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Abstract

Mobile phones have been a part of our everyday life in the developed world since 
the late 1990s. This has raised concerns over the potential health risks of mobile 
phone use. Biological and health effects potentially caused by mobile phone 
radiation have been extensively studied and several biological and medical 
endpoints have been examined. So far, results have not been conclusive on the 
potential effects of mobile phone radiation. 

Mobile phones generate a modulated radio frequency electromagnetic field 
(RF-EMF), which is a form of non-ionizing radiation. This means that mobile 
phone radiation does not have enough energy to ionize atoms and it cannot 
break chemical bonds directly (e.g., in DNA strands). There could, however, be 
other mechanisms by which mobile phone radiation may affect cellular and 
physiological functions. Whether these mechanisms exist is unknown. 

In this thesis, large-scale screening techniques, such as proteomics, were 
applied to examine changes on the proteome level after exposure to mobile phone 
radiation. Proteomics techniques allow the screening of several hundreds, and 
even thousands, of proteins simultaneously, and are thus more efficient than 
single endpoint techniques.

Four different types of human endothelial cells (two cell lines, two types 
of primary cells) were exposed to two types of mobile phone radiation (900 
and 1800 MHz GSM). The proteome of these cells was examined immediately 
after short-term exposure using two-dimensional gel electrophoresis (2DE). 
Two protein detection/analysis techniques were used: silver staining for the cell 
line samples and difference gel electrophoresis (DIGE) for the primary cells. 
2DE-DIGE technology is currently a state-of-the-art technique in 2DE studies.

Several changes were found in the proteome of the human endothelial 
cell line EA.hy926 after exposure to 900 MHz GSM mobile phone radiation. In 
addition, the proteome of a variant of the same cell line, the EA.hy926v1, was 
affected after 900 MHz GSM mobile phone radiation exposure, but the altered 
proteins were different from those in the EA.hy926 cells. The changes in the 
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proteome of the EA.hy926 cells were weaker after 1800 MHz GSM exposure 
compared to those after 900 MHz GSM exposure. Furthermore, certain proteins 
affected earlier after 900 MHz GSM exposure were unaffected after 1800 MHz 
GSM exposure. 

The proteome of the primary human endothelial cells was not affected 
after 1800 MHz GSM exposure when examined using 2DE-DIGE technology. 
2DE-DIGE technology is more reliable than the technology used with the 
EA.hy926 cell line, and these results should therefore be highly relevant when 
assessing the potential immediate effects of mobile phone radiation.

The results presented in this thesis on the proteome-level effects of mobile 
phone radiation exposure are contradictory. The results with EA.hy926 cells 
suggest that minor effects do occur, whereas no effects were observed when using 
the more reliable 2DE-DIGE technology and primary cells. The responses with 
EA.hy926 cells varied according to the cell variant and exposure conditions, 
and consistent responses at the cellular level could not therefore be identified. 
Further research is recommended to understand the variation in responses and 
whether consistent cellular-level responses exist.
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Tiivistelmä

Matkapuhelimet ovat olleet osa jokapäiväistä elämäämme 1990-luvun 
loppupuolelta lähtien, mikä on aiheuttanut huolta niiden mahdollista 
terveysvaikutuksista. Matkapuhelinsäteilyn mahdollisia biologisia ja 
terveysvaikutuksia on tutkittu laajalti ja tarkasteltavana on ollut useita 
erilaisia biologisia ja lääketieteellisiä ilmiöitä. Toistaiseksi tutkimustulosten 
perusteella ei ole saatu varmuutta, onko matkapuhelinsäteilyllä mahdollisia 
vaikutuksia.

Matkapuhelimet lähettävät radiotaajuisia aaltoja, jotka ovat ionisoima-
tonta säteilyä. Matkapuhelinsäteilyn energia ei riitä atomien ionisoimiseen ja 
se ei pysty suoraan rikkomaan kemiallisia sidoksia (esimerkiksi DNA-ketjussa). 
Matkapuhelinsäteily saattaa kuitenkin vaikuttaa solutason fysiologisiin toimin-
toihin muiden mekanismien välityksellä. Tällaisten mekanismien olemassa 
olosta ei ole toistaiseksi saatu varmuutta. 

Tässä väitöskirjassa sovellettiin laaja-alaisia seulontatekniikoita, kuten 
proteomiikkaa, proteiinitason muutosten tutkimiseen matkapuhelinsäteily- 
altistuksen jälkeen. Proteomiikka-menetelmien avulla voidaan yhtäaikaisesti 
tutkia satoja tai jopa tuhansia proteiineja ja ne ovat näin ollen tehokkaampia 
kuin yksittäistä ilmiötä tutkivat menetelmät.

Tutkimuksessa käytettiin solumallina ihmisen endoteelisoluja. 
Solumalleja oli yhteensä neljä (kaksi solulinjaa ja kahdenlaisia primäärisoluja) 
ja niitä altistettiin kahdella eri taajuudella (900 ja 1800 MHz GSM). Muutoksia 
solujen proteomissa tutkittiin välittömästi lyhytkestoisen altistuksen 
jälkeen kaksisuuntaista geelielektroforeesia (2DE) käyttäen. Tutkimuksissa 
käytettiin kahta erilaista proteiinien värjäys-/analysointitekniikkaa: 
solulinjanäytteille hopeavärjäystä ja primäärisoluille fluoresoivia leimoja (DIGE-
tekniikka). 2DE-DIGE-tekniikka edustaa parasta mahdollista teknologiaa 
2DE-tutkimuksissa.

Tutkimuksissa löydettiin useita muutoksia ihmisen endoteelisolulinjan 
EA.hy926:n proteomissa 900 MHz GSM -altistuksen jälkeen. Lisäksi muutoksia 
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havaittiin saman endoteelisolulinjan muunnoksen, EA.hy926v1:n, proteomissa 
900 MHz GSM -altistuksen jälkeen, mutta nämä muutokset olivat erilaisia kuin 
EA.hy926-soluissa. EA.hy926-solujen proteomissa löydettiin muutoksia myös 
1800 MHz GSM -altistuksen jälkeen, mutta nämä muutokset olivat heikompia 
kuin 900 MHz GSM -altistuksen jälkeen. Lisäksi tiettyjen proteiinien ilmenty-
minen, joka muuttui aiemmin 900 MHz GSM -altistuksen jälkeen, ei muuttunut 
1800 MHz GSM -altistuksen jälkeen. 

Primääristen ihmisen endoteelisolujen proteomissa ei havaittu muutoksia 
1800 MHz GSM -altistuksen jälkeen, kun tutkimuksissa käytettiin 2DE-DIGE-
tekniikaa. 2DE-DIGE-tekniikka on luotettavampi kuin menetelmä, jota käytettiin 
EA.hy926-solujen tutkimiseen. Näin ollen näillä tuloksilla tulisi olla paljon pai- 
noarvoa arvioitaessa lyhytkestoisen matkapuhelinsäteilyaltistuksen mahdol-
lisia välittömiä biologisia vaikutuksia.

Tässä väitöskirjassa esitetyt tulokset matkapuhelinsäteilyn vaikutuk-
sista solujen proteomin tasolla ovat ristiriitaisia. EA.hy926-soluilla saadut 
tulokset näyttävät, että joitakin muutoksia voi esiintyä altistuksen jälkeen. 
Luotettavammalla 2DE-DIGE-tekniikalla ja primäärisoluilla ei puolestaan 
havaittu muutoksia altistuksen jälkeen. Vaikutukset EA.hy926-soluissa vaih-
telivat solumuunnoksen ja altistusolosuhteiden perusteella ja näin ollen ei ole 
mahdollista havaita yhdenmukaista solutason vastetta matkapuhelinsätei-
lylle. Jatkotutkimuksilla tulisi selvittää, miksi vaikutukset vaihtelevat ja onko 
yhdenmukaista solutason vastetta olemassa.
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1.	 Introduction

Mobile phones have been a part of everyday life for most people in the developed 
world since the late 1990s. At the end of 2007 there were over six million 
mobile phone subscriber connections in Finland, corresponding to 115 subscriber 
connections per 100 inhabitants (Tilastokeskus 2008). Worldwide, the number 
of mobile phone subscribers has been estimated to have reached five billion 
(International Telecommunication Union (ITU) 2011). Simultaneously with the 
increase in the use of mobile phones, concern over the potential health risks 
due to mobile phone radiation has also arisen. Mobile phone technology has 
improved substantially since the first generation of cell phones, but the way they 
are used has also changed over time and is still changing. At first, mobile phone 
calls were expensive and the use of mobile phones was rare. However, mobile 
phones have developed and nowadays they serve people more as entertainment 
centers that are used for listening to music, photographing, surfing the Internet, 
and other purposes. In addition, land-line networks are no longer maintained 
in certain areas, causing phone calls to be transferred to wireless networks in 
these areas, thus further increasing the use of mobile phones.

Studies on the potential health and biological effects of mobile phone 
radiation have been extensively conducted over the years. Epidemiological 
as well as in vivo and in vitro approaches have been applied to examine the 
potential health and biological effects of mobile phone radiation. A few large 
epidemiological studies have been performed, mainly related to the incidence 
of cancer due to mobile phone use. Furthermore, human studies have been 
carried out to examine the effects of mobile phone radiation on sleep, different 
cognitive functions and behavioral aspects. There have also been several studies 
related to cancer incidence, genotoxic effects, cellular behavior and gene and 
protein expression in vivo and in vitro. So far, a number of these studies have 
focused on a single medical/biological endpoint (e.g., cancer incidence, apoptosis, 
or single protein expression). However, the results of the various studies have 
been contradictory. There is currently no consensus on whether mobile phones 
might have health or even biological effects, and in particular, no plausible 
mechanism for the effects of mobile phone radiation has been suggested.

Mobile phones generate a modulated radio frequency electromagnetic field 
(RF-EMF), which is a form of non-ionizing radiation. Mobile phone radiation is 
unable to cause ionizations in atoms or molecules and it does not have enough 
energy to directly break chemical bonds (e.g., in DNA strands). However, it is 
unknown whether mobile phone radiation could affect cellular and physiological 
functions by other mechanisms. A few hypotheses of these mechanisms have 
been presented, but to date there has been no generally accepted mechanism for 
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the potential non-thermal effects of mobile phone radiation.
Since the mid-1990s, new genome-wide screening techniques (‘omics-

techniques’) have greatly developed and have become increasingly popular 
in research. These large-scale screening techniques allow the simultaneous 
examination of several endpoints, e.g., at the gene (transcriptomics) or protein 
(proteomics) expression level. These techniques have been successfully applied 
in several research fields, from clinical biomarker discovery to various systems 
biology approaches. 

In this thesis, non-thermal biological and health effects related to mobile 
phone-based radiation are discussed, with a special focus on protein expression 
in vitro. An application of large-scale screening techniques in mobile phone 
radiation research is presented, and proteomics methods were used in the 
presented research to investigate the effects of the mobile phone radiation. 
Human endothelial cells were used as an in vitro model and the cellular 
proteome was examined immediately after short-term exposure to mobile phone 
radiation.
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2.	 Review of the Literature

2.1.	 Biological and health effects of mobile phone radiation

2.1.1.	 Mobile phone radiation
In everyday life, we are constantly surrounded by electromagnetic fields (EMF). 
There are natural sources of EMF, such as the earth’s magnetic field, as well as 
man-made sources, such as power cables, domestic appliances, radio stations, 
mobile phones, wireless networks, and radars. Many technical systems, such as 
mobile phones, use modulated radio frequency electromagnetic fields (RF-EMF) 
to transfer information. Typically, RF-EMF refers to the frequency range from 
100 kHz up to 300 GHz (Nyberg, Jokela 2006). 

Currently, there are two public mobile phone systems in large-scale use in 
Finland: the second generation GSM (Global System for Mobile Communications) 
system operating at 900/1800 MHz and the third generation UMTS/WCDMA 
system (Universal Mobile Telecommunications System/Wideband Code Division 
Multiple Access) operating at around 2000 MHz. The first generation analogue 
NMT (Nordic Mobile Telephone, 450/900 MHz) system was shut down by the 
end of the last millennium. The fourth generation LTE (Long Term Evolution) 
network, operating at around 2600 MHz, was launched on a pilot scale in late 
2010.

Mobile phones emit RF-EMF in specified frequency bands during the 
transmission phase (i.e., when speaking during a phone call). GSM phones emit 
a digital pulse-modulated signal. The maximum transmission power of GSM 
phones is 0.25 W at 900 MHz frequency and 0.125 W at 1800 MHz frequency. 
The maximum transmission power during one pulse, however, is 8-fold higher 
(i.e. 2 W at 900 MHz and 1 W at 1800 MHz), because the signal is emitted in 
pulses with a duration of 0.577 milliseconds in 4.615 millisecond frames (that 
is, the signal is only emitted during one eight of the time). The signal in UMTS 
systems is more irregular than in GSM systems. In WCDMA systems, the signal 
is emitted on 5-Hz-wide radio channels. The maximum transmission power is 
0.125 W and the peak transmission power below 1 W (Nyberg, Jokela 2006). 
Mobile phone systems continuously adapt the transmission power output level, 
and the maximum transmission power is only used when the field is weak, e.g., 
because of a long distance between the phone and the receiving base station.

The level of exposure to mobile phone radiation is generally measured 
as a specific absorption rate (SAR), which describes the power absorption per 
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unit mass and is expressed as W/kg. Basically, SAR represents the thermal load 
directed to the tissue from the electromagnetic field. A strong electric field might 
warm up tissues, and thermal effects of this kind are nowadays well understood 
(Adair, Black 2003). Based on these well-established biological effects of EMF, 
guidelines have been established to limit human exposure to RF-EMF. These 
guidelines have been published, for example, by the International Commission 
on Non-Ionizing Radiation Protection (ICNIRP) (International Commission for 
Non-Ionizing Radiation Protection (ICNIRP) 1998) and the Institute of Electrical 
and Electronics Engineers (IEEE) (The Institute of Electrical and Electronics 
Engineers (IEEE) 2006). In the EU area, RF-EMF exposure limits are based 
on the ICNIRP guidelines, and in Finland, for example human exposures are 
regulated by a decree of the Ministry of Social Affairs and Health (294/2002). 
These basic restrictions contain 10–100-fold safety margins, and for exposure 
of the general public SAR levels have been set to 0.08 W/kg concerning the 
whole body, 2 W/kg for local exposure to the head and torso, and 4 W/kg for local 
exposure to the limbs. The SAR levels for local exposures are calculated as an 
average in 10 g of tissue. Based on these basic restrictions, a maximum SAR of 
2 W/kg is permitted for mobile phones. Mobile phones commonly operate close 
to the exposure limits, around SAR levels of 1 W/kg. Thus, mobile phones are 
the only RF sources that operate close to basic restriction limits. In addition, 
local exposures in certain small areas might exceed the basic restrictions. 
(International Commission for Non-Ionizing Radiation Protection (ICNIRP) 
1998, Nyberg, Jokela 2006)

2.1.2. Potential mechanism
Electromagnetic fields induce an electric field and a current into the body. A 
strong electric field, depending on its frequency, might warm up tissues or 
disturb the neuronal functions. Thermal effects are based on energy absorption 
from the field to the tissue, which causes the oscillation of molecules. These 
types of effects are nowadays well known (Adair, Black 2003, Nyberg, Jokela 
2006), and guidelines to limit human exposure to EMF are based on them. 
However, it is unclear whether RF-EMF might cause other non-thermal effects 
at low exposure levels. 

Mobile phone radiation is non-ionizing, i.e. it is not able to cause ionizations 
in atoms or molecules. The minimum energy required for ionization of a ground 
state hydrogen atom is 13.6 eV, and the ionization energy for other atoms 
and molecules is also in the eV order of magnitude. The order of magnitude 
of the photon energy of RF-EMF, e.g., mobile phone radiation, is one millionth 
of the ionization energy and one thousandth of the thermal energy at room 
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temperature or the energy required to break weak non-covalent chemical bonds. 
Thus, the photon energy of mobile phone radiation is too weak to induce direct 
chemical changes and break chemical bonds directly (e.g., in DNA strands), 
and the mechanism for mobile phone radiation-based effects is therefore 
likely to be indirect, if such a mechanism exists at all. Several hypotheses for 
these potential mechanisms have been suggested (for a review, see e.g., Foster 
2000, Nyberg, Jokela 2006, Sheppard, Swicord & Balzano 2008, Adair 2003), 
including for instance a reactive oxygen species (ROS)-mediated mechanism 
(Brocklehurst, McLauchlan 1996), oscillating resonances, and induced dipole 
moments. However, based on current knowledge, it seems that weak fields are 
quite unlikely to generate significant effects in their interactions (Adair 2003, 
Sheppard, Swicord & Balzano 2008). Thus, no generally accepted mechanism 
for the potential non-thermal mobile phone radiation-based effects has so far 
been established.

2.1.3. Overview of potential effects

2.1.3.1. Research approaches
Biological research regarding the potential biological and health effects of EMF 
has been conducted for decades and it has related to several different biological 
and health aspects. The studies have been conducted using different frequencies, 
exposure levels and durations as well as modulation types of RF-EMF. Several 
research strategies have been applied using epidemiology as well as in vivo 
and in vitro methods, since each of these approaches has its own strengths and 
weaknesses. Specifically, exposure assessment is one of the common challenges 
concerning all the study approaches in mobile phone radiation research.

Epidemiological studies aim to demonstrate a direct impact on humans 
and are thus usually considered to be the most suitable for human health risk 
assessment, which is an important issue in mobile phone radiation research. 
However, epidemiological studies in mobile phone radiation research are often 
limited by the assessment of exposure. In the studies executed so far, exposure 
assessment has often been carried out using questionnaires on mobile phone use 
completed by study participants. This might potentially cause bias in exposure 
assessment, e.g., due to recall bias. Human volunteer studies also provide direct 
evidence of the actual human response, but due to ethical reasons, these studies 
are limited to transient physiological phenomena. Studies in vivo can be used 
to mimic human studies to obtain physiological information in experimental 
situations where it is not possible to use human volunteers. Studies in vitro 
are extremely useful for determining basic biological effects and potential 
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mechanisms behind the effects, while they cannot be directly applied in health 
risk assessment.

In some of the early studies in vivo and in vitro, estimation of the exposure 
has been challenging, as the samples might have been heated to excess due 
to the RF-EMF exposure. Thus, it is unclear whether the effects potentially 
observed in these studies have been caused by heating or RF-EMF exposure 
(i.e., whether those are non-thermal effects). Furthermore, in certain studies 
the exposures have been executed by placing a regular mobile phone close to an 
animal cage or cell culture dishes. Such exposures do not allow reliable exposure 
assessment. Nowadays, specific exposure set-ups have been designed for studies 
both in vivo and in vitro. In the most optimized set-ups the study subjects are 
exposed to RF-EMF in a highly controlled environment and several factors such 
as temperature and field parameters can be monitored continuously during the 
exposure.

2.1.3.2. Cancer-related studies
One of the most common fears regarding mobile phone radiation exposure has 
been its potential ability to cause cancer. The cancer incidence due to mobile 
phone radiation exposure has been examined with epidemiological studies that 
examine the direct influence on humans. Additionally, effects on the incidence 
of cancer have been examined using animal studies.

Epidemiology provides the most direct evidence of the carcinogenic 
potential of specific agents in humans. Therefore, several epidemiological studies 
have examined the effects of mobile phone use on tumor formation. By far the 
most common area of focus has been on tumors of the head and neck area (e.g., 
gliomas, meningiomas, acoustic neuromas, and salivary gland tumors). Most of 
the completed epidemiological studies regarding mobile phone use and cancer 
incidence have been case-control studies, whereas only a few cohort studies have 
been performed. In case-control studies a patient with a diagnosed disease is 
asked to participate in the study, and after the permission is granted, he/she 
is often interviewed. Additionally a respective control person is sought for the 
study. Exposure assessment is based on either interviews or records from mobile 
phone network operators. If the exposure assessment is based on interviews, 
recall bias (i.e., how well the study person recalls the duration of phone calls, 
the location where the phone was held, etc.) may significantly affect the findings. 
The most recent large epidemiological study on mobile phone use and tumor 
risk has been the INTERPHONE study, which included over 5000 brain tumor 
cases with respective controls in 13 different countries (INTERPHONE Study 
Group 2010). The research group concluded that no overall increased risk of 
glioma or meningioma was observed due to mobile phone use. However, the 
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research group observed some indications of an increased risk of glioma at the 
highest exposure levels (long-term heavy usage), but biases, such as recall bias, 
and error prevented a causal interpretation. Several expert groups currently 
conclude that overall the studies published so far do not demonstrate a raised 
risk within approximately ten years of mobile phone use for brain tumors or any 
other head tumors. However, for slow-growing tumors the latency period is still 
too short to draw conclusions (e.g., International Commission for Non-Ionizing 
Radiation Protection (ICNIRP) 2009). Recently, a new cohort study (COSMOS) 
was launched in five countries to examine health risks related to long-term 
mobile phone use (Schüz et al. 2011) according to high priority research needs 
identified by the World Health Organization (WHO) (World Health Organization 
(WHO) 2010).

Animal studies have also been used to examine the incidence of cancer 
in relation to mobile phone radiation exposure. For instance, Repacholi et al. 
exposed transgenic mice to 900 MHz pulsed wave (PW) SAR values ranging 
from 0.008 to 4.2 W/kg and examined incidence of lymphoma (Repacholi et al. 
1997). In this study, the lymphoma incidence increased after exposure and the 
authors reported that PW could enhance lymphoma formation in genetically 
cancer-prone mice. Subsequently, the study of Repacholi et al. was replicated 
by Utteridge et al. (Utteridge et al. 2002) and Oberto et al. (Oberto et al. 2007), 
but no increased lymphoma incidence was found. In several other studies, in 
which genetically wild type mouse strains have been exposed to mobile phone 
radiation, no increased tumor incidence has been detected (e.g., La Regina et 
al. 2003, Tillmann et al. 2007). Animal studies have also been used to examine 
whether mobile phone radiation could enhance the carcinogenicity of other 
agents. For example, Tillmann et al. recently exposed mice lifelong to the UMTS 
signal in the presence of known carcinogen and reported a doubled rate of lung 
cancers in the treated group when compared to the controls (Tillmann et al. 
2010). The authors of this pilot study suggested that the UMTS signal might 
be potentially cocarcinogenic. Nonetheless, most published studies have not 
reported potential epigenetic carcinogenicity of mobile phone radiation (e.g., 
Heikkinen et al. 2006).

2.1.3.3. Human volunteer studies
Human volunteer studies can provide direct evidence of the actual human 
response, and several human volunteer studies have therefore been performed 
regarding mobile phone radiation exposure. However, due to ethical reasons, 
the endpoints in human volunteer studies are limited to transient physiological 
phenomena, such as nervous and endocrine system function or thermoregulation. 
Other endpoints include effects on sleep quality and symptoms of illness such 
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as headaches.
Nervous system studies have included, for instance, behavioral and 

neurophysiological measurements. These have recently been reviewed, among 
others, by van Rongen et al. and Kwon and Hämäläinen (van Rongen et al. 
2009, Kwon, Hämäläinen 2011). A few positive findings have been reported in 
early behavioral studies, e.g., improved learning after mobile phone radiation 
exposure. Nevertheless, these findings have not been reproduced in later larger 
studies, even though these studies might have been performed by the same 
research groups (e.g., Koivisto et al. 2000a, 2000b vs. Haarala et al. 2003a, 2003b, 
2004). Potential reasons for the diverse results could be the better experimental 
design in later studies, i.e., more study subjects, double blinding, and better 
control for false positives in statistical analysis.

Sleep quality has been examined in relation to mobile phone radiation 
exposure. Certain results suggest that mobile phone exposure has an effect on 
sleep electroencephalography (EEG) by increasing the EEG alpha range in the 
sleep EEG (e.g., Lowden et al. 2011). However, several other studies have found 
no effects on other sleep quality parameters (e.g., Fritzer et al. 2007, Mohler et 
al. 2010).

Volkow et al. exposed human volunteers to mobile phone radiation and 
investigated brain glucose metabolism using positron emission tomography 
(Volkow et al. 2011). A minor, but statistically significant, increase in brain 
glucose metabolism in the brain regions closest to mobile phone was reported 
after the exposure. Recently, Kwon et al. applied similar type of research approach 
as Volkow et al. (Kwon et al. 2011a, 2011b). No effects were found on cerebral 
blood flow, while brain glucose metabolism was suppressed after mobile phone 
radiation exposure. However, it is unknown whether changes in brain glucose 
metabolism have any clinical significance.

Some human studies in vivo on genotoxicity have also been performed. For 
example, Gandhi and Anita reported an increase in chromosomal damage when 
comparing mobile phone users and never-users, but the results were indicated as 
preliminary (Gandhi, Anita 2005). Yadav et al. reported an increased frequency 
of micronuclei in cells exfoliated from the human oral cavity of mobile phone 
users in comparison to controls (Yadav, Sharma 2008). The authors also reported 
a correlation between the years of exposure. Hintzsche and Stopper used a 
similar type of study set-up to Yadav et al. but found no differences related to 
mobile phone use (Hintzsche, Stopper 2010). Thus, no conclusions can yet be 
drawn on human genotoxicity studies. Additionally, Karinen et al. have examined 
molecular responses in human skin in vivo (Karinen et al. 2008). This study is 
presented in section 2.2.3.
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2.1.3.4. Physiological endpoints in animal studies
In addition to cancer incidence (section 2.1.3.2), other biological and physiological 
endpoints have also been studied in vivo after mobile phone radiation exposure. 
Either rats or mice have most commonly been used in these experiments, but 
some studies have also used rabbits or flies (Drosophila melanogaster) as study 
subjects.

One of the interesting endpoints related to mobile phone radiation 
exposure has been the blood-brain barrier (BBB) and potential leakages in it. 
Possible leakages in the BBB may allow molecules of the blood circulation to 
enter the cerebrospinal fluid, causing potentially harmful effects. Some studies 
have indicated that mobile phone radiation might have an effect on BBB 
permeability. For example, Salford et al. reported an increase in the permeability 
of the blood-brain barrier to albumin after a two-hour exposure to a GSM signal 
(SARs 2 mW/kg, 20 mW/kg, and 200 mW/kg) (Salford et al. 2003). It was also 
suggested to cause neuronal damage throughout the brain, especially in the 
cortex, hippocampus, and basal ganglia. However, no effects on the BBB have 
been observed in replications of the Salford et al. study (de Gannes et al. 2009, 
Masuda et al. 2009). In addition, several other studies have reported no effects 
on the BBB (e.g., Finnie et al. 2006a). Therefore, based on the current scientific 
evidence, the effects on the BBB following mobile phone radiation exposure 
remain controversial, but seem very improbable.

Other brain areas and functions have also been examined after mobile 
phone radiation exposure. Recently, for example, Finnie et al. found no evidence 
of microglial activation (Finnie et al. 2010). In their study, they observed no 
perturbation of the neural tissue after acute (60 min) or long-term (2 years) 
exposure of mice using 900 MHz GSM with a whole body SAR of 4.0 W/kg. 
However, Maskey et al. reported hippocampus damage in rodents after a few 
months of exposure to an 835 MHz CDMA signal with an SAR range of 1.6 to 
4.0 W/kg (Maskey et al. 2010a, 2010b). 

Reproduction, fertility, and postnatal juveniles have recently been a concern 
related to RF-EMF exposure, as juveniles are subjected to a long-term exposure 
over their life time. At present, it is known that exposure to thermal levels 
of RF-EMF has a harmful impact on pregnancies and fertility (International 
Commission for Non-Ionizing Radiation Protection (ICNIRP) 2009). Meanwhile, 
the number of studies on the non-thermal level of exposure is limited, and no 
consistent non-thermal effects have yet been reported. For instance, Lee HJ et al. 
recently exposed rats to a CDMA signal at a SAR of 2 W/kg and found no effects 
on spermatogenesis in rats after a subchronic exposure (Lee et al. 2010). However, 
a few human studies in vitro have presented contradictory evidence (Falzone 
et al. 2008, 2011). Fragopoulou et al. recently detected cranial and postcranial 
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skeletal variations induced in mouse embryos after exposure to a commercial 
mobile phone (Fragopoulou, Koussoulakos & Margaritis 2010), whereas Kumlin 
et al., for instance, observed no morphological changes in juvenile rats (Kumlin 
et al. 2007). In the study by Kumlin et al., animals exposed to mobile phone 
radiation showed significantly improved performance in a water maze task 
when compared to sham-exposed animals, indicating improved learning and 
memory (Kumlin et al. 2007). In general, results related to reproduction and 
postnatal development after mobile phone radiation exposure are still sparse 
and, for instance, WHO has recommended studies in this field as a high priority 
research need (World Health Organization (WHO) 2010).

Several other physiological endpoints related to, for example, nervous, 
auditory, endocrine, and cardiovascular systems, and different organs have 
also been investigated (for a review, see e.g., International Commission for 
Non-Ionizing Radiation Protection (ICNIRP) 2009). Recently, for instance, 
Bartsch et al. examined health effects at the general level in several rat studies 
in vivo after chronic exposure to a GSM-like signal (Bartsch et al. 2010). They 
suggested that the chronic exposure may incur negative health effects and 
shorten the life span of the animals if the treatment time is sufficiently long and 
the observational period covers the full life span of the animals. Meanwhile, Jin 
et al. reported that a one-year simultaneous CDMA/WCDMA chronic exposure 
at a SAR of 2.0 W/kg did not increase chronic illnesses in rats, although there 
were some altered parameters in the complete blood count and serum chemistry 
(Jin et al. 2011).

2.1.3.5. Genotoxicity
Genetic effects after mobile phone radiation exposure have been widely studied. 
The potential presence of genotoxic effects might lead to tumor formation in the 
future. Several techniques have been used, such as the detection of chromosomal 
aberrations, sister chromatid exchanges, and micronuclei, as well as the comet 
assay and γ-H2AX phosphorylated histone assays. Studies both in vivo and in 
vitro have on this topic been published. Most of the published genotoxicity results 
have not reported effects. Nevertheless, some results remain contradictory (for 
a review, see e.g., Verschaeve 2009, Verschaeve et al. 2010).

The potential genotoxicity of RF-EMF has been studied with animals, 
mainly with mice or rats. For instance, in the mid-1990s, Lai and Singh reported 
that a pulsed 2450 MHz RF-EMF has genotoxic potential. The authors found 
that the number of DNA single- and double-strand breaks increased in rat brain 
cells after 2 hours of exposure. The effects were reported immediately after the 
exposure and four hours after 0.6 and 1.2 W/kg exposures in vivo (Lai, Singh 
1995, 1996, 1997). However, neither replication studies (Malyapa et al. 1998, 
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Lagroye et al. 2004) nor studies using GSM exposures (Belyaev et al. 2006) have 
reported similar results. Furthermore, long-term exposures of mice to GSM 
signals have not caused increased micronuclei frequencies (e.g., Juutilainen et 
al. 2007, Ziemann et al. 2009). In summary, most of the animal studies have not 
reported direct genotoxic effects after RF-EMF exposure at non-thermal levels 
(International Commission for Non-Ionizing Radiation Protection (ICNIRP) 
2009). 

Genotoxicity has been examined in vitro using several different techniques. 
The majority of studies have not reported effects after mobile phone radiation 
exposure, while a few positive results concerning rather severe chromosomal 
effects after mobile phone radiation exposure have also been reported. For 
example, Tice et al. exposed human leukocytes and lymphocytes to several 
different mobile phone radiofrequency signals at various SAR levels (Tice et al. 
2002). They reported micronuclear changes after a 24-hour exposure with all 
applied RF technologies at SAR averages of 5 or 10 W/kg in human lymphocytes, 
but not in leukocytes. After a shorter exposure time of 3 hours, no effects were 
observed. Using a continuous wave (CW) exposure, Mashevich et al. and Mazor 
et al. reported increased chromosomal aneuploidy (Mashevich et al. 2003, Mazor 
et al. 2008). These studies were recently repeated in part by Bourthoumieu et 
al. (Bourthoumieu et al. 2010, 2011). They examined the cytogenetic effects 
of 900 MHz mobile phone radiation on cultured amniotic cells and found no 
significant change in the rate of aneuploidy of chromosomes 11 and 17 or other 
direct cytogenetic effects. However, the exposure conditions (duration of exposure 
and SAR levels) were not identical. Several other studies in vitro have also 
reported no genotoxic effects (e.g., Vijayalaxmi et al. 2001a, 2001b, McNamee et 
al. 2002, 2003, Zeni et al. 2003, 2005, 2008, Scarfi et al. 2006, for review, see e.g., 
Verschaeve et al. 2010).

Many comet assay studies examining DNA damage and repair in vitro 
have also been published. Recently, an Italian research group reported that 
modulated GSM signals induced a significant increase in comet parameters 
in trophoblast cells after a 16- and 24-hour exposure at an SAR level of  
2 W/kg (Franzellitti et al. 2010), while CW exposure did not. The changes were 
reversible after 2 hours of recovery. After shorter exposure times, no effects 
were observed (Valbonesi et al. 2008). Changes in the comet assay after mobile 
phone exposure have also been published by an Austrian research group (Diem 
et al. 2005, Schwarz et al. 2008). DNA strand breaks were already reported at 
low SAR levels in human fibroblasts. However, results of these studies have 
been criticized, and using the same study design the results have been negative 
elsewhere (Speit, Schutz & Hoffmann 2007). Most studies using the comet assay 
to assess DNA damage and repair have not reported any alterations in these 
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after mobile phone radiation exposure (e.g., McNamee et al. 2002, 2003, Hook et 
al. 2004, Zeni et al. 2005, 2008, for review, see e.g., Verschaeve et al. 2010).

DNA strand breaks can also be examined with a γ-H2AX phosphorylated 
histone assay, which is currently considered to be the most sensitive method 
for detecting DNA damages. So far, the method has not been widely used in 
mobile phone radiation research. Recently, for example, Belyaev et al. applied 
the γ-H2AX technique to study effects on human lymphocytes using exposures 
at different frequencies, signal modulations, and at an average SAR of  
0.4 W/kg (Belyaev et al. 2009). The results suggested a long-lasting inhibition 
in the formation of DNA double-strand breaks co-localizing the 53BP1/γ-H2AX 
DNA repair foci. The effect was suggested to depend on the carrier frequency, 
with the UMTS signal being more effective than the GSM signal.

Additionally, the genotoxicity of the mobile phone radiation has been 
studied in the presence of known mutagens. Recently, for example, Luukkonen 
et al. (Luukkonen, Juutilainen & Naarala 2010) and Sannino et al. (Sannino 
et al. 2009a) examined the combined effects of mobile phone radiation and a 
known chemical mutagen using the comet assay. Chemical treatment with the 
mutagen led to the induction of DNA damage, but no additional DNA damage 
was observed when mobile phone radiation exposure was also applied. However, 
another micronuclei assay study by Sannino et al. (Sannino et al. 2009b) reported 
an adaptive response in human lymphocytes caused by pre-exposure to 900 MHz 
mobile phone radiation before chemical mutagen treatment. The lymphocytes 
for the study were collected from different donors, and lymphocytes from only 
some donors responded adaptively. 

2.1.3.6. Cellular effects
Different cellular effects have also been examined after mobile phone radiation 
exposure. The potential differences in cellular behavior might play a role, for 
instance, in later tumor development. These cellular effects include proliferation, 
differentiation, apoptosis, and transformation, as well as the expression of 
specific genes and proteins (section 2.1.4).

Cellular growth has been examined with several methods. Recently, 
for instance, Lee KY et al. found no differences in cell cycle distribution after 
exposure in vitro to the CDMA/WCDMA signal for one hour at an SAR level of 
4 W/kg (Lee et al. 2011). Sekijama et al. exposed three different cell types to the 
WCDMA signal with different durations up to 96 hours and the SAR averages 
up to 0.8 W/kg and found no differences in cell growth (Sekijima et al. 2010). The 
ornithine decarboxylase (ODC) expression levels have also been assessed, since 
the enzyme is involved in cell growth and its overexpression might regulate, 
for instance, cancer invasiveness. In the mid-1990s, increased ODC activity 
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was reported after exposure in vitro to various frequencies and modulations of 
RF-EMF (Litovitz et al. 1993, Penafiel et al. 1997). The increased activity was 
suggested to be exposure time-, frequency- and modulation-specific, peaking 
at certain points (the so-called ‘window effect’). These studies have since been 
replicated, but no increase in ODC activity has been observed (Desta, Owen & 
Cress 2003, Höytö, Juutilainen & Naarala 2007). However, it has been reported 
that ODC activity is sensitive even to small temperature changes (Höytö et al. 
2006), which could have been caused by mobile phone radiation exposure in the 
original study set-up. A few studies have also reported effects on cell proliferation 
after mobile phone radiation exposure (e.g., Velizarov, Raskmark & Kwee 1999), 
whereas several others have not shown effects on cell proliferation or viability 
(e.g., Nikolova et al. 2005, Gurisik et al. 2006, Merola et al. 2006, Sanchez et al. 
2006, Chauhan et al. 2007a, Huang et al. 2008a, 2008b).

Cellular apoptosis is an important process in which mutated or otherwise 
damaged cells are guided to ‘commit suicide’ and thus be eliminated from the 
tissue. The effects of mobile phone radiation exposure on cellular apoptosis 
have been examined in several studies. For instance, Buttiglione et al. exposed 
a human neuroblastoma cell line to a 900 MHz PW at a mean SAR level of                 
1 W/kg. After 24 hours the authors reported an increase in apoptosis and also a 
decrease in known apoptosis inhibitor genes BCL-2 and survivin at the mRNA 
level (Buttiglione et al. 2007). Caraglia et al. also reported an increase in cellular 
apoptosis as well as changes in apoptosis-related genes after a 3-hour exposure 
to the 1950 MHz RF-EMF at an SAR level of 3.6 W/kg (Caraglia et al. 2005). 
However, most studies examining apoptosis after mobile phone exposure have 
not reported any changes (e.g., Gurisik et al. 2006, Joubert et al. 2006, 2007, 
Lantow et al. 2006c, Merola et al. 2006, Falzone et al. 2010).

Cellular transformation has been examined to determine whether the 
RF-EMF exposure could act as an inducer or a promoter of tumor formation 
or as a potential cocarcinogen. In the 1980s, Balcer-Kubiczek and Harrison 
reported that cellular transformation was increased in the presence of a known 
carcinogen after RF-EMF exposure (Balcer-Kubiczek, Harrison 1985, 1989, 
1991). However, several newer studies have failed to support this observation. 
For example, Hirose et al. found no evidence of cellular transformation using 
the same cells as Balcer-Kubiczek and Harrison and a 2142.5 MHz WCDMA 
exposure (Hirose et al. 2008).

One potential mechanism that has been proposed for RF-EMF-associated 
effects is the ROS-mediated mechanism. ROS formation after the mobile phone 
exposure has consequently been examined in a few studies. Most of these have 
not reported any effects on ROS production after mobile phone radiation exposure 
alone or in combination with known chemical agents (e.g., Lantow et al. 2006a, 
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Brescia et al. 2009, Falzone et al. 2010, Luukkonen, Juutilainen & Naarala 
2010). Thus, the current data suggest that mobile phone radiation exposure 
has no effect on ROS production in several different cell lines (International 
Commission for Non-Ionizing Radiation Protection (ICNIRP) 2009).

2.1.4. Protein and gene expression
Gene expression on the transcriptional and translation level has been widely 
examined following mobile phone radiation exposure. Early studies focused 
on examining the expression of specific genes and proteins, such as heat 
shock proteins, proto-oncogenes and proteins of different signal transduction 
pathways. Furthermore, some proteins relating to cellular structures have 
been examined. Subsequently, new high-throughput screening techniques, such 
as transcriptomics and proteomics (section 2.2.3), have also been applied in 
mobile phone radiation research. There have been several studies reporting 
both effects and no effects on protein and gene expression after mobile phone 
radiation exposure. These studies have recently often been reviewed (e.g., 
Vanderstraeten, Verschaeve 2008, International Commission for Non-Ionizing 
Radiation Protection (ICNIRP) 2009, McNamee, Chauhan 2009, Gaestel 2010).

2.1.4.1. Heat shock proteins
Stress proteins, i.e., heat shock proteins (HSPs), are a large group of proteins 
that are highly conserved and found in all cell types among different species. 
They function as molecular chaperones and are expressed both constitutively 
and in response to several different types of environmental stresses, such as 
heat, cold, and chemical agents. For instance, the HSP70 protein family is 
commonly known to respond readily to different stressors (for a review, see e.g., 
Lindquist, Craig 1988, Kregel 2002). Because of their nature as stress responding 
proteins, these proteins have been suggested to be affected by mobile phone 
exposure (e.g., French et al. 2001, Leszczynski et al. 2002). Thus, the expression 
of HSP genes has been examined in several studies in vivo and in vitro both on 
transcriptional and translational levels after mobile phone radiation exposure. 
Most of the studies carried out to date have detected no effects after mobile 
phone exposure on HSP expression (International Commission for Non-Ionizing 
Radiation Protection (ICNIRP) 2009), although some exceptions exist. The HSP 
studies are summarized in the text and Table 3 in Appendix 1. Additionally, a 
few early studies using CW exposure have been included. 

Fritze et al. published one of the first studies in vivo examining the 
response of HSPs to mobile phone radiation (Fritze et al. 1997). In this study, 
rats were exposed to GSM and a respective CW signal. Immediately after 
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CW exposure of 7.5 W/kg, a slight induction of Hsp70 mRNA was recorded in 
certain brain areas, but this was not observed at lower SAR values or 24 hours 
after the exposure. No other changes were observed, and the authors therefore 
suggested that acute high intensity microwave exposure may induce a minor 
stress response, but does not lead to lasting adaptive or reactive changes in 
the brain. In 2000, De Pomerai et al. reported an increase in the activity of 
the Hsp16 reporter gene in C. Elegans after a low-level CW exposure of 750 
MHz (de Pomerai et al. 2000). However, this study was later retracted, as the 
authors observed that the elevation of gene expression was probably due to the 
temperature rise during the exposure (Dawe et al. 2006). Subsequently, the 
same authors reported observing no increase in Hsp16 reporter gene activity 
at higher exposure levels with either CW or GSM signals (Dawe et al. 2008). 
Weisbrot et al. examined Drosophila melanogaster after mobile phone radiation 
exposure and reported elevated HSP70 protein expression levels (Weisbrot et 
al. 2003). However, the exposure assessment for their study was inadequate, as 
the SAR values were not measured for the experimental set-up. Lee JS et al. 
exposed Hsp70.1-deficient mice for weeks to a CDMA signal at the SAR level of 
0.4 W/kg (Lee et al. 2005). The expression levels of HSP25, HSP70, and HSP90 
were not affected after the exposure. Sanchez et al. exposed rats to the GSM 
signals of 900 MHz and 1800 MHz and found no alterations in the expression of 
HSP25, HSC70, or HSP70 in rat skin (Sanchez et al. 2008). Finnie et al. exposed 
pregnant mice for a several days and examined the HSP expression in their 
pups (Finnie et al. 2009). HSP32 and HSP70 protein expression levels were 
not inducible in any mouse brains, while HSP25 protein expression showed no 
alterations after the exposure. Recently, Watilliaux et al. exposed developing 
rats for 2 hours to a GSM signal of 1800 MHz with the SAR ranging from 1.7 
to 2.5 W/kg (Watilliaux et al. 2010). No effects were found on the expression of 
HSP60, HSC70, HSP70, or HSP90, or several glial markers after the exposure. 
In summary, the majority of recent studies in vivo examining HSP expression 
have not reported any effects of mobile phone radiation exposure.

Several studies in vitro on HSP expression have also been published. 
These studies have reported both effects and no effects on HSP expression 
levels. For instance, the following publications have described alterations in 
HSP expression levels. Leszczynski et al. reported a transient increase in the 
expression and phosphorylation of HSP27 in the human endothelial cell line 
EA.hy926 after a one-hour exposure to 900 MHz GSM at an SAR of 2.4 W/kg 
(Leszczynski et al. 2002). All changes were reversible in a few hours after the 
exposure. Czyz et al. observed an increase in the Hsp70 mRNA level in mouse 
p53-deficient embryonic stem cells after exposure to a 1710 MHz GSM signal 
at SAR levels of 1.5 and 2.0 W/kg for 6 or 48 hours (Czyz et al. 2004). However, 
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no similar effects were found using other modulation schemes, e.g., GSM Talk 
modulation, or using wild type mouse embryonic stem cells. Caraglia et al. 
reported several changes in HSP27, HSP70, and HSP90 protein expression after 
exposing a human carcinoma cancer cell line to 1950 MHz RF-EMF (possible 
modulation of the signal was not specified) (Caraglia et al. 2005). Lixia et al. 
exposed human eye lens epithelial cells to a GSM signal of 1800 MHz for 2 hours 
at different SAR levels (Lixia et al. 2006). The authors reported an increase in 
HSP70 protein expression after 2 and 3 W/kg exposures, but no differences were 
detected in the HSP70 mRNA level using RT-PCR. Sanchez et al. examined 
effects on human skin and exposed different cells and human reconstructed 
epidermis to a GSM signal of 900 MHz or 1800 MHz for 48 hours at an SAR level 
of 2 W/kg (Sanchez et al. 2006, 2007). A significant decrease in HSC70 protein 
expression was observed in fibroblasts after the 900 MHz exposure, but not 
after the 1800 MHz exposure. Additionally, a slight but significant increase in 
HSP70 protein expression was reported in the reconstructed epidermis after 3 
and 5 weeks of culture. However, no effects on HSP27, HSC70, or HSP70 protein 
expression were found in keratinocytes with either of the exposures in these 
studies. Franzellitti et al. exposed a human trophoblast cell line to GSM and 
CW signals of 1800 MHz for 4 to 24 hours at an SAR of 2 W/kg and examined 
the HSP70 gene and protein expression (Franzellitti et al. 2008). The authors 
found no differences in several members of the HSP70 family, but inducible 
HSP70C transcript levels were altered (up or down) after certain exposure types. 
However, the same research group found no evidence of changes in either HSC70 
or HSP70 protein or gene expression after a shorter exposure (Valbonesi et al. 
2008). Yu et al. exposed human lens epithelial cells to 1800 MHz RF-EMF at 
various SAR levels and durations and reported a significant increase in HSP27 
and HSP70 protein expression with an SAR above 2 W/kg after two hours of 
exposure (Yu et al. 2008). Unfortunately, the exposure assessment of this study 
was not reported and is thus inadequate.

However, several studies in vitro have reported no effects on HSP 
expression. Capri et al. exposed human mononuclear cells to three different 
modulation schemes of a 1800 MHz GSM signal with different SAR levels for 
44 hours and found no changes in HSP70 protein expression (Capri et al. 2004). 
Lim et al. investigated the effects of mobile phone radiation on HSP expression, 
exposing human peripheral blood to the GSM and CW signals of 900 MHz at 
different SARs and durations (Lim et al. 2005). No changes were observed in 
HSP27 or HSP70 protein expression in human leukocytes, while a response to 
the heat shock exposure was observed. Vanderwaal et al. exposed two different 
cell lines, including the human endothelial cell line EA.hy926, to a TDMA signal 
of 847 MHz or a GSM signal of 1900 MHz at various SAR values and durations 
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(Vanderwaal et al. 2006). No alteration in HSP27 phosphorylation was observed 
in any of the exposure conditions, while the heat shock exposure of 41 ○C or  
45 ○C increased HSP27 phosphorylation. Lee JS et al. exposed human and rat 
cells to a CDMA signal of 1763 MHz for 30 min or 1 hour at SARs of 2 or  
20 W/kg (Lee et al. 2006) and reported no differences in the protein expression 
levels of HSP27, HSP70, or HSP90. Simko et al. exposed a human monocyte cell 
line to GSM and CW signals of 1800 MHz for one hour at an SAR of 2 W/kg and 
reported no changes in HSP70 protein expression (Simko et al. 2006). Later, the 
same research group also exposed several different cell types to a GSM signal 
at an SAR of 2 W/kg for one hour with different post-incubation times and found 
no changes in HSP70 protein expression (Lantow et al. 2006a, 2006b). Chauhan 
et al. exposed three human cell types to an intermittent 1900 MHz PW signal at 
average SARs of 1 and 10 W/kg for 6 hours (Chauhan et al. 2006a, 2006b). RT-PCR 
did not reveal any differences in the mRNA levels of HSP27 or HSP70 after the 
exposures, but changes were detected after heat shock treatment. Furthermore, 
the same authors found no changes in the mRNA levels of several HSPs after a 
longer lasting exposure with another cell type (Chauhan et al. 2007b). Hirose et 
al. examined HSP27 phosphorylation after exposing two types of human cells to 
a WCDMA and CW signal of 2142.5 MHz for different durations and SAR levels 
of up to 0.8 W/kg (Hirose et al. 2007). No differences were reported in HSP27 
expression, phosphorylation or translocation. Neither were differences observed 
in the expression of other HSPs using DNA microchip analysis. Huang et al. 
exposed mouse auditory hair cells to a 1763 MHz CDMA signal at an SAR of 
20 W/kg for various durations (Huang et al. 2008b). The authors found no effects 
on HSP27, HSP70, or HSP90 protein expression.

2.1.4.2. Proto-oncogenes
In addition to the HSPs, proto-oncogenes such as C-FOS, C-JUN, and C-MYC 
have been widely investigated regarding their response to mobile phone radiation 
exposure. These proteins function in cellular growth regulation. A mutation of 
these proto-oncogenes might lead to cell divisions occurring in an unregulated 
manner. Based on the current data, it appears that mobile phone radiation may 
not activate proto-oncogene expression, although some inconsistency in results 
still exists (International Commission for Non-Ionizing Radiation Protection 
(ICNIRP) 2009). The studies carried out on proto-oncogenes are summarized in 
the text and Table 4 in Appendix 1.

A few studies in vivo have examined proto-oncogene expression. Fritze et 
al. investigated the expression of several FOS and JUN proteins in rats after 
GSM exposure, with no alterations in these proteins being found (Fritze et 
al. 1997). In a series of studies, Finnie et al. exposed mice to a GSM signal of 
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900 MHz at an SAR of 4 W/kg for either a short or long period and examined 
C-FOS protein expression in the mouse brains (Finnie 2005, 2006b, 2007). No 
changes were observed in C-FOS protein expression after any of the exposure 
conditions. Yilmaz et al. reported no changes in BCL-2 protein expression in rat 
brains or testes after a one-month exposure to a 900 MHz commercial mobile 
phone (Yilmaz et al. 2008). Meanwhile, in two separate studies, Lopez-Martin 
et al. exposed rats to a GSM signal of 900 MHz for 2 hours at rather low SAR 
values in the presence of a chemical agent to make the rats more seizure-
prone (Lopez-Martin et al. 2006, 2009). The authors reported an increase in 
C-FOS protein expression in different areas of the rat brain after mobile phone 
radiation exposure. In summary, the number of studies in vivo on proto-oncogene 
expression is currently still limited, but the majority of existing studies do not 
report effects on proto-oncogene expression.

A few more studies in vitro on proto-oncogene expression have been 
published. Ivaschuk et al. exposed rat pheochromocytoma cells to a TDMA signal 
of 836.55 MHz for 20–100 minutes with an intermittent protocol (Ivaschuk et 
al. 1997). The mRNA levels of C-Fos and C-Jun were examined, and C-Jun 
transcript levels were observed to have decreased after the 20-min exposure 
at 9 mW/cm2, while the other exposure conditions had no effect on either of the 
genes. Goswami et al. exposed mouse embryo fibroblasts in two growth phases 
to an 836 MHz CW or 848 MHz CDMA signal at an average SAR of 0.6 W/kg 
for 24 hours or 4 days (Goswami et al. 1999). No effects were reported in proto-
oncogene expression of serum-deprived cells, but the Fos mRNA levels increased 
in exponential growth phase cells during the transit to the plateau phase and in 
plateau-phase cells. This study was replicated by Whitehead et al., with the same 
cells and similar types of exposures being used with higher SARs of 5 and 10 W/kg 
(Whitehead et al. 2005). No effect on Fos expression was observed using RT-PCR, 
and the results of Goswami et al. could not therefore be confirmed. Czyz et al. 
investigated C-Jun and C-Myc expression simultaneously with HSP expression 
(Czyz et al. 2004). C-Jun and C-Myc expression were reported to be transiently 
up-regulated in p53-deficient cells, but not in wild type cells after exposure to 
1710 MHz GSM. No effects on Bcl-2 mRNA levels were observed. Chauhan et 
al. also examined C-FOS, C-JUN, and C-MYC expression simultaneously with 
HSP expression and found no differences in the mRNA level of these in three 
different cell types after an intermittent 1900 MHz PW exposure for 6 hours at 
SARs of 1 and 10 W/kg (Chauhan et al. 2006a, 2006b). Merola et al. detected no 
changes in B-MYB or N-MYC protein expression after 48 or 72 hours exposure to 
a GSM signal of 900 MHz at an SAR of 1.0 W/kg (Merola et al. 2006). Buttiglione 
et al. reported a significant decrease in the mRNA levels of BCL-2 and survivin 
genes in parallel with impaired cell cycle progression in human neuroblastoma 
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cells after 24 hours of exposure to a GSM signal of 900 MHz at an SAR of 1 W/kg 
(Buttiglione et al. 2007). Del Vecchio et al. exposed rat primary neurons to a 900 
MHz GSM signal at an SAR of 1 W/kg for several days and found no differences 
in C-Fos or C-Jun mRNA levels (Del Vecchio et al. 2009). 

2.1.4.3. Signal transduction pathways and structural proteins
While HSP and proto-oncogene expression have been the most frequently 
examined targets after mobile phone radiation exposure, the expression 
of certain other proteins has also been assessed. Most of these proteins are 
somehow related to signal transduction pathways and regulate different cellular 
functions. In addition, a few studies regarding certain structural proteins and 
some other protein targets have been published. Several of these studies have 
simultaneously examined HSP or proto-oncogene expression. Currently, there 
are several contradictory reports on this topic and further research should be 
conducted, particularly addressing protein activity rather than total expression. 
The existing studies are summarized in the text and Table 5 in Appendix 1.

Only a few studies carried out in vivo on this topic have been published, 
including the following. Weisbrot et al. reported an increase in ELK1 
phosphorylation along with increased HSP70 expression in Drosophila 
melanogaster after mobile phone radiation exposure (Weisbrot et al. 2003). The 
SAR levels for this study are unknown and the exposure assessment is therefore 
inadequate. Lee JS et al. found no changes in the expression or phosphorylation 
of MAPK, ERK1/2, JNK1/2, or p38MAPK in Hsp70.1-deficient mice after CDMA 
exposure for several weeks (Lee et al. 2005). Dasdag et al. exposed rats to a GSM 
signal of 900 MHz for months and examined brain tissues for p53 and active 
caspase-3 protein expression (Dasdag et al. 2009). No effect on p53 was observed, 
while a decrease in apoptosis was reported. Yan et al. used a commercial mobile 
phone to expose rats to 800/1900 MHz mobile phone radiation for several hours 
per day over several weeks, and reported mildly elevated mRNA levels for 
calcium ATP-ase, endothelin, neural cell adhesion molecule, and neural growth 
factor (Yan et al. 2009). Thus, the authors suggested that the potential injuries in 
brains might be due to mobile phone radiation exposure. However, the exposure 
assessment of this study had some deficiencies. Ammari et al. reported an 
increase in glial fibrillary acidic protein (GFAP) expression in rat brains after 
900 MHz GSM signal exposure at 1.5 or 6 W/kg for several weeks, suggesting 
potential gliosis (Ammari et al. 2010). Currently, the number of studies in vivo on 
this topic is limited. The results have been contradictory and thus insufficient.

Studies in vitro have reported both effects and no effects on signal 
transduction pathways or certain structural proteins. For instance, the following 
studies in vitro have reported effects. Leszczynski et al. detected an increase in 
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p38MAPK expression after mobile phone radiation exposure along with changes 
in HSP27 expression and the phosphorylation status (Leszczynski et al. 2002). 
The inhibition of p38MAPK also blocked HSP27 phosphorylation, and it was 
thus speculated whether the p38MAPK stress response pathway could be a 
target for mobile phone radiation. Czyz et al. reported an increase in the p21 
mRNA level in p53-deficient embryonic stem cells after mobile phone radiation 
exposure, while no alteration was found in the Erg-1 mRNA level (Czyz et al. 
2004). Caraglia et al. noted changes in the expression and activity of several 
signaling proteins after exposing a human oropharyngeal epidermoid carcinoma 
cancer cell line to 1950 MHz RF-EMF (potential modulation of the signal was not 
specified) (Caraglia et al. 2005). The authors suggested the induction of apoptosis 
via inactivation of RAS–ERK survival signaling. Nikolova et al. exposed mouse 
embryonic stem cells to a 1710 MHz GSM signal and found elevated mRNA 
levels of Bax and Gadd45 and a decrease in the neural-specific Nurr1 mRNA 
level (Nikolova et al. 2005). However, the responses were not associated with any 
detectable changes in cell physiology. Friedman et al. reported activation of the 
ERK1/2 signal transduction pathway in rat and human cells after short-term 
mobile phone radiation exposure, while the p38MAPK and JNK1/2 pathways 
were not activated (Friedman et al. 2007). As a drawback, this study did not 
provide any SAR estimates. Buttiglione et al. examined the downstream MAPK 
cascades by exposing human neuroblastoma cells to a 900 MHz GSM signal 
for different durations at an average SAR of 1 W/kg (Buttiglione et al. 2007). 
Short-term exposures seemed to induce a transient increase in the ERG-1 
mRNA level with a simultaneous activation of ERK1/2, SAPK/JNK, and ELK-1. 
Yu et al. reported the activation of ERK1/2 and JNK1/2 after mobile phone 
radiation exposure, but the exposure assessment was not reported (Yu et al. 
2008). Cervellatti et al. exposed human trophoblast cells to a GSM signal of 
1817 MHz at an SAR of 2 W/kg for 1 hour and reported a sharp decrease in the 
intercellular gap junction-like structures and changes in connexin expression, 
localization and cellular structure (Cervellati et al. 2009). This implied effects 
on gap junctions following mobile phone radiation exposure. Del Vecchio et al. 
exposed rat primary neurons for several days to a 900 MHz GSM signal and 
reported an increase in beta-thymosin expression and a corresponding reduction 
in the number of generated neurites (Del Vecchio et al. 2009).

However, several studies reporting no effects on these proteins have 
also been published. For instance, Lee JS et al. reported no differences in 
the expression or phosphorylation of MAPKs, ERK1/2, JNK1/2, or p38 in two 
cell types under different exposure conditions (Lee et al. 2006). Hirose et al. 
exposed two different cells to a WCDMA signal of 2142.5 MHz at different 
SARs and durations (Hirose et al. 2006). Neither p53 protein expression nor 
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phosphorylation, nor p53 downstream targets were affected. Recently, Hirose et 
al. investigated microglial activation in vitro by examining the expression of an 
immune reaction-related molecule and cytokine production after exposure to a 
1950 MHz WCDMA signal for 2 hours at different SARs (Hirose et al. 2010). No 
marked differences were found in the production of tumor necrosis factor-alpha 
(TNF-alpha), interleukin-1 beta (IL-1 beta), or interleukin-6 (IL-6). Huang et 
al. exposed mouse auditory hair cells to a 1763 MHz CDMA signal at an SAR 
of 20 W/kg for various durations (Huang et al. 2008b). The authors reported no 
effects on ERK, JNK, or p38 protein expression or phosphorylation. Lee KY et al. 
carried out a single exposure of human breast cancer cells to an 837/1950 MHz 
CDMA/WCDMA signal or a combination of both signals at an SAR of 4 W/kg 
for 1 hour (Lee et al. 2011). The levels of cell cycle regulatory proteins, p53, p21, 
cyclins, as well as cyclin-dependent kinases were unaffected after the exposure. 
Additionally, no effects on cell cycle distribution were observed.

2.1.4.4. Transcriptome
Several studies have adopted large-scale screening techniques to examine gene 
or protein expression after mobile phone radiation exposure. Naturally, some of 
the specific proteins discussed in earlier sections have also been assessed in the 
large-scale screening. Most of the studies in this field using high-throughput 
screening have so far focused on the gene expression level. Protein expression 
studies on this topic are presented in section 2.2.3.

Usually, transcriptomics techniques applied in mobile phone radiation 
research have been based on cDNA microarrays. This technology provides the 
possibility to screen up to several thousands of genes simultaneously, thus offering 
a large amount of information. Unfortunately, an insufficient number of biological 
and technical replicates is rather often used, and it is not therefore possible to 
perform appropriate statistical analysis. In some publications the results have 
even been based on a single hybridization without the further validation of 
target genes using other methods. Such results cannot be considered reliable. 
Three replicates would be a minimum requirement for statistical analysis. The 
experiments using transcriptomics are summarized in the text and Table 6 in 
Appendix 1. 

To date only two in vivo microarray studies have been conducted in this 
research field. Belyaev et al. exposed rats to a GSM signal of 915 MHz for 2 
hours at a whole-body SAR of 0.4 W/kg (Belyaev et al. 2006). The gene expression 
profiles in the cerebellum were obtained in triplicate, and a total of 12 genes 
having diverse functions were reported to be affected, with fold ratios being 
1.34–2.74. However, the gene expression changes were not confirmed with any 
other methods. Paparini et al. exposed mice to a 1800 MHz GSM signal for 1 hour 



37

STUK-A250

at a whole body SAR of 1.1 W/kg and examined the gene expression in the whole 
brain (SAR 0.2 W/kg) (Paparini et al. 2008). Three replicates showed no changes 
in gene expression when using more stringent data analysis. When less stringent 
conditions were applied, a total of 75 genes were found to be affected (1.5–2.8 up 
or 0.67–0.29 down). The expression validation of 30 of these potentially affected 
genes with RT-PCR did not show any alterations. Thus, the authors concluded 
that there is no consistent indication of gene expression modulation in the whole 
mouse brain associated with a GSM exposure of 1800 MHz.

In addition to the studies carried out in vivo, transcriptomics has been 
applied several times in studies in vitro. Some of these have reported changes in 
gene expression, although they have often been based on an insufficient number 
of replicates. For instance, Pacini et al. exposed human skin fibroblasts using 
a commercial mobile phone (inadequate exposure assessment) for 1 hour and 
found 14 differently expressed genes in a single experiment (Pacini et al. 2002). 
Furthermore, a significant increase in DNA synthesis and intracellular mitogenic 
second messenger formation was reported with a matching high expression of 
genes in the MAP kinase family. Lee S et al. exposed a human promyelocytic 
leukemia cell line to a 2450 MHz PW field for 2 or 6 hours at an SAR of 10 W/kg 
and examined gene expression using a single replicate with the Serial Analysis 
of Gene Expression (SAGE) technique (Lee et al. 2005). Several hundreds of 
genes were reported to be affected without further validation. Remondini et al. 
published a pooled analysis of gene expression of several different cell types 
after mobile phone radiation exposure (900 or 1800 MHz) (Remondini et al. 
2006). Six different cell types were exposed with various exposure protocols 
(SARs 1–2.5 W/kg, durations 1–44 hours). The cellular RNA was pooled from 
several experiments, but only a single hybridization was performed for each 
cell type. The cell responses varied based on the exposures and cell types, e.g., 
the EA.hy926 cells responded to the 900 MHz GSM exposure but not to the 
1800 MHz GSM exposure, while some other cells did not respond at all to the 
mobile phone radiation exposure. In general, the authors suggested that some 
human cell types might alter their gene expression in response to mobile phone 
radiation, but no consistent signature (e.g., stress response) could be detected. 
Zhao TY et al. exposed mouse primary neurons and astrocytes to a commercial 
mobile phone (inadequate exposure assessment) for 2 hours (Zhao, Zou & Knapp 
2007). The authors found Caspase-2,-6 and Asc to be affected in both cells as 
well as Bax in the astrocytes in the duplicate array analysis. The results were 
validated with RT-PCR. The authors suggested that a relatively short-term 
mobile phone radiation exposure can up-regulate the elements of apoptotic 
pathways in brain-originated cells. They also suggested that the neurons 
appeared to be more sensitive than the astrocytes. Zhao R et al. exposed rat 
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neurons to an intermittent (5 min on/10 min off) GSM signal of 1800 MHz for 
24 hours at an SAR of 2 W/kg (Zhao et al. 2007). A single experiment displayed 
in total 34 altering genes with rather low fold ratios of 1.15–1.62. The affected 
genes were associated with multiple cellular functions, such as the cytoskeleton, 
signal transduction pathways, and metabolism. Most of the changes were further 
validated with RT-PCR.

However, several transcriptomics studies in vitro have not reported effects 
on gene expression. These findings have often been based on a higher number 
of replicates or further validation of potentially affected genes. For instance, 
Whitehead et al. exposed a non-osteogenic mouse pluripotent cell line to two 
different signals for 24 hours at an SAR of 5 W/kg (Whitehead et al. 2006a, 
2006b). Three replicates displayed differences (fold ratio >1.3) in several genes, 
but based on the sham-sham and false positive rate calculations, the authors 
concluded that the number of affected genes after the exposure did not exceed 
the false-positive rate, and no differences were therefore actually observed. 
In the positive control the number of affected genes was higher than the false 
positive rate. However, none of the potential target genes for the mobile phone 
radiation exposure were confirmed with any other methods, as they were 
solely rejected based on the false positive rate calculations. Qutob et al. and 
Chauhan et al. exposed a human glioblastoma-derived cell line and human 
monocyte-derived cell line to a 1900 MHz PW signal for various SAR values 
and durations (Qutob et al. 2006, Chauhan et al. 2007b). In the data analysis a 
gene appearance in all five performed replicates was required. No evidence of 
effects due to mobile phone radiation was found, while several affected genes 
were found in the positive control samples (heat shock). In addition, several HSP 
genes were confirmed to be unaffected by RT-PCR, and thus confirmed to be 
actual false negatives, as in the microarray results. Hirose et al. exposed human 
glioblastoma cells and human fibroblasts to various signals, durations, and SAR 
levels (Hirose et al. 2006, 2007). Two experiments showed no consistent effects 
after mobile phone radiation exposure, and the expression of p53-related genes 
was further confirmed not to be affected by RT-PCR. Zeng et al. exposed a human 
breast cancer cell line to a GSM signal of 1800 MHz at average SARs of 2 and 
3.5 W/kg for 24 hours using an intermittent exposure (5 min on/10 min off) (Zeng 
et al. 2006). Five potentially responding genes were found after the exposure 
of 3.5 W/kg in the duplicate analysis. However, RT-PCR did not confirm the 
differences in these genes, and the authors therefore suggested that no effects 
were actually observed. Gurisik et al. exposed a human neuroblastoma cell line to 
a 900 MHz GSM signal for two hours at an SAR of 0.2 W/kg, allowing a recovery 
time of two hours afterwards (Gurisik et al. 2006). Six genes were found to be 
slightly down-expressed in a single experiment. The expression of two of these 
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genes was further validated with RT-PCR, but no confirmation for the array 
results was obtained. Thus, the authors suggested that no effects were observed 
due to the exposure. Huang et al. exposed mouse auditory hair cells and human 
T lymphoma cells to a CDMA signal of 1763 MHz with various SAR levels and 
durations (Huang et al. 2008a, 2008b). A few dozens of genes were found to be 
affected in the analysis using either three or five replicates. However, the fold 
ratios were small and no consistent groups of functional categories were found 
in the analysis. Without any further validation, the authors suggested that the 
results might also be false positives and that the exposure had no effect on the 
global gene expression of the cells examined. Sekijima et al. investigated gene 
expression in three cell types after exposure to various signals and SAR levels 
for 96 hours (Sekijima et al. 2010). The duplicate hybridizations suggested that 
mobile phone radiation exposure had only a minor effect (p < 0.05, max fold ratio 
1.14) on two cell types with the highest SAR value used, while the heat shock 
treatment caused changes in several genes. Therefore, the authors concluded 
that exposure to mobile phone radiation is unlikely to cause a general stress 
response in the tested cells under these conditions.

2.1.5. Conclusions based on the review of the literature
Mobile phones generate a modulated radio frequency field, which is a form of 
non-ionizing radiation. Mobile phone radiation does not have enough energy 
to cause ionizations and to induce direct chemical changes (e.g., DNA strand 
breaks). Currently, it is not known whether mobile phone radiation might 
cause other than thermal effects, and potential mechanism for such effects is 
unknown.

During the past two decades, a considerable amount of research has been 
conducted related to the biological and health effects of mobile phone radiation 
exposure. Several biological and medical endpoints have been addressed in these 
studies. In general, the results in this field have been contradictory. Most of 
the studies published to date have not reported any effects after mobile phone 
radiation exposure, but certain studies have reported such effects. Furthermore, 
attempts to repeat some of the earlier experiments suggesting effects have not 
reported similar findings. 

For instance, it seems that mobile phone radiation has no immediate 
carcinogenic risk at low SAR levels, whereas knowledge of the effects of 
long-term use (over ten years) is still limited (International Commission for 
Non-Ionizing Radiation Protection (ICNIRP) 2009). Based on the current 
scientific knowledge on tumor formation in humans or animals, at the end of May 
2011, the International Agency for Research on Cancer (IARC) classified radio 
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frequency electromagnetic fields as possibly carcinogenic to humans (Group 2B) 
(Baan et al. 2011). This classification was based on the increased risk of glioma 
associated with mobile phone use found in some studies, and coffee, for instance, 
belongs to the same class. Human volunteer studies have shown consistent 
effects on thermoregulatory systems after RF-EMF exposure (for a review, see 
e.g., International Commission for Non-Ionizing Radiation Protection (ICNIRP) 
2009), which have been due to the RF-EMF-induced heating. Other human 
volunteer studies have led to no response or inconsistent responses following 
mobile phone radiation exposure (behavioral studies, neurophysiological 
studies). Various endpoints have also been examined in vivo and in vitro. A 
large majority of studies with different cellular endpoints or genotoxicity have 
reported no effects after exposure, although some of the publications have 
suggested changes after mobile phone radiation exposure. However, different 
biological systems, exposure set-ups and conditions have been applied in these 
studies, and comparison of the results is therefore not always straightforward. 

Based on the gaps in current knowledge, the World Health Organization 
has identified specific research needs in this field (World Health Organization 
(WHO) 2010). These high priority research needs include epidemiological cohort 
studies on children and adolescents as well as RF-EMF exposure provocation 
studies on human volunteers, including children of different ages. Emphasis on 
juveniles has also been addressed via animal studies focusing on early-life and 
prenatal RF-EMF exposures.

2.2. Proteomics

2.2.1. Overview
Proteomics refers to the large-scale study of proteins, their structures, functions, 
and modifications, as well as their interactions with each other. The technology 
allows simultaneous screening of several hundreds, even thousands, of proteins 
and thus enables, for instance, biomarker discovery in different clinical or 
pathological conditions and various types of systems biology approaches. A basic 
proteomic analysis is focused on analytical protein chemistry by characterizing 
proteins and their post-translational modifications (e.g., phosphorylation, 
methylation, glycosylation, ubiquitination). In expression proteomics, i.e., 
differential display proteomics studies, the protein expression profiles are 
examined using a case-control experimental set-up. Proteomics is also used to 
examine protein–protein interactions and identify protein complexes. (Simpson 
2002)
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The field of proteomics has rapidly expanded over the past two decades. 
The words “proteome” and “proteomics” were introduced in the mid-1990s, 
although the principal technologies used existed before that. According to the 
original definition, a proteome meant the total protein complement of a genome 
(Wasinger et al. 1995). Since then, the term proteome has also been widely used 
to describe the set of proteins that are expressed during a certain time under 
given environmental conditions, and the total protein complement has been 
termed a complete proteome.

The core technique for proteomics studies was originally two-dimensional 
gel electrophoresis (2DE), which was developed in the 1950s (Smithies, Poulik 
1956) with further significant developments in the 1970s (O’Farrell 1975, Klose 
1975, Garrels 1979). In the 1990s, mass spectrometry (MS)-based techniques for 
proteomics studies were also developed. In MS studies, unlike in 2DE studies, the 
protein identity is obtained immediately and the protein expression levels can 
be compared between samples if labeling is used. Nowadays, several different 
techniques based on heavy and light stable isotopic labeling (e.g., ICAT, iTRAQ, 
SILAC) can be used for MS/MS-driven proteomics studies. However, MS studies 
also have limitations, mostly related to instrument requirements and data 
analysis. Proteomics can additionally be used to examine protein interactions, 
e.g., with (yeast) two-hybrid systems by engineering a host organism to express 
a protein of interest.

In general, these screening techniques, which are used in parallel, create 
a massive amount of data and thus require sophisticated analysis methods 
and programs, which have remained a challenge. Additionally, proteome-wide 
measurements with standard shotgun techniques (2DE, MS) only provide 
information about those proteins that are expressed in the cell at a specific 
time, while information about protein dynamics (e.g., half-lives) is not accessible 
(Wilkins 2009). Some of the typical problems in high-throughput studies were 
addressed by a group of experts as they developed guidelines for proteomics 
publications (Wilkins et al. 2006). In addition to these high-throughput 
techniques, specific and comprehensive serial applications for certain model 
organisms also exist, such as organism engineering for protein tagging and 
comprehensive antibody arrays. Often, these serial applications provide higher-
quality data concerning abundance, half-life, and localization of proteins, but 
unfortunately they are only useful for specific model organisms that can be 
genetically manipulated. However, high-throughput techniques are currently 
the most capable techniques to provide different insights in case-control set-ups, 
especially for genetically non-engineered organisms. (For a review, see e.g., 
Wilkins 2009.)
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2.2.2. Two-dimensional gel electrophoresis

2.2.2.1. Principles
Two-dimensional gel electrophoresis (2DE) was invented in the 1950s and 
several marked improvements have been introduced since then (for a review, see 
e.g., Görg et al. 2009, Klose 2009). Since the 1990s, 2DE has been widely applied 
in proteomics studies. In 2DE, proteins are separated from each other based 
on their charge, i.e., the isoelectric point (pI) of the protein and the molecular 
weight (MW) (Simpson 2002, Westermeier 2005).

Sample preparation is a crucial step in 2DE. Typically, a sample requires 
preparative steps before it can be applied in 2DE. Proteins can be extracted from 
simple cellular samples with different lysing techniques, such as sonication, 
freeze and thaw, or detergent lysing in the presence of protease inhibitors. 
More complex samples might also require cleaning or precipitation. In certain 
applications, sample fractionation based on, for instance, cellular components 
or molecular weight is useful.

In the first-dimension separation the protein charge is neutralized in a 
gradient pH gel using high voltage isoelectric focusing (IEF). Earlier, carrier 
ampholytes IEF was performed, but nowadays immobilized pH gradient gels (i.e., 
the IPG strips) are typically applied. IPG strips allow high reproducibility and 
enable protein separation with various wide and narrow pH ranges. For proteins 
having very basic isoelectric points, non-equilibrium pH gradient electrophoresis 
(NEPHGE) can also be applied.

The second-dimension separation is based on the molecular weight, often 
using standard sodium dodecyl sulphate polyacrylamide gel electrophoresis 
(SDS-PAGE) (Laemmli 1970), although other buffer systems have also been 
developed. The used gels are either single percentage gels (e.g., 10% or 12%) 
or gradient gels (e.g., 4–20%), depending on the appropriate molecular weight 
range. Either lab-made or commercial gels can be used.

Protein detection is based on either protein labeling before electrophoresis 
separation or post-staining of gels. Radioactive labeling with 35S or 32P is a 
very sensitive technique and stable isotopes 14N/15N or 12C/13C are useful for 
quantitative analysis. However, these techniques require a living sample and 
are thus not applicable for biopsy samples. Additionally, radioactive labeling 
requires facilities to handle radioactive material. Proteins can also be labeled 
with fluorescent dyes (Cy dyes), which has become a state-of-the-art technique 
in 2DE. Post-staining of gels can be performed with several techniques, e.g., 
with coomassie blue, silver, or fluorescent dyes, each of which have different 
advantages and limitations. Coomassie blue staining is the easiest to use but 
not very sensitive. Silver staining is sensitive but requires several steps and is 
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not linear. Fluorescent dyes are linear but often expensive. Additionally, stains 
detecting special modifications, such as phosphorylation, are commercially 
available. (See further discussion in section 2.2.2.2.)

The gels with visualized proteins are imaged, usually with high resolution 
(laser) scanners or specific cameras. For differential display proteomics studies, 
2DE gel maps are analyzed with specific computer software. The software is 
designed to quantitatively analyze protein expression profiles in gels and also 
perform statistics. Proteins of interest can be identified using MS technologies. 
The simplest MS identification is based on peptide mass fingerprinting (PMF), 
in which proteins are digested with a specific enzyme to generate peptides. 
Peptide masses are compared to databases to identify the proteins. Amino acid 
sequencing can also be performed to obtain an exact sequence using MS/MS 
instruments. After MS identification, special applications and further studies 
can be applied to proteins of interest.

2.2.2.2.  Challenges and recent developments
Currently, 2DE is the most widely applied technique for proteomics studies. It 
is highly parallel, allowing several gels to be run simultaneously, and it enables 
the separation of several hundreds of proteins in a single gel. Furthermore, 
protein abundances are immediately available, as well as post-translational 
modifications based on the change in the pI of the protein. However, the 2DE 
technique also has limitations and challenges in the analysis of certain types 
of proteins (Görg et al. 2009). Proteins having an extreme pI (very acidic or 
alkaline) have usually been considered a challenge for two-dimensional 
separations, but nowadays several solutions have been introduced to overcome 
these problems, e.g., the narrow interval IPG strips (down to pH 2.5 for acidic 
proteins and up to pH 12 for alkaline proteins), specific reagents to stabilize 
the cysteine sulfhydryl groups in alkaline proteins, specific sample application 
techniques, and the application of high voltages (up to 12 000 V) (for a review, 
see e.g., Görg et al. 2009). Membrane proteins constitute a significant proportion 
of a cell’s protein content, but are still underrepresented in 2DE gels. Because 
of their hydrophobic nature, the solubility of the membrane proteins is poor 
and they tend to aggregate and precipitate in aqueous media. Some potential 
modifications to the solutions used have been described (for a review, see e.g., 
Görg et al. 2009). It seems that no single proteomics technology currently 
exists to separate the complete membrane proteome, and membrane proteins 
therefore need to be investigated using a combination of several techniques. 
Additionally, the low abundance proteins are a major problem for all proteomics 
analysis technologies. The problem can be approached by targeting specific 
sub-proteomes (e.g., the isolation of certain cellular components using cellular 
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fractionation) or by applying sample prefractionation methods (e.g., preparative 
IEF, free-flow electrophoresis) simultaneously with various narrow pH gradient 
IPG strips, and thus allowing higher protein loads. Several of these protein 
classes, whose analysis in a simple total cell lysate 2DE is limited, are targets 
of growing interest in specific applications. This emphasizes the importance of 
an appropriate experimental design in studies in which the study hypothesis is 
based on the investigation of these proteins.

Protein visualization is one of the crucial steps for accurate data analysis 
and for protein abundance determination. Coomassie blue staining has been used 
for a long time for protein detection in 2DE. However, the limited sensitivity of 
this staining restricts the detection of even moderately abundant proteins. Silver 
staining with several different modifications has also been widely applied in 2DE 
analysis. Silver staining is one of the most sensitive staining methods for certain 
proteins, but problems arise from its limited linear dynamic range. Nowadays, it 
is generally accepted that less than two-fold differences cannot be detected using 
silver staining because of linearity problems. Thus, fluorescent dyes, such as 
Sypro® Ruby, with a high linearity have been introduced. In the late 1990s, Unlü 
et al. described a technique called difference gel electrophoresis (DIGE) utilizing 
fluorescent Cy dyes for protein labeling (Unlü, Morgan & Minden 1997). Three 
dyes with similar molecular weights but distinct fluorescent characteristics were 
developed. The dyes react with either lysine amino acids (minimal labeling) 
or cysteines (saturation labeling) and preserve the charge of the target amino 
acid. Proteins are labeled with dyes before electrophoretic separation and a 
pool of proteins labeled with three different dyes can be separated in a single 
gel. The technique was further developed by Alban et al. as a common internal 
standard was applied to all electrophoretic separations (Alban et al. 2003). This 
internal standard was used for data normalization and it was shown to greatly 
improve data analysis. Protein abundances were better controlled and technical 
variation diminished, as the same standard sample was run in all gel separations, 
enabling better gel-to-gel analysis. So far, DIGE has become a state-of-the-art 
technique in differential display 2DE studies, as the three fluorescent dyes 
and the application of an internal standard provide better accuracy than other 
technologies. However, the technique is rather expensive, and is not therefore 
included among the essential methods in all laboratories. 

As in all fields of science, good experimental design is crucial in proteomics 
for a successful study. The use of proteomics is still restricted because of 
several limitations, such as its technical complexity and the high cost of data 
production (reagents, instruments, time), all of which have contributed to a 
poor experimental design in several published proteomics studies (Wilkins et 
al. 2006). In recent years, particular attention has been paid to experimental 
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design and data analysis methods in differential display proteomics studies (e.g., 
Wilkins et al. 2006, Karp, Lilley 2007, Minden et al. 2009). Earlier, most of the 
2DE-based proteomics studies relied on the fold ratios in data analysis. However, 
fold ratio analyses ignore both biological and technical variations in samples, as 
they are based on the average fold ratios over the experimental groups, and thus 
increase the risk of selecting variable proteins due to the sample selection and 
not due to the experimental conditions. Nowadays, statistical testing, most often 
the Student’s t-test, has been applied in 2DE data analysis to assess the nature 
of the observed differences, as the variance is then better controlled. However, it 
must be kept in mind that all statistical tests are based on certain assumptions 
that need to be recognized. For instance, the commonly used Student’s t-test 
assumes a normal distribution of the data. This is not usually the case for 2DE 
data, as they are frequently skewed. However, this issue can be approached with 
appropriate data transformation methods (for reviews, see e.g., Karp, Lilley 
2007, Minden et al. 2009). Another possibility is to use non-parametric tests (e.g., 
the Mann-Whitney U-test), which are more robust but less powerful in detecting 
changes. Another problem arising from statistical analysis is multiple testing 
(for reviews, see e.g., Karp, Lilley 2007, Karp et al. 2007). Multiple testing leads 
to the finding of false positives (e.g., in a typical analysis of 1000 spots at the 
95% confidence level, 50 false positives may be expected due to multiple testing). 
This problem can be approached in several ways. Probably the most commonly 
used method in the proteomics field is the application of false discovery rate 
(FDR) correction. The focus in this method is on achieving an acceptable ratio 
of true and false positives. For example, a 5% FDR means that on average 5% of 
the changes identified as significant can be expected to be actual false positives. 
Recently, 2DE studies have applied both statistical testing and fold ratio analysis, 
which seems to be an appropriate methodology for the data analysis.

To achieve successful results from the data analysis, it is essential to 
consider the experimental design and the number of replicates. To date, many 
experiments that have used 2DE have had a low number of biological and/or 
technical replicates, while in certain MS/MS-driven studies the results have 
sometimes even been based on a single experiment, limiting the information that 
can be gained. Technical replicates are useful when the system includes a high 
level of noise, but most often the biological replicates provide more information 
about true effects. As the DIGE technique significantly reduces technical 
variation, it is usually enough to consider the number of biological replicates 
in 2DE-DIGE studies. The number of replicates needed has been estimated in 
a few studies (Karp, Kreil & Lilley 2004, Karp, Lilley 2007, Karp et al. 2007, 
Stühler et al. 2006). If technical variation is the only source of variation, three 
to five replicates are needed to determine a fold change of 1.5–2. However, if the 
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biological variation exceeds the systematic variation, the number of biological 
replicates needs to be increased respectively. For instance, the biological variation 
in animal studies is higher than in cell culture studies (Karp et al. 2007, Meyer, 
Stühler 2007). Among studies carried out in vitro, cell line experiments have 
shown less variation than primary cell cultures (Molloy et al. 2003).

Some limitations have also been identified in the DIGE system itself. For 
instance, preferential labeling has been observed (Tonge et al. 2001, Karp, Griffin 
& Lilley 2005), as well as a biased background for different dyes (Karp, Kreil & 
Lilley 2004). However, these problems can be overcome by using the dye-swap 
protocol, i.e., in the typical DIGE experiment an internal standard is labeled with 
the Cy2 dye and the cases and controls with the Cy3 and Cy5 dyes, swapping 
the dyes between the sample groups. Additionally, it has been suggested that 
the three-dye approach is not completely independent of the means of statistical 
testing, as the same internal standard is used for two samples, thus causing bias 
in the analysis (Karp et al. 2007). This was suggested to be resolved using only 
a two-dye approach.

In spite of its limitations, 2DE is the most commonly applied protein 
separation technique in proteome research (Görg et al. 2009). All available 
proteomics analysis technologies show specific technical advantages, but also 
have limitations. In comparison with MS/MS studies, 2DE studies require 
less hardware and are thus easily available for research groups. The protein 
abundances and post-translational modifications observed as the pI shift (e.g., 
protein phosphorylation and glycosylation) are initially available. Furthermore, 
the method is highly parallel, as several gels can be run simultaneously. With 
an appropriate experimental design, 2DE is a very powerful tool to reveal the 
protein content of the organism in certain conditions. However, none of the 
current proteomics technologies alone is able to address all research needs. Thus, 
the combination of several techniques is the most effective approach to solve the 
experimental question addressed.

2.2.3. Proteomics in mobile phone radiation studies
Despite the fact that proteomics has been applied extensively in several fields 
of research, its use in mobile phone radiation research has remained minor. 
To date, ten articles have been published reporting proteome responses after 
mobile phone radiation exposure. Four of these articles are presented in this 
thesis, and six of the ten proteomics studies have been performed at STUK. 
The proteomics studies related to mobile phone radiation exposure have been 
summarized in the following table (Table 1) and in the text.
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Pioneering work in proteomics and mobile phone radiation research 
was published by Leszczynski et al. (Leszczynski et al. 2002). In this study 
the human endothelial cell line EA.hy926 was exposed to a GSM signal of 900 
MHz at an average SAR of 2.4 W/kg for one hour. An increase in the general 
protein phosphorylation level was reported immediately after exposure using 
the 32P-labeling of samples and the 2DE separation of proteins. Furthermore, 
a transient increase in HSP27, P-HSP27 and p38MAPK expression levels was 
also reported. The study was performed using four replicates and also included 
Western blots and immunocytochemical staining of selected proteins. Publications 
(II–V) by the same research laboratory are discussed in detail in this thesis.

Zeng et al. exposed the human breast cancer cell line MCF-7 to an 1800 
MHz GSM signal at an average SAR of 3.5 W/kg for 1, 3, 6, 12, and 24 hours by 
using both continuous and intermittent exposure (5 min on/10 min off) (Zeng 
et al. 2006). The protein expression was studied immediately after the end of 
the exposures. Three silver-stained 2DE gels were prepared from a single cell 
lysate. A few changes, based on the fold ratio between the sample groups (2-fold 
up or down) or de novo synthesis, were observed in the analysis, but there was 
no correlation between the exposure conditions. The authors also performed a 
transcriptomics analysis for the cells exposed for 24 hours at average SARs of 
2 and 3.5 W/kg and found five potentially affected genes. However, RT-PCR did 
not confirm differences in these genes after mobile phone radiation exposure. 
Thus, the authors suggested that the observed effects in the proteomics and 
transcriptomics analysis might have occurred by chance and were not caused 
by the exposure.

Li et al. exposed the human lens epithelial cells (HLEC) to a GSM signal 
of 1800 MHz at average SARs of 1, 2, and 3.5 W/kg for 2 hours and examined the 
protein expression immediately after the exposure (Li et al. 2007). The proteins 
were separated in triplicate silver-stained 2DE gels. In total, 4 proteins appeared 
with altering expression levels (>3-fold at 3.5 W/kg, >2-fold at 2.0 W/kg, no effect 
at 1 W/kg, no statistical testing or analysis of variances). Two of these proteins 
were identified as hnRNP K and one as HSP70, and the identification of one 
protein was not successful. The expression of these proteins was not validated 
with any other methods.

Gerner et al. exposed several human cells (the human T lymphocyte cell 
line Jurkat T, human primary diploid fibroblasts ES1 cells, human peripheral 
blood mononuclear cells WBC) to a GSM signal of 1800 MHz at an average SAR 
of 2 W/kg for 8 hours (additionally, for 2 and 4 hours) using an intermittent 
exposure (5 min on/10 min off) (Gerner et al. 2010). The protein expression from 
the cytosolic fractions was examined in triplicate immediately after exposure 
using 2DE with 35S-labeling and fluorescent dye. Several changes were reported 
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in protein synthesis (35S-labeled proteins) based on one-way analysis of variance 
(ANOVA, p < 0.05), while the fluorescently labeled total proteins displayed no 
alterations. Fourteen proteins were identified to have an altered protein synthesis 
level from the Jurkat T cells and a few more proteins from the fibroblasts. 
These identified proteins included for instance HSP-family proteins, T-complex 
proteins, annexins and BIP. In white blood cells (WBC), a minor increase in de 
novo synthesis was observed in the activated cells but the fold ratio was over 
2 only for HSP60. No effects were observed in the quiescent white blood cells. 
The authors suggested that a sufficiently long time is needed to observe the 
effects, as there were no effects after 2- and 4-hour exposures. Additionally, it 
was suggested that proliferating cells with high protein synthesis rates are more 
sensitive to the mobile phone radiation exposures than the non-active cells.

Kim et al. exposed the human breast cancer cell line MCF-7 to a CDMA 
signal of 849 MHz at average SARs of 2 and 10 W/kg (Kim et al. 2010). The 
cells were exposed for 1 hour per day on 3 consecutive days and the cells were 
collected 24 hours afterwards. The protein expression was examined from three 
replicates using silver-stained 2DE gels. No reproducible changes were observed 
between these three replicates (the analysis method was not clarified), but a 
few proteins were found to have an altered expression level in single gels. These 
proteins were identified as GRP78, PIN1, and glucosidase II. Western blotting 
and RT-PCR were performed for these proteins, but no changes were observed, 
and no effects were therefore recorded in this system.

So far, a single human volunteer study in vivo has been published that 
examined the proteome effects after mobile phone radiation exposure. Karinen et 
al. exposed an area of the forearm skin of 10 human female volunteers to a GSM 
signal of 900 MHz at an average SAR of 1.3 W/kg for 1 hour (Karinen et al. 2008). 
Immediately after the exposure, punch biopsies were collected from the exposed 
area, while the non-exposed forearm served as a control. Extracted proteins were 
separated using silver-stained 2DE gels as a single gel per lysate. In total, 8 
proteins were found to be altered in statistical tests (ANOVA and Wilcoxon tests 
without correction for multiple comparisons). Two of the proteins were present in 
all ten volunteers, while the others were expressed in 4–8 cases. However, none 
of the proteins was identified and their expression was not further validated. 
The authors suggested that mobile phone radiation exposure might alter protein 
expression in the human skin.

As noted, the availability of proteomics studies related to the effects of 
mobile phone radiation exposure is currently very limited. The 2DE technique 
has been applied in all ten published articles, while not a single research 
article has applied MS-based proteomics techniques in mobile phone radiation-
related research. Additionally, most of the studies have had limitations in the 
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experimental design, especially in the number of replicates in relation to the 
staining technique used.
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3.	 Aims of the Present Study

The general aim of the study was to examine changes in the proteome of human 
endothelial cells after short-term exposure to mobile phone radiation. The 
specific aims were to:

	Apply new genome-wide screening techniques, i.e., proteomics for the •	
screening of several protein targets simultaneously responding to mobile 
phone radiation exposure. The finding of potential target proteins would 
allow the formulation of hypotheses of potential mechanisms by which 
mobile phone radiation could affect biological systems. (I)

•	 Investigate potential target proteins for short-term exposure to mobile 
phone radiation and the potential effects of mobile phone radiation on the 
cellular proteome. (II–V)

•	 Examine whether the proteome response to mobile phone radiation varies 
depending on the different backgrounds of the model system. (III, V)

•	 Examine whether the response to mobile phone radiation depends on 
different GSM systems/frequencies. (II, IV)

•	 Apply methodological development to the examined model system and 
experimental design to improve the data quality. (V)
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4.	 Materials and Methods

The experimental methods used in this study are listed in Table 2 and brief 
descriptions of the methods are presented below. Detailed descriptions of the 
techniques are provided in the original publications (I–V).

 

Method	 Publication

Cell culture EA.hy926/EA.hy926v1 I–IV/III

Primary cell cultures HUVEC & HBMEC V

900 MHz GSM mobile phone radiation exposure I–III

1800 MHz GSM mobile phone radiation exposure IV, V

Two-dimensional gel electrophoresis, 2DE I–V

MS identification II, IV

Western blotting II, IV

Immunocytochemistry I, II

4.1. Cell cultures
In this thesis, human endothelial cells were used as a model system. Both 
a human endothelial cell line and primary human endothelial cells were 
used. Human endothelial cells were selected as a model system, because the 
endothelium is present in several body parts that are exposed to mobile phone 
radiation in everyday life. Specifically, endothelium is present in the blood-brain 
barrier, the function of which has been speculated to be affected, and is therefore 
often examined after mobile phone radiation exposure (see section 2.1.3.4).

4.1.1. Human endothelial cell line
The human endothelial cell line EA.hy926 was established by fusing primary 
human umbilical vein cells (HUVEC) with a thioguanine-resistant clone of the 
lung carcinoma cell line A549 by the exposure to polyethylene glycol (PEG) 
(Edgell, McDonald & Graham 1983). Hybrid clones were selected in HAT 
medium and screened for factor VIII-related antigen (Edgell, McDonald & 
Graham 1983), and the cell line was shown to exhibit typical characteristics of 
endothelial cells (van Oost et al. 1986, Edgell et al. 1990, Ahn et al. 1995). The 
EA.hy926 cell line was donated by the laboratory of Dr Cora-Jean S. Edgell of 
the University of North Carolina at Chapel Hill, NC, USA in 1987, and since 

Table 2. Methods used in this study.



54

STUK-A250

then it has been maintained at the University of Helsinki and at STUK. Another 
batch of a cell line that had been generated by subcloning of the EA.hy926 cell 
line was obtained from Dr Edgell’s laboratory in 2000. This new batch of the cell 
line is referred to as EA.hy926v1.

Both of the cell lines were grown in Dulbecco’s MEM (DMEM), 
supplemented with antibiotics, 10% fetal bovine serum, L-glutamine and HAT 
supplement. For the mobile phone radiation experiments, the cells were removed 
from the culture flasks by brief trypsinization, washed in cell culture medium 
and seeded to specific Petri dishes designed to be used in the exposure set-ups. 
Cell densities (cells/cm2) were approximately the same on both dishes, i.e.,  
1.2 x 106 cells/55-mm-diameter glass Petri dish (DURAN, Germany) for the 900 
MHz GSM experiments and 0.4 x 106 cells/35-mm-diameter Petri dish (NUNC, 
Denmark) for the 1800 MHz GSM experiments. Furthermore, cell densities 
were adjusted to obtain similar semi-confluent monolayers after overnight 
culturing in both dish types. These semi-confluent monolayers of EA.hy926/
EA.hy926v1 were exposed to mobile phone radiation. After exposure the cells 
were harvested either by scraping (I–III) or enzymatically (IV). For the 2DE 
studies, 10 independent replicates were generated.

The cell cycle analysis was performed for the EA.hy926/EA.hy926v1 cell 
lines by determining the DNA content of the cells with the standard propidium 
iodide staining method as described by Leszczynski (Leszczynski 1995). (III)

4.1.2. Primary human umbilical vein endothelial cells
Primary human umbilical vein endothelial cells (HUVEC) were purchased 
from Lonza, Switzerland, and cultivated according to the manufacturer’s 
instructions. The HUVECs used were a pool of cells from several donors 
to gain a more heterogeneous sample and thus exclude potential individual 
variability. For the mobile phone radiation experiments, the cells were 
removed from the culture flasks by brief trypsinization, washed in cell culture 
medium and seeded into 35-mm-diameter “CellBind” Petri dishes (Corning, 
USA). After overnight culturing the medium was replaced with fresh medium 
and the semi-confluent monolayers of the HUVECs were exposed to mobile 
phone radiation using an 1800 MHz set-up. After exposure the cells were 
quickly washed with warm (37 °C) phosphate buffered saline (PBS) and 
harvested with warm versene (a chelating agent containing EDTA). For the 
2DE analysis, 13 independent replicates were generated from the HUVECs. 
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4.1.3. Primary human brain microvascular endothelial cells
Primary human brain microvascular endothelial cells (HBMEC) were 
purchased from ScienCell Research Laboratories, USA, and cultivated as per 
the manufacturer’s information. The used HBMECs were from a single donor 
(only available) and all cells used for the experiments were from the same 
batch. A vial of cells was cultivated to confluency, after which the cells were 
de-attached with trypsin and cultivated into 35-mm-diameter “CellBind” Petri 
dishes (Corning, USA). All the used plates were beforehand coated with 1.5% 
fibronectin (Sigma, USA). After cultivation for 72 hrs the medium was replaced 
with new medium and the semi-confluent monolayers of the HBMECs were 
exposed to 1800 MHz GSM mobile phone radiation. After exposure the cells were 
quickly washed with warm (37 °C) PBS and harvested with trypsin. For the 2DE 
analysis, 11 independent replicates were generated from the HBMECs. 

4.2. Mobile phone radiation exposures
In all experiments, cell samples were exposed for one hour to mobile phone 
radiation. The cells were harvested immediately after exposure (without a post-
incubation period) to examine the acute response at the protein level. 

4.2.1. GSM 900 MHz exposure set-up
Cells were irradiated with simulated mobile phone radiation (900 MHz GSM 
signal) in a specially constructed exposure system. The system is described in 
detail by Leszczynski et al. (Leszczynski et al. 2002). 

The specially constructed irradiation chamber was placed vertically 
inside a cell-culture incubator. Two 55-mm-diameter glass Petri dishes were 
placed inside the chamber in specific locations in such a manner that the E-field 
vector was parallel to the plane of the culture medium. Temperature-controlled 
water was circulated through the 9-mm glass-fiber-molded waterbed under 
the Petri dishes. The RF-EMF signal was generated with the ED Laboratory 
SG-1240 signal generator and modulated with a pulse duration of 0.577 ms 
and a repetition rate of 4.615 ms to match the GSM signal modulation scheme. 
The signal was amplified with an RF Power Labs R720F amplifier and fed to 
the exposure waveguide via a monopole type feed post. The SAR distribution 
in the cell culture and the E-field above the cell culture were determined using 
computer simulations (finite-difference time-domain (FDTD) method). The 
standard deviation for the SAR distribution inside the Petri dish was 45% based 
on the computer simulations (Toivo 2011). The simulation results were further 
validated with measurements.
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For all experiments the cells were exposed to GSM mobile phone radiation 
of 900 MHz for 1 hour at 37 ± 0.3 °C at an average SAR of 2.4 W/kg. In the 
exposure, for 15% of the cells the SAR was higher than 3 W/kg, and for 0.7% 
of the cells the SAR was over 5 W/kg based on the non-uniformity of the SAR 
distribution (Toivo 2011). Sham exposures were generated similarly to the 
mobile phone radiation exposures but with the signal generator and amplifier 
turned off. 

4.2.2. GSM 1800 MHz exposure set-up
The sXc-1800 exposure system, developed and provided by the IT’IS Foundation 
(Zurich, Switzerland), was used to expose cells to a GSM signal of 1800 MHz 
(IV Figure 1, V Figure 1C). A detailed description of the system and dosimetry 
is presented by Schuderer et al. (Schuderer et al. 2004).

The system consists of two identical exposure chambers mounted inside the 
same cell culture incubator (NuAire US Autoflow CO2 Water-Jacketed Incubator, 
NuAire, USA). One of the chambers acted as a sham control (no radiation) and 
the other as an experimental chamber (with radiation). The sham exposure 
chamber and the mobile phone radiation exposure chamber were randomly 
assigned by the computer program that controlled the exposures. This computer 
program generated encrypted files with information about the irradiation 
chamber selection and the environmental monitoring during the experiment. 
These encrypted files were decoded afterwards by the chamber manufacturer, 
IT’IS, Zurich, Switzerland, and blinded execution of the experiments was thereby 
permitted.

The exposure system is fully automated and enables the controlled 
exposures of cells (H-polarization or at the H-field maximum of the standing 
wave (Schönborn et al. 2001)) at freely programmable amplitude modulations. 
Identical environmental conditions existed in both chambers (sham and 
experimental), since they were both located inside the same cell culture incubator 
and the inlets of the airflow through them are at the same location. The SAR 
distribution within the cell culture dish was characterized with a full three-
dimensional (3D) electrothermal finite-difference time-domain (FDTD) analysis 
using the simulation platform SEMCAD (SPEAG, Switzerland). Additionally, the 
SAR intensity and distribution were verified with measurements using a 1-mm-
diameter field probe inserted into the culture medium of the cell culture dish. 
The non-uniformity of the SAR distribution in the set-up was 23–30% depending 
on the volume of medium used for the monolayer exposure. In these studies it 
was estimated to be ca. 28% based on the 3 ml of medium used in cell dishes. 
(Schuderer et al. 2004)
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The simulated mobile phone signal used in the studies was a GSM 
Talk signal of 1800 MHz. It is characterized by a random change between the 
discontinuous transmission mode (DTX) and non-DTX or GSM Basic phases. 
The distribution in time was exponential, with a mean duration of 10.8 seconds 
for the non-DTX (“talking”) and 5.6 seconds for the DTX (“listening”). The 
dominant modulation components of this signal were 2, 8, 217, 1733 Hz, and 
higher harmonics (Tillmann et al. 2007).

The monolayers of human endothelial cells were placed to two 6-dish 
holders and placed inside the exposure chambers of the set-up in specific 
locations. In one chamber, randomly selected by the computer program, the cells 
were exposed to an average SAR of 2.0 W/kg at 37 ± 0.3 °C for 1 hour, while in 
the other chamber the cells were sham-exposed in similar conditions but without 
mobile phone radiation. The experiments were performed in a blinded manner 
and the code was broken at IT’IS afterwards. 

4.3. Two-dimensional gel electrophoresis

4.3.1. Sample preparation
The sample preparation methods varied among the different experimental 
set-ups. The harvested cells were lysed with urea-containing lysing buffer (various 
contents, for details see publications II–V) for 1 hour at room temperature with 
occasional vortexing, after which the samples were centrifuged twice for 15 min 
at 20 000 xg. The protein concentrations were measured using the Bradford 
method. The amount of total protein used varied from 75 µg (V) up to 250 µg 
(IV).

4.3.2. Sample labeling
Primary endothelial cell samples (V) were examined using the DIGE technique 
(Unlü, Morgan & Minden 1997, Alban et al. 2003), whereas the EA.hy926 cell 
samples were visualized by silver staining (I–IV). The internal standard used 
for the DIGE experiments was prepared by pooling of the same amount of each 
sample into one sample. The same amount of total protein from each sample 
was labeled with Cy fluorescent dyes (GE Healthcare, USA). Each sample was 
labeled with either Cy3 or Cy5 dye using the “dye swap” principle based on 
the blinded exposure coding, while the internal standard was always labeled 
with Cy2 dye. The labeling was performed according to the manufacturer’s 
instructions. Briefly, 600 pmol of dye per 75 μg of total protein was added to the 
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sample and labeling was performed for 30 min on ice in darkness. Afterwards, 
the labeling was quenched with 10 mM free lysine for 10 minutes on ice. A 
batch of Cy3- and Cy5-labeled samples was pooled with the Cy2-labeled internal 
standard, and this pool of proteins was separated in a single 2DE.

4.3.3. Isoelectric focusing
Isoelectric focusing was performed using IPGphor apparatus (GE Healthcare) 
and ready IEF strips (18 cm/pH 3–10 NL or 24 cm/pH 4–7, GE Healthcare). The 
samples were loaded using an in-gel rehydration in a buffer containing 9 M 
urea, 2% CHAPS, 0.5% IPG buffer, and 65 mM DTT. The IEF was performed at 
20 °C until the desired volt-hours were achieved (65 kVhrs/18 cm, 95 kVhrs/24 
cm). For details, see publications II–V.

4.3.4. SDS-PAGE
Before the second-dimension SDS-PAGE, the IEF strips were equilibrated for 
15 min with 6 M urea, 30% glycerol, 50 mM Tris-HCl, 2% SDS, and 10 mg/mL 
dithioreitol (DTT) for 15 min and then for another 15 min in the same buffer, 
in which 25 mg/mL iodoacetamide (IAA) replaced DTT. In publications I–III, 
SDS-PAGE was performed using 8% gels similar to Leszczynski et al. (2002). 
In publications IV & V, 10% gels were used to obtain a better MW separation 
range. After electrophoresis the gels were processed for protein visualization. 
For details, see publications II–V. 

For molecular weight range determination, MW markers (Bio-Rad, USA) 
were applied with a paper plug along with SDS-PAGE separation. Separate 
protein lysates were used (not analytical protein lysates).

4.3.5. Gel staining and image acquisition
Silver-stained gels (I–IV) were first fixed (30% ethanol, 0.5% acetic acid), 
washed with 20% ethanol and ddH2O, sensitized with sodium thiosulfate  
(0.2 g/L), incubated in silver nitrate solution (2 g/L) and developed (potassium 
anhydride 30 g/L, 37% formaldehyde 0.7 mL/L, sodium thiosulfate 0.01 g/L). The 
development was stopped with Tris 50 g/L + 0.5% acetic acid, after which the 
gels were washed twice with ddH2O and scanned using a GS-710 densitometer 
(Bio-Rad).

Cy dye-labeled proteins (V) were scanned with a Typhoon Trio scanner 
(GE Healthcare) with the appropriate excitation and emission wavelengths for 
Cy2, Cy3, and Cy5 dyes. The PMT voltages were optimized in such a manner 
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that the maximum signal intensity was approximately on the same level for all 
of the dyes.

4.3.6. Data analysis

4.3.6.1. PDQuest software
Silver-stained gels (I–IV) were analyzed using PDQuest software (Bio-Rad). In 
all experiments, 10 replicates from both the mobile phone radiation-exposed 
and the sham-exposed samples were used. A single gel was selected as a master 
gel and all the other gels were matched against this master gel. The gels were 
normalized by the software based the total volume of a gel. The spot volumes of 
the mobile phone radiation-exposed and sham-exposed sample groups were then 
compared using statistical testing (t-test, 95% confidence level). The protein spots 
that visually appeared as technical artifacts (e.g., background areas of silver 
staining, irregularly shaped dust particles, air bubbles), but were erroneously 
detected by the software, were manually removed from the analysis.

4.3.6.2. DeCyder software
The datasets containing images from the Cy2, Cy3, and Cy5-labeled samples 
were acquired with a Typhoon Trio scanner (GE Healthcare) and cropped 
with ImageQuant software (GE Healthcare) to contain the same pattern of 
proteins. The datasets were then imported into the DeCyder 6.5 software (GE 
Healthcare), in which the batch processor was used to detect the spots and 
match them against a selected master gel. The number of spots was estimated 
to 10 000 and the volume of 30 000 was used as a cut-off filter. After a brief 
manual check of the matched spots, the workspace was imported to the DeCyder 
extended data analysis (EDA) module for statistical analysis. The protein spots 
found in at least 70% of spot maps were included in the EDA analysis. The 
Student’s t-test (with and without FDR correction) was used to identify differing 
protein spots. Statistics were performed on log-transformed data, while fold 
ratios were calculated from standardized abundances. Principal component 
analysis (PCA) was also performed for the spot maps. The lists containing the 
statistically significantly differing spots were imported back to the DeCyder 
biological variation analysis (BVA) module, where the results were evaluated 
based on the average ratio between the sample groups as well as visually to 
identify the possible artifacts (e.g., dust or other background artifacts). (V)
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4.4. Mass spectrometry

4.4.1. In-gel digestions
Proteins of interest were extracted from several gels and in-gel digested. Before 
digestion the proteins were reduced with 20 mM DTT in 0.1 M ammonium 
bicarbonate (NH4HCO3) and alkylated with 55 mM IAA in NH4HCO3. The 
proteins were digested overnight at +37 °C with modified trypsin (sequencing 
grade modified trypsin, porcine, Promega, USA) in 50 mM NH4HCO3. After 
overnight digestion, the peptides were extracted with 25 mM NH4HCO3 and 
twice with 5% formic acid. The peptides were concentrated and de-salted using 
C-18 ZipTips (Millipore, USA) according to the manufacturer’s instructions, 
with the exception of the elution solution being 60% acetonitrile (ACN). (IV)

Additionally, MS identification services were purchased from the Protein 
Chemistry Laboratory of the Institute of Biotechnology at the University of 
Helsinki, Finland. (II)

4.4.2. MS data analysis
The tryptic digestions were mixed 1:1 with α-cyano-4-hydroxycinnamic acid 
matrix and analyzed with the MALDI-TOF-LR-MS (Waters, USA) operating in 
positive ion reflectron mode. The mass spectra were externally calibrated with 
an ACTH clip 18-39 (MW 2465.199 Da, Sigma, USA) and internally calibrated 
with trypsin autolysis peaks (MW 1045.564/2211.108 Da). The peptide mass 
fingerprints (PMF) for protein identification were searched automatically 
at the accuracy of 50 ppm from the UniProt database with the ProteinLynx-
software (Waters) operating along the instrument. The identifications were also 
confirmed by a manual search using the Matrix Science Mascot Peptide Mass 
Fingerprint tool (www.matrixscience.com). (IV)

4.5. Western blotting
The cell samples from the mobile phone radiation exposures were lysed 
with 2% SDS, 1% protease inhibitor cocktail (Sigma, USA), and the protein 
concentrations were measured using the Lowry method. The proteins were 
separated on 1D SDS-PAGE and blotted on a polyvinylidene fluoride (PVDF) 
membrane, blocked with non-fat dry milk, and exposed to primary antibodies. 
The respective secondary antibodies containing a horseradish peroxidase (HRP) 
conjugate (Dako, Denmark) were used. The signal was detected using enhanced 
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chemiluminescence (ECL). The autoradiography films were scanned with a 
densitometer and analyzed with Phoretix software (Molecular Probes, USA). 
For details, see publications II & IV.

4.6. Immunocytochemistry
After the exposure the cell samples were washed with PBS and fixed on glass 
plates overnight at +4 ○C (3.7% paraformaldehyde in fixing buffer: 0.1 M Pipes, 
1 mM ethylene glycol tetraacetic acid, 4% polyethyl glycol 8000, 0.1 M NaOH, 
pH 6.9). After fixing, the cells were permeabilized (0.5% Triton X-100 in fixing 
buffer for 10 min and 0.1% sodium borohydride in PBS for 10 min) and blocked 
with 5% bovine serum albumin (BSA). After blocking, the primary antibodies 
were applied and afterwards the respective fluorescently labeled secondary 
antibodies. The images were acquired using a Zeiss Axioplan 2 imaging 
microscope and evaluated by eye. (II)
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5. RESULTS

The main results of this study are presented and discussed in publications I–V. 
A brief summary of the results is presented below. 

5.1. Effects on the proteome after 900 MHz GSM exposures (I–III)
EA.hy926 and EA.hy926v1 cells were exposed to a GSM signal of 900 MHz. The 
exposures were performed during 2001–2004 and the data and the results are 
presented in publications I–III.

5.1.1. Human endothelial cell line EA.hy926
EA.hy926 cell samples were exposed to GSM mobile phone radiation of 900 MHz 
for one hour at an average SAR of 2.4 W/kg, and effects on the cell proteome 
were examined immediately after exposure. Ten independent replicates from the 
mobile phone radiation and the sham-exposed samples were generated using 
2DE with silver staining. In total, 38 protein spots had statistically significantly 
altered expression levels (t-test, p ≤ 0.05) between the sample groups (II, Figure 
1). The fold ratios between the mobile phone radiation and the sham-exposed 
samples varied from 0.08 up to 8.9, in addition to a few cases of de novo synthesis 
(fold ratios unpublished). Clear technical artifacts (e.g., from background 
staining) were removed from the data, but the data still contained some weakly 
expressed proteins, which were hardly detectable from the background level 
(III, Figure 2B). (I–III)

A few of the proteins with differing expression levels between the sample 
groups were identified using mass spectrometry. These included the following 
(II, Figure 2 and Table 1): 

Vimentin (protein components of class III-intermediate filaments) was •	
found to be expressed in at least two different isoforms differing in 
molecular weight and isoelectric point. The expression of both isoforms 
was increased in the samples exposed to mobile phone radiation (2.5-fold, 
p = 0.006, experimental MW/pI ca. 47 kDa/4.4 and 2.2-fold, p = 0.02, 
experimental MW/pI ca. 48 kDa/4.8).
Isocitrate dehydrogenase 3 (NAD1) was slightly down-regulated in the •	
samples exposed to mobile phone radiation (0.72-fold, p = 0.03).
Heterogeneous ribonucleoprotein H1 was moderately down-regulated •	
in the samples exposed to mobile phone radiation (0.61-fold, p = 0.03). 
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Vimentin expression was further validated using Western blotting and 
immunocytochemistry (II, Figure 3). Western blotting showed that vimentin was 
expressed in two forms, and the higher MW form was unaffected after mobile 
phone radiation exposure. However, the lower MW form was only present in 
the samples exposed to mobile phone radiation and not in the sham-exposed 
samples. In addition, a rearrangement of vimentin inside the cells after mobile 
phone radiation exposure was observed using immunocytochemical staining. 
Moreover, differences in F-actin and HSP27 expression and cellular localization 
were observed in immunocytochemical staining (II, Figure 4). 

5.1.2. Human endothelial cell line EA.hy926v1
EA.hy926v1, a subclone of the EA.hy926 cell line, was used to examine effects 
on the proteome level after mobile phone radiation exposure. The cell lines had 
the same origin, but over the years they have spontaneously begun to exhibit 
different characteristics. This can be observed, for instance, from their different 
growth pattern (III, Figure 1). 

Similar techniques were used to expose and examine the proteome-level 
effects in EA.hy926v1 cells to those used in EA.hy926 cells. In total, 45 protein 
spots had statistically significantly altered expression levels (t-test, p ≤ 0.05) 
when comparing the mobile phone radiation and the sham-exposed samples (III, 
Figure 2C/D). The fold ratios between the sample groups varied from 0.04 up to 
6.7 (fold ratios unpublished). In addition, some protein spots appeared with de 
novo synthesis. However, none of these 45 protein spots was the same as those 
protein spots affected in the EA.hy926 cell samples after exposure. Moreover, 
the protein expression pattern in the 2DE gels differed between the cell types, 
and only about a half of the proteins could be matched confidently between the 
different variants. The time between the two protein separation sets (EA.hy926 
and EA.hy926v1) was approximately six months, which might have an influence 
on the comparability of 2DE protein maps. (III)

5.2. Effects on the proteome after 1800 MHz GSM exposures (IV, V)
EA.hy926 cells and the primary human endothelial cells HUVEC and HBMEC 
were exposed to a GSM signal of 1800 MHz. The data and the results from these 
experiments are presented in publications IV & V.
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5.2.1. Human endothelial cell line EA.hy926
Cell samples of the EA.hy926 cell line were exposed to GSM mobile phone 
radiation of 1800 MHz for one hour at an average SAR of 2.0 W/kg, and effects 
on the proteome of the cells were examined immediately after exposure. Ten 
independent replicates were generated using 2DE with silver staining. Eight 
protein spots were found to have statistically significantly altered expression 
levels (t-test, p < 0.05) between the mobile phone radiation and the sham-
exposed samples (IV, Figure 2). After exposure to the GSM signal of 900 MHz, 
28 proteins spots were found to be altered in the pH range of 4–7 that was 
used in this study. Out of the eight proteins found here, four of the proteins 
were down-regulated with fold ratios of 0.33–0.47 and four of the proteins were 
up-regulated with fold ratios ranging from 1.47 to 2.46. For most of the spots, 
protein quantities were rather low. (IV)

Out of eight proteins that were affected after mobile phone radiation 
exposure, three proteins were identified by MS. These proteins were the following 
(IV, Figure 2 and Table 2):
•	 Spermidine synthase (SRM) was down-regulated in the samples exposed 

to mobile phone radiation (0.35-fold, p = 0.036).
•	 A 78 kDa glucose-regulated protein (GRP78) was identified as a fragment 

of protein. A ca. 55 kDa fragment was up-regulated in the samples exposed 
to mobile phone radiation (2.46-fold, p = 0.029).

•	 Proteasome subunit alpha type 1 (PSA1) was down-regulated in the 
samples exposed to mobile phone radiation (0.47-fold, p = 0.045).

Identification of the remaining five protein spots with the Maldi-ToF peptide 
fingerprint (PMF) technique was not successful, and no commercial antibodies 
were available for SRM or PSA1 proteins. (IV)

The expression of GRP78 protein was further validated using Western 
blotting. Based on MS identification, it was not possible to identify an exact 
location for the protein fragment, but a monoclonal antibody (corresponding 
residues surrounding Gly584, Cell Signaling Technology, USA) identified only a 
total protein (unpublished data). Using a polyclonal antibody, two forms of the 
protein representing the whole protein and a fragment were detected in the blot 
(IV, Figure 4A). However, the expression level of neither of them was altered 
based on Western blotting. The GRP78 protein amount in 2DE was also rather 
low and the standard deviation of protein quantity was high. This indicates that 
the 2DE result is possibly actually a false positive. (IV)

Furthermore, several other proteins were identified on the EA.hy926 2DE 
gel map to examine the expression of some other interesting proteins. These 
are listed in publication IV (IV, Figure 3 and Table 1). The 2DE showed no 
statistically significant differences in vimentin or HSP27 expressions, which 
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were earlier observed to be altered after exposure to a 900 MHz GSM signal 
(II, Leszczynski et al. 2002). The Western blots of these proteins also showed 
no changes in the expression levels of these proteins between the mobile phone 
radiation and the sham-exposed samples (IV, Figure 4B/C). In addition, based 
on the MS identifications, the expression levels of HSP60, P-HSP27, and p38 
proteins were examined in the 2DE gels, but no statistically significant changes 
were observed (unpublished data). However, HSP27 phosphorylation/activity 
was not assessed with a specific phosphorylation assay in this thesis research.

5.2.2. Primary human endothelial cells
The cell samples from the primary human umbilical vein endothelial cells 
(HUVEC) and the primary human brain microvascular endothelial cells (HBMEC) 
were exposed to a GSM signal of 1800 MHz for one hour. The proteome of the cell 
samples was examined using 2DE-DIGE, and 13 independent replicates were 
produced from the HUVEC and 11 from the HBMEC. In the HUVEC proteome, 
35 statistically significantly affected (t-test, p ≤ 0.05) protein spots were found 
(V, Figure 3). The maximum average fold ratio between the sample groups was 
1.33 for these significantly affected protein spots. In the HBMEC proteome, 
two statistically significantly affected (t-test, p ≤ 0.05) protein spots with 
average fold ratios of -1.16 and +1.1 were observed when comparing the sample 
groups (V, Figure 4). However, when the false discovery rate (FDR) correction  
(p ≤ 0.05) was applied to the statistical tests, all statistically significantly affected 
spots were recognized as false positives. All the spots found to be differentially 
expressed before the FDR correction were also manually checked. The average 
fold ratios of protein spots between the sample groups were close to 1.0 and the 
spots with the highest average fold ratios were visually recognized as technical 
artifacts (e.g., dust particles based on the extremely sharp peak geometry). In 
addition, principal component analysis (PCA) of the spot maps demonstrated 
differences between the cell types, but not between the exposure conditions  
(V, Figure 5). (V)

The differences between the cell types were also examined in the same 
analysis. In total, 368 protein spots were found to differ between the cell types 
(t-test, p ≤ 0.0001, with FDR correction). Out of these 368 protein spots, 145 spots 
were differentially expressed between the cell types by more than 2-fold up or 
down (V, Figure 2). A few of these proteins were also identified with MS and, for 
example, tropomyosin showed a 5.8-fold decrease in HUVEC in comparison to 
HBMEC. The different expression levels were clearly observed in all samples, 
irrespective of the exposure conditions (unpublished data). 



66

STUK-A250

6. DISCUSSION

6.1. Effects on the proteome after mobile phone radiation exposure
In this thesis research, the effects on the proteome of four different types of 
human endothelial cells were examined after short-term exposure to mobile 
phone radiation. In general, proteomics was found to be an effective tool to 
screen the expression of several hundreds of proteins simultaneously, and 
applicable in mobile phone radiation research. It was observed that the cell type 
as well as exposure conditions have an impact on the responses at the proteome 
level following mobile phone radiation exposure. Changes in the proteome of the 
human endothelial cell line EA.hy926 were detected after exposure to a 900 MHz 
GSM signal, and changes in vimentin expression were further confirmed with 
other methods. A few other proteins were also identified, but their expression 
levels were not further validated. The proteome of the EA.hy926v1 cell line was 
also affected after 900 MHz GSM exposure, but differently from the EA.hy926 
cells, although both cell lines have the same origin. Furthermore, a few changes 
were observed in the proteome of EA.hy926 cells after 1800 MHz GSM exposure. 
However, the number of affected proteins was lower in comparison to the 900 
MHz GSM studies, and none of the affected proteins was the same in the two 
studies. Alteration of the GRP78 expression level was observed in 2DE, but it 
could not be confirmed with other techniques. This underlines the importance 
of data validation. The proteome of the primary human endothelial cells did not 
show any changes after exposure to an 1800 MHz GSM signal.

The presented results show that more changes were observed on the 
proteome level after exposure to 900 MHz GSM than to 1800 MHz GSM. There 
are a few possible explanations for this:
i)	 The different exposure frequencies (900 vs. 1800 MHz). However, there 

is currently no known mechanism by which a particular frequency could 
cause these observed differences, while another frequency does not cause 
similar effects. However, this issue of different frequencies should be 
further investigated. If possible, the same exposure set-up could be applied 
with different frequencies to address this issue.

ii)	 The differences in SAR distribution in the cell culture dishes of the 
exposure set-ups. Certain differences in SAR distributions were evident; 
however, these differences were minor and, for instance, only 0.7% of cells 
gained a higher SAR than 5 W/kg in the 900 MHz GSM set-up (Toivo 
2011). Thus, it is unlikely that these differences would be observed using 
proteomics techniques. Furthermore, the EA.hy926 cells were exposed to a 
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1800 MHz GSM signal at an SAR of 5 W/kg for one hour, and the Western 
blot did not reveal any changes in the expression level of HSP27, vimentin 
or p38MAPK (unpublished data), similarly to the earlier 900 MHz GSM 
exposures (II, Leszczynski et al. 2002). Therefore, it is unlikely that the 
different SAR distributions in the used set-ups would alone explain the 
observed differences in the responses after the exposures. 

iii)	 The more reliable 2DE technology in the later studies (silver staining 
vs. DIGE, data analysis). 2DE technology has improved over time. The 
primary cells were examined using 2DE-DIGE, which is a more reliable 
technique than silver staining used in the earlier studies. The improved 
reliability was observed as a decrease in variation and in the number of 
observed false positives. Additionally, in the EA.hy926 1800 MHz GSM 
study, the fold ratios were examined more carefully before assigning 
the affected proteins. In the earlier studies only statistics were used, 
and as some of the fold ratios were close to 1.0, the proteins could not 
be considered actually affected. Therefore, methodological variation is 
likely to partly explain the observed differences (see further discussion in 
chapter 6.2). 

iv)	 Potential differences in the cells used. It is also possible that some 
spontaneous modifications have occurred in the EA.hy926 cell line 
used, and it might have become less responsive over the time. These 
spontaneous modifications are known to occur in cell lines if they are over-
subcultured (for review, see e.g., Hughes et al. 2007). This may be likely, 
as the EA.hy926 cells originally had an abnormal chromosomal number 
around 80 (Edgell, McDonald & Graham 1983) and were based on HUVEC 
cells, which often exhibit an aneuploidic or polyploidic nature (e.g., Nichols 
et al. 1987, Wagner et al. 2001, Kimura et al. 2004). The possibility of 
such modifications in the EA.hy926 cell line is supported by the presence 
of the EA.hy926v1 cell line, which is a variant of the same cell line but 
shows different growth characteristics and thus indicates the potential 
genetic instability of this cell line. The potential genetic modifications are 
also supported by the recent Western blots, in which no alterations were 
observed in the expression of vimentin or p38MAPK in the EA.hy926 cells 
after exposure to a 900 MHz GSM signal (unpublished data), similarly to 
the earlier studies (II, Leszczynski et al. 2002).

To address the variation in all these results, the EA.hy926 cells should be 
examined simultaneously using modern proteomics techniques, both exposure 
set-ups, and different passages of the cell line, as it seems that the EA.hy926 
cell line is a potential responder to mobile phone radiation exposure, unlike the 
primary cells.
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The most convincing evidence of cellular-level effects is shown by the 
vimentin expression level, which was affected after 900 MHz GSM mobile phone 
radiation exposure, as especially observed from the Western blots. However, 
this effect was not observed after the 1800 MHz GSM exposure. Other research 
groups have not examined vimentin expression after mobile phone radiation 
exposure, but some changes have been observed in other proteins relating to 
cellular structures, e.g., connexins and gap junction like-structures (Cervellati et 
al. 2009). Using immunocytochemistry, the expression of vimentin and cellular 
localization of HSP27 were found to be affected after the 900 MHz GSM exposure. 
However, the results of the immunocytochemical staining were only evaluated by 
eye and are not therefore completely reliable. Leszczynski et al. and Yu et al. also 
reported changes in HSP27 expression after mobile phone radiation exposure 
(Leszczynski et al. 2002, Yu et al. 2008). However, the exposure assessment by 
Yu et al. was not reported, and their results cannot therefore be considered 
conclusive. Meanwhile, several other studies have reported no changes in the 
HSP27 expression level (e.g., Lee et al. 2006, Vanderwaal et al. 2006, Hirose et 
al. 2007). In this thesis research, no changes were observed in HSP27 expression 
after 1800 MHz GSM exposure. There have also been other studies suggesting 
that the cellular responses might depend on the cell type and/or exposure. For 
example, Sanchez et al. observed a decrease in HSC70 expression in human 
dermal fibroblasts after 900 MHz GSM exposure (Sanchez et al. 2006), whereas 
after 1800 MHz GSM exposure no effects were observed in these cells (Sanchez 
et al. 2007). The different responses on the mRNA level depending on the cell 
type and exposure conditions also support the observation that the responses 
after the mobile phone radiation exposure depend on cell type and exposure 
conditions (III, Remondini et al. 2006).

To date, only a few proteomics studies in vitro related to mobile phone 
radiation research have been published. Zeng et al. concluded that no changes 
were observed after mobile phone radiation exposure (Zeng et al. 2006). Their 
observation is similar to the ones made in this thesis research using human 
primary endothelial cells, although more modern and reliable techniques were 
applied here. Kim et al. used the same cells as Zeng et al. and found certain 
proteins, GRP78, PIN1, and glucosidase II, to be affected in single gels, but 
the results were not reproducible with any other techniques (Kim et al. 2010). 
Li et al. reported four proteins to be affected, two hnRNP K, HSP70, and one 
unidentified protein, but the results were not confirmed with other techniques. 
Further validation would give more impact to this study, as 2DE was only 
performed in triplicate using silver staining (Li et al. 2007). So far, the highest 
number of affected and identified proteins after mobile phone radiation exposure 
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has been detected by Gerner et al. (Gerner et al. 2010). They reported 14 affected 
proteins spots, e.g., HSP-family proteins, T-complex proteins, annexins, and BIP, 
i.e., GRP78. Gerner et al. used an approach that differed from all the other 
studies, as they used 35S-labeling and actually measured the protein synthesis. 
Differences were observed in protein synthesis, while the fluorescently labeled 
gels showed no differences in total protein expression. This would suggest that 
mobile phone radiation has a greater effect on protein synthesis than on the 
actual total expression of proteins, indicating an imbalance in the protein level 
due to the exposure (Gerner et al. 2010). However, the reliability of this study 
was also limited, because only triplicate gels were used and the observations 
were not confirmed with any other techniques.

Similarly to the research presented in this thesis, Kim et al. and Gerner 
et al. also observed changes in GRP78 protein expression. However, validation of 
the expression of this protein in this study and by Kim et al. revealed no changes. 
Thus, the finding of effects on GRP78 might more likely represent a limitation of 
the 2DE technique, since it has been shown that several proteins are repeatedly 
reported to be affected in different kinds of proteomics studies (Petrak et al. 
2008). These proteins include, e.g., HSP27, enolase 1, peroxiredoxins, vimentin, 
annexins, HSC71, keratins, GRP78, and RHOGDI. For instance, HSP27 was 
identified in 31%, vimentin in 19% and GRP78 in 13% of the studies published 
during a three-year period in the journal Proteomics (Petrak et al. 2008). 
Extreme caution was suggested in the interpretation of differential expression 
of the most frequently identified proteins, as these might represent more the 
lack of depth in 2DE analysis (experimental design) than real differences due to 
biological condition examined. The expression of these proteins should at least 
be confirmed with other methods before assigning them as affected, as was done 
in this study and in that by Kim et al. 

In summary, in the studies presented in this thesis, proteome responses 
after mobile phone radiation exposure seem to vary depending on the cell type 
and exposure. Although some minor effects exist, they are not necessarily global 
effects. This is in line with the observations of mobile phone radiation research in 
general, as most of the observed effects have so far been contradictory. Therefore, 
at this point it is not possible to identify any unique cellular-level response caused 
by mobile phone radiation. Neither is it possible to identify a likely mechanism or 
potential physiological or pathological effects on the cellular level due to mobile 
phone radiation exposure. Furthermore, it is not possible to predict the presence 
or absence of any potential health effect due to mobile phone radiation exposure. 
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6.2. General remarks on proteomics results in the light
       of technological development
Proteomics data need to be evaluated in light of technological development. 
Proteomics technologies have been widely available for about two decades, and 
several methodological improvements have been introduced during this time. 
The most important of these are probably the development of staining methods 
and improvements in data analysis.

In the earlier studies presented in this thesis, silver staining was used 
to visualize proteins, as it was still regularly used at that time. However, only 
fluorescent dyes are nowadays used for quantitative proteomics. Among the 
silver-stained protein analyses, there were protein spots that were very faint 
and spots for which changes in the expression level were less than 2-fold, which 
were assigned as affected only by statistical analysis. Moreover, the normality 
of data was not investigated when the statistical analysis was performed. These 
analyses were directly based on raw data, and not on log-transformed data, 
which might have caused bias in the results. Furthermore, false discovery rate 
correction was not applied in the data analysis, and in fact, the false positive rate 
was not exceeded in any of the studies. Therefore, some of the observations of 
affected proteins might actually have been false positives. Thus, based on current 
knowledge, effects on the cellular proteome in EA.hy926 and EA.hy926v1 cells 
after mobile phone radiation exposure might not be as significant as originally 
presented. However, despite the limitations of the methodology, the effects on 
vimentin protein expression were also observed with other methods. Conversely, 
no effects were proven for GRP78 protein expression in Western blot analysis 
after 1800 MHz GSM exposure. This indicates that GRP78 is possibly a false 
positive detection in 2DE, which is supported by the low protein quantity 
and high standard deviation in 2DE quantification (IV). This underlines the 
importance of data validation using other methods, especially when 2DE is not 
performed using state-of-the-art technology. The last study, using 2DE-DIGE 
technology and the latest requirements in data analysis methodology (e.g., log 
transformation of data and false discovery rate correction), showed no effects 
on the proteome of two human primary cell lines. Due to the technology used in 
this study, the results are very significant in showing no immediate effects on 
the proteome of primary human endothelial cells immediately after exposure to 
an 1800 MHz GSM signal. Meanwhile, the strength of the 2DE-DIGE system 
was demonstrated by the observed differences between the cell types.

The main strength of the studies presented in this thesis is the number of 
replicates collected for the proteomics analyses. All the proteome studies were 
based on at least 10 biological replicates, which is unprecedented in the field of 
mobile phone radiation research. All remaining published proteome studies in 
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vitro in this research field, although only a few exist, are based on triplicate gels 
and other staining techniques than DIGE. In the DIGE system, three replicates 
are enough to show 2-fold differences if the biological variation is small (e.g., in 
cell lines) and the technical variation due to the system is reduced (Karp et al. 
2007). In systems other than DIGE, the gel-to-gel variation is much higher and 
more replicates are needed to observe such differences.

6.3. Future aspects
The results presented here demonstrate that the proteome response after 
mobile phone radiation exposure depends on the cells used as well as on the 
exposure conditions. The proteome of EA.hy926 cells was affected after exposure 
to 900 MHz GSM mobile phone radiation, whereas the changes in the proteome 
after 1800 MHz GSM exposure were much weaker. The observed differences in 
EA.hy926 responses should be addressed with modern techniques to determine 
their causes. A study comparing the effects between the exposure set-ups using 
state-of-the-art proteomics techniques is currently in progress. The preliminary 
results of this study indicate that the responses after mobile phone radiation 
exposures are not similar to those observed earlier (unpublished data). However, 
this study has not taken into account the potential spontaneous genetic changes 
in the cell line, which should also be examined.

Furthermore, these experiments only focused on a single exposure 
condition, i.e., exposure for one hour at an SAR average close to 2 W/kg, and the 
proteome responses were only examined immediately after exposure. The time 
and dose selection was based on a previous study published by Leszczynski et 
al., as several changes were reported in that study (Leszczynski et al. 2002). 
However, other researchers (e.g., Gerner et al. 2010) have suggested that 
longer exposure times are needed to observe responses on the proteome level. 
Additionally, it might be worthwhile to allow a post-incubation time after the 
exposures to enable potential changes to appear on the translational level. 
Recent Western blot data on heat shock exposures (43 ○C, 1 hour) of EA.hy926 
cells have demonstrated that HSP70 protein expression levels are increased a 
few hours after the treatment, but not immediately after (unpublished data). 
However, some studies have suggested that even with a post-incubation time, 
responses following mobile phone radiation exposure might not be observed (e.g., 
Chauhan et al. 2006a, 2006b, Kim et al. 2010). Furthermore, chronic exposures 
with occasional sampling could reveal a response to long-lasting exposures 
without the need for time point selection. Additionally, cell selection for further 
studies is important, as it seems that responses depend on the cell type and even 
on the stage of the cells. For example, Gerner et al. found that metabolically 
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inactive mononuclear cells were less affected than active mononuclear cells 
after mobile phone radiation exposure (Gerner et al. 2010). The use of several 
cell types would also reveal potentially responding cells.

Regarding the proteomics studies, cellular and technical fractionation 
would be useful to gain further depth in 2DE analysis. With these improvements, 
the decreased number of typical responders (Petrak et al. 2008) in 2DE studies 
would be observed. Furthermore, other techniques should also be used in protein 
expression studies, as the basic shot-gun proteomics techniques do not provide 
information on, for instance, the protein half-lives or localization (if total cell 
lysates are used). Additionally, it might be worthwhile to examine the potential 
effects after mobile phone radiation exposure at the individual cell level, as 
the more crude proteomics techniques require rather large and comprehensive 
effects in a total cell population before they are observed. For instance, Newman 
et al. have introduced in yeast the use of single-cell proteomics, which allows 
quantitative single-cell measurements of proteins (Newman et al. 2006). However, 
this technique is currently available only for certain model organisms, although 
it might be applicable in the future.
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7. CONCLUSIONS

In this thesis, the results of proteomics analysis of human endothelial cells 
after short-term mobile phone radiation exposure are presented. Proteomics 
was found to be an effective and applicable tool to examine responses at the 
proteome level after mobile phone radiation exposure, although so far it has 
not been extensively applied in this research field. Proteomics techniques allow 
the large-scale screening of several hundreds, even thousands, of proteins 
simultaneously, and are thus more efficient than single endpoint techniques, 
especially if an appropriate experimental design is applied. However, proteomics 
requires rather large and comprehensive effects in total cell populations before 
they are observed, i.e., effects at the individual cell level cannot be detected with 
the proteomics techniques used.

In this study, several changes were observed in the proteome of the 
human endothelial cell line EA.hy926 after the exposure to 900 MHz GSM 
mobile phone radiation. In addition, the proteome of a variant of the same cell 
line, EA.hy926v1, was affected after the same exposure, but different proteins 
were altered compared to EA.hy926 cells. However, changes in the proteome 
of EA.hy926 cells were weaker after exposure to an 1800 MHz GSM signal 
than after the 900 MHz GSM exposure. The proteome of primary cells was 
not affected after 1800 MHz GSM exposure when examined using 2DE-DIGE 
technology. The earlier studies using EA.hy926 cells were partly limited due to 
certain technological aspects of 2DE (staining, data analysis), but the extensive 
replication as well the validation of some of the protein endpoints with other 
methods are strengths of this study. Due to the technology used here, the last 
study using primary cells and 2DE-DIGE technology is very significant in 
showing no immediate effects on the proteome of primary human endothelial 
cells after 1800 MHz GSM exposure. 

The results presented in this thesis regarding the proteome-level effects 
after mobile phone radiation exposure are contradictory. The results for EA.hy926 
cells suggest that minor effects occur, whereas no effects were observed using 
the more advanced 2DE-DIGE technology and primary cells. The responses with 
EA.hy926 cells varied according to the cell type and exposure conditions, and 
the consistent responses at the cellular level could not therefore be identified. 
Further research is recommended to understand the variation in responses and 
whether consistent cellular-level responses exist.
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