
Publication II

Mikko Pohja and Petri Vuorimaa. 2005. CSS layout engine for compound
documents. In: Proceedings of the Third Latin American Web Congress
(LA-WEB 2005). Buenos Aires, Argentina. 31 October - 2 November 2005. Los
Alamitos, California, USA. IEEE Computer Society. Pages 148-156. ISBN
0-7695-2471-0.

© 2005 Institute of Electrical and Electronics Engineers (IEEE)

Reprinted with permission from IEEE.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of
Aalto University's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

CSS Layout Engine for Compound Documents

Mikko Pohja and Petri Vuorimaa
Telecommunications Software and Multimedia Laboratory,

Helsinki University of Technology
P. O. Box 5400, FI-02015 HUT, Finland

mikko.pohja@hut.fi and petri.vuorimaa@hut.fi

Abstract

XML is nowadays widely used to describe structural doc-
uments on the WWW. The layout of the documents can be
defined by style sheets or by a language itself. XML lan-
guages can be combined to get the desired set of features for
a document. Those documents are called compound docu-
ments. Also, multimedia applications can be defined using
XML. In this paper, we have defined general requirements
for a compound documents’ CSS layout engine, which can
be used in an XML user agent. The requirements relate to
features of the layout engine, devices in which it can oper-
ate, and interfaces of the cooperating components. In addi-
tion, we describe our own implementation of a layout en-
gine, which is done according to the requirements and op-
erates in different devices.

1. Introduction

Extensible Markup Language (XML) [3] is designed to
describe structural documents especially on the World Wide
Web (WWW). One of the design principles of XML is to
separate the content and its layout, which provides a clear
and simple way to create and maintain structural docu-
ments. The layout of a given document can be defined by
Cascading Style Sheets (CSS), Extensible Stylesheet Lan-
guage (XSL), or it may have its own presentational seman-
tics, e.g., Scalable Vector Graphics (SVG).

XML languages can be combined. The idea is to create
languages for a specific purpose and use their elements as
part of any XML document, when needed. For instance, a
document could consist of XHTML, for content structuring,
and XForms, for user interaction. A document, which con-
sists of more than one XML specification is called a com-
pound document. The compound documents set require-
ments for the user agents. They have to be able to handle
functionalities of the all used languages and render the ele-
ments properly. The user agent consists of several compo-

nents, which all have some certain duties (e.g., parsing, ren-
dering, etc.) relating to the processing of a document. One
of the critical components of an user agent is the layout en-
gine.

The layout engine is in charge of the spatial dimension of
a given document. It must be able to handle the compound
documents, which may contain a diverse graphical content.
All the content cannot be rendered by a single rendering
method, but rather by the several different methods simul-
taneously. The layout engine of a novel user agent must be
able to handle and combine all the rendering methods. In
addition to spatial layout, temporal dimension of a docu-
ment must be controlled to represent multimedia applica-
tions. The layout engine has to be integrated into a sched-
uler, which synchronizes the media elements of a applica-
tion. In this paper, we represent a design and an implemen-
tation of a layout engine for X-Smiles XML browser [13].

The proposed layout engine can render any XML doc-
ument styled by CSS. Moreover, it can provide a region
for a graphic, which is laid out according to some other
model. Overlay rendering method, in which all the graph-
ics are blended at the pixel level, has been left as a fu-
ture work, though. The languages styled by CSS can be
combined with the other XML languages supported by
X-Smiles (e.g., XForms and SVG). The multimedia pre-
sentations can be defined either by Synchronized Multi-
media Integration Language (SMIL) [2] or by Timesheets
[10, 6]. Also, we wanted to enable the layout engine to op-
erate in the various environments (e.g., in digital television).
The implementation was evaluated through the performance
measurements.

The paper comprises as follows. Next Section gives an
overview of a related work. Sections 3 and 4 discuss de-
sign principles and implementation of the layout engine, re-
spectively. The results of the work are introduced in Sec-
tion 5, while Section 6 defines further development of the
layout engine. Finally, Section 7 concludes the paper.

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

2. Related Work

The scope of this paper is a CSS layout engine for an
XML compound document user agent.

Even though the XML documents can be combined by
their nature at the element level through namespaces, ren-
dering of the compound documents is not defined explicitly.
W3C has addressed the problem recently by forming a com-
pound document formats working group 1. The aim of the
group is to produce recommendations on combining sep-
arate component languages, like XHTML, SVG, XForms,
MathML, and SMIL, concerning user interface markups.
They have already published the requirements for com-
pounding documents by reference [1]. Vodafone, for one,
has made a proposal how to integrate XHTML Mobile Pro-
file (XHTMLMP) and SVG Tiny2.

Some methods for the processing of the compound docu-
ments have been suggested in the literature, e.g., [4, 9]. Both
approaches are general compound document user agents.
The supported documents can include separate components
by reference. Each component is taken care by a module.
Thus, the user agents can be extended easily by implement-
ing the needed modules. The components are laid out in sep-
arate regions in the document area. In addition to the gen-
eral compound document user agents, there are some XML
user agents, which can handle the XML compound docu-
ments.

XVM [7] is a component-based XML processing frame-
work for the compound documents. It can be used on both
server-side and client-side. XVM has a component for each
supported XML vocabulary and it uses DOM to process
XML data. The vocabularies are separated by namespaces.
XVM can be used, for instance, as a base for XML browser.
However, the presented XML browser prototype does not
support compounding by inclusion and it has limited ren-
dering engine.

Another browser framework, similar to XVM, is pre-
sented in [15]. It is also based on the components, which
are in charge for an XML vocabulary each. The layout is-
sue is not discussed either in this approach. Basically the
equivalent features can be also found from some XML ap-
plication development tools, which provide a view for a se-
mantical content of a document, e.g., Amaya [8].

XMLC [12] is an applet through which the XML + XSL
documents can be displayed in any HTML browser with
Java support. XMLC uses Java objects called Displets to
render and provide functionality to each element in an XML
document. The Displets are small rendering modules, which
can contain both content, such as, text and images and
other Displets. The Displets are positioned absolutely and

1 http://www.w3.org/2004/CDF/
2 XHTMLMP+SVGT, http://lab.vodafone.com/public/XHTMLMP-

SVGT-Recommendations.html

they can be overlapped in the transparent or opaque mode.
XMLC does not support CSS either.

The CSS layout is realized in several current web
browsers. For instance, Mozilla3, Opera4, Konqueror5, and
Internet Explorer6 have support for the general XML docu-
ments. However, they all were originally HTML browsers
and were not designed to operate as complete XML user
agent with all the rendering methods and support for the
compound documents.

3. Requirements

We wanted to integrate the layout engine into an XML
browser, which supports several XML specifications and
operates in various devices. The requirements of the lay-
out engine and the reasonings are discussed in Table 1. The
requirements are divided into three groups, which are the
technologies the engine must support, required operation
environments, and application programming interfaces.

The layout engine must be able to handle the compound
documents styled by CSS. In addition, it must reserve re-
gions for other languages (e.g., SVG). That is, a module,
which takes care of an external language, renders the ele-
ments in the given region. Overlay rendering is needed to
complete the layout engine.

Multimedia presentations can be described by XML,
too. In addition to the structure and the layout, the timing
of the components of the presentation have to be defined,
though. There are two options to control the temporal di-
mension of an XML document. One is SMIL [2] and other
is Timesheets [10, 6].

The layout of the document must be synchronized with
the DOM modifications. The easiest way would be just lay
out and render the document again. Optimized alternative is
to lay out and render only the areas, which need to be laid
out (i.e., the areas that are damaged).

The layout engine has to be integrated into the modules
and interfaces of an XML user agent. Usually, a core of the
user agent controls the overall operation of the user agent.
The core instantiates the layout engine and assigns the XML
document to be rendered for it. The layout engine access the
XML document through the general DOM interface. Dy-
namic changes of the XML document and the language spe-
cific functionalities are realized by the extended DOM ele-
ments. In addition, the layout engine has to operate with a
CSS engine, which provides the style attributes for each el-
ement in a DOM.

Finally, the layout engine needs a user interface toolkit
to render the text and the graphics. To operate also in the

3 Mozilla, http://www.mozilla.org/
4 Opera, http://www.opera.com/
5 Konqueror, http://www.konqueror.org/
6 Internet Explorer, http://www.microsoft.com/windows/ie/default.mspx

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

Requirement Reasoning

Technology support
Must support CSS. CSS is used to style the documents on the WWW.
Must be able to lay out the compound docu-
ments.

The XML documents may consist of several XML specifications. The
layout engine must be able to handle all kind of combinations.

Supports temporal dimension of the documents. To enable the multimedia presentations through XML, the layout en-
gine must reflect to temporal changes of a document.

Supports dynamic DOM operations. Since DOM can be modified dynamically, it is vital that the layout en-
gine can reflect the changes efficiently. That is, the operation must be
optimized in the dynamic cases.

Operation environments
Operates in the desktop computers, in the mo-
bile devices, and in the digital television set-top
boxes.

The Web applications are accessed by the various devices nowadays.

Interfaces
Cooperates with the other components of an
XML user agent.

The layout engine needs other components to be able to operate. Those
include XML processing, browser core, and CSS engine.

Table 1. The requirements of the layout engine.

digital televisions, the UI toolkit has to be compatible with
the HAVi7 toolkit.

4. Implementation

In this section, we introduce our implementation of an
XML layout engine. The first author has implemented the
layout engine discussed in this Section. The implementa-
tion is part of the X-Smiles XML browser [13]. The imple-
mentation supports most of the CSS Mobile Profile specifi-
cation. Currently, it has a partial support for float and align-
ing content. Styling of the borders and the background have
some deficiencies. Otherwise the specification is well sup-
ported. The implementation is discussed in more detail in
the following Subsections.

4.1. Layout Engine

An overview of the layout engine is depicted in Figure 1.
The layout engine consists of a renderer and a set of views.
In addition, it cooperates with a CSS style context, which
provides the styling attributes to the elements, and a DOM
document. The renderer is created by an XMLCSS module,
which handles the CSS styled documents in X-Smiles. Cor-
rect module for each media is defined by the Content Han-
dler, which is assigned by the browser window.

The general idea of the layout engine’s operation is as
follows. The XMLCSS module creates the layout engine

7 Home Audio Video Interoperability, http://www.havi.org/

Figure 2. Flowchart of the layout engine.

and sets a document to be rendered. The document is ac-
cessed through the DOM interface by the layout engine (cf.
Figure 2). The views are created according to the DOM el-
ements. Every view creates its child views. When the views
have been created, they are laid out and painted. The process
is repeated partially due certain operations (e.g., scrolling
the document, resizing the window, or modifying the con-
tent). The process is discussed in more detail in the next
Subsections.

4.2. Views

The views are the visual presentation of the DOM ele-
ments. They are in charge both laying out and rendering the
DOM elements. That keeps the layout engine more com-

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

Figure 1. Overview of the components of the layout engine and relation to the actual browser.

pact compared to the solution where laying out and render-
ing are separated to the different components.

Basically, every element has its own view. In addition,
there are some extra views to layout the document correctly
and an element may have more than one view (e.g., a text el-
ement can be divided to several lines each of which is repre-
sented by a view). The views form a tree-like data structure
just as the DOM.

The views can contain content and other views. A par-
ent encloses its children also physically (i.e., the size of the
parent extends over the children). A modification of a view
affects to a whole sub tree underneath it. Generally speak-
ing, there are two kinds of views, content views and branch
views. The content views represent the contents of a DOM
document (i.e., text, images, etc.), whereas the branch views
represent the elements in a DOM. An element’s view is de-
cided by its CSS declarations (mainly by a display value).
The content views take care of rendering the actual con-
tent of a document. An example of the view mapping and
the laying out is given in Section 5.1. The rendering is done
by Java’s painting mechanisms. The painting is done recur-
sively in a view tree. Only visible areas of a document are
painted. If user scrolls a document, it is repainted (cf. Figure
2, the Scroll operation). Parent view calls the paint method
to a child if the child intersects with the current visible area
of the document. In the case of repaint and dynamic modi-
fications, only damaged areas are painted again.

Every view contains information about its position and
size. The position is view’s absolute position in a flow and
is set during the laying out of a document (cf. Section 4.3).
The size of a view depends on the content it embeds and
size requirements it has. A view may have minimum, max-
imum, and preferred size requirements. The requirements

depend on the view and the content it embeds. The views
can also contain a graphical content like borders and back-
ground.

From the implementation point of view there are three
kind of views. The content specific views, like the image
and the text views, keep up the spatial information and take
care of the rendering of the content. The image view also
fetches the image data from the source. The CSS specific
views, like the block and the inline views, embed the con-
tent views and instruct the laying out according to the CSS
specification. Finally, there are additional views to structure
the content. For instance, when a paragraph is laid out, the
text has to be divided into rows. This is done through the
paragraph and the row views. The process is discussed in
more detail in Section 5.1.

4.3. Laying out

The layout process has two main duties. Firstly, to calcu-
late the sizes of the views, and secondly, to set the positions
for the views. To set the size for a view, the size of the con-
tent it embeds has to be known (i.e., the process must be
started from the leaves). On the other hand, to set the posi-
tion to a view, its parent position has to be known (i.e., the
process must be started from the root). Basically, both ends
(leaves and root) can be used as a starting point for the pro-
cess. Since the root view can be found unambiguously, it is
natural starting point of the recursion.

In the recursion, the position of a view is set when going
from root to leaves and the size when coming back (from
leaves to root). Actually, the size of a parent is updated ev-
erytime one of its children’s size is set. Thus, a parent can
provide correct position for each of its children during the

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

layout process. That way both sizing and positioning oper-
ations can be combined to a single layout call. Depending
on the view, its children are positioned either horizontally
or vertically. For example, a block’s children are one on the
other, whereas a row’s children are one after the other.

The position of a view could be stored either relative
to its parent or with the absolute coordinates. The advan-
tage of the relative position is a remaining positioning of
the successors even if the view is moved. However, that is
very rare operation in CSS based layouts. In addition, dur-
ing the painting one must use the absolute positions. Since
the painting is very common operation (e.g., when scrolling
the document or resizing the window etc.), it is more effi-
cient to store view’s position straight in the absolute coordi-
nates than calculate it everytime from the relative position.

4.4. Dynamic DOM Operations

The DOM document can be modified after its creation
by, e.g., scripts. Obviously, these modifications have to be
delivered to the layout engine. The modifications are caught
by the extended DOM elements. If something happens for
an element, it updates its style and also its children’s styles,
because some of the CSS properties are inherited to the
descendants. The view tree is modified according to the
changes.

If the modifications have an effect only on the layout of
the element in question, then the corresponding view tree
is created, laid out, and, if on the screen, painted again (cf.
Figure 2, the Change operation). The process is equivalent
to the Mozilla’s incremental layout [14]. However, if the
changes have an effect also on the other elements (e.g., the
size changes), then the whole affected view tree must be
also laid out and painted again, but not created, though (cf.
Figure 2, the Resize operation).

4.5. Temporal Control

The multimedia presentations can be formed either by
SMIL [2] or by Timesheets [10, 6]. SMIL has some limita-
tions [10, 11] to be used as a common multimedia declara-
tion language for all XML documents. Especially, when a
document consists of several XML languages. Also, the de-
sire of keeping the content and the presentational aspects of
a document separately does not realize when using SMIL.
The original design principle of XML is better fulfilled if
the content and the spatial and the temporal styling of a
document are separated into the three functional sections.
Those problems have been solved in Timesheets, which is
counterpart of SMIL. Both technologies are implemented in
X-Smiles.

The layout engine can be used as a media element in a
SMIL application and a SMIL application can be embedded

Figure 3. The layout engine running on a
handheld device.

into the layout engine. In the both cases, the documents are
compounded by reference.

Timesheets works the other way around. It is integrated
into a host language’s layout system, which makes it possi-
ble to control single elements inside a document (i.e., com-
pound by inclusion). The Timesheets implementation is in-
tegrated into the layout engine. In short, the Timesheet mod-
ule assigns temporal relations between the elements and sets
styles for the elements in temporal manner. The activity of
the elements and style variations are realized by pseudo-
classes, which are supported by the layout engine.

4.6. Integration into X-Smiles

X-Smiles suits well for the layout engine, because it is
implemented in Java programming language. Java is a good
alternative to develop a cross-platform software at the mo-
ment. Using Java, we could easily fulfill the operation envi-
ronment requirement. Normally, restricted device Java en-
vironments have a limited set of functions, which has to
be taken into account when implementing a software. The
desired selection of Java environments in this work were
Java 2 Standard Edition (J2SE) 1.2 or higher in the desk-
top computers, Personal Java 1.1 and Java 2 Micro Edition
(J2ME) Personal Profile in the mobile devices, and Multi-
media Home Platform (MHP) in the digital televisions set-
top boxes. The layout engine can be run in all of those en-
vironments. The layout engine running on J2ME Personal
Profile in the Nokia Communicator is depicted in Figure 3
and in the digital television environment in Figure 4. The
digital television integration is discussed in more detail in
[5].

The relation of the layout engine to the other major com-
ponents of X-Smiles is depicted in Figure 5. The layout en-
gine connects naturally closely to the XML processing since
it is DOM’s visual representation. The views, which corre-
spond to a DOM element (there are views which do not,
cf. Section 5.1), are stored to the respective element. At the

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

Figure 4. The layout engine running on a dig-
ital television.

Figure 5. The components of an XML user
agent.

same time, each view has reference to its DOM element.
This way the interface can be traversed to the both direc-
tions. When the DOM tree has been modified dynamically,
it takes care of the relayout and the repaint of the view tree
as discussed in Section 4.4.

The browser core instantiates the layout engine and sets
the document to be rendered for it. The layout engine is
created separately for each document. The CSS engine is
used through the DOM interface. The CSS engine creates
the styles from a style sheet and the layout engine creates
the views according to the styles.

The view tree is rendered through Java Abstract Win-
dow Toolkit (AWT) UI toolkit. AWT was chosen, because
it enables using the layout engine in several platforms. AWT
is basis for the other UI toolkits like Swing and HAVi,
whose support was required in Section 3. Text, images, and
graphics (e.g., background and borders) are drawn by Java’s
drawing methods. Widgets, such as form controls, are repre-
sented by components. Mouse events are delivered through
AWT Events. The events are caught by the layout engine
and transformed to DOM events.

Figure 6. Text layout illustration.

5. Results

The results of the implementation are discussed in this
Section. First, a simple layout problem is shown and how
the layout engine handles it. Second, two compound docu-
ment examples are introduced. Third, we describe the per-
formance measurements we made to evaluate the layout en-
gine. Finally, there is a discussion about the measurements.

5.1. Text Layout Example

Usually, text is laid out as flow layout. However, it can
preserve some preformation by the CSS declarations. Here,
we describe an example how a paragraph with text and an
inline element is processed in the layout engine. The pro-
cess is depicted in Figure 6. The document source is de-
fined in the upper left corner in the figure and the corre-
sponding DOM beneath it. The nodes with ”#” symbol in
the DOM tree refer to the text in the source. The DOM ele-
ments are mapped to the views as follows.

Since it must be possible to divide textual content into
the rows, there is a special view called paragraph view,
which handles the text layout. As can be seen, the p ele-

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

Figure 7. Screenshot of the Airline ticket
reservation system.

ment maps to the block view because it has block as a dis-
play value. When the text and the inline elements are added
to the block view, a container view (the paragraph view in
this case) is created for all the content. The paragraph view
lays out the text. It divides the content to the rows accord-
ing to the size requirements. The content views are children
of the rows. The row division is always redone along with
the laying out (e.g., when the browser window is resized).
In the example, also the anchor element has been divided
into the two rows. Thus, the DOM element corresponds to
the two inline views. Also, its content node corresponds to
the two content views. The other content has unambiguous
DOM - view correspondence (the pointers are missing from
the figure). The paragraph and the row views are additional
views for laying out the content properly. They do not have
the corresponce in the DOM.

5.2. Compound Document Examples

In this Subsection, the use of the layout engine in two dif-
ferent applications is shown. First, an airline ticket reserva-
tion system is realized with XHTML + XForms (cf. Figure
7). All the form components are XForms elements, which
are compounded by inclusion. The layout is defined by CSS.

The other demonstration is a multimedia application. It
describes how a distant education can be realized with the
XML languages. The presentation comprises a video about
a lecturer, a slide show next to the video, and an outline be-
neath the slide show (cf. Figure 8). The slide show is syn-
chronized with the video and the lecture can be browsed

Figure 8. Screenshot of the Distance Educa-
tion Application.

through the links in the outline. The synchronization and
the browsing has been done with Timesheets and the lay-
out through XHTML + CSS.

5.3. Performance measurements

We did some performance measurements to evaluate the
implementation. We measured the total processing time and
the separate phases of the processing. In addition, we ex-
amined runtime memory consumption. The tests were done
with five documents, which differed by size from each other.
The four biggest documents were derived from the smallest
document by multiplying its content 2, 4, 8, and 16 times.
The tests were done on PC with 3.06 GHz Pentium 4 pro-
cessor and 512 MB memory.

In the processing time evaluation, we measured the time
of creating a view tree, laying out the tree, and painting the
document. The total processing time includes also a pre-
processing, which comprises fetching a document, parsing,
and creating and assigning the styles. The results of the doc-
ument processing time tests are depicted in Figure 9 (a).

The laying out takes most of time in the layout engine.
Elapsed time also grows almost linearly according to the
document size. View creation is not that time consuming,
because it basically consists of just object creations in con-
trast to the laying out, which contains a lot of calculations.
The painting time is basically constant in every case. This is
a consequence of the fact that only the visible areas of a doc-
ument are rendered. However, it is noteworthy, that painting
is redone every time when part of a document becomes vis-
ible during scrolling it. In other words, the painting time in
these tests represents only the painting of the first screen.

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

Figure 9. (a) The results of the processing
time measurements and (b) the runtime mem-
ory consumptions of the documents.

The runtime memory consumptions are shown in Fig-
ure 9 (b). As can be seen, the X-Smiles’ static memory con-
sumption is fairly large and the share of XML + CSS pro-
cessing is small with the smallest documents. The memory
consumption grows linearly along with the document size.
The growth curve is slowed down a little bit due optimiza-
tion of the CSS engine’s memory consumption.

5.4. Discussion

The results of the performance measurements arouse a
question could the layout engine, especially the laying out,
be optimized. The optimization should be realized same
way as the painting is done currently. That is, the layout en-
gine would lay out only the visible views at the time and
continue laying out along with the viewing of a document.
That would definitely speed up the layout process especially

with large documents, but, on the other hand, slow down
viewing the page. Since the absolute layout times are not
very long at the moment, the trade off to slow down the
viewing should not be remarkable, either. There would also
be some problems to do the layout if all the views are not
created. However, without closer look at the problem, it re-
mains as an open question.

Another fact shown by the measurements is the work-
able implementation of the dynamic modifications. We have
minimized the view creation and the laying out operations
in the dynamic cases. Since they are the most time consum-
ing operations in the layout engine according to the mea-
surements, the implementation decisions can be found out
reasonable.

6. Future Work

There are XML specifications, which do not use CSS
layout model. The compound documents consist of a host
language and one or more embedded languages. Some of
the XML languages can be both hosts and embedded (e.g.,
XHTML, SVG, and X3D), whereas others can only be em-
bedded (e.g., XForms, MathML, or XML Events). Depend-
ing on the combination of the languages, there are three
different methods to render the documents. First, the lay-
out of embedded language may depend on host language
(e.g., SVG + XForms). In that case, the embedded elements
are rendered using the host language’s layout model. Sec-
ond, a host language may provide a region for embedded
elements to lay out themselves (e.g., XHTML + MathML).
In the given region, embedded elements are rendered us-
ing their own layout model. Finally, the documents could
be rendered using overlay rendering (i.e., alpha blending).
The elements are mixed in a document and rendered us-
ing their own layout model on top of each other (e.g., SVG
+ XHTML). The layout engine should be able to handle all
the three rendering methods.

A focus manager keeps track all the focusable content,
like links and widgets, in a document. It is used, for in-
stance, in the digital television environments and in the
mobile phones, which do not have a pointing device (e.g.,
mouse). The navigation of a document is then realized ei-
ther two dimensionally through the arrow keys or one di-
mensionally through the next/previous key (i.e., like the tab
key). The navigation order must be decided by the focus
manager. The order is not necessarily unambiguous, since
the layout may change temporarily and the compounded
documents maybe scrollable, etc. Even then, the naviga-
tion order must be equivalent to the visual order of the
focus points all the time. Focus manager cooperates with
the layout engine in two ways. Firstly, it fetches the focus
points from the layout engine and, secondly, the layout en-

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

gine highlights the current focus point given by the man-
ager.

7. Conclusions

The layout engine is a critical component of a novel
XML user agent. We have defined the requirements for such
a layout engine. The requirements relate to the features of
the layout engine, the operation environments, and the in-
terfaces with other needed components. We have imple-
mented a layout engine according to the requirements and
integrated it into X-Smiles XML browser. We were able to
fulfill the requirements.

We did performance measurements for the layout engine.
The results show that there could be need for the optimiza-
tion. However, as discussed above, it is not trouble-free to
realize. The dynamic modifications are already optimized
and the measurements indicates that the optimizations are
directed to the correct operations.

To make the layout engine complete, there are still few
features to implement. The most important is a full support
for the compound documents. That requires implementation
of the overlay rendering. Another important issue is the in-
tegration of a focus manager, which is needed mainly in the
digital television environment, in the PDAs, and in the mo-
bile phones.

Acknowledgments

The author Mikko Pohja would like to thank Nokia
Foundation for providing support during the research. We
would also like to thank Pablo Cesar and Mikko Honkala
for valuable comments during the work.

References

[1] D. Appelquist, T. Mehrvarz, and A. Quint. Compound
Document by Reference Use Cases and Requirements Ver-
sion 1.0. Working draft, W3C, April 2005. Available at
http://www.w3.org/TR/2005/WD-CDRReqs-20050404/.

[2] J. Ayars. Synchronized Multimedia Integration Language
(SMIL 2.0). W3C recommendation, W3C, August 2001.
Available at http://www.w3.org/TR/smil20/.

[3] T. Bray. Extensible Markup Language (XML) 1.0. W3C
Recommendation, W3C, February 2004. Available at
http://www.w3.org/TR/REC-xml/.

[4] J. Buchner. Hotdoc: a framework for compound documents.
ACM Comput. Surv., 32(1es):33, 2000.

[5] M. Honkala, P. Cesar, and P. Vuorimaa. A Device Indepen-
dent XML User Agent for Multimedia Terminals. In IEEE
Sixth International Symposium on Multimedia Software En-
gineering, pages 116–123, December 2004.

[6] T. Jalava, M. Honkala, M. Pohja, and P. Vuori-
maa. Timesheets: XML Timing Language. Mem-
ber submission, W3C, April 2005. Available at
http://www.w3.org/Submission/xml-timing/.

[7] Q. Li, M. Y. Kim, E. So, and S. Wood. XVM: A Bridge be-
tween XML Data and Its Behavior. In WWW ’04: Proceed-
ings of the 13th international conference on World Wide Web,
pages 155–163. ACM Press, 2004.

[8] V. Quint and I. Vatton. Techniques for authoring complex
XML documents. In DocEng ’04: Proceedings of the 2004
ACM symposium on Document engineering, pages 115–123.
ACM Press, 2004.

[9] I. Satoh. Mobile agent-based compound documents. In Do-
cEng ’01: Proceedings of the 2001 ACM Symposium on Doc-
ument engineering, pages 76–84. ACM Press, 2001.

[10] W. ten Kate, P. Deunhover, and R. Clout. Timesheets - Inte-
grating Timing in XML. In WWW9 Workshop: Multimedia
on Web, Amsterdam, Netherlands, May 2000.

[11] J. van Ossenbruggen, L. Hardman, J. Geurts, and L. Rut-
ledge. Towards a Multimedia Formatting Vocabulary. In
Proceedings of the twelfth international conference on World
Wide Web, pages 384–393, Budapest, Hungary, May 2003.

[12] F. Vitali, L. Bompani, and P. Ciancarini. Hypertext Function-
alities with XML. In Markup Languages: Theory and Prac-
tice 2.4, pages 389–410. MIT Press, 2001.

[13] P. Vuorimaa, T. Ropponen, N. von Knorring, and
M. Honkala. A Java based XML browser for consumer
devices. In 17th ACM Symposium on Applied Computing,
pages 1094–1099, Madrid, Spain, March 2002.

[14] C. Waterson. Notes on HTML Reflow. Techni-
cal report, Mozilla, December 2004. Available at
http://www.mozilla.org/newlayout/doc/reflow.html.

[15] C. Xiaolu, C. Jing, G. Yongging, and S. Baile. XML Arouse
the WEB Architecture Revolution. In 5th International Com-
puter Science Conference on Internet Applications, pages
461 – 466, Hong Kong, China, December 1999. Springer-
Verlag, London, UK.

Proceedings of the Third Latin American Web Congress (LA-WEB’05)
0-7695-2471-0/05 $20.00 © 2005 IEEE

