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1 Using an offline algorithm to solve a problem at

problem data is available from the beginning. In cont
process its data incrementally, without having the entir
We examine a contracting problem with asymmetric information in a monopoly pricing setting. Tradi-
tionally, the problem is modeled as a one-period Bayesian game, where the incomplete information about
the buyers’ preferences is handled with some subjective probability distribution. Here we suggest an iter-
ative online method to solve the problem. We show that, when the buyers behave myopically, the seller
can learn the optimal tariff by selling the product repeatedly. In a practical modification of the method,
the seller offers linear tariffs and adjusts them until optimality is reached. The adjustment can be seen as
gradient adjustment, and it can be done with limited information and so that it benefits both the seller
and the buyers. Our method uses special features of the problem and it is easily implementable.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

We consider a monopoly pricing problem where the market
consists of a seller and buyers with different preferences. The buy-
ers are sorted into two classes, and the demand behavior of each
class is specified by a utility function. The seller designs a single
price schedule as a function of quantity to maximize his profit,
from which the buyers select the quantity they wish to consume.
In economics and game theory literature this problem is known
as the nonlinear pricing problem. More broadly, such a problem
falls into the class of principal-agent games where a principal (here
a seller) proposes a contract to an agent (a buyer) whose prefer-
ences are the agent’s private information. In addition to nonlinear
pricing and monopoly pricing [12,14,21,22], other examples of
such games are optimal taxation [13], regulation [1], and the de-
sign of auctions [15]. In the literature all these games are called ad-
verse selection or mechanism design problems; [8,18] are good
textbook presentations on the topic.

An essential feature of all adverse selection problems is incom-
plete information: the principal does not know the exact values of
agents’ type parameters, although he knows their probability dis-
tributions and the functional forms of the agents’ utility functions
depending on these parameters. Hence, the problem is solved
mathematically as a one-shot Bayesian game.

In nonlinear pricing a practical approach to handle incomplete
information in an offline manner1 was suggested by Spence [21],
ll rights reserved.
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hand requires that the whole
rast, an online algorithm can
e data available from the start.
who noted that the buyers’ demand functions can be estimated by
offering unit prices to the buyers. Wilson [23,24] took the idea fur-
ther by formulating the problem so that it could be solved by using
the demand data that is estimated from the buyers’ responses to lin-
ear tariffs; see also Räsänen et al. [17] for one such application in
electricity markets. The Wilson’s approach may, however, require
an extensive data collection that can be rather costly; in the case
of Räsänen et al., it took three years to collect reasonable consumer
demand data to solve a three quantity, two buyer class pricing prob-
lem. In Braden and Oren [6] a Bayesian learning formulation over a
finite time horizon was studied in an optimal control fashion to esti-
mate the type for one consumer class. As the authors say, the paper
provides more insights than numbers to a rather involved problem
containing continuous random variables.

Currently, Internet is taking a vital role as an e-commerce plat-
form. Internet is also used for extensive customer data gathering
for pricing services and goods. At the same time, however, cus-
tomer privacy considerations attached to data collection matter
and should be taken into account in the analysis [9]. This fact fa-
vors development of efficient online1 pricing schemes that acquire
data incrementally rather than offline pricing methods which usu-
ally need large customer data set to be applicable. In papers deal-
ing with dynamic pricing of goods, where in addition to varying
demand also inventory considerations may count, various online
learning methods have been used to forecast the correct customer
behavior and future demand curve [11,16]. Brooks et al. [5] con-
sider adjustment of different pricing schedules, e.g., linear, two-
part, nonlinear, etc. tariffs, in nonlinear pricing setting where
monopolist offers consumers a new set of articles in each time per-
iod. One question they emphasize is that learning customer prefer-
ences takes time during which the seller earns less than the
optimal profit. In addition to OR literature, the development of
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computational algorithms for games that use limited amount of
information about the other agents’ preferences, e.g., multiagent
learning algorithms and combinatiorial auction algorithms, have
recently been under active research in AI literature, too [4,19,20].

In this paper we assume that the seller knows the number of
different buyers, but does not have knowledge on their utility func-
tions. Instead we assume that the product is sold repeatedly to
myopic buyers. By observing the realized sales the seller plans a
better pricing policy for the next period. We first present a discrete
step adjustment scheme to solve the problem in an online fashion.
Actually we come to this scheme intuitively by requiring that the
seller increases the amount to be sold a little bit in every period
and that in every such period both the seller and the buyers should
gain. It turns out that the resulting method is a steepest ascent
method. To avoid too many price changes in every iteration step
we then consider a practical modification of the method by making
use of linear tariffs. This kind of adjustment problem has not been
studied in the literature earlier; see however [7,10] where linear
tariff adjustment scheme for one buyer type was studied. This pa-
per shows that there are intuitively appealing computational
schemes for solving the problem with several buyer types, too.

The contents of the paper are as follows. In Section 2, we formu-
late the nonlinear pricing problem and study its optimality condi-
tions. We also study an illustrative example in detail. In Section 3,
we present a discrete step heuristic method and discuss its proper-
ties. It turns out that the invented method can be considered a dis-
crete step gradient adjustment scheme. In Section 4, we define and
analyze a modified method based on the use of linear tariffs. In
Section 5, we simulate numerically the performance of our meth-
od, and finally in Section 6, we offer further considerations to the
issue.

2. Model

A firm, the seller denoted by S, produces a product x, x P 0, to a
population of buyers. The seller differentiates the buyers by offer-
ing them different quantities of the product. We assume that there
are just two types of buyers in the population: a low buyer and a
high buyer denoted from now on by L and H, respectively. The buy-
ers’ utilities are quasi-linear,

Uiðx; tÞ ¼ ViðxÞ � t; i ¼ L;H; ð1Þ

where t is the price of the product and ViðxÞ is buyer i’s gross sur-
plus of consuming quantity x. The utilities are scaled so that
Við0Þ ¼ 0; i ¼ L;H. The gross surplus ViðxÞ is assumed to be twice
continuously differentiable, increasing and strictly concave, i.e.,
V 0iðxÞP 0, V 00i ðxÞ < 0, when x P 0.

The seller offers the buyers two types of quantity-price bundles,
ðxL; tLÞ and ðxH; tHÞ, and gets a total profit

pðxL; xH; tL; tHÞ ¼ pLðtL � cðxLÞÞ þ pHðtH � cðxHÞÞ; ð2Þ

where pi is the relative number of buyers i in the population, and
cðxÞ is the seller’s cost of producing quantity x. Without loss of gen-
erality, we assume that there is only one L buyer and one H buyer
with weights pL and pH , respectively. Furthermore, we assume that
the production cost is of the form cðxÞ ¼ cx, where c P 0 is a con-
stant. We note, however, that the production cost could be convex
as well and this would result only in minor changes in the rest of
the paper.

In the market the buyers self-select the bundle they wish to
consume. In maximizing his profit, the seller therefore faces two
kinds of constraints: individual rationality (IR) constraints

Uiðxi; tiÞ ¼ ViðxiÞ � ti P Uið0;0Þ ¼ 0; i ¼ L;H; ð3Þ

and incentive compatibility (IC) constraints
Uiðxi; tiÞ ¼ ViðxiÞ � ti P ViðxjÞ � tj ¼ Uiðxj; tjÞ; j – i: ð4Þ

The IR constraints state that a buyer should get positive utility
when choosing the bundle intended for him. The IC constraints
let the buyers self-select the bundle for them; the buyers prefer
their own bundle the most. Now, the seller’s problem is maximiza-
tion of pðxL; xH; tL; tHÞ with respect to the constraint equations (3)
and (4).

2.1. Necessary and sufficient optimality conditions

We derive first-order conditions to the problem by making a
common assumption used in literature, which states that the buy-
ers’ utility functions can be sorted.

Assumption 1. V 0HðxÞ > V 0LðxÞ; 8x P 0:

This assumption is called the single-crossing property and it has
two major implications. First, the optimal quantities are increasing
in buyer type, x�H P x�L , where from now on * refers to the optimal-
ity. Second, the optimal prices are

t�L ¼ VLðx�LÞ; ð5Þ
t�H ¼ t�L þ VHðx�HÞ � VHðx�LÞ: ð6Þ

These results are derived in Spence [22]. Using these results, we can
simplify the seller’s problem to
max
xL ;xH ;tL ;tH

pðxL; xH; tL; tHÞ ¼ pLðtL � cxLÞ þ pHðtH � cxHÞ

s:t: tL ¼ VLðxLÞ;

tH ¼ tL þ VHðxHÞ � VHðxLÞ;

xH P xL P 0:

ð7Þ

Assumption 2. There is xE
i > 0 so that V 0iðxE

i Þ ¼ c, i ¼ L;H.

This assumption rules out the possibility that selling nothing to
both buyers is optimal for the problem. If buyer i was alone in the
market, he would be served with the amount xE

i , which is called the
first-best solution. In this case, when the cost is linear and Vi is
strictly concave, this amount is unique.

Let us define fLðxÞ ¼ pLðVLðxÞ � cxÞ � pHðVHðxÞ � VLðxÞÞ and
fHðxÞ ¼ pHðVHðxÞ � cxÞ. Then substituting the equality constraints
in (7) into the objective function, we get pðxL; xH; tL; tHÞ ¼
fLðxLÞ þ fHðxHÞ. Hence, forgetting the constraints xH P xL P 0 for a
while, we get the necessary conditions of (7) for a solution
0 < x�L 6 x�H ,

f 0Hðx�HÞ ¼ pHðV
0
Hðx�HÞ � cÞ ¼ 0; ð8Þ

f 0Lðx�LÞ ¼ pLðV
0
Lðx�LÞ � cÞ � pHðV

0
Hðx�LÞ � V 0Lðx�LÞÞ ¼ 0: ð9Þ

Assumptions 1 and 2 imply that 0 < xE
L < xE

H <1, and that
f 0LðxÞ < 0, for all x P xE

L . Thus for a solution of (9) we have
0 6 x�L < xE

L . By (8), x�H ¼ xE
H , hence it also holds that x�L < x�H . But

(9) may not have solution at all, since f 0LðxÞ can be strictly negative
for all x 2 ½0; xE

L �. Thus, the problem solution is either to serve both
buyers or to exclude the low type and serve only the high type.
Which case will happen depends on the buyers’ utilities and
weights pL and pH . The latter case will happen if pL is small, or if
the low type values the product considerably less than the high
type. If this is the case, the solution is given by x�H ¼ xE

H ,
t�H ¼ VHðx�HÞ, and x�L ¼ t�L ¼ 0. In this paper, we shall assume that it
is optimal to serve both buyers. Therefore, we make the following
assumption.
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Assumption 3. f 0Lð0Þ > 0:

Since f 0LðxÞ is continuous, there is a solution x�L , 0 < x�L < xE
L , to (9).

Nevertheless, the solution may not be unique, since
�pHðV 0Hðx�LÞ � V 0Lðx�LÞÞ may not be decreasing. To guarantee this we
make our final assumption.

Assumption 4. V 00LðxÞ 6 V 00HðxÞ < 0; 8x P 0:

This assumption means that the curvature for the low type is
steeper than for the high type. It also guarantees that f 0LðxÞ is
strictly decreasing in x, i.e., fLðxÞ is strictly concave, as f 0HðxÞ and
fHðxÞ are, respectively. Hence the solution ðx�L; x�HÞ to maximization
problem (7) is unique.
B

xHLx

L

Amount  xxL

tL

−

−

EE*

Δ

Δ

B

C

*

Fig. 1. An example with two buyers. The solid, dashed, and dash-dotted lines are
buyer L’s and buyer H’s indifference curves, and the seller’s cost function,
respectively. AL and AH are the first-best solutions, and BL and BH are the second-
best solutions.
2.2. An example

To get an overview of the problem it is instructive to study an
example with weights pL ¼ pH ¼ 1=2 in more detail. Note that
Assumption 1 implies that H values the product strictly more since
we assumed Við0Þ ¼ 0, i ¼ H; L. The seller designs amounts xH and
xL and prices for these amounts tH and tL so that the buyers are
willing to buy the bundles intended to them, i.e., the bundles
should satisfy the IR and IC constraints.

But let us first consider a case, where the seller can perfectly
discriminate the buyers by giving them individual offers; thus,
we forget the IC constraints from the formulation. Obviously in this
case, the seller can extract all the surplus from the buyers. Thus we
set ti ¼ ViðxiÞ in (2), i ¼ H; L, and maximize ViðxiÞ � cxi. The optimal
amounts are given by the first-order conditions, V 0iðxE

i Þ ¼ c, i ¼ H; L,
and together with the optimal prices tE

i ¼ ViðxE
i Þ these bundles de-

fine the first-best solution, see bundles AL and AH in Fig. 1.
Note that a buyer’s indifference curves are of the form

Uiðx; tÞ ¼ ViðxÞ � t ¼ c, where c is a constant. The indifference
curves in Fig. 1 are given by equation t ¼ ViðxÞ � c, c P 0 a con-
stant. Hence, the greater the c for a buyer, and hence the greater
his utility, the lower the corresponding indifference curve is in
the figure. Also note, that the slope of a buyer’s indifference curve,
�½oUi=ox�½oUi=ot��1ðx; tÞ ¼ V 0iðxÞ, depends on x, but not on t. In par-
ticular, the slopes of L’s and H’s indifference curves at AL and AH ,
respectively, equal the slope c of the seller’s cost function.

Now, consider the case, where the buyers may self-select the
bundle they wish to consume. If the seller offered the first-best
bundles, AH and AL, H would not choose his own bundle, because
he would get strictly positive utility by choosing L’s bundle AL. This
is because AL is below the indifference curve going through AH .
Thus, the seller must take the IC constraints into account. The seller
lowers the price of AH from tE

H until H is indifferent between AL and
AH . This happens when t ¼ tC

H , i.e., at the bundle CH . Now, we notice
that H has an advantage of the self-selection, because the price has
been lowered but his amount of good is the same. We call the price
difference tE

H � tC
H informational rent, and denote it by DC . The feasi-

ble incentive compatible bundles AL and CH are not yet optimal.
They satisfy the requirements (5) and (6) for optimal prices giving
zero utility to L, and indifferency of AL and CH to H. At optimal solu-
tion the amount xE

H for H should also be correct. Nevertheless, the
amount xE

L to L is too high as is seen from (9). According to (9) for
pL ¼ pH ¼ 1=2, and Assumptions 1 and 3, V 0LðxÞ > c at an optimal
amount, and not V 0LðxÞ ¼ c as at xE

L . Hence the optimal bundle for
L should be to the left of AL on L’s zero-level indifference curve,
such as BL in Fig. 1. Consequently also the optimal price for H in-
creases when changing CH to BH; and so the informational rent de-
creases from DC to DB. The optimal bundles denoted by BH and BL,
satisfying Eqs. (8) and (9), are called the second-best solution. Note
that compared to the first-best solution H’s utility has been in-
creased. The amount is the same but he gets a price discount DB.
On the other hand, L’s utility remains at the zero-level although
he faces reduction xE
L � x�L in the amount of good as compared to

the first-best solution. In general, if pL is much smaller than 1/2,
L may not be served at all, and as pL increases x�L increases.

3. Discrete step adjustment scheme

Given that the buyers’ utility functions are known, it is easy to
solve the first-order conditions (8) and (9) numerically. The opti-
mal prices can then be calculated from (5) and (6). Nevertheless,
we now assume that the seller does not have prior knowledge
about the buyers’ utility functions VL and VH . Instead we assume
that the seller S is selling his product repeatedly to two myopic
buyers L and H by putting different bundles for sale at the same
time. Hence, meeting the buyers repeatedly and observing the real-
ized sales, he can plan a better pricing strategy for the next period.
Using such online process to adjust prices he can finally produce
the optimal bundles provided the process converges. In this section
we present a discrete step heuristic adjustment scheme for solving
the problem and discuss its good properties. In Section 4, we fur-
ther elaborate the scheme so that it requires less computational
effort.

3.1. Heuristic description of the method

Assume first that the weights of the buyers are equal; i.e.,
pH ¼ pL ¼ 1=2. The method can be considered to arise through
the following process, also illustrated in Fig. 2. An initial bundle
ðx1; t1Þ is sold to both buyers L and H in period 1. Without loss of
generality we assume that ðx1; t1Þ is on L’s zero-level indifference
curve, and x1 < x�L . We will return to the question of adjusting t1,
for given x1, to L’s zero-level curve, without having prior knowl-
edge of the curve, in the end of the section. The approximately
optimal bundles created by the method are denoted by ð�xL;�tLÞ
and ð�xH;�tHÞ. The method produces a sequence of bundles ðxk; tkÞ,
k P 1, on L’s zero-level indifference curve sold to both L and H in
period k until the bundle ð�xL;�tLÞ is sold. After that, in every itera-
tion, there are two bundles for sale: ð�xL;�tLÞ for L and a bundle with
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bigger amount and higher price ðxk; tkÞ for H. The iteration then
continues until ðxk; tkÞ reaches ð�xH;�tHÞ.

Let us now examine more carefully how the bundles ðxk; tkÞ are
created and, in particular, how the optimal bundles are discovered.
Suppose S has sold x1 at price t1 to L and H in period 1, and denote
b1 ¼ ðx1; t1Þ. Now, suppose S wants to increase his profit a little
without making the buyers to be worse off as when buying b1. There-
fore, he increases x1 by a small amount, say lower than or equal to
Dx, and thinks about a correct price. Intuitively, (for rigorous proof
see Lemma 1) to get a best profit it suffices to compare one of the
feasible bundles bS; bL; bH at x1 þ Dx to b1, shown in Fig. 3.

Note that all the bundles strictly above the S’s indifference line
through b1 strictly improve S’s profit, but the buyers could prefer
to b1 only those below their respective indifference curves through
b1. The bundles bS, bL and bH in Fig. 3 are preferred (equally or
strictly) to b1 either by H or L or both. These bundles are of the form
ðx1 þ Dx; t1 þ DtÞ and we want Dt to be the most profitable for S. If S
offered bS, both buyers would prefer bS to b1 but it will not increase
his profit. Suppose

DyH < 2DyL ð10Þ

as in the figure. Then along the line from bS to bH , the best profit in-
crease is obtained at point bL. This is because L and H both prefer bL
1
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Fig. 3. Increasing the amounts by Dx.
to b1 (actually L is indifferent to bL and b1 but we assume L takes bL)
and hence the profit increase to S is 2DyL. Buyer L strictly prefers b1

to bundles above bL, on the line from bL to bH , while H prefers these
bundles to b1. Above the L’s indifference curve through b1 and bL, S
will thus get the best profit increase DyH by selling bH to H (and b1 to
L), but according to inequality (10) this is less than 2DyL. Thus, sell-
ing bL to both buyers will benefit S the most, and this way ðx2; t2Þ is
created. To adjust bL to L’s zero-level curve, i.e., to find a correct
price t2 ¼ t1 þ DyL þ cDx for bL, see the end of this section.

In every period k, and as long as inequality (10) holds, S will cre-
ate the bundles ðxk; tkÞ, k P 2, in the same way by increasing the
amount by a fixed Dx and the price by Dt ¼ DyL þ cDx. Note that
although Dx remains fixed DyL and DyH vary in k. Define ð�xL;�tLÞ to
be the first bundle for which DyH P 2DyL. Hence, at this bundle,

DyH ¼ 2DyL; ð11Þ

approximately holds for Dx small.
What is the best way to make more profit at ð�xL;�tLÞ? Consider a

bundle ð�xL þ Dx;�tL þ DtÞ, where Dx is as earlier. Since, now
DyH > 2DyL, it is easy to conclude that selling bH to H and ð�xL;�tLÞ
to L benefits S the most. From that on, S makes even more profit
by letting the higher bundle ðxk; tkÞ move along H’s indifference
curve through ð�xL;�tLÞ until the slope of H’s indifference curve
equals that of his, i.e., is equal to c. After that S cannot make more
profit. The bundle in question is denoted by ð�xH;�tHÞ.

We now want to argue why the amounts of good �xL and �xH ob-
tained by the above heuristics are approximately optimal for Dx
small. First note that from the definition of �xH , it holds that
V 0Hð�xHÞ ffi c, for Dx small. This equation is approximately the opti-
mality condition, Eq. (8). From Fig. 3 we see that
DyH ffi V 0Hðx1ÞDx� cDx, and DyL ffi V 0Lðx1ÞDx� cDx, for Dx small.
Thus, since at �xL we have DyH ffi 2DyL, we get V 0Hð�xLÞ � V 0Lð�xLÞ ffi
V 0Lð�xLÞ � c for Dx small. When pL ¼ pH , this equation is approxi-
mately the optimality condition, Eq. (9). At xk, k P 1, we thus get
that f 0LðxkÞDx ffi 2DyL � DyH for Dx small. Thus, since fLðxÞ is strictly
decreasing, it follows that inequality (10) holds for xk < �xL, pro-
vided it holds for x1; Eq. (11) approximately holds at �xL, and
DyH > 2DyL holds for xk > �xL. Thus, ð�xL;�tLÞ to L and ð�xH;�tHÞ to H
are approximately optimal bundles for the problem.

With arbitrary weights pL and pH , Eq. (11) should be replaced by

pHDyH ¼ ðpL þ pHÞDyL ð12Þ

and a similar form for inequality (10). The weighting of S’s profit in-
creases should be consistent with the weighting of his total profit.

We now turn to the question of adjusting t1 for given x1 so that
ðx1; t1Þ is on L’s zero-level curve. Suppose this is done with limited
information on buyers’ preferences by giving price offers and
observing the realized sales. We call such process price testing,
and define it through a process, where the seller raises or lowers
the price of x1 using discrete steps (with a fixed step length, or with
a variable step length defined, e.g., by the bisection method) and
observes whether L takes it or not. Similarly, when testing the price
of bL on L’s zero-level curve, see Fig. 3, the seller may raise or lower
the price of x1 þ Dx and observe whether L takes it or prefers the
original bundle b1. If L takes the original bundle, the price for the
offered bundle is higher than that of bL. It should be noted that
in a practical implementation of the method when testing the price
of bL, S should put the two bundles b1 and bL for sale at the same
time. Otherwise, in the case L does not take bL, the losses for S could
be high. Price tests to locate H’s bundles on his indifference curve
through ð�xL;�tLÞ are made in the same fashion.

We finally make an important remark concerning checking on
the status of Eq. (11) in iteration k, without explicitly testing the
price of bH , see Fig. 3. Namely, after having tested the price of bun-
dle bL, and hence knowing DyL, S may offer xk þ Dx at the price
tkþ1 ¼ tk þ 2DyL þ cDx and with a single test observe whether H
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takes this bundle or takes b1, as L does. If H does not take this bun-
dle, then obviously 2DyL > DyH , i.e., (10) holds, and xk þ Dx is to the
left from �xL; while if H does take this bundle, then DyH P 2DyL and
xk þ Dx is to the right from �xL. To make use of this observation and
to avoid extensive price testing, we will make some simple modi-
fications to the method in Section 4.

3.2. Interpretation as a steepest ascent method

First observe that when solving Eq. (9) by using an online meth-
od such as the one presented in Section 3.1, with initial amounts of
good x1

L and x1
H not necessarily equal, it is necessary that at some

point during the iteration H chooses an amount that is close to
the amount chosen by L. This is because x�L appears in the argument
of V 0H in Eq. (9). In our method L and H take the same bundle until
ð�xL;�tLÞ is reached. Moreover, the testing of Eq. (9) is done through
the testing of Eq. (11).

Let us now discuss the optimal way to update the bundles. Sup-
pose that the initial amounts x1

L and x1
H , not necessarily equal, are

on the interval ½a; a0�, a0 > a, and the seller wishes to improve them;
yet the new bundles should be such that the amounts stay on the
interval ½a; a0�. Then the following lemma gives the optimal new
bundles depending on the location of ½a; a0 � with respect to the
optimal amounts x�L and x�H .

Lemma 1. Consider the seller’s optimization problem with the
additional constraint xL; xH 2 ½a; a0�. Then the optimal bundles
ðyL; tLÞ, ðyH; tHÞ are defined as follows:

(i) Let 0 6 a < a0 6 x�L. Then yL ¼ yH ¼ a0, tL ¼ tH, and is defined by
L’s zero-level curve.

(ii) Let 0 6 a < x�L < a0 6 x�H. Then yL ¼ x�L, tL ¼ t�L, yH ¼ a0, tH is
defined by H’s indifference curve through ðx�L; t�LÞ.

(iii) Let x�L 6 a 6 x�H < a0. Then yL ¼ a, tL is defined by L’s zero-level
curve, yH ¼ x�H, tH is defined by H’s indifference curve through
ða; tLÞ.
Proof. Let us first observe that by Assumption 1 we have
tL ¼ VLðyLÞ and tH ¼ tL þ VHðyHÞ � VHðyLÞ as we have for t�L and t�H .
In particular, note that tL is defined by L’s zero-level curve. Hence,
we can consider the optimization problem (7) with the additional
constraint xL; xH 2 ½a; a0�. Since pðxL; xH; tL; tHÞ ¼ fLðxLÞ þ fHðxHÞ, the
result follows by observing that fiðxiÞ is strictly increasing (decreas-
ing) on xi < x�i ðxi > x�i Þ, i ¼ L;H. h

As we can notice, the best way to improve the bundles is to
choose the new amounts, say x2

L ; x
2
H , as close as possible to x�i ,

i ¼ L;H, and set the new prices so that L gets zero utility while H
is made indifferent between choosing ðx2

L ; t
2
L Þ and ðx2

H; t
2
HÞ. In partic-

ular, the heuristic presented in the previous section behaves ex-
actly like this. Hence, it can be seen as a discrete step steepest
ascent method. Notice that when we begin from ðx1; t1Þ, x1 < x�L ,
on L’s zero-level curve and the step is bounded by Dx, we have ex-
actly the case (i) of Lemma 1. Consequently, the iteration proceeds
as in Fig. 2 until �xL is reached. After that the iteration proceeds as
can be predicted from case (ii) of Lemma 1. It should be noted that
we defined the algorithm without any technical assumptions or
complicated mathematics. Our only assumption was that the seller
gets the best profit increase, without making the buyers worse off,
when moving from xk to xkþ1.
4. Modified method

In this section we present a method that has two main steps at
every iteration: improving step or a-step, and test step or b-step. In
the first step the seller offers a linear price-amount tariff. The buy-
ers’ optimal choices on the tariff reveal the slopes of their surplus
functions Vi, i ¼ L;H. This idea has been previously presented in
[7,10] in the case of one buyer type. The second step checks at
every iteration the status of Eq. (12). Recall that when the approx-
imations DyH ffi ðV

0
HðxkÞ � cÞDx, and DyL ffi ðV

0
LðxkÞ � cÞDx are used

in (12) we get approximately the optimality condition (9).
Instead of offering discrete bundles of the form ðxk þ Dx; tk þ DtÞ

in period k, the seller now offers a linear tariff of the form
tðxÞ ¼ akxþ dk, starting from ðxk; tkÞ, and letting the buyers select
any bundle from it. This is a-step. The lowest of these bundles be-
comes ðxkþ1; tkþ1Þ provided that a test of Eq. (12), the b-step, shows
that we are to the left of �xL. Further profits can be created, starting
from ðxkþ1; tkþ1Þ, by decreasing the slope ak of the linear tariff a lit-
tle, say an amount ha.

Denote the buyers optimal choices on the tariff tðxÞ by x̂L and x̂H .
We should have xk < x̂L < x̂H . Note that myopic buyers choose
amounts that solve

max
x

Uiðx; tðxÞÞ; i ¼ L;H ð13Þ

paying prices tðx̂iÞ, i ¼ L;H. Due to strict concavity of Vi’s it holds
V 0iðx̂iÞ ¼ ak.

We denote

bk ¼ ak þ pL

pH
ðak � cÞ: ð14Þ

Optimality of L’s bundle can be tested using the linear tariff
starting from ðx̂L; tðx̂LÞÞ with the slope bk. Let the buyers now
choose amounts ŝi, i ¼ L;H, from the tariff. Suppose ŝH ¼ x̂L. This
means that the best bundle on the tariff for both buyers is
ðx̂L; tðx̂LÞÞ, and hence bk P V 0Hðx̂LÞ. Using (14) with ak ¼ V 0Lðx̂LÞ, this
inequality implies that f 0Lðx̂LÞ < 0, meaning that x̂L 6 x�L; c.f., the cor-
responding discussion in Section 3.1. If, on the other hand, ŝH > x̂L,
then f 0Lðx̂LÞ < 0, which implies x̂L > x�L.

We now present the phases of iteration k explicitly to show how
the parameters are updated.

Initial step. Choose the initial bundle ðx1; t1Þ; this need not be
on L’s zero-level curve. Choose a unit price a1, a fixed price d1,
and a lowering parameter ha.

a-step. At iteration k, S offers a linear tariff of the form

tðxÞ ¼ akxþ dk; x P xk ð15Þ

and observes the amounts x̂L and x̂H the buyers take from the tariff.
The corresponding prices are tðx̂iÞ, i ¼ L;H.

b-step. S tests the optimality of L’s bundle. He offers a linear
tariff

tðxÞ ¼ bkðx� x̂LÞ þ akx̂L þ dk; x P x̂L;

akx̂L þ dk; x 6 x̂L;

(
ð16Þ

where bk is as in (14). Let the buyers choose amounts ŝi, i ¼ L;H,
from the tariff.

If ŝH ¼ x̂L, then define xkþ1 ¼ x̂L, tkþ1 ¼ tðxkþ1Þ. To increase his
profit, S should decrease ak. Let

akþ1 ¼ ak � ha: ð17Þ

Also dk is updated so that the new tariff goes through ðxkþ1; tkþ1Þ.
Thus

dkþ1 ¼ dk þ xkþ1ha: ð18Þ

Then set k ¼ kþ 1 and go to a-step.
If ŝH > x̂L, then we set �xL ¼ x̂L, �tL ¼ tð�xLÞ as L’s bundle remaining

for the future iterations. If ha is small, ð�xL;�tLÞ will be close to the
optimal one, as will be shown in Section 4.1. We define xkþ1 ¼ ŝH ,
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tkþ1 ¼ tðxkþ1Þ. Let now akþ1 ¼ bk � ha, and dkþ1 ¼ dk þ xkþ1ha. Set
k ¼ kþ 1 and go to final step.

Final step. S offers a bundle ð�xL;�tLÞ and a linear tariff of the form

tðxÞ ¼ akxþ dk; x P xk ð19Þ

and observes the amounts x̂L, x̂H the buyers take from the tariff. L
will always choose x̂L ¼ �xL as long as ha is moderately small, while
H chooses so that V 0Hðx̂HÞ ¼ ak. Define xkþ1 ¼ x̂H and update akþ1,
dkþ1 as in (17) and (18). Repeat the final step until akþ1

6 c. Then de-
fine �xH ¼ xkþ1, �tH ¼ tð�xHÞ.

Depending on the size of the parameter ha the bundles discov-
ered by the method will deviate more and more in the course of the
iteration from the path along the indifference curves shown in
Fig. 4. Therefore, S makes suitable price tests at the created quan-
tities �xL and �xH . In the method, this is done by raising the price with
parameter hd until the current buyer rejects the offer. We finally
note that starting the iteration from two initial bundles ðx1; t1Þ
and ðx1; s1Þ that differ only with respect to price, the method pro-
duces sequences of bundles ðxk; tkÞ and ðxk; skÞ, where
sk � tk ¼ s1 � t1. This observation reflects the fact that the slopes
of the indifference curves do not depend on t.

4.1. Analysis of the method

The bundles ð�xi;�tiÞ, i ¼ L;H, produced by the method can be
made arbitrarily close to the optimal ones by choosing ha and hd

sufficiently small. Note also that when ha is small compared to
hd, then the error bounds of prices �tL and �tH are hd and 2hd, respec-
tively. Hence, the error of �tH is presumably larger than the error of
�tL as could be expected.

Proposition 1. Assume that x1 < x�L and �xL < x�H. The produced
bundles have the following bounds:

x�i 6 �xi < xU
i ;

t�L � hd < �tL < VLðxU
L Þ;

VLðxU
L Þ � hd þ VHðx�HÞ � VHðxU

L Þ � hd < �tH < t�L þ VHðxU
L Þ � VHðx�LÞ;

where xU
i is solved from V 0iðxU

i Þ ¼ a�i � ha, and a�i is defined by
a�i ¼ V 0iðx�i Þ, and i ¼ L;H. Assume that there are Mi, Mii > 0 such that
V 0iðxÞ 6 Mi and jV 00i ðxÞjP Mii for all x P 0, and i ¼ L;H. Then we can
approximate these bounds by

x�i 6 �xi < x�i þ ha=Mii;

t�L � hd < �tL < t�L þ haML=MLL;

t�H � 2hd � haMH=MLL < �tH < t�H þ haMH=MHH:
H Amount  xxL
x

t

x

tH

L

Pr
ic

e 
 t

x
x

x
x
x
x
x

x

x

x

x

x
x

x

x
x

Fig. 4. The discrete step modified method.
Proof. First note that the method produces quantities that are big-
ger than the optimal ones. In the worst case the final value of ai is
by ha lower than the optimal a�i ¼ V 0iðx�i Þ, i ¼ L;H. From this obser-
vation, we get the bounds for quantities, i.e., xU

i defined in the prop-
osition. The bounds for prices depend on the bounds for quantities.
At �xL, it holds that Við�xLÞ � hd < �tL 6 VLð�xLÞ, since the price is raised
by hd until L rejects the offer. We get the bounds for �tL by noticing
that VLðxÞ is increasing. Similarly, it holds that �tL þ VHð�xHÞ�
VHð�xLÞ � hd < �tH 6 �tL þ VHð�xHÞ � VHð�xLÞ. The bounds for �tH follow
from the fact that VHðxÞ is increasing, and that increasing �xL lowers
the price for �xH since V 0HðxÞ > V 0LðxÞ, 8x P 0.

Let us now examine the approximations. By the mean value
theorem we have V 0iðxU

i Þ ¼ V 0iðx�i Þ þ V 00i ðxiÞðxU
i � x�i Þ for some

xi 2 ½x�i ; xU
i �. Thus we obtain xU

i � x�i ¼ �ha=V 00i ðxiÞ, and the result
for quantities follows immediately from this relation and the
assumption jV 00i ðxÞjP Mii, i ¼ L;H.

We next study the approximations for the prices. We get the
upper bound for �tL by approximating �tL � t�L 6 VLðxU

L Þ � VLðx�LÞ.
Using the mean value theorem, we obtain VLðxU

L Þ � VLðx�LÞ ¼
V 0LðxÞðxU

L � x�LÞ 6 haML=MLL, where x 2 ½x�L; xU
L �. The result then

follows.
The bounds for �tH are computed in the following way. Recalling

that t�H ¼ t�L þ VHðx�HÞ � VHðx�LÞ, we can simplify the expression for
the lower bound

t�H � 2hd þ VHðx�LÞ � VHðxU
L Þ þ VLðxU

L Þ � VLðx�LÞ
6 t�H � 2hd þ VHðx�LÞ � VHðxU

L Þ < �tH:

Now, we use the mean value theorem, VHðx�LÞ � VHðxU
L Þ ¼

V 0HðxÞðx�L � xU
L ÞP �haMH=MLL, where x 2 ½x�L; xU

L �. The approximation
is not as good as the others since we left out the term
VLðxU

L Þ � VLðx�LÞ.
The upper bound of �tH is computed in the same way as for �tL

since the highest values are achieved with x�L . So fixing �xL ¼ x�L , we
get �tH � t�H 6 VHð�xHÞ � VHðx�HÞ. And we get the result by using once
again the mean value theorem. h
5. Numerical example

We demonstrate the modified method with two sets of param-
eters. The first set, denoted by A, illustrates a case where the initial
bundle lies on the L’s zero-level curve and the slope of the tariff is
decreased rather slowly. The second set, denoted by B, illustrates a
start from an initial bundle well below L’s zero-level curve and the
slope of the tariff is decreased three times faster. Consequently,
there will be a considerable rise of prices when the optimal quan-
tities are found.

The data for the example is: VLðxÞ ¼ 2
ffiffiffi
x5
p

, VHðxÞ ¼ 3
ffiffiffi
x4
p

, pL ¼ 0:7,
pH ¼ 0:3, cðxÞ ¼ 1:5x, d1 ¼ 0:7, a1

A ¼ 4, ha;A ¼ 0:15, hd;A ¼ 0, a1
B ¼ 6,

ha;B ¼ 0:4 and hd;B ¼ 0:06. The utility functions are arbitrary con-
cave functions, and 70% of the population is L type buyers.

The results are presented in Figs. 5 and 6. The optimal bundles
ðx�i ; t�i Þ, i ¼ L;H, are (0.12,1.32) and (0.40,1.92), which are depicted
as white asterisks in Fig. 5. We can also see that iterations corre-
sponding to set A, denoted by crosses, move almost along the
‘‘optimal” indifference curves until the quantities �xL; �xH are found.
Since the first bundle is near L’s zero-level curve, the prices will
be close to the optimal ones and no price test iterations are needed.
If the slope update parameter were bigger, it would take less iter-
ations but the price would be lower and price test iterations might
be needed. We can see from the latter figure that the profit gets
closer to the optimal one with an even pace.

Set B iterations, the dots, start farther away from ðx�L; t�LÞ than set
A iterations. Yet, because of the bigger slope update parameter �xL is
reached with fewer iterations. The price before the price test
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iterations is well below �tL. We can see the drawback of price testing
in the Fig. 6. In iteration 25 the price is so high that L buys nothing
at all; the result is the point at (25,0.36). The latter price testing is
not so dramatic in this sense, because H will take L’s bundle when
the price of H’s bundle is too high. We can also see from Fig. 6 that
the bigger slope update parameter results in faster profit increase.

6. Discussion

In this paper, we have considered monopoly pricing problem
with two different buyers in its simplest form, namely under the
single-crossing property. Basically this property means that the
buyers’ indifference curves starting from the same bundle do not
intersect each other. Hence, the optimal bundles for the problem
are increasing in buyer type, and the IR and IC inequality con-
straints become equality constraints simplifying the solution of
the problem considerably. With the single-crossing property in
mind we have then shown that the problem can be solved using
a simple heuristic online iteration scheme without explicitly refer-
ring to the optimality conditions. Our only hint has been that in
each period the seller seeks the best profit for himself, without
making the buyers to be worse off. These are guaranteed by putting
also the old bundle for sale when testing the price for the new one.
Recall that the main iteration of the method consists of increasing
the amount of good by a fixed Dx, and then adjusting the price to
be on optimal curves, e.g., using the bisection method. Note that
similar adjustment could also be done in the x-direction when
approaching the optimal amounts �xL and �xH .

We have shown (the result follows from Lemma 1) that our
method is a steepest ascent, or gradient search method, the itera-
tion path of which proceeds along the optimal indifference curves.
The method is robust in the sense that the bundles put for sale (as
well as the corresponding profits) remain close to each other in
subsequent periods, provided we start the method so that the ini-
tial bundles for L and H are close to each other.

We have then modified the method by making explicit use of
linear tariffs and optimality conditions (8) and (9). This method
proceeds in discrete steps along ‘‘nearly” optimal path, while pure
price adjustments are only done in the neighborhood of optimal
amounts.

Our online adjustment scheme is the first one presented in the
literature for Spence’s nonlinear pricing problem [21]. When pre-
senting our method we have also had in mind the solving of more
complicated nonlinear pricing problems with schemes that are
efficient with respect to data collection during computation. Bra-
den and Oren [6], and more recently Brooks et al. [5], discuss rather
lengthly, and address the important question of appropriate cus-
tomer preference revelation when planning and developing vari-
ous online learning and adjustment schemes. Using extensive
data collection to solve the problem at hand from the start can
be quite costly, and also lead to imprecise results, since the cus-
tomer preferences may vary considerably over time. Brooks et al.
[5] also discuss profit losses for a firm as a consequence of usually
time-consuming preference learning. They study online adjust-
ment of different price tariffs for a consumer agent society and
compare their efficiency and trade-off between complexity and
profitability.

The single-crossing property, Assumption 1, with the curvature
condition, Assumption 4, is quite a strong assumption. Note that
Assumption 4 implies also strict concavity of VL and VH . One ques-
tion we will study in the future is, if we can relax these assump-
tions and still get sensitive results. The answer is, hardly not. In a
forthcoming article [2] we will study a model with more than
two consumer classes, and it seems that even with the single-
crossing property there may arise new phenomena making the
numerical characterization of the solution quite a challenging task.
One such property is known as bunching, which means that differ-
ent types of consumers get the same bundle in the optimum. Such
properties are apt to make the practical implementation of any
solution method rather challenging as well. The complexity of
the problem solution increases further if we allow several goods
to be allocated in addition to several types of consumer classes.
In Berg and Ehtamo [3] we derive some preliminary results for this
problem using graph theory.

Nevertheless, in its general form, i.e., with more than one quan-
tity or quality, with more than two consumer classes, and without
the single-crossing property, the nonlinear pricing problem is a
complex optimization problem. Indeed, it is a multi-dimensional
bilevel optimization problem (i.e., where the constraints include
optimization problems) with large number of local optima. It
seems that similar adjustment schemes as we have studied here,
gradient search methods and even tabu search for certain combi-
natorial parts of the problem, might perform well also for these
more general problems, at least near local optima. They could be
used to produce moderate profit increase for a firm during its sales
promotion. This paper gives valuable hints and serves a basis for
further research in the area.
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