ities and the ground-state probabilities calculated with the full model
(exact) and using Eqs. (13) and (14) for a system with λ/γ = 0.5 and
a field initially in the Fock state |2〉.

In summary, Figs. 1–3 show that our reduced detector model
is able to reproduce the average of the count rate and the mean
number of photons in the cavity.

III. PHOTON CREATION

Let us now modify the setup introduced in the last section so
that the two-state system is coupled to an amplifying reservoir.
The system Hamiltonian is now of the form

Ĥ = 1
2h̄ω0σ0 + h̄ωâ†â + h̄γ (âσ+ + â†σ−) − ih̄λσ−σ+, (20)

and after the one-count event [Ĵsρ̂s(t) = 2λσ+ρ̂s(t)σ−], which
is now the energy injection, the two-state system has collapsed
to the excited state. Following the same procedure that
previously led to Eq. (8), we obtain the probability density

f A
n (t) = 8λe−λt (n + 1)

∣∣ sin
[

γ t

2

√
4(n + 1) − (λ/γ )2

]∣∣2

|4(n + 1) − (λ/γ )2| (21)

for the first quantum jump event, and similarly obtain the
average emission rate as

r̄A
tot =

∞∑
n=0

2 γ 2

λ
(n + 1)

1 + 2
(

γ

λ

)2
(n + 1)

pn. (22)

The amplification rate of the full f -s system is r(t) =
2λpg(t). Comparing this rate with Eq. (22) shows that the
average ground-state probability and the average excited-state
probability reproducing Eq. (22) are

p̄g =
∞∑

n=0

(
γ

λ

)2
(n + 1)

1 + 2
(

γ

λ

)2
(n + 1)

pn (23)

p̄e = 1 − p̄g =
∞∑

n=0

1 + (
γ

λ

)2
(n + 1)

1 + 2
(

γ

λ

)2
(n + 1)

pn. (24)

Using the operator Ô, defined in Eq. (15), and operating only
on the field states of the reduced system, the rate can be written
as

Tr{Ĵ ρ̂} =
∞∑

n=0

A(n + 1)

1 + B(n + 1)
pn, (25)

=
{

A(n̄ + 1), if Bn̄ � 1,
A
B
, if Bn̄ � 1.

(26)

Comparison of Eqs. (22) and (25) shows again that A = 2γ 2/λ

and B = 2γ 2/λ2, and we find that the same Ô operator applies
for both the injection and the dissipation of energy to or from
the system.

A. Amplifying setup with dissipation

The Ô operator introduced in the previous sections fills
the gap between the previously known SD and E models and
allows modeling of optical components also in the regimes
where the electronic states interacting with the optical fields
are not fully saturated or unsaturated. As an example of an
interesting application of the Ô operator, we will next consider
a setup where energy is injected from a reservoir to the two-
state system interacting with an optical field confined in a
nonideal optical cavity. As we will show, this setup can be
used to model active optical components such as LEDs and
lasers.

In our setup the field interacts with an amplifying medium
through the jump term AÔ†ρ̂Ô, and the cavity losses are taken
into account through a jump term Câρ̂â† which is linear with
respect to the photon number. If only the mirror losses of the
cavity are taken into account, then C = ω/Q [19], where ω

is the frequency and Q is the quality factor of the cavity. The
(reduced) Lindblad equation governing the evolution of the
density operator of the optical field is

dρ̂(t)

dt
= −A

2 (ÔÔ†ρ̂ − 2Ô†ρ̂Ô + ρ̂ÔÔ†)

− C
2 (â†âρ̂ − 2âρ̂â† + ρ̂â†â). (27)

From Eq. (27) we can easily derive the following master
equation for the probability pn of the n photon state:

dpn(t)

dt
= − A(n + 1)

1 + B(n + 1)
pn + An

1 + Bn
pn−1

−Cnpn + C(n + 1)pn+1. (28)

Equations similar to Eq. (28) are obtained, for example, in
Refs. [19,20] using different approaches.

1. Steady-state solutions

Solving Eq. (28) in the two limiting cases of Bn̄ � 1, A <

C and Bn̄ � 1, A � C results in the photon statistics of the
thermal and coherent fields. In the following we summarize
these familiar photon statistics formulas along with some more
general properties of the fields predicted by our model.
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The general steady-state solution of Eq. (28) with the
detailed balance condition, i.e., requiring that the rate from
|n〉 to |n + 1〉 equals the rate from |n + 1〉 to |n〉, is given by

pn = p0

n∏
k=1

A/C

1 + Bk
. (29)

Equation (29) simplifies considerably at the two limits of
thermal and coherent fields. First, if Bn̄ � 1 and, furthermore,
the injection rate is below the rate required to reach the laser
threshold (i.e. A < C), we obtain

pn =
(

1 − A

C

) (
A

C

)n

, (30)

which corresponds to a thermal field with

n̄ = 1

C/A − 1
= 1

exp
(

h̄ω
kBT

) − 1
, (31)

where kB is the Boltzmann constant and T is the temperature.
In the second limiting case, in which Bn̄ � 1 and the injection
rate is far above the injection required to reach the laser
threshold (i.e., A � C), we obtain

pn = e−A/(BC) [A/(BC)]n

n!
, (32)

which is the Poisson distribution and corresponds to the
coherent field with

n̄ = A

BC
. (33)

In the general case the steady-state expectation value of the
number of photons is (see the Appendix)

n̄ =
∞∑

n=1

npn = 1

B

(
A

C
− 1

)
+ 1

B
p0 (34)

and the second factorial moment is (see the Appendix)

n(n − 1) = 1

B

(
A

C
− 1

)
n̄ + 1

B
(1 − p0). (35)

Equations (34) and (35) can be used to calculate the second-
order coherence degree (see the Appendix) as

g(2) =
[

1
B

(
A
C

− 1
)] [

1
B

(
A
C

− 1
) + 1

B
p0

] + 1
B

(1 − p0)[
1
B

(
A
C

− 1
) + 1

B
p0

]2 . (36)

The vacuum-state probability p0 in Eqs. (34)–(36) is obtained
from Eq. (29) as

p0 =
( ∞∑

n=0

n∏
k=1

A/C

1 + Bk

)−1

. (37)

Equations (34), (36), and (37) above give the steady-state
expectation values of the number of photons n̄ and the second-
order coherence degree g(2) which can be used to qualitatively
classify the properties of the optical field. For a thermal field,
g(2) = 2; and for a coherent field, g(2) = 1. Figure 4 shows (a) n̄

and (b) g(2) as a function of the parameter B for an amplifying
system with A/C = 0.95 (below threshold), A/C = 1.0 (at
threshold), and A/C = 1.05 (above threshold). From Fig. 4(a),
we can see that for all three A/C values, the number of photons
decreases when parameter B increases [cf. Eqs. (29) and (34)].

10
−2

10
0

10
2

10
4

〈n
〉

(a)

10
−4

10
−2

10
0

10
2

1

1.2

1.4

1.6

1.8

2

B

g(2
)

(b)

 

 

A/C = 0.95
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FIG. 4. (Color online) (a) Expectation value of the number of
photons and (b) second-order coherence degree as a function of
parameter B for the systems at the threshold (A = C) and slightly
below and above it.

In contrast, Fig. 4(b) shows different features for the three
cases. Below the threshold (A/C = 0.95), the field is thermal
with small B and approaches a coherent field when B > 1. At
the threshold, the field has super-Poissonian properties with
small B, and it approaches a coherent field when B increases.
Above the threshold, the field is coherent with B � 1 and
B � 1 but has super-Poissonian properties in between these
limits. Comparing Figs. 4(a) and 4(b), we notice that it could
be possible to produce very weak coherent fields near the
threshold.

IV. CONCLUSIONS

We have derived a general reduced photon detector model
which describes the average time evolution of an optical
field interacting with an energy reservoir through a two-state
quantum system. Our model is able to fill the gap in the
previously introduced reduced photon detector models and
describe the average features of the photon field also in
between the weak- and strong-coupling regimes.

We have applied our model to studying photon statistics in
a conventional detector setup as well as in an amplifying setup
describing a laser cavity. The results agree with the expected
results, showing that the model can be applied to model LEDs
and lasers. We also expect that our approach can be applied
to modeling, e.g., the quantum nondemolition measurements
based on atom beams passing through a cavity [21] where the
initial field is prepared by injecting an exited atom through
the cavity. The model should also be applicable to describing
the quantum memory experiment in Ref. [22], where the
information stored in the optical field can be manipulated by
an atom beam, which is used to read or write information to the
memory.

In conclusion, our model extends the previously introduced
SD model of direct photon counting and the E model of fully
saturating detectors to cover also the intermediate range where
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neither of the previous models is applicable, and, furthermore,
it allows the modeling of various active optical components.

APPENDIX: DERIVATIONS

Operation of Ô and Ô† into state |n〉 gives

Ô|n〉 = 1√
1 + Bââ†

â|n〉 =
√

n

1 + Bn
|n − 1〉,

Ô†|n〉 = â† 1√
1 + Bââ†

|n〉 =
√

n + 1

1 + B(n + 1)
|n + 1〉.

Furthermore, Ô and Ô† obey the following relations

Ô†Ô|n〉 = n

1 + Bn
|n〉,

ÔÔ†|n〉 = n + 1

1 + B(n + 1)
|n〉, (A1)

[Ô,Ô†]|n〉 = 1

(1 + Bn)[1 + B(n + 1)]
|n〉.

In the general case, the expectation value of number of
photons in the steady state is obtained following Ref. [19] and
using Eq. (29) as follows

n̄ =
∞∑

n=1

npn = p0

∞∑
n=1

n

(
A

BC

)n n∏
k=1

1

k + 1/B

= p0

∞∑
n=1

(
n + 1

B
− 1

B

) (
A

BC

)n n∏
k=1

1

k + 1/B

=
∞∑

n=1

p0

(
A

BC

)n (
n + 1

B

) n∏
k=1

1

k + 1/B

− 1

B

∞∑
n=1

p0

(
A

BC

)n n∏
k=1

1

k + 1/B︸ ︷︷ ︸
pn

= A

BC

∞∑
n=1

p0

(
A

BC

)n−1 n−1∏
k=1

1

k + 1/B︸ ︷︷ ︸∑∞
n=1 pn−1=

∑∞
n=0 pn

− 1

B
(1 − p0)

= A

BC
− 1

B
(1 − p0) = 1

B

(
A

C
− 1

)
+ 1

B
p0. (A2)

Similarly the second factorial moment is

n(n − 1) = p0

∞∑
n=2

n(n − 1)

(
A

BC

)n n∏
k=1

1

k + 1/B

=
∞∑

n=2

(n − 1)p0

(
A

BC

)n n−1∏
k=1

1

k + 1/B︸ ︷︷ ︸
A

BC
pn−1

− 1

B

∞∑
n=2

(n − 1)p0

(
A

BC

)n n∏
k=1

1

k + 1/B︸ ︷︷ ︸∑∞
n=2(n−1)pn

= A

BC
n̄ − 1

B
(n̄ − 1 + p0)

= 1

B

(
A

C
− 1

)
n̄ + 1

B
(1 − p0). (A3)

The second-order coherence degree in the steady state is
defined as [19,20] g(2)(t,t) = n(n − 1)(t)/n̄2(t) and obtained
using Eqs. (A2) and (A3).
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