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Some challenges are faced in the traditional 
way to manage the stability of a power 
system by extensive simulation studies: the 
studies can only be done for a limited set of 
operating conditions and the simulation 
model does not reflect the behavior of the 
real power system perfectly. Therefore, a 
specific margin has to be maintained 
between the allowed power transfer capacity 
and the theoretical maximum power 
transfer capacity. Even so, instabilities of 
the power systems have been recorded in the 
past, basically due to the discrepancies 
between the simulated and the real dynamic 
behavior of the power systems. The 
challenges in grid operation and planning 
pointed out above have led the transmission 
system operators to seek for new and 
innovative ways to manage the power 
system stability issue, use the grid 
efficiently, and keep the security high. One 
approach, a new wavelet-based method for 
damping estimation, is introduced and 
thoroughly studied in this thesis. 
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Abstract 
This thesis presents a novel approach to electromechanical oscillation damping estimation 
under the ambient conditions of a power system. The power system is said to operate under 
the ambient conditions when it is only subjected to ever present small excitations such as 
constantly varying load. The damping estimation method is based on the wavelet transform 
and the random decrement technique. 

 
The thesis reviews the properties of the wavelet transform that are essential in damping 

estimation, defines criteria for optimal mother wavelet selection in damping estimation, and 
identifies the possible mother wavelets in damping estimation of the Nordic power system. It 
also studies the optimal selection of other parameters and defines values for them. 

 
Both the simulated and measured power system data is analyzed with the damping 

estimation method in the thesis. The results show that when the parameter selections 
(especially the mother wavelet function and the time window length) of the damping 
estimation method are done correctly and a signal with good observability of the mode is used, 
the damping can be estimated close to the known damping of the simulation model using the 
ambient-excited oscillation data. The damping estimates are more accurate when the real 
damping of the oscillation mode is low; i.e. when it is more important to system stability. The 
measurement noise of the analyzed signals does not have much effect on the estimates. 

 
It is shown that the method can be used to observe the degraded damping due to incorrect 

operation of the power system damping controller. In addition, the method can possibly be 
applied to verification of the power system simulation model. Although the performance of 
the method is studied for the Nordic power system case, it is recognized that the method is 
applicable to other power system, too. 
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Tiivistelmä 
Tämä väitöskirja esittelee uuden lähestymistavan sähkövoimajärjestelmän sähkömekaanisen 
heilahtelun vaimennuksen arviointiin, kun voimajärjestelmän herätteenä toimivat aina 
sähköverkossa läsnä olevat pienet muutokset, kuten muutokset kuormituksessa. 
Vaimennuksen arviointimenetelmä perustuu wavelet-muunnokseen ja random decrement -
tekniikkaan. 

 
Väitöskirja esittelee wavelet-muunnoksen ominaisuudet, jotka ovat oleellisia vaimennuksen 

arvioinnissa; määrittelee kriteerit optimaalisen wavelet-funktion valinnalle vaimennuksen 
arvioinnissa ja määrittää mahdolliset wavelet-funktiot Pohjoismaisen voimajärjestelmän 
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Preface 

From a personal point of view, this thesis is a straight continuation from the author’s 
Master’s thesis which was carried out at the Finnish transmission system operator, 
Fingrid, in 2005. The thesis considered the applicability of commercial 
electromechanical oscillation damping monitoring systems in the Nordic power system. 
The main findings of the Master’s thesis were that the variability of the damping 
estimates is high and therefore the real damping and changes in the power system 
oscillation modes damping level are hard to observe reliably.  

From a broader perspective, this thesis is a part of the work towards a better 
understanding and management of the electromechanical oscillations in the Nordic 
power system that has been going on since the end of the 1990’s when prolonged inter-
area oscillations were observed in Finland. The work was started with the linear 
analysis and the dynamic simulation studies in order to find out the possibilities to 
better damp the oscillations with the controls and the grid reinforcements. Based on 
these studies Fingrid took several actions to increase damping of the 0.3 Hz inter-area 
mode because the controllability of the mode was found to be the highest in the Finnish 
part of the Nordic power system (Elenius et al. 2005). These actions were, for instance, 
the addition of series capacitors to 400 kV lines in Northern Finland, the retuning of 
power system stabilizers of the largest generators in Southern Finland, the design and 
implementation of a new power oscillation damper for the HVDC link between Finland 
and Sweden, and the addition of power oscillation dampers for the HVDC link between 
Finland and Estonia as well as for the static var compensator device in Southern Finland 
(Turunen et al. 2008). The actions considerably increased the available power transfer 
capacity from Finland towards the rest of the Nordic power system. 

After the above mentioned measures were taken to improve the damping of the 
oscillations, the focus was put onto monitoring the oscillations. The first idea of Fingrid 
was to have a system that warns the system operator if prolonged or growing 
oscillations exist. However, critical oscillations occur very seldomly and the operator 
has very little time to react after a warning. Therefore the next idea was to estimate the 
damping under ambient operation of the power system, i.e. when the system is 
subjected only to the small excitations caused mainly by the constantly varying loads. 
This idea was supported by the fact that commercial software, that later emerged to be 
the now called wide area monitoring systems (WAMS), became available for this 
purpose. Also the commercial availability of the high frequency measurement devices 
and especially the phasor measurement units (PMU) enabled this development.  

A test period of about two years was conducted during which the applicability of the 
commercially available damping monitoring systems was analyzed at Fingrid and 
especially in the author’s Master’s thesis. Because the damping estimates turned out to 
be highly variable, the utilization of the damping monitoring systems was difficult and 
gave an input to the further research on the subject. The emphasis of this reseach as well 
as of this thesis has been on more accurate damping estimation. The end of this path has 
not been reached yet and the research on the topic continues.  
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1 Introduction 

1.1 Motivation 

The traditional way to manage the stability of a power system is based on extensive 
simulation studies. However, the studies can only be done for a limited set of operating 
conditions. In principle, the dynamic security assessment (DSA) tools could tackle the 
challenge arising from differences in the simulated operating condition of the power 
system and the realized operating condition of the real power system. DSA tools are 
based on simulation of the set of critical contingencies in an operating condition of the 
power system that is automatically updated to reflect the real operating condition of the 
power system (Pourbeik & Morison 2007). However, the simulation studies and the 
DSA tools require that the simulation model reflects the behavior of the real power 
system accurately enough. In practice, there are many factors causing differences 
between the dynamic behavior of the simulated power system and the real power 
system. For example, specific information of the load dynamics is often unknown for 
the TSO. In addition, in a large power system simulation model there is often missing or 
incorrect data, which cause discrepancies between the simulated and the real dynamic 
behavior of the power system. Components are added and updated in the power system 
but the simulation model might remain unupdated in some cases. Another source of 
incorrect data is the modeling errors.  

Due to the differences between the simulated and real operating conditions of the power 
system as well as between the simulation model and the real behavior of the grid, a 
specific marginal has to be maintained between the allowed power transfer capacity and 
the theoretical maximum power transfer capacity, to maintain sufficient system security. 
Even so, instabilities of the power systems have been recorded in the past, basically due 
to the discrepancies between the simulated and the real dynamic behavior of the power 
systems (Venkatasubramanian 2003). On the other hand, market forces may pose stress 
on the TSOs to increase the inter-area power transfer capacities of the power system to 
allow functional electricity markets. At the same time due to the environmental, 
political, and economic reasons limitations are imposed on building new transmission 
lines and, by the means, on increasing the inter-area transfer capacities of the power 
system. 

The challenges in grid operation and planning pointed out above have led the TSOs to 
seek for new and innovative ways to manage the power system stability issue, use the 
grid efficiently, and keep the security high. One of the approaches is the development of 
methods for estimating damping from the power system measurements. This is studied 
in this thesis, and a new method for damping estimation is introduced.  

1.2  The Research Problem 

Accurate damping estimation using the measured power system signals under the 
ambient conditions of the power system is the research problem of the thesis. In 
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addition to measured signals, simulated signals are used to study the characteristics of 
the damping estimation method. The operational experience achieved of some 
commercial damping monitoring systems which have been analyzing Finnish 
transmission system data has shown that there is a need for improved accuracy of 
damping estimation (Turunen et al. 2008).  

In addition, it is recognized in many other publications too that if only ambient 
excitations excite the modes and if real-time monitoring capability is required with fast 
reaction to changes in damping level, the damping estimates tend to have too large a 
variance for operational use. The artificial probing can be used to reduce the variance of 
the damping estimates (Anderson et al. 2005, Wies et al. 2007, Wiltshire et al. 2007, 
Hauer et al. 2009, Ledwich et al. 2008, Turunen et al. 2008, Zhou et al. 2006a, Zhou et 
al. 2006b, Trudnowski & Pierre 2009, Pierre et al. 2010). However, in this thesis the 
damping estimation is based on the ambient oscillations that are inherent to the power 
system.  

1.3 Objectives 

The main objective of this thesis is to develop a new measurement-based method for 
estimating the inter-area oscillation damping under the ambient conditions of the power 
system. Damping estimation enables maximal utilization of the power transfer capacity 
of the grid while maintaining high system security.   

1.4 Scope of the Research 

The thesis studies the estimation of both damping and the frequency of 
electromechanical oscillations. This belongs under the topic of angle stability 
management of power systems. The scope is only on the inter-area modes (oscillation 

frequencies from 0.1 to 1 Hz) and especially on the damping estimation of the Nordic 
power system’s 0.3 Hz mode because it is the limiting factor when defining the 
maximum power transfer capacity from Finland to Sweden.  

The estimation of damping and frequency is based on measured signals, usually the 
phasor measurement unit (PMU) measurements. In addition to measurements, simulated 
signals are used to study the characteristics of the damping estimation method. 
Estimation of damping and frequency is studied under the ambient conditions, where 
only normal load variations excite the oscillations; the cases of transient oscillations and 
external probing are not included. 

1.5 Research Methods  

Computational methods are used for selecting the parameters of the method, and to 
study the performance of the method. A commercial software, Matlab®, is used in 
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carrying out the computations and another commercial software, PSS®E, to conduct the 
simulations of this thesis. The simulations are done using the existing simulation model 
of the Nordic power system and the simulations are used for producing data for the 
performance analyses of the method. Experimental methods are used for studying the 
performance of the method with the measured data. Statistical methods are used for 
studying the accuracy of the damping estimates.  

1.6 Previous Work 

Damping estimation under the ambient conditions has been a topic of great interest over 
the last decade or so (Pourbeik & Rehtanz 2007, Doraiswami & Liu 1993, Pierre et al. 
1997, Ledwich & Palmer 2000, Hemmingsson et al. 2001, Banejad & Ledwich 2002, 
Wies et al. 2003, Zhang & Ledwich 2003, Hemmingsson 2003, Korba et al. 2003, Wies 
et al. 2004, Anderson et al. 2005, Zima et al. 2005, Glickman et al. 2005, Zhou et al. 
2006a, Wies et al. 2006a, Wies et al. 2006b, Korba 2007, Larsson et al. 2007, Wies et 
al. 2007, Ledwich 2007, Ghasemi & Cañizares 2007, Zhou et al. 2007, Glickman et al. 
2007, Wiltshire et al. 2007, Leirbukt et al. 2008, Trudnowski et al. 2008, Trudnowski 
2008, Uhlen et al. 2008, Zhou et al. 2008, Liu & Venkatasubramanian 2008, Laila et al. 
2009, Larsson & Laila 2009, Korba & Uhlen 2010, Thambirajah et al. 2010b, Vanfretti 
et al. 2010). In these publications, several different methods for damping estimation 
under the ambient conditions of the power system have been presented. However, the 
methods presented in all of the above mentioned papers differ substantially from the 
method of this thesis. Unlike this thesis, none of the methods are based on utilization of 
the wavelet transform in damping estimation. 
 
Most of the methods, like the least squares (Wies et al. 2004, Zhou et al. 2007), 
regularized robust recursive least squares (Zhou et al. 2008), Yule-Walker with 
autoregressive (Pierre et al. 1997) and autoregressive moving average model (Wies et 
al. 2003), the Kalman filter with autoregressive model (Korba et al. 2003), and the 
subspace method (Zhou et al. 2006a, Larsson & Laila 2009), are parametric; they 
assume a certain model and fit the parameters of the model to minimize the difference 
between the model output and the system output (Thambirajah et al. 2010a). The main 
drawback with the parametric methods is that they require the assumption of the model 
structure. In addition, some models like the autoregressive and autoregressive moving 
average require the selection of model orders. The selection affects the estimation 
results (Wies et al. 2003). Incorrect assumption of the model structure and/or order 
might lead to incorrect damping estimates. Usually, the parametric methods also assume 
that the power system is excited by white noise (Thambirajah et al. 2010a). However, 
this assumption can be considered valid in a power system where the number of loads is 
large and the individual loads are small compared to the system size.  
 
Some other methods like the autocorrelation approach (Ledwich & Palmer 2000), 
damping estimation from spectral estimates (Hemmingsson 2003), Welch periodogram 
methods  and the method presented in this thesis are non-parametric; they work directly 
on the data (Thambirajah et al. 2010a).  
 
Several factors affect the usefulness of a damping estimation method in practical 
applications. First of all, the damping estimation method should produce accurate 
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estimates. Second, the estimates should react to changes in real damping fast enough. 
Both the requirement of accuracy and speed of reaction depend on the application the 
method is applied to: for example, real-time damping monitoring, tuning of power 
system stabilizers and power oscillation dampers, and for power system planning 
purposes. The third factor affecting the usefulness of a damping estimation method is 
the ease of tuning the method for a specific power system or application. The fourth is 
the reliability or robustness of the estimates during normal operation and during abrupt 
changes of the power system.  
 
In developing the damping estimation method of this thesis the emphasis has been on 
the accurate and robust damping estimates. The speed of reaction and the ease of tuning 
have been secondary objectives. However, in general the tuning process of the non-
parametric methods, like the one in this thesis, is less complicated than that of the 
parametric methods. Although the method is non-parametric by nature (it does not 
assume a specific system model), some parameters need to be selected.  
 
In some other methods and especially in the Kalman filter approach (Korba et al. 2003, 
Korba 2007) the emphasis is on fast estimation of changes in damping when the mode is 
well excited. However, the performance of the Kalman filter approach is limited when 
the excitation of the mode is low (Turunen et al. 2008).  
 
Anderson et al. (2005), Larsson & Laila (2009), Liu & Venkatasubramanian (2008), 
Trudnowski et al. (2008), and Trudnowski & Pierre (2009) report case studies of the 
performance of their respective methods. The performance analyses are based on the 
case studies of some particular data sets, the results are presented in multiple different 
ways, and there usually are multiple variable parameters in the methods. The objective 
comparison of the results is therefore very difficult. However, Liu & 
Venkatasubramanian (2008), Trudnowski et al. (2008), and Trudnowski & Pierre (2009) 
present similar kinds of results to those given in this thesis; i.e. the damping estimates 
are more accurate for a poorly damped mode than for well damped modes. The results 
or observations of several papers indicate that the mean values of the damping estimates 
are not always conservative (e.g. Wies et al. 2003, Anderson et al. 2005, Trudnowski et 
al. 2008, Turunen et al. 2008). In real-time operation, the conservative estimates are 
beneficial because they do not lead to reduced system security. 
 
The wavelet transform has previously been used to study various power system 
transients. It has also been used in visualization purposes in WAMS software (Kim & 
Aggarwal 2001, Cirio et al. 2006, Ruiz-Vega et al. 2005). In damping estimation, the 
wavelet transform has been used mainly in case of transient oscillations (Kang & 
Ledwich 1999, Hashiguchi et al. 2003, Mei et al. 2006, Bronzini et al. 2007). 
Hashiguchi et al. (2003) studied briefly the damping and natural frequency of local 
generator oscillation excited by random load variations. Extensive analysis of utilizing 
the wavelet transform in inter-area oscillation damping estimation under the ambient 
conditions has not been provided before this thesis.     
 
In addition, several methods use only the transient oscillations of the power system in 
determining the damping (Poon & Lee 1988, Hauer 1991, Pierre et al. 1992, Grund et 
al. 1993, Trudnowski et al. 1998, Trudnowski et al. 1999, Sanchez-Gasca & Chow 
1999, Ruiz-Vega et al. 2003, Ruiz-Vega et al. 2004, Crow & Singh 2005, Messina & 
Vittal 2006, Messina et al. 2006, Terzija et al. 2009). However, the damping estimation 
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under ambient conditions, the topic of this thesis, is not considered in these 
publications.  
 
Some methods have been implemented in commercial or non-commercial Wide-Area 
Measurement Systems (WAMS) software and are in operational or experimental use in 
various countries (Pourbeik & Rehtanz 2007, Sattinger et al. 2006, Wilson 2007, Hauer 
et al. 2009, Cai et al. 2005, Ledwich et al. 2008, Leirbukt et al. 2006, Su & Jau 2007, 
Turunen et al., 2008). These publications discuss implementation of the existing 
methods in WAMS and the main emphasis of them is not on developing new methods 
for damping estimation, which is the focus of this thesis.  

1.7 Scientific Contribution 

The main scientific contribution of this thesis is a new method to estimate the damping 
and frequency of the power system electromechanical oscillation mode under the 
ambient conditions of the power system. The method estimates the damping from the 
power system signals which are usually measured but can be simulated too. The method 
is based on utilizing the wavelet transform and the random decrement technique. The 
frequency estimation is based on the wavelet transform only and the damping 
estimation is based on a combination of the wavelet transform and the random 
decrement technique. 

The thesis presents a detailed study of the optimal parameters for the method, 
especially the optimal mother wavelet selection. First, the general criteria for the 
optimal mother wavelet selection in the mode extraction and frequency estimation are 
defined and the criteria are quantitatively specified for the studied Nordic power system 
case. The feasible mother wavelets in the damping estimation of the impulse response 
are also studied in the thesis; this wavelet selection is not dependent on the power 
system. 

The thesis studies the damping estimation method’s ability to estimate the known 

damping of the dominant 0.3 Hz inter-area mode of the Nordic power system simulation 
model. Random variations in the loads excite the oscillation modes of the system, 
imitating the ambient conditions of the real power system. The characteristics of the 
damping estimation method are studied also in the real Nordic power system case from 
which the measurements are available via the wide area monitoring system. 

1.8 Outline of the Thesis  

Chapter 1 presents an introduction to the thesis. In the introduction, the motivation for 
the research project, the research problem, objectives, and scope of the research are 
presented. Also a short review of the previous work and description of how it differs 
from the work of this current thesis is presented. In addition, descriptions of the power 
system electromechanical oscillation, damping quantity, existing damping estimation 
methods, the Nordic power system, and the wavelet transform are presented.  
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Chapter 2 presents the main result of the thesis, a new damping estimation method for 
assessing the damping from the measurements under the ambient conditions of the 
power system. In Chapter 3, the selection of correct parameters for the method is 
studied. One of the most important parameter selections, the optimal wavelet function 
selection, is studied in this chapter too. Chapter 4 describes how the performance 
analysis of the damping estimation method is conducted both in the case of simulated 
and measured power system data. Also the issues of measurement noise and different 
damping conditions of the power system are addressed in the performance analysis. 
Chapter 5 presents the results of the performance analysis.  

Chapters 6 and 7 present the discussion and conclusions of the thesis, respectively. Also 
some future work areas are pointed out in Chapter 7. 

1.9 Electromechanical Oscillations, Damping Quantity and 

Damping Estimation Methods  

This section describes which types of electromechanical oscillations there are in the 
power systems and the main focus of ambient inter-area oscillations is described in 
more detail. In addition, it is defined which damping quantity is used, and how the 
damping estimation method of this thesis is positioned in the general classification of 
different means to manage the stability of the power system.  

1.9.1 Power System Electromechanical Oscillations 

Introduction 

Power system electromechanical oscillation is an inherent property of an AC 
transmission system. The oscillations cannot be eliminated altogether but in some 
power systems (e.g. with short lines) they do not cause any problems due to high 
damping. Under certain operating conditions the oscillations set the limits for power 
transfer capacity and may pose a serious threat to system stability.  
 
There are different types of electromechanical oscillations and they can be classified by 
their interaction characteristics: inter-area mode oscillations, local plant mode 
oscillations, intraplant mode oscillations, torsional (subsynchronous) mode oscillations, 
and control mode oscillations. The electromechanical oscillations can also be classified 
by the operating condition of the power system: ambient (spontaneous) oscillations, 
transient oscillations, and forced oscillations. Ambient, transient, and forced oscillations 
(Figure 1 and Figure 2) are excited by constantly varying loads, large transients, and 
processes which are exogenous to conventional stability control loops, respectively. 
(Paserba 1996, Pal & Chaudhuri 2005, Kundur 1993).  
 
In this thesis only the ambient inter-area oscillations are studied and the oscillation type 
is described in more detail in the following section.  
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Figure 1. Examples of ambient and transient inter-area oscillations in the measured 

power flow of a line. The transient oscillation is excited by a sudden power change of 

an HVDC link. The ambient oscillations are excited mainly by constantly varying loads. 

 
Figure 2. Examples of forced and ambient inter-area oscillations in the measured 

power flow of a line. The forced oscillation is excited by modulating the power of an 

HVDC link. The ambient oscillations are excited mainly by constantly varying loads.  

Ambient Inter-Area Oscillations 

In the expression “ambient inter-area oscillation”, the term “ambient” denotes that the 
oscillations are excited by the multitude of sources that are integral part of the power 
system. The main excitation under ambient conditions comes from the combined effect 
of varying loads, which are randomly varying by nature. In addition, minor transients 
such as minor changes in production, minor switching events, or minor faults can be 
considered as ambient excitation of the electromechanical oscillations. With these 
inputs, a power system is said to operate under the ambient conditions and the response 
of the power system to these inputs is the ambient response. The term “inter-area” refers 
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to the oscillations in which a coherent group of generators in one part of the system 
swings against other generators in other parts of the system (Pal & Chaudhuri 2005, 
Kundur 1993). The frequency range of the inter-area oscillations is from 0.1 to 1 Hz 
(Paserba 1996). Inter-area oscillations are observed in many system quantities over a 
large part of the power system (Pal & Chaudhuri 2005). They are observed in the 
systems where two or more groups of closely coupled machines are interconnected by 
weak ties (Kundur 1993).  
 
Inter-area oscillation is a complex and non-linear phenomenon and its damping 
characteristic is dictated by the strength of the transmission path, the nature of the loads, 
the power flow through the interconnection, and the interaction of loads with the 
dynamics of generators and their associated controls (Pal & Chaudhuri 2005, Messina 
2009). Usually the oscillations are stable but if the system is stressed too much the Hopf 
bifurcation may occur where the real parts of a complex conjugate eigenvalue pair cross 
the imaginary axis and the system becomes unstable (Mithulananthan et al. 2003).  
 
A weak transmission path means high effective impedance between the oscillating 
generator groups. The high impedance causes the amortisseur windings of the 
generators to lose their effect on the inter-area oscillation damping. Also the adverse 
interactions among the automatic controls, especially the automatic voltage regulators 
(AVRs), decrease inter-area oscillation damping. Even without the adverse effects 
among the automatic controls, the uncontrolled system’s damping for inter-area 
oscillations is commonly poor when the transmission path is weak. Additionally, when 
the loading of the interconnecting lines grow, the damping decreases, mainly because 
the angle difference between the oscillating generator groups grow and thus the voltage 
oscillations at the generator terminals grow, causing the AVRs to act and produce 
negative damping. (Paserba 1996)  
 
In certain conditions the inter-area oscillations restrict the allowable power transfer 
through the tie lines and thus cause economical losses (Messina 2009). For example, in 
the Nordic power system the inter-area oscillations limit the power transfer capacity 
from Finland to Sweden.  
 
Ambient inter-area oscillations (Figure 1 and Figure 2) occur in the power system due 
to poor damping and they are excited mainly by the constantly varying loads. Usually 
the oscillations are small in amplitude and thus the power system behavior can be 
assumed linear and the associated damping of the oscillation modes is the small-signal 
damping of the modes (Kundur 1993). In Figure 1, an example of a transient oscillation 
(caused by a power change of an HVDC link) and in Figure 2 an example of a forced 
oscillation (caused by modulation of an HVDC link) is presented, together with the 
ambient oscillation, for the comparison of different kinds of oscillations.  

1.9.2 Damping Quantity 

In this thesis, the damping is quantified with the damping ratio. The damping ratio is a 
quantity related to the linear systems. Because the power system is assumed to behave 
(approximately) linearly when the ambient inter-area oscillations are considered, the 
damping ratio is a suitable quantity for the purpose.  
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The damping ratio can be determined via the logarithmic decrement of a second order 
system impulse response1 with the equation 
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magnitudes of successive peaks of the impulse response, Td is a period of the 
oscillation, and ω is the angular frequency of the oscillation.  

It is common to express the damping ratio in percent. Hence ζ = 0.1 may be expressed 
as the damping ratio of 10 %. 

1.9.3 Damping Estimation Methods 

In practice, power system electromechanical oscillation stability and damping are 
estimated with time-domain simulations, linear analysis or signal analysis. The first two 
methods rely on the mathematical model of the power system (Kundur 1993) but the 
last is used to estimate damping directly from the power system signals. Signal analysis 
is the main topic of this thesis. Time-domain simulations and linear analysis are also 
used.  
 
In the following the damping estimation methods are briefly described, their use in this 
thesis is characterized, and their benefits and drawbacks are specified.  

Time-domain Simulations 

Time-domain simulations need the individual models of the generators, automatic 
voltage regulators (AVR), turbine-governors and the system loads by the differential 
and algebraic equations. The network is modeled by the algebraic equations. The 
equations form a non-linear mathematical model of the system. The analytical solution 
of the non-linear system model is generally not possible and it is usually solved with 
numerical integration methods to simulate the system behavior in the time domain. 
(Machowski et al. 1997) The simulations are used2 here in producing data for the 
performance analysis of the damping estimation method. The simulations are beneficial 
because they enable the calculation of reference damping for comparisons.  
 
A benefit of the time-domain simulations is that a correct system model leads to very 
realistic results of the power system behavior. The main drawback of the time-domain 

                                                
1 Second order system impulse response is the output of a second order system to an impulse input. A 
second order system has only one oscillation mode.  
2 Usually the time-domain simulation method is used to resolve the question of whether or not a power 
system will recover successfully after being subjected to severe transients such as three phase faults. It is 
also used to test that the controls designed using linear analysis methods do fulfill the design criteria also 
in a nonlinear environment (Rogers 2000). 



 

23 

simulation method is that deficiencies in the system model lead to conservative transfer 
limits and/or to reduced system security.  

Linear Analysis  

For the linear analysis, usually the same system model is used as for the time-domain 
simulations but the non-linear differential and algebraic equations are linearized around 
the equilibrium point and a set of linear differential and algebraic equations is obtained. 
Linear analysis3 is utilized here in describing the oscillation characteristics (frequency 
response and a mode shape) of the Nordic power system.    
 
Many important components (generators, AVRs, governors, loads) in a power system 
have very non-linear characteristics. However, when the power system is operating 
under the ambient conditions, the resulting oscillations are essentially linear allowing 
the use of linear analysis methods in assessing oscillation stability (and damping) 
(Rogers 2000, Pal & Chaudhuri 2005).  
 
The main benefit of the linear analysis is that it enables the use of standard linear 
analysis tools. The main drawback of the linear analysis is that the power system is 
essentially a non-linear system and the results achieved with the linear analysis are 
applicable only when the assumption of linear behavior is valid.  

Signal Analysis 

The concept of signal analysis in damping estimation includes a multitude of methods. 
Common for all of the methods is that they rely, instead of system model, only on the 
signals of the power system. The signals are usually measured from the power system, 
but simulated signals are also used here to study the characteristics of the damping 
estimation method.  
 
Some of the methods assume the oscillations to be linear while others do not carry this 
assumption (Messina 2009). The signals to be used for damping estimation are those 
which include information of the specific oscillation mode. At the node points of the 
oscillations such signals are the inter-area power transfers between the oscillating areas 
whereas at the antinode points of the oscillations the signals are voltage angle 
differences between the oscillating areas, speed deviations of the participating 
generators and the active powers of the participating generators. 
 
The methods of signal analysis hold an enormous potential to provide critical 
information for early detection, mitigation, and avoidance of large-scale cascading 
failures and could form the basis of smart, wide-area automated analysis and control 
systems (Messina 2009, Li et al. 2009). In principle the methods can be used directly in 

                                                
3 Linear analysis enables the use of standard linear analysis tools. Eigenvalues can be calculated easily 
and the determination of different modes’ damping and frequency is straightforward. From the system 
eigenvectors e.g. mode shapes, participation factors, modal controllability and observability can be 
determined (Pal & Chaudhuri 2005). 
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the system stability monitoring. The results of the signal analysis methods can be 
compared with the simulated results of the same scenario and used to develop the 
system model to better reflect the actual system behavior. 
 
The main benefit of the signal analysis methods is that they do not rely on the system 
model in the damping estimation. In theory, more realistic results are thus achieved than 
from the simulation-based methods. The main drawback of the signal analysis methods 
is that they might produce inaccurate results.  

1.10 The Nordic Power System 

1.10.1 Description and Modeling 

The Nordic power system, which is studied in this thesis, is a synchronous power 
system consisting of the grids of Finland, Sweden, Norway and Eastern Denmark 
(Figure 3). There is also an internal HVDC link between Southern Finland and Southern 
Sweden (Fenno-Skan). There are several HVDC connections from the Nordic power 
system to Eastern and Western European as well as to Russian grids.  
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Figure 3. The Nordic power system with only the 400 kV and HVDC lines shown. The 

long arrow indicates the power transfer in an export situation as seen from the Finnish 

grid.  

A detailed dynamic simulation model used by the Nordic transmission system operators 
(TSO) is used in this thesis. The simulation model consists of about 6000 buses, 1700 
machines and 2600 loads. The number of state variables is about 17000.  

1.10.2 Oscillation Characteristics 

In the Nordic system, oscillations typically arise when the power is exported from 
Southern Finland (a smaller system) to Southern Sweden (a larger system) via 
interconnecting Northern AC lines. The distance between the oscillating generator 
groups can thus be about 2000 km. 
 
In order to illustrate the oscillation characteristics of the Nordic power system, the 
dynamic simulation model is linearized and linear analysis methods are applied. The 
illustration is done in a power flow situation in which power transfer from Finland to 
Sweden is high.   
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The frequency response (Figure 4) shows that there are two main inter-area oscillation 
modes: about 0.3 Hz and about 0.5 Hz. The mode shape of the 0.3 Hz mode (Figure 5) 
indicates that the Finnish generators oscillate against the other generators of the Nordic 
power system. In the 0.5 Hz mode, typically generators of Southern Norway and 
Finland oscillate in phase against the rest of the system (Uhlen et al. 2003, Elenius et al. 
2005).  
 

 
Figure 4. Frequency response of the Nordic power system when power transfer from 

Finland to Sweden is high. 

 
Figure 5. Mode shape of the Nordic power system 0.3 Hz mode when power transfer 

from Finland to Sweden is high. 

1.11 Wavelet Transform 

The wavelets and the wavelet transform (WT) are addressed in this section. Definition 
of a wavelet and different wavelet types are reviewed. Also, the wavelet transform 
properties are presented. 
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1.11.1 Wavelet Function and Wavelet Transform 

General Description 

A wavelet ψ (or mother wavelet) is a function of zero average 
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which is dilated with a scale parameter a, and translated by b to produce the daughter 
wavelets: 
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Different types of wavelets are often grouped into wavelet families according to their 
properties. The wavelet families, whose applicability in damping estimation is studied 
in this thesis, are the typical wavelet families, those which are included in the Matlab® 
Wavelet Toolbox™ version 4.1. These include biorthogonal (Bior), complex Gaussian 
(Cgau), complex Morlet (Cmor), coiflets (Coif), Daubechies (Db), discrete Meyer 
(Dmey), complex frequency b-spline (Fbsp), Gaussian (Gaus), Mexican hat (Mexh), 
Meyer (Meyr), Morlet (Morl), reverse biorthogonal (Rbio), complex Shannon (Shan) 
and symlets (Sym) wavelet families (Misiti et al. 2009). Some examples of different 
types of wavelets are presented in Appendix B.  
 
The wavelet transform of y(t) at the scale a and position b is computed by correlating 
y(t) with a wavelet function ψ 
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where C(a,b) is the wavelet coefficient (approximately directly proportional to the 
amplitude of a specific mode) with the scale a (inversely proportional to the wavelet 
center frequency) and position b and ψ* is the complex conjugated wavelet function 
(Mallat 1999). y(t) denotes the original signal in continuous time, t, and it can be any 
signal in a power system which includes information of the studied oscillation. Those 
signals include, for example, the interconnecting line power flow between oscillating 
systems, the angular speed of an oscillating generator and the voltage angle difference 
between oscillating systems. 
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Center Frequency of the Wavelet Function 

A commonly used term in this thesis is the center frequency of the wavelet function, fc. 
It is defined as the frequency that maximizes the Fourier transform of the wavelet 
function ψ: 
 

 ( ) ( ){ }c c
ˆ ˆ  maxf f f fψ ψ= = , (5) 

 

where f is frequency and ψ̂ is the Fourier transform of the wavelet function (Mallat 

1999). An illustration of the center frequency of a wavelet function is presented in 
Figure 6. 
 
When the wavelet scale (parameter a) is changed, the wavelet center frequency changes 
accordingly. If the scale is increased (the wavelet function is stretched), the center 
frequency of the wavelet function is decreased and vice versa. In this thesis, a wavelet 
function with a specific center frequency is referred to as the specific frequency 
wavelet. If, for instance, the wavelet function is scaled to have a center frequency of 0.3 
Hz it is referred to as “0.3 Hz wavelet.” 

 
Figure 6. An illustration of the center frequency of a Gaus20 wavelet function. 

Continuous and Discrete Wavelet Transform 

By definition, continuous wavelet transform (CWT) is calculated such that both the 
parameters a and b are continuous variables in the interval of interest. In practice, 
though, both a and b are discrete when sampled data is analyzed. The wavelet transform 
is still referred to as continuous if a is an arbitrarily selected set of scales (selected 
according to frequency band in question and the needed resolution in frequency) and b 
is set by the signal sampling interval.  
 
To reduce the amount of data produced by the wavelet transform it is possible to use the 
discrete wavelet transform (DWT) that uses a certain subset of scales, a, and positions, 
b. Using DWT, the signal reconstruction will be as accurate as using CWT (Mallat 
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1989). However, the subset of scales that is used in DWT sets the frequency bands of 
the analysis. Therefore, to enable study of any frequency component in the 
electromechanical oscillation frequency range (0.1–2 Hz) CWT is used in this thesis.  
 
An example of the continuous wavelet transform at a specific frequency (wavelet 
function center frequency is 0.3 Hz) is presented in Figure 7. The Gaus20 wavelet 
function, Figure 7b, slides through the original signal, Figure 7a, with the steps 
governed by the signal sampling interval. The wavelet coefficient is calculated at each 
time instant. The resulting wavelet coefficients, Figure 7c, are (approximately) linearly 
dependent on the amplitude of the frequency component (or mode) of interest at each 
time instant and therefore the mode damping information is (approximately) preserved 
in the wavelet transform.   

 
Figure 7. Continuous wavelet transform at a specific frequency. (a) presents the 

original signal, (b) the Gaus20 wavelet function with the center frequency of 0.3 Hz, 

and (c) the wavelet coefficients [Equation (4)].  

Different frequency components of the original signal, Figure 7a, are studied by scaling 
(stretching or compressing) the wavelet function. The scaling is done by changing the 
parameter a. When the continuous wavelet transform is used, any scale can be selected. 
As an example, the wavelet coefficients with the 0.5 Hz Gaus204 wavelet are presented 

                                                
4 Gaus20 wavelet function having the center frequency of 0.5 Hz. 

(b) 

(a) 

(c) 
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in Figure 8. The 0.5 Hz component is much smaller in the original signal than the 0.3 
Hz component because the 0.5 Hz wavelet coefficients are much smaller than the 0.3 Hz 
wavelet coefficients. 
 

 
Figure 8. Wavelet coefficients of the original signal (Figure 7) when the 0.5 Hz Gaus20 

(Gaus20 wavelet function with the center frequency of 0.5 Hz) wavelet function is used.  

 
If the wavelet coefficients are calculated with a specific frequency range, the results can 
be presented as a three dimensional figure (Figure 9). The 0.3 Hz component is clearly 
dominant in the original signal of Figure 7. 
 

 
Figure 9. Wavelet coefficients of the original signal (Figure 7) with Gaus20 wavelet 

function in the wavelet frequency range from 0.1 to 1 Hz. 
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Properties of Wavelet Transform 

The wavelet transform can be used in damping estimation because it can (with certain 
accuracy) extract the amplitudes of various frequency components of the signal along 
the time axis (Daubechies 1992, Mallat 1999). After that, the damping of the frequency 
components (modes) can be identified. Wavelet transform has some common properties 
with short time Fourier transform (STFT). The transforms and their properties are 
compared in Appendix D.  
 
The accuracy (or resolution) of the wavelet transform to measure time-frequency 
variations of spectral components is limited by Heisenberg’s uncertainty principle. This 
is illustrated in Figure 10 in which Heisenberg boxes of three wavelets of different 
lengths are presented. A Heisenberg box describes the time-frequency resolution of a 
wavelet in the time-frequency plane such that its width along time is σt and the width 
along frequency is σω (Mallat 1999). A wavelet has a good frequency or time resolution 
when it has a narrow Heisenberg box in the frequency or time domain, respectively. The 
uncertainty principle is illustrated in Appendix C using the original signal in Figure 7. 
 
 

 
Figure 10. Heisenberg boxes of three wavelets (

4 4

Gaus4

,ψ a b , 
20 20

Gaus20

,ψ a b , 
44 44

Gaus44

,ψ a b ) with the same 

center frequency (ωc). Longer wavelets (
20 20

Gaus20

,ψ a b , 
44 44

Gaus44

,ψ a b ) have better frequency 

resolution (lower Heisenberg box in the direction of ω) but poorer time resolution 

(wider Heisenberg box in the direction of t). ψ̂  is the Fourier transform of the wavelet 

function ψ . (Mallat 1999) 

 
Both wavelet characteristics, time and frequency resolution, affect the damping 
information of the mode after the wavelet transform is performed. Therefore, it is 
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important to use mother wavelets with good enough frequency resolution to separate the 
modes from each other but having as good as possible time resolution also.   
 
In addition to different modes, the analyzed signals in the damping estimation of the 
electromechanical oscillations always have a certain amount of measurement noise. The 
noise is due to the measurement errors of the analyzed quantities (voltages, currents, 
and frequencies). The measurement errors are mainly caused by the inaccuracies of the 
measurement transformers and the PMUs. The ability of different mother wavelets to 
separate the noise from the actual mode is different but generally the wavelet transform 
is quite insensitive to noise in the analyzed signals (Kang & Ledwich 1999).  

1.12 Random Decrement Technique 

The random decrement technique (RDT) is an output-only5 system identification 
method. It was first introduced in (Cole 1973) and studied then after in (Chang 1975) 
and has been applied extensively in the fields of structural (Ibrahim 1977) and 
mechanical (Siviter & Pollard 1985) engineering. Recently it has been applied also for 
estimating the damping of electromechanical oscillations in power systems 
(Thambirajah et al. 2010b).  
 
RDT is an averaging technique in the time domain, analogous to the Welch 
Periodogram method (Welch 1967) in the frequency domain. The averaging technique 
yields a trend known as the random decrement (RD) signature, which is an estimation of 
the correlation function of a Gaussian process. In order to extract the RD signature from 
a signal, RDT uses a threshold, h, so that every time the signal, y(t), crosses the 

threshold, a sample of the signal of length τ, y(ts:ts + τ), is collected. The samples 

collected in a specific time window are averaged yielding the RD auto signature DYY(τ). 
Under the assumption that the power system is linear and excited with Gaussian 

distributed random variations, the RD auto signature, DYY(τ), is proportional to the free 
decay or impulse response of the system (Brincker et al. 1992). Therefore, the 
approximate impulse response, rimp,a(t), is 

 

 ( ) ( ) ( )
1

1

imp,a YY m :
N

s s

s

t t
N

r t D C

=
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where N is the total number of samples collected using the threshold, s is the sample 
number, ts is the time instance when the single-mode ambient response, Cm(···), crosses 
the threshold, τ is the length of each sample (and corresponding approximate impulse 
response). 
 

                                                
5 Output-only method processes only the output signals of the system; it does not need the input signals in 
the estimation process. 
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The main assumptions of the random decrement technique are that the system dynamic 
behavior is linear and that the system is excited with random variations that are 
Gaussian distributed.  

Demonstration of the RDT is shown in Figure 11, Figure 12, and Figure 13. The 

wavelet-filtered signal, Cm, with the threshold of 2 ⋅ std(Cm), where std is the standard 
deviation, is shown in Figure 11. The first six samples and the 30th (last) sample of Cm 
which fulfill the threshold condition are shown in Figure 12. The RDS after the 
corresponding number of samples averaged is shown in Figure 13. It is seen in Figure 
13 that after all the collected 30 samples the RDS has approached the shape of the 
impulse response. 
 

 
Figure 11. Signal with a three minutes time window and the threshold used in the 

random decrement technique. 

 

 
Figure 12. Examples of samples of the signal in Figure 11. 

 



 

34 

 
Figure 13. Approximate impulse response after 1, 2, 3, 4, 5, 6, and 30 samples 

averaged, respectively. 
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2 Damping Estimation Method 

2.1 General Description 

The developed damping estimation method is based on the wavelet transform and the 
random decrement technique. The wavelet transform is applicable in damping 
estimation because it can extract the amplitudes of various frequency components of the 
signal as a function of time with an accuracy defined by the time and frequency 
resolutions of the wavelet. The random decrement technique is applicable in estimating 
the damping from the ambient response of the power system6. The method is a 
univariate7 method and therefore it is important to select for the analysis a signal with 
good observability of the specific mode. Usually, the observability of the oscillation 
mode in a specific signal is fairly constant (observability does not change with operating 
condition because it is related to the physical structure of the power system) and known 
from the linear analysis of the system model. This is the case also for the Nordic power 
system.  
 
The block diagram of the method is presented in Figure 14. The method analyses a 
sampled signal y(t) by using a frequency band and a time window length. The time 
window length is the duration of data from which the damping and frequency estimates 
are calculated. The time window slides forward along the analyzed signal using the 
steps defined by the update time. After each step, the estimates for damping and 
frequency are updated. The method consists of four blocks: 

- mode frequency estimation,  

- mode extraction, 

- estimation of the mode’s approximate impulse response, and 

- mode damping estimation from the approximate impulse response. 

                                                
6 The random decrement technique is described in Section 1.12. 
7 Univariate method utilizes only one signal in the estimation process.  
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Figure 14. Block diagram of the damping estimation method. CWT is continuous 

wavelet transform and RDT is random decrement technique. Input y(t) is the analyzed 

signal, ψ is the selected wavelet function, and outputs fm and ζm are the estimated mode 

frequency and damping, respectively. 

2.2 Steps of the Damping Estimation Method 

2.2.1 Frequency Estimation with Complex Continuous Wavelet 

Transform 

The mode frequency is estimated in a specified time window and frequency band with 
the complex continuous wavelet transform. First, the analyzed signal, y(t), is wavelet 
transformed: 
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where parameters ai are the wavelet scales from the lower frequency bound to the upper 
frequency bound with dense enough spacing to achieve high enough resolution for 
frequency estimation. Parameters bj are the wavelet positions from the beginning of the 
time window to the end of the time window with the spacing of signal sampling period. 
Time is t, ψf.e. is the wavelet function used in the frequency estimation, and C(ai,bj) are 
the wavelet coefficients with the specific scale and position parameters. 
 
The wavelet scale am that produces the highest average wavelet coefficient modulus, 
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is selected as the scale of the mode. The scale is converted to the mode frequency, fm: 
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where fc(ψf.e.) is the center frequency of the wavelet function ψf.e. [Equation (5)] and ∆ is 
the signal sampling period. 

2.2.2 Mode Extraction with Real Continuous Wavelet Transform 

After knowing the mode frequency, fm, the mode is extracted from the analyzed signal, 
y(t), with the real continuous wavelet transform by calculating the resulting wavelet 
coefficients: 
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The wavelet coefficients, Cm, are (approximately) linearly dependent on the 
instantaneous value of the mode at different time instances, b (Daubechies 1992). 
Therefore, the mode damping information is (approximately) preserved during the mode 
extraction. The mode extraction resolution is limited by Heisenberg’s uncertainty 
principle8 (frequency resolution vs. time resolution). The parameter am(ψm.e.) is the 
wavelet scale corresponding to the estimated mode frequency, fm, with the equation 
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⋅ ∆
, (11) 

 
where fc(ψ) is the center frequency of the mode extraction wavelet function, ψm.e., and ∆ 
is the signal sampling period. 

2.2.3 Impulse Response from Ambient Response with the Random 

Decrement Technique 

After extracting the mode of interest from the signal, the result is the power system’s 
ambient response at the mode frequency. Because it is not possible to determine the 

                                                
8 Heisenberg’s uncertainty principle is discussed in Section Wavelet Transform Properties of Section 
1.11.1. 
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damping of the mode directly from the single-mode ambient response, the random 
decrement technique (RDT) is used to estimate the approximate single-mode impulse 
response from the single-mode ambient response. From the estimated impulse response, 
the damping of the mode can be estimated.  
 
Under the assumption that the power system is linear and excited with Gaussian 

distributed random variations, the RD auto signature, DYY(τ), is proportional to the free 
decay or impulse response of the system (Brincker et al. 1992). Therefore, the 
approximate impulse response, rimp,a(t), is 
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where N is the total number of samples collected using the threshold, s is the sample 
number, ts is the time instance when the single-mode ambient response, Cm(···), crosses 
the threshold, and τ is the length of each sample (and corresponding approximate 
impulse response). 
 
The main assumptions of the random decrement technique are that the power system 
dynamic behavior is linear and that the system is excited with random variations that are 
Gaussian distributed. The assumptions can be considered valid when the system is 
operating under the ambient conditions. Then the oscillations are small and 
approximately linear. The random load variations can be considered approximately 
Gaussian distributed based on the central limit theorem9 (Cam 1986) because the 
number of loads in a power system is large. 

2.2.4 Mode Damping Estimation from the Approximate Impulse 

Response with Complex Continuous Wavelet Transform  

The damping of the mode is estimated from the approximate impulse response, rimp,a(t), 
utilizing the complex continuous wavelet transform. At first the complex wavelet 
coefficients, Cimp(···), at different time instances, b, are calculated:  
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where am(ψd.e.) is the wavelet scale corresponding to the estimated mode frequency, fm, 
calculated with Equation (11), and ψd.e. is the wavelet function used in the damping 
estimation. 
 

                                                
9 Central limit theorem states that the sum of independent and identically distributed random variables 
with finite mean and variance approaches the normal distribution (Gaussian distribution) when the 
number of random variables increases, irrespective of the distribution of the random variables.  
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The damping ratio of the mode, ζm, is finally calculated by using wavelet coefficients, 
Cimp(···), from two different time instances:  
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where Td is the difference between the positions (or time instants), b, of the wavelet 
coefficients Cimp in the damping calculation, and Tsp is the time instant from the 
beginning of the approximate impulse response (selection point), needed for the 
damping calculation. The absolute value of the complex wavelet coefficient corresponds 
to the amplitude of the approximate impulse response at a certain time instance. 
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3 Parameters of the Damping Estimation Method 

In this chapter, the parameter selections of the different blocks of the damping 
estimation method are considered. At first the general parameters which are common 
for the damping estimation method are presented.  

3.1 General Parameters 

The highest possible signal sampling frequency is in practice set by the PMU 
measurement frequency. However, usually a significantly lower sampling frequency is 
enough for the inter-area modes in the range from 0.1 to 2 Hz and specifically for the 
inter-area mode of 0.3 Hz. For these reasons, a signal sampling frequency of 10 Hz is 
assumed throughout this thesis.  
 
In addition to the sampling frequency, the method has two other general parameters: 
time window length and update time. The time window length is the duration of data 
from which the damping and frequency estimates are calculated. The time window 
slides forward along the analyzed signal using the steps defined by the update time. 
After each step, the estimates for damping and frequency are updated. The time window 
length affects the damping estimation results and this effect is studied in Chapter 4 of 
the thesis. The update time does not affect the damping estimates themselves but it only 
sets the time interval of updating the estimates. A fixed 5 second update time is used in 
this thesis and the different time window lengths between 1 and 32 minutes are used. 

3.2 Parameters of the Frequency Estimation and Mode 

Extraction 

The parameters of the frequency estimation are: scale resolution, frequency band, and 
the wavelet function. In the mode extraction, only the wavelet function needs to be 
selected. These parameter selections are addressed in the following.  

3.2.1 General Parameters of the Frequency Estimation 

The scale resolution or spacing of scales should be high enough for accurate frequency 
estimation. Here, the scale resolution of 0.1, which corresponds to the frequency 
interval of 0.0006 Hz at the 0.3 Hz frequency, is used. The scale resolution leads to an 
insignificant error in the frequency estimation.  
 
The frequency band should be selected such that it includes the mode of interest. 
Therefore, the selected frequency band is 0.2–0.4 Hz because it includes the 0.3 Hz 
mode, which is of interest in this thesis.  
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3.2.2 Selecting Wavelet Function for Frequency Estimation and Mode 

Extraction 

In order for some wavelet to be good in damping estimation it should be able to 

reproduce the amplitude of a specific mode accurately enough along the time axis. If the 

amplitude at a specific frequency was known at every time instant, the damping ratio of 

the specific mode, ζ, could be calculated (with certain accuracy) from the ring-down 

signals (or transients) of the power system oscillation caused by some disturbance using 
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where ωn is the undamped angular frequency of the mode. Cenv(t) is the wavelet 

coefficient envelope (in case of a real wavelet)10 or the wavelet coefficient modulus (in 

case of a complex wavelet)11 of the mode frequency wavelet at time t. Td is the time 

difference between the two points of the wavelet coefficient envelope or the wavelet 

coefficient modulus between which the damping is calculated. In addition, if the 

amplitude at a specific frequency was known at every time instant, the damping of the 

specific mode could be calculated using the ambient-excited oscillations with further 

processing.  

 

A property of the wavelet transform in damping estimation is the tradeoff between the 

time and frequency resolutions. The tradeoff means that if fast reaction to changes in 

amplitude in the time domain is required, a short wavelet must be used, which possibly 

causes the nearby modes to interfere with each other in the frequency domain, see 

Figure 15. On the other hand, if a good separation of the modes in the frequency domain 

is required, we must use a long wavelet, which gives a slow reaction to changes in 

amplitude and therefore leads to slow damping estimation in the time domain, see 

Figure 16. Too low a time resolution prevents the damping estimation both in the case 

of transient and ambient oscillations. This is basically because the oscillations disappear 

and new oscillations appear during the wavelet length and the damping information of 

the oscillations is (at least partially) lost.  

                                                
10 Real continuous wavelet transform produces the real wavelet coefficients that are approximately 
linearly dependent on the instantaneous value of the mode at different time instances. Therefore, the 
damping ratio can be calculated from the envelope of the wavelet coefficients. 
11 Complex continuous wavelet transform produces the complex wavelet coefficients. Moduli of these 
coefficients are approximately linearly dependent on the amplitude of the mode at different time 
instances. Therefore, the damping ratio can be calculated from the complex wavelet coefficient moduli. 
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Figure 15.  The effect of the wavelet length on the ability of separating the modes from 

each other (frequency resolution). A long wavelet (Cmor1-5) separates the modes better 

than the shorter ones (Cmor1-1.5 and Cmor1-0.5). Only a fraction of the test signal is 

presented.  

 

 
Figure 16.  The effect of the wavelet length on the reaction time of changing amplitude 

(time resolution). A long wavelet (Cmor1-5) reacts to the changing amplitude much 

slower than the shorter one (Cmor1-1.5). 

  

Another property of some mother wavelets is that the wavelet coefficient does not 

necessarily peak at the same wavelet frequency as the signal frequency is, see Figure 17. 
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This causes problems in determining the oscillation frequency. Therefore, mother 

wavelets, which cause the wavelet coefficient to peak at the desired frequency, should 

be used.  

 
Figure 17.  The wavelet coefficient as a function of the wavelet frequency when the 0.5 

Hz undamped sinusoidal signal is analyzed. The Gaus28 wavelet peaks at the signal 

frequency whereas the Db28 wavelet peaks at a lower frequency.  

 

Based on the observations above, when selecting the best mother wavelet in 

electromechanical oscillation damping estimation, it is important that the following 

conditions are fulfilled: 

1) The wavelet should separate the different oscillation modes well enough 

(frequency resolution) 

- This is important because there possibly are several oscillation modes 

present in the power system 

2) The wavelet should react quickly enough to changes in amplitude (time 

resolution) 

- This is important because damping is related to the changes in amplitude 

3) The wavelet coefficient should peak at the signal frequency 

- This is important in the frequency estimation, which is based on 

selecting the maximum wavelet coefficients 

3.2.3 Wavelet Function Selection for the Frequency Estimation and 

Mode Extraction in the Nordic Power System Case 

In this section, the optimal mother wavelet selection is further studied in the case of 

oscillation damping estimation of the Nordic power system with inter-area oscillation 

modes at about 0.3 Hz and 0.5 Hz. The optimal mother wavelet should react to changes 

in amplitude fast enough but it should also separate the modes at 0.3 Hz and 0.5 Hz well 

enough.  

 



 

44 

In order to be able to quantitatively compare different wavelets, the frequency and time 

resolution criteria need to be specified precisely. For this purpose, a test signal having 

only a frequency component of 0.3 Hz and damping of 10 % is analyzed with an 

example wavelet.  

 

Here, the upper frequency resolution is defined as the frequency interval (in Hz) 

towards greater frequencies that it takes the normalized wavelet coefficient to decrease 

to 10 % of the peak value. Similarly, the lower frequency resolution is the frequency 

interval towards smaller frequencies that it takes the normalized wavelet coefficient to 

decrease to 10 % of the peak value, Figure 18. A wavelet with high frequency resolution 

has small values for the upper and lower frequency resolutions, i.e. a narrow peak in the 

frequency domain.  

 
Figure 18.  Specification of the upper and lower frequency resolution in this thesis. The 

test signal has only a frequency component of 0.3 Hz.  

 

The time resolution is defined as the time that it takes for damping estimate (estimated 

using Equation (15) with the time difference, Td, of half cycle of oscillation) to change 

from 0.5 % to 9.5 % when the damping of the test signal changes from 0 % to 10 %, 

Figure 19. A wavelet with the high time resolution has a small value for the time 

resolution, i.e. a fast reaction in the time domain.  
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Figure 19.  Specification of the time resolution in this thesis. Damping of the test signal 

changes instantaneously from 0 % to 10 %.  

 

Now, when the frequency and time resolutions are specified quantitatively, the criteria 

for selection of optimal mother wavelets in damping estimation of the Nordic power 

system can be defined: 

1) Frequency resolution 

a. The lower frequency resolution of the wavelet for the 0.5 Hz signal must 

be less than 0.2 Hz. This is to guarantee that the 0.5 Hz mode does not 

interfere with the 0.3 Hz mode. 

b. The upper frequency resolution of the wavelet for the 0.3 Hz signal must 

be less than 0.2 Hz. This is to guarantee that the 0.3 Hz mode does not 

interfere with the 0.5 Hz mode. 

2) Time resolution  

a. The time resolution of the wavelet for the 0.3 Hz signal must be equal or 

less than 16.7 s (equals about 5 cycles of 0.3 Hz oscillation). This is to 

prune the wavelets with poor time resolution.  

3) Frequency estimation capability 

a. When the test signal frequency is 0.5 Hz, the wavelet coefficient must 

peak in the range of 0.49-0.51 Hz. This is to guarantee the frequency 

estimation capability. 

 

The mother wavelets that pass the criteria are the Gaussian (Gaus), complex Gaussian 

(Cgau), and complex Morlet (Cmor) wavelets shown in Figure 20 with the related 0.3 

Hz and 0.5 Hz time and frequency resolutions. The number after the wavelet name in 

Figure 20 is related to the wavelet length. The smaller the number the shorter the 

wavelet is. All these mother wavelets are possible ones for damping estimation of the 

Nordic power system. In practice, the 0.5 Hz mode is nearly unobservable in Finland at 

most times and therefore it is often possible to use even shorter wavelets than presented 

in Figure 20. Shorter wavelets are preferred because they have better time resolution. 
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Figure 20.  The time and frequency resolutions of the mother wavelets which passed the 

criteria set for the optimal mother wavelets in damping estimation of the Nordic power 

system. 
 

In this thesis, Cmor1-1.5 wavelet is used in the frequency estimation because it fulfills 
the criteria above and it is a complex wavelet. Three different wavelet functions are 
used for the mode extraction in this thesis: Gaus4, Gaus20, and Gaus44. Of these 
wavelets, only the Gaus20 wavelet function fulfills the criteria above. However, the 
effect of using a longer and shorter wavelet on the damping estimation results is 
illustrated with the other two wavelets. The wavelets are of significantly different length 
and have thus very different frequency and time resolutions.  

3.3 Parameters of the Random Decrement Technique 

Parameters of the random decrement technique are the length of the samples, τ, and the 
threshold value, h. The selection of these parameters is done such that the results of the 
simple simulation model, described in Figure 21, are analyzed with the damping 
estimation method using different RDT parameter values. The simulation model 
consists of the single pole pair transfer function that is excited with the Gaussian white 
noise. The output of the transfer function is analyzed with the damping estimation 
method presented in Figure 14. 
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Figure 21. The simple simulation model: a single complex conjugate pole pair transfer 

function model. 

 
Damping estimation results with the sample lengths from 4 to 8 cycles and with the 
threshold values from -2.5 to 2.5 when the real damping is 5 %, are presented in Figure 
22. The damping estimate mean value is close to the real damping of 5 % and the 
standard deviation is low when the sample length, τ, is six oscillation cycles and when 
the threshold value is approximately 1.4. These values are used for the sample length 
and threshold in this thesis. If the threshold value is lower (higher) the number of 
samples the method collects during a time window is higher (lower) but the samples are 
of poorer (better) quality. The threshold value of 1.4 is a good compromise between the 
quality and number of samples collected during a time window.  

 
Figure 22. Damping estimates with different sample lengths, τ, and threshold values 

when the real damping ratio is 5 %. The circles describe the mean values of the 

damping estimates and the errorbars show the standard deviations of the estimates. 
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3.4 Parameters of the Mode Damping Estimation from the 

Approximate Impulse Response 

In analyzing the damping from the approximate impulse response, the wavelet function, 
time difference between the wavelet coefficient moduli, Td, and selection point of 
damping estimate, Tsp, are important parameters and studied here. Another parameter to 
be considered is the accuracy of the wavelet’s approximation. The accuracy is 
dependent on the number of points used in the approximation in the wavelet’s support 
domain12, in other words what is the wavelet’s sampling frequency. This is an internal 
parameter of the continuous wavelet transform but it has some effect on the damping 
estimates. Therefore, the approximation accuracy of the wavelet is considered in the 
following. In addition, the effect of frequency deviation between the analyzing wavelet 
and the signal is studied because it has some effect on the damping estimates.  
 

3.4.1 Effect of Time Difference between the Selected Wavelet 

Coefficients on the Damping Estimates with Different Wavelets  

The time difference between the selected wavelet coefficients, Td, [Figure 14, Equation 
(14)] affects the damping estimation results. The maximum time difference is limited by 
the fact that a wavelet has to be well enough in the domain of the impulse response. 
When the time difference between the two wavelets increases, a larger part of the 
wavelets’ domain is outside of the impulse response’s domain. This behavior is 
dependent on the wavelet length. The maximum allowed time difference for the short 
wavelets is greater than for the long wavelets. The effect of time difference, Td, on the 
damping estimates is studied in the following in case of an ideal exponentially decaying 
sinusoidal signal. An example of the analysis is first presented, after which the results 
are considered for multiple time differences between the selected wavelet coefficients 
using three different wavelet functions. The analysis is done for damping ratios of the 
impulse response from 1 %–10 %. 

Example of the Analysis 

An ideal exponentially decaying sinusoidal signal (or impulse response) and the time 
difference between the wavelet coefficients, Td, used in the damping calculation is 
shown in Figure 23. The damping ratio of the impulse response is 6 % and frequency is 
0.3 Hz.  

                                                
12 Wavelet’s support domain is the time interval during which the wavelet function is numerically 
defined. Outside the support domain wavelet function has a value of zero.   
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Figure 23. Impulse Response with 6 oscillation cycles. Frequency of the impulse 

response is 0.3 Hz and damping is 6 %. Time difference between the selected wavelet 

coefficients, Td, is shown. 

 
Three complex wavelets (Cmor1-1, Cmor1-1.3, and Cmor1-1.5) of the Morlet wavelet 
family are used in the analysis. The real parts of the wavelet function ψs are shown in 
Figure 24, Cmor1-1 being the shortest and Cmor1-1.5 the longest wavelet. These 
wavelets were selected for the analysis because their length is approximately sufficient 
for damping estimation from the impulse response which length is six cycles. Their 
applicability is studied in detail in the following sections. 
 

 
Figure 24. Complex Morlet wavelets Cmor1-1 (a), Cmor1-1.3 (b), and Cmor1-1.5 (c) 

used in the analyses.  

(b) 

(a) 

(c) 
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Wavelet coefficient modulus13 as a function of time for the example impulse response 
(Figure 23) with the Cmor1-1 wavelet is shown in Figure 25. The modulus is first 
growing although the impulse response is decaying because the wavelet is entering the 
domain of the impulse response. The corresponding damping estimate (Figure 26) with 
the time difference, Td, of 0.5 oscillation cycles is thus negative. At some point (about 3 
s in Figure 25 for the example impulse response and the wavelet) the modulus reaches 
the maximum and right after begins to decay because the impulse response is decaying. 
The corresponding damping estimate reaches the value zero and turns to positive at this 
point. The modulus continues to decay with a higher damping ratio because the wavelet 
is still entering the domain of the impulse response (Figure 25 and Figure 26). At some 
point, the damping reaches almost a constant level because the wavelet is almost 
entirely in the domain of the impulse response14, and then after starts to increase again 
because the wavelet starts to go out of the impulse response’s domain.  
 
There is a time lag in the damping estimate compared to the wavelet coefficient 
modulus because the damping is calculated from two wavelet coefficient moduli with 
Equation (15) and the time of the damping estimate is defined as the time of the leading 
wavelet coefficient modulus. The damping estimate is defined to be zero before both 
wavelet coefficient moduli are available for the damping calculation. 

 
Figure 25. Wavelet coefficient modulus of the example impulse response (Figure 23) 

with the Cmor1-1 wavelet. Time difference between the selected wavelet coefficients, Td, 

is shown. 

                                                
13 Wavelet coefficient modulus is the absolute value of the complex wavelet coefficient.  
14 This is the point when the damping estimate approximately equals the damping of the impulse 
response. 
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Figure 26. Damping estimate calculated from the wavelet coefficient modulus (Figure 

25) of the example impulse response (Figure 23) with the time difference, Td, of 0.5 

oscillation cycles. Damping value and time instance highlighted in the figure is the 

midpoint of the damping values. 

Analysis Results with Multiple Time Differences between the Selected 

Wavelet Coefficients and with Different Wavelets 

Damping estimates with the Cmor1-1, Cmor1-1.3, and Cmor1-1.5 wavelets (shown in 
Figure 24), with 10 different damping ratios of the impulse response (1 %–10 %) and 
with the time difference, Td, from 0.1 to 3 oscillation cycles are shown in Figure 27. The 
biases of the damping estimates as a function of the time difference, Td, are shown in 
Figure 28. The biases as a function of the impulse response’s damping ratio are shown 
in Figure 29 (relative biases in Figure 30). The biases as a function of different wavelets 
are shown in Figure 31 and Figure 32. 
 
For the shortest wavelet (Cmor1-1), the damping estimates are very little biased even 
when the time difference, Td, is long and the damping ratio is high (Figure 27a, Figure 
28a, Figure 29, Figure 30, Figure 31, and Figure 32). When the length of the wavelet, 
the time difference Td, or the damping of the impulse response increases, the bias from 
the real damping value increases. The bias increases because the wavelets go more out 
of the impulse response’s domain. Here, bias is defined as absolute bias 
 

 
A E R
B V V= − , (16) 

 
where BA is absolute bias, VE is estimated value, and VR is real value. 
 
If the bias was defined as relative bias (BR) 
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it would be nearly equal for different damping ratios of the impulse response (Figure 
30). 
 
Although a short wavelet and short time difference Td, give good results for the ideal 
impulse response, the longer wavelet and longer time difference have certain advantages 
which are not reflected in the ideal case. A longer wavelet gives better frequency 
resolution, which is beneficial if there are other modes present in the impulse response 
and a longer wavelet is less sensitive to noise. A longer time difference gives more 
difference in the wavelet coefficient moduli and therefore a more reliable damping 
estimate because the effect of random excursions in the impulse response is minimized.  
 
However, a significant benefit of a short wavelet is that it allows the use of a long time 
difference Td, and gives still low bias in the damping estimate (Figure 27a, Figure 28a, 
and Figure 32). It can be seen from the figures that although the time difference of three 
oscillation cycles is used in case of the Cmor1-1 wavelet, the bias is still about the same 
as for the Cmor1-1.3 wavelet with the time difference of 0.5 oscillation cycles. The bias 
for the Cmor1-1.5 with the time difference of 0.5 cycles is about three times larger than 
the corresponding bias for the Cmor1-1 with the time difference of 3 oscillation cycles.  
 
The biases are acceptable for the Cmor1-1 wavelet with all the studied time differences 
from 0.1 to 3 oscillation cycles. The biases are possibly acceptable also for the longer 
wavelets (Cmor1-1.3 and Cmor1-1.5) when the time difference is kept relatively low 
(Td < 2 for the Cmor1-1.3 and Td < 0.5 for the Cmor1-1.5).   
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Figure 27. Estimated damping as a function of time difference between the selected 

wavelet coefficients in the damping estimation, Td. The results are presented for the 

three wavelets Cmor1-1 (a), Cmor1-1.3 (b), and Cmor1-1.5 (c). The legend value shows 

the real damping of the impulse response for each curve. 

 

(b) (a) (c) 
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Figure 28. Damping estimate bias as a function of time difference between the selected 

wavelet coefficients in the damping estimation, Td. The results are presented for the 

three wavelets Cmor1-1 (a), Cmor1-1.3 (b), and Cmor1-1.5 (c). The legend value shows 

the real damping of the impulse response for each curve. 

(b) 

(a) 

(c) 
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Figure 29. Damping estimate bias as a function of real damping of the impulse 

response. The time difference between the selected wavelet coefficients in the damping 

estimation, Td, is 0.5 oscillation cycles. The results are presented for the three wavelets 

Cmor1-1, Cmor1-1.3, and Cmor1-1.5.  

 
Figure 30. Relative damping estimate bias as a function of real damping of the impulse 

response. The time difference between the selected wavelet coefficients in the damping 

estimation, Td, is 0.5 oscillation cycles. The results are presented for the three wavelets 

Cmor1-1, Cmor1-1.3, and Cmor1-1.5.  
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Figure 31. Damping estimate bias as a function of wavelet length. The time difference 

between the selected wavelet coefficients in the damping estimation, Td, is 0.5 

oscillation cycles. The legend value shows the real damping of the impulse response for 

each curve. 

 

 
Figure 32. Damping estimate bias as a function of wavelet length. Damping of the 

impulse response is 6 %. The legend value shows the time difference between the 

selected wavelet coefficients in the damping estimation, Td, for each curve. 

 
Two different wavelet functions are used in the impulse response’s damping estimation 
in this thesis: Cmor1-1 and Cmor1-1.5. Although the Cmor1-1 wavelet gives better 
results for the ideal impulse response, the effect of using a longer wavelet on the 
damping estimation results is illustrated with the Cmor-1.5 wavelet. The time 
difference, Td, between the selected wavelet coefficients in the impulse response’s 
damping estimation is selected to be 0.5 oscillation cycles.  

3.4.2 Effect of Selection Point on the Damping Estimates 

The selection point, Tsp, of the damping estimate [Figure 14, Equation (14)] affects the 
damping estimation results. Here, its effect is studied in the case of an ideal impulse 
response. Intuitively, the best selection point for a damping estimate is the point when 
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the two wavelets15 are symmetrically located at each side of the center of the impulse 
response curve. To verify the assumption, two cases are studied below. The one in 
which the rightmost wavelet is located in the center of the impulse response curve 
(Figure 33a) and the other in which the leftmost wavelet is located in the center of the 
impulse response curve (Figure 33b). Both damping estimate groups differ substantially 
more from the real damping values than the group where the wavelets were located 
symmetrically at each side of the center of the impulse response curve (Figure 27a). 
This is the case especially with longer time difference, Td. For a short time difference 
the effect of selection point is small for the studied Cmor1-1 wavelet and the effect of it 
grows with longer wavelets. 
 
When the approximate impulse response of a specific inter-area mode is estimated with 
the damping estimation method (Figure 14), it is possible that the first part of the 
approximate impulse response is more reliable than the last part16. Therefore, the 
selection point when the rightmost wavelet is in the middle of the impulse response 
curve, might be justifiable in practice, although it gives worse (but still acceptable) 
results in the ideal case. Therefore, both selection points are used in this thesis: the 
midpoint and the point in which the rightmost wavelet is in the middle of the impulse 
response. The effect of using these selection points on the damping estimates is studied.  
 

                                                
15 Damping estimate is calculated from the wavelet coefficients at two different locations according to 
Equation (14).  
16 The first part might be more reliable than the last part because the amplitude is larger and therefore the 
effect of random excursions is minimized. 
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Figure 33. Damping estimates as a function of time difference between the selected 

wavelet coefficients in the damping estimation, Td, when the rightmost wavelet is in the 

middle of the impulse response (a) and when the leftmost wavelet is in the middle of the 

impulse response (b). The results are presented for the Cmor1-1 wavelet. The legend 

value shows the real damping of the impulse response for each curve. 

 

3.4.3 Effect of Deviation between the Frequency of the Approximate 

Impulse Response and the Estimated Frequency on the Damping 

Estimates 

The estimated frequency, fm, is not an actual parameter of the block which estimates the 
damping from the approximate impulse response (Figure 14). However, it is an input of 
the block and for each time window its value is fixed and can be considered as a 
parameter. This section studies how much the deviation between the frequency estimate, 
fm, and frequency of the actual impulse response affects the damping estimates. The 
estimated frequency, fm, is converted to the corresponding scale of the wavelet function 
used in the mode damping estimation from the approximate impulse response, ψd.e., with 

(a) (b) 
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Equation (11). However, the effect that the difference between the frequency estimate 
and the actual mode frequency has on the mode extraction, is not studied here. 
 
The study is done in such a way that the wavelet center frequency is kept constant at 0.3 
Hz and the impulse response’s frequency is varied in the range from 0.25 Hz to 0.35 Hz. 
The results are presented for different damping ratios (from 1 % to 10 %) and for the 
Cmor1-1, Cmor1-1.3, and Cmor1-1.5 wavelets (Figure 34a, b, and c, respectively).  
 
The effect of frequency deviation is significant on the damping estimates for all the 
studied wavelets and damping ratios. In addition, the damping estimate is almost 
linearly dependent on the impulse response’s frequency in case of the short wavelet 
Figure 34a.  
 
In the results of Figure 35, the real frequency of the impulse response is used as the 
frequency, fm, in the equation of the damping ratio [Equation (14)]. In this case, the 
frequency deviation has very little effect on the damping estimates especially in the case 
of the short wavelet (Figure 35a). The wavelet center frequency is 0.3 Hz in this case, 
too.  
 
The conclusion is that the frequency mismatch between the impulse response and the 
wavelet center frequency does not affect much the damping of the wavelet coefficient, 
but it has an effect via the equation of the damping ratio [Equation (14)].  
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Figure 34. Estimated damping as a function of impulse response’s frequency when the 

estimated frequency is 0.3 Hz and therefore the wavelet center frequency is kept 

constant at 0.3 Hz in each case. The time difference between the selected wavelet 

coefficients in the damping estimation, Td, is 0.5 oscillation cycles. The results are 

presented for the three wavelets Cmor1-1 (a), Cmor1-1.3 (b), and Cmor1-1.5 (c). The 

legend value shows the real damping of the impulse response for each curve. 

 

 

(a) (b) (c) 
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Figure 35. Estimated damping as a function of impulse response’s frequency when the 

impulse response’s frequency is used in the damping ratio calculation. Wavelet center 

frequency is kept constant at 0.3 Hz in each case. The time difference between the 

selected wavelet coefficients in the damping estimation, Td, is 0.5 oscillation cycles. The 

results are presented for the three wavelets Cmor1-1 (a), Cmor1-1.3 (b), and Cmor1-

1.5 (c). The legend value shows the real damping of the impulse response for each 

curve. 

3.4.4 Effect of Wavelet’s Approximation Accuracy on the Damping 

Estimates  

The wavelet’s numerical approximation accuracy is not explicitly shown as a parameter 
of the block which estimates the damping from the approximate impulse response 
(Figure 14). This is because the approximation accuracy is an internal parameter of the 
Matlab®’s algorithm for the continuous wavelet transform (CWT). However, this 
parameter might have an effect on the damping estimates. In all the previous studies 
very high numerical approximation accuracy was used for the wavelets to achieve as 
reliable results as possible. In practice, though, the numerical approximation accuracy of 
the wavelet affects the computational speed of the damping estimation algorithm. 
Therefore sufficient accuracy, not higher, should be used. Matlab®’s algorithm for 

(a) (b) (c) 
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continuous wavelet transform implicitly uses the numerical approximation accuracy of 
210 points in the wavelet’s domain.  
 
The name continuous wavelet transform implies that the wavelet transform is made 
continuously both in the direction of time translation (parameter ai in Equation (7)) and 
in the direction of scale (or frequency, parameter bj in Equation (7)). However, practical 
power system data is numerical and therefore the calculations are made using numerical 
calculations instead of analytic calculations. Therefore, continuous wavelet transform is 
done using a finite set of parameters ai and bj. Also the wavelet function itself is a 
numerical approximation of the underlying analytic waveform and the approximation 
accuracy (or sampling interval) of it affects the damping estimation results.  

Accuracies of 26, 28, 210, 212, 214, 216, 218, and 220 data points in the wavelet’s support 
domain from -8 to 8 are studied. Examples of wavelets’ numerical approximations for 
the accuracies of 26, 28, and 210 data points for the Cmor1-1.5 wavelet are shown in 
Figure 36, Figure 37, and Figure 38, respectively. 

 
Figure 36. Numerical approximation of the Cmor1-1.5 wavelet with 2

6
 data points in 

the wavelet’s support domain from -8 to 8. 

 
Figure 37. Numerical approximation of the Cmor1-1.5 wavelet with 2

8
 data points in 

the wavelet’s support domain from -8 to 8. 
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Figure 38. Numerical approximation of the Cmor1-1.5 wavelet with 2

10
 data points in 

the wavelet’s support domain from -8 to 8. 

Example of the Analysis 

The same impulse response with the frequency of 0.3 Hz and damping of 6 % (Figure 
23) is used to illustrate the effect of the wavelet’s numerical approximation accuracy on 
the damping estimates and the same wavelets (Cmor1-1, Cmor1-1.3, and Cmor1-1.5) 
are used here (Figure 24) than were used before in Section 3.4.1.  
 
To emphasize the effect of the wavelet’s approximation accuracy on the wavelet 
coefficients and damping estimates of the impulse response, the approximation accuracy 
of 26 data points is used in Figure 39 which presents the corresponding wavelet 
coefficients of the impulse response with the Cmor1-1 and Cmor1-1.5 wavelet. Large 
oscillations are caused in the wavelet coefficient when the low approximation accuracy 
of the wavelet is used. This is the case for the both wavelets, but the longer wavelet 
(Cmor1-1.5) produces larger oscillations in the wavelet coefficient than the shorter one. 
 

The way that these oscillations of the wavelet coefficient affect the damping estimates is 
dependent on the time difference, Td (Figure 39). If the value of 0.2 oscillation cycles is 
used for the time difference, Td, large oscillations are observed in the damping estimate 
(Figure 40). On the other hand, if the value of 0.5 oscillation cycles is used for the time 
difference, Td, smaller (but still significant) oscillations are observed in the damping 
estimate (Figure 41). It is clear that larger oscillations in the wavelet coefficient caused 
by the longer Cmor1-1.5 wavelet are also reflected as larger oscillations in the damping 
estimate. The points highlighted in Figure 40 and Figure 41 are the points that would 
have been selected as the impulse response’s damping estimates in these cases.  
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Figure 39. Wavelet coefficient modulus of the example impulse response (Figure 23) 

with the Cmor1-1 and Cmor1-1.5 wavelets and with the wavelet’s approximation 

accuracy of 2
6
 data points in the wavelet’s support domain. Two time differences 

between the wavelet coefficients, Td, are also shown. 

 

 
Figure 40. The damping estimate calculated from the wavelet coefficient modulus 

(Figure 39) of the example impulse response (Figure 23) with the time difference, Td, of 

0.2 oscillation cycles. Damping value and the time instance highlighted in the figure is 

the midpoint of the damping values. 
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Figure 41. Damping estimate calculated from the wavelet coefficient modulus (Figure 

39) of the example impulse response (Figure 23) with the time difference, Td, of 0.5 

oscillation cycles. Damping value and the time instance highlighted in the figure is the 

midpoint of the damping values. 

Analysis Results with Different Approximation Accuracies of the Wavelet, 

with Multiple Time Differences between the Selected Wavelet Coefficients, 

and with Different Wavelets 

To get a complete picture how the numerical approximation accuracy, A2A (AA is an 
exponent of approximation accuracy), of the wavelet function affects the damping 
estimates in case of multiple time differences, Td, between the selected wavelet 
coefficients and with different wavelets, the standard deviations of the damping 
estimates are calculated. The calculation is done with an interval of one oscillation cycle 
(3.333 s) in the middle of the damping estimate curve for each case. The standard 
deviation of the damping estimate is a measure of the estimate’s accuracy.  
 
The standard deviations for the Cmor1-1, Cmor1-1.3, and Cmor1-1.5 wavelets, for the 
time difference, Td, between 0.1 to 3 oscillation cycles, and for the wavelet’s 

approximation accuracies, A2A , of 26, 28, 210, 212, 214, 216, 218, and 220 data points in the 
wavelet’s domain from −8 to 8 are shown in Figure 42. In the analysis, the damping of 
the impulse response is 10 %, which is the worst case giving the largest standard 
deviations. The results are similar for other damping ratios except the standard 
deviations are smaller. 
 
The standard deviation often has a local minimum when the time difference, Td, is an 
integer multiple of 0.5 oscillation cycles. This is evident especially for the shortest 
Cmor1-1 wavelet (Figure 42a) and with the low wavelet’s approximation accuracies (< 
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212 data points). The effect of the time difference, Td, on the damping estimate standard 
deviation decreases when the approximation accuracy increases. The decrease of the 
standard deviation “saturates” or it is not decreasing a lot more when the approximation 
accuracy of the wavelet reaches the level of 214 data points; the value used in this thesis. 
This can be considered as the minimum level for the wavelet’s approximation accuracy 
in the impulse response’s damping estimation. The longer wavelets (Cmor1-1.3, and 
Cmor1-1.5) produce higher damping standard deviations compared to the shortest 
wavelet (Cmor1-1). When the damping estimate is observed as a function of time, it is 
constantly increasing with longer wavelets. The constant increase of the damping 
estimate increases the standard deviation of the damping estimate, since it deviates from 
the mean damping although it is not oscillating. However, the constant increase of the 
damping estimate is only a smaller part of the high standard deviation in the case of 
longer wavelets. The larger part is due to the larger oscillation of the damping estimate 
in the case of longer wavelets.   
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Figure 42. Standard deviations of the damping estimates as a function of time difference 

between the wavelet coefficients, Td. The results are presented for the three wavelets 

Cmor1-1 (a), Cmor1-1.3 (b), and Cmor1-1.5 (c). The standard deviations are 

calculated in the interval of one oscillation cycle (3.333 s) such that the window is 

located in the middle of the damping estimate curve. The legend value shows the 

exponent of the numerical approximation accuracy (approximation accuracy = A2A
data 

points, where AA = exponent of approximation accuracy = legend value) of the wavelet 

for each curve.  

(b) 

(a) 

(c) 
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3.5 Summary of the Parameters 

The parameters of the damping estimation method are classified as general parameters 
and the parameters of the different blocks in Figure 14. The general parameters are the 
time window length and update time of the method and the signal sampling frequency. 
They are common for all blocks of the method. The frequency estimation, mode 
extraction, and mode damping estimation blocks each have their own wavelet function 
as a parameter. The selection of the wavelet functions is studied in detail. The criteria 
for selecting the wavelet functions for mode extraction and frequency estimation are 
specified. The Cmor1-1.5 and Gaus2017 wavelet functions are selected for frequency 
estimation and mode extraction of the Nordic power system, respectively.  
 
The other parameters of the frequency estimation block are the frequency band and 
scale resolution. Frequency band is selected to include the 0.3 Hz mode which is of 
interest here and a high enough scale resolution is selected. The parameters of the 
random decrement technique, threshold and sample length, are specified by analyzing 
the output of a simple simulation model.  
 
The wavelet function and other parameters of the mode damping estimation block, time 

difference and selection point, are studied by analyzing ideal impulse responses with 
different damping ratios. Also the frequency deviation and accuracy of the wavelet's 

approximation is considered. The effect of using three different wavelets18 and different 
time differences on the damping estimates is studied. The shortest wavelet (Cmor1-1) 
produces the least biased estimates for the damping19. The bias increases when a longer 
time difference is used or when the damping ratio of the impulse response increases. 
The damping ratio affects only the absolute bias, relative bias is not much affected. The 
selection point for damping estimate is studied and usually the midpoint gives the best 
results for damping estimates20. The effect of selection point increases when the time 
difference increases. The frequency deviation has a significant effect on the damping 
estimates via the definition of the damping ratio. The accuracy of the wavelet's 
approximation has a significant effect on the damping estimates if it is too low. The 
time difference affects more the damping estimates if the accuracy of the wavelet's 
approximation is low. 
  
 
 

                                                
17 Also the Gaus4 and Gaus44 wavelet functions are used in the performance analysis of the thesis to 
verify that the selected wavelet function (Gaus20) is optimal for estimating damping under the ambient 
conditions.  
18 The wavelets are Cmor1-1, Cmor1-1.3, and Cmor1-1.5. 
19 Also the Cmor1-1.5 wavelet function is used in the performance analysis of the thesis to verify the 
optimality of the wavelet selection under the ambient conditions of the power system. 
20 Also the selection point when the rightmost wavelet is in the middle of the impulse response is used in 
the performance analysis of the thesis to verify the optimality of the wavelet selection under the ambient 
conditions of the power system. 
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4 Performance Analysis of the Damping Estimation 

Method 

4.1 Quantities to Assess Performance 

Performance of the damping estimation method can be considered good when the 
damping estimates are accurate. In order to study the accuracy of the estimation results, 
three quantities are used: standard deviation of the estimate, mean value of the estimate, 
and the bias of the estimate from the real (or reference) value. The mean value tells the 
average damping ratio during the estimation period. The bias determines how much the 
estimates generally deviate from the reference damping. The standard deviation tells 
how large the variation of the estimates is and determines how much the individual 
estimates usually deviate from the reference damping. The accuracy is considered good 
when the mean value is near the real value and both the bias and the standard deviation 
are near zero. In this case both the individual estimates, and the estimates in general are 
near the real value and can be considered accurate. The bias used here is the absolute 
bias as defined by Equation (16).  
 
In this method to assess the accuracy it is assumed that the real damping is constant 
during the estimation period. If the real damping changes, the damping estimates should 
change accordingly. The speed of reaction of the damping estimates is dictated by the 
time window length of the method. If the time window is long, then the estimates react 
slower. Therefore, shorter time windows are preferred as long as the accuracy of the 
estimates is good enough.    

4.2 Nordic Power System Simulations in Assessing 

Performance 

The simulations are used to study the performance of the method because the real 
damping is known and can be compared to the estimated damping. The grid 
measurements in an almost identical power flow situation are then used to verify if the 
results for the simulations and measurements agree, as they should if the model 
describes the power system dynamics well enough.   
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4.2.1 Simulation Cases and Output Signals 

Dynamic Simulation Model and Power Flows 

The nonlinear dynamic simulation model of the Nordic power system is used here. The 
oscillation characteristics of the system are described in Section 1.10.2. When the 
system is operating under the ambient conditions, the oscillations are small and the 
dynamic behavior of the system is approximately linear. The simulation model is 
implemented in PSS®E-software and it has about 6000 buses, 1700 machines and 2600 
loads. The number of state variables is about 17000.  
 
The power flow of the Northern AC-lines between Finland and Sweden (presented in 
Figure 3) affects most the damping ratio of the 0.3 Hz mode. When the power transfer 
from Finland to Sweden increases the damping of the inter-area mode becomes poorer. 
Different power flow cases are used in order to find out how the damping estimation 
method performs with different damping ratios.  
 
Here, a concept base power flow case, which represents a winter situation with high 
load, high power export from Finland to Sweden, and a 7 % damping ratio of the 0.3 Hz 
mode, is used. Other power flow cases with different damping ratios of the 0.3 Hz mode 
are used, too. They are modified from the base power flow case. The reference damping 
(the real damping) is calculated in each power flow case by creating a small transient to 
the system and applying Prony analysis to find out the oscillation modes and their 
damping (Hauer 1991). Because the simulated transient is small, the power system 
behavior is linear, and the related damping is the small-signal damping of the power 
system.  

Power System Input 

To reflect the real behavior of the power system under ambient conditions, the randomly 
varying loads excite the oscillations in the system in the simulations, too. The load 
variation is done only on the Finnish side of the grid where the controllability of the 
studied 0.3 Hz mode is the largest (Uhlen et al. 2003, Elenius et al. 2005) and therefore 
the excitation of the mode is the most effective. In this way, the power oscillations in 
the interconnecting lines between Finland and Sweden become close to the measured 
values under the ambient conditions (a couple of MWs oscillation).  
 
The individual varying loads follow the uniform distribution. Therefore, the load 
variation results in the driving noise not being strictly Gaussian, which is assumed in the 
damping estimation method. However, because the number of varying loads is large, the 
net effect of the load variation is approximately Gaussian based on the central limit 
theorem21 (Cam 1986).  

                                                
21 Central limit theorem states that the sum of independent and identically distributed random variables 
with finite mean and variance approaches the normal distribution (Gaussian distribution) when the 
number of random variables increases, irrespective of the distribution of the random variables. 
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Analyzed Output Signals 

The analyzed output signals of the simulation represent different geographical areas 
where the modal observability is different, and physical quantities of the Nordic power 
system. In Finland, the signals are selected from South and North Finland. In Sweden, 
they are from North, North/Central, Central/South, and South Sweden. In Norway they 
are from North, Central, South Western, and South Eastern Norway and in Denmark 
from East Denmark. The physical quantities are active power flows of the 
interconnecting lines between Finland and Sweden, generator relative rotor angles 
(relative to a large generator in South Sweden), generator speed deviations from 
nominal, local frequency deviations from nominal, and bus voltage magnitudes and 
phase angles. Although all of these signals are analyzed with the damping estimation 
method, only some results are presented in order to describe the performance 
characteristics of the method.  
 
An example of an analyzed output signal under the ambient conditions is presented in 
Figure 43. The signal is active power of the interconnecting 400 kV line between 
Finland and Sweden. The simulation duration is here as well as in the other studied 
cases 1000 s (16.7 min) to achieve enough data for the damping estimation method. 

 
Figure 43. An example of the simulation output signals. The signal is the active power 

of the interconnecting line between Finland and Sweden. A couple of MWs oscillation is 

observed in the signal which is close to the measured values in the Nordic power system 

in the same power flow situation under the ambient conditions. 

4.2.2 Cases of Performance Analysis using the Simulated Data 

Four cases are analyzed in the performance analyses:  
1) Effect of different time window lengths, mode extraction wavelets, and signals 

on the estimates of damping and frequency 
a. Original parameter set of the method and base power flow case is used 

2) Effect of measurement noise on the estimates of damping and frequency 
a. Original parameter set of the method and base power flow case is used. 

Only one signal is used in the analysis, but different time window lengths 
and mode extraction wavelets are studied 

3) Effect of two different parameter sets of the method on the damping estimates 
a. Base power flow case and only one signal is used in the analysis, but 

different time window lengths, and mode extraction wavelets are studied 
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4) Effect of different damping conditions of the power system on the damping 
estimates  

a. Only one signal and a fixed time window is used in the analysis, but 
different mode extraction wavelets are studied  

 
The base power flow case with a 7 % reference damping ratio of the 0.3 Hz mode is 
presented in Section 4.2.1. The original parameter set means that the Cmor1-1.5 
wavelet is an analyzing wavelet of the approximate impulse responses’ damping, and 
the selection point is the one when the rightmost wavelet is in the middle of the impulse 
response22. The four cases are explained in more detail in the following sections.  

Case 1: Effect of Different Time Window Lengths, Mode Extraction 

Wavelets, and Signals on the Estimates of Damping and Frequency   

The presented results are used to study the performance characteristics of the method 
with different signals, time windows (from 1 to 11 minutes) and with different mode 
extraction wavelets (Gaus4, Gaus20, and Gau44). The studied signals are different 
physical quantities of the grid and the machine speed measurement, grid frequency 
measurement and voltage magnitude signals are all from the same generating plant (a 
large generator in Southern Finland). The machine relative rotor angle signal is between 
this generator and another large generator in Southern Sweden. The active power flow is 
that of the interconnecting line between Finland and Sweden. All these signals have a 
good observability of the 0.3 Hz mode.  

Case 2: Effect of Measurement Noise on the Estimates of Damping and 

Frequency 

The measured signals always contain some measurement noise. The effect of different 
amounts of measurement noise on the damping estimates is studied.   

Description of the Noise 

Here, all the SNRs are defined in the linear scale with the equation 
 

 

2

signal signal

noise noise

=
P

SNR
P

σ

σ

 
=  
 

, (18) 

 
where SNR is the signal-to-noise ratio of a signal, Psignal and Pnoise are the average 
powers of the signal (without mean value) and the noise respectively, and σsignal and 
σnoise are the standard deviations of the signal and the noise respectively. Before adding 
the noise, the average values of the signals are removed. 

                                                
22 See Section 3.4.2 for an explanation of different selection points used in this thesis.  
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The measurement noise is caused by the combined measurement inaccuracy of voltages, 
currents, or frequency. The main sources of the measurement inaccuracy are the 
measurement errors of the instrument transformers and the PMUs. The measurement 
accuracies of these devices are known to some extent (e.g. Depablos et al. 2004) and 
therefore the SNRs of the measurements are also possible to assess. For example, the 
SNRs in the range from 30 to 5 in the linear scale are realistic values for the accuracy of 
the PMU’s voltage angle measurements (Larsson & Laila 2009). Here, the SNRs of 
infinity, 10, 5, 2, 1, and 0.1 in the linear scale are studied, in order to illustrate the effect 
of a wide range of SNRs on the damping estimates. However, the realistic values are 
above 5 (Larsson & Laila 2009). It is assumed that the measurement errors are white 
Gaussian noise. It is a realistic assumption for the measurement errors (Phadke & Thorp 
2008). 

Case 3: Effect of Two Different Parameter Sets of the Method on the 

Damping Estimates 

In this case, the performance of the method is analyzed with two different parameter 
sets. The intention is to find out which parameter set gives more accurate damping 
estimation results, and to verify the validity of the parameter selection studies in Section 
3.4, when the power system is operating under ambient conditions. The first parameter 
set is the original parameter set with the Cmor1-1.5 wavelet function and the selection 
point is the one when the rightmost wavelet is in the middle of the impulse response. In 
the second parameter set, the wavelet function used in the analysis of the approximate 
impulse response’s damping is Cmor1-1 and the selection point is the one when the two 
wavelets are symmetrically located around the middle of the impulse response.  
 
The results achieved with these two sets of parameters are compared. Only one of the 
simulation output signals is used in the analysis because the characteristics of the results 
are similar for the other signals. Grid frequency measurement at a bus in Southern 
Finland is used in the analysis. 

Case 4: Effect of Different Damping Conditions of the Power System on 

the Damping Estimates 

In this case, the correspondence between the reference and the estimated damping 
values is studied in detail using a 9 minute-long time window. In the study four signals 
of the simulation are used: Finland–Sweden interconnection line active power flow, 
local grid frequency and a generator speed deviation in Southern Finland, and the angle 
difference between the generators in Southern Finland and Sweden.  
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4.3 Performance in Case of the Measured Grid Data 

Damping and frequency estimation results for the measured grid data are considered in 
this section. The PMU measurements from the Nordic power system are used.  

4.3.1 Power System Input and Measured Output Signals 

In the measured data cases, the power system operates under ambient conditions; then 
the inputs are the power system ambient excitations: mainly the ever present load 
fluctuations in the grid. The measured output signals that are used in the damping 
estimation are the PMU measurement quantities of the Finnish WAMS which is 
described in Appendix A. The physical measurement quantities of the PMUs are 
voltages, currents, local frequency, and local rate of change of frequency (Phadke & 
Thorp 2008). Active, reactive, and apparent power is calculated from the voltages and 
currents.  

The 0.3 Hz mode, which is of interest in this thesis, is well observable in Southern 
Finland when voltage magnitude, frequency, or rate of change of frequency is analyzed. 
The mode is also well observable when current, or active power flow of the AC 
interconnection path between Finland and Sweden is analyzed. In addition, the voltage 
angle difference between the oscillating generator groups in Finland and Sweden has a 
high observability of the mode. (Uhlen et al. 2003, Elenius et al. 2005) Therefore, these 
measurement locations are used.  
 
The signals which have a high observability of the mode of interest are preferred in the 
damping and frequency estimation because the results are more reliable compared to the 
signals with poor observability of the mode. The observabilities can be calculated with 
the linear analysis of the power system dynamic model (Uhlen et al. 2003, Elenius et al. 
2005).  

4.3.2 Performance of the Damping Estimation Method with Different 

Signals, Time Window Lengths, and Mode Extraction Wavelets 

The presented results are used to study the performance characteristics of the method 
with different signals, time windows (from 1 to 31 minutes) and with different mode 
extraction wavelets (Gaus4, Gaus20, and Gau44).  

Power Flow Case 

A power flow case in which the power export from Finland to Sweden is nearly 
constant (Figure 44), and approximately the same as in the simulated case, is studied 
here. Because the Finland–Sweden AC power flow is a dominant factor affecting the 
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0.3 Hz mode damping, the damping in the measured data case and in the simulated data 
case should be about the same.  

 
Figure 44. Measured active power flow of an interconnecting line between Finland and 

Sweden in the studied power flow case. 

4.3.3 Detection of Change in Damping 

It studied if the changes in the damping level can be observed with the damping 
estimation method. Two cases are studied: detection of degraded damping and 
improved damping.  

Detection of Degraded Damping 

The studied case consists of the SVC test made in Southern Finland. In the test the 
properties of the SVC and its POD were analyzed. The parameter set of the POD turned 
out to be wrong during the test and the POD did actually increase the oscillations rather 
than damp them. During the test the POD was operated both without a dead band and 
also with a predefined dead band. 

Detection of Improved Damping 

The studied case is another SVC test made in Southern Finland. In the test the 
parameter set of the POD was correct. Among other things the operation of the POD 
was verified to be correct and the damping improved.  
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5 Results of the Performance Analysis  

In this chapter, the performance of the damping estimation method is studied by 
analyzing the damping estimation results for different simulated and measured signals 
of the Nordic power system.  

5.1 Performance in Case of the Nordic Power System 

Simulations 

5.1.1 Time Evolution of the Damping Estimate and Damping vs. 

Frequency 

The time evolutions of the damping estimates with three different mode extraction 
wavelets are presented in Figure 45a. The damping estimation results can also be 
presented as damping vs. frequency (Figure 45b). The shortest (Gaus4) wavelet in the 
mode extraction produces the most variance in the damping estimate and gives the 
highest damping estimates. The damping estimate is higher the shorter the mode 
extraction wavelet is; i.e. the Gaus4 wavelet produces the highest and the Gaus44 
produces the smallest damping estimate. 

 

 
Figure 45. Damping as a function of time (a) and damping vs. frequency (b) with 

Gaus4, Gaus20, and Gaus44 as mode extraction wavelets. The analyzed signal is the 

active power of an interconnecting line between Finland and Sweden (Figure 43). The 

time window length is 11 minutes. 

(a) (b) 
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5.1.2 Case 1: Effect of Different Time Window Lengths, Mode Extraction 

Wavelets, and Signals on the Estimates of Damping and 

Frequency  

Frequency Estimation Results 

The frequency estimation results are presented before the damping estimation results 
because frequency estimation is a preceding step for damping estimation (Figure 14). 
The mean values and standard deviations of the frequency estimates for different time 
window lengths and different output signals of the simulation with 7 % reference 
damping are presented in Figure 46 and Figure 47, respectively. The wavelet function 
used in the frequency estimation is the Cmor1-1.5 wavelet.  
 
According to Figure 46, the mean values of the frequency estimates are nearly equal for 
different time window lengths. There is a small difference in the mean values for 
different signals. Machine relative rotor angle and active power flow on the Finland–
Sweden interconnection line (Figure 46) give a slightly lower frequency estimate. These 
signals are very closely related to each other in the small-signal conditions, because the 
power flow between the two countries is (approximately) linearly dependent on the 
angle difference. However, the difference in the frequency estimates is small and can be 
considered negligible in practice (see Section 3.4.3 where the deviation between the 
frequency estimate and actual frequency is studied). 
 
The standard deviations of the estimates decrease with the increased time window 
length. For the one minute time window the frequency estimates are considerably less 
accurate than for the other time windows.  
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Figure 46. Mean values of the frequency estimates with different time window lengths 

and analyzed signals. The errorbars show the standard deviation of the estimates. The 

frequency estimation wavelet is the Cmor1-1.5. 
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Figure 47. Standard deviations of the frequency estimates with different time window 

lengths and analyzed signals. The frequency estimation wavelet is the Cmor1-1.5. 

Damping Estimation Results 

Mean Values of the Damping Estimates 

The mean values of the damping estimates with different time window lengths and 
output signals of the simulation are presented in Figure 48, Figure 49, and Figure 50 for 
the mode extraction wavelets Gaus4, Gaus20, and Gaus44, respectively. The errorbars 
of the figures show the standard deviations of the estimates.   
 
The mean values of the damping estimates increase with the increased time window 
length and approach the real damping value. Error bounds of the damping estimates 
overlap implying that the same damping is estimated from different signals. However, 
there is a small difference between the damping estimated from a machine relative rotor 
angle and the active power flow of an interconnecting line between Finland and Sweden 
as compared to the damping estimated from the other signals. Most probably the 
difference is due to the different estimated frequency (see Section Frequency Estimation 
Results), because for a low frequency the damping ratio is higher than for a high 
frequency, if the damping is equal in terms of the decay time which describes how 
much the oscillation is damped in a fixed time interval. 
 
When the results are compared in terms of different mode extraction wavelets, it is 
evident that the mean value of the damping estimate decreases when the mode 
extraction wavelet length increases. However, for a very short time window, the mean 
values are nearly equal. The longer wavelets smooth the sharp variations of a signal 
more and therefore some of the damping information is lost, and the estimated damping 
is lower. The estimated damping with the longer wavelets is pessimistic. 
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Figure 48. Mean values of the damping estimates with different time window lengths 

and analyzed signals. The mode extraction wavelet is the Gaus4. The errorbars show 

the standard deviation of the estimates. 
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Figure 49. Mean values of the damping estimates with different time window lengths 

and analyzed signals. The mode extraction wavelet is the Gaus20. The errorbars show 

the standard deviation of the estimates. 
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Gaus44
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Figure 50. Mean values of the damping estimates with different time window lengths 

and analyzed signals. The mode extraction wavelet is the Gaus44. The errorbars show 

the standard deviation of the estimates. 

Standard Deviations of the Damping Estimates 

The standard deviations of the damping estimates with different time window lengths 
and output signals are presented in Figure 51, Figure 52, and Figure 53 for the mode 
extraction wavelets Gaus4, Gaus20, and Gaus44, respectively.  
 
The standard deviations decrease with the increased time window length and they are 
smaller for the longer mode extraction wavelets (Gaus20 and Gaus44) compared to the 
shortest one (Gaus4). This is the case especially for short time windows (≤ 5 min). The 
effect of mode extraction wavelet length on the damping estimate standard deviations 
decreases with the increased time window length. Almost the same standard deviation 
level is achieved with all the studied mode extraction wavelets when the time window is 
long (≥ 9 min). 
 
When the damping is estimated using the machine relative rotor angle and the active 
power flow of the Finland–Sweden interconnection line, the standard deviations are 
slightly different compared to the other signals. This is the case especially with the 
shorter time windows (≤ 7 min).  
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Figure 51. Damping estimate standard deviations with different time window lengths 

and analyzed signals. The mode extraction wavelet is the Gaus4. pp = percentage point. 
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Figure 52. Damping estimate standard deviations with different time window lengths 

and analyzed signals. The mode extraction wavelet is the Gaus20. pp = percentage 

point. 
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Figure 53. Damping estimate standard deviations with different time window lengths 

and analyzed signals. The mode extraction wavelet is the Gaus44. pp = percentage 

point. 

 
Damping estimate standard deviations are further examined in case of the 3 and 11 
minutes time windows in Figure 54 and Figure 55, respectively. In the case of the 3 
minutes time window, the standard deviation decreases when longer mode extraction 
wavelets are used. This is valid for all the studied signals. When the time window is 
lengthened to 11 minutes, the standard deviations become smaller and the wavelet used 
in the mode extraction has less effect on the results. For the longest time window (11 
minutes), the general level of standard deviation achievable with the method is about 
0.4 % in this case. 
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Figure 54. Damping estimate standard deviations with different mode extraction 

wavelets and analyzed signals. The time window length is 3 minutes. 
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Time Window Length = 11 min
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Figure 55. Damping estimate standard deviations with different mode extraction 

wavelets and analyzed signals. The time window length is 11 minutes (the longest time 

window). 

Biases of the Damping Estimates 

The biases of the damping estimates for different time window lengths, output signals 
of the simulation, and mode extraction wavelets (Gaus4, Gaus20, and Gaus44) are 
presented in Figure 56, Figure 57, and Figure 58, respectively. The biases in this section 
are absolute biases as defined by Equation (16). The real damping of the mode for the 
base power flow case is about 7 %, and it is used as a reference value in the calculation 
of the biases. 
 
The biases are large for all the studied mode extraction wavelets in case of a short time 
window (1 min). In this case, the number of samples averaged in the random decrement 
technique is too low and the estimation of the impulse response, and therefore damping, 
is poor. When the time window length is increased, the biases are decreased because the 
damping estimates approach the real damping value. The biases do not decrease as 
much in case of the longer wavelets (Gaus20 and Gaus44) because the mean values of 
the damping estimates are lower.  
 
There is a difference in biases in the case of different signals. The difference is greatest 
when the damping is estimated using the machine relative rotor angle or active power 
flow of the Finland–Sweden interconnection line and compared to the damping 
estimated using the other signals. The difference is due to the different damping 
estimate mean value.  
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Figure 56. Damping estimate biases with different time window lengths and analyzed 

signals. The mode extraction wavelet is the Gaus4. The reference value for the bias 

calculation is 7 %. pp = percentage point. 
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Figure 57. Damping estimate biases with different time window lengths and analyzed 

signals. The mode extraction wavelet is the Gaus20. The reference value for the bias 

calculation is 7 %. pp = percentage point. 
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Figure 58. Damping estimate biases with different time window lengths and analyzed 

signals. The mode extraction wavelet is the Gaus44. The reference value for the bias 

calculation is 7 %. pp = percentage point. 

 
Damping estimate biases are further examined in the case of the 3 and 11 minutes time 
windows in Figure 59 and Figure 60, respectively. The biases clearly grow when the 
mode extraction wavelet length increases in both the 3 and 11 minutes time window 
cases. This is valid for all the studied signals. When the difference between the 3 and 11 
minutes time windows is considered, all the biases decrease roughly 1 % when the time 
window lengthens from 3 to 11 minutes.  
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Figure 59. Damping estimate biases with different mode extraction wavelets and 

analyzed signals. The time window length is 3 minutes. pp = percentage point. 
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Time Window Length = 11 min
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Figure 60. Damping estimate biases with different mode extraction wavelets and 

analyzed signals. The time window length is 11 minutes. pp = percentage point. 

5.1.3 Case 2: Effect of Measurement Noise on the Estimates of Damping 

and Frequency 

Frequency Estimation Results with Measurement Noise 

The mean values and standard deviations of the frequency estimates are presented in 
Figure 61 and Figure 62, respectively, with different SNRs and for different time 
window lengths. The errorbars show the standard deviations of the estimates in Figure 
61.  
 
The SNR has very little effect on the mean values and standard deviations of the 
frequency estimates. However, with the shortest time window (1 min) the poorest SNR 
(0.1) produces a slightly different mean value (Figure 61) and a higher standard 
deviation (Figure 62) for the frequency estimate. 
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Figure 61. Mean values of the frequency estimates with different signal-to-noise ratios 

of the analyzed signal and with different time window lengths. The legend value shows 

the time window length in minutes. The errorbars show the standard deviation of the 

estimates. The analyzed signal is the grid frequency measurement at a bus in Southern 

Finland. The frequency estimation wavelet is the Cmor1-1.5. 
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Figure 62. Standard deviations of the frequency estimates with different signal-to-noise 

ratios of the analyzed signal and with different time window lengths. The legend value 

shows the time window length in minutes. The analyzed signal is the grid frequency 

measurement at a bus in Southern Finland. The frequency estimation wavelet is the 

Cmor1-1.5. 
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Damping Estimation Results with Measurement Noise 

Mean Values of the Damping Estimates 

The mean values of the damping estimates with different SNRs and time window 
lengths for the Gaus4, Gaus20, and Gaus44 mode extraction wavelets are presented in 
Figure 63, Figure 64, and Figure 65, respectively.  
 
The noise has some effect on the damping estimate mean values, and biases (Appendix 
E), in the case of the short mode extraction wavelet (Gaus4). The effect of noise is 
minimized when the longer mode extraction wavelets (Gaus20 and Gaus44) and long 
time windows (≥ 3 min) are used. The longer wavelets’ ability to extract the actual 
mode from the noisy signal is better than the shorter ones’, and the long time window 
minimizes the random effects caused by the noise although this is evident here only 
when the time window length increases from one minute to longer. 
 
When the realistic SNRs (≥ 5) and long time windows (≥ 3 min) are considered, the 
damping estimate mean values and biases are not much affected by the noise. This is the 
case for all the mode extraction wavelets. However, the effect of noise is even smaller 
when the longer mode extraction wavelets are used.  
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Figure 63. Mean values of the damping estimates with different signal-to-noise ratios of 

the analyzed signal and with different time window lengths. The legend value shows the 

time window length in minutes. The errorbars show the standard deviation of the 

estimates. The mode extraction wavelet is the Gaus4. The analyzed signal is the grid 

frequency measurement at a bus in Southern Finland. 
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Gaus20, Grid Frequency
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Figure 64. Mean values of the damping estimates with different signal-to-noise ratios of 

the analyzed signal and with different time window lengths. The legend value shows the 

time window length in minutes. The errorbars show the standard deviation of the 

estimates. The mode extraction wavelet is the Gaus20. The analyzed signal is the grid 

frequency measurement at a bus in Southern Finland. 
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Figure 65. Mean values of the damping estimates with different signal-to-noise ratios of 

the analyzed signal and with different time window lengths. The legend value shows the 

time window length in minutes. The errorbars show the standard deviation of the 

estimates. The mode extraction wavelet is the Gaus44. The analyzed signal is the grid 

frequency measurement at a bus in Southern Finland. 
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Standard Deviations of the Damping Estimates 

The standard deviations of the damping estimates with different SNRs and time window 
lengths for the Gaus4, Gaus20, and Gaus44 mode extraction wavelets are presented in 
Figure 66, Figure 67, and Figure 68, respectively.  
 
The noise has quite little effect on the damping estimate standard deviations. The 
standard deviations tend to increase slightly with poorer SNRs, especially with shorter 
time windows. The effect of noise is the greatest for the shortest mode extraction 
wavelet (Gaus4) and it is minimized when the longer mode extraction wavelets (Gaus20 
and Gaus44) are used. 
 
When the realistic SNRs (≥ 5) and long time windows (≥ 3 min) are considered, the 
damping estimate standard deviations are not much affected by the noise. This is valid 
for all the studied mode extraction wavelets. However, the effect of noise is even 
smaller for the longest mode extraction wavelets. 
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Figure 66. Standard deviations of the damping estimates with different signal-to-noise 

ratios of the analyzed signal and with different time window lengths. The legend value 

shows the time window length in minutes. The mode extraction wavelet is the Gaus4. 

The analyzed signal is the grid frequency measurement at a bus in Southern Finland. 
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Gaus20, Grid Frequency
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Figure 67. Standard deviations of the damping estimates with different signal-to-noise 

ratios of the analyzed signal and with different time window lengths. The legend value 

shows the time window length in minutes. The mode extraction wavelet is the Gaus20. 

The analyzed signal is the grid frequency measurement at a bus in Southern Finland. 

 

Gaus44, Grid Frequency

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Inf 10 5 2 1 0.1

Signal-to-Noise Ratio

S
ta

n
d

a
rd

 D
e
v
ia

ti
o

n
 o

f 

D
a
m

p
in

g
 R

a
ti

o
 (

p
p

)

1 3 5 7 9 11

 
Figure 68. Standard deviations of the damping estimates with different signal-to-noise 

ratios of the analyzed signal and with different time window lengths. The legend value 

shows the time window length in minutes. The mode extraction wavelet is the Gaus44. 

The analyzed signal is the grid frequency measurement at a bus in Southern Finland. 
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5.1.4 Case 3: Effect of Two Different Parameter Sets of the Method on 

the Damping Estimates  

Mean Values of the Damping Estimates  

The mean values of the damping estimates with different time window lengths and the 
two sets of parameters are presented in Figure 69, Figure 70, and Figure 71 for the 
mode extraction wavelets Gaus4, Gaus20, and Gaus44, respectively. The errorbars of 
the figures show the standard deviations of the estimates.  
 
The mean values of the damping estimates are about 1 % higher, and the biases are 
smaller (Appendix F), for the parameter set in which the damping is estimated from the 
approximate impulse response using the shorter (Cmor1-1) wavelet and the damping is 
selected from the midpoint of the approximate impulse response. The difference is 
slightly lower when a longer mode extraction wavelet (Gaus20 or Gaus44) is used. 
Then, the estimated damping is lower, too. The difference in the results is evident 
although the error bounds of the damping estimates overlap. 
 
An exception is encountered with the time window length of 1 minute. With this short 
time window, the mean values of the damping estimates are higher (in case of the 
Gaus4 and the Gaus44 mode extraction wavelets), when the original set of parameters is 
used. When the time window is short, the number of samples averaged in the RDT is 
low. Then, the beginning of the approximate impulse response is closer to the real 
impulse response than the end of it because the random components affect more at the 
end of the approximate impulse response where the amplitude is lower. More weight is 
put on the beginning of the approximate impulse response when the damping is selected 
to be the one in which the rightmost wavelet is in the middle of the impulse response 
curve. Therefore, higher damping estimates are achieved for the short time window with 
the original set of parameters. The difference in the estimates increases with the time 
window length because the approximate impulse response approaches the shape of the 
real impulse response when the number of samples in the RDT’s averaging process 
increases. 
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Gaus4, Grid Frequency
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Figure 69. Mean values of the damping estimates with different time window lengths 

and parameter sets of the damping estimation method. The mode extraction wavelet is 

the Gaus4. The errorbars show the standard deviation of the estimates. The analyzed 

signal is the grid frequency measurement at a bus in Southern Finland. 
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Figure 70. Mean values of the damping estimates with different time window lengths 

and parameter sets of the damping estimation method. The mode extraction wavelet is 

the Gaus20. The errorbars show the standard deviation of the estimates. The analyzed 

signal is the grid frequency measurement at a bus in Southern Finland. 
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Gaus44, Grid Frequency

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1 3 5 7 9 11

Time Window Length (min)

M
e

a
n

 V
a

lu
e

 o
f 

D
a

m
p

in
g

 R
a

ti
o

 (
%

)

Damp. Est. Wavelet: Cmor1-1.5, Selection Point: Right

Damp. Est. Wavelet: Cmor1-1, Selection Point: Middle
 

Figure 71. Mean values of the damping estimates with different time window lengths 

and parameter sets of the damping estimation method. The mode extraction wavelet is 

the Gaus44. The errorbars show the standard deviation of the estimates. The analyzed 

signal is the grid frequency measurement at a bus in Southern Finland. 

Standard Deviations of the Damping Estimates 

The damping estimate standard deviations with different time window lengths and the 
two sets of parameters are presented in Figure 72, Figure 73, and Figure 74 for the 
mode extraction wavelets Gaus4, Gaus20, and Gaus44, respectively. 
 
When longer time windows are considered (≥ 5 min), the standard deviations are 
slightly higher for the parameter set in which the damping is estimated from the 
approximate impulse response using the shorter (Cmor1-1) wavelet and the damping is 
selected from the midpoint of the impulse response. Generally, when the estimated 
damping is higher, its standard deviation is higher, too. However, when the longer mode 
extraction wavelets and the long time windows are considered, the differences in the 
standard deviations are negligible.  
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Gaus4, Grid Frequency
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Figure 72. Standard deviations of the damping estimates with different time window 

lengths and parameter sets of the damping estimation method. The mode extraction 

wavelet is the Gaus4. The analyzed signal is the grid frequency measurement at a bus in 

Southern Finland. 
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Figure 73. Standard deviations of the damping estimates with different time window 

lengths and parameter sets of the damping estimation method. The mode extraction 

wavelet is the Gaus20. The analyzed signal is the grid frequency measurement at a bus 

in Southern Finland. 
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Gaus44, Grid Frequency
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Figure 74. Standard deviations of the damping estimates with different time window 

lengths and parameter sets of the damping estimation method. The mode extraction 

wavelet is the Gaus44. The analyzed signal is the grid frequency measurement at a bus 

in Southern Finland. 

5.1.5 Case 4: Effect of Different Damping Conditions of the Power 

System on the Damping Estimates 

Mean Values of the Damping Estimates  

The correspondence between the mean value of the damping estimate and the reference 
damping is presented for the Gaus4, Gaus20, and Gaus44 mode extraction wavelets in 
Figure 75, Figure 76, and Figure 77, respectively. With a low reference damping (below 
4 %), the mean values are close to the reference damping ratio for all the mode 
extraction wavelets. However, when the reference damping increases, the damping 
estimates of the longer mode extraction wavelets (Gaus20 and Gaus44) become lower 
than the reference damping. The longer the mode extraction wavelet and the higher the 
reference damping, the greater the bias is. With the shortest, Gaus4, mode extraction 
wavelet, the estimates might be even slightly higher than the reference damping.  
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Figure 75. Estimated damping vs. reference damping with different simulated signals. 

The mode extraction wavelet is the Gaus4 and the time window length is 9 minutes. The 

dotted straight line corresponds to the ideal case that the estimated damping is equal to 

the reference damping. 

  

Figure 76. Estimated damping vs. reference damping with different simulated signals. 

The mode extraction wavelet is the Gaus20 and the time window length is 9 minutes. 

The dotted straight line corresponds to the ideal case that the estimated damping is 

equal to the reference damping. 
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Figure 77. Estimated damping vs. reference damping with different simulated signals. 

The mode extraction wavelet is the Gaus44 and the time window length is 9 minutes. 

The dotted straight line corresponds to the ideal case that the estimated damping is 

equal to the reference damping. 

Standard Deviations of the Damping Estimates 

The correspondence between the standard deviation of the damping estimate and the 
reference damping is presented for the Gaus4, Gaus20, and Gaus44 mode extraction 
wavelets in Figure 78, Figure 79, and Figure 80, respectively. Generally, the standard 
deviations grow with the reference damping and usually the standard deviations are 
lower the longer the mode extraction wavelet is.  
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Figure 78. Damping estimate standard deviation vs. reference damping with different 

simulated signals. The mode extraction wavelet is the Gaus4 and the time window 

length is 9 minutes. 

  

Figure 79. Damping estimate standard deviation vs. reference damping with different 

simulated signals. The mode extraction wavelet is the Gaus20 and the time window 

length is 9 minutes. 
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Figure 80. Damping estimate standard deviation vs. reference damping with different 

simulated signals. The mode extraction wavelet is the Gaus44 and the time window 

length is 9 minutes. 

Comparison between the Mode Extraction Wavelets 

The mean values of the damping estimates with the different reference damping ratios 
and mode extraction wavelets are presented in Figure 81. The mean values are 
consistently lower the longer the mode extraction wavelet is. With the Gaus20 wavelet 
the mean values are accurate until the damping ratio of about 7 % and with the Gaus44 
wavelet until the damping ratio of about 4 %. The standard deviations, Figure 82, are 
generally lower the longer the mode extraction wavelet is.  
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Figure 81. Estimated damping vs. reference damping with the Gaus4, Gaus20, and 

Gaus44 mode extraction wavelets. The analyzed signal is the active power flow of the 

Finland–Sweden interconnection line. The time window length is 9 minutes. The dotted 

straight line corresponds to the ideal case that the estimated damping is equal to the 

reference damping. 

  
Figure 82. Damping estimate standard deviation vs. reference damping with the Gaus4, 

Gaus20, and Gaus44 mode extraction wavelets. The analyzed signal is the active power 

flow of the Finland–Sweden interconnection line. The time window length is 9 minutes. 
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5.2 Performance in Case of the Measured Grid Data 

5.2.1 Time Evolution of the Damping Estimate and Damping vs. 

Frequency  

Time evolution of the 0.3 Hz mode damping estimate is presented with the three mode 
extraction wavelets (Gaus4, Gaus20, and Gaus44) in Figure 83a. The damping vs. 
frequency is presented for the studied wavelets in Figure 83b. There is much more 
variation in the damping estimate when the shortest (Gaus4) wavelet is used as 
compared to the longer (Gaus20 and Gaus44) wavelets. On the other hand, the Gaus20 
and Gaus44 wavelets produce about the same amount of variation in the damping 
estimates but the Gaus20 wavelet produces a much higher mean value of the damping 
estimate. 

 

 
Figure 83. The time evolution of the damping estimate (a) and damping vs. frequency 

(b) with the Gaus4, Gaus20, and Gaus44 mode extraction wavelets. The measured 

signal is the active power of the interconnecting line between Finland and Sweden 

(Figure 44). The time window length is 21 minutes. 

5.2.2 Performance of the Damping Estimation Method with Different 

Signals, Time Windows, and Mode Extraction Wavelets 

Frequency Estimation Results 

The mean values and standard deviations of the frequency estimates are presented in 
Figure 84 and Figure 85, respectively, with different time window lengths and measured 
signals.  
 

(a) (b) 
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The mean values of the frequency estimates are almost equal for different time window 
lengths although the mean values increase slightly from the shortest time windows 
compared to the longer ones. There are small differences between the mean values of 
the estimates when different signals are used. The difference is due to the slightly 
changing mean value of the voltage magnitude and active power flow signals. However, 
the difference in the frequency estimates is small, and negligible in practice.  
 
The standard deviations of the frequency estimates decrease with the increased time 
window length. For the one minute time window, the frequency estimates have much 
higher standard deviations than for the longer time windows.  

Figure 84. Mean values of the frequency estimates with different time window lengths 

and measured signals. The errorbars show the standard deviation of the estimates. The 

frequency estimation wavelet is the Cmor1-1.5. 

Figure 85. Standard deviations of the frequency estimates with different time window 

lengths and measured signals. The frequency estimation wavelet is the Cmor1-1.5. 
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Damping Estimation Results 

Mean Values of the Damping Estimates 

The mean values of the damping estimates with different time window lengths and 
measured signals are presented in Figure 86, Figure 87, and Figure 88 for the mode 
extraction wavelets Gaus4, Gaus20, and Gaus44, respectively. The errorbars of the 
figures show the standard deviations of the estimates.    
 
The mean values of the damping estimates first increase with the increased time 
window length and then stabilize to a constant level. In case of the shortest mode 
extraction wavelet (Gaus4), a different damping estimate mean value is achieved from 
the voltage magnitude signal as compared to the other signals (Figure 86). The voltage 
magnitude signal has poorer observability and more other modes than the other 
measurements. However, the error bounds of the damping estimates overlap and 
account well for the difference in the estimates. When longer mode extraction wavelets 
(Gaus20 and Gaus44) are used, the difference in the damping estimates is minimal 
between the different signals (Figure 87 and Figure 88). 
 

Figure 86. Mean values of the damping estimates with different time window lengths 

and measured signals. The mode extraction wavelet is the Gaus4. The errorbars show 

the standard deviation of the estimates. 
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Figure 87. Mean values of the damping estimates with different time window lengths 

and measured signals. The mode extraction wavelet is the Gaus20. The errorbars show 

the standard deviation of the estimates. 

Figure 88. Mean values of the damping estimates with different time window lengths 

and measured signals. The mode extraction wavelet is the Gaus44. The errorbars show 

the standard deviation of the estimates. 

Standard Deviations  

The standard deviations of the damping estimates with different time window lengths 
and measured signals are presented in Figure 89, Figure 90, and Figure 91 for the mode 
extraction wavelets Gaus4, Gaus20, and Gaus44, respectively.  
 
The standard deviations decrease with the increased time window length until a certain 
time window length (about 20 min). Different signals give slightly different standard 
deviations for the damping estimates. Generally, the voltage magnitude signal is the 
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poorest, and the other studied signals give better results. The voltage magnitude signal 
has poorer observability and more other modes than the other measurements. However, 
the difference between the signals decreases with the increased time window length 
when all the standard deviations decrease. When longer mode extraction wavelets 
(Gaus20 and Gaus44) are used, the difference in the standard deviations is small 
between the different signals (Figure 90 and Figure 91). 

 
Figure 89. Standard deviations of the damping estimates with different time window 

lengths and measured signals. The mode extraction wavelet is the Gaus4. 

 
Figure 90. Standard deviations of the damping estimates with different time window 

lengths and measured signals. The mode extraction wavelet is the Gaus20. 
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Figure 91. Standard deviations of the damping estimates with different time window 

lengths and measured signals. The mode extraction wavelet is the Gaus44. 

Comparison between the Mode Extraction Wavelets 

Damping estimate mean values and standard deviations in the case of different mode 
extraction wavelets are compared in Figure 92 and Figure 93, respectively. The mean 
values are consistently lower the longer the mode extraction wavelet is, except with the 
shortest time window (1 min). The longer wavelets smooth the sharp variations of the 
signal and cause the approximate impulse response to decay more slowly, and therefore 
the estimated damping is lower. The mean values stabilize roughly to constant levels 
when the time window length is about 5 minutes.  

The standard deviations are higher for the shortest Gaus4 mode extraction wavelet and 
roughly the same for the longer Gaus20 and Gaus44 mode extraction wavelets. The 
effect of mode extraction wavelet length on the damping estimate standard deviations 
decreases with the increased time window length. 
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Figure 92. Mean values of the damping estimates with different time windows and mode 

extraction wavelets (Gaus4, Gaus20, and Gaus44). The measured signal is the rate of 

change of grid frequency at a bus in Southern Finland. 

Figure 93. Standard deviations of the damping estimates with different time windows 

and mode extraction wavelets (Gaus4, Gaus20, and Gaus44). The measured signal is 

the rate of change of grid frequency at a bus in Southern Finland. 

5.2.3 Detection of Change in Damping 

Detection of Degraded Damping 

The growth in the oscillation amplitude of the SVC’s voltage magnitude indicates the 
periods when the POD was operating; Figure 94b. The period when the POD was 
operated without a dead band is clearly observable both in the amplitude of the 
oscillation and in the estimated damping curve, see Figure 94 and the segment indicated 
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with number 6. Due to an incorrect parameter set for the SVC POD, the observed 
damping is clearly lower than the damping would be otherwise. The damping estimates 
from all signals stabilize when the damping gets poorer indicating that the damping 
estimates are more reliable then.  
 
The periods when the POD was operated with the dead band are not so evident but still 
observable. Such periods are, for instance, the segments indicated by the numbers 7 and 
9 in Figure 94. The observed damping is significantly lower during periods when the 
POD is operated with the dead band, although the increase in the amplitude is much 
lower, and therefore it does react only occasionally to the oscillations of the grid.  

 
Figure 94. Damping vs. time (a) and amplitude vs. time (b) of the 0.3 Hz mode during 

the SVC test measurement period in which the parameter set of the POD was incorrect. 

The numbered segments indicate time periods of different oscillation amplitude and the 

length of the arrows indicates the length of the time window of the damping estimation 

method. 

Detection of Improved Damping 

In Figure 95, the vertical lines indicate when the POD was turned on and off. A slight 
improvement in the damping ratio can be observed when the POD is turned on and a 
slight degradation can be observed when the POD is turned off (Figure 95a).  

(b) 

(a) 
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Figure 95. Damping vs. time (a) and amplitude vs. time (b) of the 0.3 Hz mode during 

the SVC test measurement period in which the parameter set of the POD was correct. 

The vertical lines show when the SVC POD was turned on and off. The numbered 

segments indicate time periods of different oscillation amplitude and the length of the 

arrows indicates the length of the time window of the damping estimation method. 

 

(b) 

(a) 
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6 Discussion 

6.1 General Issues 

Electromechanical oscillation damping must always be high enough in order to 
guarantee the stable and secure operation of the power system. Conventionally, the 
stability of the power system has been managed by extensive simulation studies. 
However, measurement-based damping estimation methods have advantages compared 
to the simulations. The estimation does not rely on the power system simulation model, 
which does not necessarily reflect the behavior of the real power system perfectly. In 
addition, the damping estimates are based on the up-to-date operating condition, when 
the damping estimation is applied to real-time data. Because of the advantages of the 
measurement-based damping estimation, a new damping estimation method is 
developed in this thesis. In developing the method, the main emphasis is on the 
damping estimation of the Nordic power system 0.3 Hz inter-area mode that limits the 
power transfer capacity from Finland to Sweden. However, the performance 
characteristics and applicability of the method is discussed also at the general level and 
the estimation error sources are identified.  

6.2 Performance of the Method 

The performance analyses in this thesis are conducted by studying the damping 
estimation results achieved for simulated and measured data of the Nordic power 
system. The most accurate damping estimates are achieved when maximal information 
of the oscillations is available; i.e. when all the following conditions are fulfilled. These 
conditions are that the signal has good observability of the mode of interest, poor 
observability or no other modes, the damping ratio of the mode of interest is low and a 
long time window is used. When the damping ratio is low, the oscillations decay slowly 
and a long mode extraction wavelet with good frequency resolution can be used because 
the time resolution of the wavelet is not an issue. In this case the effect of other modes 
(if they exist) and measurement noise is minimized and the analysis is concentrated on 
the mode of interest. When selecting the mode extraction wavelet function for the 
Nordic power system (Section 3.2.3), it is assumed that there are two inter-area modes 
(0.3 Hz and 0.5 Hz) present in the system. In this case, for example, the Gaus20 wavelet 
function provides good enough frequency resolution to separate the modes at 0.3 Hz 
and 0.5 Hz from each other. The time resolution of the Gaus20 wavelet function is well 
enough for estimating damping ratios accurately until about 7 % (Figure 81). However, 
if there are modes closer to each other than the 0.3 Hz and 0.5 Hz, then a longer mode 
extraction wavelet (e.g. Gaus44) with better frequency resolution is needed. Then, the 
time resolution is lower, and the damping estimation method can only be used to 
estimate accurately lower damping ratios (e.g. about 4 % in case of the Gaus44 wavelet, 
Figure 81). On the other hand, if there is only one inter-area mode present in the system, 
then a shorter wavelet than the Gaus20 can be used and higher damping ratios can be 
estimated accurately. In this case the wavelet function only needs to separate the mode 
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well enough from the measurement noise. The effect of modal observability affects the 
damping estimation results in such a way that the voltage magnitude signal usually 
gives poorer results than the other signals, because the voltage magnitude is affected by 
local phenomena (e.g. reactive loads and voltage controls of the grid) more than other, 
global signals, like voltage angle differences between the oscillating areas. Finally, 
using a long time window makes the random decrement technique collect enough 
samples and the estimation of the impulse response, and therefore damping, is good.  

It is important to be able to estimate the poor damping accurately because then the 
damping is more critical to the system stability. However, using long time windows 
brings a delay and causes the estimates to become less real-time, i.e. the estimates react 
more slowly to the changes in the real damping. If the damping estimation is applied in 
real-time damping monitoring, this is evidently a drawback. However, when the 
damping ratio gets lower, the amplitude of the ambient oscillations increases and the 
estimates react faster to the changed damping than the time window length indicates. 
The faster reaction is because the threshold condition of the random decrement 
technique is crossed more often in that part of the signal where the damping is poorer. 
When the damping ratio increases, the estimates react slower to the change in damping, 
compared to the case when the damping ratio decreases. It is a beneficial property of the 
method that the decreased damping (power system less stable) is estimated faster than 
the increased damping. A limit for the longest possible time window length is set by the 
time period during which the power system operating condition, and therefore the real 
damping of the mode, remains nearly constant. This time period is not constant though. 
However, usually accurate enough damping estimates are achieved with a considerably 
shorter time window than the time interval between substantial changes in the power 
system operating condition. After a substantial transition in the power system operating 
condition, it takes some time before the damping estimates are adapted to the new 
damping level. Further research is needed to determine how fast the damping estimates 
react to change in damping in different situations.        

Damping estimation is useful even though the damping would be good; for example in 
verification of the simulation model and in verifying the correct operation of the 
damping controllers of the grid. Therefore, the very long mode extraction wavelets (e.g. 
Gaus44) are not applicable because they have too poor time resolution when the 
oscillations damp out quickly. The poor time resolution causes errors (a large bias) for 
the damping estimates. When shorter mode extraction wavelets (e.g. Gaus20 or Gaus4) 
are used, higher damping ratios can be estimated accurately assuming that the frequency 
resolution of the wavelets is high enough. When high enough frequency resolution is 
guaranteed by the user, the damping estimation method gives either accurate or 
conservative estimates; i.e. the estimates are lower than the real damping. This 
characteristic is beneficial because then the estimates do not lead to reduced system 
security.  

Frequency estimates, received with the method, are more accurate (percentual error 
smaller) than the damping estimates. This characteristic is of a fundamental nature 
because the frequency of the oscillation is related to the time instants of the peaks or 
zero crossings of the signal while the damping is related to the temporal changes in the 
amplitude of the signal. Observing the temporal amplitude is harder than observing the 
time instants of the peaks or zero crossings, and the amplitude is more affected by the 
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random effects due to random load variations. Therefore, the frequency estimates are 
naturally of better quality than the damping estimates.  

6.3 Variance of the Damping Estimates  

When analyzing the electromechanical oscillation mode damping using the measured 
grid data, the estimates always have some variance. Part of the variance comes from the 
changes that happen in the power system (changes in loads, production, power flows 
and grid configuration) and affect the real damping. From the grid operator’s point of 
view, it is interesting how damping changes during the operation.  
 
However, the main part of the damping estimates’ variance comes from the methods’ 
inability to correctly estimate the mode damping. This is an undesirable property and it 
is inherent to the damping estimation method. When considering the causes of the 
variance of the estimation method, the power system is assumed to remain in the same 
operating point: load, production, power flows, and grid configuration the same, and 
therefore the damping is the same. In assessing the possible causes of the variance, 
general representation of the damping estimation procedure (Figure 96) is used. The 
possible causes of variance in the damping estimates are changes in the excitation (e), 
changes in the measurement noise (d) and changes in the damping estimation method.  
 
The measurement noise has very little effect on the damping estimate variances 
especially when longer mode extraction wavelets (e.g. Gaus20 or Gaus44) are used 
(Figure 67 and Figure 68, respectively), and the noise causes only a fraction of the 
damping estimation variance. The damping estimation method does not have any 
variable parameters, so the changes in the damping estimation method do not cause 
variance in the damping estimates. The method produces always the same damping 
estimate for the same input data.  
 
Therefore, most of the damping estimates’ variance is due to the changing properties of 
the excitation and the interaction between the excitation and the power system. During 
ambient operation, oscillations are excited mainly by constantly varying loads in the 
grid and the assumption is that the excitation is random Gaussian noise. The random 
load variations can be considered approximately Gaussian distributed based on the 
central limit theorem (Cam 1986) because the number of loads in a power system is 
large, fulfilling the conditions of the theorem. The central limit theorem states that the 
sum of independent and identically distributed random variables with finite mean and 
variance approaches the normal distribution (Gaussian distribution) when the number of 
random variables increases, irrespective of the distribution of the random variables. 
Although the Gaussianity assumption can be considered valid, the damping estimation 
accuracy generally improves (the variance decreases) when the time window of the 
method extends (Figure 51, Figure 52, Figure 53, Figure 66, Figure 67, Figure 68, 
Figure 72, Figure 73, Figure 74, Figure 89, Figure 90, and Figure 91). The information 
of the oscillations increases with the extended time window. When random Gaussian 
noise is assumed, the extended time window reduces the effect of random departures 
from this assumption. Also the possible nonlinear behavior of the power system can 
cause variance in the damping estimates because linear behavior is assumed. 
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Figure 96. General representation of the damping estimation procedure, where e1, e2, 

e3, … ek are the excitations of the oscillations, y is the output signal of the power system, 

d is the measurement noise, ζm is the estimated mode damping ratio, and fm is the 

estimated mode frequency. 

 
Another general characteristic of the damping estimates’ variance is that it increases 
when the damping ratio of the mode increases (Figure 78, Figure 79, and Figure 80). 
When the mode damping increases, the oscillations vanish faster from the signals and 
their damping is therefore harder to estimate. (Turunen et al. 2008) However, it is 
beneficial that the poor damping can be estimated reliably because the information of 
the mode damping is more important for a TSO when the mode damping is low. This is 
evident from Figure 97 where the dependence of the 0.3 Hz mode damping and the 
standard deviation of the damping estimate are presented as a function of the Finland–
Sweden active power flow. The damping estimates are more accurate when the power 
transfer is large (and close to the transfer limit) and the damping is low; or when the 
correct damping information is more important for the system stability.  
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Figure 97. Damping ratio of the 0.3 Hz mode small-signal oscillations as a function of 

Finland–Sweden power flow according to the time domain (PSS®E) simulations (blue 

dots). Polynomial trendlines show the dependence between the power flow and damping 

ratio (green line), the power flow and the ± one standard deviation error bounds of the 

damping estimates (yellow lines), and the power flow and the ± two standard deviation 

error bounds of the damping estimates (red lines). The figure is schematic and is based 

on the results of using about 10 minutes time window in the damping estimation. 

6.4 Applicability and Limitations 

The emphasis of the thesis is on the Nordic power system 0.3 Hz mode damping 
estimation. However, the method can be applied to any other oscillation mode and 
power system too if there are no other modes too close to the mode of interest. The 
frequency band of the method needs to be adjusted to include the mode of interest and a 
signal with good observability of the mode of interest needs to be selected. When these 
conditions are fulfilled, the method analyses other modes similarly to the 0.3 Hz mode 
in this thesis, and the characteristics of the results for the other modes would be similar 
to those achieved in this thesis for the 0.3 Hz mode. This is because the method is based 
on using the wavelet transform in the frequency estimation, mode extraction, and mode 
damping estimation (Figure 14). The wavelet transform analyses different frequency 
components of a signal by stretching and compressing the same mother wavelet 
function and therefore the characteristics of the method are similar for different modes. 
The characteristics of the random decrement technique are not dependent on the mode 
frequency either. 
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However, the method of this thesis is not applicable if there is another dominant mode 
too close to the mode of interest. In this case the wavelet function used in the mode 
extraction has too low frequency resolution to separate the modes from each other. For 
example, the Gaus20 wavelet function has good enough frequency resolution to separate 
the modes at 0.3 Hz and 0.5 Hz well enough from each other and it has good enough 
time resolution to estimate damping ratios up to 7 %. If there would be another mode 
closer to the 0.3 Hz than the 0.5 Hz, then another wavelet function with better frequency 
resolution (e.g. Gaus44) could be selected but the time resolution of this wavelet 
function would be poorer and there would be a high bias in the damping estimates when 
the real damping ratio would be higher than 4 %. Bias increases when the mode 
extraction wavelet length increases, this is evident in the results achieved for the 
simulated data (e.g. Figure 59 and Figure 60). For the measured data the real damping is 
not known, but the longer the mode extraction wavelet the lower the estimate of the 
damping ratio (e.g. Figure 92) and presumably the higher the bias is. Also the time 
window length of the method affects the bias because of the characteristics of the 
random decrement technique. If a short time window is used, the number of samples 
averaged in the random decrement technique is too low, the estimation of the impulse 
response is poor, and the damping estimates are poor, too.  

The performance analyses of this thesis are based on the simulation studies and analysis 
of the measured data. Because of the complexity of the damping estimation procedure, 
the performance of the method cannot be assessed with analytic means. The damping 
estimation method assumes linear behavior of the power system dynamics. However, in 
the studies of this thesis, the nonlinear simulation model of the Nordic power system is 
used and therefore the damping estimation results are very realistic. Even though some 
nonlinearity would exist under the ambient conditions, its effect on the damping 
estimates is negligible since the excitations are small in amplitude. The explicit study of 
the effect of the nonlinearity on the damping estimates is not in the scope of this thesis. 
In addition, the effect of different input characteristics other than the Gaussian noise is 
not studied, although the input in the simulation studies is not strictly Gaussian and 
should be reflected in the results.  

The selection of correct parameters for the damping estimation method is an important 
part of the damping estimation presented in this thesis. Although detailed studies are 
made, it is recognized that the parameter selection is based on the analysis of a limited 
number of combinations between the different parameters. Also the number of operating 
conditions of the power system, applied in the study, is limited. However, the studied 
cases represent the real conditions where the damping estimation is applied and 
therefore the parameter selection is at least nearly optimal.  
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7 Conclusions 

7.1 General Conclusions 

This thesis presented a novel approach into electromechanical oscillation damping 
estimation during ambient operation of the power system. The method is based on 
utilizing the wavelet transform and the random decrement technique. The method can 
be applied to monitor any oscillation mode although the main emphasis in this thesis 
was in estimation of the Nordic power system 0.3 Hz inter-area mode. The only 
limitation is that there should not be other modes too close to the mode of interest. The 
closer the other mode is to the mode of interest, the better frequency resolution is 
required for the mode extraction wavelet function. The better frequency resolution leads 
to poorer time resolution, because there is a tradeoff between the frequency and time 
resolutions of a wavelet function. The poorer time resolution further leads to higher bias 
(deviation from the real value) of the damping estimates. The amount of bias depends 
on the real damping ratio of the mode in such a way that when the real damping ratio is 
lower, the bias is lower too. The mean values of the estimates are either correct or lower 
than the real damping; therefore the damping estimates do not lead to reduced system 
security.  

The parameters of the damping estimation method were selected with detailed studies. 
The properties of the different wavelet functions in case of oscillation monitoring were 
considered. General criteria for selecting the optimal mother wavelets in oscillation 
monitoring were specified and the criteria were quantitatively defined for the Nordic 
power system.  

The damping estimation method’s capability to estimate the damping was studied both 
in the case of the simulated and measured data of the Nordic power system. When the 
simulated data is used, the real damping of the mode is known and it can be compared 
to the estimated damping. The results show that when the parameters (especially the 
mother wavelets and time window length but also the other parameters shown in Figure 
14) of the damping estimation method are selected correctly, the method can estimate 
the damping reasonably well both in terms of the mean value of the estimate and the 
standard deviation. The most accurate damping estimation results are achieved when the 
damping ratio is low (below 5 %), a long time window (above 5 minutes) and a long 
mode extraction wavelet (Gaus20 or Gaus44) is used. In addition, the analyzed signal 
should have good observability of the mode of interest (and preferably poor 
observability of the other modes). The measurement noise of the analyzed signals does 
not have much effect on the estimates especially when the longer mode extraction 
wavelets (Gaus20 and Gaus44) are used. 

When the damping ratio is higher than 5 %, the longest mode extraction wavelets (e.g. 
Gaus44) are not applicable because the time resolution is too poor and therefore the 
estimates have too large bias. In the thesis, an optimal compromise between the 
frequency and time resolutions of the mode extraction wavelet function was studied and 
the wavelet functions for damping estimation of the Nordic power system were 
identified. With these wavelet functions (e.g. Gaus20), accurate estimates of the 
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damping can be achieved when the damping ratio is rather low (below 7 %), and for the 
higher damping ratios the estimates are conservative; i.e. they are lower than the real 
damping. If the analyzed signal contains only the mode of interest, even higher damping 
ratios than 7 % can be estimated with the method, when a shorter mode extraction 
wavelet than Gaus20 is used. The wavelet transform can be applied to find out the 
different modes in the signals at different time instances. However, the Gaus20 wavelet 
function produces a good compromise if the wavelet function is kept fixed.  

When the measured data is studied, the real damping of the mode is not known and the 
focus is on the variation of the estimates around the mean value. The variation is 
measured by the standard deviation of the estimates because it is a measure of how 
much the individual estimates generally deviate from the mean value. The smaller the 
standard deviation is, the more accurate the estimates are. The results for the measured 
data show, that the time window should be roughly 20 minutes long in order to 
minimize the standard deviation of the estimates. It was also shown that the degraded 
damping due to the incorrect operation of the damping controller can be observed with 
the damping estimation method. The detection of improved damping due to the new 
damping controller (or better tuned controller) was observed to be harder. 

The mode frequency estimates were more accurate than the damping estimates both for 
the simulated and the measured data. It has also been recognized in the other studies of 
the field that the mode frequency estimation is more accurate than the damping 
estimation (Turunen et al. 2008, Messina 2009).  

The general sources of the damping estimate inaccuracy were discussed in the thesis. It 
was concluded that the main part of the inaccuracy is generally due to the differences 
between the real and the assumed excitation of the power system oscillations. The 
method assumes the excitation to be random Gaussian noise (see Section 2.2.3), but 
random departures from this assumption cause variance to the estimates. Using longer 
time windows reduces the variance, because the assumption becomes more valid.    

A similar kind of performance characteristics as found in this thesis has been reported, 
for instance, by Liu & Venkatasubramanian (2008), Trudnowski et al. (2008), and 
Trudnowski & Pierre (2009); i.e. the damping estimates are more accurate for a poorly 
damped mode. The standard deviations of the damping estimates are usually slightly 
higher than those observed in this thesis (e.g. Wies et al. 2003, Liu & 
Venkatasubramanian 2008) indicating that the accuracy of the developed method is well 
comparable to the other methods of the field. The method of this thesis produces 
conservative results for the damping estimates; this is not the case for all methods (e.g. 
Wies et al. 2003, Anderson et al. 2005, Trudnowski et al. 2008, Turunen et al. 2008). 
The conservative estimates are beneficial because they do not lead to reduced system 
security. Usually, the performance of the commercial damping monitoring systems is 
not well reported. However, the test period that was carried out at Fingrid did show that 
improved performance is required (Turunen 2005). This thesis presents a method 
towards significantly more accurate damping estimates.    
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7.2 Future Work 

In general terms, the future work in the area of electromechanical oscillation damping 
estimation includes the search for new and preferably better damping estimation 
methods, improvement of the existing methods, and finding the utilizations of the 
methods.  

7.2.1 Damping Estimation under the Ambient Conditions 

In the field of damping estimation under the ambient conditions it would be important 
to study the validity of the assumptions of the methods with real data. For example, the 
random load variations under the ambient conditions are commonly assumed to be 
Gaussian distributed. Another common assumption is the linear behavior of the power 
system when it is subjected to small excitations. However, some of the approaches in 
damping estimation do not necessarily carry these assumptions; see, for example, 
Messina (2009). 

When the specific future work areas of the wavelet-based damping estimation method 
are considered, the main topic would be the extension of the method to allow multiple 
input signal analysis, and therefore possibly more accurate damping estimates. The 
observabilities of the modes in different measurements can be achieved from the linear 
analysis of the simulation model or they can possibly be estimated from the measured 
data. The signals with the best observabilities can then be used in the analysis. 
However, if the signal is carefully selected for the univariate method, the benefit of 
using multiple inputs in the analysis should be small.  

The thesis focused on introducing a new method for damping estimation, and studying 
its performance characteristics. The comparison to other published methods is an area of 
future work. However, the method’s performance is assessed to be comparable to other 
methods.  

7.2.2 Online Utilization of Damping Estimation 

In the thesis it was shown that the degraded damping due to the incorrect operation of 
the damping controller can be observed with the damping estimation method. The 
detection of improved damping due to the new damping controller (or better tuned 
controller) was observed to be harder but might be possible. Future research is needed 
to find out how the method can be utilized most optimally in practice.  
 
Another online application of the damping estimation method could possible be online 
transfer limit monitoring. In this approach the power transfer limit would be set based 
on the estimated damping in such a way that the damping estimate must remain above a 
certain level. However, when the system is operated with the n – 1 criterion, the 
damping after the n – 1 contingency must be positive to maintain system stability. 
Because the damping estimation is done when the grid is operating intact, it should be 
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possible to predict the decrease in damping due to the n – 1 contingency. Even if the 
prediction could be done with good enough accuracy (based on a detailed simulation 
study of the grid), the variance of the damping estimate might be an obstacle.  

7.2.3 Offline Utilization of Damping Estimation 

A possible offline use of damping estimation could be the verification of the dynamic 
simulation model of the power system. This could be implemented by comparing the 
estimated damping with the simulated damping in the same power flow situation in 
which the damping is poor. Here, about 9 % damping ratio is estimated for the 
measured data case (Figure 87) while the simulated damping with the approximately 
same power transfer from Finland to Sweden is about 7 %. Because the estimation error 
is about 0.5 pp (estimation error in terms of standard deviation, pp is percentage point), 
the difference between the damping in simulation and measurement is significant. There 
is also a clear difference in the estimated mode frequency of simulation (about 0.3-0.31 
Hz, Figure 46) and measurement (about 0.33-0.35 Hz, Figure 84). 

The simulation model used in the studies is somewhat outdatet: many components23, 
which increase the damping, have been added to the power system. These components 
explain the difference in the damping in this case. Because the damping estimation 
method is capable of indicating the difference in damping in this case, a topic of future 
work is to study in detail if the method can be used for verification of the simulation 
model.  

7.2.4 Damping Estimation under the Transient Conditions 

Utilization of the wavelet-based damping estimation method under the transient 
conditions is a possible topic of future work. The transients can be caused for example 
by faults or switching events in the grid. The assumption is that if the system behaves 
linearly during the transient and the damping remains constant, the performance of the 
method improves during the transient because the signal-to-noise ratio of the 
oscillations increases. However, if the damping is different before and after the 
transient, the damping ratios produced by the method lie in between the pre-transient 
and post-transient damping ratios and approach the post-transient damping when the 
time window moves forward.  

 

                                                
23 For example, several series compensators in the AC transmission path between Finland and Sweden, 
several other reinforcements in the grid, and an HVDC-link between Finland and Estonia with a power 
oscillation damper. 
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Appendix A – WAMS and PMUs 

The Wide-Area Monitoring System (WAMS), presented in Figure 1, consists of the 
measurement devices, the data concentrator, the communication infrastructure 
between the two and of the data handling and analyzing functions (Cai et al. 2005, 
Xie et al. 2009). The measurement devices are usually the Phasor Measurement 
Units (PMU) which provide voltage and current measurements synchronized to 
within a microsecond (Phadke & Thorp 2008).  

 
Figure 1. General structure of the wide-area monitoring system. PMU = Phasor 

Measurement Unit, PDC = Phasor Data Concentrator.  

PMUs have been installed in the Finnish main grid since 2006. At the moment, the 
number of PMUs is eleven (Figure 2, two PMUs not shown in the figure) and they 
gather information for the Finnish WAMS. In addition, some PMU measurements 
from other parts of the Nordic power system are available in the Finnish WAMS. 
The WAMS functions used are power oscillation monitoring, phase angle 
monitoring, and event driven data archiving. The WAMS and especially the power 
oscillation monitoring function are still more or less in the development phase and 
are not used in the control center.  
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Figure 2. Finnish PMU installation status in the spring 2010. 
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Appendix B – Some Examples of Wavelets 

 
Figure 1. Haar wavelet, Morlet wavelet, and Mexican hat wavelet, respectively 

(Matlab® Wavelet Toolbox™ version 4.1). 

Figure 2. Some wavelets of Daubechies wavelet family (Matlab® Wavelet Toolbox™ 

version 4.1). 

 
Figure 3. Some wavelets of symlets wavelet family (Matlab® Wavelet Toolbox™ 

version 4.1). 
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Appendix C – Illustration of the Uncertainty 

Principle 

The uncertainty principle can be illustrated in practice for the original signal in 
Figure 7 (body text of the thesis) by presenting the 0.3 Hz and the 0.5 Hz wavelet 
coefficients of the original signal with the three wavelets in Figure 10 (body text of 
the thesis). The wavelet coefficients for the Gaus4, Gaus20, and Gaus44 wavelet are 
shown in Figure 1, Figure 2, and Figure 3, respectively.  
 
When the original signal in Figure 7 (body text of the thesis) is analyzed with the 0.5 
Hz Gaus424 wavelet, the wavelet coefficients (blue line) are much greater compared 
to the Gaus20 and Gaus44 wavelets. This implies that the frequency resolution of the 
Gaus4 wavelet is too poor to separate the 0.3 Hz and 0.5 Hz modes from each other. 
On the other hand, the Gaus4 wavelet coefficients react to changes in the original 
signal’s amplitude much faster than the longer Gaus20 and Gaus44 wavelets. This is 
due to the better time resolution of the shorter wavelet. When the wavelet length 
increases, the time resolution worsens and the wavelet coefficient curve becomes 
“smoother.” 

 
Figure 1. Wavelet coefficients of the original signal (Figure 7, body text of the thesis) 

with the 0.3 Hz and 0.5 Hz Gaus4 wavelet function. 

 

 
Figure 2. Wavelet coefficients of the original signal (Figure 7, body text of the thesis) 

with the 0.3 Hz and 0.5 Hz Gaus20 wavelet function. 

 

                                                
24 Gaus20 wavelet function having the center frequency of 0.5 Hz. 
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Figure 3. Wavelet coefficients of the original signal (Figure 7, body text of the thesis) 

with the 0.3 Hz and 0.5 Hz Gaus44 wavelet function. 
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Appendix D – Wavelet Transform Comparison to 

Short Time Fourier Transform 

Short time Fourier transform (STFT, or windowed Fourier transform) and wavelet 
transform can be written as inner products with their respective time-frequency 
atoms (Mallat 1999)  
 

 ( )*

, ,( , ) ( ) ,c b c bSy c b y t g t dt y g

∞

−∞

= =∫  (1) 

 
and 
 

 ( )*

, ,( , ) ( ) ,a b a bWy a b y t t dt yψ ψ
∞

−∞

= =∫ , (2) 

 

where ( , )Sy c b  and ( , )Wy a b  are STFT and WT of y(t) respectively, c and a are the 

scaling parameters of STFT and WT respectively, b is the position of the time-

frequency atom g or ψ in case of STFT and WT respectively, and   denotes the 

inner product.  
 
Equation (1) and Equation (2) are similar to each other except that the time-
frequency atoms (g and ψ) are different. STFT’s time-frequency atom, g, consists of 
a sinusoidal signal multiplied with a separate windowing function that is fixed for 
various frequency components of the signal. On the other hand, WT’s time-
frequency atom, ψ, inherently utilizes the variable window length for various 
frequency components of the signal. The variable window length of ψ comes from 
stretching or compressing the wavelet function to analyze different frequency 
components of the signal. Thus low frequency components are analyzed with longer 
time windows than the high frequency components when the same mother wavelet is 
considered. This beneficial property of wavelet transform leads to an equal number 
of oscillation cycles to be used in the wavelet transform independent of the analyzed 
frequency (Daubechies 1992). 
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Appendix E – Biases of the Damping Estimates 

Damping estimate biases with different SNRs and time window lengths for the 
Gaus4, Gaus20, and Gaus44 mode extraction wavelets are presented in Figure 1, 
Figure 2, and Figure 3, respectively.  
 
The noise has some effect on the damping estimate biases especially in case of the 
short mode extraction wavelet (Gaus4). The effect of noise is minimized when the 
longer mode extraction wavelets (Gaus20 and Gaus44) are used. When the time 
window length increases, the effect of noise on the damping estimate biases 
decreases. However, this is evident here only when the time window length increases 
from one minute to longer. 
 
When the realistic SNRs (≥ 5) and longer time windows (≥ 3 min) are considered, 
the damping estimate biases are not much affected by the noise. This is the case for 
all the studied mode extraction wavelets. However, the effect of noise is even smaller 
when the longer mode extraction wavelets are used.   
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Figure 1. Damping estimate biases with different signal-to-noise ratios of the 

analyzed signal and with different time window lengths. The legend value shows the 

time window length in minutes. The mode extraction wavelet is the Gaus4. The 

analyzed signal is the grid frequency measurement at a bus in Southern Finland. 
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Gaus20, Grid Frequency
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Figure 2. Damping estimate biases with different signal-to-noise ratios of the 

analyzed signal and with different time window lengths. The legend value shows the 

time window length in minutes. The mode extraction wavelet is the Gaus20. The 

analyzed signal is the grid frequency measurement at a bus in Southern Finland. 
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Figure 3. Damping estimate biases with different signal-to-noise ratios of the 

analyzed signal and with different time window lengths. The legend value shows the 

time window length in minutes. The mode extraction wavelet is the Gaus44. The 

analyzed signal is the grid frequency measurement at a bus in Southern Finland. 
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Appendix F – Biases of the Damping Estimates 

The damping estimate biases with different time window lengths and two sets of 
parameters are presented in Figure 1, Figure 2, and Figure 3 for the mode extraction 
wavelets Gaus4, Gaus20, and Gaus44, respectively. 
 
The biases are smaller for the parameter set in which the damping is estimated from 
the approximate impulse response using the shorter (Cmor1-1) wavelet and the 
damping is selected from the midpoint of the impulse response. With this short time 
window, the biases of the damping estimates are lower (in the case of the Gaus4 and 
the Gaus44 mode extraction wavelets) with the original set of parameters. 
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Figure 1. Damping estimate biases with different time window lengths and 

parameter sets of the damping estimation method. The mode extraction wavelet is the 

Gaus4. The analyzed signal is the grid frequency measurement at a bus in Southern 

Finland. 
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Figure 2. Damping estimate biases with different time window lengths and 

parameter sets of the damping estimation method. The mode extraction wavelet is the 

Gaus20. The analyzed signal is the grid frequency measurement at a bus in Southern 

Finland. 
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Gaus44, Grid Frequency
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Figure 3. Damping estimate biases with different time window lengths and 

parameter sets of the damping estimation method. The mode extraction wavelet is the 

Gaus44. The analyzed signal is the grid frequency measurement at a bus in Southern 

Finland. 
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