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Abstract
Finite-difference time-domain (FDTD) simulations of specific-absorption rate
(SAR) have several uncertainty factors. For example, significantly varying
SAR values may result from the use of different algorithms for determining
the SAR from the FDTD electric field. The objective of this paper is
to rigorously study the divergence of SAR values due to different SAR
calculation algorithms and to examine if some SAR calculation algorithm
should be preferred over others. For this purpose, numerical FDTD results
are compared to analytical solutions in a one-dimensional layered model
and a three-dimensional spherical object. Additionally, the implications of
SAR calculation algorithms for dosimetry of anatomically realistic whole-
body models are studied. The results show that the trapezium algorithm—
based on the trapezium integration rule—is always conservative compared
to the analytic solution, making it a good choice for worst-case exposure
assessment. In contrast, the mid-ordinate algorithm—named after the mid-
ordinate integration rule—usually underestimates the analytic SAR. The linear
algorithm—which is approximately a weighted average of the two—seems to
be the most accurate choice overall, typically giving the best fit with the shape
of the analytic SAR distribution. For anatomically realistic models, the whole-
body SAR difference between different algorithms is relatively independent of
the used body model, incident direction and polarization of the plane wave.
The main factors affecting the difference are cell size and frequency. The
choice of the SAR calculation algorithm is an important simulation parameter
in high-frequency FDTD SAR calculations, and it should be explained to allow
intercomparison of the results between different studies.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The finite-difference time-domain (FDTD) method is the most widely used method in
the computational dosimetry of radio-frequency electromagnetic fields. There are several
uncertainty factors affecting the reliability of the simulated specific-absorption rate (SAR)
values. Some uncertainty factors are related to modelling, such as the accuracy of anatomical
models or models of dielectric properties of tissues. Several factors are caused only by the
computational method. One main source of uncertainty is the discretization error affected by
the frequency and resolution of the FDTD grid (Laakso 2009, Dimbylow et al 2010). In some
cases, significant error might be caused by reflection from absorbing boundary conditions
(ABCs) (Wang et al 2006), although it is possible to make ABCs with negligibly small error
(Findlay and Dimbylow 2006, Laakso et al 2007). Several additional sources of uncertainty
have been discussed in Kühn et al (2009).

Recently there has been a discussion about the choice of the algorithm by which the SAR
for each Yee cell is determined from the electric field produced by the FDTD method (Uusitupa
et al 2008, Dimbylow et al 2008, 2010). Different algorithms for determining the SAR may
produce significantly varying SAR values, especially at high frequencies or low resolution.
This paper presents SAR calculations in several cases with three different SAR algorithms that
are described in the following section. The objective is firstly to find out which algorithm is
preferred by comparing the numerical FDTD results to analytical solutions. The studied cases
include a one-dimensional layered model and a three-dimensional spherical object. Secondly,
the implications of SAR calculation algorithms for dosimetry of anatomically realistic whole-
body models are studied by re-calculating the results of our previous study (Uusitupa et al
2010), which considered plane-wave exposure from various directions in multiple different
human body models including different postures.

2. SAR calculation algorithms

In the following theoretical discussion it is assumed that the fields have a sinusoidal time-
dependence of the form Ã(t) = Re[A exp(jωt)]. Although complex field values A are used
for the theoretical discussion, they are not needed in practice. Namely, using the presented
SAR calculation algorithms, all the resulting expressions will eventually consist of real parts
of products of complex numbers which may be presented in the form

Re(AB∗) = Ã(t)B̃(t) + Ã

(
t +

T

4

)
B̃

(
t +

T

4

)
, (1)

where T = 1/f is the period of the sinusoidal excitation. So the SAR can be calculated
directly from two instantaneous values of time-domain fields without the need to determine
complex field values.

The SAR is determined from the electromagnetic power-loss density by dividing with
the specific gravity of the tissue. Assuming that the conductivity σ is constant inside each
individual Yee cell, in the analytical case the total power loss in a single Yee cell is given by
the integral

σ

2

∫
cell

|Ex |2 + |Ey |2 + |Ez|2 dV, (2)

from which the average power-loss density or SAR may be determined by division with the
volume or mass of the cell, respectively.

The FDTD method produces an electric field which is located on the edges of the cells
(figure 1) and which is affected by the discretization error. Therefore, there are varying ways
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Figure 1. Electric field on the edges of the Yee cell.

to interpret the FDTD electric field, which gives rise to different ways for approximating
the integral in (2), resulting in different SAR calculation algorithms. In the following, three
different algorithms will be presented. They are referred to as trapezium, mid-ordinate and
linear algorithms by their close connection with the elementary numerical integration rules.
Each algorithm is based on different assumption on how to interpret the FDTD electric field.

2.1. Trapezium algorithm

The trapezium algorithm is based on the assumption that the edge-based electric field
components produced by FDTD are good pointwise approximations of the accurate electric
field. Because we approximately know the values of the electric field on the edges, we may
now use the elementary trapezium integration rule to approximate the integral (2). For the Ez

component, for instance, the integral is approximated as∫
cell

|Ez|2 dV ≈ Volume(cell)

4
[|E1|2 + |E2|2 + |E3|2 + |E4|2], (3)

where the notation is the same as in figure 1. The absolute values may be calculated from the
time-domain field values by equation (1). Alternatively, they could be determined by seeking
the maximum values of the corresponding time-domain absolute values over a half cycle.

There is also another way to derive the trapezium algorithm. By starting directly from
the FDTD update equations, one may derive a discrete version of the Poynting theorem (de
Moerloose and de Zutter 1995), according to which the resistive power-loss density s is

s = −1

2
Re{D̂ · 〈E × H ∗〉} = 1

2
〈σ |E|2〉 cos

ω�t

2
, (4)

where the centre term is the discrete analogue of the divergence of the Poynting vector and �t

is the time step. The factor 〈σ |E|2〉 means taking average over σ |E|2 on the edges to the centre
point of the cell1. The cosine factor is very close to 1 in practical dosimetry calculations, so
(4) describes essentially the same averaging procedure as (3). Consequently, the trapezium
algorithm gives the same whole-body averaged SAR as obtained by integrating the normal
component of the discrete Poynting vector over a surface enclosing the whole human body.
This was also verified numerically using one-dimensional layered objects (section 3.1).

The trapezium algorithm has been considered before in Dimbylow et al (2008) where it
was denoted ‘algorithm D’, and in Uusitupa et al (2008) where it was called ‘(E2)ave-method’.
A related algorithm, ‘algorithm C’ (Dimbylow et al 2008, 2010), always gives slightly smaller
values than the trapezium algorithm.

1 de Moerloose and de Zutter (1995) derived the formula for a corner point of a Yee cell. The case for the centre
point may be derived similarly.
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2.2. Mid-ordinate algorithm

In the mid-ordinate algorithm, it is assumed that the arithmetic average over the edge-based
electric field components is a good approximation of the accurate electric field at the centre
point of the cell. The field value at the centre point of the cell may then be used to approximate
the integral (2) by the mid-ordinate integration rule, resulting in an approximation∫

cell
|Ez|2 dV ≈ Volume(cell)

16
|E1 + E2 + E3 + E4|2, (5)

which can be calculated from the time-domain fields by (1), or by seeking the maximum
absolute value of the average time-domain field over a half period. The mid-ordinate algorithm
always produces smaller power loss than the trapezium algorithm in all cells. In previous
papers, the mid-ordinate algorithm has been called the ‘twelve-components approach’ (Caputa
et al 1999), ‘algorithm A’ (Dimbylow et al 2008, 2010) or the ‘(Eave)

2-method’ (Uusitupa
et al 2008).

2.3. Linear algorithm

In the linear algorithm, it is assumed that the edge-based field components define a bilinear
interpolant that is a good global approximation of the accurate electric field. Consequently,
each complex electric field component in (2) is of the bilinear form

Ez(ξ, η) = (1 − ξ)(1 − η)E1 + (1 − ξ)ηE2 + ξηE3 + ξ(1 − η)E4, (6)

with 0 � ξ, η � 1. With this assumption the integral (2) may be calculated accurately from
the field values on the edges. The integration is straightforward and results in several terms of
the form (1). In one dimension the linear algorithm is exactly a weighted average (ratio 1:2)
of the trapezium and mid-ordinate algorithms. So the linear algorithm resembles the Simpson
numerical integration rule.

The assumption of bilinear electric field is natural because the FDTD method may be
interpreted as a special case of the time-domain finite-element method (Rylander et al 2005)
with piecewise bilinear edge-based basis functions. Using these basis functions, the electric
field inside the cells is of the form (6). We have used the linear algorithm in our previous
studies (Laakso 2009, Uusitupa et al 2010).

3. Numerical results compared to analytic solutions

In this section, it is studied which SAR calculation algorithm gives the best fit with the
analytical solution in several test cases.

3.1. One-dimensional layered model

The geometry of the first case is a layered half space, consisting of skin (wet), fat (infiltrated
with blood) and muscle layers (Gabriel et al 1996), exposed to a plane wave. A one-
dimensional model is able to predict reasonably well the differences of the SAR algorithms in
anatomically realistic 3D models (see figure 5). For this kind of geometry there exists a simple
analytic solution. For the comparison of analytical and numerical results, the analytical power
loss for each Yee cell was calculated by integration (2). This allowed not only the comparison
of the total whole-body SAR but also the shape of the spatial SAR distribution by calculating
the relative error of power-loss density s in l1 norm, i.e.

l1 error =
∑

cells |sFDTD − sanalytical|∑
cells |sanalytical| . (7)
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Figure 2. Numerical power loss calculated by different algorithms compared to the analytical
power loss for three cell sizes (2 mm, 1 mm and 0.5 mm). The exposed geometry is depicted on
the left.
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Figure 3. Numerical power loss calculated by different algorithms compared to the analytical
power loss for three cell sizes (2 mm, 1 mm and 0.5 mm). The geometry is depicted on the left.

A basic one dimensional FDTD model (Taflove and Hagness 2005) was implemented
with a very thick convolutional perfectly matched layer ABC (Roden and Gedney 2000) on
the left side and a very thick muscle layer on the right. The time step was chosen to be
�t = 0.99�x/c0. The permittivity and conductivity values on the edges of the cells were
arithmetic averages over the values in the adjacent cells (this same choice was used in all 3D
cases too).

Figures 2 and 3 show examples of the the numerical FDTD results compared with the
analytical results for two different geometries and three resolutions. In figure 2 the thickness
of both the skin and the fat layer is 2 mm. The case depicted in figure 3 is otherwise similar
but the thickness of the fat layer is 20 mm. The results show that none of the three algorithms
was the most accurate choice in every case. Depending on the case, each algorithm could
produce the closest match with analytical SAR and the smallest l1 error. For example, the
trapezium algorithm gave the closest match with the analytical SAR in figure 2 under 3 GHz
frequencies for all resolutions. However in figure 3, the mid-ordinate algorithm was the most
accurate choice at 1 mm and 0.5 mm resolutions, especially at frequencies over 4 GHz.
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Table 1. Average (and worst case in parenthesis) frequencies (GHz) below which l1 error is smaller
than 5%. Also included are the maximum frequencies predicted by the λ/10 rule for muscle tissue.

Algorithm/cell size 2 mm 1 mm 0.5 mm

Trapezium 2.1 (1.9) 4.2 (3.8) 8.1 (6.9)
Linear 2.7 (2.1) 5.9 (4.7) >10 (>10)
Mid-ordinate 2.2 (1.6) 6.3 (3.6) >10 (7.6)
λ/10 rule for muscle 2.1 4.2 9.0

Because of the discretization error in the FDTD method, the electric field is erroneous
compared to the analytic solution. The size of the error is connected to the ratio between the
cell size and the wavelength. The effects of discretization error on the performance of the SAR
calculation algorithms can be seen in figures 2 and 3. By increasing the resolution, i.e. making
the discretization error smaller, the whole-body SAR values calculated by each algorithm seem
to converge to the analytic whole-body SAR. Also, when the cell size is halved, the l1 error
for each algorithm (and the difference between the algorithms) is reduced to approximately
one-fourth. The same is true for the global error in the electric field (not shown in the figures)
because power loss inside the object is directly related to the squared amplitude of the electric
field.

In addition to the two example cases in figures 2 and 3, multiple cases of the same kind
were simulated with fat thickness varied from 0 mm to 20 mm at 2 mm intervals. Table 1
shows the smallest frequencies at which the l1 error exceeds 5% for each algorithm and
resolution, averaged over all simulated cases. Also shown are the worst-case (minimum over
all cases) frequencies, under which the l1 error was smaller than 5% in every simulated case.
As seen in table 1, the frequencies calculated by the condition that l1 error is smaller than
5% approximately correspond to those given by the commonly used λ/10 rule of thumb. For
the trapezium algorithm, the l1 error rises the quickest at high frequencies, resulting in the
lowest average applicable frequencies at 1 mm and 0.5 mm resolutions. The mid-ordinate
algorithm has on average higher frequencies at 1 mm and 0.5 mm compared to the trapezium
algorithm, but worst-case performance is similar to the trapezium algorithm. Overall, the
linear algorithm seems to be the most robust choice; it has high average frequencies at all
resolutions, and worst-case frequencies are higher compared to the other algorithms. With the
linear method, a lower resolution may be used at slightly higher frequencies without losing
too much accuracy.

In each of the simulated cases, the trapezium algorithm always overestimated the analytical
whole-body SAR for all resolutions. The overestimation became more severe with coarser
resolutions. In contrast, the mid-ordinate algorithm nearly always underestimated the whole-
body averaged SAR, and the underestimation was amplified for coarser resolutions. It seems
that the discretization error manifests itself in overestimation for the trapezium algorithm and
in underestimation for the mid-ordinate algorithm. Hence, the mid-ordinate algorithm does
not seem to be a good choice for worst-case exposure assessment. Better choices are the
trapezium algorithm, which was always conservative compared to the analytic solution, or the
linear algorithm, which was overall the most accurate choice.

3.2. Small spherical object

The second analytical example is a sphere that is exposed to a plane wave (figure 4). The
sphere has radius 5 cm, and it is composed entirely of muscle tissue (Gabriel et al 1996). The
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Figure 4. Numerical SAR compared to the analytical SAR in the muscle sphere for 2 mm, 1 mm
and 0.5 mm resolutions.

size of the sphere is comparable to the dimensions of small body parts such as hands or feet.
The analytical electric field inside the sphere was calculated by a truncated Mie series, from
which the whole-sphere averaged SAR was calculated by a spherical quadrature (available
at: www.mathworks.com/matlabcentral/fileexchange/10750-quadrature-rules-for-spherical-
volume-integrals). Basic staircase approximation was used to model the sphere in the FDTD.
The Mie solution was calculated for a sphere with volume equal to that of the staircased sphere,
so analytical solutions for different resolutions differ somewhat.

Local comparison of the analytical and numerical power loss is not possible on the surface
of the sphere, where the analytical and numerical geometries are different. Because of this
problem, the error in the localized power loss is approximated as

l1 error ≈
∫ |sFDTD − sanalytical| dV∫

sanalytical dV
, (8)

where the integral is calculated numerically by a spherical quadrature (about 16 000 quadrature
points) over the largest sphere which fits inside the staircased sphere. The FDTD power
loss sFDTD (assumed to be positioned at the centre points of the cells) is interpolated
linearly to the quadrature points. Figure 4 shows the comparison between the analytical
and numerical SAR in the frequency range from 500 MHz to 8 GHz for 2 mm, 1 mm
and 0.5 mm resolutions. It seems that in this case either the linear or the mid-ordinate
algorithm gives the best match with the analytical whole-sphere averaged SAR. Also, the mid-
ordinate and linear algorithms have significantly smaller l1 errors compared to the trapezium
algorithm.

Unlike the 1D case, the mid-ordinate algorithm does not necessarily underestimate
the analytical whole-sphere SAR, as is the case at the lower end of the frequency range
and for high resolutions. However, similar to the 1D case, the trapezium algorithm
always overestimates the whole-body SAR. Also, both the error in whole-sphere SAR
and l1 error do not seem to approach zero at low frequencies. This might be caused by
the fact that the cubical grid is insufficient for representing the geometry correctly. So
there is no doubt but that the electric field, and SAR, is incorrect near the surface of the
sphere.

http://www.mathworks.com/matlabcentral/fileexchange/10750-quadrature-rules-for-spherical-volume-integrals
http://www.mathworks.com/matlabcentral/fileexchange/10750-quadrature-rules-for-spherica l-volume-integrals
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Figure 5. Trapezium algorithm compared to the mid-ordinate algorithm in heterogeneous body
models. Total number of exposure cases is 240 for 2 mm resolution and 132 for 1 mm resolution.
The bars show the difference in the whole-body averaged SAR between the algorithms varied over
body models, incident directions and polarizations. Similar variation for 10 g SAR is shown by
black vertical line segments, with each individual case marked by a short horizontal line segment.
For comparison, the curves (SARWB) for the 1D case are calculated for the same kind of object as
in figures 2 and 3, with skin thickness 2 mm and fat thicknesses 4 mm and 10 mm.

4. SAR calculations in realistic body models

In our previous paper (Uusitupa et al 2010), we studied the SAR in multiple human body
models, ranging from an 18 kg boy to a 105 kg large man. Plane-wave exposure of both
heterogeneous and homogeneous models was considered. In that study the SAR results were
presented for the linear algorithm. In this study, the SAR results of 2 mm and 1 mm resolutions
are examined also for the trapezium and mid-ordinate algorithms. Including all the incoming
angles and horizontal and vertical polarizations, the total number of exposure cases is 684
(out of total 720). Heterogeneous models used in this paper include male adult, female adult
and male child models from the Virtual Family (Christ et al 2010); Japanese adult male and
female models (Nagaoka et al 2004); adult male NORMAN model (Dimbylow 1997) and
the adult male model (only 1 mm resolution) based on the Visible Human Project (Mason
et al 2000). Homogeneous models include homogenized versions of the male adult and child
Virtual Family models, and an adult male model from the Poser software in standing, sitting,
arms up and ‘examine’ postures. The number of incoming angles of the plane wave varies
between the models (Uusitupa et al 2010).

Figures 5 and 6 show comparison between the SAR calculated by the trapezium and
mid-ordinate algorithms for heterogeneous models and homogeneous models, respectively.
The linear algorithm is approximately a weighted average (ratio 1:2) of the trapezium and
mid-ordinate algorithms, so it is not shown for clarity. For comparison, the figures also show
the ratios predicted by suitable 1D models (details in the figure captions).

The difference in whole-body averaged SAR values calculated by the different algorithms
seems to be relatively independent of the variation of the used body model, incident angle
and polarization, depending mainly on the frequency and resolution. This can be seen in
figures 5 and 6, where the bars depicting the variation are short compared to the differences
due to the frequency. Importantly, it seems that the 1D model is able to predict the whole-
body SAR differences between the algorithms reasonably well in the whole frequency range,
which is likely caused by somewhat similar dielectric properties in 1D and 3D models. The
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Figure 6. Trapezium algorithm compared to the mid-ordinate algorithm in homogeneous body
models. Total number of exposure cases is 208 for 2 mm resolution and 104 for 1 mm resolution.
The markings are similar to figure 5. One-dimensional object is homogeneous with dielectric
properties a weighted average of muscle (2/3) and fat (1/3).

results agree fairly well with earlier results by Dimbylow et al (2008) (figure 12), but the
difference between the SAR algorithms was slightly larger in that study. Dimbylow et al
(2010) reported somewhat larger variability due to the SAR algorithm, which is likely to be
caused by considerably higher permittivity and conductivity of newborn tissues. In this study,
all the studied models had the same standard dielectric properties (Gabriel et al 1996).

In figures 5 and 6, the difference of maximum 10 g SAR seems to have a similar pattern
with frequency as whole-body SAR, but the dependence on the model and exposure scenario
is larger. The average difference of maximum 10 g SAR is typically close to the difference of
whole-body SAR. However, in some special cases (marked by short horizontal line segments
in figures 5 and 6) at the lower end of the frequency range the maximum relative difference
may be as large as 20%. The large difference is because the maximum 10 g SAR is located
in a body part where the SAR values are particularly sensitive to the calculation algorithm.
There is seemingly a large difference at 900 MHz in the homogeneous case because in the
five cases the maximum is located in the toes of the homogeneous Virtual Family adult male
model. At 300 and 450 MHz, the 10 g SAR results are sensitive to the calculation algorithm
in several cases in all of which the polarization is horizontal and the location of the maximum
10 g SAR value is in the armpits or in the groin.

Because the trapezium and mid-ordinate algorithms are based on elementary integration
rules, the difference between the algorithms becomes larger with a steeper spatial rate-of-
change in the electric field. Thus there is a large difference between the algorithms on the
skin–air interface, where there are steep electric field gradients that are caused by the strong
dielectric contrast together with the staircase approximation of the skin–air interface. High
sensitivity of the SAR values in the toes, armpits or groin may be explained by the relatively
large skin–air surface area in these body parts.

5. Conclusions

This paper presented three different algorithms for calculating the SAR in FDTD: the
trapezium, mid-ordinate and linear algorithms. The properties of the algorithms were first
investigated by comparing the numerical SAR values to analytic solutions in infinite 1D
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layered objects and in a 3D muscle sphere. Finally, the algorithms were applied for dosimetry
of anatomically realistic whole-body models.

The trapezium algorithm always gives a higher pointwise SAR than the mid-ordinate and
linear algorithms. In all studied cases, the trapezium algorithm also overestimated the whole-
body SAR compared to the analytic solution. Using too coarse resolution only amplified
the overestimation of SAR. Hence, the trapezium algorithm is the most conservative choice
for worst-case exposure assessment. One drawback of the trapezium algorithm is that it
generally produced the worst match with the analytic solutions at high frequencies, where fine
resolution is needed. An added benefit of the trapezium algorithm is that the discrete principle
of conservation of energy, i.e. the discrete Poynting’s theorem (de Moerloose and de Zutter
1995), is satisfied.

The mid-ordinate algorithm always gives a smaller pointwise SAR than both the trapezium
and linear algorithms. Comparison with analytic solutions showed that the mid-ordinate
algorithm had the tendency to almost always underestimate the accurate whole-body averaged
SAR, and the underestimation was more severe for coarser resolutions. Hence, the mid-
ordinate algorithm is not well suited for worst-case exposure assessment. The advantage of
the mid-ordinate algorithm is that it usually gave a better fit with analytic SAR distribution at
high frequencies compared to the trapezium algorithm.

The linear algorithm may produce either under- or overestimation of the whole-body SAR,
depending on the case. It provides a reasonable trade-off between under- and overestimation
as it is approximately a weighted average (1:2) of the trapezium and mid-ordinate algorithms.
Although in some cases both the trapezium and mid-ordinate algorithms gave even better match
with the analytic whole-body SAR, the linear algorithm was on average the most accurate (but
not the most conservative) choice. Also, the linear algorithm generally provided the smallest
error in the shape of the SAR distribution, allowing the use of lower resolution at slightly
higher frequencies compared to the other two algorithms. The trapezium algorithm should be
preferred in worst-case exposure assessment because it produces a conservative SAR estimate.
But then, if better overall accuracy is required, the linear algorithm is preferred.

For studying the effects of the SAR calculation algorithms in realistic dosimetric
calculations, a large number of different plane-wave exposure scenarios with various
anatomically realistic body models were simulated. The whole-body SAR differences
between different algorithms were relatively independent of the model, incident direction
and polarization, depending mainly on the resolution and the frequency. The difference
between the algorithms could be predicted by a suitable 1D layered model. So whole-body
averaged SAR results calculated with various algorithms can be made inter-comparable by
scaling the results accordingly. For example, the trapezium algorithm gives about 6–8%
higher whole-body averaged SAR than the mid-ordinate algorithm in heterogeneous 2 mm
models at 2100 MHz (figure 5), regardless of the model or exposure scenario. Increasing
difference between the algorithms at higher frequencies is a sign of increasing discretization
error in the FDTD method. In an ideal case, the SAR calculations could be performed using
very fine resolution compared to the wavelength, and the difference between the algorithms
would be negligible. However, due to computational limitations, practical SAR calculations
are usually affected by some discretization error at high frequencies. Thus, the choice of the
SAR calculation algorithm is an important simulation parameter, which should be explained
to allow intercomparison of the results between different studies.



Note N431

Acknowledgments

We thank GETA (Graduate School in Electronics, Telecommunication and Automation) for
financial support. We thank CSC (Finnish IT Center for Science) for providing computational
resources.

References

Caputa K, Okoniewski M and Stuchly M A 1999 An algorithm for computations of the power deposition in human
tissue IEEE Antennas Propag. Mag. 41 102–7

Christ A et al 2010 The virtual family—development of surface-based anatomical models of two adults and two
children for dosimetric simulations Phys. Med. Biol. 55 N23–38

de Moerloose J and de Zutter D 1995 Poynting’s theorem for the finite-difference-time-domain method Microw. Opt.
Technol. Lett. 8 257–60

Dimbylow P J 1997 FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of
the human body from 1 MHz to 1 GHz Phys. Med. Biol. 42 479–90

Dimbylow P, Bolch W and Lee C 2010 SAR calculations from 20 MHz to 6 GHz in the University of Florida newborn
voxel phantom and their implications for dosimetry Phys. Med. Biol. 55 1519–30

Dimbylow P J, Hirata A and Nagaoka T 2008 Intercomparison of whole-body averaged SAR in European and Japanese
voxel phantoms Phys. Med. Biol. 53 5883–97

Findlay R P and Dimbylow P J 2006 Variations in calculated SAR with distance to the perfectly matched layer
boundary for a human voxel model Phys. Med. Biol. 51 N411–5

Gabriel S, Lau R W and Gabriel C 1996 The dielectric properties of biological tissues: III. Parametric models for the
dielectric spectrum of tissues Phys. Med. Biol. 41 2271–93
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