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Vectorization converts classical scalar optimization formulation,
which strictly separates the objective from constraints, into
a vector-based optimization, transforming constraints into objec-
tives. Effectively, the search is not conducted anymore for a single
optimum, but for a set of Pareto optima between the original
objective and transformed constraints. Constraint grouping
enhances handling of multiple constraints for vectorized problems,
by combining several constraints within a single-objective func-
tion, thus reducing the computational time and computational
difficulties of high-dimensional spaces created by vectorization.
This paper formulates and investigates these two concepts with
respect to design of marine structures. It analyses their effects on
the possibility to improve the flexibility of optimization in a prac-
tical environment, by implementing them within a simple genetic
algorithm. Obtained results of vectorization applied to realistic
weight optimization problem are encouraging when compared
with the results of the classical scalar form optimization, showing
a significant improvement in magnitude as well as in reduced
computation time needed to reach the optimum.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Optimization is an important part of modern design of marine structures. It helps designer to
determine the best combination of parameter values using an appropriate search algorithm. If paired
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with the holistic experiences of designer, optimization should lead to an increase in product
competitiveness. Yet, optimization is regularly laid with challenges. In design of marine structures
strength and stiffness formulations are higher order polynomials of design parameters, while the
objective functions, e.g. weight or cost, are rarely linear. This situation leads to a non-convex feasible
domain of alternatives that cannot be readily handled using the classical ‘text-book’ methods of
mathematical programming, e.g. gradient-based methods, linear or quadratic programming. The
possibility of premature convergence is then high, banning significant improvements. Yet, if this
feasible domain is highly constrained and comprehensive, so that it can be either sequentially line-
arized or separated into a series of convex problems, the classic methods of mathematical program-
ming can still be utilized. Zanic et al. [1] and Rigo [2] show on different practical applications, including
thousands of constraints and hundreds of design variables, that these approaches can result in
significant improvements within a favourable computational time period.

However, when problems with non-comprehensive, disconnected or discrete feasible domains
occur, e.g. in the conceptual stages of design where design limitations are precisely unknown, espe-
cially for vibration-, or production-based limitations [3:588], the optimization of marine structures
becomes impractical in the form stated above. But, the aid can be found in the application of multi
point exploration methods, e.g. Genetic algorithms (GAs). GAs show the capability to deal with these
problems as they operate solely with the objective and constraint values and not with their derivatives;
see Refs. [4–10] for some successful applications in design of marine structures. GAs evaluate, compare
and operate on a population of design alternatives in parallel, and this specifically allows them to tackle
complicated design spaces, but it also potentially leads to a large computational time consumption due
to a sheer necessity of evaluating all alternatives. And this precisely should be avoided in the early
design stages, where quick computations are essential. Therefore, GAs are often employed to optimize
using as few functional evaluations as possible. But, if the population size is reduced, or its diversity is
not maintained, GAs will have a difficulty to map the design space properly, generating designs in the
close neighbourhood of only one, often unsatisfactory local minimum. Control of the population
diversity is performed via GAs control parameters, and their choice is essential for producing good
results; see Ref. [5]. But this choice is difficult in practice, as real problems leave no luxury of fine tuning
the control parameters. Thus, their number should be reasonably reduced, or their influence on the
performance should be decoupled.

To bridge these problems and maintain the positive characteristics of GAs, Klanac and Jelovica [11],
instead of devising another algorithm, formulate the concept of vectorization within a simple GA to
tackle realistic single-objective structural optimization problems. Vectorization addresses conversion
of constraints into objectives, turning single-objective, or scalar optimization into a special class of
multi-objective or vector optimization. Hence the name: vectorization. Several authors in Refs. [12–15]
discuss similar approaches, indicating improved optimization performance. The choice of using
a simple GA instead of a sophisticated and complex counterpart is the result of a reduced number of
control parameters existing in it. Even though a counterpart is probably more efficient in its search, the
more complex the algorithm, the more parameters it involves. Hence, a desire is to raise the perfor-
mance level of a simple GA strictly through vectorization.

This GA, named VOP (abbreviating ‘vectorization’ and ‘optimization’), has been applied so far in
several studies. Klanac and Jelovica [16] and Besnard et al. [17] respectively present its applicability for
structural multi-objective optimization and compare it with other more established commercial codes
and tools, such as MAESTRO [18,19] and LBR5 [20]. Other applications of VOP in design of marine
structures have also been reported, see Refs. [21,22], and all returned results up to the current
standards.

In this paper, besides methodical theoretical argumentation of its causes and effects, vectorization is
compounded by another concept of constraint grouping. Constraint grouping is introduced to allow
reduction of the total number of objectives created when ‘vectorizing’ large-scale problems with many
constraints by combining constraints into one or more additive functions. This quickens the optimi-
zation as the problem size and a number of function calls decrease. In that sense, this study shows that
by vectorizing and constraint grouping the large-scale structural optimization, applying only a simple
GA, cannot only approach the global optimum better, but can do so more time efficiently than if dealing
strictly with the original scalar formulations.
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The Chapter 2 thus discusses vectorization and introduces the constraint grouping, while in Chapter
3 the extended VOP algorithm is described, capable now of solving scalar, vectorized and constraint
grouped formulations. Chapter 4 brings the results of the application of VOP to the discrete single-
objective optimization problem of an 88 m long fast passenger/car ferry, while Chapters 5 and 6 close
the paper with some reflections, discussion and conclusions.

2. The vectorization and constraint grouping

2.1. Fundamentals

Consider the following relaxed multicriterion, or vector optimization problem (VO) over a vector of
design variables x

min
x˛X

n
f0ðxÞ;.fjðxÞ;.; flðxÞjj˛½1; l�

o
; (1)

where any vector x describes one design alternative belonging to the set X which contains all the
possible design alternatives between every variable’s lower xmin and upper bounds xmax. Function f(x)
is a criterion to be minimized. Obviously, X then contains both feasible, or acceptable, and infeasible
design alternatives. Contrary to the typical optimization, which operates on a feasible domain of design
alternatives U

U ¼ fx˛XjgðxÞ � 0g; (2)

where g(x) is the vector of constraints, VO operates over the infeasible domain, and does not differ
between the two. Let now all but one of the criteria, f0(x), in VO be understood as constraints gj(x),
where f0(x) is then the objective1 and let one solution of VO be equivalent to the solution of the
following scalar formulations (SO)

min
x˛U

f0ðxÞ: (3)

This procedure for solving single-objective constrained problems using vector optimization is
addressed as vectorization. Now, the solution of SO, the optimum x**, is the minimum of the objective f0
within the feasible domain, while in VO, due to the operation over infeasible domain, it is conditionally
Pareto optimal. Therefore, by properly defining the VO and solving it for a set of Pareto optima, or
Pareto frontier, it is possible to solve the SO for x**. Generally, any alternative x belonging to a Pareto
frontier of VO, bX , is weakly Pareto optimal, where bX is defined as

bX ¼ nx˛X
���dxk; f

�
xk
�
< f ðxÞ;cxk˛Xyx

o
; (4)

and some alternatives are strongly Pareto optimal if

dxk; f
�

xk
�
� f ðxÞ;cxk˛Xyx: (5)

where f stands for a vector of criteria of Eq. (1).2

2.2. Definition of VO through constraint representation

Structural optimization regularly yields optimal design alternatives on the boundaries of a feasible
domain. Therefore, minimizing the constraints in VO will most likely ensure the lower objective values.
1 Not necessarily all but one criterion in VO need to be considered for constraints. Klanac and Jelovica [16] exploit this fact to
perform optimization of both single- and multi-objective problems using a single problem formulation.

2 Inequality symbol such as ‘ �’ when used here with vectors considers a specific meaning that vector components on the left
can separately be smaller or equal to a criterion on the right. Similar symbols used in the text ‘<, >, �’ follow the same logic.
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However, just simply minimizing the constraints in VO would lead to a general infeasibility. Therefore,
the constraints need to be transformed, so that their minimization leads to zero, approaching their
boundaries of feasibility. Osyczka et al. [13] and Deb [14] thus represent the constraints with the
Heaviside function

fjðxÞ ¼ H
h
gjðxÞ

i
; (6)

where

H
h
gjðxÞ

i
¼
(
�gjðxÞ; if gjðxÞ < 0

0; otherwise:
(7)

Even though the constraints are relaxed, this representation differentiates between the feasible and
infeasible designs and assures that the optimum x** is Pareto optimal in VO. Yet, this representation
does not preserve the information on the non-negative deviation from the constraint boundary, so for
the designs in the feasible domain, constraint boundaries, as seen in Fig. 1, stretch now inwards over
the entire domain, with loss of crispness. Therefore, the actual positions of design alternatives in the
feasible domain of the design space become now irrelevant, and designs differ solely on the magnitude
of the objective. To avoid this loss of information an alternative – ‘absolute’ – representation is proposed
in Ref. [11]

fjðxÞ ¼
���gjðxÞ

���: (8)

All the information on the position of feasible designs is now preserved, but the clear distinction
between the feasible and infeasible designs is dropped, and the infeasible domain in Fig. 1a now
mirrors into a feasible part of design space (Fig. 1c), but, preserving the magnitude and crispness of the
original feasibility boundary.
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Fig. 1. Effects of constraint transformation of a) original design space applying b) Heaviside representation and c) ‘absolute’
representation.
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According to the definition of Eq. (4), the Pareto frontier bX contains all the global minima of the
criteria in VO. But for the ‘absolute’ representation, bX might then exclude the optimum x** as there
exist infeasible designs which probably posses lower values of f0 and dominate over it. But in that
sense, any design alternative ‘sitting’ on a constraint, and thus having

fjðxÞ ¼ 0 for any j˛½1; l� (9)

will be at least weakly Pareto optimal and a member of bX . Therefore, if the optimum x** is placed on the
boundary of a feasible domain it is guaranteed a weak Pareto optimality, and is a proper solution of VO.
Obviously then, by solving the VO with ‘absolute’ representation, the search algorithm will prefer those
alternatives which are on the constraint boundaries as they are members of bX , and those which are in
their neighbourhood.

Following then the conclusions of Pareto optimality of x** for both Heaviside and for ‘absolute’
representation, it is possible to substitute the search for the scalar optimum in SO with the search for
the Pareto front in VO. On the other hand, obtaining the overall Pareto frontier of VO might be too
expensive, but also computationally difficult when involving a high number of constraints. It is
worthwhile then to map only the desirable area supposed to contain the scalar optimum, and (or)
reduce the size of the problem by grouping constraints.

2.3. Constraint grouping

Practical problems often carry high number of constraints and therefore demand, during optimi-
zation, a high number of function calls. Also, once vectorized such a problem possesses extremely high
number of dimensions in the objective space with possibly excruciating non-linearities. Then again, the
same problem could be also simply reduced by grouping some of the transformed constraints, p to q,
within the aggregated function Fq

pðxÞ of their linear sum

Fq
p ðxÞ ¼ lpfpðxÞ þ.þ lqfqðxÞ: (10)

Let then a VO problem be expressed as the reduced problem (VOR)

min
x˛X

n
f0ðxÞ; Fr�1

1 ðxÞ; Frþk
r ðxÞ.; flðxÞ

o
: (11)

Koski and Silvennoinen [23] prove the validity of the reduced approach for the ordinary multi-
objective problems. Based on their conclusions the Pareto optimal solution of VOR is also Pareto
optimal in VO, but in general the opposite is not valid. Thus, the Pareto front of VOR is only a part of the
overall Pareto front of VO.

Work of Osyczka et al. [13] can be applied to further simplify VOR by grouping all of the constraints
into a single aggregated function Fl

1, with l1 ¼ . ¼ l1 ¼ 1. The multi-objective problem in Eq. (11)
reduces then to the following bi-objective problem

min
x˛X

n
f0ðxÞ; Fl

1ðxÞ
o
: (12)

It is interesting also to notice how the Eq. (10) of constraint grouping is equivalent to the Lagrangian
dual of the constrained optimization problem. If all the constraints and the objective would be grouped

min
x˛U

FðxÞ ¼ l0f0ðxÞ þ
Xm
j¼1

ljfjðxÞ; (13)

and this vectorized problem is minimized to the optimum x**, the following Karush–Kuhn–Tucker (KKT)
necessary optimality conditions will be satisfied:

VFðx��Þ ¼ l0Vf0ðx��Þ �
Pm

j¼1 ljVgjðx��Þ ¼ 0
lj � 0; ljgjðx��Þ ¼ 0; gjðx��Þ � 0; j˛½1; l�: (14)
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According to Bazaraa et al. [24], Eq. (13) represents then an unconstrained dual to SO. Therefore, the
vectorized optimization problems in Eqs. (11) and (12) are partial duals to the SO, and as any constraint
can be a linear combination of some other functions, both vectorized formulations, VO and VOR, are
partial duals of SO. In comparison to the ‘strict’ dual of Eq. (13), a partial dual would contain then,
besides the scalar optimum x**, additional equivalent solutions. In this case they are other Pareto
optimums of VO or VOR. Also, since partial or total constraint groupings are only partial duals, factors l

can be of any value for the optimum x** and do not need to follow the KKT conditions. Nevertheless, the
chosen values of l would influence on the search process through their effect on formation of the
reduced objective space.

To show how the reduced representation of VO affects the possibility to find the scalar optimum and
to discuss on the positions of the scalar optimum within both VOR and VO, assume now three Pareto
optimal points: A ¼ ðf0ðxAÞ; Fl

1ðx
AÞÞ, B ¼ ðf0ðxBÞ; Fl

1ðx
BÞÞ and D ¼ ðf0ðxDÞ; Fl

1ðx
DÞÞ, in the attainable

space LR of the reduced problem VOR in Fig. 2b, where constraints from Fig. 2b are represented with
the absolute function. Let A, represent the scalar optimum x** (see also Fig. 2a), and let B and D posses
the properties f0ðxBÞ ¼ min f0ðxÞ and Fl

1ðxDÞ ¼ minFl
1ðxÞ respectively. Hence, f0ðxDÞ > f0ðxAÞ > f0ðxBÞ,

and since A contains x** it needs to follow that Fl
1ðxDÞ < Fl

1ðxAÞ � Fl
1ðxBÞ. Assume now an additional

point C ¼ ðf0ðxCÞ; Fl
1ðxCÞÞ in LR, having f0ðxAÞ < f0ðxCÞ. Let C contains some k-th Pareto optimal designbxk in the objective space L of VO. Thus, fjðx��Þ � fjðbxkÞ for at least one j˛½1; l�, but since F is a surjection it

does not strictly follow that Fl
1ðx��Þ � Fl

1ðxkÞ, which means that bxk is not guaranteed to be Pareto
optimal in a reduced problem. As x** is equivalent to bxk, both being Pareto optimal in VO, having A, as
a Pareto optimum point in VOR, contain x** is possible, but not certain. Actually only for the special
class of VOR, where all the active constraints at optimum are not grouped, will be possible to guarantee
the Pareto optimality of x** in VOR, but knowing these active constraints a priori is practically
impossible for realistic problems.

Hence, for the general class of problems the scalar optimum or any other Pareto optimal design in
VO is guaranteed to be Pareto optimal in VOR only if it is contained either within B or D in Fig. 2b. And
this actually holds for when representing constraints with the Heaviside function. The optimum x**

can be readily located because the point A in Fig. 2c will be equivalent to the point D of Fig. 2b, since
according to Eq. (7) all feasible designs possess fjðxÞ ¼ 0; cj˛½1; l� and are eventually stacked above
the optimum. Point B strictly represents an infeasible design(s) for the Heaviside constraint repre-
sentation, and probably for absolute representation, because the objectives’ minima in X regularly
occurs after the constraints are broken, see Fig. 2a, assuming that U4X. By maintaining the relative
positions of the points A–D in LR this bi-objective description is directly expandable for the multi-
objective VOR of Eq. (11), and it is also then expandable over and generally applicable for VO of
Eq. (1).
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Fig. 2. a) Design and reduced objective spaces applying b) ‘absolute’ constraint representation and c) Heaviside representation with
the characteristic points.
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3. Implementation to a simple genetic algorithm

Vectorized optimization problem as presented above could be solved with any multi-objective
optimization method, e.g. Ref. [15]. Here however, a simple genetic algorithm, VOP [16], is considered,
which capabilities are now expanded to solve both vectorized and reduced vectorized problems. VOP is
a binary coded algorithm consisting of:

a) generator for the creation of a random initial population of design alternatives,
b) fitness calculator for a population of design alternatives,
c) weighted roulette wheel selector of design alternatives for mating pool, operating on the basis of

computed fitness values,
d) sub-routine executing single-point cross-over between the two consecutive alternatives and per-

bit mutation,
e) main routine running the search process and filtering the infeasible alternatives for the final

presentation of results.

All the optimization formulations, the SO, VO and VOR can be solved with this algorithm, by simple
variation of the fitness calculator. Therefore, the remainder of this chapter describes the fitness eval-
uation, while other parts of the algorithm are standard and well known, and can be found in e.g. Refs.
[14,25].
3.1. Applying VOP to the scalar formulation SO

For SO, the fitness 4 of some design alternative x, within some population of alternatives Xi in the
generation i, can be considered through a standard penalty approach based on Refs. [14,25,26].

41ðx;R; iÞ ¼ max
cx˛Xi

�
f0ðx; iÞ þ Pðx;RÞ

�
� f0ðx; iÞ � Pðx;RÞ; (15)

where P(x, R) is the penalty function, defined following the Ref. [27]

Pðx;RÞ ¼ R
Xl

j¼1

H
h

g jðxÞ
i
: (16)

The first expression in the right hand side of Eq. (15) determines the maximum of the penalized
objective value. This constant is used to convert the minimization problem of SO into the problem of
fitness maximization which GAs are usually meant to solve. The applied expression avoids negative
fitness values and assigns zero fitness for the ‘worst’ design alternative. The Heaviside function in Eq.
(16) is as in Eq. (7). In Eqs. (15) and (16), as can be seen, both objective and constraints are
normalized. f0ðx; iÞ thus stands for a normalized value of the objective, calculated following the
Ref. [28]

f0ðx; iÞ ¼
f0ðxÞ � min

cx˛Xi
f0ðxÞ

max
cx˛Xi

f0ðxÞ � min
cx˛Xi

f0ðxÞ
: (17)

Generally, the constraint functions in optimization of marine structures are defined in the form of the
difference

gjðxÞhajðxÞ � bjðxÞ � 0; (18)

where a(x) indicates some structural capacity such as the critical buckling stress, or the actual plate
thickness, while b(x) stands for the structural demand caused by operations, e.g. hull girder stresses, or
required plate thickness and profile stiffness. Constraints in that format can be then easily normalized,
following the recommendations of Deb [14]
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g jðxÞh
aðxÞ
bðxÞ � 1 � 0: (19)

All constraint values now become of the same order of magnitude which enables the use of a single
penalty factor R for all constraint functions [14]. Since the objective is normalized within a unit interval,
where 0 identifies the objective’s minimum in a population, and 1 its maximum, the normalized
constraint values will be of the same order of magnitude with the objective as well.

This fitness formula penalizes all infeasible designs based on their total normalized distance to the
constraints they break, where the severity of penalization can be adjusted with the penalty parameter
R. However, its proper size will depend on the problem, and should be chosen carefully. If the sum of
the normalized constraint deviations in Eq. (16) is in the same order of magnitude as the normalized
objective, higher values of R, e.g. already for 10 and larger, lead to a lesser chance of selecting infeasible
designs for mating. A high value of R causes predominantly high fitness values for the feasible alter-
natives, which then sets them apart from all infeasible alternatives that significantly break constraints.
Unfortunately, a high R causes also a ‘levelling’ of the objective function, so that the differences in its
value between alternatives within one population become irrelevant. The same difference in the
objective is now worth R times less in fitness than the same difference in constraint deviation. This
effectively distorts the objective function so severely that it might attain artificial local optima [29] and
cause premature convergence. On the other hand, a low value of R, e.g. at 1 and under, will not distort
the objective, but will reduce the distinction between the feasible and infeasible alternatives, possibly
yielding completely infeasible populations.

To avoid this difficult choice for the proper value of the penalty parameter, Deb [29] proposed an
intelligent solution, in which the penalty parameter is not required to set apart feasible and infeasible
alternatives, nor to avoid objective distortion. Following his approach, the fitness function for the
problem SO can now be defined with the following function:

42ðx; iÞ ¼
�

max
cx˛Xi

½fmax þ PðxÞ� � f0 ðx; iÞ; if x˛U; max
cx˛Xi

½PðxÞ� � PðxÞ; otherwise; (20)

where the penalty function is now simply a sum of the normalized negative constraint deviations

PðxÞ ¼
Xl

j¼1

H
h
gjðxÞ

i
: (21)

fmax is the normalized objective function value of the worst feasible alternative. In difference to the first
fitness function, infeasible alternatives are compared now based only on their constraint violations,
while the feasibles gain their fitness based on the objective function value. Moreover, feasible alter-
natives strictly posses better or equal fitness.

3.2. Applying VOP to the vectorized formulations VO and VOR

Vectorized optimization problem is solved utilizing the information from the objective spaces L and
LR. The convenient basis for fitness is then the Pareto optimality within a population of design
alternatives, but in this case it is insufficient, as the interest is only in a part of an overall Pareto frontier
where the optimum is expected to occur. Accounting for this, the following fitness function, 43, is
applied:

42ðx; iÞ ¼
(

max½dðx; iÞ� þ 1
dðx;iÞ; if x˛bXi

;

dðx; iÞ; otherwise;
(22)

which separates designs on the basis of attained Pareto optimality bXi for a population of design
alternatives bXi within a generation i, and ranks alternatives based on the distance d(x,i) to the reference
point I in the objective space. Following Ref. [16], I is chosen as the set containing the minimum values
of every objective attained within a population of generation i.
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IðiÞ
n

min
x˛Xi

fjðxÞ;cj˛½0; l�
o

(23)

Since all constraints, being grouped or not, are now treated as objectives, they are not normalized
according to the Eq. (19), but according to the Eq. (17), so I¼{0}. Following Osyczka et al. [23] the fitness
function applies the weighted Euclidean metrics as a measure, so the distance to I is found with

dðx; iÞ¼
(P

j
wj

h
�fj ðx; iÞ

i2
)1=2

; s:t: 0 < wj < 1;
X

j

wj¼ 1; cj˛½0; l�: (24)

Similarly to the Penalty-based fitness function of Eqs. (15) and (20), fitness of Eq. (22) combines the
information on the original objective and on the constraints. Furthermore, the preferred alternatives –
being now Pareto optima instead of feasibles – strictly possess higher fitness than the non-preferred as
is the case with the Deb’s fitness functions. Likewise to the same fitness function, the non-preferred
alternatives are effectively forced into feasibility by the assignment of higher fitness to those alter-
natives which are further away from any boundaries. Besides these similarities, there are a couple of
profound differences.

First of all, the use of inverse expression to calculate the fitness of the preferred alternatives
pressures the algorithm, due to the quadratic ranking, to avoid selecting any non-preferred alterna-
tives. Usually, such strong preferences are avoided as they cause reduction in population’s diversity. But
since alternatives are ranked now on the basis of both the original objective and constraints, any design
alternative with similar distance will be equally preferred independently if it has low original objective
value, or it’s deviation from the constraint boundaries is small.

The second, key difference to the Penalty-based fitness, relates to the physical characterization of
the fitness function in Eq. (22). The algorithm is now, with the choice of weighting factor, instructed to
search in the particular parts of the objective space where it is expected to find the original objective’s
optimum x**. In that sense, for the problems adopting Heaviside representation, the weighting coef-
ficient w0 of the objective function should be taken as

0zw0 � wj; cj˛½1; l�; (25)

since the relative position of the optimum is known. This concentrates the search within the neigh-
bourhood of the point A, seen in Fig. 2c, close to all the feasible designs, where fjðxÞz0; cj˛½1; l�. But if
w0¼ 0, the objective’s values bear no influence of fitness, hence the minimum constraint on w0.

In Fig. 3 the characteristic points, A–D from Fig. 2a and b, are extended with several more to
illustrate the biased search for the VO problems applying the ‘absolute’ constraints representation.
Point A is the feasible objective minimum, and as it ‘sits’ on the boundary of a constraint g2 (see
window), it is also Pareto optimal. Point B, which is infeasible and has the lowest value of the objective
for the considered points, is again Pareto optimal due to its position on a boundary of the constraint g1.
Point D is also Pareto optimal, and has the highest objective value of the Pareto front.

It is inefficient then to focus the algorithm to search strictly for one active constraint boundary, as
there might be many to investigate. However, the focus could be shifted more towards a particular area
of the objective space, where the values of the objectives are small. GA should then, through gener-
ations, notice active boundaries and map the points there as Pareto optimal. The higher fitness will be
then given to design alternatives with lower values of objectives. Therefore, an opposite strategy can be
applied than for Heaviside representation, in which the importance of minimizing the objective is
much greater than minimizing the constraints. This can be formalized as

w0[wj;cj˛½1; l�; (26)

As the area in focus consists of low objective values, the amount of obtained feasible designs can
also be low. As this will inevitably impede the optimization, the fitness function in Eq. (22) can be
modified by preferring, besides the Pareto optimality, the feasibility of design alternatives, see Eq.
(27). This way Pareto optimal, but infeasible alternatives will be prevented to enter into next
generation.



Ω

Fig. 3. An objective and a design (in window) space for a vectorized single-objective constrained problem. Notice the correspon-
dence between the objectives f and f0, and the constrains g1 and g2 and objectives f1: and f2. Pareto frontier is indicated by a dotted
surface.

A. Klanac, J. Jelovica / Marine Structures 22 (2009) 225–245234
44ðx; iÞ ¼
(

max½dðx; iÞ� þ 1
dðx;iÞ; if x˛

�
UXbXi

	
;

dðx; iÞ; otherwise:
(27)

For the VOR problems involving ‘absolute’ representation, the choice of the w0 follows that of VO
with the same constraint representation. However, as shown in the previous section, the Pareto
optimal alternative in L is not guaranteed the Pareto optimality in LR. Therefore, applying the Pareto
optimality criteria to separate preferred alternatives could be too strict in selecting feasible designs
with low objective values. Since distance function is critical for utilizing the information from the
objective space, a final fifth fitness function can be considered in the following form:

45ðx; iÞ ¼
(

max½dðx; iÞ� þ 1
dðx;iÞ; if x˛U;

dðx; iÞ; otherwise;
(28)
4. Optimization of a fast ferry

A practical example of minimum weight design of a fast ferry (see Refs. [11,16,17]), seen in Fig. 4, is
revisited to illustrate the presented vectorization and constraint grouping concepts. Six novel problem
formulations are analyzed, as presented in Table 1, combining vectorization and constraint grouping
(VO and VOR), and their results are compared with the classical scalar formulation. The scalar
formulation is solved considering two different fitness functions 41 and 42, as given in Table 2. The idea
behind these expanded calculations is also to realize the effects of constraint representation and
constraint grouping, as well as the role that the loss of information on both feasibility and infeasibility
affects the optimization process and algorithms performance.
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Fig. 4. A half of the ferry’s midship section with marked design variables x.
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4.1. The structural design model

Ship is assumed to be in the early concept stage of structural design. It is considered in a fully loaded
condition, for both crest and hollow landings, with the respective design bending moment amplitudes
of MCREST¼ 143,778 kNm and MHOLLOW¼�157,572 kNm. The axle load of 1.0 t/axle for the car deck, at
4600 mm from the keel, is applied on the tyre print areas of 115� 88 mm. The load on the passenger
deck is taken as for the weather deck following the assumption that the superstructure does not
contribute to the global strength of the ship. Other local loads, such as water pressure are applied
according to the Rules [30]. Applied aluminium alloys 5083 and 6082, are used respectively for the
plating and stiffeners, with the yield strength of 106 MPa and 84 MPa. Young modulus of E¼ 70 GPa
and the Poisson coefficient of n¼ 0.28 are the same for both alloys.
Table 1
Considered problem formulations, with characterization, applying vectorization and constraint grouping – VO and VOR.

Constraint representation Absolute Heaviside

No constraint grouping VO-1 VO-2
Partial constraint grouping VOR-3 VOR-4
Complete constraint grouping VOR-5 VOR-6

Loss of information Separation of feasible
and infeasible domain

Rate of feasibility



Table 2
Considered problem formulations, with characterization, applying classical scalar optimization – SO.

Consideration of the infeasible
alternatives for mating
with respect to feasible domain

Separation feasibles
from infeasibles

Distortion of the objective Penalty parameter Formulation

In a wider neighbourhood Non-existing Minor R¼ 1 SO-R1
In a close neighbourhood Significant Significant R¼ 10 SO-R10
In the immediate neighbourhood Major Major R¼ 100 SO-R100
In a wider neighbourhood Strict No distortion – SO-DEB
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Design variables include the scantlings of all the longitudinal elements except the girders, as well as
the spacing of the longitudinal stiffeners. Table 7 lists all 28 design variables with minimal and
maximal bounds. Generally, the minimum plate thickness of 5 mm is chosen due to a possible severe
increase in deformations during the welding of thinner plates. Same wise, the minimum longitudinal
spacing is selected at 200 mm.

The objective function f0 is defined trough the sum of the areas Ai(x) of all 29 longitudinal elements,
or element groups, in one half of the midship section, including as well the girders

f0ðxÞ ¼
X29

i¼1

AiðxÞ (29)

Constraints are formalized, through the minimal requirements for the thickness and the size of
longitudinal stiffeners, given in the rule requirements of DNV for high speed, light craft and naval
surface craft [28], namely: part 3 Chapter 3 Section 5, paragraphs B100 and C100 and Tables B1 and C1.
In total, there are 24 constraints, 17 linear and 9 non-linear, as presented in Appendix I in their explicit
form.
4.2. The GA model

Based on the particular number of constraints, the vectorized problems VO-1 and VO-2 contain in
total 25 objectives, while the problems VOR-3 and VOR-4 reduce this to five, as the constraints become
grouped according to their physical connotation. The constraint groups are a) the global stresses in the
hull girder FG, b) the required minimal hull sectional modulus FZ, c) the required minimal thicknesses Ft

and d) the required minimal sizes of longitudinals and their spacing Fz

FGðxÞ ¼
P2

j¼1 fjðxÞ
FzðxÞ ¼

P4
j¼3 fjðxÞ

FtðxÞ ¼
P18

j¼5 fjðxÞ
FzðxÞ ¼

P24
j¼19 fjðxÞ

g (30)

bearing in mind that such grouping is only one possibility. The problems VOR-5 and VOR-6 trans-

formed the multiple objective formulation into an bi-objective. Table 3 presents then the respective
number of function calls per one generation needed to determine the considered fitness function.

Variables are binary coded with 4 bit long strings, based on their integer representation, with the
step of 0.5 mm for the plate thickness, 0.7 cm2 for the size of longitudinals and 10 mm for their spacing.
A population of 50 design alternatives, or individuals, is created within each generation following the
randomly generated initial population. Individuals’ chromosomes, or augmented binary strings of all
variable values, are mated with the probability of 0.8 using the randomly selected single-point
cross-over between the two consecutive individuals in the mating pool. Subsequently, the individuals’



Table 3
Number of functional calls for the considered formulations per design.

VO-1 VO-2 VOR-3 VOR-4 VOR-5 VOR-6 SO-Rxa SO-DEB

Nr. of calls:
-objectives 25 25 5 5 2 2 1 1
-constraints 24 0 24 0 24 0 24 24

Fitness function 44 43 45 43 45 43 41 42

a This column considers SO-R1, -R10 and -R100 scalar formulations.
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chromosomes are mutated bit-wise with a probability of mutating one bit per chromosome, i.e. 0.009.
The applied mating and mutation probabilities follow the recommendations given in Refs. [14,31].

Table 4 lists the applied weighting factors in the considered formulations. VO-1, VOR-3 and VOR-5
use high weighting factors w0 for f0 of 0.5, 0.8 and 0.96 respectively, so that the biased search of Pareto
optimal designs targets the lowest attainable values of f0. VO-2, VOR-4 and VOR-6 on the contrary use
the small weighting factor w0 of 0.05 to bring the search closer to the axis of the original objective. The
actual values of the weighting factors have been chosen arbitrarily.

4.3. The results

To provide for better insight into their performance consistency, the considered problem formu-
lations are each run 10 times for 500 generations, every time using different seed for random numbers.
The runs are recorded and statistically described. The following 11 measures are applied to capture the
particular performance:

- The minimum of the objective function f0ðx��Þ and its generation genx�� for the best run,
- The difference between the f0ðx��Þ and f0ðxref Þ in %,
- The mean mx�and dispersion sx� of the fittest designs x* for the best run,
- The objective function value f0ðx�1%Þ of the top 1% designs x�1%, and their generations of attainment

genx�1%
,

- The mean 10
1 m and dispersion smx� of the mx� for all 10 runs,

- The mean mf0ðx��Þ and dispersion sf0ðx��Þ of the f0ðx��Þ for all 10 runs,
- The objective function value f0ðx��1%Þ of the fittest designs x��1% within 1% of the f0ðx��Þ, and their

generations of attainment genx��1%
,

Table 5 presents the measures for the best runs possessing the lowest value of the objective, while
Table 6 presents the measures for all the 10 runs. Furthermore, Figs. 5 and 6 respectively illustrate the
optimization history for the best runs of vectorized and scalar formulations, specially presenting some
of the interesting measures and additionally indicating multiple fittest designs x��1% within 1% of the
obtained minimum objective value. ‘Progress’ line used in the history plots is a mere indication of
dropping objective values and should not be confused with the use of elitism, which has not been
applied in the algorithm.

5. Discussion

The results in Table 5 show that the applied GA managed to improve on the referenced design using
all 10 considered formulations. The formulation VO-1 performed the best, by reducing the
Table 4
Objective’s weighting factors for the vectorized problem formulations.

Weighting factor VO-1 VO-2 VOR-3 VOR-4 VOR-5 VOR-6

w0 0.5 0.05 0.5 0.05 0.96 0.05
wj 0.02 0.04 0.125 0.238 0.04 0.95



Table 5
Optimization results for the best runs.

VO-1 VO-2 VOR-3 VOR-4 VOR-5 VOR-6 SO-R1 SO-R10 SO-R100 SO-DEB

f0ðx��Þ [m2] 0.3791 0.3803 0.3800 0.3794 0.3811 0.3795 0.3844 0.4074 0.4175 0.3896

genx�� 496 166 330 457 410 435 326 261 284 262

f0ðxref Þ � f0ðx��Þ [%] 10.2% 9.9% 10.0% 10.1% 9.7% 10.1% 8.9% 3.5% 1.1% 7.7%

mx� [m2] 0.3919 0.3915 0.3937 0.3911 0.3931 0.3899 0.1484 0.4365 0.4588 0.4096

sx� in % of mx� 3.6% 3.3% 4.2% 2.9% 4.2% 2.9% 4.4% 2.8% 3.3% 3.3%

f0ðx�1%Þ [m2] 0.3792 0.3808 0.3800 0.3794 0.3811 0.3795 0.3897 0.4124 0.4219 0.3906
0.3792 0.3808 0.3811 0.3794 0.3811 0.3795 0.3892 0.4132 0.4225 0.3906
0.3794 0.3808 0.3814 0.3796 0.3811 0.3797 0.3896 0.4132 0.4225 0.3906
0.3799 0.3810 0.3815 0.3797 0.3811 0.3804 0.3933 0.4136 0.4238 0.3923

genx�1%
497 173 331 458 411 436 325 251 285 263
498 176 342 459 412 437 327 400 200 264
393 177 366 426 413 429 320 249 201 265
369 249 341 480 414 449 346 497 283 457
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cross-sectional area of the midship by 10.2%. It is closely followed by VOR-4 and VOR-6 with 10.1% of
improvement, but which have on average for the ten recorded runs, performed the best, on average
attaining the best results, as seen in Table 6. Conversely, the worst performing formulation was the SO-
R100 which failed to reduce the area for more than 1.1% in the best run. Since scalar formulations
depend significantly on the value of the penalty factor R, their attained results range widely, and the
optimum reducing the midship area by 8.9% was found using SO-R1 formulation. Yet the worst per-
forming vectorization formulation of VOR-5 still outperformed it by 0.8%.

Considered scalar formulations include different level of the information on infeasible designs into
their fitness calculation. If many infeasibles are considered equivalently to feasible designs, the amount
of fully infeasible generations becomes high since the algorithm cannot fully distinguish between the
feasibles and infeasibles. For SO-R1 there were 397 completely infeasible generations, and the search
appeared to be erratic, strongly dissipating generations minima x*, as seen in Fig. 6a, with a high
dispersion rate of sx� ¼ 4:4% of the mean mx� . But in the end, a good optimum was achieved, possibly
due to the minimal distortions in the objective function values. Conversely for SO-R100, where the
infeasibles designs are strongly separated from the feasibles, and severely impeded from further
mating, there were only 3 infeasible generations. But due to a strong distortion of the objective, the
optimization stalled and underperformed all other formulations. Indicatively, SO-R10 penalizes
infeasible alternatives less stringently, with lesser distortion of the objective function, so the optimi-
zation behaviour is improved in comparison with SO-R100, keeping, nevertheless, a high rate of
feasibility throughout generation. Its results, however, are still worse than for SO-R1. SO-DEB, on the
other hand, is the only formulation which fully takes into account the information on infeasible
alternatives, similarly to SO-R1, without distorting the objective, but with strict separation between the
feasible and infeasible alternatives like in SO-R100. Therefore, there were only two infeasible gener-
ations in its best run, and the attained optimum has managed to improve the reference design by 7.7%
as seen in Table 5.

The vectorization formulations handle the infeasible design alternatives differently. Treating of the
infeasible alternatives is now enhanced through the combination of distance and fitness functions, so
the negative influence of either treating infeasibles equivalently or with severe penalization to the
feasibility rates or attained optima is minimized. Observing Fig. 5 and the values in Table 5, no major
Table 6
Optimization results for all the computed runs.

VO-1 VO-2 VOR-3 VOR-4 VOR-5 VOR-6 SO-R1 SO-R10 SO-R100 SO-DEB
10
1 mmx�

[m2] 0.3967 0.3983 0.3997 0.3946 0.4001 0.3932 0.4191 0.4414 0.4632 0.4114
10
1 smx� in % of 10

1 m 1.3 1.7 2.0 1.0 1.9 1.0 1.0 0.8 1.3 0.7
10
1 mf0ðx��Þ [m2] 0.3870 0.3865 0.3892 0.3839 0.3908 0.3842 0.3904 0.4126 0.4280 0.3935
10
1 sf0ðx��Þ in % of 10

1 m 1.5 1.1 2.0 1.0 2.1 1.0 0.9 0.8 1.8 0.9
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differences in the dispersion of generation optima in the best runs can be noticed. Furthermore, these
results show no major sensitivity to the type of constraint representation, which leads to the
conclusion that the lost information on feasible designs, occurring for VO-2, VOR-4 and VOR-6, is not
significantly affecting on the optimization performance. Therefore, as vectorization formulations, in
contrast to scalar formulations, maintain the information on the rate of infeasibility, but are incon-
sistent on the rate of feasibility, it seems that the information on infeasible designs is relevant for the
improvement of optimization process. But without further mathematical analysis it could be only
speculated that the reason for this lies in the position of the optima in structural optimization, being
predominantly on the boundaries of a feasible domain.

In addition to vectorization, the applied constraint grouping shortened the optimization time due to
the reduced number of function calls and the reduced computation matrices, e.g. in the evaluation of
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Pareto optimality, while evidently exerting no major influence onto the performance of the algorithm.
This is noticeable through Fig. 5 and Table 3 when comparing the performance and the number of
functions calls between e.g. VOR-5 or VOR-6 and VO-1 or VO-2. Therefore, reducing the size of the
problem through constraint grouping is a pragmatic approach, fruitful for enlarged problems
extending towards hundreds of constraints. To answer on the proper choice of constraint represen-
tation is however more difficult, and should be further studied, before making any conclusions.

The vectorized formulations enable also the algorithm to find fitter designs throughout generations
than for scalar formulations. See the mean values mx� of the best runs in Table 5, but also their means for
all the runs mmx�

and the means of the optima mf0ðx��Þ in Table 6. The backing for this argumentation is
based on generally low dispersion of results regarding the global behaviour of all the considered
approaches, as they all show a high possibility to repeat the best obtained values, see sf0ðx��Þ and smðx��Þ.
Also, the obtained improvements of the objective, at 10%, for vectorization and constraint grouping are
in line with the typical improvements in weight minimization found in the literature; see e.g. Refs.
[1,2,17].

Table 7 provides a comparison between the obtained minimum weight design, x��VO�1, taken to be
the minimum of VO-1, its standardized version x��stand and the referenced design xref . In comparison
with the reference, the optimization reduced the spacing of longitudinals, which then generally caused
the reduction in plate thicknesses and in the size of longitudinals. The obtained minimum weight
design, x��VO�1, is actively constrained by the longitudinal strength, thus some of the passenger deck
strakes, as well as the lowest parts of the bottom shell are thickened in comparison to the reference,
while those on the sides have been thinned. Some of the values however, should be considered as
initial, due to the application of a conceptual structural model, with a simplified response and strength
analysis. Furthermore, the optimization did not consider special production limitations, such as
welding of adjoined plates with large difference in thickness. For these reasons, following the opti-
mization, some of the obtained scantlings in x��VO�1 were rearranged manually, see Table 7, to represent



Table 7
Design variables with min–max bounds and values for the reference xref, computed optimum x��VOR�4 and its standardized version
x��stand

Design variable Min Max xref x��VO�1 x��stand

Thickness of passenger
deck – strake 1, x1 [mm]

5 12.5 8 5.5 7.5

Thickness of passenger
deck – strake 2, x2 [mm]

5 12.5 8 12.5 9

Thickness of passenger
deck – strake 3, x3 [mm]

5 12.5 8 10 10

Thickness of passenger
deck – strake 4, x4 [mm]

5 12.5 8 5.5 7.5

Thickness of shear
strake 1, x5 [mm]

5 12.5 9 5 5

Thickness of side
shell – strake 1, x6 [mm]

5 12.5 8 5 5

Thickness of side
shell – strake 2, x7 [mm]

5 12.5 8 5 5

Bilge strake, x8 [mm] 6 13.5 9 6 6
Thickness of bottom

shell – strake 1, x9 [mm]
7 14.5 10 7.5 8

Thickness of bottom
shell – strake 2, x10 [mm]

7 14.5 11 13.5 9

Thickness of bottom
shell – strake 3, x11 [mm]

7 14.5 12 7.5 10

Keel plate, x12 [mm] 8 15.5 12 15.5 15
Thickness of car deck – strake 1, x13 [mm] 5 12.5 8 6 6
Thickness of car deck – strake 2, x14 [mm] 5 12.5 8 6 6
Thickness of car deck – strake 3, x15 [mm] 5 12.5 8 6 6
Thickness of car deck – strake 4, x16 [mm] 5 12.5 8 6 6
Size of passenger

deck longitudinals, x17 [cm2]
5.4 15.9 9.31 6.10 6.20

Spacing of passenger
deck long’s, x18 [mm]

200 350 300 200 200

Size of upper
side shell longitudinals, x19 [cm2]

5.4 15.9 6.20 5.40 5.40

Spacing of upper
side shell long’s, x20 [mm]

200 350 400 230 230

Size of lower
side shell longitudinals, x21 [cm2]

5.4 15.9 6.20 5.40 5.40

Spacing of lower
side shell long’s, x22 [mm]

200 350 350 230 230

Size of bilge
longitudinals, x23 [cm2]

5.4 15.9 6.20 7.50 7.74

Spacing of bilge
longitudinals, x24 [mm]

200 350 350 220 200

Size of bottom
shell longitudinals, x25 [cm2]

5.4 15.9 12.40 13.10 13.80

Spacing of bottom
shell longitudinals, x26 [mm]

200 350 300 240 240

Size of car deck
longitudinals, x27 [cm2]

5.4 15.9 12.4 5.40 5.40

Spacing of car deck
longitudinals, x28 [mm]

200 350 300 220 220

Total area
of a half
of the midship
section [m2]

0.4221 0.3791 0.3798

Improvements to the referenced
design [%]

– 10.2 10.0
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more standard distribution of material, maintaining the attained objective value. Most notable changes
are seen for the strakes in both the passenger deck and the bottom. Within this process the size of the
longitudinals was also standardized to fit the profile sizes available in the market [29].

After standardization, the new ‘standardized’ optimum x��stand ended up being heavier by a margin of
0.2% than the optimum x��VO�1 attained directly from optimization. Obviously, this leads to the
conclusion that x��VO�1 is in the neighbourhood of other good solutions which might be more appro-
priate for production or maintenance requirements which were not considered originally.

6. Conclusion

This paper presented an alternative approach to single-objective optimization problems, addressed
as vectorization. Using a realistic problem as an example, it has been shown that consideration of
constraints as additional objectives, alongside the original objective function, can exert benefits
regarding the achieved minimum weight design. By combining the concept of vectorization and
a concept of constraint grouping developed in this study, six alternative formulations to single-
objective optimization have been presented. These were then implemented into a simple GA and
confronted in the case study with the classic single-objective formulations. The obtained results are
encouraging for vectorization, as all the vectorization approaches outmatched the conventional
approach, and the obtained minimum weight design was 10.2% better than the referenced design. Also,
through the concept of constraint grouping it was possible to significantly reduce the number of
functional calls in GA and the computational time needed to compute a designated number of
generations. All this was accomplished without any damaging effects on the efficiency of the opti-
mization process.

Beside the enhancements that vectorization and constraint grouping offer for a GA, this study
contributed to the description of GAs working principles. It is evident that GA’s performance advanced
once handling of the information on infeasible domain is improved. Classical scalar formulation bears
a brunt of this added information as it loses the ability to penalize properly the infeasible designs, but
vectorized formulations handle this information in a different way, not any more through a penalty
function, but through the objective space, created between the constraint and objective functions.
Applying vectorization one then avoids a tedious search for the optimal penalty parameter required in
the classical scalar formulation.

Prior to ending this text, it should be noted that the presented novel concepts still require stringent
testing and in-depth analysis of their influence onto optimization process. Several immediate actions
could be named: a) application of a more sophisticated GA, b) analysis of constraint grouping and
sensitivity of the results to it, c) application of constraint grouping in multi-objective optimization and
finally d) application of vectorization and constraint grouping in extremely large realistic problems
with hundreds of variables and hundreds of even thousands of predominantly non-linear constraints
or objectives.
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Appendix I. Constraint formulations for the example fast ferry study

g1ðxÞh0 � 1� 157572� 103

77:29� 106ZDðxÞ
; ZDðxÞ ¼
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�
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ðxÞ
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i¼1
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g2ðxÞh0 � 1� 157572� 103

77:29� 106ZBðxÞ
; ZBðxÞ ¼

P29
i¼1

�
IowniðxÞ þ Ipositioni

ðxÞ
�

P29

i¼1
eiAiðxÞP29

i¼1
AiðxÞ

g2ðxÞh0 � ZDðxÞ � 2:04

g4ðxÞh0 � ZBðxÞ � 2:04

g5ðxÞh0 � x1 � 22:57� 10�3x18

g6ðxÞh0 � x2 � 22:57� 10�3x18

g7ðxÞh0 � x3 � 22:57� 10�3x18

g8ðxÞh0 � x4 � 22:57� 10�3x18

g9ðxÞh0 � x5 � 21:05� 10�3x20

g10ðxÞh0 � x6 � 21:05� 10�3x20

g11ðxÞh0 � x7 � 21:05� 10�3x20

g12ðxÞh0 � x8 � 26:57� 10�3x24

g13ðxÞh0 � x9 � 26:57� 10�3x24

g14ðxÞh0 � x10 � 26:57� 10�3x24

g15ðxÞh0 � x11 � 26:57� 10�3x28

g16ðxÞh0 � x14 � 26:57� 10�3x28

g17ðxÞh0 � x15 � 26:57� 10�3x28
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g18ðxÞh0 � x16 � 26:57� 10�3x28

g19ðxÞh0 � ð0:014x17Þ1:54�18:67� 10�3x18

g20ðxÞh0 � ð0:014x19Þ1:54�63:13� 10�3x20

g21ðxÞh0 � ð0:014x21Þ1:54�87:53� 10�3x22

g22ðxÞh0 � ð0:014x23Þ1:54�153:23� 10�3x24

g23ðxÞh0 � ð0:014x25Þ1:54�153:23� 10�3x26

g23ðxÞh0 � ð0:014x25Þ1:54�153:23� 10�3x26

g24ðxÞh
(

0 � ð0:014x27Þ1:54þ827:31x28 � 25:37 if x28 < 250
0 � ð0:014x27Þ1:54�22:06 if x28 � 250

Ai(x) is the cross-sectional area of a structural element or group, eiAi(x) is its static moment of area and
Iowni ðxÞ þ Ipositioni

ðxÞ its vertical moment of inertia.
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