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Abstract

This paper describes an architecture for an archival data
storage system. The design enables aggregation of stor-
age resources in a scalable fashion to achieve highly reli-
able data storage. Reliability is implemented by using era-
sure coding which provides lower storage overhead than
full replication. Scalability of the architecture is achieved
through the ability to work with multiple different storage
locations and a scalable metadata management system. The
integrity of the data is ensured through use of cryptographic
naming. Feasibility of the proposed design is assessed with
a real world implementation named GB-DISK.

1 Introduction

It has been shown that erasure codes use orders of mag-
nitude less bandwidth and storage than replication systems
with similar reliability [20]. Moreover, erasure codes can be
used to achieve high reliability in scalable distributed data
structures with small theoretical storage overhead [11]. It
has been suggested that erasure codes could be used in par-
allel with replication since they enable fast access to data
by reducing network latency [16, 20]. Additionally, erasure
codes help ensure the durability of storage over long periods
of time.

We propose a design called GB-DISK which is a com-
ponent of the GridBlocks architecture [7] for aggregating
storage resources using erasure codes. GridBlocks is an ap-
plication framework implemented in Java that is designed to
provide building blocks for Grid application programmers.
The commitment to use Java components in our design has
guaranteed easy portability of the implementation to run on
virtually any platform.

In addition to software portability we have aided exten-
sibility by supporting multiple transport protocols. Differ-
ent transport mechanisms enable operation under hetero-
geneous network policies and enable flexible resource ag-
gregation. Moreover, the performance critical components,
namely metadata and coding elements, are designed so as
to enable scalable operation. Functionality of these central
components can be flexibly replicated as the load on the sys-
tem increases, as demonstrated by our performance tests for
GB-DISK prototype.

The structure of this work is as follows. In Section 2
we will present the related work done both with distributed
data storage and with erasure coding. Erasure coding is ex-
plained in Section 3. In Section 4 we explain the archi-
tecture of our GB-DISK archival storage. In Section 5, the
feasibility of our design is demonstrated with real world use
of the system. Finally, Section 6 concludes our work and
discusses the future directions.

2 Related Work

Collaborative file sharing is a well known application in
peer-to-peer networks [5, 16]. While many issues regard-
ing indexing and routing have been solved the mechanisms
developed for wide area environments are not always opti-
mal for deployment in local area networks. In our earlier
[13] work we have shown how Reed Solomon (RS) erasure
code can be feasibly used to combine storage resources over
wide area network. The striping and erasure coding were
implemented as a client application and GridFTP was used
for the transport. While the earlier work focused on per-
formance issues in the wide area networks here we present
an architecture suitable for metadata management, storage
maintenance and flexible aggregation of resources in local
area networks.



FreeLoader [19] is a recent approach to aggregate idle
workstation resources to form a collaborative storage pool.
Freeloader uses data striping to achieve load balancing be-
tween storage contributors. Also, the metadata management
and the storage contributors are separated similar to our ap-
proach and no assumptions are made on the storage element
availability. However, our use of erasure codes brings ad-
ditional robustness to stored data and our virtual machine
based implementation makes our architecture more flexible
to deploy.

IBP [14] is a system for sharing storage in the network
that can take advantage of coding. IBP exposes file meta-
data and client nodes are responsible for downloading and
reassembling data if necessary.

DRALIC [8] is a proposed architecture to connect stor-
age resources in local area network. The architecture im-
plements reliable storage by using RAID techniques to
calculate parity between disk space contributions. More-
over, each host node contributes a RAM partition to en-
able collaborative caching for fast access to data. However,
DRALIC architecture requires access to low-level system
resources being less flexible approach than the architecture
We propose.

StarFish [6] is a block storage system that ensures high-
availability of data through replication. StarFish is imple-
mented as a low-level interface and requires operation sys-
tem dependent device drivers. With StarFish high perfor-
mance is achieved, however, reliability requires high over-
head due to replication of data.

Litwin et al. [11] propose the use of RS codes to achieve
high-availability in scalable and distributed data storage.
Their design L H*rg uses linear hashing to address the data
stored in the main memory of computers in a local area net-
work. From their work we have adopted the idea to apply
systematic RS codes to ensure high redundancy of data with
minimum possible overhead. The code that we use is based
on the work by Rizzo [17], which can be referred to for a
good explanation of the workings of erasure coding.

Many recent proposals to use erasure codes for highly
available data storage have suggested the use of low den-
sity parity check (LDPC) codes. In LDPC very fast encod-
ing and decoding processes can be achieved with a slightly
larger storage overhead. However, the RS codes can have a
better performance when used with relatively small (< 20)
values for n [15]. The codes of the LDPC family have
the property that not all combinations of file fragments are
sufficient for decoding the original data. This makes the
management of metadata and stripe download selection a
more complicated process [3]. However, the work on LDPC
codes is currently active and with different stripe placement
approaches the novel codes may prove more efficient to be
used with file storages. These novel coding techniques in-
clude e.g. Tornado [1], Raptor [18], LT[12], and LEC [4]

codes.

3 Erasure Codes and File Striping

Reed Solomon erasure codes can be used to provide K-
availability. This property states that £ can be chosen freely
and any random k data segments can be lost without losing
any original information. The RS code can be used to en-
code m data items into n > m encoded data items. Later, it
is sufficient to have any m out of these n items to decode the
original information. We use the erasure code with striping
of files to provide data redundancy in the storage. Thus the
original data can be recovered even if n — m of the stored
file stripes are unavailable. Moreover, the code we use is
a systematic code meaning that the original m stripes form
a verbatim copy of the input file. With systematic code the
decoding is unnecessary when there are no lost stripes. This
enables partial file access and very fast reconstruction in the
event that no data is lost.
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Figure 1. Using striping and erasure codes to
provide redundancy of arbitrary data files.

Figure 1 illustrates how we use file striping and erasure
codes to provide redundancy of files. In the process of en-
coding, the file is read block-by-block. Afterward, each
block is encoded from m packets to n packets and these
packets are each written to a separate file. Thus, we have
implemented a striping approach where one file is read as
input and n files are produced as output. The stripes can
be then handled as traditional files enabling easy operation
with different transport protocols and storage resources.

The block size defines the balance between time used
to do the I/O operations and calculating the encoding, and
vice-versa in the reconstruction phase. Thus the choice of
block size has an effect on the performance of the coding
procedure. While the optimal block size is dependent on
the host system, we have observed sizes between 10 — 40
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Figure 2. Overall architecture of GB-DISK.

KB to show good performance on Linux systems; see [13]
for details on the evaluation of different coding parameters.
With the chosen approach only one block needs to be main-
tained in memory during coding. This leads to a design that
is general and works independent of file size.

4 GB-DISK Architecture

The GB-DISK architecture is illustrated in Figure 2. We
have grouped the functionality of the GB-DISK into the fol-
lowing core entities:

e Front-end (FE) hosts the Coordinator that orches-
trates the storage work-flow. The Coordinator con-
trols the file striping and is responsible for keeping the
storage information up-to-date in the metadata service.
The Coordinator manages the leaving and joining of
storage elements. Additionally, the Coordinator pro-
vides a simple API for third party applications and user
interfaces.

e Metadata service stores information about files in-
cluding erasure coding parameters, stripe integrity and
respective storage locations. The service is imple-
mented using caching and replication of data objects
over a reliable multicast protocol [10]. The resulting
design leads to a scalable, highly-available and fault
tolerant metadata service.

e Storage elements (SE) contribute storage space for
storing the stripes. No intelligence resides in storage
element side and the performance impact to hosts is
limited to network and disk I/O. The SEs can be easily
deployed as they only need to support a simple set of
operations and various transports can be chosen.

The minimal installation of GB-DISK requires a single
information server and one storage element. These services
can be run in the same host. In more realistic deployments,
the information system runs on multiple front-end servers
to provide load balancing and high availability of the meta-
data. After striping and coding the file fragments are stored
into n separate storage elements.

A user can connect to the storage system using command
line utilities from his or her workstation or using a web in-
terface which runs in the front-end. The web interface can
be used through HTTP browser or WebDAV folder utility.
The simple interface and automatized working of the coor-
dinator enables easy integration as a back-end of different
storage services. The project is released as open source and
the source code and technical documentation can be found
at Sourceforge [7].

4.1 Management of Metadata

The GB-DISK metadata system uses JBossCache [9] to
automatically distribute and synchronize the metadata ob-
jects among all hosts participating to metadata service. The
cache uses an Aspect Oriented Programming (AOP) archi-
tecture, which enables transparent and fine-grained control
over the replication of simple Java data objects.

A single metadata object contains the required informa-
tion to fetch and decode a file from our system. Our current
design stores files in a flat name space. However, the im-
plementation is not limited to this as the cache is internally
organized as a tree hierarchy. This can be easily used to
support hierarchical file naming.

Figure 3 illustrates an example metadata object, which
we store into our info-system. Each metadata object con-
tains the coding parameters m and n. We also store the



fileName=jboss-Jjmx. jar

m=3

n=>5

packetSize=10000
fileLength=591108

0=d3472

1=81d71

2=37398

3=914e6

4=e6de’7
d3472=gsiftp://pchip69/
81d71=gsiftp://pcolrent20/
37398=http://pchip69:8080/
914e6=http://pcolrent20:8080/gb-disk
e6de7=gsiftp://pchip69/

Figure 3. An example metadata instance.

packet size used during the striping (as shown in Figure 1)
as well as the length of the original file in bytes. In addition
the naming and location information is stored for each file.
The metadata description is the only place where the orig-
inal file name is stored. For each stripe the hosting storage
element is stored with the name of the stripe, which also
serves as an integrity check-sum.

After encoding the file, the stripes are named by calculat-
ing a checksum over their contents. This ensures integrity
and enables the use of a flat name space within the architec-
ture. Checksums are stored only for the stripes so that their
integrity can be checked before using them in the decoding
process. We assume that a reliable decoder produces valid
output whenever the input stripes are intact. The use of the
flat name-space enables integration of our design with vari-
ous DHT storage architectures [2].

A new metadata object is instantiated and stored in the
cache for every new file. The fine-grained control of meta-
data creation, together with synchronization based on reli-
able multicast, increases the scalability and performance of
the cache. In addition the cache supports transactions to be
sure that no conflicts occur in the metadata service.

In our prototype the content of the cache can be listed
or searched by the name of the file. The result of the query
is an instance of the metadata object. Since the metadata
is replicated over all hosts participating in the metadata ser-
vice, the searches can be processed locally without impos-
ing network delay or using network resources. Moreover,
the cache contents are automatically check-pointed to disk
to ensure persistency of the information.

4.2 Transport and Storage Aggregation

For easy aggregation of resources we have implemented
support for multiple transport protocols between coordina-
tor and storage elements. Our simple transport API supports
the following operations:

get ()
delete ()

put ()
exists ()

The design makes minimal assumptions about the func-
tionality of the storage element, and access to this func-
tionality can be provided through the most suitable trans-
port channel. The support for multiple transport protocols
enables a host to contribute storage even in the presence
of firewalls or other required extended security features.
Transport over the following protocols is supported:

e HTTP(S) protocol offers flexible operation in various
environments as only one network port needs to be
used for data traffic. We have packaged a minimal
server setup that requires only Java to be installed on
the host computer. The server can be accessed also
through WebDAV protocol. HTTP communication can
be secured with SSL when storage elements are placed
outside firewalls.

e (Grid)FTP is used to enable resource aggregation in
multi-site operation. The certificate based security en-
ables resource aggregation over untrusted networks.
Moreover, we benefit from single-sign-on when stripes
are gathered from multiple sites. We support also plain
FTP to enable operation with existing FTP servers.
The use of multiple ports for data channels, however,
increases complexity of the configuration process.

e JGroups multicasting components are embedded to
our HTTP storage elements for providing resource dis-
covery and keep-alive information in LAN environ-
ment. The same protocol stack can be used for file
transfer with ability to operate behind firewalls.

4.3 Coordinating and Logic

In our design, storage elements have a role of simple data
storage without any embedded logic. The metadata service
is an independent look-up service and does not know how
to use the stored information. The Coordinator running on a
front-end, or a user’s desktop, is the intelligent component
which orchestrates the storing and fetching processes.

The metadata system can be used to store operational in-
formation such as performance statistics from storage ele-
ments. Based on this information, and applying the storage
policies, the coordinator can decide the best locations to up-
load new files into. The Coordinator can be used also to de-
duce the fastest storage elements for downloading the stored
stripes. As an initial strategy we have used simple round-
robin scheduling for uploading the stripes. In the down-
loading process n transfers are started. After m stripes have
arrived and been verified to be intact, the remaining trans-
fers are stopped.



S Evaluating Performance

In this section we provide performance measurements to
justify the applicability of our design. The measurements
utilize workstations in a classroom. Each workstation runs
the Linux operating system and features a 2.4 GHz proces-
sor and 1 GB of memory. The 100Mbps LAN set-up is typ-
ical for a university or enterprise network. Data transfers
are performed by using plain HTTP operations. For testing
we use five storage elements with variable number of FEs
and clients. Performance logging is done in the FE to get
detailed information as execution proceeds.

With our performance evaluation we illustrate two de-
sirable properties of the design: i) a single FE can handle
multiple simultaneous users, and ii) adding FE elements in-
creases overall system performance.

5.1 Using Single Front-end

In the measurements a single FE is used to serve multi-
ple clients. For each measurement every client transfers 50
files through the FE, each having a random size from the
set [20,40,60,80,100] MB. Using random file sizes in the
clients avoids the situation where simultaneous file trans-
fers would synchronize and create artificial load peaks. For
each measure max, min, median, lower quartile and upper
quartiles are plotted.

The figures plot aggregate bandwidth that is file size di-
vided by time it takes as the file travels through the compo-
nents of the system. This includes transfer between client
and FE, coding, checksum, metadata operations and trans-
fer between FE and SEs. This describes the capacity with
which the FE is able to process files. For all measurements
we have used m = 3 and n = 5. This provides a configura-
tion where any two SEs can be simultaneously unavailable.
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Figure 4. Download throughput from client
perspective, single FE and multiple clients.

Figure 4 illustrates download performance with a single
FE. The figure shows bandwidth of the whole transfer and

decoding procedure as seen from the client perspective. A
single FE can serve one client with half of the cases falling
between 24 — 26 Mbit/s. With greater number of simultane-
ous clients the median performance decreases moderately,
achieving close to a third of the performance with 5 clients
compared to the single client case. As the number of the
clients increases the performance becomes less predictable.
While the performance decreases from the clients’ perspec-
tive, the overall throughput increases when more clients are
served simultaneously. This is seen because file transfers,
decoding and integrity tests have different system require-
ments and do not interfere with each other continuously.
The upload measurements are very similar to those of the
downloads thus, the figures are omitted for brevity. How-
ever, the clients upload files to FE like to a traditional server,
after which the FE takes over processing. Thus, the client
sees faster upload excluding time to code and to transfer to
SEs. However, the presented measures describe the overall
performance of the system in the upload case as well.

5.2 Using Multiple Front-ends

Next, we show how multiple front-end nodes help to
increase the throughput of our storage. Clients use sim-
ple round-robin scheduling to distribute “put” and “get” re-
quests between two identical FEs. The infosystem keeps the
file distribution metadata replicated in every FE. Thus, the
metadata of files can be accessed locally in any available
FE independent of the FE through which the file was orig-
inally stored. In addition to load balancing, the metadata
replication helps to preserve data when FEs are lost.

30
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Figure 5. Download throughput from client
perspective, two FEs and multiple clients.

Figure 5 illustrates download performance from the
client perspective when two FEs are used to balance the
load. With the addition of another front-end, performance
increases of about 50% are seen when three or more clients
are accessing the storage. Again the upload performance
is very similar with respect to all measures and the plot is
omitted.



During the download case the average access time from
the infosystem drastically decreases with two FEs. While
the infosystem response takes 19 ms on average with one
FE in two FE case the response is received in 5 ms on av-
erage. In both cases the infosystem look-up is processed
locally but when two FEs are used the FE load stays lower.
In contrast, during the upload, the synchronous replication
of the metadata takes some time. However, the observed in-
crease was small with two FEs. With larger FE clusters we
could use asynchronous replication offered by the metadata
system to increase its performance.

6 Conclusions and Future Directions

In this paper we have presented an architecture for flexi-
ble storage resource aggregation. The architecture uses soft-
ware erasure codes to provide high reliability against data
losses. We have implemented scalable and transparent in-
fosystem for LAN environments. The infosystem is used
to replicate metadata of file distribution within the system.
We have demonstrated with empirical measurements that
the proposed architecture is feasible to deploy on today’s
workstation environments.

We have focused on presenting an architecture that can
efficiently distribute files within LAN environment provid-
ing high reliability. The design includes methods to work
with plain files and to store the needed metadata. We have
used our storage as a back-end of HTTP-service and as a
WebDAV folder provider. In the future we plan to extend
the front end functionality to support the storage interfaces
used in the scientific Grid data management infrastructures.
Moreover, we continue to study which parts of the presented
architecture can be feasibly distributed over wide area net-
works.
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