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Abstract
Micromechanical devices have been fabricated out of silicon for decades,
but only recently even smaller structures - nanodevices have become experimentally
possible. Traditionally silicon devices are fabricated using separate lithography
and various etching methods.

This thesis work concentrates on developing fabrication techniques for silicon micro
and nanostructures. The goal was to achieve nanometer-scale feature size and
simultaneously significantly speed up the most time consuming phases. For testing
purposes also functional devices were designed and fabricated.

Main discoveries are related to the use of ion beam writing in a nonstandard manner.
Instead of direct milling, methods were developed to directly use the beam to replace
time consuming lithography step by the substrate treatment by ions. As a result, several
silicon-based fabrication techniques were developed that require only a few processing
steps and therefore can be realized in less than one day. The main achievement is in
overcoming some of the limitations of serial writing methods such as those required in
electron beam lithography or focused ion beam processing. High aspect ratio (laterally
small, but tall) structures were successfully obtained using both technologies for the
pattern transfer.

Fabrication techniques, described in this thesis, open up an opportunity for the
developers to almost instantly test their ideas using functional components by altering
the way nanosystems are developed. The presented methods cannot easily be extended
to mass production but are appropriate in basic research and prototyping.
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Tekijä
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Tiivistelmä
Piistä valmistettuja mikrorakenteita on pystytty valmistamaan jo vuosikymmeniä,
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komponentteja.
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ISBN (painettu) 978-952-60-3592-5 ISBN (pdf) 978-952-60-3593-2
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1 Introduction

Micromachining of silicon relies heavily on existing microelectronics fabrication tech-
nologies. There is a huge delay between the time when new technology is applied
to the integrated circuit production lines and when it becomes available for the mi-
cromachining purposes. At the end of 2010 there are ICs in production with the
half-pitch of only 22 nm and at the same time fabrication of the mechanical silicon
components is restricted in resolution to 2 �m – 3 �m. The reason for such a gap
is in highly different requirements for the IC and micromechanical processes. When
in electronics the patterned surface can be assumed to be planar and the vertical
dimensions of resolution-critical layers are in tens of nanometers, mechanical struc-
tures require that fabrication steps could create the height differences of several
microns.

Many methods have been proposed to enhance the available resolution, but there are
two main approaches: top-down and bottom-up. Bottom-up techniques are based
on simple blocks which self-organize in complex structures. They can cover huge
areas and can produce shapes as small as few nm, but their weakness is a tendency
to produce random defects, which is not tolerable in many cases.

The top-down approach is represented by various lithography techniques, where the
pattern is designed as a whole first and then transferred to the structures. This
method works well when the predetermined arbitrary shapes are required but it has
strict limitations on the minimum resolution as well as issues in combining high
(nm) resolution writing with large (mm) writing area.

Unlike in IC industry, where the fabrication processes are fixed and documented to
a point, where the whole electronic circuit can be simulated with great accuracy
already at the design stage, for most MEMS/NEMS(micro/nano-electromechanical
systems) the required fabrication process must be tailored every time without meet-
ing the possibility to use any standard clean room process on external foundry.

When using standard photolithography masks, even mass production becomes pos-
sible but designing and creating a physical mask is time consuming. One solution
is to replace photolithography with serial writing methods. There are several such
methods available, but only two of them can reach the nanoscale resolutions, namely
electron beam lithography (EBL) and focused ion beam (FIB). By using one of these
methods, a design is transferred to the machine electronically and written/processed
directly on the component. The downsides are quite a slow speed and small writing
area, so processing of structures with side length > 1 mm becomes difficult. EBL
resists are also usually quite thin and can not provide enough masking in prolonged
etches. FIB milling time depends on the volume of material removed, rather than
the area, so processing time is cubically scaled to a feature size.
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The objectives of this thesis is to develop fabrication techniques, which are capable
to produce silicon structures, or even complete microsystems with precision better
than 100 nm without the need for using a physical mask. The developed processes
are used in fabrication of functional components, such as radio frequency micro-
electro-mechanical systems and thermal actuators. The great benefit and interesting
practical result is that the developed processes can be realized in a few hours starting
from the design.

In this work, in transferring the original design only maskless patterning techniques
(EBL and FIB) were employed to avoid relatively slow process of producing pho-
tolithographic masks. Patterned components were fabricated using cryogenic deep
reactive ion etching technique (DRIE) or by wet etching in tetramethylammonium
hydroxide (TMAH). Both of the methods etch silicon at a rate of > 0.5 �m/min,
which is more than sufficient for the purpose of producing nano-sized structures.

This thesis focuses on the fabrication techniques, their development and characteri-
zation, rather than on final applications. As a result of the work, several micro and
nanofabrication techniques which can produce functional micro- and nanosystems
were developed.

Seven publications are included in this thesis: In publication I a silicon microma-
chined resonator vibrating in non-tilting out-of-plane mode is designed and charac-
terized. In publication II a novel approach on prototyping radio frequency (RF)
MEMS using EBL, DRIE and atomic layer deposition (ALD) is demonstrated.
Publication III shows a novel masking method for cryogenic DRIE which utilizes
a thin Ga+ doped layer created by FIB. Publication VI extends this method to
TMAH wet etching. Publications IV and V describe the use of a combined FIB and
DRIE technique for creating thin free-standing structures, nanowires and released
microsystems. Finally the publication VII describes the environment modification
for mesoscopic conductors such as tunnel junctions.
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2 Common fabrication techniques

Micro- and nanomachining is way too delicate to use mechanical tools such as drill
bits or milling cutters, so other means such as ion milling or chemical etching are
employed. The workpiece, which is usually a polished wafer or a plate, is first
protected by a patterned layer, and then its whole surface is processed so all the
unprotected areas are machined away.

The protective layer is usually a light sensitive polymer photoresist, which can be
exposed with a desired pattern and developed. In this process called photolithogra-
phy the resists solubility in developer changes depending on if it has been lit or not.
By the means of photolithography photoresist can be patterned with an accuracy
much better than 1 �m.

Sometimes the protective capabilities of polymers are not sufficient for longer and
deeper etches, or polymer masks can not be used. In those cases a thin layer of
material which is resistant to etchants is deposited before patterning and etching
is performed in two steps, first the thin masking layer is patterned forming a hard
mask and then the actual processing is done using that mask.

This chapter reviews fabrication steps mentioned above, namely patterning, masking
and etching for fabricating various nano and microsystems.

2.1 Patterning

Creating mechanical devices with the smallest feature size below 1 �m requires the
use of advanced patterning techniques. A traditional solution is photolithography,
but it has its limitations, such as the Rayleigh resolution limit at the wavelength of
the light used for the projection (currently λ = 193 nm). There are also extremely
strict requirements on flatness of the patterned surface, as the depth of focus of
the projection system is in the same range as the wavelength of the light used [1].
Nanoimprint lithography can tolerate the surface undulations [2], and can achieve
very high resolution [3], but being a strictly mass-production method it can not be
easily employed when only a few components are needed. One common aspect of
both methods is a need for an original photolithographic mask or a stamp master.
Production of such a mask is a slow process which requires its own, usually external
fabrication facility.

There are several approaches, which can allow maskless lithography, such as the in-
terference image patterning or self-assembly based schemes. While having the pos-
sibility to choose the resulting pattern from a wide variety of predetermined shapes,
those methods can not always provide arbitrary shape or inter-layer alignment. [4]
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In this work the focus is on serial writing techniques, in which the pattern is writ-
ten with a single beam forming one pixel at a time. There are optical tools which
rely on scanning laser beams or optical reduction of shapes formed by blades. Such
tools suffer from the same resolution restrictions as the conventional photolithog-
raphy tools. The techniques which reach the true nanoscale resolution are electron
beam lithography (EBL), focused ion beam (FIB) lithography, and scanning probe
lithography as none of them uses light for writing. While EBL is widely used for
photolithographic mask fabrication, the use of FIB is rather new since the appropri-
ate technology has been developed quite recently [5]. Scanning probe lithography
despite is still an experimental technique as the resulting throughput is extremely
low even when compared with other serial writing tools [6]. The slow writing speed
and a small writable area of EBL and FIB do not allow to use them directly in
production, but in this work it is shown that when only prototyping is concerned,
those restrictions do not constitute a serious problem.

2.1.1 Electron Beam Lithography

Electron beam lithography is one of the most commonly used techniques when the
resolution beyond the optical limits is required [7]. The method is based on the
electron beam instead of light rays for producing images or exposing the sample.
The operating principle of scanning electron microscope (SEM) is in shining the area
of interest on a sample with a narrow electron beam and consequently detecting the
emitted electrons, forming an image pixel-by-pixel.

The minimum electron beam diameter which directly affects the resolution of the
SEM is limited by the size of electron source, aberrations in optics and diffraction.
The wavelength of the electron accelerated with a typical energy in the range be-
tween 5 keV and 100 keV is from 17 pm down to 3.7 pm, but even then the classical
diffraction effects may occur when very high resolution systems are considered [5].
At the end of 2010, the resolution of high-end commercial SEM is generally better
than 1 nm and can in some special cases be as high as 0.4 nm [8].

Usually the application of EBL requires polymer resist to be used [5]. In the positive
resists, the electron exposure breaks the polymer chains, making them soluble in a
developer and in the case of the negative resist, cross linking occurs upon exposure,
rendering the exposed parts non-soluble. There is a vast variety of possible resists
starting from a fairly common PMMA or ZEP to exotic non-polymer resists. Resists
play also an important role in reaching the resolution that is below 10 nm.

An electron microscope can be converted to an EBL machine by adding an external
pattern generator which takes control of the beam deflection and blanking as well as
of the stage movement. In this way, the electron beam can be used to write patterns
defined by an electronic design (Figure 2.1).
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Computer

Pattern

Generator

XY-deflection

Beam blanker

Stage

Controller Y
X

Z

XYZ - stage position

Electron

 column

Sample

E-beam-resist

Figure 2.1: EBL block diagram. The design is created electronically and transfered
by the control computer to a pattern generator, which controls the XY-deflection of
the beam in column and the beam blanker (if available). There is also a possibility
to control the mechanical stage to make several exposures on a sample. The final
pattern is formed by the electron beam on a photoresist.

While with EBL one can achieve very high resolution, there are also various technical
challenges. The field of view of a SEM, or a dedicated EBL machine is usually at
the order of 1 mm, so larger patterns have to be split into smaller blocks, which
are written separately to several different positions. This arises stitching issues at
the boundaries of the writefields, as no mechanical stage is perfect and even the
interferometric stages in which systems position is determined in a closed loop,
cause some error in positioning. EBL brings along low throughput, which limits its
industrial use to photolithography mask fabrication.
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2.1.2 Focused Ion Beam processing

The operating principle of the focused ion beam (FIB) resembles that of the scanning
electron microscope. The natural difference is that instead of exposing the surface
of the sample with electron beam, an ion beam is applied. The most common ion
source for FIB is a liquid metal ion source (LMIS) of which gallium ion source is the
most widespread one [9]. Because ions are much heavier than electrons (mGa = 10−28

kg, wavelength at typical acceleration voltages is in the range λ = 0.5− 2 pm), they
induce sputtering which enables direct modification of samples (Figure 2.2).

(a) (b)Ion beam

Sputtered

atoms

Substrate

Figure 2.2: FIB sputtering. (a) schematic representation, (b) a hole milled in
silicon as a result of a few second exposure with 9.3 nA 30 kEv Ga+ beam indicating
the order of magnitude of the beam diameter.

The smallest achievable beam diameter depends on the beam current and the ac-
celeration voltage. The resolution of ion beam is limited by similar factors as in a
case of an electron beam. In milling applications, the higher acceleration voltage
corresponds to higher accuracy and sputtering efficiency, so usually the maximum
available acceleration voltage is appropriate. When the damage to the sample sur-
face is an issue, as is the case in the sample preparation for transmission electron
microscopy (TEM), lower acceleration voltages can be used to minimize the amor-
fization of the milled structure.

Beam current governs directly the beam diameter, so the smallest current can pro-
duce the finest spot. Figure 2.3 shows such a dependence for FEI Helios NanoLab
600 machine using 30 kV acceleration voltage. The spot diameter refers here to a
full width at half maximum (FWHM) value of the beam that is assumed to have a
Gaussian profile. The sputtering rate is directly proportional to the beam current,
so there is a trade-off between the accuracy and milling speed.

In order for the sputtering effect to appear, a certain amount of ions have to be
delivered to the sample surface. This amount can be determined by a simple formula:
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Figure 2.3: Ion beam diameter as a function of the beam current for Helios Nanolab
600 machine as specified by manufacturer. The real diameter is somewhat bigger
than indicated here due to non ideal focusing.

Dose =
i× t

A× q
, (2.1)

where i is the beam current on a sample, t is the irradiation time, A is the irradiated
area and q is the charge of a single ion. For Ga+ ions q is the same as the electron
charge e = 1.6× 10−19 C.

To achieve deep 3D structures requires ion doses around 1018 cm−2, which is usually
not feasible, as it involves a current or an exposure time to be disproportionally high.
To address this issue, FIB assisted etching techniques have been developed. In case
of silicon the use of Cl2, Br2 or I2 can amplify the sputtering yield and speed-up the
processing by a factor of 8 at best [10]. Figure 2.4 shows a pillar structure fabricated
using FIB assisted etching. It took about 2 hours to remove less than 15 �m3 of
silicon with a beam current of 10 pA.

Even in the case of FIB enhanced etching, the processing time is usually too long for
creating structures directly from silicon wafer, so FIB is mainly used for amending
pre-fabricated structures and microanalysis. Figure 2.5 shows the result of narrowing
a predefined silicon bridge by an FIB. The width of a 4 �m thick bridge was decreased
from 7.5 �m to 5 �m over a distance of 100 �m. 1000 �m3 of silicon were removed
in 25 minutes with a high-current beam of 19 nA and then the wall quality was
improved by polishing with a current of 7.9 nA for 10 minutes.
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Figure 2.4: Silicon pillar array fabricated using FIB assisted etching. The process-
ing time was 106 min. (Picture courtesy of Antti Peltonen, Aalto University.)

Figure 2.5: Modification of the pre-fabricated free-standing silicon bridges.
(a) overview on a narrowed bridge, (b) close-up showing the resulting wall qual-
ity.

One way to bring FIB closer to the speed performance of EBL is to utilize its
property of doping the substrate with the ion beam material. In case of a silicon
substrate and gallium ion bombardment, the distribution of ions is shown in Fig-
ure 2.6. The distributions were calculating using the SRIM simulation software [11].
Figure 2.6(a) shows the schematic representation of simultaneous milling and dop-
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ing. Figures 2.6(b) and 2.6(c) illustrate the depth distribution of 30 keV gallium
ions in silicon substrate as well as the lateral distribution. The penetration depth
(range) of the Ga+ ions in silicon is 28 nm with a standard deviation of 10 nm. The
lateral distribution is between 4 and 10 nm depending on the implantation depth
so, in theory, structures down to 20 nm in size can be written. In practice, the ion
beam is not perfectly focused to a single spot and it’s diameter limits the maximum
achievable resolution in most cases to around 50 nm.
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Figure 2.6: Gallium doping of silicon during FIB processing. (a) schematic repre-
sentation of the doping profile. (b) Gallium ion depth distribution in silicon with
the ion energy of E = 30 keV. (c) lateral distribution of gallium ions.

Doped regions of the sample exhibit different etching properties from the untreated
ones, making it possible to utilize separate etching steps for actual removing of the
material, minimizing the ion dose required. 2D patterning requires doses of 1012

– 1015 cm−2 for modification of a few nanometer thick surface layers [12], while
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sputtering becomes evident at the doses above 1016 cm−2.

Highly doped (> 1019 ions cm−3) silicon has for a long time been known to have
a good resistance against certain wet etchants [13, 14]. The process of forming an
etch-stop layer by introducing p-type dopants is routinely used in microfabrication
[4]. Ga+ ions implanted by FIB also are known to modify the etching properties of
silicon [15] and many groups have utilized this property for micro- and nanostructure
fabrication [16, 17, 18, 19], however all those works employ potassium hydroxide
(KOH) for silicon etching. The Ga+ doped silicon areas are also shown to dissolve
to hydrofluoric acid (HF), enabling fabrication of concave structures [20].

The CMOS process compatible TMAH etchant was utilized together with Ga+ FIB
local doping for the first time in Publication VI of this thesis.

It has been shown [15] that Ga+ doped silicon is also resistant towards dry etching
in SF6/O2 plasma. Some work has been done towards developing this method as
one possible micro- and nanostructure fabrication technique [21]. In publication III
an exceptional resistance of gallium treated silicon in cryogenic DRIE (FIB/DRIE
process) was demonstrated for the first time. This work was followed by similar
results by another group [22], [23].

2.2 Masking

When the polymer resist layer durability is not sufficient to withstand prolonged
etching, an extra layer between the substrate and resist is deposited. That thin
layer is then patterned and serves as a hard mask as shown in Figure 2.7.

The requirements for the hard mask material are good selectivity in the main etching
process and the ability to be etched through the photoresist mask. One of the most
popular mask materials is silicon dioxide (SiO2), which can be thermally grown on
silicon, or deposited by chemical vapor deposition methods (CVD). The strength
of the thermal oxide is its superior quality, but growing such an oxide requires the
sample to be heated to approximately 1000 ◦C, which is not commonly applicable.

The CVDmethods, especially PECVD (plasma enhanced chemical vapor deposition)
provide a quick way to deposit mask films at moderate temperatures below 300 ◦C.
The downside of PECVD is usually a poor quality of the end product, as pinholes
can appear and the etch resistance towards wet etchants can be significantly weaker
than in the case of using thermal oxide. Usually thermal annealing improves the
film quality [24, 25], but the annealing is performed at temperatures comparable
with the ones used in direct thermal oxidation.

Metallic films, such as those made out of aluminum, have extremely good selectivity
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(a)

Photoresist Hard mask Silicon

(b) (c)

(d) (e) (f)

Figure 2.7: Etching process without (a-c) and with (d-f) a hard mask. (a) exposure,
(b) development, (c) deep etching and resist failure leading to insufficient trench
depth. (d) exposure of the resist above the hard mask, (e) patterning of the hard
mask, (some resist is consumed) (f) deep etching through the hard mask. Because
of a good etch resistance the hard mask is intact.

towards silicon in RIE applications, are quick to deposit using sputtering and in most
cases easy to pattern with wet etchants. However, metallic masks are not suitable
for the wet etching of silicon, as they tend to dissolve in silicon etching solutions
or are extremely difficult to remove after the etching. Also using wet etching to
pattern metallic layers sets restrictions on the smallest feature size, as the etching
is isotropic.

Ceramic masking layers grown by atomic layer deposition (ALD) are able to combine
the good qualities of metallic and non-metallic hard masks. ALD deposition of
alumina Al2O3 can be performed at temperatures below 100 ◦C, and the resulting
film is conformal and pin-hole free. Alumina is also found to have exceptionally
high selectivity to silicon when cryogenic DRIE is concerned [26] so that even 4 nm
thick layer is sufficient for most etching purposes. Depending on the resist material,
patterning of the Al2O3 mask can be performed by using wet or dry etching.
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2.3 Etching

Generally there are two ways to etch material, which are the wet etching where liq-
uid chemicals are used and the dry etching [4]. The strengths of the wet etching are
its low cost and straightforward batch processing. Wet etching works isotropically
in amorphous or polycrystalline materials, which can limit its use in some cases,
but in the case of crystalline silicon such wet etchants exist that result in consider-
able selectivity between crystal planes, making it possible to create various sidewall
profiles by selecting the orientation of the substrate.

2.3.1 Wet Etching

As hard mask materials are almost always amorphous or polycrystalline, care must
be taken in the use of wet etchants not to let the undercut of the mask over-widen
the patterns (Figure 2.8).

Photoresist

Hard mask

Silicon

h

h

Figure 2.8: Effect of isotropic etching on the patterning accuracy. In this case the
mask undercut is at least equal to the etched height.

For crystalline silicon, such wet etchants exist [27] that exhibit crystal plane se-
lectivity. By choosing single crystal silicon substrates with proper orientation,
anisotropic wet etching can be used to produce sloped or vertical wall profiles, as
well as providing means for simple fabrication of suspended structures (Figure 2.9).
Two common silicon wet etchans are potassium hydroxide (KOH) and tetramethyl
ammonium hydroxide ((CH3)4NOH, TMAH) which are both used in aqueous solu-
tion. Both these etchants are well-characterized and widely used in micromachining
[14, 27, 28, 29, 30, 31]. One important advantage of TMAH against KOH is the
absence of metallic ions, making it compatible with CMOS processes, which allows
its use within microelectronics fabrication facilities.
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Hard mask Silicon

(100) )011()001(

(a) (b) (c)

Figure 2.9: Crystallographic etching. The upper images show the orientation of the
grooves on the wafer, the lower ones indicate the resulting etch profile. (a) sloped
walls on (100) wafer, (b) etching with undercut on (100) wafer for the released
structures, (c) vertical profile on (110) wafer.

If deep and narrow channels are produced using wet etching, care must be taken
during drying of the sample, since the capillary effect (stiction) could easily cause
collapsing of the structures. The problem is particularly serious in the case of
released structures. [4]

2.3.2 Dry etching

In dry etching no liquids are present in the process as it is performed in a gaseous
state. Usually the plasma is ignited in the reaction chamber to maintain the proper
condition for etching, but the results can also be achieved without plasma [32].
The chemical process together with ion bombardment makes it possible to etch
anisotropic wall profiles in amorphous or polycrystalline materials [4].

For silicon several dry etching methods and chemical processes exist, from simple
argon sputtering in a capacitively coupled plasma [33, 34] to ultra-high speed multi-
generator pulsed mode techniques [35]. This work concentrates on cryogenic DRIE
out of possible dry etching processes.

The cryogenic DRIE etcher used in this work (Oxford Instruments Plasmalab 100)
consists of two separate power sources that both operate at 13.56 MHz. Inductively
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Gases Temperature Wall profile
SF6/O2 -120 ◦C Vertical
SF6 -120 ◦C Crystallographic
SF6 -80 ◦C Isotropic

Table 2.1: Cryogenic DRIE etching modes.

coupled source (ICP) creates the high density plasma at typical power values in
the range 600 W > ICPP > 2000 W. This plasma is then driven to the sample
with a separate capacitively coupled generator with much less power in the range
2 W > CCPP > 10 W. A gas mixture of SF6 and O2 is used in proportion of 15 %
to 17 % of oxygen. The substrate is kept at the temperature of -120 ◦C or -80 ◦C
depending on the desired side wall profile. During the process silicon is etched by
reactive ions from the high density plasma. The protective polymer layer forming
occurs simultaneously, when the temperature of the substrate is less than c.a. -
100 ◦C. Due to the ion bombardment induced by CCP, the polymer is etched away
from horizontal surfaces while still protecting the vertical ones. [36, 37] A typical
etch rate is c.a. 2 �m.

The resulting wall profile can be tailored by adjusting the gas mix ratio or changing
the substrate temperature (Table 2.1). Often the most challenging thing is to create
vertical walls, which is the reason why the mixture of SF6 and O2 ratio is of the
highest importance, as it governs the polymer grow rate. If in this mixture the
oxygen concentration is too low, the profile will become isotropic or crystallographic,
as the vertical walls are not protected. If there is excessive oxygen, micromasking
occurs and the etch rate falls rapidly [38].

The simplest case is the isotropic etching. As no passivation is required, pure SF6

plasma is sufficient to produce required profile. For etching no cryogenic temper-
atures are needed, but in some cases they are desirable from the mask durability
point of view.

Notching

Notching phenomena occur at the interface between silicon substrate and dielec-
tric during plasma etching and is generally an unwanted underetching effect. This
effect is usually observed while etching through the device layer of a SOI wafer.
Non-conductive buried oxide becomes positively charged, and an electrical field is
formed between the sidewalls and the bottom of the trench [39]. The incoming ions
are deflected sideways from the charges in the bottom but etching still continues.
Notching effect is highly dependent on the height to width ratio of the etched struc-
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tures. Generally ratios h/w < 1 do not lead to noticeable notching [40] but the
effect is significant when the aspect ratio grows (Figure 2.10).

w1
w2 w3 w4 w5

h

Figure 2.10: The dependence of the notching effect on the h/w aspect ratio. Struc-
ture height h = 4 �m, gap width is varied from left to right w1 = 5 �m, w2 = 2 �m,
w3 = 1.7 �m, w4 = 1.5 �m, w5 = 1.2 �m.
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Figure 2.11: RIE lag illustration, the depth of the etched trenches is nonlinearly
dependent on the width of the mask opening.
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RIE lag

RIE lag refers to the effect where dry etching speed is decreased when high aspect-
ratio structures are machined due to poor exchange of chemicals and radicals on the
bottom of the etched structures. As a result, the depth of the trenches varies with
their width when a series of gaps are produced on a single sample with the same
etching time for all the structures. Figure 2.11 illustrates this negative effect.
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3 Developed nanofabrication techniques

This chapter presents the main results achieved in this thesis concerning nanofabri-
cation methods. Most results are novel and not published before this work.

3.1 Nanofabrication techniques

The main achievement of this study is the development and characterization of
nanofabrication techniques which combine focused ion beam technology with various
etching methods. Those combinations benefit both from the accuracy FIB provides
and in the speed and the wall profile control the etching methods.

3.1.1 Patterning and etching of nanostructures

In Publications III and VI gallium doping was found to be able to modify the etch-
ing properties of single crystal silicon surface, making it extremely durable against
cryogenic DRIE and TMAH. To characterize the promising masking method, two
sets of different experiments were performed. The first approach was designed to
determine the gallium dose requirement for various etching times and depths and
the second one concentrated on finding the maximum achievable resolution.

Ga+ doping dose for masking in cryogenic DRIE

The ion dose required for masking in cryogenic DRIE was measured by implanting
a series of large patches (300 × 300 �m2) using FEI Helios Nanolab 600 machine,
which is capable of producing ion currents up to 21 nA. Large patches were selected,
as they can easily be measured with a profilometer. The dose in the center of the
patch does not depend on the beam shape as the beam diameter d is more than
1000 times smaller than the size of the patch.

Two sets of etching experiments were performed, one bearing in mind the micro-
fabrication concentrating on smaller features (Figure 3.1(a)) and the second one for
testing the limits of the masking capability (Figure 3.1(b)). The curves show the
height of the resulting structures after etching. In those curves, the dose range from
5× 1014 to 1017 ions cm−2 is covered with corresponding etching times from 1 to 40
minutes. The selectivity between the doped and undoped silicon can be estimated
by assuming the thickness of the doped layer to be ca. 50 nm, and thus is over 1500:1.
The threshold value for forming the masking layer is about 2× 1016 ions cm−2.
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Figure 3.1: Obtained step height versus gallium dose for cryogenic ICP etching.
Flattening of the curve corresponds to the etch-resistant mask. (a) fabrication of
small structures, (b) fabrication of large structures. Different curves in the graphs
represent the etching times.

The sloped edge of the curve on Figure 3.1(a) indicates that there is a region, where
the gallium dose governs the resulting structure height enabling the fabrication of
three dimensional structures. This assumption was tested by creating and etching
a variable doping dose area. The results are shown in Figure 3.2. The shape of
the obtained structure roughly followed the doping profile with some erosion on low
doses and saturation at high doses.

Ga+ doping dose for masking in TMAH

In publication VI the FIB induced gallium masking was characterized for wet TMAH
etching. The method and the main results are similar to the ones obtained with
cryogenic DRIE etching, except that required dose is about an order of magnitude
lower when TMAH is considered, setting the threshold to 2× 1015 ions cm−2 (Fig-
ure 3.3). Selectivity of the mask is 2000:1, which enables structures of 100 �m hight.
The mask layer is assumed to be 50 nm in this case.

Maximum achievable resolution

After the proper masking dose was found, it became possible to move on to the
resolution tests, where the minimum line width is determined. The approaches for
TMAH and DRIE etching methods were slightly different, as DRIE enables fabri-
cation of arbitrary patterns, but TMAH etching is limited by the crystallographic
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Figure 3.2: 3D structuring. (a) Ga+ doping dose and the height of the resulting
structure: dose steps and the corresponding structure profile measured by an atomic
force microscope (AFM) after 1 min etch with cryogenic DRIE. (b) micrography of
the resulting pyramid.
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Figure 3.3: Obtained step height versus gallium dose for TMAH wet etching.
Flattening of the curve corresponds to the etch-resistant mask.

nature.

For both methods the line pitch tests were performed and the results are shown in
Figure 3.4. Each method was used to produce gratings with 20 lines �m−1, however,
in DRIE experiments, the doped lines became approximately 5 nm wider compared
to the intended mask width, but in the case of TMAH etching, the lines became
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narrower than projected by an amount of 10 nm.

(a) (b)

Figure 3.4: Line pitch tests (a) Cryogenic DRIE etching (minimum masked line
54 nm, pitch 100 nm), (b) TMAH etching (minimum masked line 40 nm, pitch
100 nm).

To find the ultimate limits for resolution, stand-alone structures were fabricated
with both methods (Figure 3.5). It was possible to produce pillars with the FIB
and DRIE processes, and the ones which are 40 nm in diameter and 600 nm high
were obtained (Figure 3.5(a)). By the FIB and TMAH process, the fabrication
of the pillars is not possible due to the limitations of the crystallographic etching.
However, etching trenches with narrow, vertical walls between them is realizable.
The width of the final structure was measured by taking a cross-section of such a
structure (Figure 3.5(b)). The result was a 15 nm thick and 570 nm high vertical
wall. Both of the structures have a visible doped masking layer on top of them. In
case of TMAH etching, a triangular shape of the mask corresponds to the ion (and
doping level) distribution inside silicon after the local implantation.

The masking is not limited to isolated structures, but can produce arbitrary shapes
within the restrictions of the etching method in use. The repeatability of the masking
is excellent; Figure 3.6 shows a matrix of 1296 identically masked pillars. The shape
of the mask on top of each pillar is not perfectly round due to a slight misalignment
of the ion beam, but all the masks have exactly the same shape. Pillars themselves
are not etched completely evenly, as the outer rows, and especially the corner pillars
have boundary conditions which differ from the boundary conditions for the pillars
inside the matrix, which affects the DRIE process.
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(a) (b)Masking layer Masking layer

Figure 3.5: Single feature minimum size (a) For FIB and cryogenic DRIE process,
pillar diameter is d = 40 nm (h = 600 nm), (b) for FIB and TMAH process vertical
wall can be made s = 15 nm thick (h = 570 nm).

(a) (b)

Figure 3.6: Masking repeatability test, a matrix of 36 × 36 dots was irradiated and
pillars were etched in cryogenic DRIE, resulting in over 1000 identical structures.
The diameter of the pillars is 350 nm and the height is 4 �m.

Alignment of doping regions

There are two different methods that can be used with SEM/FIB dual-beam machine
to enable accurate alignment of the structures without alignment marks on the
substrate. If the sample is flat, not tilted and conductive enough to neglect the
charging effects, micron accuracy in positioning of exposure can be achieved by
aligning electron and ion microscopes at the same spot on the sample. In this way
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Writefield side [�m] Current [pA] No mask [sec] Full mask [min]
500 22000 9.09 3.0
192 6500 4.55 1.5
125 2800 4.46 1.5
83 920 6.04 2.0
63 280 11.16 3.7
50 93 21.51 7.2
36 48 21.26 7.1
25 9.7 51.55 17.2
13 1.5 83.33 27.8

Table 3.1: Exposure times for masking (maximum ion contamination level with no
mask formation: 5× 1014 ions cm−2, full mask level: 1016 ions cm−2

navigating by the electron beam and exposing by the ion beam becomes possible.
This method does not contaminate the processed area of the sample with ions and
is suitable when delicate structures such as nanotubes or graphene must retain their
properties during the exposure.

A much more accurate method is to use FIB for the alignment, as the ion microscope
image shows exactly where the sample is going to be exposed and no misalignment
between the electron and ion beams can take place. This method allows also tilted
samples and even samples with pre-made height differences, so that pre-fabricated
structures can easily be patterned. The limitation of the direct alignment with
FIB is due to ion contamination, because the same ion beam is used for alignment
and exposure. The current can not be reduced during alignment because switching
currents degrades the alignment accuracy and the imaging time has to be kept short
enough not to form a masking layer over the whole imaged area.

As can be seen from Figures 3.1 and 3.3, doses in below 5 × 1014 ions cm−2 for
DRIE and below 5× 1013 ions cm−2 for TMAH are not sufficient to form a masking
layer. To calculate a corresponding imaging time, exposure current and area must
be known. Table 3.1 shows some typical values for most used current/writefield
combinations. The combinations were chosen so that the maximum writefield at
each current would be available with the machine in use.

The data in the table reveals that it takes at least 4 seconds of continuous scanning
with FIB to form a masking layer on a substrate. Using scan resolution of 512×512
pixels and dwell time of 100 ns, around 150 (DRIE) or 15 (TMAH) frames can be
taken during this safe time. Usually, if SEM is used for rough alignment, only from
three to five FIB frames are required to achieve the satisfactory results (Figure 3.7).
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Figure 3.7: FIB image of the structure to be modified. Filled overlay rectangles
indicate the areas to be doped by Ga+ ions.

3.1.2 Suspended structures

Using the patterning technique described above it is also possible to create suspended
structures by etching the silicon also beneath the doped layer. One way to achieve
this is to change the etching mode in cryogenic DRIE to the crystallographic one,
by decreasing the SF6/O2 - ratio, or by completely eliminating oxygen while still
keeping the temperature of the sample at -120 ◦C (Figure 3.8(a)). As an alternative,
wet etching can also be utilized (Figure 3.8(b)). In both cases the crystal and pattern
orientations should be chosen according to the rules shown in Figure 2.9 to obtain
proper undercut.

A somewhat simpler, but not that versatile method for releasing structures is isotropic
etching. This mode can be obtained by etching the sample in pure SF6 plasma at
temperatures above -80 ◦C (Figure 3.9(a)).

The minimum feature size for the dense structures is about the same as in the case of
standard etching, but single released bridges can be over etched resulting in partial
consuming of the free standing Ga+ rich layer. With the overetching technique,
only the mechanical strength of the structures limits the achievable feature size.
Using the cryogenic DRIE 20 nm wide bridges were obtained (Figure 3.9(a)), and
for TMAH etching the corresponding value was 25 nm (Figure 3.9(b)).

The thickness of the resulting structures varies between 20 nm to 50 nm and is
determined by the implantation depth of gallium ions, which depends mainly on
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(a) (b)

Figure 3.8: Fabrication of released structures on Si (111) substrates using crystal-
lographic etching. (a) 1 �m to 100 nm wide, 2 �m long bridges with the implantation
dose of 4×1016 ions cm−2 released in cryogenic DRIE, (b) 500 nm long and down
to 35 nm wide beams with the implantation dose of 4×1015 ions cm−2 released in
TMAH.

(a) (b)

Figure 3.9: (a) Structure released by FIB-DRIE using isotropic etching. The
undercut lines are smooth and round contrary to Figure 3.8(a) where edges and
crystal planes are visible. The bridge dimensions are: length 2 �m, width < 20 nm,
thickness < 30 nm. (b) 2 �m long and 25 nm wide bridge released by TMAH etching.

the acceleration voltage and less on the dose implanted. The dose affects the final
thickness of the components mainly through the sputtering effect. This issue is
described in more detail in Ref. [22].
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3.2 MEMS Fabrication methods

Fabricating functional micromechanical structures can be a long, multistep project,
which may take several months, if proper stability and encapsulation are also re-
quired [41]. In this work we concentrate on obtaining components of acceptable
quality are rapidly using only one mask level.

The basic fabrication method is quite straightforward as shown in Figure 3.10. A
designed pattern is transferred to a mask on top of a SOI (Silicon On Insulator)
wafer in a first step. In a second step the pattern is replicated into device layer of
SOI using cryogenic DRIE. Because of severe overetching during the step 3, notching
occurs and releases the moving parts of the system [42, 43, 44].

Mask Silicon

(a) (b) (c)

SiO2

Figure 3.10: Notching-based MEMS fabrication process. (a) exposure of the mask-
ing layer, (b) etching through the device layer, (c) overetching and notching.

Even though this process is simple to realize, the component should be carefully
designed in order to induce notching at appropriate locations. Also a high durability
of the etching mask is needed to allow overetching without failures. The mask
durability issue is most essential, when thin photoresists must be used because of
the small feature sizes.

3.2.1 Alumina hard mask process

Process description

In Publication II we report on utilizing ALD grown Al2O3 layer as a hard mask for
the EBL pattern. EBL was performed on PMMA electron sensitive resist, which has
many good qualities, as robustness, high resolution and simple development but has
poor resistance against etchants. A conventional hard-mask approach was utilized
to resolve the issue. The novelty of the approach is in the the exceptional properties
of the hard mask which can be patterned even through PMMA and at the same
time withstands all the subsequent etching steps. (Figure 3.11).
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Photoresist Al2O3 Silicon

(a) (b) (c) (d)

200 µm 200 µm 200 µm 5 µm

SiO2

Figure 3.11: EBL process using the Al2O3 hard mask. (a) Hard mask deposition
on SOI wafer using ALD, resist (PMMA) spinning, exposure and development, (b)
hard mask etching (RIE, argon milling), (c) silicon etching by Cryo-DRIE, (d) over-
etching to achieve release by notching.

As a substrate was chosen an SOI wafer with 4 �m thick device layer doped with
boron to 0.02 Ohm·cm and having 200 nm buried oxide layer. The low resistively
silicon makes it possible to omit metalization of electrodes without causing too high
losses for the electrical signal levels.

After pre-cutting and cleaning (with acetone and isopropanol (ACE/IPA), silicon
chips 6 × 6 mm2 in size were coated by alumina with a Beneq TFS 500 reactor
using H2O+TMA (trimethylaluminium) chemistry at 220 ◦C. Only 40 cycles were
deposited yielding the layer thickness of 4.5 nm. The excellent resistance of Al2O3 in
cryogenic DRIE [26], enables the masking layer to withstand etching for more than 2
hours, producing structures over 250 �m high at silicon etch rate of 2 �m/min. Be-
cause in this process the etching time did not exceed 15 minutes, the layer durability
was more than sufficient. Even thinner layers could have been used, as in ALD a
pin-hole free film is formed already after 10 cycles (equaling 1 nm in thickness [45]),
but in practice very thin layer scratches easily, so that extra alumina adds to the
robustness of the process.

A solution of 2% PMMA in anisole was spun on the chips at 4000 rpm resulting
in a film of 82 nm in thickness after 10 min pre-baking at 170 ◦C. Then EBL
was performed with a current of 130 pA (corresponds to 20 �m aperture). The
machine used was a Zeiss Supra 40 electron microscope with an external Raith
ELPHY Quantum pattern generator. The exposition dose was set to 200 �C/cm2

and the development was done in IPA/H2O solution (90 % / 10 %) for 45 seconds
(Figure 3.11(a)).
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Step Tool Time Level Comment
1 Wafer dicing Dicing saw 1 h Wafer Wet
2 Cleaning ACE/IPA 1 h Wafer Wet
3 Al2O3 deposition ALD 2 h Wafer Dry
4 Resist spinning Spinner/Hot plate 0.5 h Chip Wet
5 Lithography EBL 1-3 h Chip Dry
6 Development IPA/H2O 0.5 h Chip Wet
7 Hard mask etching RIE 0.5 h Chip Dry
8 Silicon etching Cryo DRIE 0.5 h Chip Dry
9 Bonding Wire bonder 0.5 h Chip Dry

Table 3.2: MEMS fabrication process flow using EBL and Al2O3 hard mask

The next step is to transfer the written pattern in the resist to the alumina layer,
which is done using conventional reactive ion etching (RIE). SF6 plasma has been
used for similar applications [46] achieving the etch rate of 5 nm/min, but for a
4 nm thick layer simple argon milling is sufficient. Being chemically passive argon
plasma has a low etching rate for polymers, so the timing restrictions are loose in
estimating the etch duration. Several tests have been made with Oxford Plasmalab
80 RIE equipment and with 250 W power, 10 mBar pressure, 40 sccm argon flow
etch rate of 7 nm/min was achieved for alumina. At the same time PMMA was
consumed with a rate of about 5 nm/min and extra 32 nm were etched during the
plasma ignition. The sample was etched in argon plasma for 2 minutes consuming
half of the mask thickness but this time was enough to ensure that the alumina layer
was totally etched away (Figure 3.11(b)).

The final step, where the silicon structures are defined, was performed in Oxford
Plasmalab 100 cryogenic DRIE using SF6/O2 chemistry (40 sccm and 6 sccm re-
spectively), pressure of 10 mTorr, temperature of -110 ◦C, 3 W forward power and
1000 W ICP power. The time was varied to achieve the optimal notching. Etching
for approximately 8 minutes was found to produce the optimal result (Figures 3.11(c-
d)).

After etching all mask layers (in this case PMMA resist and Al2O3 hard mask)
should be removed, but because the resist is readily etched away during the DRIE
step, and the hard mask is so thin, that it does not severely interfere with the
functionality of the devices, all the removal steps can be omitted. All what is still
left to do is packaging and bonding (Figure 3.12). The use of ultrasonic aluminum
wire bonder allows to bond wires directly to silicon, so that no metallic bonding
pads are needed. For a better contact, the chips can be sintered on a hotplate at
425 ◦C for 30 seconds.

As can be seen from Table 3.2, there are three wafer-level steps and 6 chip level
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(a)
(b)

Figure 3.12: (a) Test component with aluminum wire bondings to plain silicon,
(b) packaged and bonded component.

steps in the process. Wafer level steps take up to 4 hours, but result in producing
several (up to 200) chips. Steps 4 to 9 should be done separately for each chip or
groups of chips every time the component design is changed, but all the chip-level
steps from applying the resist to packaging take only about 3.5 - 5.5 hours, including
all the other tasks (such as pumping times of the machines).

The major time consuming step on the chip level is EBL, which takes a couple of
hours depending on the required resolution, on the number and on the complexity
of the exposed components. It is quite hard to speed up this part of the process
without loosing in quality.

There are several wet processing steps, where the samples are submerged into liquid.
Wafer dicing and cleaning do not affect the final result too much, but resist spinning
and development require extra care. Especially the reproducibility makes up a clear
challenge, this issue will be addressed in the next chapter.

Achieved results

Using the described technique, test structures were fabricated to determine the
design rules for the mask drawing. The MEMS resonators were designed using the
discovered rules and fabricated to prove the feasibility of the process.

There is only one restriction concerning the design of the component that is released
utilizing the notching effect; the structures have to have surrounding trenches that
are of certain width in order to be released. Also care should be taken not to
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accidentally release any additional structures. Figure 3.13 shows the results of a test
run performed for a device layer thickness h = 4 �m, the etch time was t = 16 min,
which corresponds to 32 �m etch depth if no buried oxide or RIE lag are present.
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Figure 3.13: Analysis of notching. The upper image shows a cross-section of a
variable width (w = 5 �m to 0.2 �m) trench pattern. In the lower graph the extent
of notching (widening of the trenches) is plotted as a function trench width. The
continuous lines serve as a guide to the eye.

The graph shows, that up to 5 �m wide structures can be released with an optimal
gap width of ca. 1 �m. Wider gaps exhibit less notching, and narrower ones suffer
from the RIE lag. If required, wider structures can be released with narrow gaps by
increasing the etching time. However the durability of the buried oxide has to be
sufficient to withstand long etch times, which was not the case with the first trench
in a test run described above.

The fabrication method was tested by etching micromechanical high-frequency res-
onators. A double-ended tuning fork resonator (DETF) with the branch length
l = 38 �m, width w = 2.5 �m and the coupling gap width d = 1 �m was fabricated
and characterized. The resulted proper electrical response from the component en-
sured the suitability of the process for RF-MEMS applications (Figure 3.14).
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Figure 3.14: Optical image of an RF-MEMS resonator fabricated using alumina
hard mask process and the corresponding electrical transmission (S21) measurement
result as a function of frequency in the vicinity of the mechanical resonances. At
the first resonance the vertical beams move between the electrodes in-phase, and
at the second - in anti-phase. The dimensions are: beam length l = 38 �m, width
w = 2.5 �m and the coupling gap width d = 1 �m.

3.2.2 Combined FIB-DRIE fabrication process

Gallium implantation masking process developed primarily for nanostructure fab-
rication can easily be scaled up for producing microcomponents such as MEMS
resonators (Publication V). The process utilizes the same notching effect as the
hard mask process described above, but patterning is much simpler so the whole
fabrication cycle consists of only two dry steps.

Process description

MEMS fabrication process using Ga+ implantation as an etch mask starts by dicing
an SOI wafer and cleaning the chips. In the case that is described in Publication V,
a p-type boron doped to 0.01-0.02 Ohm·cm SOI wafer was used. The device layer
thickness of the wafer was chosen to be 10 �m with 1 �m thick buried oxide (BOX)
layer and 380 �m handle layer.

Because the doped Ga+-layer itself has an adequate selectivity towards silicon during
etching, no hard mask layers are needed, but the chips can be directly patterned
by local FIB doping. A safe dose to start with is about 2 × 1016 ions cm−2, but
depending on geometry, size of the component and writing current, dose may have
to be adjusted by a factor of four. Overexposing was not found to inflict severe
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negative effects on the final structures, but the dose optimization is worth doing
anyway as it directly decreases the total exposure time. The dose required for FIB
to form a masking layer is an order of magnitude higher than the dose which is
needed for EBL to expose the resist.

The treated area of silicon provides enough contrast under electron and ion micro-
scopes (Figure 3.15(a)) and it is possible to precisely align more than one mask
layer without dedicated alignment marks. Aligning the masks is required in such a
case, where there is a considerable size difference between the individual features. In
micromechanics such features are for example bonding pads and the moving parts.
Bonding pads and connecting wires can quickly be drawn at the maximum current,
and the mechanical device is exposed at larger magnification and smaller current
to gain the required accuracy (see also Figure 2.3). Figure 3.15(b) shows the com-
plete component after etching and Figure 3.15(c) demonstrates the accuracy of the
alignment. Also note, that while at the overlaps of the conductive wires and the
component, the Ga+ dose is doubled and no signs of quality degradation are visible.

(a) (b) (c)

Figure 3.15: MEMS fabrication by FIBdoping and consequent cryogenic DRIE.
(a) Ga+ doped areas are clearly visible under the electron microscope enabling the
alignment. (b) overall image of the component with bonding pads. (c) close up on
the mechanical moving part of the resonator.

The exposed chips are etched in cryogenic DRIE as described above, and after
etching the components are ready to be wirebonded and characterized.

As Table 3.3, which summarizes the MEMS fabrication process using Ga+ doping,
illustrates: the only wet processes (dicing and cleaning) are at the very beginning
of the cycle, and applied at the wafer level. All the actual fabrication steps are dry,
and depending on the complexity of the exposed devices, the whole fabrication cycle
including packaging takes only from 2 to 4 hours.
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Step Tool Time Level Comment
1 Wafer dicing Dicing saw 1 h Wafer Wet
2 Cleaning ACE/IPA 1 h Wafer Wet
3 FIB patterning FIB 1-3 h Chip Dry
4 Silicon etching Cryo DRIE 0.5 h Chip Dry
5 Bonding Wire bonder 0.5 h Chip Dry

Table 3.3: MEMS fabrication process flow using FIB Ga+ masking.

Achieved results

The results of the FIB-DRIE process differs very little from the ones obtained by
ALD-enhanced electron beam lithography process as the resolution and masking
capability are roughly the same. As is the case with EBL on the Al2O3 mask,
the double-ended tuning fork (DETF) test component, as expected, exhibits both
in-phase and out-of-phase resonances (Figure 3.16).
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Figure 3.16: (a) An overview of an RF-MEMS resonator (beam length l = 100 �m,
width w = 2 �m and the coupling gap width d = 2 �m) fabricated using FIB doping
process. (b) The measured electrical transmission (S21) indicating that both the
in-phase and the anti-phase modes are excited.
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Patterning method Dose required (� m−2)
EBL 1014 to 5× 1015 *
FIB/DRIE 2× 1016

FIB/TMAH 1015

* Depending on resist and acceleration voltage

Table 3.4: Exposure doses for various processes.

3.2.3 Comparing EBL and FIB patterning processes

For MEMS fabrication, ALD-enhanced EBL and FIB masking are equally suitable.
When the height of the structures exceeds 2 �m, limited aspect ratio of cryogenic
DRIE constrains the minimum feature size as long as the resolution of the mask is
better than 50 nm. Such a resolution is achieved by both of the masking methods.
There are, however, a few differences which affect the selection of the process.

EBL is a mature technique, and a huge variety of instruments are available. Also
wafer-level exposure and accurate write field stitching are routinely performed. FIB,
on the other hand, is much more an analysis and prototyping, than a standard
fabrication equipment and is suitable to process only a few components at a time.
Also electron beam photoresist exposure is inherently a faster process than FIB
masking (Table 3.4) as up to 100 times smaller dose is required for exposure, so
for bigger prototyping batches, as well as for a small-scale production, EBL is the
patterning method of choice.

The downsides of EBL become evident, when considering fabrication of a few com-
ponents and analyzing the process as a whole (Figure 3.17). EBL requires a hard
mask to be deposited and patterned, as well as applying and developing photoresist.
Compared to the single-step FIB masking - method, the extra steps of EBL are
consuming a lot of time, but more importantly, resist-related steps are wet, which is
acceptable as long as the wafer-level processing is concerned, but is a real challenge
in chip-level processing.

3.2.4 Combining optical lithography and FIB masking

One obvious advantage of FIB masking is that it does not require any kind of resist
applied on a structure before patterning. Together with dry etching this property
enables patterning of existing 3-dimensional structures, which is virtually impossible
by any other means. Modifying existing structures by this method is not significantly
different from making structures from the very beginning.
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Figure 3.17: Process flow for EBL and FIB masking.

To demonstrate the alignment and modification possibilities for 3D structures, ther-
mal actuators described in Ref. [47] were modified (Figure 3.18).

As a result, 200-�m long, 25-�m wide and 4-�m thick bridges were successfully
narrowed down to 0.36 �m, which is beyond optical lithography limits and extremely
hard to achieve with conventional FIB milling.
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Figure 3.18: 3D device modification. (a) initial actuator prior to modification
(200 �m × 25 �m × 4 �m), (b) masking layer is implanted by FIB, (c) the final
structure is etched in cryogenic ICP etcher to the measures 100 �m × 0.36 �m ×
4 �m.

3.3 ALD deposited alumina as an insulator

ALD deposited materials are virtually pin-hole free [45], which was utilized during
the work described in Publication VII. The goal was to create a change in the en-
vironment in tunnel junction experiments. Silicon or oxidized silicon is often used
as a substrate for tunnel junctions. In this approach, when the system is refrig-
erated to temperatures near absolute zero, silicon, no matter how strongly doped,
becomes non-conductive. Adding a conducting, or superconducting, plane between
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the junction structures and the substrate proved to severely decrease the electrical
noise levels by capacitive shunting in metal-insulator-superconductor (NIS) junc-
tion and superconductor-insulator-metal-insulator-superconductor (SINIS) turnstile
measurements (Publication VII).

3.4 Mechanics design and simulation

In Publication I the goal was to design a mechanical component, which has vibra-
tional mode where the movement of one of the surfaces is exactly orthogonal to
that surface without any tilting and is possible to realize with existing double-sided
wet etching process [48, 49]. The simplest implementation of such a component is
a round membrane with a mirror glued at its center, vibration of the membrane
would ideally move the mirror but not tilt it. The weaknesses of such structures are
in challenging fabrication and in a resulted low quality factor.

Good quality factor non-tilting out-of-plane mode resonators can replace torsional
resonators and give a final advantage in pursuit for measuring a standard quantum
limit for optical detection [50]. Torsional motion of the resonators degrade inter-
ferometers performance when used as one of the mirrors. Non-tilting out-of-plane
resonators do not have such disadvantage [51].

The obtained component is easy to fabricate, has two parallel mirror surfaces moving
in anti-phase at frequency f = 26526 Hz and has a quality factor of Q = 100000
at room temperature and at pressure p = 10−3 mbar. Those parameters were
achieved by combining torsional mode vibrations known to produce high quality
factors [52] with a frequency-matched clamping and large out-of-plane motion of
the beam (Figure 3.19).

The component consists of a central beam with dimensions 1.5 mm × 14 mm ×
0.38 mm. This beam is mainly responsible for the resonance frequency of the whole
structure and is driven in its second eigenmode so that there are 3 nodes and 2
antinodes present (Figure 3.20).

The antinodes are used to mount the square vanes (0.8 mm × 0.8 mm × 0.38 mm.),
which act as non-tilting mirrors. Each vane is mounted to the beam by support
anchors of minimum width available in the process (ca. 75 �m). The openings,
which are made in the beam to allow the vanes to move freely, modify the resonant
frequency of the whole structure and affect the position of the anti-nodes. Because
of this, positioning of the vanes and their openings had to be carefully iterated.
As the anti-nodes virtually have no torsional movement, the vanes stay parallel to
the original component plane during all the phases of vibration (Figure 3.21). The
optimization of the structure was done using commercial finite element modeling
(FEM) software ANSYS.
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Central beam Mirrors

Torsional support resonators

Outer frame

Figure 3.19: Out-of-plane mode high-Q silicon oscillator. The size of the outer
frame is 21 mm × 11 mm. Central beam is 1.5 mm × 14 mm, the mirrors -
800 �m × 800 �m and the connecting bridges are 75 �m wide. The thickness of
the component is 380 �m.

(a) (b)

Nodes

Anti-nodes

Figure 3.20: Central beam vibrating in the second eigenmode.

To achieve low energy dissipation and high quality factor, the beam is anchored
to the outer support frame by the center node from the two sides by torsional
resonators (Figure 3.22). The anchors have the resonance frequency matched to the
beam. This anchoring scheme matches the impedances of the vibrations [53, 54]
effectively de-coupling the center beam from the frame. To increase robustness,
extra weight is added to the supporting beams, to bring their resonance frequency
down to the frequency of the center beam. Alternatively the matching could be
performed by simply making a sufficiently long support beam, but in case of cm-
scale low frequency components, such scheme is not practical as the beam length
would be longer than 18 mm. With a ballast weight, the same 75 �m wide bridge
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Figure 3.21: Comparison between measured vibration mode, analytical and FEM
models.

can be made only 2.5 mm long, which is still mechanically robust.

(a) (b)

Figure 3.22: Resonator clamping by frequency-matched torsional supports. (a)
support with a torsional spring and a counterweight, (b) resonator beam with sup-
ports attached.

The measurement results show, that the component performs as designed, exhibiting
Q = 100000 at f = 26.8 kHz and p < 10−2 mBar. The oscillation amplitude of the
vanes was measured to be 10 nm and the tilt of the vanes induces at most only
100 pm difference between measurements across the vane indicating that the in-
plane motion is achieved and the tilt of the vanes is ca. 0.1 �rad.
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4 Summary and outlook

The main results of this thesis are related to the development of various fabrication
techniques for structures that contain sub-micrometer size features with high aspect
ratio. The developed procedures can be performed in a fraction of time compared
with conventional techniques without leading to deteriorated quality.

In publication I a new type of component with a non-tilting-out-of-plane mode
of vibration was developed. The design was finalized by utilizing FEM modeling.
The measurement results show good consistency between simulations and fabricated
structure operation. High quality factor of Q > 100 000 in vacuum and low tilting
of the mirror vanes (ca. 0.1 �rad) were achieved. Those properties can be utilized
in experiments where movement of parallel surfaces is important. In addition to
interferometric applications, non-tilting-out-of-plane vibrational mode components
can be used in scanning probe applications.

In publications II and VII ALD deposited aluminum oxide was utilized for two
different purposes. In publication II the material was used as an etching mask, to
achieve a reliable pattern transfer from a 100 nm thick EBL photoresist to 4 �m
silicon structures. In publication VII aluminum oxide was used as a high-quality
insulator in the experiment, where capacitive shunting of NIS junction is shown to
decrease the subgap leakage by an order of magnitude by protecting it from photon
assisted tunneling.

A novel masking method for cryogenic deep reactive ion etching is presented in
publication III. The masking properties of the FIB Ga+ implanted silicon are in-
vestigated and the resolution tests are performed. Using the doping dose in the
order of 1016 ions cm−2 (equivalent of milling of 3 - 7 nm of material) selectivity of
1:1000 to the non-treated silicon and feature sizes as small as 40 nm were achieved.
The method greatly simplifies the fabrication process of micro- and nanostructures
enabling the transfer of arbitrary patterns to silicon in a matter of hours. Compar-
ing to conventional FIB processing, the proposed technique is orders of magnitude
faster and produces a better quality side walls due to a separate etching step. This
technique was extended in publication IV to produce free-standing structures that
are ca. 30 nm thick composed out of Ga-rich silicon, which is undercut in the etching
step by using crystallographic or isotropic modes.

Experiments similar to the ones reported in publications III and IV were conducted
with TMAH wet etchant in publication VI. The results showed that the resolution
achievable by the FIB masking did not significantly change, but the ion dose required
to form the protective layer is smaller by an order of magnitude. Anisotropic wet
etching can not produce arbitrary features due to dependence of the etched shapes
from the crystal orientation, but on the other hand, when the structures are properly
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designed, almost ideally vertical, smooth walls with huge aspect ratios are easily
achievable, as well as sloped structures.

Finally, in publication V FIB implantation and cryogenic DRIE etching are shown
to be a viable combination for MEMS manufacturing. Two types of systems were
produced: electrothermal actuators and microelectromechanical MHz - range RF
resonators. In the first case 3D structures made by optical lithography and DRIE
etching were modified by the FIB-DRIE method. The width of the final devices was
beyond optical contact lithography limits (< 400 nm), nevertheless they performed
consistently compared with non-modified components. Also the alignment to the
predefined structures was introduced for sub-micron features. The released RF-
MEMS test components were fabricated and tested to produce both the resonances
predicted by simulations, which show that the notching effect used for the component
release performs adequately not only with the hard mask, as shown in publication
II but also with the gallium dopant masking in all-dry processes.

The future prospects for the work can be divided into three branches. The first
branch is in the further process development and improving the resolution and ac-
curacy of the maskless patterning techniques by the similar methods which are used
in electron beam lithography. Another direction is to extend gallium doping masking
technique from silicon to other materials.

The second branch is in developing released micro and nanomechanical system based
on the developed fabrication processes. A quick turnover time makes it possible to
produce several generations of the components in the same time it takes to produce
the first generation for the conventional techniques. Additionally, high uniformity of
the process enables fabrication of complex systems containing thousands of coupled
active components.

The third open direction is in the fields of photonics and plasmonics. With the
ability to fabricate three dimensional silicon structures with the precision of tens
of nanometers it is possible to construct confined two dimensional photonic crys-
tals. Especially when plasmonics is concerned, interesting phenomena have been
predicted theoretically, but the theories lack the experimental validation.
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