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Abstract - We analyze the performance of a novel human tracking system, which uses the electric near 

field to sense human presence. The positioning accuracy with moving targets is measured using raw 

observations, observation centroids and Kalman filtered centroids. In addition to this, the multi-target 

discrimination performance is studied with two people and a Rao-Blackwellized Monte Carlo data 

association algorithm.  A reel-based triangulation system is used as the reference positioning system. 

The mean positioning error for five test subjects walking at different speeds is 21 centimeters. The 

discrimination performance is 90% when the distance between the two people is over 0.8 meters. With 

distance over 1.1 meters the discrimination performance is 99%.  
 

Index terms: Floor sensor, Near field imaging, Human tracking, Multiple target tracking. 

 

I. INTRODUCTION 

 

This study analyzes the performance of a novel human tracking system called the Electronic 

Sensor with Intelligence (ELSI). It senses the presence of human beings using an electric near 

field [1] and we refer to this method as near field imaging (NFI). A similar method for human 

detection was first published by Zimmerman [2] in 1995. The sensor system under study here can 

also record the vital signs of a fallen person [3] and is able to detect falls. The electric field is 

produced by a conductive film array under the floor surface. The floor may be covered with 

arbitrary dielectric material up to 10 millimeters thick, which makes the system completely 

undetectable. In addition to this, the amount of floor area covered with the sensor system is 

unlimited. 
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The main application of the NFI floor sensor is monitoring residents in homes for the elderly and 

monitoring elderly people at home. The rapid ageing of the population in the EU [4] is creating 

pressure to make the elderly care system more efficient. This can be partly achieved with an 

advanced monitoring solution such as ELSI, since the availability of qualified staff for nursing 

homes is very limited as it is. In addition to this, the possibility of remote monitoring may enable 

elderly people to live at home for extended periods, lowering the costs inflicted on society.  

In homes for the elderly the NFI system would be used for triggering alarms, such as 

exiting/entering the room, getting out of/into bed, or entering/exiting the toilet, which all require 

accurate tracking. At home the NFI system would provide information about the overall health of 

the person. It has been proposed that the functional health status of the elderly could be 

determined remotely by measuring simple parameters such as mobility, sleep patterns, and the 

utilization of cooking, washing, and toilet facilities [5]. Measuring these parameters with the NFI 

system is possible but requires tracking.  

Remote monitoring of the elderly with multiple sensors in their homes has already been found to 

slightly increase their quality of life and significantly lower the strain on the caregivers [6]. 

 

a. State of the art 

Human tracking can be performed with many types of hardware: with ultrasound [7]; with 

infrared light [8]; with radio frequencies [9], [10], [11]; with computer vision [12], [13], and by 

floor contact sensing [14], [15], [16]. The motivation of an NFI system is to avoid some major 

disadvantages found in other tracking hardware. There is no need to carry a transponder, such as 

with ultrasonic, infrared or RF-based systems, and the accuracy of NFI is more than eight times 

better compared to RF-based tracking systems. The performance is not hindered by changes in 

the background or lighting, and no intimacy issues arise, in contrast to camera-based tracking. 

The other floor sensors found in the literature are based on weight sensing, which requires a very 

complex floor structure compared to the glue-on films of the NFI method.  

One very promising study focusing on floor sensor tracking was carried out by Murakita [17], 

whose scope is very similar to ours, but the discrete floor sensors caused the system to miss 

observations when the weights of the test subjects varied. This potentially limited the accuracy of 

their system. The non-discrete observation strengths of our tracking system are not proportional 

to weight, but to the intersecting area of the activated sensor cell and the foot of the target. This 
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adds more information to the observations and makes them immune to the weight of the target. In 

addition to this, the reference positioning system used in this study is unique and very accurate; 

we do not have to make assumptions about the actual location or speed of the target, such as that 

the target is walking exactly on a defined path and maintaining uniform speed. 

 

b. Tracking people with NFI 

Usually a human target activates at least two sensor cells - one cell for each foot. When 

monitoring a standing person, the coordinates of the activated sensors weighted by the signal 

strengths (i.e. the centroid of the observations) is a good approximation for the location of the 

person because it is usually somewhere between the feet. A walking person produces a more 

complex observation pattern as the advancing foot usually moves high leaving the supporting 

foot to contribute to the observations alone. The observation centroid remains at the supporting 

foot until the advancing foot touches the floor. This makes the observation centroid a rather noisy 

estimator for the location. A tracking algorithm can filter some of the noise and improve the 

positioning accuracy. A tracking algorithm can also predict the location for example when some 

observations are lost. 

When there are two or more targets, each observation has to be associated with the correct target 

before the location estimate can be updated. If the targets are close to each other, this is not trivial 

because of the relatively low resolution of the NFI sensor matrix. In the tracking community this 

is known as the data association problem and there are sophisticated algorithms for attacking it. 

 

c. Goals of the study 

Our goal was to measure the real-time positioning accuracy of our floor sensor system using 

moving human targets. We also aimed to measure the real-time multi-target separation 

performance using two people. The reference location of the targets was to be acquired with a 

high-precision reference tracking system, which we fabricated for this purpose.  

 

II. MATERIALS AND METHODS 

 

a. The reference tracking system 
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To be able to measure the positioning accuracy of the NFI tracking system, we need a rugged and 

accurate reference positioning system. For this purpose, a reel-based triangulation system was 

built, using precision potentiometers and multifiber fishing lines; see figure 1. The reels have 

rotary carved spools in them, which are attached to the framework with ball bearings. The spools 

have two grooves on them with different diameters. One is for the flat cord of a retractable dog 

leash. This adds a spring-loaded turning motion to the spool. The other groove on the spool is for 

the actual fishing line (PowerPro, 0.36 mm DIA., Innovative Textiles, Inc., Grand Junction, CO). 

The diameter of this groove is defined in such a way that the diagonal length of the test room can 

be reached by using only ten whole turns of the spool. The amount of turns is limited by the 

structure of the precision potentiometers (8146R1KL.25, BI Technologies Corp., Fullerton, CA). 

 

 
Figure. 1. The triangulation reference reel and the positioning hat. Retractable dog leashes are 

used to achieve the retracting motion of the positioning lines. The ten-turn precision 

potentiometer used is visible under the spool on the right. 

 

The three reels are located in the top corners of the test room, which has the NFI sensors installed 

under the floor surface. The test subject walks on the sensor floor wearing a tight-fitting hat with 

the three lines attached on top of it; see figure 2 for the test configuration. Because the reels are 

placed in three corners of a rectangular room, the position of the hat can be solved with simple 
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trigonometry. Calibration is needed only once. This is done by measuring the slacks of the reels 

when the potentiometers read zero, and counting these values into the calculations. 

  

 
Figure 2.  The test configuration. Floor sensor resolution is 0.5 m x 0.25 m, and area size is      

4.5 m x 4 m. Positioning reels are placed in three corners of the room. 

 

To verify the positioning accuracy of the triangulation system, a series of measurements are 

performed using a measuring tape: the node of the three lines is placed in ten different positions 

on the floor, and the corresponding tape measurements are compared with the results given by the 

triangulation system. The goal is to achieve a positioning accuracy and update rate at least one 

decade higher than that achieved with the NFI floor sensor. The floor sensor observation 

resolution is 50 cm x 25 cm, and the update rate is approximately 5 updates per second. 

After the reference system has been verified, observation data and reference data can be acquired. 

The test subjects walk along an arbitrary taped route on the floor wearing the positioning hat and 

their own shoes. Everyone in the group walks the same route. The test group consists of five 

people, three males and two females. Each of them walks a total of nine laps, increasing their 

walking speed after every three laps: they are first asked to walk slowly, then at a medium speed, 

and finally at a fast speed. The length of the taped route is approximately ten meters.  
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b. Position estimation 

For the sensor system to be useful in tracking people, we have to be able to estimate the position 

of the subject from the sensor observations. The question is what kind of an estimator gives the 

most accurate estimates. We can compare different estimators by comparing their output to the 

reference estimate given by the reference tracking system. Statistics of particular interest are the 

mean and the standard deviation of the error, i.e. the difference between the reference tracking 

system and the estimator under evaluation. 

A naïve estimator could just pick the strongest observation and use the location of the 

corresponding sensor as the position estimate. Obviously this estimator cannot be very good, as it 

just discards the information available in the other observations and restricts the estimate to a 

discrete set of sensor locations. Nevertheless, it serves as an interesting baseline. 

Typically, a person standing or walking on the sensor floor causes activation in multiple sensors. 

We assume that the strength of the signal from one sensor is proportional to the intersecting area 

between the sensor cell and the foot of the subject. This intersection forms a parallel-plate 

capacitor insulated by the floor covering and the more or less uniform shoe sole; see the gray 

areas in figure 3. This assumption is completed by the linear impedance sensitivity of the system, 

which has been shown earlier [1]. Therefore, a natural way to use multiple observations is to 

compute the centroid of the observation cluster, as in (1). The position estimate � �CC yx ,   is the 

average position of the activated sensors � �ii yx ,   weighted by the strength of the observations iZ� .  
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The position estimate given by the centroid estimator is expected to contain errors resulting from 

differences in the sensor film gaps, shoes, and target posture, among other things. Observations 

can also be lost momentarily. Therefore, especially for a moving target, it makes sense to try to 

filter this estimate to reduce the noise caused by these errors. 
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Figure 3. The definition of the observation centroid (xc and yc). Gray areas represent the 

intersections of sensor cells and feet. The detected impedance changes iZ�  are proportional to 

these areas. Here the centroid consists of four sensor observations (i goes from 1 to 4). 

 

c. Kalman filter 

The Kalman filter is an efficient recursive filter that estimates the state of a linear dynamic 

system from a series of noisy measurements [18]. It can be seen as a special case of a more 

general Bayesian filtering framework that is often used in tracking problems [19]. The Kalman 

filter requires the state of the system to evolve linearly and the noises present in the system and 

the measurements to be white and Gaussian. 

In order to apply the Kalman filter to our tracking problem, we chose to model the state of a 

walking person using a simple continuous white noise acceleration (CWNA) model [20]. In this 

model, the acceleration of the target is assumed to be a zero-mean Gaussian white noise process 

and therefore the expected velocity of the target is constant. While this limited model does not 

reflect the reality very accurately, it is difficult to come up with a better model, if we cannot 

assume anything about the path of the target. 

In the CWNA model the continuous-time state equation for the target is (3) 
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where the target state � �Ttytxt )(),()( �x  is the position of the target at time t . The zero mean 

Gaussian white noise process )(tw  with spectral density q  represents random fluctuations in the 

acceleration of the target. The equivalent discrete-time state equation is (4) 

 

,1 kkkk qxAx �� �  (4) 

 

where the target state  � �kkkkk yxyx �� ,,,�x  consists of the position and the velocity of the target at 

time kt . The old state of the target 1�kx  is mapped to the new state kx  using the linear state 

transition model kA . The process noise kq  is assumed to be drawn from a zero mean multivariate 

normal distribution with covariance kQ . The transition model kA  and the process noise 

covariance kQ  are given in (5) 
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where q  is the spectral density of the process noise )(tw  and kt�  is the time between time steps  

k  and  1�k . 

Since our observations are the centroids of the actual measurements, we can define the 

observation model for our Kalman filter as (6) 

 

,kkkk vxHz ��  (6) 

 

where kz is the location of the measurement centroid at time step k  and the 2-by-4 matrix 

kH maps the state of the target kx to the location of the centroid. The measurement noise 

kv corresponds to the error between the location of the centroid and the location of the target. As 

required by the Kalman filter, it is assumed to be white and drawn from a zero mean multivariate 

normal distribution with constant covariance R . In reality, while the distribution of the noise is 
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quite normal, consecutive samples do have some correlation and hence the noise is not quite 

white. The observation model matrix kH simply picks the location of the target from the state 

vector and is defined as in (8) 
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The model parameters R and q  were tuned using a separate training set of samples from the 

sensor floor and the reference positioning system. Two test subjects were used as the training set. 

Only the slow and medium walking speed samples were used for training purposes because 

otherwise the process noise would have been too high. 

Since there is no reason why the x  and y  dimensions of the observations should have any 

correlation, we assumed that the measurement noise covariance R  matrix is diagonal and can be 

directly estimated from the training set using (9) 
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where N  is the size of the training set and ix�  and iy�  are the differences between the position 

of the centroid and the corresponding actual position given by the reference system. 

Estimating the spectral density q  of the process noise )(tw  in (3) from the training set is not as 

straightforward, since the reference system does not measure velocity or acceleration directly. 

We would first need to estimate them from the position measurements and that would introduce 

additional errors. Therefore, we chose to simply numerically optimize the value of q  so that it 

minimizes the mean estimation error of the Kalman filter within the training set. 

 

 

e. Multiple target tracking 

Since our reference tracking system can only track one person at a time, we had to resort to a 

special method in order to evaluate the tracking performance of the system when there are 
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multiple persons on the floor. The number of targets to be tracked was fixed to two, and two 

recordings of a person walking on the floor were merged together. In both of these samples, the 

test subject walked randomly for 3 minutes. The recorded observations of the first sample were 

merged with the observations from the second sample by shifting the recorded observation times. 

This arrangement simulates two targets reasonably well, although sometimes the targets pass so 

close to each other that in reality they would collide. 

With multiple targets the tracking problem becomes considerably more difficult. In addition to 

the state estimation problem, the tracking algorithm has to solve the data association problem, i.e. 

decide which measurements originate from which targets. While there are many well-known 

multiple-target tracking (MTT) algorithms described in the tracking literature, such as multiple-

hypothesis tracking (MHT) [21], we chose to use a novel algorithm called Rao-Blackwellized 

Monte Carlo Data Association (RBMCDA), partly because of its elegant theoretical background 

but mostly because of the ease of implementation using the free RBMCDA Toolbox for Matlab 

[22]. 

 

f. Rao-Blackwellized Monte-Carlo Data Association 

RBMCDA is a Rao-Blackwellized sequential Monte Carlo method for tracking multiple targets 

[23]. Like the Kalman filter, it can be seen as a special case of the Bayesian filtering framework 

in that it tries to estimate the posterior probability distribution of the system state from noisy 

measurements using the Bayesian filtering equations. In principle, the algorithm separates the 

MTT problem into a data association problem, which is solved using a sequential importance 

resampling (SIR) particle filter, and a state estimation problem, which is solved using a Kalman 

filter. Furthermore, if the target states are assumed to be independent of each other, the state of 

each target can be estimated using a separate Kalman filter. In this case the algorithm is quite 

similar to the MHT algorithm in that it maintains multiple data association hypotheses and 

evolves the target states using Kalman filters. Nevertheless, it is based on different principles and 

uses very different methods for maintaining the hypotheses. 

We decided to use the same CWNA dynamic model in the multiple target case as we did in the 

single target case. However, the observation model has to be different – we cannot use the 

measurement centroids because we do not know the correct measurement associations and hence 

cannot compute the centroids. Therefore, in the multiple targets case we used the locations of the 
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active sensors as measurements and simply ignored the strengths of the measurements. This leads 

to the same observation model as in (6) except for the measurement noise covariance R , which 

has to be estimated with (9) using the sensor locations instead of the centroids. 

 

e. Multiple target performance analysis 

The recorded data of the two targets were run through the RBMCDA algorithm, frame by frame. 

Each frame was analyzed as a separate trial and was flagged with the number one if the 

discrimination was a success. The definition of a successful trial was that the NFI observations 

were associated correctly with the two targets. Those frames where both of the targets activated 

the same sensor cell at the same time were discarded, because there is no way to determine the 

owner of that observation. 

After the trials, we have a table with ones and zeros indicating the success of each trial, and a 

table with corresponding gaps between the people. The gap is the distance between their 

reference locations. To convert these tables into discrimination performance as a function of 

distance between the targets, we use a histogram and interpolate the desired values from it. The 

bin width was chosen to be 10 centimeters.  

 

III. EXPERIMENTAL RESULTS 

 

a. Reference Verification 

We measured the absolute positioning accuracy of the triangulation reference using ten evenly 

distributed points on the floor whose locations were well known. The results show that the mean 

error is 2.53 centimeters, with a 1.13-centimeter standard deviation. An update rate of 50 Hz was 

also achieved. 

Figure 4 illustrates how accurately the system can trace the shape of a complex object in 3D. The 

figure was created by "painting" the ladder with the node of the three lines. 
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Figure 4. A 3D model of a folding ladder created with the reference system. 

 

b. Positioning Accuracy 

One test lap can be seen in figure 5. The mean walking speed was 0.71 m/s and the observation 

rate was 99.2%. By observation rate we mean the proportion of time during which there are one 

or more observations of the target available. The black trace shows the reference position, which 

was acquired with the triangulation system. It shows the position of the head of the test subject. 

Green circles represent the raw NFI observations, and the gray rectangles represent NFI sensor 

cells. The blue trace shows the path of the centroid, and the red trace shows the path of the 

Kalman filter estimate.  
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Figure 5. Traces of one test lap. The gray rectangles represent the NFI sensor cells.  

 

Table 1 shows the mean errors categorized by the average walking speeds of the samples. Table 2 

presents the corresponding standard deviations of the errors. Observing the tables, one can notice 

the improvement in accuracy when advancing in the tracking method column. However, the 

Kalman filter performs poorly in the high-speed samples. The walking speed categories have the 

following ranges: slow is from 0.33 to 0.47 m/s, medium is from 0.49 to 0.61 m/s, and fast is 

from 0.66 to 1.06 m/s. 

 

Table 1: Mean errors 

 

Mean error [m] Walking speed 
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Tracking method Slow Medium Fast All 

Strongest obs. 0.180 0.192 0.306 0.226 

Obs. centroid 0.160 0.177 0.297 0.211 

Kalman filter 0.156 0.173 0.306 0.212 

 

Table 2: Standard deviations of errors 

 

S.D. [m] Walking speed 

Tracking method Slow Medium Fast All 

Strongest obs. 0.100 0.114 0.205 0.140 

Obs. centroid 0.095 0.109 0.194 0.133 

Kalman filter 0.094 0.106 0.197 0.132 

 

The positioning error of one test subject as a function of walking speed is depicted in figure 6. 

Walking speeds are averaged within each test walk, as are the errors. 
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Figure 6. Positioning error of one test subject as a function of walking speed. 

 

The positioning errors of the whole group as a function of observation rate are shown in figure 7. 

By observation rate we mean the proportion of time during which a target activates at least one 
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sensor cell while walking alone on the sensor floor. The mean observation rate for the whole 

group was 91.6%. 
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Figure 7. Positioning errors of the whole test group plotted as a function of observation rates. 

 

c. Multi-target discrimination 

The RBMCDA discriminates between two people as shown in part a) of figure 8. When the gap 

R between the two targets is equal to or greater than 110 centimeters, a 99% performance is 

achieved. A 90% performance is achieved when R is equal to 78 centimeters.  

There was some variation between sequential runs of the RBMCDA algorithm, caused by its 

non-deterministic nature. To cancel this noise, the histogram contains the results of 1200 

sequential runs of the discrimination process. There is some residual error caused by the limited 

sample size and the linear interpolation process, but we believe it to be negligible. 

Part b) of figure 8 shows the two merged 3-minute walking samples, which were used for the 

discrimination performance calculations. 

 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 2, NO. 1, MARCH 2009

170



0 0.5 1 1.5 2
0

20

40

60

80

100

Gap R [m]

P
er

fo
rm

an
ce

 [%
]

a) Discrimination performance

<- 99% 1.10 m

<- 95% 0.96 m

<- 90% 0.78 m

1 2 3 4
0.5

1

1.5

2

2.5

3

3.5

4

x [m]

y 
[m

]

b) Multi-target samples

Target 1
Target 2

 

Figure 8. a) RBMCDA discrimination performance of two people as a function of the gap 

between them. b) The data used in the calculation. Blank areas are caused by furniture. 

 

IV. DISCUSSION 

 

The unique reference positioning system allowed us to measure positioning errors freely and in 

real time. Thus we did not have to make such assumptions as the one that the test subject was 

walking exactly on a predefined route and exactly at a uniform speed. The verification results 

show that the triangulation reference system is approximately eight times more accurate and ten 

times faster than the floor sensor system under study. The one-decade goals in these values were 

nearly reached.  

Observing figure 4 suggests that the accuracy of the reference system is more than adequate for 

the purposes of this study. 

 

b. Positioning accuracy 

The positioning accuracy comparison shows that the Kalman estimate outperforms the raw 

observation and centroid estimates with slow and medium walking speeds. This conclusion is 

based on the mean error values in Table 1. However, the winning margin of the Kalman filter is 

not large. Fast walking samples were especially problematic for the Kalman filter because the 

process noise in the dynamic model was not high enough also to cover the fast walking speed 

scenario. With fast walking speeds, a simple centroid of observations was the best estimator. 
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The lowest tracking error was obtained here with the Kalman filter. The mean error was 21.2 

centimeters, with a standard deviation of 13.2 centimeters. The use of an SIR particle filter [24] 

with the same CWNA kinematic model but a more accurate non-linear observation model did not 

reduce the mean error result significantly and was therefore left out of this study. 

Murakita reported a mean tracking error of 20 centimeters using a sensor pitch of 18 x 18 cm 

[17].  Considering that our sensor cell is almost four times larger (25 x 50 cm), the mean error of 

21 centimeters is very competitive. This suggests that linear observation strengths improve 

accuracy compared to discrete observations.  

The results acquired using samples from only one test subject show that the walking speed has a 

clear effect on the positioning error (see figure 6). This is most probably due to the limited update 

rate of the floor sensor system, which is approximately 5 updates per second. Some error may 

also be caused by the attachment point of the triangulation lines, which is located on top of the 

test subject’s head; people tend to lean forward when increasing speed. Figure 6 confirms that the 

Kalman filter has a slight advantage at slow walking speeds, but at high speeds the CWNA 

dynamic model is inappropriate and the centroid is the best estimator. 

We also noticed a clear relation between lost observations and positioning error, as can be seen in 

figure 7. It also indicates that the fewer observations the Kalman filter was given, the less 

competitive it became compared to the simple centroid estimate. Figure 7 includes the entire test 

group to show the whole spectrum of observation rates. The observation rate depends strongly on 

the individual characteristics of the test subject, such as walking manner and shoe size. Weight 

did not seem to have an effect on the observation rate; in fact, the heaviest test subject produced 

the fewest observations. The 91.6% averaged observation rate of the NFI system was considered 

to be more than adequate for human tracking purposes. 

 

c. Multi-target discrimination 

The discrimination of two targets was implemented using the RBMCDA method with a CWNA 

dynamic model. The discrimination performance in our study is very similar to the results 

reported by Murakita [17]. We achieved a 99% discrimination performance with a gap of 1.10 

meters, and a 90% performance with a gap of 0.78 meters. The 90% milestone is very 

competitive compared to the results of Murakita (0.8 m), especially when keeping in mind the 

disadvantage in our sensor resolution (four times smaller) and the simpler dynamic model. The 
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RBMCDA method did not use the linear observation strengths, so the good results must be 

caused by the high observation rates. After all, we do know that Murakita reported a loss of 

observations while using the discrete floor sensors.  

 

V. CONCLUSIONS 

 

On the basis of the results, we draw the following conclusions concerning the system under 

study: 

1) using the Kalman filter, the mean tracking error is 21 cm with a standard deviation of 13 

cm; 

2) the information about the strength of the observations improves positioning accuracy 

compared to a system with discrete observations; 

3) using the RBMCDA for multi-target discrimination, we get 99% success with gaps 

greater than 1.1 m, and 90% success with 0.8 m. 
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