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Abstract 
Networking scenarios in the future will be complex and will include fixed networks and hybrid 
Fourth Generation (4G) networks, consisting of both infrastructure-based and infrastructure-
less, wireless parts. In such scenarios, adaptive provisioning and management of network 
resources becomes of critical importance. Adaptive mechanisms are desirable since they 
enable a self-configurable network that is able to adjust itself to varying traffic and channel  
conditions. The operation of adaptive mechanisms is heavily based on measurements. The 
aim of this thesis is to investigate how measurement based, adaptive packet scheduling 
algorithms can be utilized in different networking environments. 

 
The first part of this thesis is a proposal for a new delay-based scheduling algorithm, known 

as Delay-Bounded Hybrid Proportional Delay (DBHPD), for delay adaptive provisioning in 
DiffServ-based fixed IP networks. This DBHPD algorithm is thoroughly evaluated by ns2-
simulations and measurements in a FreeBSD prototype router network. It is shown that 
DBHPD results in considerably more controllable differentiation than basic static bandwidth 
sharing algorithms. The prototype router measurements also prove that a DBHPD algorithm 
can be easily implemented in practice, causing less processing overheads than a well known 
CBQ algorithm. 

 
The second part of this thesis discusses specific scheduling requirements set by hybrid 4G 

networking scenarios. Firstly, methods for joint scheduling and transmit beamforming in 3.9G 
or 4G networks are described and quantitatively analyzed using statistical methods. The 
analysis reveals that the combined gain of channel-adaptive scheduling and transmit 
beamforming is substantial and that an On-off strategy can achieve the performance of an 
ideal Max SNR strategy if the feedback threshold is optimized. Finally, a novel cross-layer 
energy-adaptive scheduling and queue management framework EAED (Energy Aware Early 
Detection), for preserving delay bounds and minimizing energy consumption in WLAN mesh 
networks, is proposed and evaluated with simulations. The simulations show that our scheme 
can save considerable amounts of transmission energy without violating application level QoS 
requirements when traffic load and distances are reasonable. 
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Tiivistelmä 
Tulevaisuudessa tietoverkkoja sovelletaan mitä moninaisimmissa skenaarioissa. Skenaariot 
käsittävät toisaalta kiinteitä IP-verkkoja ja toisaalta neljännen sukupolven (4G) 
hybridiverkkoja, joihin kuuluu sekä infrastruktuurillisia että infrastruktuurittomia osia. 
Tällaisissa skenaarioissa verkkoresurssien adaptiivinen provisiointi ja hallinta muodostuvat 
erittäin tärkeiksi. Adaptiiviset mekanismit ovat hyödyllisiä, sillä niiden avulla voidaan 
toteuttaa itsekonfiguroituva verkko, joka pystyy sopeutumaan muuttuviin liikenne- ja 
kanavatilanteisiin. Adaptiiviset mekanismit hyödyntävät toiminnassaan 
mittausinformaatiota. Väitöskirjassa tutkitaan, miten mittauspohjaisia, adaptiivisia 
vuoronjakomekanismeja voidaan soveltaa erilaisissa verkkoympäristöissä. 

 
Väitöskirjan ensimmäisessä osassa kuvataan uusi adaptiivinen, viiverajoitettu suhteelliseen 

hybridiviiveeseen perustuva vuoronjakoalgoritmi (DBHPD). Algoritmin suorituskyky 
testataan perusteellisesti sekä simulaatioilla että mittauksilla FreeBSD-
prototyyppireitittimessä. Tulokset osoittavat, että DBHPD johtaa huomattavasti 
hallitumpaan differentiointiin kuin staattiset kaistanjakoon perustuvat algoritmit. 
Prototyyppireitittimen mittaustulokset osoittavat lisäksi, että DBHPD voidaan toteuttaa 
helposti käytännössä, mikä johtaa pienempään prosessointikuormaan kuin tunnettu CBQ-
algoritmi. 

 
Väitöskirjan toisessa osassa keskustellaan 4G-hybridiverkkoskenaarioiden asettamista 

erityisvaatimuksista vuoronjaolle. Aluksi kuvataan ja analysoidaan matemaattisia 
menetelmiä käyttäen 3.9G- ja 4G-verkoissa mekanismeja, joissa vuoronjako yhdistetään 
keilanmuodostukseen. Analyysin perusteella voidaan todeta, että yhdistetyllä kanava-
adaptiivisella vuoronjaolla ja keilanmuodostuksella pystytään saavuttamaan merkittävää 
hyötyä, ja että on-off-strategia saavuttaa ideaalisen maksimaaliseen 
signaalikohinasuhteeseen perustuvan strategian suorituskyvyn, kun vastaanottajan 
palautteen kynnysarvo optimoidaan. Lopuksi kehitetään WLAN mesh -verkkoihin uusi 
energia-adaptiivinen vuoronjako- ja jononhallinta-algoritmi EAED, jonka tarkoituksena on 
säilyttää viiverajat ja minimoida energiankulutus. Algoritmi testataan useissa 
simulaatioskenaarioissa. Simulaatiot osoittavat, että EAED-algoritmilla voidaan säästää 
merkittävästi energiaa sovellusten palvelunlaatuvaatimuksia rikkomatta olettaen, että 
liikennekuorma ja etäisyydet ovat kohtuulliset. 
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ŵm component of the transmit weight vector

w̃i(m) normalized head waiting time of class i when m packets have departed

w system noise

wi(k) QoS weighting factor for user i’s flow k

wi(τ) energy function of packet i

wji[k] weighting function of the connection between the i-th perceptron

from layer (k-1) and the j-th neuron from layer k

W workload (bits) created by a single user instance in class i

W̄ average waiting time of all users

Wi waiting time for user i

WL window length



32

xj [k] current output of the j-th perceptron in layer k

ξ parameter used for threshold optimization

X random file size

Xk new observation

x time

x state of a discrete-time process

x−k a priori prediction of the state of a discrete-time process

xk a posteriori state estimate of the system state

y final receiver output

yl desired output value of a neural network

y(v) function for time-fraction assignment

z measurement

zk measurement



33

List of Figures

2.1 The Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Overview of a UMTS network . . . . . . . . . . . . . . . . . . . . . . 49

2.3 A time-code matrix for the TD-CDMA mode . . . . . . . . . . . . . . 51

2.4 The LTE network architecture . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Allocation of PRBs in LTE . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Two-way DCF handshake procedure . . . . . . . . . . . . . . . . . . . 58

2.7 Four-way DCF handshake procedure . . . . . . . . . . . . . . . . . . . 58

2.8 Hybrid 4G Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.9 802.11s mesh network . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 Scheduling in fixed IP networks . . . . . . . . . . . . . . . . . . . . . 67

3.2 Simple model for a wireless channel . . . . . . . . . . . . . . . . . . . 68

4.1 Hierarchical structure for bandwidth sharing . . . . . . . . . . . . . . . 84

5.1 Backlog and delay in JoBS . . . . . . . . . . . . . . . . . . . . . . . . 92

7.1 Topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Bottleneck link utilization with 85 % total offered load . . . . . . . . . 111

7.3 Utilizations within traffic classes for DBHPD and DRR with 85 % total

offered load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.1 The gamma function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 The topology with traffic mixes 1 and 2. . . . . . . . . . . . . . . . . . 118

8.3 Total load and class loads with traffic mix 1 . . . . . . . . . . . . . . . 119

8.4 Instantaneous and estimated delays for class 1 with the simple sum (a)

and EWMA (b) estimators . . . . . . . . . . . . . . . . . . . . . . . . 123

8.5 Instantaneous and estimated delays for classes 2 and 3 with the simple

sum estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



34

8.6 Instantaneous and estimated delays for classes 1 and 2 with the EWMA-r

estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.7 Instantaneous and estimated delays for class 3 with the EWMA-r (a) and

EWMA-pe (b) estimators . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.8 Instantaneous and estimated delays for class 1 with the EWMA-r estima-

tor on two timescales . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.9 Instantaneous and estimated delays for class 2 with the EWMA-r estima-

tor on two timescales . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.10 Instantaneous and estimated delays for class 3 with the EWMA-r estima-

tor on two timescales . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.11 Instantaneous and estimated delays for class 1 with the EWMA-pe esti-

mator on two timescales . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.12 Instantaneous and estimated delays for class 2 with the EWMA-pe esti-

mator on two timescales . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.13 Instantaneous and estimated delays for class 3 with the EWMA-pe esti-

mator on two timescales . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.14 Instantaneous and estimated delays for class 2 with the sum (a) and EWMA-

r (b) estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.15 Instantaneous and estimated delays for class 3 with the sum (a) and EWMA-

r (b) estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.16 Instantaneous and estimated delays for classes 2 and 3 with the EWMA-

pe estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.1 CBQ link-sharing hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 136

9.2 Measurement network topology. . . . . . . . . . . . . . . . . . . . . . 136

9.3 Link utilizations with HPD and CBQ scheduling (Load 90%). . . . . . 141

9.4 Delay distributions for CBQ and DBHPD (Load 90%) . . . . . . . . . 143

9.5 Link utilizations with HPD and CBQ scheduling (Load 100%). . . . . . 146

9.6 Delay distributions for CBQ and DBHPD (Load 100%) . . . . . . . . . 147

9.7 Link utilizations with HPD and CBQ scheduling (Load 110%). . . . . . 149



35

9.8 Delay distributions for CBQ and DBHPD (Load 110%) . . . . . . . . . 150

10.1 Offered class loads in the simulations (Total offered load 90%) . . . . . 153

10.2 Offered class loads in the measurements (Total offered load 90%) . . . 154

10.3 Delay distributions for CBQ and DBHPD simulations and measurements

(Load 90%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10.4 Delay distributions for CBQ and DBHPD simulations and measurements

(Load 100%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

10.5 Delay distributions for CBQ and DBHPD simulations and measurements

(Load 110%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.6 Bandwidth distributions for CBQ and DBHPD in simulations (Load 100%) 161

10.7 Bandwidth distributions for CBQ and DBHPD in measurements (Load

100%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

11.1 Block diagram for the estimation of v∗ . . . . . . . . . . . . . . . . . . 168

11.2 Time-frequency LTE scheduler . . . . . . . . . . . . . . . . . . . . . . 177

12.1 2x2 system for receive diversity . . . . . . . . . . . . . . . . . . . . . 182

12.2 2x2 system for transmit diversity . . . . . . . . . . . . . . . . . . . . . 183

12.3 Weight states (w2) in Mode 2. [77] . . . . . . . . . . . . . . . . . . . . 185

12.4 2x2 system for spatial multiplexing . . . . . . . . . . . . . . . . . . . . 186

12.5 Model of the transmission system. . . . . . . . . . . . . . . . . . . . . 192

13.1 The ratio γ̂/γ̌ as a function of predefined CDF level when K = 2 and

single antenna transmission (solid curve), antenna selection (+), Mode 1

(x) and Mode 2 (o) are applied. Dashed curves correspond to case M = 2

and dotted curves correspond to case M = 4. The mean SNR is 10dB. . 196

13.2 The ratio γ̂/γ̌ as a function of the predefined CDF level, whereK = 8 and

single antenna transmission (solid curve), antenna selection (+), Mode 1

(x) and Mode 2 (o) are applied. Dashed curves correspond to case M = 2

and dotted curves correspond to case M = 4. The mean SNR is 10dB. . 197



36

13.3 Cumulative distribution function for SNR when γ̄ = 10dB and antenna

selection with M = 2 is applied. Dotted curve: Round Robin strategy.

Solid curves: On-off strategy with 4 users and threshold ξ = −3dB (o),

ξ = 0dB (*) and ξ = 3dB (x). Dashed curve: Max SNR strategy. The

dash-dot curve refers to the case of a continuous single antenna transmis-

sion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

13.4 Cumulative distribution function for SNR when γ̄ = 10dB and Mode

1 with M = 2 is applied. Dotted curve: Round Robin strategy. Solid

curves: On-off strategy with 4 users and threshold ξ = −3dB (o), ξ =

0dB (*) and ξ = 3dB (x). Dashed curve: Max SNR strategy. The dash-

dot curve refers to the case of a continuous single antenna transmission. 202

13.5 Outage rate for the Max SNR scheduling strategy as a function of the

number of users, when P out = 0.1 and the mean received SNR is 3dB.

The numbers of transmit antennas are M = 1 (dotted curve), M = 2

(solid curves) and M = 4 (dashed curves) and antenna selection (x),

Mode 1 (o) and Mode 2 (*) are applied in cases M = 2, 4. . . . . . . . 204

13.6 Outage rates for an error free on-off strategy (dashed curves), Max SNR

strategy (solid curve) and Round Robin strategy (dotted line) as a function

of the number of users when P out = 0.1 and the mean received SNR is

3dB. The On-off strategy has been optimized for 2 (*), 3 (o), 4 (x), 5

(∇) and 6 (+) users. The underlying transmit beamforming method is the

two-antenna Mode 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

13.7 Outage rates for the on-off strategy (dashed curves), the Max SNR strat-

egy (solid curve) and the Round Robin strategy (dotted line) as a function

of number of users when P out = 0.1, q = 0.05 and the mean received

SNR is 3dB. The On-off strategy has been optimized for 2 (*), 3 (o), 4

(x), 5 (∇) and 6 (+) users. The underlying transmit beamforming method

is the two-antenna Mode 1. . . . . . . . . . . . . . . . . . . . . . . . . 209

14.1 Wireless Network Interface (WNI) . . . . . . . . . . . . . . . . . . . . 213



37

14.2 Energy versus transmission time . . . . . . . . . . . . . . . . . . . . . 224

15.1 Distance scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

15.2 Powers, modulations and coderates . . . . . . . . . . . . . . . . . . . . 235

15.3 Delay distributions in all scenarios . . . . . . . . . . . . . . . . . . . . 236



38



39

List of Tables

2.1 Wlan 802.11 standards . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1 Number of traffic sources in different areas . . . . . . . . . . . . . . . 104

7.2 Object throughput statistics, application mix 1 . . . . . . . . . . . . . . 108

7.3 Packet loss statistics, application mix 1 . . . . . . . . . . . . . . . . . . 108

7.4 End-to-end delay statistics, application mix 1 . . . . . . . . . . . . . . 108

7.5 Object throughput statistics, application mix 2 with different loads . . . 109

7.6 Packet loss statistics, application mix 2 with different loads . . . . . . . 110

8.1 Scheduler parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2 Parameters for the Pareto sources . . . . . . . . . . . . . . . . . . . . . 120

9.1 Statistics for HPD with delay bound (Load 90%) . . . . . . . . . . . . 141

9.2 Statistics for CBQ with borrow (Load 90%) . . . . . . . . . . . . . . . 141

9.3 Statistics for HPD with delay bound (Load 100%) . . . . . . . . . . . . 144

9.4 Statistics for CBQ with borrow (Load 100%) . . . . . . . . . . . . . . 144

9.5 Statistics for HPD with delay bound (Load 110%) . . . . . . . . . . . . 145

9.6 Statistics for CBQ with borrow (Load 110%) . . . . . . . . . . . . . . 146

10.1 Loss statistics for DBHPD and CBQ with a 90% load . . . . . . . . . . 159

10.2 Loss statistics for DBHPD and CBQ with a 100% load . . . . . . . . . 159

10.3 Loss statistics for DBHPD and CBQ with a 110% load . . . . . . . . . 160

10.4 Achievable throughput . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.5 Resource consumption for dequeue and enqueue operations . . . . . . . 163

11.1 Typical scheduling functions for time-frequency scheduler . . . . . . . 177

12.1 Achievable capacity assuming an ideal channel . . . . . . . . . . . . . 181

14.1 Resulting data rates with different modulation and coding schemes . . . 221

14.2 RSCoefficients for different MCS for 802.11a/g radio . . . . . . . . . . 224



40

15.1 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

15.2 Energy saving potential . . . . . . . . . . . . . . . . . . . . . . . . . . 230

15.3 AC2 Energy consumption in Scenario1 . . . . . . . . . . . . . . . . . . 231

15.4 Physical layer, packet loss and goodput statistics in scenario1 . . . . . . 233

15.5 Physical layer, packet loss and goodput statistics in scenario2 . . . . . . 234

15.6 Physical layer, packet loss and goodput statistics in scenario3 . . . . . . 237



41

1 Introduction

1.1 Background

For decades, networking research has been driven by increasing consumer demands for

higher bitrates and lower delays. Architectures for providing a better service to more

important customers have been proposed as one solution to meet stringent QoS require-

ments. At the moment, the class-based Differentiated Services (DiffServ) [30] architec-

ture seems to be the most promising solution due to its simplicity and scalability. With

DiffServ, customers can be classified based on different criteria, such as their willingness

to pay or their traffic type. Networking scenarios will be complex and will include fixed

networks and hybrid Fourth Generation (4G) networks consisting of both infrastructure-

based and infrastructure-less, wireless parts. In order to meet the requirements set for

telecommunication in this complex environment, differentiation alone will not be suffi-

cient: the underlying networking technologies must also be drastically improved. In 4G

networks, major changes have been designed on layers 1 and 2 of the ISO OSI model

to increase data rates and spectral efficiency. Time-frequency operation, channel aware

scheduling, adaptive modulation and coding (AMC) and multiantenna techniques can be

mentioned as the most important advancements.

While vast amounts of effort have been put into providing services and meeting the re-

quirements of western consumers, certain parts of the world have remained completely

disconnected. As the telecommunication markets are beginning to saturate, new growth

potential can also be identified in areas that are currently disconnected, where basic con-

nectivity at an affordable price could make a difference. Providing a low price, low bit rate

and low energy communications architecture, in which energy can be gracefully traded

off against QoS would be an important step towards fully taking advantages of this emerg-

ing potential. Using such an architecture, traffic like voice over IP (VoIP) calls or video
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conferencing could become a reality in developing countries or in emergency situations

in rough environments.

In scenarios, where various networking technologies and service requirements may over-

lap or contradict each other, adaptive provisioning and management of the network re-

sources becomes a key tool for handling its increasing complexity. Adaptive mechanisms

are desirable as they enable a self-configurable network that is able to adjust itself to dif-

ferent conditions, such as changes in traffic trends, load fluctuations due to time-of-day

effects, channel quality variations or the incorporation of new customers. The operation

of adaptive mechanisms relies on measurements: the state of the network is monitored

either off-line or on-line to produce an estimate of a desired quantity, such as link uti-

lization, average packet loss, queuing delay or signal to noise ratio (SNR). These mea-

surements can be used on different network control time scales, such as routing and load

balancing, admission control, inter-cell interference coordination, packet scheduling and

multi-antenna techniques.

Adaptive Quality of Service (QoS) provisioning requires new kinds of functionality from

the network elements. Link resources have to be divided between service classes and

class based routing or load balancing can be supported as an option. One of the most

important components for resource allocation is a packet scheduler that determines the

service order of the packets. In current fixed Internet Protocol (IP) network routers, the

scheduling algorithms are static and allocate resources based on estimated traffic loads

offered to different classes and the required quality level. The estimate is usually based

on traffic history, from which an average load is calculated in order to predict the future

load. In reality, however, the loads of different classes vary quite significantly on a short

timescale due to traffic bursts, as well as on a longer timescale due to traffic trends. If the

resource allocation is performed in a static manner, the scheduling algorithm will not be

able to adapt to dynamic load conditions. Adaptive scheduling also plays an important

role in 4G networks. In LTE-Advanced networks, a receiver can provide regular feedback

to the Base Station (BS) by encoding measured channel state information (CSI) in the
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feedback message, indicating both power and phase information. The BS can utilize

this information when applying channel aware scheduling and transmit beamforming.

In wireless mesh networks, measurements can be utilized for predicting future delays

and selecting certain modulation and coding schemes to preserve the delay bound while

minimizing energy consumption.

When designing adaptive scheduling algorithms that may contain computationally de-

manding estimation procedures the evaluation process should ideally include both sim-

ulations and real measurements. If the evaluation is based only on simulations, where

traditional performance metrics are used as an evaluation criteria, there is a risk of draw-

ing overly optimistic conclusions. This is because an algorithm that behaves well in

simulations may not have the desired results in the real world. In the worst case scenario,

it may not even be possible to implement the algorithm in a real-time environment if it

uses overly complex computation and estimation procedures. Thus, an algorithm should

only be put into commercial use only after its implementation complexity, as well as its

resulting performance in a real implementation, has been assessed.

1.2 Research problem

In this thesis, adaptive scheduling algorithms for fixed Internet (IP protocol -based back-

bone infrastructure) and hybrid 4G networks consisting of wireless infrastructure-based

and infrastructure-less networks, are analyzed and proposed. In the first part of the the-

sis, which deals with handling scheduling in fixed IP networks, the main goals are to

propose a delay-based scheduling algorithm Delay Bounded Hybrid Proportional Delay

(DBHPD), evaluate it using ns2-simulations and measurements, and to implement it in

a FreeBSD based prototype router. The objective is to investigate what kind of perfor-

mance advantage can be achieved with adaptive scheduling, compared to conventional or

pseudo-adaptive scheduling algorithms, and to find out whether the DBHPD algorithm

can be implemented with a reasonable level of complexity. Simulations are also used to
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analyze alternative delay estimators, to examine whether or not the estimator itself should

be adaptive. Another major goal is to compare the measurement results with simulation

results in order to see how well real implementations of the selected algorithms corre-

spond to the theoretical simulation models of these algorithms.

In the second part of the thesis joint scheduling and transmit beamforming in 4G networks

are quantitatively analyzed using statistical methods. The objective is to study upper and

lower scheduling gain bounds when On-off scheduling is applied together with antenna

selection or Mode1 and Mode2 transmit beamforming. Round Robin (RR) and Maximum

SNR (MaxSNR) scheduling are used as a reference. Another objective is to track the

impact of feedback errors on On-off strategy and to analyze the upper bound of achievable

outage rate. Following on from this, a novel cross-layer energy-adaptive scheduling and

queue management framework, EAED (Energy Aware Early Detection), is proposed for

minimizing energy consumption and preserving delay bounds in Wireless LAN (WLAN)

mesh networks, and evaluated with simulations. The goal is to evaluate the performance

of EAED with real-time traffic in realistic WLAN Mesh network simulation scenarios

and to discuss possible use- cases for the EAED framework.

1.3 Structure of the thesis

The thesis is structured as follows: Chapter two presents networking technologies rel-

evant to the thesis. Chapter three describes requirements for scheduling algorithms in

different environments. In chapter four, the conventional algorithms most relevant to the

thesis are presented and their capabilities and implementation complexity are discussed.

The fifth and sixth chapter present the adaptive scheduling algorithms, the estimation

theory and the delay estimation approach used in this thesis. The next four chapters fo-

cus on evaluating the adaptive scheduling algorithms and estimators in various scenarios

through the use of both simulations and measurements. Chapters 11 and 12 describe

channel aware scheduling algorithms and multi-antenna technologies for Third Genera-
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tion (3G) and 4G networks while chapter 13 presents results of the performance of joint

channel aware scheduling and transmit beamforming. Chapters 14 and 15 concentrate on

the development and evaluation of an energy efficient scheduling algorithm for wireless

802.11s mesh networks. Finally, chapter 16 concludes the thesis.

1.4 Author’s contribution

The author strongly contributed to the ideas presented in the first part of this thesis, cov-

ering novel scheduling algorithms and estimators, simulation and measurement scenarios

and parameterization of the different setups. Considering the simulation studies, the au-

thor conducted the simulator code implementation and actual simulations and wrote the

related publications [20], [21]. Regarding the measurement studies, the publications [120]

and [119] were also mostly written by the author. Except for the kernel profiling, the mea-

surements were mostly conducted and analyzed by the author.

In the second part of the thesis, the author strongly contributed to the ideas related to

scheduling in 4G hybrid architectures with the emphasis on energy-adaptive scheduling

and queue management for WLAN mesh networks. The author was one of the main

authors in the publication analyzing challenges for packet scheduling in 4G hybrid net-

works [78] and primary author in [121] where also the simulator code implementation and

simulation studies were conducted by the author. The author is the second inventor of an

energy-adaptive packet dropper that is one of the ideas presented in publication [121].

A US patent will be granted soon for this innovation. Regarding the analysis of joint

scheduling and transmit beamforming in 4G networks the author participated by com-

menting on the results, proposing ideas for future work and writing the final manuscript

of accepted publication [80].
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2 Networking technologies

In a broad sense, all the topics covered in this thesis fall under the umbrella of adaptive

scheduling for the Internet. While originally the term Internet referred to the fixed In-

ternet Protocol (IP)-based backbone infrastructure, nowadays the term is used in a very

wide sense to describe a "network of networks", where different kinds of access networks,

ranging from fixed and wireless home and office networks to sensor networks, are inter-

connected as depicted in Figure 2.1. These networks do not even necessarily have to

implement IP protocol, since the trend is for almost any network to also be an "Internet".

The Internet Engineering Task Force (IETF) is very active when it comes to the standard-

ization of Internet technologies. Their most important standardization activities currently

revolve around new or modified transport protocols, routing mechanisms, mobility, and

security issues. Due to certain fundamentally different characteristics, this thesis solves

scheduling problems separately for fixed Internet (IP-based backbone infrastructure) and

wireless infrastructure-based and infrastructure-less networks.

2.1 Fixed networks

Fixed Internet originated in military and academic circles, where it was used mainly for

information exchange and was dominated by simple e-mail, remote access and file trans-

fer services. Fixed Internet runs IP protocols over various layer-two networking tech-

nologies, such as Multi Protocol Label Switching (MPLS), Ethernet and Wave Division

Multiplexing (WDM). The rise of the World Wide Web (WWW) boosted the use of the

Internet as a commercial, public, multiservice network that supports a variety of appli-

cations and customers. Over recent decades, Quality of Service (QoS) architectures and

mechanisms to enable applications and customers to be treated differentially in hetero-

geneous scenarios, has become an important area of Internet development. A service
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architecture provides a general framework for service provisioning by abstracting the ser-

vices and functionality of the network. However, network operators have the freedom

to choose what services they offers to customers and what mechanisms are used for im-

plementation. The first service architecture to be proposed was the Integrated Services

architecture [32], which aims to provide absolute per-flow guarantees through resource

reservation. However, it has not been widely accepted due to its high implementation

complexity and poor scalability. Differentiated Services architecture [30] is a more scal-

able solution for QoS provisioning: traffic is divided into a limited number of forwarding

classes and resources are then allocated to these classes. Two Per-Hop Behaviors (PHBs)

have currently been standardized: Expedited Forwarding (EF) [42] and Assured Forward-

ing (AF) [74], but other feasible approaches, such as relative differentiated services [46]

have also been proposed.

2.2 Radio networks

2.2.1 3G

The Universal Mobile Telecommunications System (UMTS) radio access scheme was

standardized by the European Telecommunications Standard Institute-Special Mobile

Groups (ETSI-SMG) in 1998. It operates at a frequency of 2 GHz with 5 MHz fre-

quency bands and supports data rates up to 2 Mb/s. The convergence trend has resulted in

the formation of a common IMT (International Mobile Telecommunications)-family for

the development of mobile technologies and nowadays International Telecommunication

Union - Radio (ITU-R) concepts for the IMT-2000 are included in the UMTS.

Figure 2.2 shows an overview of the UMTS network architecture. The architecture con-

sists of the following main elements: User Equipment (UE), the UMTS Terrestrial Radio

Access Network (UTRAN) and the Core Network (CN). The UTRAN includes several
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Radio Network Subsystems (RNSs), which in turn consist of a Radio Network Controller

(RNC) that controls a number of Node Bs (base stations).

Node B Node B Node B

RNC RNC

Node B Node B Node B

Iur

Core Network

Iub

RNS

Iub

RNS

IuIu

UE
UE UE

Figure 2.2: Overview of a UMTS network

Two radio interfaces have been defined for the UMTS Terrestrial Radio Access Network

(UTRAN): the frequency division duplex (FDD) and the time division duplex (TDD).

The FDD mode uses the Wideband Code Division Multiple Access (WCDMA) access

method, standardized by Third Generation Partnership Project (3GPP) in [1], while TDD

utilizes Time Division-Code Division Multiple Access (TD-CDMA), a time and code

division multiple access combination. The FDD mode is suitable for applications with a

data rate of below 384 kbps. The TDD mode, on the other hand, can support data rates as

high as 2Mb/s, due to the more efficient use of spectrum.

FDD radio interface

Three types of downlink transport channels are supported by UMTS: common, dedicated

and shared channels. These channels are divided into frames of 10 ms, and each frame
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is in turn divided into 15 time slots. The FDD mode uses separate radio frequencies for

uplink and downlink. The multiple access method used is the WCDMA direct sequence

spread spectrum method, where each user is assigned one or more code sequences that

are used to scramble the data before transmission. The Spreading Factor (SF) is the

number of code bits that are used to code a single bit of information. By spreading the

information before transmission, many users are able to transmit data simultaneously on

the same frequency channel, provided that the code sequences are orthogonal and, as a

result the cross-correlation of the codes is zero [41]. In order to isolate these codes in

such propagation conditions where orthogonality is hard to preserve, Pseudo-Noise (PN)

scrambling sequences are used in addition.

Common channels are only suitable for transmitting small amounts of data, such as sig-

naling traffic. The Downlink Dedicated Channel (DCH) uses a fixed spreading factor

for each user, determined by the maximum transmission rate that they are allocated.

Thus, DCH is not efficient for variable rate traffic either. The Downlink Shared Chan-

nel (DSCH), on the other hand, can share capacity efficiently among many users, since

the user can be allocated a different rate during each frame. This can be achieved by

assigning dynamically Orthogonal Variable Spreading Factors (OVSF) to users.

In FDD mode the spreading factor for a user can range from 256 to 4 in the uplink and

from 512 to 4 in the downlink. It can be observed that the service rate depends directly on

the spreading factor, since the symbol rate can be written as Rc/Ns, where Rc is the fixed

chip rate and Ns is the spreading factor. If R = Rc/512 is the lowest possible service

rate, then the possible service rates Rs for the connections can be written as [41]:

Rs = K ∗R =
K ∗Rc

512
, K = 1, 2, 4, 8, ... (2.1)
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TDD radio interface

In TDD mode, both uplink and downlink transmissions can use the same frequency. Some

of the time slots are used for transmission and others for reception. In TDD mode the

spreading factor can range from 16 to 1. Thus, if the spreading factor is 16, up to 16

simultaneous transmissions can be made in the same time slot [41]. Figure 2.3 shows the

time-code matrix of the resulting radio channel. It is assumed that the first and the last

three time slots are reserved for signaling traffic, while the rest of the time slots are used

by both uplink and downlink user traffic.
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Figure 2.3: A time-code matrix for the TD-CDMA mode

HSPA

High Speed Packet Access (HSPA) [75], [113] is an amendment of WCDMA that adds

new transport and physical channels and enables resource allocation for bursty data on a

shorter time-scale in a power efficient manner, both in the uplink (HSUPA) and downlink



52

(HSDPA). A HSDPA scheme can achieve peak user data rates of 14 Mbps in the 5MHz

channel (3GPP Release 5). If Multiple Input Multiple Output (MIMO) is applied, data

rates of up to 20 Mbps can be supported. HSUPA supports data rates of up to 5.76 Mbps

(3GPP Release 6). HSPA achieves performance gains by using multi-code transmission

on several parallel code channels and applying adaptive modulation and coding, as well

as fast scheduling with a granularity of 2 ms (duration of the transmission time interval).

HSPA is integrated into the WCDMA standard, referred to as WCDMA/HSPA, but it can

also be deployed independently as Internet HSPA (iHSPA) or Evolved HSPA. Evolved

HSPA provides data rates of up to 56 Mbit/s on the downlink and 22 Mbit/s on the up-

link, using MIMO and higher order modulation (64QAM). Although HSPA can stretch

the performance of WCDMA, it does not meet the requirements of most demanding us-

age scenarios, since underlying spread spectrum communications set certain limits for

increasing the bandwidth while maintaining low levels of inter-symbol interference.

2.2.2 3.9G

LTE

Figure 2.4 shows an overview of the 3G Long Term Evolution (LTE) network architec-

ture which consists of evolved UMTS Terrestrial Radio Access Network (E-UTRAN)

and Evolved Packet Core (EPC). The following main elements are supported in the archi-

tecture: E-UTRAN Node B (eNB) and Mobility Management Entity (MME) including

Serving Gateway (S-GW) and Packet Data Network Gateway (P-GW). eNB is responsible

for radio interface related functions while MME manages mobility, identity and security

related aspects.

The following requirements were set for the first version of LTE, 3GPP Release 8 [7]:

support for peak rates of 100 Mbps in downlink and 50 Mbps in uplink, as well as in-

creased cell-edge bit rates, a RAN latency of less than 10 ms, two to four times the spec-



53

X2

s1

eNB

eNBeNB

eNB

E−UTRAN

EPC (Evolved Packet Core)

MME
S−GW/P−GW

MME
S−GW/P−GW
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trum efficiency of WCDMA/HSPA (3GPP Release 6), support for FDD and TDD modes,

support for scalable bandwidths of up to 20 MHz, support for interworking with legacy

networks and cost-effective migration from said networks. Time-frequency operation,

channel aware scheduling, multi-antenna techniques and inter-cell interference coordina-

tion are the most important technologies applied to meet these demanding requirements.

The OFDMA multiple access method is applied to the LTE downlink. Subcarriers have

a spacing of 15 kHz, and each subcarrier is adaptively modulated with an optimal Modu-

lation and Coding Scheme (MCS), which is chosen from Quadrature Phase Shift Keying

(QPSK), 16-Quadrature Amplitude Modulation (16-QAM) or 64 QAM combined with

turbo coding. LTE allocates resources for users in both the time domain (TD) and fre-

quency domain (FD), whereas WCDMA and HSPA only operate in the TD. Subcarriers

are grouped into resource blocks (RBs), consisting of 12 adjacent subcarriers [96], see

Figure 2.5. In the TD, each RB has a duration (time slot) of 0.5 ms, equivalent to a du-

ration of 6 or 7 OFDM symbols, depending on the form of cyclic prefix used. Two time

slots form a sub-frame with duration or transmit time interval (TTI) of 1 ms.

.......
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Figure 2.5: Allocation of PRBs in LTE

Single Carrier FDMA (SC-FDMA) is used in the uplink. SC-FDMA is a pre-coded ver-

sion of OFDMA, in which frequency allocations must be contiguous. SC-FDMA is used

in the uplink due to the fact that contiguous frequency allocation results in less Radio

Frequency (RF) power variation within a single OFDM symbol, and therefore yields a

smaller peak-to-average power ratio (PAPR), meaning that the mobile terminal’s power

consumption is reduced, leading to a simpler power amplifier (PA) design, as well as
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improved cell-edge performance and coverage.

2.2.3 Wireless LAN

Wireless LANs can be deployed for short-range communications in various environments.

The most well-known WLAN scenarios are ad-hoc networks, infrastructure networks and

hotspots. In ad-hoc mode, mobile nodes form a peer-to-peer like network where all the

nodes are directly connected to each other. The ad-hoc mode is useful in situations where

fixed network services are not needed, for example when employees are working from

remote locations. In the infrastructure mode, mobile nodes are connected to an access

point (AP) that is responsible for arbitrating channel access and performing tasks related

to network management. The infrastructure mode is mostly used in company and home

WLANs. Hotspots provide a WLAN service for a fee or for free and are used in places

like airports, coffee shops, public meetings and hotels.

Standards and physical layer properties

The basic IEEE 802.11 [82] WLAN standard was developed in 1997. It was later en-

hanced to provide higher data rates with more advanced physical layer mechanisms.

802.11b and 802.11a standards were confirmed in 1999 and 802.11g was ratified in 2003.

802.11n is a further extension based on 802.11a/g, which adds the use of multiple an-

tennas and double width channels (40MHz) to the physical layer and radically increases

achievable data rates. The standard was ratified in 2009, but not all the details have been

finalized yet. Table 2.1 summarizes the main properties of 802.11b, 802.11g, 802.11a and

802.11n standards in terms of multiplexing schemes, frequency, data rates and typical in-

door and outdoor ranges. The indoor and outdoor ranges (m) correspond to the ranges

between the maximum and minimum data rates. In the case of Orthogonal Frequency

Division Multiplexing (OFDM), the system uses 52 subcarriers to divide the spectrum.
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Each subcarrier is modulated with Binary Phase Shift Keying (BPSK), Quadrature Phase

Shift Keying (QPSK) or 16- or 64- Quadrature Amplitude (QAM) modulation, depending

on the data rate [31]. OFDM is known to persistently suffer from undesirable multipath

fading, since it uses many orthogonal narrowband subcarriers to transmit the informa-

tion. On the other hand, the Direct Sequence Spread Spectrum (DSSS) uses a relatively

wide band for information transmission, leading to different multipath behavior at differ-

ent frequencies. In the cases of DSSS, Differential Binary Phase Shift Keying (DBPSK),

Differential Quadrature Phase Shift Keying (DQPSK) or Complementary Code Keying

(CCK), modulation is used to produce different date rates [31].

Table 2.1: Wlan 802.11 standards

802.11b 802.11g 802.11a 802.11n

Multiplexing DSSS OFDM OFDM OFDM

Frequency 2.4 GHz 2.4 GHz 5 GHz 2.4 and 5 GHz

Data Rates 11, 5.5, 54, 48, 36 54, 48, 36 upto

2 and 1 Mbps 24, 18, 12, 24, 18, 12, 72.2,

9 and 6 Mbps 8 and 6 Mbps 150 Mbps

Indoor Range 30-91 m 30-91 m 12-30 m 70-230 m

Outdoor Range 120-460 m 120-460 m 30-305 m 250-820 m

Medium Access mechanisms

Wireless LANs utilize similar access mechanisms to 802.3 Ethernet networks. The basic

WLAN access strategy is called carrier sense multiple access with collision avoidance

(CSMA/CA). Two basic access mechanisms have been designed for WLANs: a Dis-

tributed Coordination Function (DCF) and a Point Coordination Function (PCF). A DCF

is a distributed access mechanism that utilizes CSMA/CA, which can be deployed in both

ad-hoc and infrastructure scenarios. A PCF is a centralized mechanism designed for the
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infrastructure mode. It utilizes a contention-free polling based medium access method

to arbitrate channel access. Neither DCFs nor PCFs are capable of providing Quality of

Service by traffic prioritization. In order to enable QoS support, the DCF mechanism

has been extended by adding a prioritization function. The resulting access mechanism is

called an Enhanced Distributed Coordination Function (EDCF).

DCF The basic idea of a DCF medium access mechanism is as follows [137]: The

WLAN station first senses the medium in order to determine if its free. If the medium is

found to be idle, the station may transmit, after a certain time period, the DCI interframe

space (DIFS), has elapsed. The DIFS is used to ensure that the station has enough time

to detect a message that may have just been sent by another station. If the medium is

found to be busy, the station first has to wait a short time, corresponding to the DIFS,

followed by a random backoff interval (BI) before it can start transmitting. BI is defined

as follows [127]:

BI = Rand(CWmin, CWmax)× SlotT ime, (2.2)

where CWmin and CWmax are the minimum and maximum backoff periods. The dif-

ference between CWmin and CWmax is called the Contention Window (CW ), which

indicates the range for possible backoff intervals. The random backoff timer is used to

minimize the probability of two or more stations transmitting at the same time. However,

if collisions still occur, the backoff timer is doubled and the collision avoidance procedure

is repeated. This kind of backoff strategy is called Binary Exponential Backoff (BEB).

The receiving side is responsible for sending an ACK frame for a received frame. The

ACK frame can be sent only after a short interval space (SIFS) corresponding the time

of the receiver to process the frame and pass it to the MAC sublayer. SIFS plus the time

for the ACK to propagate back to the sender is smaller than DIFS in order to avoid colli-

sions with ACK frames among the sending stations. The sending station has to wait for

the ACK to arrive before it can start sensing the medium for a new transmission [137].

Figure 2.6 depicts the two-way handshake DCF procedure described above.
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Figure 2.6: Two-way DCF handshake procedure

Besides the physical carrier sensing approach (two-way handshake), medium sensing can

also be performed using virtual carrier sensing, (four-way handshake), which exchanges

short Ready To Send (RTS) and Clear To Send (CTS) reservation frames before a trans-

mission attempt. Virtual carrier sensing is especially useful when there are hidden termi-

nals in the network that may not be able to hear other terminals. Figure 2.7 depicts the

four-way handshake DCF procedure when one frame is transmitted. Network Allocation

Vector (NAV) can be used to reserve the medium for several consecutive frame transmis-

sions. It is updated upon RTS/CTS frame receptions and indicates the remaining time

before medium becomes free.
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Figure 2.7: Four-way DCF handshake procedure

Enhanced Distributed Coordination Function (EDCF) DCFs and PCFs cannot

provide any kind of QoS differentiation. Thus, the DCF has been improved in order to

enable different access category priorities (ACs). The improved DCF is referred to as an

Enhanced Distributed Coordination Function (EDCF) ( [72], [118]). With the EDCF, each

packet is assigned a priority tag before entering the MAC layer. In the MAC layer, this

priority value is mapped in one of four access category First In First Out (FIFO) queues.

In this way, real-time traffic such as VoIP and Video can be directed to higher priority
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queues. In practice, the EDCF prioritizes traffic by modifying the following parameters:

CWmin[AC], CWmax[AC] andAIFS[AC], whereAIFS[AC] is an arbitrary inter-frame

space used to replace DIFS in DFS. These parameters are announced periodically by the

QoS-enabled access point in so-called beacon frames. It is intuitively clear that lower

values for CWmin[AC], CWmax[AC] and AIFS[AC] result in shorter channel access

delays. The AIFS parameter of the EDCF is calculated as follows:

AIFS[AC] = SIFS + AIFSN [AC]× SlotT ime, (2.3)

where AIFSN [AC] is the so-called arbitration IFS number that is used to differentiate

the AIFS values between ACs.

2.2.4 4G

The 3G RAN cannot be scaled up to meet the requirements set for telecommunications

over the next decade. As a result, a novel Fourth Generation (4G) RAN design was

needed, with major changes applied to layers 1 and 2 of the ISO OSI model. The 4G

concept can be introduced in various ways. A high-level perspective can be chosen based

on either the generation of communication technology, or on the technology itself. The

Fourth Generation can be seen as an evolution of 3G or part of the “Beyond 3G” (B3G)

development [25, 154], as a parallel to other legacy and potential future access technolo-

gies [154], as a comprehensive access solution that enables the use of current and future

technologies and solutions [134, 150], or as a uniform congregation of high-speed seam-

less access technologies and intelligent agents [27]. The final 4G solution is not complete,

but significant advances have been made with 3GPP to design features for LTE-Advanced,

which is currently the most promising concrete solution for future 4G.

Various requirements have been identified for 4G networks [116,124,134,150], presenting

a demanding target for the 4G concept. With the high frequencies (e.g. 5 GHz) and bit

rates required by the 4G RAN, cell sizes are in the order of a few hundred of meters.
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It follows on from this that the large number of access points required to provide full

coverage may not be economically feasible, considering future manufacturing and site

installation costs. Even though most of the requirements involve the radio part, the higher

layers are also affected. For example, handoff latencies, routing information convergence

time and throughput are affected by the number of hops in the network. 4G networks

are supposed to support services such as real-time voice and video conferencing, video

streaming, interactive games, and best effort web browsing. QoS requirements for these

services in 4G networks are much more challenging compared to 3G networks, and high

requirements are set for scheduling.

The type of multiple access method chosen will have a major effect on system perfor-

mance. First of all, a decision needs to be made of whether to use one or several carriers

for both the uplink and downlink directions. There are many factors to consider here

but, in general, the multicarrier option offers better spectral efficiency in the wide band

case. On the other hand, the single carrier option has the advantage of more efficient

power usage at the transmitting end. Therefore, the proposed solution for this area is to

use a single carrier in the uplink direction and multiple carriers in the downlink direction.

With the multicarrier option, the channel access method could be based on Orthogonal

Frequency Division Multiple Access (OFDMA). OFDMA divides the bandwidth into or-

thogonal tones that can carry multiple data symbols in parallel. OFDMA is preferred over

CDMA since it can better preserve the orthogonality at the receiver, due to the fact that

OFDMA uses sinusoids, which are eigenfunctions of a time-invariant linear system [99].

OFDMA also benefits from multiuser diversity, since multipath effects are highly fre-

quency selective. Therefore, not all subcarriers are likely to be affected in the same man-

ner. Furthermore, while TDMA and CDMA are designed for a fixed system bandwidth,

OFDM supports bandwidth scaling whereby the subcarrier bandwidth can be scaled to

any power of two, assuming that subcarrier bandwidth and symbol length have been de-

fined. However, there are strong arguments for also having TDMA components in the

system design, such as energy consumption, packet data and resource allocation. If the

wide band is reserved for a single user and no data is transmitted, bandwidth and energy
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are wasted. In terms of terminal relaying, system complexity and manufacturing costs

would be reduced if transmitters and receivers had common solutions, such as multiple

access schemes, when applicable. However, solutions for the issues presented here have

not yet been standardized for 4G.

In addition to the advanced multiple access method and coding and modulation schemes,

the obvious ways to improve reliability and data rates are to increase transmission power

and bandwidth, which may not always be possible. However, these improvements are

required in 4G networks. They could be achieved by using cross layering and the spectral,

temporal and spacial dimensions of diversity in communication [117]. We will analyze

these techniques in more detail in Chapter 12.

4G Hybrid relaying scenarios

Hybrid architectures [107] are networks that include both single hop and multi-hop net-

working. In our case the hybrid architecture comprises both infrastructure and ad hoc

parts.

Even though research is still being carried out into hybrid architectures, they are believed

to have potential for next-generation wireless networks [58]. Relaying, on the other hand,

has been included in a Third-Generation Partnership Project (3GPP) draft standard. Fig-

ure 2.8 illustrates the hybrid extensions to 4G scenarios presented in [124]. The following

networking approaches that utilize relays are described:

1. Access point (AP) coverage is extended with a Relay Station (RS) structure. Con-

nections between the AP and Relay Stations (RS) are point-to-point. Direct con-

nections between MTs are also possible (A-B)

2. The multi-hop relay network can benefit from cooperative strategies (C-D-E), or
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assist with ad-hoc network traffic optimization (F-G-H).

3. An isolated ad-hoc network is connected (I-J-K) to the 4G RAN via Mobile Gate-

ways (MGW).

Figure 2.8: Hybrid 4G Scenarios

The functions of the Access Router (AR) are to aggregate traffic towards the backbone

network, , and to route traffic between sub-networks. The Access Point (AP) is analogous

to a base station providing radio coverage, and possesses advanced capabilities such as

support for various radio technologies. The Relay Station (RS) is a simplified AP in terms

of cost, with similar tasks but equipped only with wireless connections. The Relay Station

is analogous to a radio coverage extender in 2G or WLAN networks. However, the relay

function is designed to route traffic on layers 2 or 3, in addition to simply receiving and
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amplifying the RF signal. On the physical layer, this requirement means that more ad-

vanced forwarding methods, such as decode-and-forward or estimate-and-forward, have

to be used. The RS can be designed to be either fixed, movable or mobile. The Mobile

Terminal (MT) is a 4G compatible device with a high data rate and multiple antennas.

It is capable of operating in both licensed and unlicensed frequency bands. The Mobile

Router (MR) is a mobile terminal with routing capability.

Limitations to cooperative relaying strategies do exist. For example, amplify-and-forward

is considered as a simple cooperative protocol [97]. From the system perspective, the

problem is that received interference is also amplified and forwarded by the relaying

node. As can be seen in Figure 2.8, AP C could transmit to RS E directly, or use RS

D as an intermediary. Using D as an intermediary, and increasing transmission power at

D to tackle deteriorating channel conditions, may not improve the Signal-to-Noise-Ratio

(SNR) at the destination node E. This results in the SNR of the signal received by relay

D from the source node C falling under the unrecoverable limit. Instead of increasing

the transmission power, Automatic Repeat Request (ARQ) mechanisms can be used to

overcome channel variation defects. Both cooperative methods and ARQ both have an

effect on scheduling in the system. The majority of differences between existing 3G and

forthcoming 4G networks lie in changes to layers 1 and 2, in the form of higher bit rates,

new frequencies, modulation and frame structure, to mention just a few [134].

LTE-Advanced

In the previous section we presented several relatively general requirements and possible

technical solutions for 4G systems. At the moment, there are two proposals for the con-

crete future 4G solution: LTE-Advanced [6] and IEEE 802.16m. LTE-Advanced is the

candidate technology created by the 3rd Generation Partnership Project (3GPP) to fulfill

the IMT-Advanced (International Mobile Telecommunications Advanced) requirements

specified by the ITU (International Telecommunication Union). 3GPP and ITU-R have
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worked on LTE Advanced since 2009 as part of 3GPP Release 9, and standardization was

begun on Release 10 in 2010. LTE-Advanced can be seen as evolution of LTE technology

that already meets most of the 4G requirements. LTE-Advanced adds additional features,

such as support for peak data rates, but most of the underlying technology is the same.

IEEE 802.16m has received less attention lately and is not likely to become the widely

adopted final 4G solution.

The main additional technical requirements for LTE-Advanced are support for peak data

rates of 1 Gbps in downlink and 500 Mbps in uplink, bandwidth scalability up to 100

MHz, increased spectral efficiency up to 15 bps/Hz in UL and 30 bps/Hz in DL, along

with improved cell edge capacity and decreased user and control plane latencies [6]. Like

LTE, LTE-Advanced also applies OFDMA in the downlink and SC FDMA in the uplink.

The additional requirements are solved mainly with the following technologies:

• Scalable bandwidth/carrier aggregation where bandwidth of an LTE-Advanced

terminal is increased with OFDM, either in a contiguous or non-contiguous man-

ner

• Multicarrier operation where resource allocation, MIMO, link adaptation, hybrid

ARQ (HARQ) etc. are performed per carrier, and where feedback per carrier is

also required.

• Asymmetric uplink/downlink spectrum allocation where different amounts of spec-

trum can be allocated to the uplink and downlink

• Coordinated multi-point transmission (CoMP) where system capacity is increased

with frequency reuse and the coordination of scheduling and multisite beamform-

ing.

In addition, one key technology that will be applied in LTE-Advanced is cognitive radio,

which is able to utilize the spectrum resources in a dynamic and flexible manner, both
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within a single wireless technology and across heterogeneous technologies. Another ma-

jor advancement will be the use of mesh networks to increasing capacity, coverage and

spectral efficiency.

Mesh networks

Wireless mesh/adhoc networks are autonomous, infrastructureless systems whose topol-

ogy changes dynamically due to movements of the MTs. Due to their decentralized na-

ture, easy and fast deployment, inexpensiveness and reliability, mesh networks are consid-

ered especially attractive in scenarios where there is no network infrastructure available,

as they can also be used for offloading the infrastructure based network (see Section LTE-

Advanced). Some of the proposed mesh networking solutions are based on a TDMA-like

allocation of resources, while others utilize more advanced techniques such as OFDMA.

Currently, OFDMA-based IEEE802.11s is considered as one of the most promising prac-

tical technical solutions for mesh networking. IEEE802.11s [81] is a draft IEEE802.11

amendment for mesh networking that defines a way for wireless devices to interconnect

in an ad-hoc manner. Standardization work started in 2005 and has proceeded to a sec-

ond letter ballot. The standard defines the technical properties of mesh networking, while

the Wi-Fi Alliance’s Mesh Marketing group defines possible business cases and the WPS

Extensions (WPS2) group may define additional security features and perform operation

tests.

A 802.11s network consists of Mesh Points (MPs) as depicted in Figure 2.9. MPs are

mobile terminals that may voluntarily perform multi-hop mesh networking functions such

as traffic forwarding and routing. In addition, MPs may have access point (AP) capability

(MAP), or they may act as mesh portals that connect to other external networks. MPs

find other MPs and networks through active or passive scanning. In active scanning,

probe request frames are used to explicitly request information, while passive scanning

is based on listening to beacons. Every MP transmits its own beacon frame during each
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beacon transmission time (TBTT), which is typically 100ms. After the other MPs are

found, MPs can authenticate and associate with each other to create peer links and start

data transmission.

MP

MP

MP

MP

MP
MP

MP

Peer Link

Traffic path

Mesh Point

Figure 2.9: 802.11s mesh network
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3 Requirements for scheduling

Scheduling in fixed IP networks is about determining the service order of packets in the

output link of a router. The packets may be served from a single queue, according to

the First Come First Served (FCFS) principle, or there may be several queues that are

subjected to some form of service differentiation, as depicted in Figure 3.1. In wireless

networks, the task of the scheduling algorithm in the base station is to decide which user

can transmit on the channel at a given time. As an example, Figure 3.2 depicts a simple

model for a wireless channel in which there is a single cell with one base-station and

several users. The users transmit data to the base-station via a wireless channel, one user

at a time (a TDMA-like network).

Class1

Class2

Class3

FIFO Queue1

FIFO Queue2

FIFO Queue3

Scheduler

QUEUING SYSTEM

Figure 3.1: Scheduling in fixed IP networks

3.1 Desirable properties of conventional scheduling disciplines

Conventional algorithms are parameterized in a static fashion based on a priori estimates

of offered loads. Thus they are mostly suitable for scenarios where loads are either ex-

pected to be relatively constant or where another QoS mechanism such as routing is used
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Base Station

Downlink

Uplink

CELL

Mobile Terminal

Figure 3.2: Simple model for a wireless channel

to take care of the effects of changing traffic dynamics. The desirable properties of con-

ventional scheduling disciplines are closely related to whether deterministic, statistical or

relative type guarantees are made to the end user. However, there are also some general

desirable properties common to all scheduling disciplines:

• Flexibility: The scheduling discipline must not optimize performance from a sin-

gle application’s point of view but should rather be able to accommodate applica-

tions with varying traffic characteristics and performance requirements.

• Simplicity: The scheduling discipline should be both conceptually and mechani-

cally simple [143]. Conceptual simplicity enables a tractable mathematical analy-

sis of worst case bounds and performance parameters. Mechanical simplicity, on

the other hand, allows the efficient implementation of the scheduling discipline at

high speed.
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If the performance guarantees are deterministic or statistical, the following desirable prop-

erties are identified further in [157] and [143]:

• Protection: Real network environment is not static. Thus, the scheduling disci-

pline should be able to protect and satisfy the performance requirements of well

behaved users, also in the presence of different sources of variability, such as best

effort traffic, badly behaved users and network load fluctuations [157].

• Efficiency: When performance guarantees are deterministic or statistical, a con-

nection admission control policy is used to decide, whether to admit a new flow

into the network. The more flows that can be accepted into the network without

violating the end-to-end performance guarantee of any other flow, the larger the

schedulable region of the discipline [143] and the higher the network utilization.

Scheduling discipline criteria aimed at relative differentiation are not that strict, since ser-

vice guarantees are considerably less stringent compared with deterministic or statistical

guarantees. Besides flexibility and simplicity, the most important criteria are [47]:

• Predictability: Class i should consistently receive a better (or at least no worse)

service than class i − 1 with regard to a selected performance metric. This also

applies to short timescales and the presence of class load variations.

• Controllability: If quality spacing between traffic classes is quantified, the schedul-

ing discipline should be able to maintain and adjust the specified spacing based,

for example, on pricing even on short timescales [104].
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3.2 Requirements for adaptive scheduling algorithms

The adaptive QoS provisioning approach requires functionality in network routers to be

rethought. As stated in the previous section, scheduling algorithms in current routers are

static and rely heavily on parametrization. The parametrization is based on the required

quality level and an off-line estimate of the traffic loads offered to different classes. The

main drawback in this approach is that once the parameters have been set, they can not be

modified even if the traffic profiles change dramatically. In reality, the loads of different

classes can vary quite a lot on a short timescale due to traffic bursts, and also on a longer

timescale due to traffic trends. If resource allocation is performed in a static manner, the

scheduling algorithm will not be able to adapt to dynamic load conditions. In the worst

case scenario, this could lead to a situation where a higher quality class receives worse

service than a lower quality class. In the future network environment, therefore, an ideal

scheduling algorithm should be adaptive and capable of dynamically adjusting the class

resources, so that the policy chosen by the operator is implemented, regardless of traffic

conditions.

Adaptivity poses new requirements for scheduling algorithms. The most important re-

quirements for the development of adaptive scheduling algorithms are:

• Robustness: The adaptive algorithm should operate properly regardless of the traf-

fic and network conditions. Thus, the algorithm should not rely on pre-defined pa-

rameters, but rather utilize real-time measurement information on different timescales

in order to be truly adaptive.

• Low implementation complexity: Low complexity is a crucial objective in measurement-

based algorithms since real-time measurements and estimations cause additional

overheads. In the worst case scenario, calculating an estimate might take such a

long time that current information is not available when it is needed. Preferably,

mechanisms, at least on a packet level, should be implemented in hardware. It is
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obvious that efficient and cheap real implementation is not possible if the algo-

rithms use fancy, overly complex estimators.

• Stability: Measurement-based algorithms are often closed-loop systems, because

the amount of allocated resources affects the amount of offered traffic, and vice

versa, in networks with feedback-based traffic. An algorithm that provides perfect

results for open-loop traffic may result in chaotic instability for something like

TCP traffic. Thus, possible interactions with higher layers should be considered

when determining the operation timescales of the algorithm.

3.3 Requirements for wireless scheduling algorithms

The previous section set out the requirements for conventional and adaptive scheduling

algorithms in fixed IP networks. These requirements also have to be met when scheduling

is performed in wireless networks. However, due to the special characteristics of the wire-

less medium and wireless devices, additional requirements arise that must be taken into

account. The main reason why the scheduling problem becomes much more challeng-

ing, compared to scheduling in fixed IP networks, is the time varying channel conditions

that are caused by the attenuation of the signal between transmitter and receiver. Atten-

uation is the result of pathloss, which is a decrease in transmission power proportional

to the square of the distance traveled, and other fading and interference effects, such as

( [53], [108], [41]):

• Path-loss variation, slow log-normal shadowing and fast multipath-fading Shad-

owing is caused by obstacles such as water and buildings that can block the prop-

agation of radio waves. Path loss and shadowing are examples of slow fading

effects, where a significant movement of the receiver is required to produce a vari-

ation in the signal strength. Multipath, on the other hand, is a fast fading effect

where signal strength variation can even be observed in distances separated by
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half a wavelength [63]. Multipath fading is the result of the signal scattering from

surfaces such as glass and metal, so that multiple copies of the signal combine

constructively or destructively in the receiver, having taken different paths to get

there.

• Inter-user and inter-cell interference Inter-cell interference (ICI) results from two

or more users located in different cells trying to use the same channel at the same

time. Inter-user interference refers to the case where two or more users located

in the same cell interfere with each other. For example, these kinds of situation

could occur in WCDMA networks if code words are not orthogonal.

• Background noise Noise is present in both fixed and wireless networks and further

limits the communication range. It comes from several natural sources, such as

the sun, the thermal vibrations of atoms in conductors and black body radiation.

As a result, two users with the same amount of resources do not necessarily experience

the same performance, since the one user may have a good channel while the other user

may experience several channel errors.

The objectives for an ideal wireless scheduling algorithm are very much the same as the

objectives for an ideal wireline scheduling algorithm. However, the following important

features characteristic of wireless networks have to be additionally considered ( [53],

[108], [78]):

• Link utilization: Since radio resources are limited, channel capacity must be effi-

ciently utilized. The transmission slot should only be assigned to flows with error-

free channels. Alternatively, adaptations have to be made to prevailing channel

conditions using advanced methods such as adaptive transmission, link adaptation

and MIMO.
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• Graceful service degradation: If a flow that has received too much service due

to having a good channel has to subsequently compensate for the flows that are

transferred from a bad channel to a good channel, the service degradation should

be smooth.

• Complex network scenarios and interoperability issues: As presented in Section

2.2.4, hybrid architectures pose additional scheduling challenges. As an exam-

ple, potential performance gains and limitations of cooperative strategies must be

considered.

• Energy consumption: Energy consumption should be kept to a minimum in order

to save the batteries of the Mobile Station. This is particularly important when

low-power devices are used to forward traffic in a mesh network. Energy con-

sumption is also becoming an increasingly important factor, allowing BSs to min-

imize carbon dioxide emissions and OPEX.

• Receiver complexity: When utilizing advanced methods such as MIMO for en-

hancing scheduling performance, it must be considered that receiver complexity

also increases as the amount of physical layer information grows.
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4 Conventional scheduling algorithms

Various packet scheduling algorithms have been proposed for quality differentiation in

fixed IP networks over recent decades. Examples of these algorithms are Priority Queu-

ing, Earliest Due Date (EDD), Generalized Processor Sharing (GPS), Weighted Fair

Queuing (WFQ) [125], Worst Case Weighted Fair Queuing (WF2Q) [26], Self Clocked

Fair Queuing (SCFQ) [62], Deficit Round Robin (DRR) [141], Cisco Custom Queuing

(CCQ), Hierarchical Token Bucket (HTB) and Class Based Queuing (CBQ) [56]. The

common denominator shared by these algorithms is the fact that they rely heavily on

static parameterization and thus are not able to adapt to changing traffic dynamics. The

hierarchical HTB and CBQ algorithms contain some adaptive logic but they are not truly

adaptive in the sense that their redistribution capacity rules are completely heuristic.

In this chapter some of the most important conventional scheduling algorithms relevant

to this thesis are reviewed and compared with each other in terms of their capabilities

and implementation complexity. The algorithms are classified into three groups: band-

width sharing algorithms, hierarchical bandwidth sharing algorithms and deadline-based

algorithms. Bandwidth sharing and deadline-based algorithms are purely static, whereas

hierarchical bandwidth sharing algorithms may use some heuristic rules to redistribute

excess bandwidth in an intelligent way.

4.1 Bandwidth sharing algorithms

The main aim of bandwidth sharing algorithms is to provide exact max-min weighted

fair sharing for different flows or traffic classes [152]. Generalized Processor Sharing

(GPS) is a theoretical, fluid-based reference model of a fair-queuing algorithm that meets

this goal. GPS assumes that traffic is infinitely divisible and that different flows can
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be served simultaneously. However, as an ideal algorithm it cannot be implemented in

practice, since packets are always serviced as entities, one at a time, in a real IP-router.

Thus, different practical packet-per-packet approximations of GPS have been proposed,

which try to emulate the GPS system as accurately and simply as possible while still

treating packets as entities. This section presents the principles of GPS as well as two

low complexity packet-based GPS approximations, the Deficit Round Robin (DRR) and

Cisco Custom Queuing (CCQ) algorithms.

4.1.1 GPS

The ideal Generalized Processor Sharing (GPS) algorithm operates as follows: each class

i is assigned a weight φi, reflecting the amount of resources that should be allocated to

the class. If the service rate of the GPS server is r and there are N classes being served,

then for any two backlogged classes, i and j,

Si(τ, t)

Sj(τ, t)
=
φi
φj
, (4.1)

where Si(τ, t) denotes the amount of traffic serviced for class i in an interval (τ, t) [125].

Thus, in any interval (τ, t) class i receives service with a rate

gi ≥
φi∑N
j=1 φj

r. (4.2)

This corresponds to the situation where all classes are backlogged during the interval.

However, if some classes are not backlogged, the excess bandwidth is distributed among

the backlogged classes in proportion to their weights. Then, the instantaneous service

rate can be expressed as

gi(t) =
φi∑

j∈B(t) φj
r, (4.3)

where B(t) denotes the set of classes that are currently backlogged.

GPS is considered to be an attractive scheduling discipline because it has many desirable

properties. Firstly, it treats the classes fairly by servicing each of them at a rate equal to,
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or greater than their guaranteed rate. Secondly, if the incoming traffic is leaky bucket-

constrained, it can be shown [125] that strict bounds exist for the worst-case network

queuing delay. Thirdly, the classes can be treated in different ways by varying their

weights. For instance, if there are two classes with weights φ1 = 1 and φ2 = 0, GPS is

reduced to strict priority scheduling. On the other hand, if all classes are assigned equal

weights, GPS behaves as a uniform processor sharing system.

4.1.2 DRR

The Deficit Round Robin (DRR) is a static, frame-based scheduling algorithm that aims to

emulate the ideal Generalized Processor Sharing (GPS) [125] algorithm. Other schedul-

ing algorithms for emulating GPS have also been proposed, such as the Worst Case

Weighted Fair Queuing (WF2Q) [26] and Self Clocked Fair Queuing (SCFQ) [62] al-

gorithms. It was decided to present DRR in this thesis, mainly due to the fact that it is

considerably simpler to implement and that it has the ability to take variable packet sizes

into account. With the DRR, each class i is assigned a weight φi. In each service round,

the scheduler divides a frame of N bits among the classes in proportion to their weights.

The resulting number of bits reserved for a certain class is called a quantum. The DRR

also associates each class with a deficit counter that keeps track of the quantum not used

by the class in previous rounds. Thus, packets can be transmitted from a certain class as

long as there are enough bits left either in the quantum or in the deficit counter.

4.1.3 CCQ

Cisco Custom Queuing (CCQ) is presented here as an example of a scheduling algorithm

that is currently implemented in commercial Cisco network routers. Conceptually CCQ is

very similar to DRR: it allocates a certain number of bytes to each queue and then serves

these queues in a round robin fashion. However, CCQ does not use a deficit counter,
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meaning that classes cannot utilize resources that should have been allocated to them in

a previous round. In Cisco routers, 17 output queues are used for each network interface.

Queue number 0 is a system queue that has a strict priority over the other queues handled

by CCQ or any other scheduling algorithm. It is assumed that the system queue stores

urgent and important packets, such as keepalive packets and packets used for signaling

purposes.

4.2 Hierarchical bandwidth sharing algorithms

In hierarchical bandwidth sharing algorithms the traffic classes are organized in a tree

structure, as depicted in Figure 4.1. In general, there are three types of classes in the hier-

archy: a root class, intermediate classes and leaf classes. The idea is that the bandwidth

resources can first be divided between the intermediate classes and then between the leaf

classes.

4.2.1 CBQ

Class Based Queuing (CBQ) [56] is the most well known hierarchical bandwidth sharing

algorithm. It has been implemented both in prototype and commercial routers. CBQ

can be considered as a pseudo-adaptive scheduling algorithm in the sense that it provides

heuristic rules for borrowing capacity, if a class is running out of resources. With CBQ

the roles of the different hierarchy levels are as follows:

• Root class contains the link resource that is to be divided among the traffic classes.

• Leaf classes represent the actual traffic classes that are served by the link.

• Intermediate classes are responsible for sharing resources among the leaf classes.
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The intermediate classes act as parents for the leaf classes, allowing the leaf

classes to borrow resources.

In practice, the root class represents the total link capacity while intermediate classes

could, for example, be agencies of a company and leaf classes could be protocols used

within the agencies. The hierarchy can also be used for efficient application differenti-

ation by using separate intermediate classes for real-time and non-real-time traffic and

separating leaf classes for individual applications.

CBQ resource allocation is enforced with two different schedulers: one general and one

for link sharing.

• The general scheduler is all that is required when there are enough resources

available for all leaf classes.

• The link sharing scheduler is required when some of the leaf classes get con-

gested. In this case, the link sharing scheduler enforces rules to allow the con-

gested classes to borrow resources from the parent classes.

The actual way in which the general scheduler and the link sharing scheduler are imple-

mented has not been defined. The idea is that any rate-based scheduler, such as WFQ,

WRR or DRR can be used as the general scheduler, and the borrowing rules used by the

link sharing scheduler can also vary between implementations.

Formal link sharing guidelines for CBQ

Before the formal link sharing guidelines for CBQ are defined, a brief explanation will be

given of the following concepts: overlimit, underlimit, at-limit, satisfied and unsatisfied.
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A class is defined as overlimit if, during a certain interval, it receives more resources

than allowed by its link-sharing bandwidth. It is defined as underlimit if it receives less

resources, and otherwise it is defined as at-limit. The status of the class is defined by an

estimator that measures the bandwidth consumption of the classes over a predetermined

interval. The estimator can be implemented in different ways, depending on the desired

estimation timescale. If a class is underlimit and has a persistent backlog, it is said to be

unsatisfied, otherwise it is satisfied.

The formal link sharing guidelines can then be formulated as follows:

A class can continue unregulated (i.e served only by the general scheduler) if:

1. The class is not overlimit, or

2. The class has a non-overlimit ancestor that has no unsatisfied descendants.

If these conditions are not met, the class must be regulated by the link sharing scheduler.

According to so-called alternate link sharing guidelines, a regulated class can return to an

unregulated status when either:

1. The class becomes underlimit, or

2. The class has an underlimit ancestor with no unsatisfied descendants.

Practical approximations of the link sharing guidelines for CBQ

In the formal link sharing guidelines, both the limit status of the parents and the satisfied

status of the descendants of the parent classes have to be examined. This is very time
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consuming and inefficient for practical implementation. As a result, practical approxima-

tions for the formal link sharing rules have been developed. Some of the most well known

approximations are ancestor-only link sharing and top level link sharing.

• Ancestor-only link sharing allows overlimit classes to borrow capacity from their

parents, as long as the parents are underlimit. This means that root class resources

are shared with the leaf classes through the intermediate classes.

• Top level link sharing is similar to ancestor-only link sharing, except for the fact

that borrowing can only proceed to a defined top level in the tree. Resources

cannot be borrowed above this level.

However, it should be noted that even the practical approximations cause considerable

resource overhead when implemented in real life, because the status of the classes has to

be frequently estimated and checked.

4.2.2 HTB

A Hierarchical Token Bucket (HTB) is a packet scheduler implemented in the latest ver-

sions of the Linux kernel. The basic idea behind HTB is similar to CBQ in the sense that

the scheme is class-based and allows borrowing from parent classes. However, instead of

borrowing capacity, HTB uses the concepts of tokens and buckets for borrowing. With

HTB, each class has a rate parameter, which defines a guaranteed bandwidth for the class,

and a ceil parameter that defines an upper limit for the sending rate of a class. The tokens

are borrowed in quantums, cburst noting the size of the ceil bucket, i.e. the maximum

number of bytes that can be lent in a single round.

HTB uses different borrowing rules for the leaf classes and for the intermediate and root

classes. The borrowing rules used for the leaf classes are:



81

• sending rate < rate: the class will dequeue a certain number of bytes, correspond-

ing to the number of available tokens.

• rate < sending rate < ceil: the class tries to borrow tokens from its parent class.

If the parent has enough tokens, the leaf class dequeues up to cburst bytes.

• sending rate > ceil: packets cannot be dequeued from this class.

Correspondingly, the borrowing rules for the intermediate and root classes are:

• sending rate < rate: the intermediate class can lend tokens to child classes.

• rate < sending rate < ceil: the intermediate class does not have tokens of its own to

lend, but it tries to borrow from its parent class and lend these tokens to competing

child classes.

• sending rate > ceil: the intermediate class can not borrow from its parent and thus

will not lend tokens to the child classes.

In summary, when a child class needs to borrow a token, it will request one from its parent

class. If the parent class cannot borrow one, the request is passed hierarchically up the

class tree until a token can be borrowed from some level or the root class is reached.

4.3 Deadline-based algorithms

It has been analytically proved that the bandwidth sharing algorithms presented in the

previous section are able to provide a finite delay-bound. However, providing delay guar-

antees with these algorithms requires the assignation of a class with a large service weight.

This easily leads to underutilization of resources, since a delay-sensitive class does not
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necessarily need much bandwidth. Thus, a more efficient approach to providing delay-

bounds is to serve the delay-sensitive classes based only on their deadlines. This section

introduces the best known deadline-based algorithm, the Earliest Due Date (EDD).

4.3.1 EDD

The earliest Due Date (EDD) [108], also known as EDF (Earliest Deadline First), is

a classic example of a deadline-based scheme where packets are scheduled based on the

earliest-deadline-first principle [152]. EDD was originally designed for serving individual

flows, but it can also be applied to class based differentiation.

Working with the assumption that the traffic arriving in each class is periodic and using di

to denote the period for class i, the EDD algorithm works simply as follows: upon arrival

of the kth packet of class i at the router at time aki , the packet is stamped with a deadline

Dk
i = aki + di, (4.4)

i.e. the sum of its arrival time and period. The packets are then served in the numerical

order of their deadlines. Notice that, in reality, the arriving traffic is not periodic; the

purpose of the period is only to describe the expected inter arrival time of packets.

4.4 Size-based scheduling

For elastic traffic, file size information can be used to minimize flow delays with size-

dependent scheduling mechanisms. [12] introduces size-based schedulers for wireless

downlink data channels, but they can also be applied to fixed IP networks. The ran-

dom file size is denoted by X , the stationary service rate of flow i by Ri, and the flow

arrival intensity by λ. The system is modeled with a M/G/1 queue with service time

S = X/E[Ri] and load ρ = λE[S]. The stability is given by ρ < 1.
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4.4.1 FB and SRPT

The Foreground Background (FB) policy always serves the flow that has received the

least amount of service. Out of the non-anticipating policies, the FB policy is known to

minimize the mean flow delay when service time distribution belongs to the decreasing

hazard rate (DHR) property class [12]. On the other hand, the Shortest Remaining Pro-

cessing Time (SRPT) policy minimizes the mean flow delay by always serving the flow

with the smallest remaining processing time.
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Figure 4.1: Hierarchical structure for bandwidth sharing
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5 Adaptive scheduling algorithms

5.1 Introduction

Adaptive provisioning at the packet level can be based on different quantities such as

offered load, packet delay or packet loss. Most of the approaches proposed so far have

adopted the idea of adjusting the bandwidth shares of the classes in a rate based schedul-

ing algorithm. This is a natural solution, since the majority of the conventional, static

scheduling algorithms already implemented in network routers are rate-based (see the

bandwidth sharing and hierarchical bandwidth sharing algorithms in Chapter 4). How-

ever, a significant problem with rate-based schedulers is that provisioning delay guaran-

tees may result in a waste of resources, since a large bandwidth share must be allocated to

a traffic class in order to maintain a low delay. An alternative approach for conventional

rate-based scheduling is to use packet delay measurements directly in resource allocation

decisions. This guarantees that it is not necessary to over-provision the classes.

5.2 Algorithms based on capacity adaptation

5.2.1 Adaptive WFQ based on effective bandwidths

Moore et al. [115] have developed an adaptive scheduling algorithm that adapts resource

allocation based on the calculated theoretical equivalent bandwidth that would be required

to support the delay-bound or loss rate. The algorithm uses the WF 2Q+ scheduler as a

basis and adjusts the weights of the classes. The algorithm can perform three kinds of

adaptations:

1. calculates the capacity required to preserve a delay-bound within a certain proba-
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bility

2. calculates the capacity required to maintain a loss-rate with a given buffer size

3. calculates the buffer size required to preserve a loss-rate when the service rate is

known.

The authors use the E-KQ traffic envelope estimator [92] for long term effective band-

width calculations with a given loss rate and queue size. It is assumed that the basic

measurement period used is τ and that measurement data is collected during T · τ sec-

onds. The effective bandwidth Elong is calculated using the following equation:

R̄T + αlongσT = Elong, (5.1)

where R̄T and σT are the mean and standard deviation of the maximal traffic envelopes.

The required queue size q can be calculated utilizing the information about the short term

mean and standard deviation of the traffic envelope, R̄k and σk, that reflect the burstiness

of the traffic.

max
k=1,2,...,T

kτ(R̄k + αshortσk −Elong) = q. (5.2)

5.2.2 Adaptive WFQ based on M/M/1/K queue analysis

Liao et al. ( [106]) have defined a dynamic provisioning method that aims to provide

a delay guarantee and differentiated loss assurance for the traffic classes. Their method

consists of two parts: a node provisioning algorithm and a core provisioning algorithm.

The node provisioning algorithm uses measurement data to predict SLA violations and

adjusts the class weights of a WFQ scheduler in order to prevent transient service level

violations. The node provisioning algorithm communicates with the core provisioning

algorithm by notifying it about severe and long lasting SLA violations. The core provi-

sioning algorithm then adjusts the rate regulation at the network edge.
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The appropriate service weights for the classes are computed with the help of an analytic

M/M/1/K model, where K is a threshold after which packets are dropped. The maxi-

mum delay Dmax is proportional to K, since delay guarantees are provided by dropping

packets that exceed the threshold K. Given a packet loss bound P ∗
loss for a class, the

node provisioning algorithm aims to keep the measured average loss P̄loss below P ∗
loss. If

P ∗
loss is very small, it is difficult to obtain an accurate packet loss measurement quickly.

Thus, measurement accuracy is improved with the help of the average queue length Nq

as follows:

Nq =
ρ

1− ρ
(ρ− (K + 1)Ploss). (5.3)

The set point in the control algorithm is the target traffic intensity ρ̃, which is calculated

as:

ρ̃ = (ρsup + ρinf )/2. (5.4)

Measured traffic intensity ρ̄ is used as the feedback signal. ρsup and ρinf are obtained

from the upper loss threshold γaP ∗
loss and the lower threshold γbP ∗

loss.

The node provisioning algorithm can provide the following control actions:

1. If N̄q(i) > N sup
q (i), reduce traffic intensity to ρ̃(i).

2. If N̄q(i) < N inf
q (i), increase traffic intensity to ρ̃(i).

Traffic intensity can be reduced either by increasing the service weights or by reducing

the arrival rate. Correspondingly, traffic intensity can be increased by decreasing the

service weights or by increasing the arrival rate. The arrival rate can be decreased or

increased by the core provisioning algorithm that changes the parameters in the edge

traffic conditioners. However, the details of the core provisioning algorithms have been

omitted here.



88

5.2.3 Joint buffer management and scheduling (JoBS)

Christin et al. ( [39]) have proposed a Joint Buffer Management and Scheduling (JoBS)

mechanism that provides both absolute and proportional differentiation of packet loss

and delay. The refined version of the algorithm is also able to provide absolute and

relative bandwidth guarantees. Contrary to previous approaches, buffer management and

scheduling decisions are interdependent in JoBS, i.e. the service rates and the amount

of traffic to be dropped are determined in a single decision. This decision is based on a

non-linear optimization problem that can be solved heuristically.

ai(t) and li(t) denotes the amount of traffic arrivals and dropped traffic from class i at

time t, and ri(t) denotes the allocated service rate to class i at time t. In addition, Ai, Rin
i

and Rout
i denote the arrival, input and output curves of class i. The vertical and horizontal

distances between the input and output curves represent the backlog Bi and the delay Di

of class i, as shown in Figure 5.1.

In order to form an appropriate rate allocation for the classes, the scheduler calculates

a projection of current backlogged traffic delays. In the calculation it is assumed that

service rates are not changed after time s and there will be no further packet arrivals or

drops. The projected delay of class i at time s, D̃i,s(t) is defined as

D̃i,s(t) = max
t−s<x<t

{x|R̃out
i,s (t) ≥ Rin

i (t− x)}. (5.5)

In the following subsections we present the absolute and relative delay and packet loss

QoS constraints and the objective function for the original JoBS algorithm [39].
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QoS constraints

The Absolute Delay Constraints (ADC) guarantee that the projected delays of class i do

not exceed a worst-case delay-bound di:

max
s<t<s+T̃i,s

D̃i,s(t) ≤ di. (5.6)

The Relative Delay Constraints (RDC) enforce proportional delay differentiation between

classes. Here, the term delay means the average projected delay D̄i,s, a time averaged

projected delay for class i over a period T̃i,s. Since some flexibility is allowed in the

proportional differentiation, the RDC constraints can be written as

ki(1− ǫ) ≤ D̄i+1,s

D̄i,s

≤ ki(1 + ǫ), (5.7)

where 0 ≤ ǫ ≤ 1 and ki > 1 is a differentiation coefficient. The absolute and relative

QoS loss rate constraints for the are formulated in the same way as the delay constraints.

The loss rate pi,s is defined here as the fraction of traffic that is dropped during the time

interval [t0, s], where t0 is the beginning of the current busy period.

Objective function

If the presented QoS constraints and the system’s boundary conditions can be fulfilled,

optimization will be performed with respect to the objective function F (xs). The objec-

tive function is formulated as

F (xs) =

Q∑

i=1

(ri(s)− ri(s
−))2 + C2

Q∑

i=1

li(s), (5.8)

where C is the link capacity. The objective function aims to avoid changing the current

service rate allocation and dropping traffic.

It is clear that this kind of non-linear optimization problem is too complex to be solved

in a real implementation. Therefore, the authors have developed a heuristic algorithm to
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approximate the optimization problem. The idea is to divide optimization into smaller

problems that are computationally less expensive.

5.3 Algorithm based on delay adaptation

The main problem with the adaptive approaches presented in the previous section is that

they rely on optimization problems or analytic models that may be too complex and ex-

pensive to implement in practice. Our goal has been to develop an algorithm that has

a low complexity and that is truly measurement based, requiring no optimization prob-

lems or analytic models to be solved. The idea is that the algorithm should be easy to

implement in router hardware. Another major difference between our approach and the

other proposed adaptive scheduling algorithms is that, in our approach, adaptation is to-

tally based on queuing delay rather than capacity. Delay-based provisioning is justified,

since most traffic nowadays is time-critical to some extent. For example, web-users ex-

pect constant feedback on the document retrieval process. Another important advantage

of delay-based algorithms is that it is not necessary to over-provision resources in order

to guarantee short delays. With rate-based algorithms, a large service weight has to be

allocated to real-time classes in order to provide a delay-bound.

5.3.1 Our approach: delay-bounded HPD (DBHPD)

In [20], we proposed a delay-bounded HPD (DBHPD) scheduling algorithm for combined

absolute and proportional delay differentiation. In this algorithm, the most delay sensitive

class is assigned an absolute delay bound. If this bound is on the verge of being violated,

a packet is dispatched directly from this class; otherwise the operation is based on the

delay ratios between classes according to [47].

The delay-bounded HPD (DBHPD) algorithm first checks whether or not the package in
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the highest class (class 0) is about to violate its deadline. dmax denotes the delay bound in

the highest class, a safety margin for the delay bound is denoted by tsafe, the arrival time

of the packet in the highest class queue by tin, and tcurr denotes the current time. The

packet in the highest class queue is considered to be violating its deadline if

tin + dmax < tcurr + tsafe. (5.9)

If delay violation is not occurring, the algorithm takes into account the delay ratios be-

tween the other classes. d̄i denotes the average queuing delay of class i packets and δi

denotes the Delay Differentiation Parameter (DDP) of class i. The average delay ratio in

the two classes i and j should equal the DDPs ratio in these classes

d̄i
d̄j

=
δi
δj
, 1 ≤ i, j ≤ N, (5.10)

assuming that δ1 < δ2 < . . . < δN . In [47] this is interpreted so that the normalized

average delays of traffic classes must be equal, i.e.,

d̃i =
d̄i
δi

=
d̄j
δj

= d̃j, 1 ≤ i, j ≤ N. (5.11)

When the server becomes free at time t, the DBHPD algorithm selects a packet from a

backlogged class j for transmission, with the maximum normalized hybrid delay [47]:

j = argmax (gd̃i(m) + (1− g)w̃i(m)), (5.12)

where d̃i(m) and w̃i(m) denote the normalized average queuing delay and the normal-

ized head waiting time (i.e. the waiting time for the first packet) of class i when m

packets have departed and 0 ≤ g ≤ 1 is a weighting coefficient. Thus, the algorithm

utilizes measurements of both short and long term queuing delays (d̃i(m) and w̃i(m))

in the scheduling decisions. The operation of the algorithm depends largely on how the

average delay d̄i(m) is calculated, because it determines the amount of history that is in-

corporated into the scheduling decisions. In the following subsections we will present a

general estimation theory and a simple and practical estimator for d̄i(m).
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6 Estimating delay in the DBHPD algorithm

In Chapter 5 we stated that the operation of the DBHPD algorithm depends largely on

how the average delay d̄i(m) is estimated. In this chapter the theoretical foundations

of the most common estimation approaches are first provided and their limitations are

discussed. Finally, basic algorithms for estimating delay in the DBHPD algorithm are

presented.

6.1 Estimation theory

Measurements and estimations are used at many levels of network control. Examples are

link utilization estimation for routing, arrival rate estimation for traffic conditioning and

delay estimation for packet scheduling. The desirable properties of an estimator depend

on its application. However, there are some common properties that should be shared by

ideal estimators: stability, agility and low implementation complexity. Stability means

that the estimator should provide a smoothed, long term estimate of the desired quantity.

Agility, on the other hand, refers to the ability of the estimator to follow recent changes

with a sufficient degree of accuracy. The best known estimators utilized in network con-

trol are the Token Bucket (TB) estimator and the Exponential Weighted Moving Average

(EWMA) estimator [156]. The main benefit of these estimators is their simplicity. How-

ever, they cannot be tuned to be both stable and agile, since they rely on a static parameter

(a measurement window or a weighting factor) that determines the amount of history to be

incorporated in the estimate. Some estimators based on Kalman filters or neural networks

have been developed to overcome this problem. However, these estimators are often too

complex to be implemented in router software/hardware and are presented here mainly as

an example of how complex and theoretically sophisticated estimators may lead to heavy

calculations.
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6.1.1 Token Bucket (TB)

The Token Bucket (TB) estimator filters the data with a rectangular weighting function.

When a new observation Xk is obtained, the new estimate Ek is calculated as follows:

Ek =
Ek−1 ∗WL+Xk

now − T +WL
, (6.1)

where WL is the window length, now is the current time and T is the time when the last

estimate was calculated. The window length determines the stability and agility of the

TB estimator: the estimator is stable with a long window length.

6.1.2 Exponential Weighted Moving Average (EWMA)

The Exponential Weighted Moving Average (EWMA) estimator is similar to the TB filter,

except for the fact that the EWMA has an exponential weighting function. The new

estimate Ek is updated with

Ek = γ ∗Xk + (1− γ) ∗ Ek−1, (6.2)

where 0 ≤ γi ≤ 1. The term γ is the weighting factor or filter gain, which corresponds

to the window length WL of the TB estimator. Both the TB and EWMA estimators are

extremely simple to implement, since they only require one update equation and one value

(Ek−1) to be stored in memory.

6.1.3 Kalman filters

Kalman filters are known to be optimal for the estimation of a linear system in the sense

that they minimize mean squared estimation error. A discrete Kalman filter estimates the

state x of a discrete-time process that follows the linear stochastic difference equation

[153]

xk = Axk−1 +Buk−1 + wk−1, (6.3)
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where u is an optional control input and w represents system noise. Since the system state

x is not known, it must be derived indirectly with the help of measurement z:

zk = Hxk + vk, (6.4)

where H is a constant matrix and v is a matrix of measurement error. Variables v and w

are assumed to be independent and follow normal probability distributions as follows:

p(w) ∼ N(0, Q), (6.5)

p(v) ∼ N(0, R), (6.6)

where Q is process noise covariance and R is measurement noise covariance. In practice,

R can be obtained by measuring the measurement noise variance, but Q is more difficult

to determine since the form of the process is not usually known. One option is to tune R

and Q by using off-line measurements.

The actual discrete Kalman filter algorithm is divided into two steps: a time update step

and a measurement update step. The time update step calculates the a priori prediction for

the system state and the estimate error covariance. These a priori predictions are denoted

by x−k and P−
k . The measurement update step generates an a posteriori state estimate of

the system state and estimate error covariance; xk and Pk. P
−
k and Pk are defined as

P−
k = E[e−k e

−T
k ], (6.7)

Pk = E[eke
T
k ], (6.8)

where e−k and ek are the a priori and a posteriori estimate errors. In order to obtain

the a posteriori estimate of the system state, xk is calculated as a linear combination of

the a priori estimate x−k and a weighted difference between the measurement zk and a

measurement prediction Hx−k as follows:

xk = x−k +K(zk −Hxk), (6.9)
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where K is a blending factor that minimizes the a posteriori error covariance Pk. A form

of K that minimizes Pk is

Kk = P−
k H

T (HP−
k H

T +R)−1. (6.10)

The discrete Kalman filter algorithm equations for the two update steps can be summa-

rized as:

Discrete Kalman filter time update equations:

x−k = Axk−1 +Buk−1 (6.11)

P−
k = APk−1A

T +Q (6.12)

Discrete Kalman filter measurement update equations:

Kk = P−
k H

T (HP−
k H

T +R)−1. (6.13)

xk = x−k +K(zk −Hxk), (6.14)

Pk = (I −KkH)P−
k (6.15)

A stationary Kalman filter actually becomes an EWMA filter. The non-stationary case,

however, is significantly more complex than TB and EWMA, since it requires several

update equations and matrix operations, such as inverse matrix computation, which are

difficult to implement in router software/hardware in real-time.

Some practical examples of the use of Kalman filters for estimation include [29], [19] and

[145]. In [29] Kalman filters are applied to estimate the number of competing terminals

in a 802.11 network. In [19], a Kalman filter based estimator is used to forecast capacity

requirements of interdomain links in fixed IP networks. The [145] paper applies Kalman

filters to traffic matrix estimation.
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6.1.4 Filters based on neural networks

Neural networks are nonlinear systems that are capable of learning. Their learning prop-

erty makes neural networks attractive alternatives for many network control applications,

since Internet traffic processes are extremely hard to predict using conventional estima-

tors. Several different types of neural networks exist, such as perceptron networks and

recurrent neural networks. In perceptron networks, the task of a perceptron is to combine

several inputs using a weighted addition. The resulting output can be further processed

by a transfer function. The perceptrons in a neural network are arranged in three types of

layers: input, output and hidden layers. The data is fed into the input layer and the hidden

layers process the data. Finally, the output layer returns the processed data. A neural

network operates in two phases: a learning phase and a recalling phase. In the learning

phase, the weighting functions of the perceptrons are adjusted so that they respond prop-

erly to certain types of input. Depending on the purpose of the neural network, millions

of samples may be required to train the network. In the recalling phase the neural network

generates proper responses to the inputs.

In order to learn the optimal weights to be used by the perceptrons, the network calculates

the error between the measured output and the desired output in the output layer. The

back-propagation algorithm (BPA) is used to propagate the error to all the preceding

layers via existing connections. The weighting factors in each perceptron are then adapted

based on the error.

For example, the following notations can be used in the back-propagation algorithm:

• xj [k]: The current output of the j-th perceptron in layer k

• wji[k]: Weighting function of the connection between the i-th perceptron from

layer (k-1) and the j-th neuron from layer k

• Ij [k]: The combined input of the j-th perceptron in layer k
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In a neural network that utilizes a back-propagation algorithm, the output of a perceptron

can be written as

xj [k] = f{
∑

i

(wji[k].xi[k − 1])} = f{Ij[k]}, (6.16)

where f is a selected transfer function. The absolute error function E at the output layer

is defined as

E =
1

2

∑

l

(yl − vl)
2, (6.17)

where yl and vl represent the desired and current output values. The parameter that is

back-propagated to the preceding layers is

ej [s] = − ∂E

∂Ij [k]
. (6.18)

The weighting function in each perceptron is then adapted so that the absolute error de-

creases. This is achieved by changing the weights in the opposite direction to the gradient

vector:

∆wji[k] = −lc ∂E

∂wji[k]
= lc.ej [k].xi[k − 1], (6.19)

where lc is a learning coefficient.

Neural networks have been applied in many practical traffic classification and estima-

tion problems. In [22], multilayer perceptron classifier networks are used for classifying

Internet traffic without any online analysis of packet headers. In [45], an adaptable neural-

network model has been applied to recursive nonlinear traffic prediction and the modeling

of online and offline MPEG video sources. [43] uses a Recurrent Multilayer Perceptron

Network (RMLP) for large-scale IP traffic matrix estimation. Like Kalman filters, neu-

ral network filters add considerable complexity compared to TB and EWMA, since they

require the calculation of partial derivatives and the recomputing of neural network pa-

rameters with back-propagation.
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6.2 Practical delay estimation in the DBHPD algorithm

The theoretical foundations of the most common estimation approaches (TB, EWMA,

Kalman filter and filters based on neural networks) were presented in the previous section,

where it was stated that the neural network and Kalman filters are difficult to tune. In

this section we will present the original sum estimator for delay estimation proposed by

Dovrolis in [47], as well as a practical EWMA filter for computing d̄i(m). We will also

discuss how the parameters of the EWMA filter should be selected in order to make it

feasible in practice.

6.2.1 Simple sum estimator

In the original form [47], the average delay of class i after m packet departures, d̄i(m),

is calculated by a simple sum estimator as follows: The sequence of class i packets that

have been served is denoted by Di(m) t, and the delay of the m’th packet in Di(m) by

di(m). Then, assuming that at least one packet has departed from class i before the m’th

packet

d̄i(m) =

∑|Di(m)|
m=1 di(m)

|Di(m)| . (6.20)

However, this kind of calculation to infinity is not feasible in practice, since the counter

for the sum of delay values easily overflows when enough packets have departed from

a certain class. Additionally, we do not want to incorporate infinite history into the es-

timator and thus into the scheduling decisions, because historical information becomes

irrelevant after some point.
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6.2.2 EWMA estimator

A simple approach to eliminating the overflow problem in the sum estimator is to update

d̄i(m) in each packet departure with exponential smoothing as follows:

d̄i(m) = (γidi(m) + (1− γi)d̄i(m− 1)), (6.21)

where 0 ≤ γi ≤ 1. Now, calculation to infinity is not required and the amount of history

can be determined by selecting the γi parameters, which may be the same or different

for each traffic class. If the γi parameters are chosen so that calculations are performed

with powers of two, the estimator operations can be performed by simple bit-shifting,

which is considerably more efficient than heavy multiplications and divisions. In fact, this

estimator becomes a kalman filter, if γi is selected properly. We have also developed the

basic EWMA estimator further in [21], so that the filtering coefficients of the estimation

algorithm can be adaptively adjusted depending on the actual traffic characteristics of the

service classes.
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7 Adaptive Scheduling Simulations in fixed IP

Networks

In the previous chapters, conventional and adaptive scheduling algorithms as well as delay

estimators were presented and analyzed at a qualitative level. We introduced our approach

to adaptive scheduling, the Delay-Bounded HPD (DBHPD) algorithm, which is com-

pletely measurement-based and does not require analytical models to be solved. The next

four chapters concentrate on evaluating the DBHPD algorithm using both simulations

and measurements. This chapter describes the topology, traffic mixes and other relevant

parameters used in the network simulation stage, in which DBHPD is compared with the

Deficit Round Robin (DRR) static bandwidth sharing algorithm, and also presents the

simulation results.

7.1 Performance evaluation of the DBHPD and DRR algorithms

7.1.1 Goals of the simulation study

In our earlier work we evaluated the DBHPD algorithm with high abstraction level simu-

lations and showed that it performs better than static scheduling algorithms. The objective

of this simulation study is to compare the performance of static and adaptive provisioning

methods with ns2-simulations in a more realistic setup, with a considerably larger topol-

ogy and more advanced traffic models. The scheduling algorithms that we investigated

were the Deficit Round Robin (DRR) [141] and the delay-bounded HPD (DBHPD) [20].

DRR was used as a benchmark, since it is one of the most simple and practical GPS

approximations in commercial use. DRR is also used as general scheduler in the well-

known CBQ algorithm. In our earlier studies we have also simulated one type of adaptive

Deficit Round Robin, but it could not compete with DBHPD. Other adaptive scheduling
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algorithms could have been considered as well but they either aim at different type of QoS

differentiation making comparison with DBHPD meaningless or implementing these al-

gorithms would be too complex due to heavy optimization and estimation procedures.

Since the final goal in this thesis is to compare the algorithms in both simulations and

measurements only algorithms that could also be implemented were chosen. We have

implemented both the DRR and the delay bounded HPD algorithm in ns2 simulator and

conducted several simulations to evaluate their performance in this more realistic setup.

7.1.2 Simulation topology
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Figure 7.1: Topology.

Figure 7.1 shows the topology used in our simulations. It should be noted that the topol-

ogy is restricted to a single domain and that topology parameters (link bandwidths and

delays) do not necessarily represent any specific network technology. However, the topol-

ogy and parameters have been selected to capture the most fundamental characteristics of
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real networks: multiple bottleneck links, paths with low and high delays 1, cross traffic,

bidirectional traffic, etc. [56]. In Figure 7.1 the topology is divided into four separate

areas. In the simulation, the traffic flows from Area1 to Area4, Area2 to Area3, and cor-

respondingly from Area4 to Area1 and from Area3 to Area2. The path between Area1

and Area4 is a high delay path, while the path between Area2 and Area3 has a low delay.

7.1.3 Traffic mixes

We used five different traffic types in the simulations, namely FTP, HTTP, Video, VoIP

and control traffic (small and large control messages). The generation of HTTP-traffic

is based on the webcache model implemented in ns2. In this model it is assumed that

a HTTP session consists of a number of page requests, each possibly containing several

objects. We also used the webcache model for FTP-traffic, except that with FTP there

is no reading time between page requests, and a page always contains one object. Video

traffic generation is based on a real trace of mpeg4 coded BBC news, from which the

traffic stream has been regenerated using a Transform Expand Sample (TES) process.

VoIP traffic is generated with a simple model representing a continuous conversation

with talk spurts and silence periods, while control traffic is created by sending either

large, individual control messages at regular intervals or deterministic bursts of a few,

short packets. Table 7.1 shows the number of FTP and HTTP clients, as well as the

video, VoIP and control traffic sources belonging to these areas. Note that, for example,

when there are 8 HTTP clients in Area1, there will correspondingly be 8 HTTP servers in

Area4.

1Propagation delay is 98 ms in the long-delay path and 20 ms in the short-delay path.
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Table 7.1: Number of traffic sources in different areas

Application Area1 Area2 Area3 Area4

FTP clients 4 2 2 4

HTTP clients 8 4 4 8

Video clients 4 2 2 4

VoIP clients 5 2 2 5

Control sources 2 2 2 2

7.1.4 General simulation parameters

In the simulation scenarios we have kept the simulation topology and the number of traffic

classes fixed and changed the traffic load levels and the traffic shares of different appli-

cations. Traffic is mapped into different classes according to the guidelines provided by

our previous research. According to this research the best results could be achieved by

dividing the traffic into four classes: first class for real-time applications sending short

packets (VoIP etc.), second class for real-time applications sending larger packets and

more bursty traffic (video etc.), third class for applications sending short TCP flows (Web

etc.), and fourth class for applications sending long TCP flows (FTP etc.). We used two

scenarios for the relative traffic shares of different applications: (FTP: 9%, WWW: 71%,

Video: 9%, VoIP: 10%, Control: 1%) and (FTP: 29%, WWW: 40%, Video: 20%, VoIP:

10%, Control: 1%). The first scenario corresponds to the situation today and the second

scenario reflects the situation in the future, when the amount of multimedia and peer-to-

peer traffic is expected to be larger. We used three average total load levels, 75%, 80%

and 85% (measured from the most congested bottleneck link), to test the algorithms.

We dimensioned the total buffer size in the routers to 230 packets, of which 200 packets

were allocated for elastic traffic and 30 for real-time traffic. We tested the performance of

the scheduling algorithms using DropTail and RED queue management in order to see if
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there is less difference between them when more advanced queue management methods

are used. The parametrization of the DRR and the delay bounded HPD algorithms was

following: In DRR, the real-time traffic classes were over-provisioned by a factor of two,

and the excess capacity was divided between classes meant for elastic traffic, in proportion

to their expected load shares. In the delay-bounded HPD algorithm we set dmax to 5 ms

and the target ratio for delays between consecutive classes to 4. The safety margin in

Eq. 5.9 was set to dmax/10, and g in Eq. 5.12 was set to 0.875.

7.1.5 Collected results

We performed five statistically independent iterations of each simulation scenario. The

simulation time in each iteration was 3600s, including a 400s warm-up period. We used

the simulations to measure bottleneck link utilization and average aggregate throughput,

packet loss and end-to-end delay for each traffic type. In addition, we measured object

throughput and its variability for web and FTP traffic. Object throughput results are

seldom presented in research papers. However, in our opinion object throughput is an

important performance metric, especially from the user’s point of view, since the user

constantly expects to receive some feedback on the process of a document retrieval (i.e.

the loading of independent objects).

7.2 Simulation results

In this section the results from the simulations are presented. The DRR and DBHPD

algorithms are compared to each other by investigating the object throughput and packet

losses for FTP and HTTP, and end-to-end delays and packet losses for Video and VoIP

traffic. Link utilizations, recorded from the common 5Mb bottleneck link (Figure 7.1), are

also used for comparison. The results were averaged over all the clients belonging to the

same edge area. To better assess the variability of object throughput in a single iteration,
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we also recorded the relative standard deviation (rsd) of the object throughput for FTP and

HTTP. The rsd value reflects the short term variability of the object throughput, which

is also a relevant performance metric for the end user, who expects constant quality of

service.

7.2.1 Performance of the DRR and the DBHPD algorithms

In Tables 7.2, 7.3 and 7.4 the above results are shown for every algorithm combination,

using application mix 1 with a mean load of 80%. The results with RED are only shown

on Table 7.2, since the differences between these and the DropTail results were so small.

From Table 7.2 and Table 7.3, it can be seen that the delay-bounded HPD algorithm is

able to provide considerably better service for HTTP-traffic, in terms of packet losses and

object throughput in both the high and the low delay paths. In addition, according to the

rsd values, object throughput suffers less variability with delay-bounded HPD, resulting

in a more constant quality of service from the user’s perspective. The absolute difference

between DBHPD and DRR, in terms of HTTP object throughput, may not seem that large

but it should be taken into account that 71% of the total traffic is HTTP, meaning that the

weighted throughput gain is considerable.

Naturally, we cannot provide a considerably better service to one service class without

degrading the performance of other classes. With delay-bounded HPD, the performance

of the FTP traffic is worse than with the static DRR algorithm. However, FTP packet loss

is still nearly zero with DBHPD, which is more important for FTP traffic than a short

delay. In addition, since FTP traffic is mapped to the best-effort class that, by default,

should not be provided with any quality of service, we consider it more important to

provide a good service to the HTTP traffic, which is interactive and more delay sensitive.

It should also be noted that if we want FTP traffic to receive more resources from the

delay-bounded HPD algorithm, this could be achieved by setting the DDP values in a

different way.



107

From the result tables it can also be observed that the end-to-end delays for Video and

VoIP are somewhat less with DRR than with delay-bounded HPD. This is due to a high

over-provisioning factor used by the DRR for real-time traffic (in a rate-based algorithm,

low delay can only be guaranteed by allocating a large service weight). However, a

difference of a few milliseconds in end-to-end delay is not relevant in practice. All in

all, the real-time traffic losses for both algorithms are almost zero (this is why they are

not shown in the result tables) and the end-to-end delays in each edge area are perfectly

tolerable. Thus, both the delay-bound in DBHPD and capacity over-provisioning in DRR

are proper means to guarantee that the real-time traffic gets through with minimal delays

and losses. We also experimented with different initial provisioning values for the DRR

algorithm. Instead of using an over-provisioning factor of 2 for the real-time traffic, we

only used an over-provisioning factor of 1.1. With this provisioning, the packet losses

and end-to-end delays suffered by real-time traffic increased as expected, but there was

only a negligible improvement for the HTTP and the FTP traffic. In order to improve

the performance of HTTP traffic, which suffered large losses with the DRR algorithm,

we should use under-provisioning for the real-time classes. This, however, is not feasible

since the real-time traffic service was on the verge of becoming intolerable, even with

10% over-provisioning.

It is often argued that active queue management mechanisms, such as RED, can reduce the

problems of static scheduling algorithms by dropping packets in advance, before conges-

tion situations occur. However, all the result tables show that RED only provides minor

improvements, compared to the performance of the simple DropTail system. We investi-

gated the effect of RED with two different parameter sets, but found that its advantages

were negligible with both sets. On the other hand, the results prove that considerable

performance advantages can be achieved if the scheduling algorithm is selected properly.

Note that most of the traffic in application mix 1 (71%) consists of short HTTP flows.

When the traffic loads of different classes are biased in this way, resource allocation is a

challenging task. It is not possible to provide the required service for the enormous num-
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Table 7.2: Object throughput statistics, application mix 1

Object throughputs (kbps)

AREA1 AREA2 AREA3 AREA4

DRR-DROP mean rsd mean rsd mean rsd mean rsd

HTTP 14.6±2.0 1.0 48.2±7.9 1.1 48.6±7.9 1.1 14.6±2.0 1.0

FTP 906.4±9.6 0.52 2192.0±39.3 0.41 2100.2±119.0 0.4 881.7±21.0 0.56

DRR-RED mean rsd mean rsd mean rsd mean rsd

HTTP 14.8±1.8 0.99 48.9±7.2 1.04 49.2±7.4 1.05 14.8±1.8 0.99

FTP 905.1±14.0 0.53 2202.8±37.5 0.4 2055.8±131.7 0.41 878.1±30.5 0.55

HPD-DROP mean rsd mean rsd mean rsd mean rsd

HTTP 17.6±1.1 0.87 55.7±5.2 0.96 56.4±5.1 0.96 17.5±1.1 0.87

FTP 523.0±52.4 0.55 1062.9±109.7 0.43 992.9±102.4 0.48 535.7±63.1 0.55

HPD-RED mean rsd mean rsd mean rsd mean rsd

HTTP 17.8±0.9 0.86 56.7±4.7 0.94 57.0±4.7 0.95 17.8±1.0 0.86

FTP 530.9±48.8 0.52 1037.3±132.1 0.44 964.4±115.3 0.49 516.9±68.7 0.56

Table 7.3: Packet loss statistics, application mix 1

Packet loss (%)

AREA1 AREA2 AREA3 AREA4

DRR-DROP mean mean mean mean

HTTP 6.1±2.4 3.5±1.6 4.8±1.9 6.7±2.4

FTP 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

HPD-DROP mean mean mean mean

HTTP 2.2±0.8 1.7±0.7 2.2±0.8 2.8±1.0

FTP 0.1±0.0 0.1±0.1 0.2±0.2 0.1±0.1

Table 7.4: End-to-end delay statistics, application mix 1

End-to-end delay (ms)

AREA1 AREA2 AREA3 AREA4

DRR-DROP mean mean mean mean

Video 107.2±0.4 27.2±0.3 27.0±0.2 106.5±0.4

Voip 101.5±0.1 22.6±0.0 22.6±0.1 101.9±0.1

HPD-DROP mean mean mean mean

Video 111.5±1.2 31.5±1.9 30.2±2.0 111.9±2.0

Voip 107.4±0.3 25.9±0.1 25.5±0.3 106.9±0.4
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ber of web flows without severely degrading the quality of other traffic types. Tables 7.5

and 7.6 show the results for application mix 2, where the loads of different traffic types

are more even. The delay results are not shown, since they are very similar to the results

in Table 7.4. In this case, the losses in each class are considerably smaller compared with

application mix 1, even with the static DRR algorithm. However, as the mean total load

increases from 80% to 85%, the differences between the DRR and the delay-bounded

HPD algorithms again become more distinctive. The HTTP traffic losses with DRR are

nearly 10 %, compared to 0.6 % at most with the delay-bounded HPD algorithm. The

FTP performance is slightly worse with a delay-bounded HPD, but the difference is much

less than with application mix 1, since HTTP traffic does not totally dominate this traffic

mix.

Table 7.5: Object throughput statistics, application mix 2 with different loads

Object throughputs (bps)

AREA1 AREA2 AREA3 AREA4

DRR-80 mean rsd mean rsd mean rsd mean rsd

HTTP 15.5±1.9 0.92 49.4±7.6 1.04 49.4±7.9 1.05 15.4±1.8 0.92

FTP 490.2±69.3 0.66 952.1±147.8 0.58 1032.4±155.4 0.55 503.4±60.8 0.64

DRR-85 mean rsd mean rsd mean rsd mean rsd

HTTP 11.1±1.8 1.07 34.0±6.7 1.24 34.3±7.2 1.26 11.0±1.9 1.07

FTP 425.4±51.0 0.66 798.8±88.8 0.60 859.8±139.5 0.61 426.0±63.1 0.68

HPD-80 mean rsd mean rsd mean rsd mean rsd

HTTP 18.8±0.5 0.8 60.1±4.0 0.88 59.8±3.7 0.89 18.8±0.5 0.8

FTP 445.0±66.5 0.67 843.0±139.4 0.61 910.9±141.3 0.59 452.6±60.6 0.66

HPD-85 mean rsd mean rsd mean rsd mean rsd

HTTP 17.5±0.5 0.81 52.2±3.5 0.91 52.1±3.8 0.91 17.5±0.5 0.81

FTP 358.9±48.7 0.7 628.5±69.8 0.66 673.2±113.0 0.68 353.8±51.8 0.72

Figure 7.2 shows snapshots of link utilization from the common bottleneck link with a

5Mb capacity, for both application mixes with a total offered load of 85 %. According to

these figures DBHPD provides slightly better utilization, at least for application mix 2, in

which the class traffic shares are more evenly distributed. It should also be noted that DRR

resulted in higher packets losses, especially with HTTP, and in more retransmissions as

a result. Thus, a larger part of the DRR utilization consists of retransmissions, compared
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Table 7.6: Packet loss statistics, application mix 2 with different loads

Packet loss

AREA1 AREA2 AREA3 AREA4

DRR-80 mean mean mean mean

HTTP 2.8±1.9 1.7±1.4 2.5±1.2 3.5±1.4

FTP 0.5±0.2 0.6±0.4 0.6±0.3 0.5±0.2

DRR-85 mean mean mean mean

HTTP 6.7±2.2 4.3±1.6 7.0±2.3 9.2±2.7

FTP 0.7±0.2 0.9±0.3 0.9±0.3 0.7±0.3

HPD-80 mean mean mean mean

HTTP 0.1±0.1 0.1±0.1 0.2±0.1 0.3±0.1

FTP 0.6±0.4 0.7±0.5 0.8±0.3 0.7±0.4

HPD-85 mean mean mean mean

HTTP 0.3±0.1 0.3±0.1 0.4±0.2 0.6±0.2

FTP 0.9±0.3 1.2±0.4 1.3±0.3 1.2±0.4

with DBHPD utilization, which is mainly original data packets.

Figure 7.3 depicts the utilizations within individual traffic classes. Due to high packet

losses with HTTP, DRR results in a more variable offered load process, since the TCP

performs backoff more frequently. This is also reflected in the utilization figures, from

which it can be observed that DBHPD provides more steady utilizations for the classes

than DRR.
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Figure 7.2: Bottleneck link utilization with 85 % total offered load
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(a) DBHPD, application mix 2
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Figure 7.3: Utilizations within traffic classes for DBHPD and DRR with 85 % total
offered load



112

8 Robust delay estimation for DBHPD

In the previous chapter we used simulations to evaluate the DBHPD algorithm with a

simple EWMA estimator. In this chapter we will propose more robust delay estimators

for the DBHPD algorithm [21] and compare four possible estimation approaches: simple

sum, simple EWMA, EWMA with restart (EWMA-r) and EWMA based on the propor-

tional error of the estimate (EWMA-pe). Our basic idea is to maintain the simplicity of

the EWMA estimator, but to modify it in such a way that the estimator operates properly

in different regions.

8.1 Simple Sum and EWMA estimators

In its original form [47], the average delay of class i after m packet departures was cal-

culated by a simple sum estimator as described by Eq. 6.20. We stated that calculation to

infinity is not feasible in practice, since the counter for the sum of delay values easily over-

flows as enough packets are departed from a certain class. A simple approach to eliminate

the overflow problem in the sum estimator is to apply exponential smoothing according to

Eq. 6.21. After doing this, calculation to infinity is not required and the amount of history

can be determined by selecting the γi parameters. We believe that separate γi parameters

should be used for each traffic class, since the characteristics of the traffic in each class

can be totally different. In principle, the value of γi should be related to the regeneration

period of the class queue, since it reflects the timescales of arriving traffic. However, since

determining the regeneration period would require additional measurements, we propose

the use of a fixed system parameter, namely the queue size, to determine γi. qi denotes the

physical queue size of class i. Then, γi can be determined by an approximation function:

γi(qi) =
1

N ∗ √qi ∗ ln(qi)
. (8.1)
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If the queue size is small, it can be assumed that the scheduling decision should not de-

pend too much on history, and that the γi value will be higher. The square root and

logarithm functions and the number of classes N are used in Eq.(8.1) for scaling the γi

values to a reasonable range, assuming that queue lengths in a router can range approxi-

mately from 10 packets to 10000 packets. It should be noted that Eq. 8.1 is not an exact,

analytically derived expression. However, it provides a good guideline for setting the γi

values. The value of γ is depicted as a function of the queue length in Figure 8.1, assum-

ing 4 service classes. We also argue that the g parameter in Eq. 5.12 should be separate
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Figure 8.1: The gamma function.

for each traffic class, since the g and γ parameters together determine to what extent the

scheduling decision depends on history or the current situation. We propose that the g

parameters should be related to the δ parameters defined in Eq. 5.10, which reflect the

policy of the operator and the real urgency of the packets. The parameters could be set as

follows:

g1 = 0.75, (8.2)

gi = gi−1 ∗
δi−1

δi
(8.3)

If, according to the policy, the packets in one of the classes are urgent, more weight will

be given to the current measurement values than to the history. In practice, the delay-

bounded class (class 0) will be used for extremely time-critical traffic, such as VoIP and
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network control traffic. Class 1, on the other hand, will be used for less urgent real-time

traffic, such as video. For video traffic it would be reasonable for the scheduling decision

to be 75% based on the current waiting time and 25% on history.

8.2 EWMA estimator with restart (EWMA-r)

One problem with both the simple sum and the EWMA estimator is that they do not take

into account the times when the queue becomes idle. If the queue of a certain traffic class

is idle for a long time, the delay history of that class should not be taken into account. This

is because otherwise, a class that recently became active and that experiences only slight

congestion would be served, and would steal capacity from other classes just because it

had long delays in its history. Thus, when a queue becomes active after an idle period,

the EWMA estimator should be reset. The idea is that after being reset, an average of

the queuing delay is calculated as fast until a certain threshold of packets, p_tresh, is de-

parted. After the threshold is reached, the delay is smoothed again with the low pass filter,

where the γi parameters are determined by Eq. 8.1. Smoothing is not performed below

the threshold because the smoothed value lags too far behind the real delay experienced

if it is started too early. We set p_tresh to 0.25 ∗ qi.

In order to know when to restart the estimator, it must be determined when the queue

has been empty for long enough. Simply restarting each time the queue becomes empty

would result in unstable behavior, especially if the incoming traffic is bursty. Thus, we

define a variable called cyclei for each class, which indicates when the estimator will be

restarted:

cyclei =
abs_factori ∗ qi ∗ si

C
, (8.4)

where si is the mean packet size of the class, C is the link capacity and abs_factori is an

absorption factor. When the absorption factor is 1, cyclei tells how long it would take to

serve the queue of this class if it was full to the link’s capacity.
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The queue length of class i is denoted by qleni, the time when class i goes idle by q_idlei.

Then, EWMA-roperates as follows in traffic class i:

1: Initialization:

2: lowpass_delayi = 0.0, p_samplesi = 0.0, sample_sumi = 0.0, qleni = 0, q_idlei =

0.0

3: Upon each packet departure:

4: if p_samplesi < p_treshi then

5: p_samplesi+ = 1

6: sample_sumi+ = di

7: lowpass_delayi = sample_sumi/p_samplesi

8: else

9: lowpass_delayi = γi ∗ di + (1− γi) ∗ lowpass_delayi
10: end if

11: if qleni == 0 then

12: q_idlei = now

13: end if

14: Upon each packet arrival:

15: if qi == 0 then

16: idle_period = now − q_idlei

17: end if

18: if idle_period ≥ cyclei then

19: lowpass_delayi = 0.0, p_samplesi = 0.0, sample_sumi = 0.0

20: end if
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8.3 EWMA estimator based on the proportional error of the

estimate (EWMA-pe)

The EWMA estimator with restart provides an updated estimate for the delay when the

queue becomes active after an idle period. However, the γi and gi parameters that deter-

mine the timescale of the algorithm are still both static. This means that the estimator of

each class can be tuned to be either agile or stable, but not both. At some point in time

the traffic may be bursty and smooth at other points, even if it is assumed that there is

only one traffic type in each class. Therefore, a single filter may not be suitable for the

estimation, even if the parameter selection is well argued.

One alternative is to also change the memory of the estimator, γi (determined by Eq. 8.1)

packet per packet based on how much the predicted queuing delay deviates from the real

queuing delay value. The memory of the estimator is adapted as follows:

d̄i(m) = (n ∗ γidi(m) + (1− n ∗ γi)d̄i(m− 1)), (8.5)

where 0 ≤ γi ≤ 1 is the base weight of class i and n is a multiplier for the base weight.

The idea is that the base weight (n = 1) determines the longest possible memory for the

estimator. The base weight estimator is suitable when there are only small changes in the

traffic process and the system is stable. However, if the traffic process is more variable,

the value of n is increased and, as a result, the estimator becomes more aggressive. The

value of n is determined by observing the proportional error of the estimated average

value d̄i(m), compared to the actual measured delay value di(m).

n =





7, if 0.4d̄i(m) > di(m) > 1.6d̄i(m);

6, if 0.4d̄i(m) ≤ di(m) ≤ 1.6d̄i(m);

5, if 0.5d̄i(m) ≤ di(m) ≤ 1.5d̄i(m);

4, if 0.6d̄i(m) ≤ di(m) ≤ 1.4d̄i(m);

3, if 0.7d̄i(m) ≤ di(m) ≤ 1.3d̄i(m);

2, if 0.8d̄i(m) ≤ di(m) ≤ 1.2d̄i(m);

1, if 0.9d̄i(m) ≤ di(m) ≤ 1.1d̄i(m).

(8.6)
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The selection of the regions for different values of n in Eq. 8.6 determines to what extent

the estimator reacts to both small and large, sudden changes.

8.4 Simulations

We implemented all four delay estimators, along with the DBHPD algorithm, in the ns2-

simulator. We then tested each estimator with three traffic mixes: pure CBR-traffic, pure

Pareto-ON-OFF traffic and mixed traffic from several real applications. Different traffic

mixes are used in the evaluation, as the performance of the estimators depends largely on

the characteristics of incoming traffic. We want to ensure that our results are applicable

to more than one particular traffic type.

8.4.1 General simulation parameters

The topology used in the simulations of traffic mixes 1 and 2 is depicted in Figure 8.2.

The topology used for traffic mix 3 is the same, except that each client and server has a

separate access link. We have kept the topology simple, since the aim is not to collect

end-to-end performance results but to investigate the queuing delay and delay estimate

time-series in the bottleneck link. For this purpose, a complicated topology would add

little value.

Table 8.1 shows the parameters assigned to the scheduler in the bottleneck link. The delay

bound for class 0 is 5 ms and the target ratio for delays between consecutive classes is

4. The parameters s and absorption_factor are only used in the EWMA estimator with

restart. All the other parameters of the different estimators can be directly derived from

the parameters presented in Table 8.1.

The theoretical total offered load in the bottleneck link is 1.0 with traffic mix 2 and 0.8
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Figure 8.2: The topology with traffic mixes 1 and 2.

Table 8.1: Scheduler parameters

Class dmax(s) δ q (packets) s (bytes) absorptionfactor

0 0.005 0.015625 15 200 1.0

1 - 0.0625 15 750 1.0

2 - 0.25 100 1000 1.0

3 - 1.0 100 1000 1.0

with traffic mix 3. The reason for using a smaller total load with traffic mix 3 is that the

TCP retransmissions will increase the theoretical load. With traffic mix 1, the load shares

of the classes change over time. The packet sizes for traffic mixes 1 and 2 are as follows:

(class 0: 200 bytes, class 1: 750 bytes, class 2: 1000 bytes, class 3: 1000 bytes). With

traffic mix 3, the packet sizes are determined by the applications.
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8.4.2 Traffic mix 1

Traffic mix 1 represents the most simple setup, where the load in each class consists of

the traffic sent by a single CBR-source. Thus, the incoming stream during the active

periods are deterministic and easy to predict. We alternated the load level of each source

periodically, so that at one point in time the source sent traffic at a high, constant speed,

while at another the source was idle. We wanted to see how the estimators reacted during

the transition periods, when the load level was changed dramatically. The total load,

along with the loads of the individual sources, are shown in Figure 8.3 as a function of

the simulation time. The total simulation time is only 160s in this scenario, since the

traffic process is fully predictable.

0 20 40 60 80 100 120 140 160
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Time (s)

T
ot

al
 lo

ad

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ad

Time (s)

Class 0
Class 1
Class 2
Class 3

Figure 8.3: Total load and class loads with traffic mix 1

8.4.3 Traffic mix 2

Traffic mix 2 consists of 15 multiplexed Pareto-ON-OFF sources for each traffic class.

The parameterization of the sources is shown in Table 8.2. It has been shown that multi-

plexing several Pareto-ON-OFF sources results in self-similarity, which is a fundamental

characteristic of Internet traffic. Predicting self-similar traffic is considerably more diffi-

cult than predicting CBR traffic, since self-similar traffic is correlated over several time
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scales. The traffic shares of each class are set as follows: (class 0: 0.1, class 1: 0.2, class

2: 0.4, class 3: 0.3). The simulation time with traffic mix 2 is 2000 s.

Table 8.2: Parameters for the Pareto sources

class on_time (s) off_time (s) shape_on shape_off

0 1.0 1.0 1.2 1.2

1 0.4 0.4 1.5 1.5

2 0.6 0.6 1.4 1.4

3 0.8 0.8 1.3 1.3

8.4.4 Traffic mix 3

With traffic mix 3 we use ’real’ applications to produce a realistic mix of Internet traffic.

The mix consists of five different traffic types: FTP, HTTP, Video, VoIP and control traffic

(small and large control messages). FTP transfers are also used to represent P2P traffic,

which is becoming popular on the Internet. Control and VoIP traffic are mapped to class

0 while Video is mapped to class 1, HTTP to class 2 and FTP to class 3. The generation

of HTTP-traffic is based on the webcache-model implemented in ns2. In this model it

is assumed that a HTTP session consists of a number of page requests, each possibly

containing several objects. We also used the webcache-model for FTP-traffic, although

there is no reading time between page requests with FTP, and pages always contain one

object. Video traffic generation is based on a real trace of mpeg4 coded BBC news, from

which the traffic stream has been regenerated by using a Transform Expand Sample (TES)

process. In the simulations the traffic flows in both directions: there is one HTTP client

and server (constantly creating new page requests), one FTP client and server, two control

traffic sources and sinks, and 10 video and VoIP sources and sinks on both sides of the

network. The simulation time with traffic mix 3 is 1200s, and the different applications

have the following percentage shares of the traffic: (FTP: 9%, HTTP: 71%, Video: 9%,
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VoIP: 10%, Control: 1%). This corresponds to the current situation, where the majority

of traffic is HTTP. However, it is thought that the amount of P2P traffic will increase

dramatically in the future.

8.5 Results

This section shows the simulation results for the different estimators. Snapshots of both

the instantaneous queuing delay time-series and the estimated queuing delay time-series

are shown, so that the quality of the estimators can be evaluated. It should be noted that

the estimated delays in the figures are calculated according to Eq. 5.12, i.e. the effect of

both the head of line packet delays and the long term delays is taken into account. This

is because the scheduling decision is based on the joint effect of these delays, not only

on the filtered delay d̄i(m). Both the instantaneous and estimated queuing delays are real

values; they have not been normalized with δi.

8.5.1 Traffic mix 1

Figures 8.4, 8.5, 8.6 and 8.7 depict the instantaneous and estimated queuing delays

with different estimators in simulation scenario 1, in which the incoming traffic is pure

CBR. Figure 8.4 (a) and Figure 8.5, show that the simple sum estimator leads to false

scheduling decisions, particularly during times when a class becomes active after an idle

period. Since the sum estimator incorporates an infinite history, the estimate can have a

high value even when real queuing delays are nearly zero. This means that a packet is

served from a class that has virtually no congestion. Figure 8.4 (b) shows the behavior

of the EWMA estimator. For class 1 it leads to a considerably better estimate than the

simple sum estimator. However, this is due to the fact that a separate g parameter is

selected for each class, defined in Eq. 8.3. For classes 2 and 3, which have small g

parameters and thus only give a small amount of weight to the head of line packet delay,
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the results closely resemble the simple sum estimator. Therefore, the only advantage

that the EWMA estimator has over the simple sum estimator is its lower implementation

complexity. Figure 8.6 and 8.7 depict the instantaneous and estimated delay values with

the EWMA-r and EWMA-pe estimators. It is obvious that both of these estimators lead to

accurate predictions and are able to take idle periods into account. Thus, the scheduling

decision follows the selected differentiation policy.

8.5.2 Traffic mix 2

The purpose of simulation scenario 1 was to show how the estimators perform when the

classes become active after an idle period. However, since the traffic in scenario 1 was

CBR, the queuing delays during the active periods remained almost constant. Thus, a

good estimator always matches the actual queuing delays very closely. In scenario 2,

the traffic mix consists of Pareto-ON-OFF sources that produce variable rate traffic over

several timescales. With this kind of traffic mix the responsiveness of the estimators to

sudden bursts and longer term variations can be explored. Ideally, the estimator should

follow the changes in queuing delays, but not react too aggressively to sudden peaks. This

scenario studied the performance of the most promising estimators, the EWMA-r and the

EWMA-pe.

Figures 8.8, 8.9 and 8.10 show the behavior of the EWMA-r estimator on two timescales:

40 seconds (approximately 67000 packet departures, assuming a mean packet size of

750 bytes) and 5 seconds (approximately 8300 packet departures). On the 40 second

timescale the estimator seems to follow the instantaneous queue length quite closely for

all traffic classes. However, on the 5 second timescale it can be observed that the estimator

smoothes the values of classes 1 and 2 quite roughly at some points and ignores the

changes in the queuing delays. In class 1 the estimated delay matches the real queuing

delay, even on shorter timescales, because of the high value for the g parameter (0.75).
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Figure 8.4: Instantaneous and estimated delays for class 1 with the simple sum (a) and
EWMA (b) estimators
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Figure 8.5: Instantaneous and estimated delays for classes 2 and 3 with the simple sum
estimator
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Figure 8.6: Instantaneous and estimated delays for classes 1 and 2 with the EWMA-r
estimator
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Figure 8.7: Instantaneous and estimated delays for class 3 with the EWMA-r (a) and
EWMA-pe (b) estimators
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Figure 8.8: Instantaneous and estimated delays for class 1 with the EWMA-r estimator
on two timescales
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Figure 8.9: Instantaneous and estimated delays for class 2 with the EWMA-r estimator
on two timescales



126

400 405 410 415 420 425 430 435 440
0

0.1

0.2

0.3

0.4

0.5

0.6
Q

ue
ue

in
g 

D
el

ay
 (

s)

Time (s)

Instantaneous
Estimated

405 405.5 406 406.5 407 407.5 408 408.5 409 409.5 410
0

0.1

0.2

0.3

0.4

0.5

0.6

Q
ue

ue
in

g 
D

el
ay

 (
s)

Time (s)

Instantaneous
Estimated

Figure 8.10: Instantaneous and estimated delays for class 3 with the EWMA-r estimator
on two timescales

Figures 8.11, 8.12 and 8.13 show the corresponding results for the EWMA-pe estimator.

This estimator follows the queuing delay changes more carefully, even on the shorter

timescale, for each class without being too aggressive. This is because the weighting

factor of the estimator is adaptively increased if there are large changes to the queuing

delay.
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Figure 8.11: Instantaneous and estimated delays for class 1 with the EWMA-pe estimator
on two timescales
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Figure 8.12: Instantaneous and estimated delays for class 2 with the EWMA-pe estimator
on two timescales
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Figure 8.13: Instantaneous and estimated delays for class 3 with the EWMA-pe estimator
on two timescales
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8.5.3 Traffic mix 3

The simulation results with traffic mix 2 showed how the estimators respond to traffic

bursts and longer term variations. However, it is still important to examine how the es-

timators behave with real traffic, where a substantial part of the total traffic is carried on

top of the TCP-protocol.

Figures 8.14, 8.15 and 8.16 depict the instantaneous and estimated delay time-series in

this scenario for classes 2 and 3 with the simple sum, EWMA-r and EWMA-pe estima-

tors. The figures for class 1 are not shown, since in the EWMA-r and EWMA-pe esti-

mators the instantaneous and estimated delay time-series are very close to each other due

to the high value of the g parameter. The time-scale used is relatively long (60 seconds).

Again, the simple sum estimator is either considerably above or below the instantaneous

queuing delay value. The effects of false scheduling decisions can especially be seen in

class 3 (FTP traffic): the delays in class 3 remain lower with a simple sum estimator than

with the EWMA-r and EWMA-pe estimators, since the estimated value is much larger

than it should be. Therefore, the scheduling algorithm decides that a packet must be se-

lected from class 3 because it has long delays. This wrong conclusion also reflects on the

other classes, which correspondingly suffer somewhat longer delays during these periods.

However, it should be noted that the absolute delay values returned by the different esti-

mators cannot be directly compared with each other, since they result in different packet

loss patterns and, as a result, different queuing delays. In conclusion, the EWMA-pe esti-

mator also gives the best estimation result with this traffic mix, in the sense that it is agile

but still sufficiently stable.
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Figure 8.14: Instantaneous and estimated delays for class 2 with the sum (a) and EWMA-
r (b) estimators
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Figure 8.15: Instantaneous and estimated delays for class 3 with the sum (a) and EWMA-
r (b) estimators
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Figure 8.16: Instantaneous and estimated delays for classes 2 and 3 with the EWMA-pe
estimator
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9 Measuring Adaptive Scheduling in fixed IP

Networks

So far we have only evaluated the DBHPD algorithm with simulations that use traditional

performance metrics such as throughput, delay and packet loss as their criteria. However,

using only traditional performance metrics as evaluation criteria may lead to false conclu-

sions, since an algorithm that behaves well in simulations may not return the same results

in the real world. In fact, it may be impossible to implement the algorithm in a real-time

environment if it uses overly complex computation and estimation procedures. Thus, an

algorithm can only be considered valuable after its implementation complexity, as well as

its resulting performance in a real environment has been assessed.

The DBHPD algorithm has not been implemented in a prototype or commercial router

before. This thesis shows the first working implementation of the DBHPD algorithm in

a FreeBSD-based ALTQ prototype router and compares it with the Class Based Queue-

ing (CBQ) hierarchical bandwidth sharing algorithm [120]. In simulation evaluations,

DBHPD was compared with the static Deficit Round Robin (DRR) algorithm that stat-

ically divides capacity between service classes. From the simulation results, it was ob-

vious that DBHPD performed better when compared to DRR. Thus, it is more relevant

to compare the DBHPD algorithm to an algorithm that uses some kind of adaptation in

its scheduling decisions. CBQ is a pseudo-adaptive algorithm that uses DRR as a general

scheduler and heuristic rules for borrowing capacity between service classes. This chapter

provides a short description of ALTQ and describes the implementation of the DBHPD

and CBQ algorithms, as well as the measurement topology and the general parameters

used in the measurements. Finally, this chapter presents the results of the measurements.
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9.1 Implementation and measurements of the DBHPD and CBQ

algorithms

9.1.1 Goals of the implementation and measurement study

The objectives of the implementation and measurement study are to describe the first

working implementation of the DBHPD algorithm, discuss the difficulties encountered

during the implementation and compare the performance of the DBHPD algorithm with

the CBQ algorithm through the use of measurements.

9.1.2 Implementation of the measured scheduling algorithms

We used the Alternated Queuing (ALTQ) package [36] to implement the DBHPD al-

gorithm. ALTQ is a general Quality of Service framework for BSD systems. It contains

basic scheduling, queue management and rate control functionalities which can be assem-

bled together in various ways to realize different types of QoS networks. ALTQ currently

supports the following scheduling algorithms: Weighted Fair Queuing (WFQ) [125],

Class Based Queuing (CBQ) [56], Hierarchical Fair Service Curve (HFSC) [147] and

Joint Buffer Management and Scheduling (JoBS) [39]. Of these algorithms, CBQ is the

most well-known and most widely used in measurement papers. CBQ can be considered

as an adaptive scheduling algorithm in the sense that it provides heuristic rules for bor-

rowing capacity if a class is running out of resources. Therefore, it is reasonable to use

CBQ as a baseline when evaluating the performance of the DBHPD algorithm. In our

work, we left the existing CBQ scheduling block in ALTQ unchanged and modified the

priority queuing to implement DBHPD scheduling.
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9.1.3 Implementation of the CBQ algorithm

We utilized the existing implementation in the ALTQ-package for CBQ. In this imple-

mentation, the general scheduler is either the Weighted Round Robin (WRR) or the Packet

Round Robin (PRR). When looking at the implementation of these schedulers in greater

detail, WRR also contains a deficit counter and, therefore is actually close to being a

Deficit Round Robin (DRR) [141]. We used WRR, as it allows greater capacity allotment

flexibility and accuracy. Possible queue management algorithms in ALTQ are tail-drop,

RED and RIO. We decided to only use the DropTail algorithm, since we wanted to see

the effect of pure scheduling. However, we realize that queue management increases the

performance of TCP traffic and, as a result, the effect of different algorithms should be

evaluated in the future.

Actual implementations of the CBQ borrowing mechanism contain a lot of approxima-

tions, which degrade the accuracy with which CBQ operates and also cause performance

penalties. ALTQ contains two modes for borrowing:

1. Borrow: A class is allowed to borrow if its ancestor class is underlimit. This

means that the system is only work-conserving among sub-trees that share com-

mon resources.

2. Efficient: A class is allowed to borrow even if its ancestor class is not underlimit.

Such a situation may occur if borrowing has taken place to the extent that the

system is in suspension (e.g. no packets are allowed to be sent if the timer has

not expired), even though the link has free resources. The efficient mode takes a

packet from the first scanned queue and passes it onto the link. This makes the

whole system work-conserving, but can cause unexpected behaviour for classes

with a small capacity fraction.

Details of the CBQ implementation can be found in [37]. We have chosen to only use
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simple borrowing in our measurements in order to achieve a more predictable perfor-

mance and more controllable top-level borrowing. The top-level has been defined so that

real-time and non-real-time leaf classes are only allowed to borrow from their own parent.

Our CBQ link-sharing hierarchy is presented in Figure 9.1.

9.1.4 Implementation of the delay-bounded HPD algorithm

The delay-bounded HPD algorithm has not been implemented in a real or prototype router

before. We have implemented the algorithm on the basis of the priority queue structure in

ALTQ (ALTQPRIQ). The DBHPD algorithm relies heavily on the measurement of time.

Time is a difficult concept for operating system kernels, as it deals with floating point

numbers. The majority of operating systems do not allow floating point operations in

the kernel space, as they lead to diminished performance. This can be worked around by

using two interconnected integers; in case of time, one for the full seconds and the other

for microseconds. The manipulation of two interconnected integer values always takes

some extra time when compared to a single integer. In our implementation, the head-of-

line packet delay is obtained by utilizing the kernel gettime routine twice: firstly when

the packet is enqueued in the queue and secondly when the scheduling decision is made

by polling the head-of-line packets. Usually, however, this happens more than twice, as

there are several packets competing for the link resource and the queuing time calculation

has to be performed each time a scheduling decision is made.

In the differentiation model, the long term average delay d̄i(m) was calculated using the

simple sum estimator. With simple sum estimation, the system uses an infinite memory

to count the average value. Infinite memory in a real router is an impossible concept, as

the actual kernel is based on either 32 bit or 64 bit registers. This would eventually lead

to a register overflow. Therefore the long term delay for the implementation is obtained

using an Exponential Weighted Moving Average (EWMA) filter, according to Eq. 6.21.

Now calculation to infinity is not required and the amount of history can be determined by
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selecting the γ parameter. The weighting coefficients are normally between zero and one,

but floating point arithmetics in kernel space should be avoided. Therefore, all operations

are scaled by the magnitude of the number range of the coefficients. DBHPD requires a

lot of time calculations, therefore we streamlined the calculation to contain only binary

shifting. This means that weighting coefficients and differentiation parameters are pow-

ers of two, allowing multiplication by shifting the actual delay value by the power of a

coefficient. Operating with integers increases efficiency but also reduces the granularity

of parameters. However, the deviation from ideal operation is still acceptable. For future

experimentation, we have developed even more sophisticated estimators for the DBHPD

algorithm in [21] but these estimators have not yet been implemented in ALTQ.

9.2 Measurement setup

The measurement topology used in our test is shown in Figure 9.2. The topology consists

of a router with connections into two individual networks:

1. Server network: QuickTime Video server, Web server, FTP server and VoIP

clients

2. Client network: QuickTime Video clients, Web clients, FTP clients and VoIP

clients

The interconnecting networks were 100Mbps Ethernet VLANs implemented with a single

ethernet switch. The “in between” router was a PC running a FreeBSD-4.5 operating

system on a 433MHz Intel Celeron architecture, with 128MB of memory. The FreeBSD

kernel was compiled to have a 1kHz clock resolution in order to obtain sufficiently high

granularity for internal interrupt handling.



136

Figure 9.1: CBQ link-sharing hierarchy

Figure 9.2: Measurement network topology.
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We used four different applications for the measurements: FTP, HTTP, QuickTime Video

Streaming and VoIP. FTP, HTTP and QuickTime Video Streaming traffic was produced

by Spirent’s Avalanche (client side) / Reflector (server side) test appliances. VoIP traffic

was emulated with Spirent’s AX/4000 broadband test system by defining a suitable traffic

generation pattern.

Three user instances were defined in Avalanche: one for FTP, one for HTTP and one

for Video Streaming. The FTP instance requests one file with a size of 1MB, the HTTP

instance loads 40 www-pages with a short break after 5 pages, and the Video instance

streams a 60s VBR video-clip at an average speed of 200kbps. HTTP version 1.0 was

used for www-transfers, meaning that a separate TCP-connection was established for

each object within a page. However, the pages used in the measurement only contained

a single object. The page sizes were defined from a list with 40 entries, with a mean

geometric distribution of 16.5kB. The mean value and distribution represent the actual

size distribution of real web-pages containing several objects. The list was repeated for

each simulated user from top to bottom.

VoIP calls were created in AX/4000 by defining a burst of 13 packets arriving every 20ms.

During the burst, packets are sent at a constant rate of 30Mbps rather than back-to-back.

This pattern is an approximation of 13 simultaneous VoIP calls between two ports of

AX/4000.

Traffic was mapped into different classes so that VoIP used the first, delay-bounded class,

Video used the second class, HTTP used the third class and FTP used the fourth class.

The different applications had the following relative traffic share percentages: (FTP: 30%,

WWW: 40%, Video: 20%, VoIP: 10%). The desired FTP, HTTP and Video traffic loads

was produced by defining how many users/hour avalanche created. In addition, the user

generation pattern may be flat, stair-step, bursty or sinusoid in order to create more load

fluctuations. We have used a flat pattern for HTTP and Video and a sinusoid pattern

for FTP. ρ̄ denotes the desired mean load in the output link, fi denotes the load fraction
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produced by class i, C the link capacity (bits/s), and the workload (bits) created by a

single user instance in class i is given by W . The required number of simusers/hour in

class i can be calculated as:

N =
ρ̄ ∗ f ∗ C

W
∗ 3600s (9.1)

Since the operation of the DBHPD algorithm is based on packet delays, we were par-

ticularly interested in recording the distribution of delays in each traffic class. This type

of information is not provided in Avalanche/Reflector and, as a result, a packet captur-

ing tool such as tcpdump would be required to track the packets generated by FTP and

HTTP. However, it is also possible to obtain the delay distributions indirectly by defining

a measurement probe for each traffic class. Suitable probes are small packets that are

sent in continuous intervals and that have accurate time-stamps. We used this approach,

since AX/4000 provides efficient facilities for recording traffic stream delay distributions.

Each probe sends a 46 byte packet every 10 ms, resulting in a 50kbps CBR stream (raw

IP-packets). The delay distributions of the probes do not correspond exactly to the distri-

butions of the actual application traffic, but the probes provide an approximation that is

accurate enough for our purposes. In [40] the accuracy of deterministic sampling tech-

niques was judged to be reasonably good if samples were taken with a relatively high

frequency. In the case of inter-arrival time distributions, every 128th packet was seen to

produce an error of less than 1% error of the original distribution. Time driven sampling

was not judged to be as good as packet driven sampling, as its probe distribution is not

uniform during the burst periods. In our case we use time driven sampling, but a high

load level and and a relatively small distance between probes (every 50th packet on the

link on average and every 200th packet of the class in the worst case scenario) lowers

the error caused by time driven operation. Link utilizations, application throughputs and

packet losses are derived from tcpdump files captured from both sides of the router, as

shown in Figure 9.2.
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9.3 Provisioning parameters and measurement scenarios

CBQ was provisioned by simply allocating each class a bandwidth share corresponding

to the load fraction of that class. The bandwidth fractions of the classes are shown in

Figure 9.1. With the delay-bounded HPD, the delay-bound (dmax) in Eq. 5.9 was set

to 5ms, the safety margin (tsafe) to 0, the long-range delay EWMA coefficient (γ) in

Eq. 6.21 to 1/210 (in practice, this corresponds to a filtering coefficient of 0.001), the

long-term short-term weighting coefficient (g) in Eq. 5.12 to 0.875 and the delay ratios to

4. Queue lengths in both algorithms were set to 15, 15, 80 and 200 packets. The settings

for the delay-bounded HPD correspond closely to the parameters used in our previous

simulation studies, e.g. [20].

Both algorithms were tested in underload (90% mean theoretical load), overload (100%

mean theoretical load) and heavy overload (110% mean theoretical load) situations. The

load level of the system was varied by changing the emulated link speed within the

scheduling units of router interfaces. Theoretically, there should be slightly more than

9Mbps of offered traffic in the system. Therefore, in the measurements with a 90% load

level, the link speed was set to 10Mbps, whereas it was set to 8Mbps for the 110% load

level measurements. CBQ was tested with both borrowing and no borrowing. When bor-

rowing is on, CBQ uses heuristics to distribute excess resources among the classes, up

to the top sharing level, which is the parent class of the leaf classes. This parent is the

intermediate class used in i) realtime for VoIP and Video traffic, and in ii) non-realtime

for WWW and FTP traffic.

9.4 Measurement results

This section presents the results of the CBQ and DBHPD measurements. Shown here are

the link utilizations and cumulative delay distribution functions for each class, as well as
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the application throughputs and packet losses for both algorithms. When comparing the

results of different load levels it should be remembered that the difference in load level

was achieved by changing the link capacity. This causes a lower throughput with the same

offered traffic. The delays consist of queuing delay, processing delays and propagation

delay, of which queuing delay is the dominant component.

9.4.1 Scenario 1: Theoretical link load 90%

Figure 9.3 shows the link utilizations for DBHPD and CBQ with a theoretical link load

of 90%. With CBQ, borrowing is used in order to heuristically divide extra capacity. It

can be seen from the figure that DBHPD is capable of providing full link capacity for the

elastic TCP traffic, while CBQ cannot provide the same level of adaptivity. This is due

to the fact that part of the capacity is dedicated to real-time traffic, which does not use its

full share of resources.

It should be remembered that the link capacity adjustment performed in the measurements

to generate different load levels was based on a token bucket rate control at dequeue

events. When the packet buffer in a NIC driver underflows, causing a packet to be sent to

the network, an interrupt is generated and the dequeue method is called. The execution of

this method is delayed by a time that is calculated based on the link capacity assignment

and the size of the served packet. Software-based implementation of the token bucket

rate control is prone to small errors caused by the low resolution of the kernel timer. This

error causes the actual link capacity to vary around the correct link capacity (in Figure 9.3

utilization is over 100% at some points, although in theory this should not be possible).

Tables 9.1 and 9.2 show application throughputs and packet losses in this scenario. The

throughput for FTP and HTTP was recorded by averaging the throughputs of individual

objects. This results in huge variances for HTTP, as some pages are very small (they fit

into a single packet) and some are considerably larger. DBHPD provides more throughput
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Figure 9.3: Link utilizations with HPD and CBQ scheduling (Load 90%).

Table 9.1: Statistics for HPD with delay bound (Load 90%)

Throughput Loss

kbps %

Traffic Mean Dev Mean Dev

FTP 2451 1524 0 0.03

WWW 4642 32588 0 0

Video 209 0.4 0.2 0.2

VoIP - - 0 -

Table 9.2: Statistics for CBQ with borrow (Load 90%)

Throughput Loss

kbps %

Traffic Mean Dev Mean Dev

FTP 1041 687 0 0

WWW 5359 17005 0 0

Video 208 0.8 0.8 0.5

VoIP - - 0.1 -
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for FTP, due to its capability to adjust to time varying load levels. On the other hand,

CBQ allocates considerably more resources to HTTP, even though FTP should use a

larger share of the resources. It should be noted that, on this occasion, the theoretical

provisioning goal was 4Mbps for HTTP and 3Mbps for FTP. It can be seen that DBHPD

is clearly closer to the goal of a 25% difference in capacity allocation - even though

DBHPD operates on delay, not on capacity. CBQ’s deviation from the target capacity

is due to the nature of the implementation. Borrowing capacity in a packet-per-packet

manner is a computationally intensive task. Therefore, approximations are made in the

calculations by only allowing borrowing in certain time-windows. This easily leads to

the starvation of low capacity classes. Video throughput is practically the same with

both algorithms. VoIP throughputs are not shown since VoIP traffic was produced with

AX/4000, which cannot be analyzed with tcpdump. However, delay distributions and

packet losses reflect voice quality accurately enough. Figure 9.4 presents the delays for

CBQ and DBHPD in this scenario. Previous notions on borrowing become obvious when

the delay distributions and medians of these algorithms are compared. When CBQ is used,

HTTP traffic in class 3 receives most of the network capacity, which can also be seen in

the very short delays. CBQ and DBHPD do not create a large difference between real-

time traffic classes, but in general DBHPD provides a much smaller delay variance. This

is important for real-time communications, which require play-out compensation buffers

that are dimensioned relative to the delay variance. From the delay distributions we can

conclude that DBHPD provides a much more reasonable service than CBQ, because CBQ

offers extra capacity to a class with the highest link-share, regardless of borrowing. We

believe that the implementation of CBQ algorithm is so complex that the accuracy of its

operation is far from its theoretical operation.

9.4.2 Scenario 2: Theoretical link load 100%

Figure 9.5 shows the link utilizations for DBHPD and CBQ with a theoretical link load

of 100%. In CBQ, borrowing is used in order to heuristically divide extra capacity. It can
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Figure 9.4: Delay distributions for CBQ and DBHPD (Load 90%)
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Table 9.3: Statistics for HPD with delay bound (Load 100%)

Throughput Loss

kbps %

Traffic Mean Dev Mean Dev

FTP 1736 1826 0 0.02

WWW 2723 16142 0 0

Video 208 1 0.7 0.5

VoIP - - 0 -

Table 9.4: Statistics for CBQ with borrow (Load 100%)

Throughput Loss

kbps %

Traffic Mean Dev Mean Dev

FTP 852 580 0.02 0.06

WWW 5023 32896 0 0

Video 198 5 6.5 3.2

VoIP - - 6.7 -

be observed that both algorithms result in approximately the same link utilization, with

DBHPD providing a slightly more steady utilization.

Tables 9.3 and 9.4 show application throughputs and packet losses in this scenario.

DBHPD provides more throughput for FTP and Video, while CBQ again allocates more

resources to HTTP. The packet losses are clearly lower with real-time traffic using DBHPD.

This is due to the fact that, in the 100% scenario, the actual load is a little over 100%,

mainly caused by video traffic sending slightly more than its allocated capacity. With

CBQ this leads to packet losses in a real-time traffic subclass. On the other hand, DBHPD

is capable of adapting to the packet loss using capacity from elastic traffic.

Figure 9.6 present the delays for CBQ and DBHPD in this scenario. By comparing delay

distributions and medians of these algorithms, it is obvious that DBHBD is able to provide

delay differentiation in accordance with the specified provisioning parameters. The delay
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Table 9.5: Statistics for HPD with delay bound (Load 110%)

Throughput Loss

kbps %

Traffic Mean Dev Mean Dev

FTP 953 728 0.03 0.1

WWW 602 1360 0.02 1

Video 205 3.4 2.4 1.8

VoIP - - 0 -

bound in the highest class is not violated, the ordering of the rest of the classes is correct

and the specified delay ratio between classes is preserved. However, CBQ distributes

delays in an irrational way between the classes and furthermore, class ordering is violated

between class 2 and class 3, since class 3 experiences lower delays.

The shape of the distributions show that the delay distribution of DBHPD is quite linear,

while the distribution of CBQ is more concave. Another important observation is that

the distributions of CBQ are considerably wider, especially for class 1 and class 4. This

implies that DBHPD is able to provide a more predictable service in terms of delays.

9.4.3 Scenario 3: Theoretical link load 110%

Figure 9.7 shows the link utilizations for DBHPD and CBQ with a theoretical link load of

110%. Since the system is pathologically congested, both scheduling algorithms provide

operations that are strictly bounded by their link-sharing rules. With CBQ, capacity is

allocated to each leaf class and with DBHPD, operation is mainly based on proportional

delay constraints.

Tables 9.5 and 9.6 show the application throughputs and packet losses in this scenario.

As can be expected, the packet losses are considerably higher and throughput is lower

than in the 100% load case.
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Figure 9.5: Link utilizations with HPD and CBQ scheduling (Load 100%).

Table 9.6: Statistics for CBQ with borrow (Load 110%)

Throughput Loss

kbps %

Traffic Mean Dev Mean Dev

FTP 652 426 0.07 0.1

WWW 3527 13567 0 0.1

Video 182 16 16.7 9.8

VoIP - - 18.4 -



147

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

Delay (ms)

CBQ Class1
DBHPD Class1

(a) Class 1, VoIP

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

Delay (ms)

CBQ Class2
DBHPD Class2

(b) Class 2, Video

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

Delay (ms)

CBQ Class3
DBHPD Class3

(c) Class 3, WWW

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

Delay (ms)

CBQ Class4
DBHPD Class4

(d) Class 4, FTP

Figure 9.6: Delay distributions for CBQ and DBHPD (Load 100%)
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Figures 9.8 show the delay distributions for DBHPD and CBQ with borrow when the the-

oretical offered load stands at 110%. This corresponds to the heavy overload case. It can

be seen that the shapes of the distributions remain very similar but the mean and maximum

delays increase considerably, since the system is in a pathological congestion situation.

In addition, the gap between the DBHPD and CBQ delay medians is significantly larger

compared to previous scenarios.
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Figure 9.7: Link utilizations with HPD and CBQ scheduling (Load 110%).
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Figure 9.8: Delay distributions for CBQ and DBHPD (Load 110%)
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10 Comparison of Measurement and Simulation

Results

The previous chapter presented the results of the DBHPD and CBQ algorithm measure-

ments. The goal of this chapter is to show results of simulations that have been performed

in setups that correspond to the measurement scenarios, and to compare how well the

simulation results match the measurement results [119]. Another objective is to present

kernel profiling for the implementation of both DBHPD and CBQ in terms of achievable

throughput, time consumed by enqueue and dequeue operations, as well as the number of

function calls used in these operations.

The motivation behind this study stems from the fundamental difference between simu-

lations and real router measurements: in simulations, router operations such as enqueue

and dequeue may not consume any time while the effect of packet processing can be

considerable in the real world. The processing overheads of router operations have been

modeled in some network situations, but all router operations are performed with zero

delay in ns2. Especially in the case of CBQ, both the enqueue and dequeue operations in-

volve heavy estimation procedures and heuristic rules, resulting in several function calls.

In addition, the code and scheduling rules themselves may not be the same as those used

in the simulator, since some operations cannot even be implemented as such in the kernel.

Thus, it is to be expected that queuing delays are not necessarily distributed in a similar

fashion to the measurements.

10.1 Simulation setup

The network topology used in the simulations corresponds to the measurement topology

in Figure 9.2, except for the fact that VLANs and measurement probes are not used in
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the simulations. The provisioning parameters for the algorithms are the same as in the

measurements.

The only relevant difference between the measurements and simulations is the traffic pro-

cess: the webcache model used in the simulations of FTP and HTTP traffic deviates from

the FTP and HTTP traffic creation process used in Avalanche. There are also minor dif-

ferences in the VoIP and Video traffic patterns. The differences in the load patterns are

mainly caused by the fact that Avalanche offers only very basic patterns for starting new

sessions. For instance, in the measurements, the HTTP and FTP session arrival processes

are flat or sinusoid with a constant phase, while inter/arrivals are drawn from an expo-

nential distribution in the ns2 webcache model session. A flat or sinusoid session arrival

process used in the measurements clearly results in more periodic and deterministic be-

havior. Some differences in the load processes may also be caused by different TCP

implementations in ns2 and Avalance.

Figure 10.1 and Figure 10.2 show the offered load patterns of different traffic types in the

simulations and in the measurements for a desired average offered load of 90%. Due to

these differences in the load patterns within individual traffic classes, the simulation and

measurement results can only be compared at a relatively coarse level.

10.2 Results of the simulation and measurement comparison

The aim of this section is to analyze similarities and differences between the results of

simulations and measurements of DBHPD and CBQ algorithms. The measured queuing

delay distributions, obtained indirectly by utilizing traffic probes, have already been pre-

sented for both algorithms in the previous chapter on measurement. In this section, the

measurement results are based on the data obtained directly from tcpdump, thus providing

more accuracy.
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Figure 10.1: Offered class loads in the simulations (Total offered load 90%)
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Figure 10.2: Offered class loads in the measurements (Total offered load 90%)
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Figure 10.3 presents the delay distributions for each traffic class at target load level of

90%. The ranges of the delay values seem to be relatively close to each other for both

algorithms, but there are clear deviations in the exact delay distributions for both algo-

rithms. The deviations can be partly explained by the differences in the load processes.

However, most of the difference is likely to be due to the simplifications used for the real

implementation, as well as overhead caused by the estimation procedures. With CBQ,

simulations tend to provide shorter delays for each class when compared with measure-

ments. This is natural, since demanding borrowing operations occur frequently with a

90% load, which cause extra delays for the packets in a real router. It should also be noted

that measurement operations performed before dequeue, such as packet header analysis,

classification and enqueue, add some extra delays that are not modeled in simulations. As

we already concluded from the measurement results in the previous chapter, CBQ pro-

vides shorter delays for the HTTP class at the expense of the real time classes. Even with

a relatively small load, the maximum delay for VoIP is 5 ms with DBHPD and 20 ms with

CBQ. The maximum delay for Video is 20 ms with DBHPD and nearly 50 ms with CBQ.

Figure 10.4 and Figure 10.5 show the corresponding delay distributions with higher loads

of 100% and 110%. From the distributions, CBQ’s problem of reversing the service

order between class 2 and 3 can be observed for both simulations and measurements.

Thus, even though CBQ might provide shorter delays than DBHPD for some classes, the

overall service differentiation is not as predictable when the offered load increases.

The results also show that as the offered load exceeds 100%, the deviation between the

CBQ’s measurement and simulation results decreases. This is due to the fact that, at a

high load, each traffic class uses its fixed share of resources and thus expensive borrowing

operations do not occur. The algorithm mainly operates as the DRR general scheduler,

which is a basic bandwidth sharing algorithm.

Tables 10.1, 10.2 and 10.3 present the average packet loss statistics with loads of 90%,

100% and 110%. The packet losses for the DBHPD algorithm seem to be larger in the
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Figure 10.3: Delay distributions for CBQ and DBHPD simulations and measurements
(Load 90%)
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(a) Class 1, VoIP
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(b) Class 2, Video
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(c) Class 3, WWW

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

Delay (ms)

DBHPD sim Class4
DBHPD meas Class4
CBQ sim Class4
CBQ meas Class4

(d) Class 4, FTP

Figure 10.4: Delay distributions for CBQ and DBHPD simulations and measurements
(Load 100%)
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Figure 10.5: Delay distributions for CBQ and DBHPD simulations and measurements
(Load 110%)
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Table 10.1: Loss statistics for DBHPD and CBQ with a 90% load

Loss (DBHPD) Loss (CBQ)

% %

Traffic Mean (sim) Mean (meas) Mean (sim) Mean (meas)

FTP 0.1 0 0.07 0

WWW 0.1 0 0.01 0

Video 1.5 0.2 2 0.8

VoIP 0 0 0.07 0.1

Table 10.2: Loss statistics for DBHPD and CBQ with a 100% load

Loss (DBHPD) Loss (CBQ)

% %

Traffic Mean (sim) Mean (meas) Mean (sim) Mean (meas)

FTP 0.2 0 0.2 0.02

WWW 0.8 0 0.03 0

Video 1.8 0.7 5.2 6.5

VoIP 0 0 1.4 6.7

simulations, especially with a 110% load, suggesting that the real total offered load has

most likely been higher in the simulations. However, packet losses with CBQ are consid-

erably lower in the simulations. This can be explained by the borrowing operations that

cause extra delays - and thus packet loss - in the measurements, which may not correspond

to the CBQ borrowing model.

Figure 10.6 and Figure 10.7 show the bandwidth allocations for the traffic classes with an

offered load level of 100%, for both simulations and measurements. From these figures

it is evident that DBHPD allocates more bandwidth to the real-time classes, while CBQ

provides more capacity to the non-real-time classes. This corresponds to the delay results

presented earlier, where DBHPD guaranteed short delays for the real-time classes and

CBQ clearly provided shorter delays to HTTP traffic at the expense of VoIP and Video

traffic.
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Table 10.3: Loss statistics for DBHPD and CBQ with a 110% load

Loss (DBHPD) Loss (CBQ)

% %

Traffic Mean (sim) Mean (meas) Mean (sim) Mean (meas)

FTP 0.7 0.03 0.5 0.07

WWW 7.7 0.02 0.3 0

Video 4.3 2.4 13.3 16.7

VoIP 0 0 7.4 18.4

Particularly in the CBQ measurements, it should be noted that there are clear darker bands

near the guaranteed minimum capacity for each class, suggesting that CBQ operates as

a basic bandwidth sharing algorithm at these points. DBHPD does not provide a guar-

anteed bandwidth, but its capacity allocation fluctuates according to the incoming load

and queuing delays. In simulations the CBQ bands are not that clear. This is most likely

due to the fact that the offered load profiles are somewhat different and the implemented

algorithm does not operate exactly according to the model used in the simulations.

We have also performed initial kernel profiling for the implementation of both DBHPD

and CBQ in ALTQ, to investigate throughput and resource overheads that can be achieved

by these algorithms. The processor speed was 1.3GHz to ensure that processor capacity

is not a bottleneck. The resulting throughputs for simple FIFO (First In First Out), PRIQ

(Priority Queueing), CBQ and DBHPD are shown in Table 10.4. It can be seen that

throughput is highest with the FIFO and PRIQ algorithms, since they do not use any

estimation or time measurement procedures for scheduling. Correspondingly, DBHPD is

able to achieve better throughput than CBQ due to its simpler implementation.

In order to examine how many more resources are consumed by CBQ compared to

DBHPD, 1000000 TCP/IP packets with a size of 110 bytes were sent to be processed

by both algorithms at a rate of 15000 packets/s. Table 10.5 shows the time consumed by

enqueue and dequeue operations, as well as the number of function calls used by these

algorithms. Results for PRIQ are also shown for comparison. The cumulative time used
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Figure 10.6: Bandwidth distributions for CBQ and DBHPD in simulations (Load 100%)



162

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

x 10
5

B
an

dw
id

th
 (

bp
s)

Time (s)

DBHPD Class1
CBQ Class1

(a) Class 1

50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

B
an

dw
id

th
 (

bp
s)

Time (s)

DBHPD Class2
CBQ Class2

(b) Class 2

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8

9
x 10

6

B
an

dw
id

th
 (

bp
s)

Time (s)

DBHPD Class3
CBQ Class3

(c) Class 3

50 100 150 200 250 300
0

1

2

3

4

5

6

7

x 10
6

B
an

dw
id

th
 (

bp
s)

Time (s)

DBHPD Class4
CBQ Class4

(d) Class 4

Figure 10.7: Bandwidth distributions for CBQ and DBHPD in measurements (Load
100%)
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Table 10.4: Achievable throughput

Scheduler Throughput (Mbps) Frames/s Relative

FIFO 85.53 66 221 1.000

PRIQ 84.38 65 322 0.987

CBQ 65.31 50 528 0.764

DBHPD 70.51 54 579 0.824

Table 10.5: Resource consumption for dequeue and enqueue operations

Cumulative time (s) Function calls

Scheduler Enqueue Dequeue Enqueue Dequeue Lost packets

PRIQ 0.25 0.07 3998480 2998860 380

CBQ 0.35 0.87 7996792 13994386 401

DBHPD 0.18 0.24 6997254 5997648 392

for enqueue and dequeue operations, as well as the number of function calls, are in line

with the throughput results and confirm the observation that the CBQ dequeue function

results in significantly greater overheads than DBHPD’s dequeue. PRIQ has the smallest

overhead, but it does not provide reasonable differentiation like DBHPD.
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11 Scheduling Algorithms for 3G and 4G Networks

11.1 Design principles for 3G scheduling algorithms

11.1.1 Algorithms based on WFQ emulation

Many scheduling algorithms designed for wireless networks try to emulate the WFQ fair

queuing algorithm for fixed networks in a wireless domain. Though originally designed

for TDMA networks, the ideas behind the scheduling algorithms presented in this section

can also be adapted to the TD-CDMA mode in 3rd generation networks. In these algo-

rithms it is assumed that a flow can experience either a good channel or a channel with

errors. The basic idea of the emulation is to compare the service received by a flow to a

corresponding error-free service. The error-free service is the service that the flow would

have received at a certain time if the channels had been error-free. The flow can either

be leading, lagging or in sync, depending on whether it receives too many, too few or

just enough resources when compared to the error-free service. A special compensation

model is used to compensate for the lagging flows at the expense of the leading flows as

soon as the lagging flows experience an error-free channel ( [53], [28], [110]).

Idealized Wireless Fair Queueing (IWFQ)

Idealized Wireless Fair Queuing (IWFQ) ( [53], [28]) simulates the wireline WFQ or

WF2Q algorithm in the background in order to determine the error-free service for the

flows. The algorithm assigns a service tag to each flow, which corresponds to the finish

tag of the head of line slot, calculated according to the corresponding wireline WFQ

equation. When a transmission slot becomes free, IWFQ schedules the flow with the

smallest service tag from among all backlogged flows that perceive a good channel.
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The compensation model in IWFQ functions as follows [28]: if a flow perceives an error-

free channel and receives service, its service tag is increased. However, if a flow perceives

a bad channel, its service tag is held constant, thus giving it a better chance to transmit

when the channel later becomes error-free. In IWFQ the service tag of a leading flow i is

not allowed to increase above a lead bound li−max and, correspondingly, the service tag

of a lagging flow cannot decrease below a lag bound bi−max. However, in spite of these

restrictions leading flows might be starved for a long time when the lagging flows perceive

a good channel and can begin to transmit. Thus, IWFQ does not meet the important

objective of graceful service degradation.

Server Based Fairness Approach (SBFA)

The IWFQ algorithm presented in the previous subsection was only able to emulate WFQ

or WF2Q algorithms. A Server Based Fairness Approach (SBFA) ( [53], [28]) is a more

generic framework for adapting any wireline fair queueing algorithm to the wireless do-

main. With a SBFA, a fraction of the channel bandwidth is reserved explicitly for com-

pensation. Thus, the concept of a leading flow is not needed.

Instead of a leading flow, the SBFA uses the Long-Term Fairness Server (LTFS) concept,

a virtual flow that is allocated a service weight corresponding to the explicitly reserved

bandwidth. If the scheduling algorithm that is being emulated selects a certain flow for

transmission, this flow is only allowed to send if it perceives a good channel. Otherwise,

the slot that would have been assigned to the flow is queued into the LTFS flow, and

another flow with a good channel is selected for transmission. The previously rejected

flow has another chance to transmit if, at some later stage, the scheduling algorithm selects

the head of line slot from the LTFS flow for transmission, and if this slot’s original session

has a good channel [28].

Since the SBFA does not explicitly use leading flows, the service degradation is graceful.
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However, SBFA is not able to provide short-term fairness or worst-case delay bounds due

to the use of the LTFS flow.

Wireless Fair Service (WFS)

The Wireless Fair Service (WFS) ( [53], [28]) is based on the modified wireline fair

queuing algorithm, which can provide decoupling between bandwidth and delay. Thus,

flows requiring a short delay do not necessarily have to be allocated a large service weight

if high bandwidth is not required.

As with IWFQ, the WFS flow i also has a lead bound li−max and a lag bound bi−max.

The idea of WFS is that the leading flows relinquish their slots in proportion to their lead

(li/li−max, where li is the current lead of flow i), and that these slots will then be fairly

allocated among the lagging flows [28].

Out of the three described algorithms, IWFQ, SBFA and WFS, the WFS algorithm op-

erates best in the sense that it is able to provide both short-term and long-term fairness,

delay and throughput bounds, graceful service degradation and, in addition, decoupling

between delay and bandwidth.

11.1.2 Opportunistic scheduling

The wireless WFQ emulations presented in the previous sections consider the channel

to be in either a good or bad state. However, considering two channel states is overly

simple, especially for data services that have continuous utility functions. Opportunistic

scheduling based on estimation is an important class of wireless scheduling algorithms,

which are able to consider channel state as a stochastic process.
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Opportunistic Transmission Scheduling with Resource-Sharing Constraints

[15] provides an example of opportunistic scheduling algorithms for TDMA or TD-

CDMA networks, aimed at maximizing overall throughput and, at the same time, provid-

ing fairness for the users. The authors characterize the time-varying channel conditions

using a stochastic model: user i is associated with process Uik, where Uik denotes the

performance that would be experienced by user i if it was scheduled at time k. This per-

formance measure can, for example, be throughput, which is the function of the user’s

SINR, or power consumption.

The goal of the proposed algorithm is to maximize the average system throughput while

taking into account the time-varying channel conditions of the users. When user i is

selected to be scheduled, the system is rewarded with the value Uik . The scheduling

policy is denoted by Q and the performance vector of all users by U . Formally, the

problem can be expressed as follows [15]:

maxQE(UQ(U)) (11.1)

As an example, let us consider the resulting scheduling policy in a two-class case. The

task of the policy is to determine the time-fraction assignments r1 and r2 for the users.

Define a function y(v) = P{U1 + vU2}. An optimal v∗ exists, so that for any > 0

y(v∗ − ǫ) ≤ r1 ≤ y(v∗) (11.2)

The optimal v∗ is determined by the distribution of U . However, U must be estimated,

since it is not known. Figure 11.1 shows the block diagram for the estimation of v∗ [15].

11.1.3 Specific algorithms for 3G networks

When compared to TDMA networks, scheduling is more challenging in 3rd generation

networks due to the fact that different users may send data that use different coding se-

quences in the same frequency/time-slot. In this section, a few algorithms for both the
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Figure 11.1: Block diagram for the estimation of v∗

UTRA-FDD mode and the UTRA-TDD mode are presented. Some of these algorithms

perform scheduling independent of code assignment tasks, while others consider code

assignment as a part of a scheduling problem. In terms of performance, the goal can be

to simply maximize total data throughput or to provide QoS in terms of metrics, such as

packet loss or delay. Some algorithms rely on heavy analytical optimization, while others

use measurement information and estimation techniques for allocating the resources. As

with scheduling in fixed IP networks, the optimization problems usually become overly

complex as the number of factors to be considered increases. Therefore, measurement

based estimation strategies have been proposed for feasible implementation.

With WCDMA, scheduling decisions are performed in the RNC, making it difficult to

react to short term channel variations. Thus, scheduling decisions are made on a relatively

long time scale (in multiples of a 10 ms frame, typically at least 100 ms) and other radio

resource management algorithms, such as fast power control, are used to compensate for

the channel variations on shorter time scales.

FDD mode scheduling algorithms

Fair Resource Scheduling (FRS) [111] and Delay Fair Scheduling (DFS) [144] are exam-

ples of UTRA-FDD mode algorithms that consider code assignment as an integral part
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of scheduling. FRS has been designed for supporting non real-time services on downlink

shared channels (DSCH). It is based on the wireline WFQ algorithm, where each flow

is assigned a service weight. Depending on the actual service received, the flows are

marked as leading, lagging or in sync. A special compensation model is used to allocate

resources to the lagging flows when they perceive a good channel, as explained in the

previous section. The basic FSR scheme is able to prioritize between different service

classes, provide fairness among flows, take into account the radio link conditions of the

flows and assign a power limit to each flow and to the base station power budget.

DFS is a modification of the FRS scheduling algorithm that is able to provide differen-

tiation based on the delay requirements of the flows. The delay threshold of a flow is

denoted by DT , indicating the maximum allowed packet delay for preserving the QoS at

a specified level. At the start of each frame k, the DFS scheme calculates a priority Pi for

each flow i:

Pi =
Di(kT )

DTi
≥ 0, k = 0, 1, 2, ... (11.3)

Di(kT ) denotes the head-of-line packet delay for flow i and T is the length of the frame

(10ms).

After calculating the priorities, DFS performs a proper rate assignment for the flows by

emulating GPS resource allocation and taking into account the priorities and the available

NFC capacity in the system. As the rates are assigned, corresponding OVSF codes are

allocated to the flows.

The first stage of the rate assignment procedure is to assign a zero rate to each flow. Then,

starting from the flow with the highest priority, the following steps are followed [144]:

• The service rateRs of flow i is set to 2R ifRs is currently zero andNFC−2R ≥ 0.

• While flow i has more packets in the queue than could be transmitted during the

next frame with rate Rs, and NFC − 2R ≥ 0, Rs is doubled. NFC is set to
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NFC − Rs.

The rate assignment process is finished when either NFC = 0 or when all flows can

transmit their packets in the queue with the assigned rates during the next frame.

The OVSF codes are assigned from the left of the OVSF code tree, so that the first code

that supports the assigned rate is selected. To eliminate interference, the ancestors and

descendants of the code are blocked until it is no longer being used.

TDD mode scheduling algorithms

Fair Packet Loss Sharing (FPLS) In [79], the authors propose a Medium Access

Protocol (MAC) along with fair packet loss sharing (FPLS) for TD-CDMA networks.

Only the scheduling part of the algorithm is handled here. The goal of FPLS is to maxi-

mize resource utilization and the number of users supported by the system, and to share

packet losses among the users based on their QoS requirements. The QoS requirement

can either be a certain Bit-Error Ratio (BER) or a certain maximum delay. In this case,

a BER caused by wireless transmission is called transmission BER (TBER) and a BER

caused by buffer overflow or the maximum delay being exceeded is referred to as packet

loss probability (PLP).

When performing the scheduling decision for the next frame, FPLS first considers the

most urgent packets (MUPs). The MUPs have to be scheduled in the next frame, because

otherwise the maximum delay will be exceeded and all these packets will be dropped. In

order to meet PLP requirements for the users, the numbers of dropped MUPs for each user

have to be controlled. Other packets can only be selected for transmission if all MUPs

have already been assigned for the next frame.

The authors propose a bin-packing scheduling algorithm for controlling the TBER and
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PLP requirements. Bin-packing in its original form is a well-known combinatorics prob-

lem. The idea is to pack a set of blocks into a minimum number of bins, assuming that the

blocks cannot be divided. The time slots are considered as bins and the packets as blocks.

The bin size is Nmax code slots and the block size is the number of code slots required by

a packet [79].

Traffic and Interference Adaptive Scheduling The traffic and interference adap-

tive scheduling algorithm proposed in [41] has been designed to deliver TDD mode In-

ternet traffic using the DSCH channel. The goal of the algorithm is to maximize total

data throughput by minimizing interference, in order to efficiently utilize radio resources.

However, the algorithm is not capable of providing differentiated Quality of Service to

the traffic flows.

The algorithm operates as follows: firstly, the time slots available for user traffic are di-

vided into uplink and downlink parts. Then, for each part, the number of Resource Units

(RUs) that can be used per time slot are calculated. Ideally, the number of RUs corre-

sponds directly to the number of codes. However, in reality simultaneous transmissions

may cause interference, despite the orthogonality of the codes. Therefore, the task of the

scheduling algorithm is to allocate the RUs so that the interference level does not exceed

a certain threshold.

As a performance metric, [41] uses Pe(k), the probability that an RU is discarded at the

receiver because of transmission errors when k codes are used in the same time slot. By

using this metric, the algorithm finds an optimal value k∗ for the number of codes that

maximizes the throughput:

T (k∗) = max{T (i), i = 1, ..., 16} (11.4)

where T (i) = (1 − Pe(i)) ∗ i (the expected value for the number of correctly delivered

RUs when i codes are used). After solving the optimal k, the same number of RUs is

allocated to all active flows.
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In the optimization problem presented here, it is assumed that the level of system inter-

ference with a certain number of codes is known. However, this is not the case in reality

and efficient methods for estimating Pe(k) are required. The estimators for Pe(k) utilize

the information about erroneous RUs from the previous frames. In the uplink direction

the base station can verify the correctness of the RUs sent by the users. In the downlink

direction, the so-called Acknowledged Mode Procedure must be used in order to receive

feedback about the erroneous frames.

It should be noted that if the number of RUs is decreased due to the estimation result,

there will be an additional deterministic loss, because this means that a smaller amount

of data can be transmitted in the channel. However, if the expected decrease in the RU

error probability provides a greater gain compared to the deterministic loss, it is worth de-

creasing the number of RUs. Correspondingly, if the number of RUs is increased, this can

potentially result in a higher throughput or in a significant increase in error probability.

The estimation algorithms aim to balance these risks in order to enable the optimal num-

ber of RUs to be chosen. The estimation algorithm can rely on worst-case assumptions

about increasing the number of RUs, or alternatively it can filter the errors exponentially

in some way. However, the details of the estimation algorithms are omitted here.

11.1.4 HSPA scheduling

With HSPA scheduling, decisions are made in NodeB/eNodeB for both the uplink and

downlink, allowing a fast reaction to channel variations [136]. With HSPA, a scheduling

resolution of 2 ms (the duration of one subrame) is applied. Channel quality information

(CQI) plays an important role in scheduling. With HSPA, UE provides uplink CQI in the

form of the highest MCS that can be used to receive the data, with the desired QoS includ-

ing SINR and BLER targets. If multi-antenna transmission is used, additional feedback

such as Precoding Control Information (PCI) has to be provided.
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A thorough simulation analysis of several channel-adaptive scheduling algorithms that

use CQI feedback can be found in [112]. Both the overall system performance and the

individual user quality of service (QoS) constraints are studied. In Section 11.2.2 we

provide mathematical formulations of both these and other channel adaptive scheduling

algorithms in LTE. The basic ideas in these algorithms are the same as those used for

HSPA; the main difference is the scheduling resolution.

Size-based scheduling can also be combined with channel-adaptive HSPA scheduling.

[100] presents heuristic algorithms that utilize both flow sizes and channel knowledge.

According to their results, a significant performance gain can be obtained by using size

information in addition to channel information.

11.2 Design principles for 3.9G/4G scheduling algorithms

In 4G networks the basic task of allocating time slots to service classes or individual

users is very similar to 3G networks. The algorithm could, for example, be some sort of

modified Fair Queuing algorithm presented in the previous sections. Yet, 4G networks

should be able to bring considerable enhancements to reliability and throughput when

compared to 3G networks. Furthermore, networking and interoperability solutions must

allow users more flexibility. Energy efficiency will be a critical issue, especially in hybrid

scenarios where low-battery devices are used to forward traffic. As we have stated in [78],

it is obvious that pure scheduling is not able to meet these requirements, so significant

improvements and changes will need to be made to layers 1 and 2 of the ISO OSI model.

Cross layering should be used to tie the different layers together so that the scheduling

algorithm can exploit and modify the information and algorithms available in the lower

layers. Advanced methods such as link adaptation, adaptive transmission and MIMO

provide large amounts of physical layer information that should be taken into account for

scheduling. The structure of the wireless channel also has to be considered (i.e. how long

frames are used, the number of time slots per frame, etc.), as well as the channel access
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method used.

11.2.1 Cross-layering in wireless scheduling

Optimizing algorithms across layers is known as Cross Layer Design (CLD) [87, 133].

Cross layering may either be revolutionary or evolutionary [23]. In a revolutionary ap-

proach an existing protocol stack is completely redesigned, whereas with an evolutionary

approach the existing stack is only modified so that some layers can exchange informa-

tion. The evolutionary approach is preferred due to compatibility and economic issues.

Still, cross-layering may cause unintentional loops and instability effects if a parameter is

modified on several layers [87]. CLD also breaks the modularity and abstraction of layers

and makes it more difficult to redesign and review protocols.

In 4G packet scheduling, cross-layering information mainly from the physical, link and

MAC layer could be utilized. In existing systems the task of the physical layer is to

transmit the bits at a certain power level and to provide the following information: cod-

ing/modulation, bit-error rate and transmit power. The link/MAC layer, on the other

hand, provides error-free transmission with the help of Forward Error Correction (FEC)

and Automatic Repeat reQuest (ARQ). The link/MAC layer provides information on the

FEC scheme, the number of retransmitted frames and the time when the medium is avail-

able for transmission. In 4G systems, the amount of channel information needed for link

adaptation, adaptive transmission and MIMO is much greater in comparison to existing

systems. Evidently, it is challenging to transfer this large amount of channel information

to the MAC layer and to send processed control information from the MAC to physical

layer. Moreover, to be useful in fast fading conditions, information transfer and process-

ing should be carried out in a time frame of milliseconds.

The physical and link/MAC layers could act, for example, in the following way: If the

Bit Error Rate (BER) or Frame Error Rate (FER) in the physical layer exceeds a certain
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threshold, the link/MAC layer could instruct the physical layer to increase the transmit

power, or the power could be decreased while increasing error correction. However, it

should be noted that a better error correction method in itself increases power consump-

tion. This results from the fact that channel coding techniques increase the redundancy of

the transmitted data, again leading to an increase in overall power.

The scheduler element could interact with the physical and MAC layers in the following

ways: the scheduler could ask the physical layer to adapt or even change the modulation,

depending on the QoS requirements of the traffic streams and the channel conditions. In

the MAC layer the scheduler could give instructions to change the frame transmission

priority or to adapt FEC/ARQ methods [133].

Spatial diversity and MIMO are key technologies considered in 4G system design, which

bring better power and interference control benefits. The use of these technologies also

affects scheduling and feedback mechanisms.

In existing mobile assisted network models, the infrastructure network decides the op-

timal rate for adaptation schemes based on the information collected from the MTs [2].

If MTs became MRs they would be required to carry out similar channel estimations on

their own. Optionally, in the case of hybrid networks, the AP or RS could assist MRs, for

example, by providing optimal power control information. However, this is not a viable

option with a high terminal mobility rate and/or in dynamic fast fading channel condi-

tions, as the information becomes stale very quickly. On the other hand, this could be a

feasible solution to counter slow or shadow fading. Therefore, distributed rate adaptation

algorithms that are optimized for MRs should be considered for hybrid networks.
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11.2.2 Algorithms for LTE/LTE-Advanced

Like HSPA, LTE scheduling decisions are also performed in NodeB/eNodeB for both

uplink and downlink, allowing a fast reaction to channel variations ( [136]). With LTE

scheduling, the resolution is 1 ms and scheduling occurs in the domains of both time

and frequency. Thus, CQI also has to be provided in terms of both time and frequency

resolution [96]. Since both uplink and downlink scheduling is performed in eNodeB,

information also has to be available about subcarrier states, even when there is no ongoing

transmission in the uplink. For this purpose LTE uses channel sounding, whereby UE

transmits sounding reference symbols (SRS) periodically for the eNodeB channel quality

estimation.

With LTE, most schedulers operate in two phases: time domain packet scheduling (TDPS)

and frequency domain packet scheduling (FDPS). Firstly, TDPS creates a list of users to

be considered during the next scheduling period and FDPS allocates the RBs to users

in this scheduling candidate set (SCS). Average CQI is often used with TDPS, while

FDPS utilizes CQI per subcarrier. The performance gain of LTE scheduling comes from

increased diversity and flexibility when operating in these two domains. [128], [89], [107]

and [98] study the performance gain of FD scheduling compared with pure TD scheduling

in various scenarios. Based on the reported results, average system throughput and cell-

edge user bit rate can be improved by about 40% compared to a TD scheduler that does

not utilize the CQI information of different subcarriers. Figure 11.2 depicts the essential

components of a time-frequency scheduler.

Both TDPS and FDPS can apply various scheduling algorithms depending on the desired

outcome. The most important schedulers are Round Robin (RR), Maximal signal to inter-

ference ratio (MaxSIR), Proportional fair (PF) ( [18], [151], [76]), QoS aware weighted

proportional fair (QWPF), Fair throughput (FT), channel dependent earliest due date (CD-

EDD) and Exponential rule (ER) [138]. The RR scheduler simply allocates an equal share

of resources to all users, without considering their channel states. The FT scheduler al-
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Figure 11.2: Time-frequency LTE scheduler

locates resources so that, on average, different users get the same throughput. Table 11.1

shows the scheduling functions for the more advanced channel aware schedulers. C
I i

and

λi denote current Carrier-to-Interface ratio (CIR) and average rate of user i; wi(k) is a

QoS weighting factor for user i’s flow k; Wi and W̄ are the waiting time for user i and

the average waiting time for all users; Dmax,i,k is the maximum delay for user i’s flow k

and a is a factor for tuning the impact of delay.

Table 11.1: Typical scheduling functions for time-frequency scheduler

Scheduler Scheduling function

MaxSIR C
I i

PF
C
I i

λi

QWPF
C
I i

λi
· wi(k)

CD-EDD wi(k) ·
C
I i

λi
· Wi

Dmax,i,k

ER
C
I i

λi
· exp(aWi−aw̄

1+
√
aW̄

)

The above schedulers are only able to allocate resources between users, not at the flow-

class identifier (FC-ID) level. In [61] the authors present the design for a LTE scheduler

within a DiffServ context that operates on two layers: an inter-FC-ID scheduler that first

sorts the FC-IDs in function of their policies, and an intra-FC-ID scheduler that performs

scheduling within a given class. Other proposed LTE schedulers include [129] and [24],

where a Hybrid ARQ is used together with scheduling to further improve performance.

[107] considers the state of UE buffers as well as channel state in order to reduce PLR
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and to maintain fairness and high system throughput. [135] presents a queue- and channel-

aware low-complexity scheduler that is able to support different types of QoS.

The scheduling algorithms described so far have only considered scheduling in the LTE

downlink. In [101] and [16] PF FDPS for a 3GPP LTE Uplink are proposed. Contiguous

frequency allocation, required by the SC-FDMA used in LTE uplinks, limits the degrees

of freedom in scheduling. The authors show that the FD scheduling problem becomes NP-

hard with this constraint and propose practical heuristic algorithms to solve the problem.

Other proposals for LTE uplink scheduling include [35], [34] and [102], which describe

schedulers with different optimization metrics and complexities.

As well as channel-aware scheduling, interference mitigation also has an important role,

especially at the cell edge or when the network is heavily loaded, when interference

increases mainly due to two reasons: as the UE moves further from its eNodeB, the

strength of the received signal decreases. At the same time, inter-cell-interference (ICI)

increases when the UE approaches the neighboring eNodeBs. With LTE, ICI occurs when

there is a collision between resource blocks that are used simultaneously by two or more

cells. Inter Cell Interference Coordination (ICIC) has been studied in several papers and

aims at reducing this collision probability, as well as the resulting SINR degradation. In

( [105], [94], [14]), ICIC has been defined as an optimization task, whose objective is to

maximize the multi-cell throughput, subject to power constraints, inter-cell signaling lim-

itations, fairness objectives or minimum bit rate requirements. The optimization problems

often become complex and, as a result, 3GPP has studied feasible and intuitive heuristics

using system simulations [5]. ICIC time scales range from milliseconds (fully synchro-

nized scheduling) to several days (static planning). The time scales chosen largely depend

on the desired performance versus the signaling overhead that is allowed. Enhanced fre-

quency reuse is an important class of ICIC mechanisms. It can be used to reduce the ICI,

for example, by using a frequency reuse factor (FRF) greater than one in cell-edge regions

and a FRF of one near the cell-center [90]. Other modifications to this scheme include [3]

and [4]. In these schemes, the assumption is that the traffic load remains stable within
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a cell. However, this is not the case in reality and, as a result, dynamic frequency reuse

schemes have been suggested ( [52], [95]) in which the bandwidth is divided into sub-

bands so that the cell center and cell edge use different bands and bands can be borrowed

either within a cell or between cells.
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12 Multiantenna technologies and channel aware

scheduling in 4G networks

The use of multiple antennas is a key physical layer technology that can be used to rad-

ically enhance the performance and spectral efficiency of wireless systems. Denote by

B and C the system bandwidth (Hertz) and capacity (bps) for the wireless link in an

ideal channel. Further denote by ρ the SNR in the channel. According to Shannon’s law

(Eq. 12.1), capacity is proportional to the logarithm of transmission power meaning that

simply increasing power finally results in diminishing returns. However, by using sev-

eral antennas capacity can be increased linearly while transmitting on the same frequency

[63], [57]. The desired system efficiency can be further improved by combining mul-

tiantenna technologies with channel-aware schedulers which divide the radio resources

between multiple users [93], [149]. Both approaches are already used, for example, in

high speed downlink packet access (HSDPA), in the extension of wideband code division

multiple access (WCDMA) and in 3G Long Term Evolution (LTE) [8], [10], [9], [11].

Moreover, further development of these technologies will be an important component of

LTE-Advanced design efforts [6].

C = B × log2(1 + ρ) (12.1)

12.1 Spatial diversity with multiantenna technologies

Depending on whether multiple antennas are used at the receiving or transmitting end, or

both, multiple antenna systems can be known as Single-Input Multiple-Output (SIMO),

Multiple-Input Single-Output (MISO) or Multiple-Input Multiple-Output (MIMO). Mul-

tiple antenna techniques can be used for two types of diversity, namely spatial diversity

and spatial multiplexing. With spatial diversity, reliability and range is increased by send-

ing or receiving copies of the same data stream along different spatial paths between the
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transmitter and receiver antennas. With spatial multiplexing, on the other hand, inde-

pendent data streams are sent simultaneously along different spatial paths, resulting in a

multiplexing gain. Table 12.1 shows achievable capacity with different diversity meth-

ods [63].

Table 12.1: Achievable capacity assuming an ideal channel

Method Capacity (bits/sec)

SISO Blog2(1 + ρ)

Diversity (1xN or Nx1) Blog2(1 + ρN)

Diversity (NxN) Blog2(1 + ρN2)

Multiplexing BNlog2(1 + ρ)

12.1.1 Receive diversity

Figure 12.1 depicts a 2x2 system used for receive diversity. s and r respectively denote

the transmitted symbol and received signal, while h is a complex valued channel coeffi-

cient describing the signal’s amplitude and phase shift between selected antenna pairs. n

represents thermal noise. When using multiple antennas for reception, the easiest method

is to select the antenna with the strongest signal (SNR) and ignore the other signals. This

method is called selection combining (SEL). A more advanced method is to add the sig-

nals together so that they combine without the undesirable effects of multi-path fading. In

practice, the signals are delayed until they are in the same phase. The signals can also be

weighted by their SNR so that larger weight is given to a signal with better SNR, which is

equivalent to scaling the signals by their magnitude before adding them. This method is

called Maximal-ratio combining (MRC) and involves adding the signals based on MRC

results to the overall SNR, which is the sum of the component SNRs. Operation of MRC
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can be analytically expressed as:

y =

M∑

k=1

wk · rk, (12.2)

where y denotes the final receiver output and wk = hk ∗ /||h||, where hk∗ denotes the

complex conjugate of the corresponding channel coefficient.

h11

h12Tx Rx

x

= h xy2 12

1= h11xy

Figure 12.1: 2x2 system for receive diversity

12.1.2 Transmit diversity

Figure 12.2 depicts a 2x2 system used for transmit diversity. With transmit diversity, the

equivalent to SEL in antenna selection, the best antenna is chosen for transmitting the

packet. The MRC equivalent is transmit beamforming, where the transmitter precodes

(delays) and weights the signals so that the transmit power allocated to each spatial path

is based on the SNR. In order to be able to precode and weight the signals, the transmitter

must be aware of the channel state. This requires regular feedback from the receiver.

Transmit beamforming mobile stations encode channel state information (CSI) into the

feedback message that is sent to the BS through an uplink control channel. Note that

the term CSI refers to feedback that contains both power and phase information, while

the term channel quality information (CQI) is commonly used for signal power related

feedback. For example, with HSDPA the dedicated physical control channel (DPCCH)
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contains a feedback indicator field (FBI) field that carries CSI to the BS [8]. Current

HSDPA may employ only two transmit antennas but we consider general M antenna

case.

h11

h21

11+hy = (h )x21

Rx

x

Tx

x

Figure 12.2: 2x2 system for transmit diversity

Transmit beamforming methods

This section provides an analytical description of the most important transmit diver-

sity methods, antenna selection, Mode1 and Mode2. Received SNR from antenna m

is denoted by γm. In the analysis we assume that the complex channel coefficients

hm =
√
γm e

jψm (m = 1, · · · ,M) are i.i.d. zero–mean Gaussian random variables that

are perfectly known at the receiver. Feedback words are composed of short–term CSI,

available at the transmitter without errors or latency. Note that the effects of feedback

errors and feedback latency on the performance of transmit beamforming have been pre-

viously studied in [38, 65, 123].

The received signal in the mobile station is given by:

r = (h ·w)s+ n =
( M∑

m=1

wmhm

)
s+ n, (12.3)

where s is the transmitted symbol, n refers to zero–mean complex additive white Gaussian

noise, and the vector w ∈ W refers to the codebook of complex transmit weights, such

that the sum power constraint ‖w‖2 =
∑M

m=1 |wm|2 = 1 is satisfied.
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In the analysis, we will compare the following three practical transmit beamforming

methods:

Antenna selection. In this method w = (0, .., 0, 1, 0, .., 0), where the non–zero compo-

nent indicates the best channel in terms of received power. Hence,

|h · ŵ| = max{|hm| : 1 ≤ m ≤M}.

The quantization set has M vectors and, as a result, only ⌈log2(M)⌉ feedback bits are

required, where ⌈x⌉ denotes the smallest integer, not less than x.

Mode 1. Here antenna specific feedback is applied in order to adjust the phases of the

component signals from different antennas with respect to a reference antenna [64]. With-

out disregarding the general nature of this analysis, the first antenna was chosen as the

reference. For each of the other antennas, the feedback word consists of Nrp-bit informa-

tion on the state of each relative phase between the reference antenna and the otherM−1

antennas. Feedback bits are determined using the algorithm:

|h1 + v̂mhm| = max{|h1 + vmhm| : vm = ej2πn/2
Nrp}, (12.4)

where 0 ≤ n ≤ 2Nrp − 1, and the components of the transmit weight ŵ are of the form:

ŵm =
1√
M




1, m = 1,

v̂m, m > 1.

A natural generalization for the above scheme is to weight transmit amplitudes in addition

to adjusting phase differences, giving rise to a method that is known as Mode 2.

Mode 2. In Mode 2, three bits are reserved for adjusting the antenna phases relative to

the reference antenna and one bit is dedicated to transmitting power feedback. This leads

to the circular 16-quadrature amplitude modulation (16-QAM) constellation illustrated in

Figure 12.3
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Figure 12.3: Weight states (w2) in Mode 2. [77]

The feedback word corresponds to the Gray labeled signal state closest to weight w2.

These labels are transmitted to the BS in the FSMph field of the uplink signal. The Feed-

back Signaling Message (FSM) is a part of the FBI field of the DPCCH. Each feedback

message contains Npo + Nph bits, and one bit being transmitted in each slot results in a

feedback bit rate of 1500 bps.

In principle, the problem of finding an optimal w2 (or wn in the n-antenna case), so as

to maximize received SNR, can be formulated as follows. First, a matrix is defined as R

:=
∑NR

n=1 H†
nHn, where NR is the number of receive antennas and Hn the channel matrix

associated with the receive antenna n. Then, the optimal weight vector w2 (or wn) is the

dominant eigenvector of R in:

argmax
W : ||W||2=1

W†RW (12.5)

A more thorough analysis of Mode 1 and Mode 2 has already been presented in [64].
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The main benefit of antenna selection is the low feedback overhead, which makes the

algorithm attractive from the practical implementation point of view. However, antenna

selection is sensitive to feedback errors [65]. Mode 1 and 2 are straightforward extensions

of the two-antenna UMTS CL transmit diversity Mode 1 and 2. Mode 2 is included only

in Release 99 (R99) of the UMTS two-antenna system, while Mode 1 also appears in later

specification releases. Finally, we note that the length of the feedback word in Mode 1 is

(M − 1)Nrp, while in Mode 2 additional ⌈log2(M !)⌉ order bits are needed.

12.1.3 Spatial multiplexing

Figure 12.4 depicts a 2x2 system used for spatial multiplexing. Different streams will

combine if they are multiplexed in the same channel, and the receiver has to properly sep-

arate and decode them. The two best known schemes for spatial multiplexing are Direct-

Mapped MIMO and Precoded MIMO. With Direct-Mapped MIMO, transmit power is

divided equally between different antennas. Using a channel matrix H, the received sig-

nal vector (r) can be expressed as:

x1

x2

h12

h11

h22

h21
Tx Rx

= hy2 12

1= h11xy 1+h x2

x1+h 22x2

21

Figure 12.4: 2x2 system for spatial multiplexing

r = Hs+ n, (12.6)
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where (s) is the vector of transmitted symbols and (n) is the noise vector. In order to

decode the different streams, this linear system can be solved to estimate s from:

H
−1

r = s+H
−1
n. (12.7)

This is equivalent to projecting r in a direction that is orthogonal to the channel coef-

ficients of the other streams, i.e forcing the other signals to zero. This kind of MIMO

receiver is called a Zero-Forcing (ZF) receiver. However, the problem with a ZF receiver

is that H is almost non-invertible when different spatial paths are correlated and thus the

noise term is amplified compared to the noise in the original system. The Minimum Mean

Square Error (MMSE) detector is a modification of ZF, which strikes a balance between

zeroing other streams and amplifying noise. Both ZF and MMSE receivers have a low

computational complexity due to their linearity. With Precoded MIMO, the transmis-

sion power is not evenly distributed between different paths; instead a larger portion of

the total power can be given to higher capacity paths. In this way, a greater theoretical

MIMO capacity can be achieved when compared with Direct Mapped MIMO. However,

since Precoded MIMO requires precoding at the transmitter and shaping at the receiver,

the transmitter must be aware of the channel coefficients, as with transmit diversity tech-

niques. This increases implementation complexity.

12.2 Channel aware scheduling with transmit beamforming

Both transmit beamforming and channel-aware scheduling provide performance benefits,

even when there is scarce CSI in the transmitter [70], [69]. Methods that rely on heavily

quantized channel information are especially important in FDD systems like HSDPA,

LTE and LTE-Advanced, where different frequency bands are employed for the uplink

and downlink and a separate feedback channel is required. Furthermore, the capacities of

control channels are necessarily limited, and large amounts of control information imply

large latencies in feedback signaling, which may limit the operation point of the system

to slow mobile velocities.
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This thesis considers downlink transmission systems, as shown in Figure 12.5. It is as-

sumed that radio resources are shared between K mobile users, that the base station (BS)

employsM-antenna transmit beamforming and that each mobile station (MS) has a single

receive antenna. For transmit beamforming feedback and feedback needed for schedul-

ing strategies, mobile stations are required to estimate the different channelsM from pilot

signals that are multiplexed to the data. Such a common code-multiplexed pilot structure

is employed, for example, in HSDPA systems.

We assume that users are homogeneous in terms of QoS requirements. Scheduling deci-

sions are based on temporal fairness in the sense that each user obtains an equal share of

transmit resources over time. MS sets the feedback bit based on the relative SNR γ/γ̄.

Here γ refers to an instantaneous SNR in the MS, while γ̄ denotes the SNR averaged

over an active user set on a longer time scale. γ̄ may vary between user sets in different

geographical locations, although the base station transmission power is fixed. It should

also be noted that temporal fairness is not providing fair throughput for users, since MSs

near the cell center may have an access to higher data rates than users that are located on

the cell edge.

12.2.1 Scheduling strategies

This thesis takes into consideration a comparison between the following three scheduling

strategies: Round Robin, On-Off and Maximum SNR. Although Maximum SNR or On-

Off scheduling are not inherently fair, there are some ways to make them approximate

fairness through proper system design. For example, power control can balance average

user SNRs, scheduling can be performed separately for subgroups of equidistant users,

or the CQI may be defined so that it measures the instantaneous SNR relatively to the

average SNR.

Round Robin strategy. This is a baseline approach where the served user is either ran-
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domly selected from among K active users, or the selection is performed according to a

fixed sequence. The system does not take into account users’ channel states and there is

user-specific feedback that only relates to transmit beamforming.

On-Off strategy. In this approach, the transmitter either selects the served user ran-

domly, or according to a fixed sequence based on the set of users that have reported a

positive acknowledgment (ACK) during the last transmit time interval (TTI). The one-bit

ACK/negative ACK (NACK) is set at the MS during each TTI, based on a comparison

between the received SNR γ and a predefined SNR threshold γ0 such that:




ACK, γ > γ0,

NACK, γ ≤ γ0,

(12.8)

where γ0 = ξγ̄. In (12.8), ξ is a parameter used for threshold optimization, while γ̄ is the

average SNR of an active user set over a longer time scale and may vary between user

sets in different geographical locations. The threshold γ0 is the same for all competing

users and is set in the BS on a long-term basis. The scheduled user is selected from the

set of users that send an ACK.

If none of the users sent a positive ACK, the served user is randomly selected. The

feedback BER is denoted by q.

Maximum SNR strategy. In practical systems we can use 2k-state quantization with

k-bit scheduling feedback. Then we divide active users into 2k sets and select the user

from the set with the highest received SNR. When the number of quantization sets grows

to infinity, we obtain an ideal case where the SNR of each user is perfectly known at the

BS. This asymptotic case is known as Maximum SNR scheduling.

The scheduling strategies explained above represent the three main cases of the usage of

channel state information. Namely, the Round Robin is independent from channel state,
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the Maximum SNR assumes perfect channel knowledge at the transmitter and the On-Off

strategy uses the scarcest possible channel feedback: one bit. Thus, by comparing these

three strategies, the impact of feedback on system performance can be properly assessed.

The practical justification for reduced feedback approaches like the On-Off strategy is

based on the fact that control channels carrying short-term channel information have very

strict time delays and overhead constraints, as well as high robustness requirements. Us-

ing strong error-correction codes on the feedback channel is not a favorable solution,

because it may critically increase signaling delay and overhead.

Generalizations of the one-bit quantization scheme and corresponding capacity expres-

sions have been derived in [60] assuming that only the users, whose CQIs exceed a given

threshold, report their unquantized CQIs to the base station. Quantization examples of

CQI, together with max. SNR scheduling were studied in [85], but no clear explanation

was given of how to select the quantization levels. Furthermore, capacity or block error

rate maximizing quantizations within max. SNR scheduling, which depend on the SNR,

were considered in [55] to show that two-bit quantization obtains 90% of the unquantized

CQI capacity in the example scenarios. The quantization regions were found using nu-

merical optimization. Furthermore, Bit-Error Probability (BEP) expressions for general

CQI quantization were derived in [68] showing that when outage is allowed, two-bit quan-

tization already provides most of the gains of maximum SNR scheduling, even when the

quantization is not optimized with respect to BEP. Such a quantization simplifies system

design, because it does not depend on the SNR operation point of different users.

In case of MISO and MIMO systems, CQI feedback consisting only of received SNR is

not able to achieve the boundary of the multiuser capacity region. A natural way of ex-

tending the maximum SNR scheduler to work with MIMO systems is to report a received

SNR from each transmit antenna, and transmit M parallel data streams so that each user

receives a single data stream at a time [140], whereM refers to the number of transmit an-

tennas. This requires M times more feedback than the MISO case. However, signaling of
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eigenvectors is avoided, because the basis is provided by the transmit antennas. Another

way of extending this scheduler is to take into account the type of the receiver [73, 77]

when generating CQI feedback. [73] observes that the scheduler’s maximizing capaci-

ties chooses the user with “the most invertible” instantaneous channel covariance matrix,

when there is a large number of users and their channel statistics are the same. How-

ever, this is not necessarily true if the statistics are different. A similar approach is used

by [77], whereby space-time coding and a corresponding equivalent channel matrix are

used to calculate CQI feedback instead of the conventional channel matrix.
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Figure 12.5: Model of the transmission system.
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13 Performance of On-off scheduling strategy in

presence of transmit beamforming

Practical signaling techniques to reduce feedback overhead were developed and simulated

during 3GPP standardization. Yet in most cases it is difficult to analytically describe the

performance of practical transmit beamforming and scheduling methods. Reference [109]

provides a thorough survey of these limited feedback issues in wireless systems. Transmit

beamforming has previously been analyzed in [38,64,65,123], but the effects of different

scheduling strategies were not considered in these studies. It should be noted that transmit

beamforming can be also used for implementing spatial multiple access [84] instead of

scheduling, i.e. time division. On the other hand, limited threshold-based feedback is

proposed in [71] for reducing overhead with any scheduling scheme, but the concept is

not combined with transmit beamforming.

A significant step towards combining transmit beamforming and user selection is taken

in [155]. We analyze the performance of joint transmit beamforming and scheduling by

considering the lower and upper bounds for the scheduling gain [80]. As a reference, we

use the performance of Round Robin scheduling, where radio resource usage is decided

independently from the channel state. On the other hand, the upper bound for perfor-

mance is defined by Maximum SNR scheduling, where the transmitter admits a perfect

CQI for all users. We investigate the performance of the limited feedback scheduler

by assuming that the On-off strategy, where scheduling decisions are based on one-bit

CQI, is implemented. Thus, users report usage of one bit per channel and indicate to the

transmitter whether their received SNRs are below or above a predefined threshold. If

scheduling is successful, the scheduler finds a nonempty group of users whose SNRs are

above the threshold, before randomly picking one of the users from the group and trans-

mitting to it. The corresponding bit error probability (BEP) expressions were derived

from [66], [67], while closed-form expressions for average capacity can be found in [69].
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A one-bit scheduler has a lower performance bound than can be achieved with limited

feedback.

It is not completely new result that joint beamforming and scheduling may result in sig-

nificant gain. However, in previous work this problem has not been analyzed thoroughly

when different types of beamforming methods are applied. For example, in case of

OFDMA frameworks, the on-off type scheduling strategy was recently examined in [103]

where feedback is defined based on resource blocks. The analysis by [103] focuses on

the case where the quantization threshold is fixed but, on the other hand, the only transmit

beamforming method they consider is antenna selection. We examine the performance

of on-off scheduling with more advanced transmit beamforming methods, in which the

decision threshold is optimized. We show that feedback errors may become a problem

in this case and, furthermore, we provide performance results for the use of the HSDPA

transmit beamforming method. Furthermore, we analyze the effect of feedback errors

for scheduling. The applied performance analysis methodology was recently developed

in [69] and [48].

13.1 Analysis

The primary intention of the analysis is not to provide absolute performance results, but

rather our goal is to investigate the scheduling benefit of scarce relative SNR feedback,

and track the impact of feedback errors on On-off scheduling.

We assume a feedback channel structure where uncoded control information is transmit-

ted to the BS at each TTI in the dedicated control channel. For example, with UTRA

FDD the fast PC is applied to the uplink control channel so that the control information

is received at an approximately constant SNR, and it can be assumed that feedback bit

errors are uniformly distributed over time. The effect of feedback latency is neglected in

this study, but it is approximately valid within low mobility environments.
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Finally, we note that the delay experienced by the user may be fixed in the first scheduling

strategy to K TTIs, whereK is the number of scheduled users. In second and third strate-

gies the delay varies, the expectation being the same K TTIs. In practice, the variation of

the delay depends on the queuing principles of the schedulers and type of services and is,

therefore, outside the scope of this study.

We begin the analysis by stating the SNR distributions for applied transmit beamforming

methods. Then we deduce the SNR distributions of the scheduling strategies we are

investigating and, in last part of this section, we compute outage rates and discuss the

results.

13.1.1 SNR distributions for Round Robin and Maximum SNR strategies

Since Round Robin strategy does not apply channel state information, the performance

is defined by the underlying transmit beamforming method. Therefore, the first thing

we consider for antenna selection are the distributions, Mode 1 and Mode 2. The SNR

distribution for antenna selection should be kept in mind, see [17]. It is assumed that M

are independent, exponentially distributed variables. Then, for the antenna selection case,

the cumulative distribution function (CDF) and probability distribution function (PDF)

admit the expressions

fas(γ) =
Me−γ/γ̄

γ̄

(
1− e−γ/γ̄

)M−1
,

Fas(γ) =
(
1− e−γ/γ̄

)M
.

(13.1)

When various performance measures are computed analytically, the binomial series ex-

pansion in (13.1) can be used for both the PDF and CDF.

For Mode 1 and 2 the distribution of |h · ŵ|2 is difficult to deduce and, therefore, we use

the approximation deduced in [70]. We start by noting that for the SNR there holds:

γ = |h · ŵ|2 =
∣∣∣
M∑

m=1

ûm
√
γm e

jφm
∣∣∣
2

, γm = |hm|2, (13.2)
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Figure 13.1: The ratio γ̂/γ̌ as a function of predefined CDF level when K = 2 and single
antenna transmission (solid curve), antenna selection (+), Mode 1 (x) and Mode 2 (o) are
applied. Dashed curves correspond to case M = 2 and dotted curves correspond to case
M = 4. The mean SNR is 10dB.
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Figure 13.2: The ratio γ̂/γ̌ as a function of the predefined CDF level, where K = 8 and
single antenna transmission (solid curve), antenna selection (+), Mode 1 (x) and Mode 2
(o) are applied. Dashed curves correspond to case M = 2 and dotted curves correspond
to case M = 4. The mean SNR is 10dB.
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where φ1 = 0 and adjusted phases φm (m > 1) are uniformly distributed over the interval

(−π/2Nrp, π/2Nrp). Moreover, ûm refers to the amplitude weight of antenna m, and the

component SNRs γm is scaled such that E{γm} = γ̄. For SNR distribution, we need the

so-called SNR gain G that is defined by:

G = E{|h · ŵ|2}. (13.3)

The SNR gain provides information on the coherent combining gain caused by transmit

weights. If there is no feedback, transmit weights are selected independently of channel

state, resulting in:

E{|h · ŵ|2} = E

{∣∣∣
M∑

m=1

wm
√
γm

∣∣∣
2
}

=
M∑

m=1

|wm|2E{γm} = γ̄|w|2 = γ̄.

Thus without the channel information G = 1, there is no gain in the SNR. The SNR gain

for Mode 1 and Mode 2 can be computed analytically and the resulting values can be

found in [70] and [48], where it is shown that a good fit for the SNR distribution of Mode

1 and 2 is provided by a scaled χ2−distribution with 2M degrees of freedom:

fMode n(γ) =
1

Γ(M)

( M

Gnγ̄

)M
γM−1e−Mγ/Gnγ̄. (13.4)

Here subscript n ∈ {1, 2} refers to mode number. The CDF for SNR is obtained after

integrating (13.4). The result is given by:

FMode n(γ) =
1

Γ(M)
Υ (M,Mγ/Gnγ̄) , (13.5)

where Υ is the incomplete gamma function defined by:

Υ(a, z) =

∫ z

0

ta−1e−tdt, (13.6)

see [13], (6.5.1).

For the Round Robin strategy, the PDF and CDF formulaes given in Eqs. 13.1, 13.4 and

13.5 apply as such.
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Figure 13.3: Cumulative distribution function for SNR when γ̄ = 10dB and antenna
selection with M = 2 is applied. Dotted curve: Round Robin strategy. Solid curves:
On-off strategy with 4 users and threshold ξ = −3dB (o), ξ = 0dB (*) and ξ = 3dB (x).
Dashed curve: Max SNR strategy. The dash-dot curve refers to the case of a continuous
single antenna transmission.
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In the case of the Maximum SNR strategy, the BS is perfectly aware of the relative SNR

of all K users when the served user is selected. Then the PDF and CDF of the received

SNR on the shared channel are given by:

fMax(γ) = K · fTBF(γ) · FTBF(γ)
K−1,

FMax(γ) = FTBF(γ)
K ,

(13.7)

where the subscript on the right refers to transmit beamforming.

We recall that the Round Robin strategy provides the lower bound for the performance

of the On-off strategy, while the Maximum SNR strategy provides the upper bound. Fur-

thermore, it is acknowledged that the benefit of channel-aware scheduling increases when

number of scheduled users increases. On the other hand, if the number of transmit anten-

nas increases, the deviation of the received signal becomes smaller and the available gain

from channel-aware scheduling decreases. In order to illustrate the available gain from

channel-aware scheduling we set:

F0 = FRR(γ̌), F0 = FMax(γ̂),

where F0 is a predefined CDF level, and γ̌ and γ̂ are the SNRs that are needed in the

Round Robin and Max SNR strategies respectively to reach the predefined CDF level. In

Fig.13.1 (K = 2) and Fig.13.2 (K = 8) we have plotted the ratio γ̂/γ̌ as a function of the

predefined CDF level for single antenna transmission, Mode 1 and Mode 2 where M = 2

and M = 4.

Figure 13.1 and Figure 13.2 also provide an insight into the performance of the On-off

scheduling strategy, since the gain from the On-off strategy should be less than the gain

from the Maximum SNR strategy. Thus, according to Figure 13.1, in a two-user system

we can obtain at most a scheduling gain of around 5.5dB, when considering 10%-tile of

CDF and M = 1. If there are two transmit antennas, then the 10%-tile gains are around

2.3dB at most for antenna selection, and around 1.7dB for Mode 1 and 2. When using

transmit beamforming, Maximum SNR scheduling does not bring much benefit in a two-

user case, but gain increases rapidly with additional users. In eight-user system shown in
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Figure 13.2, a gain of around 11.0dB can be achieved at 10%-tile of CDF with M = 1.

With two-antenna transmission, gains of around 5dB can be reached for antenna selection,

and around 3dB for Mode 1 and 2.

It should be emphasized that, although transmit beamforming is reducing the gain from

scheduling, it improves the overall system performance and is, therefore, a justified tech-

nique from the system perspective. However, the results shown in Figure 13.1 and Fig-

ure 13.2 indicate that using accurate feedback for channel-aware scheduling is not neces-

sarily reasonable if transmit beamforming has already been applied in the system. Instead,

it is more effective to use very scarce scheduling feedback and to design the scheduler

such that feedback is used to the maximum extent possible.

13.1.2 SNR distribution for the On-off strategy

Considering the On-off strategy without feedback errors, since the threshold in On-off

scheduling is denoted by γ0, the probability of the user sending a NACK is:

P (NACK) = FTBF(γ0),

where FTBF refers to the CDF of the applied transmit beamforming method. Then, the

probability of ACK is 1 − FTBF(γ0) and, according to Bayes’ theorem, the PDF for the

SNR of the on-off strategy attains the form:

fon-off(γ) = (1−P (NACK)K) · fTBF(γ|ACK)

+ P (NACK)K · fTBF(γ|NACK).
(13.8)

Here the conditional PDFs in Eq. 13.8 are of the form:

fTBF(γ|ACK) = uγ0(γ)fTBF(γ)/P (ACK),

fTBF(γ|NACK) = (1− uγ0(γ))fTBF(γ)/P (NACK),
(13.9)

where uγ0 is a step function, such that:

uγ0(γ) =




1, γ > γ0

0, γ ≤ γ0

. (13.10)
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Figure 13.4: Cumulative distribution function for SNR when γ̄ = 10dB and Mode 1 with
M = 2 is applied. Dotted curve: Round Robin strategy. Solid curves: On-off strategy
with 4 users and threshold ξ = −3dB (o), ξ = 0dB (*) and ξ = 3dB (x). Dashed curve:
Max SNR strategy. The dash-dot curve refers to the case of a continuous single antenna
transmission.
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Thus, the SNR distribution in Eq. 13.8 depends on the probability P (ACK) of erroneous

feedback, the number of users K and the SNR threshold γ0, which is also visible in the

conditional SNR distributions in Eq. 13.9 of individual users.

After integrating Eq. 13.8, we obtain the CDF the for On-off strategy. If γ ≤ γ0, then:

Fon-off(γ) = P (NACK)K−1FTBF(γ). (13.11)

Otherwise:

Fon-off(γ) =
(1− P (NACK)K)

1− P (NACK)
(FTBF(γ)− P (NACK))

+ P (NACK)K .

In case of antenna selection and Mode 1, the SNR CDFs for the examined scheduling

strategies are presented in Figure 13.3 and Figure 13.4 respectively. The results of Mode

1 and Mode 2 are very close to each other and, therefore, results have only been shown

for Mode 1. It is found that Mode 1 outperforms antenna selection and the difference is

between 0.5dB and 1dB for both the Round Robin and Max SNR strategies. If the On-off

strategy is applied, then the gain from Mode 1 varies up to 2dB when ξ = 3dB, and low

CDF percentiles are considered.

Note that the following holds true for the CDF On-off strategy:

Fon-off(γ0) = FMax(γ0). (13.12)

Thus, a one-bit On-off strategy is able to provide the same performance as a Max SNR

strategy when γ = γ0. This property is also visible in Figure 13.3 and Figure 13.4 and it

can be used to optimize the performance of the On-off strategy for the selected operation

point. Yet, if feedback errors occur, then Eq. 13.12 is no longer valid. This will be

discussed in the below.
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Figure 13.5: Outage rate for the Max SNR scheduling strategy as a function of the num-
ber of users, when P out = 0.1 and the mean received SNR is 3dB. The numbers of transmit
antennas are M = 1 (dotted curve), M = 2 (solid curves) and M = 4 (dashed curves)
and antenna selection (x), Mode 1 (o) and Mode 2 (*) are applied in cases M = 2, 4.
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13.1.3 On-off strategy in the presence of feedback errors

When ACK/NACK feedback errors corrupt the decisions in the BS we have:

f err
TBF(γ|ACK) =

((1− q)uγ0(γ) + q(1− uγ0(γ))) fTBF(γ)

P err(ACK)
,

f err
TBF(γ|NACK) =

((1− q)(1− uγ0(γ)) + quγ0(γ)) fTBF(γ)

P err(NACK)
,

where q is the ACK/NACK error probability and the denominator gives the ACK/NACK

probability in BS in the presence of feedback errors. There are two possible events that

lead to a positive ACK decision in the BS: the SNR received by the MS is above the given

threshold and received feedback in the BS is correct, or the received SNR is below the

threshold, but the feedback is corrupted and the BS receives ACK. Analogously, a NACK

decision in the BS precedes two similar events. Thus:

P err(ACK) = (1− q)P (ACK) + qP (NACK),

P err(NACK) = (1− q)P (NACK) + qP (ACK).

The final PDF for On-off scheduling with corrupted feedback is given by:

f err
on-off(γ) = (1−P err(NACK)K) · f err

TBF(γ|ACK)

+ P err(NACK)K · f err
TBF(γ|NACK).

(13.13)

The CDF is obtained by integrating over Eq. 13.13. If γ ≤ γ0, we have:

F err
on-off(γ) = q · 1− P err(NACK)K

P err(ACK)
FTBF(γ)

+ (1− q) · P err(NACK)K−1FTBF(γ).

(13.14)

On the other hand, if γ > γ0 there holds:

F err
on-off(γ) =

(1− P err(NACK)K)

P err(ACK)

(
(1− q)(FTBF(γ)

− P (NACK)) + qP (NACK)
)

+ P err(NACK)K−1
(
(1− q)P (NACK)

+ q(FTBF(γ)− P (NACK)
)
.

(13.15)
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Due to feedback errors the equality (13.12) is no longer valid. Instead, by Eq. 13.14 we

have:

F err
on-off(γ0) =FMax(γ0)

(
q · 1− P err(NACK)K

P err(ACK)P (NACK)K−1

+ (1− q) · P
err(NACK)K−1

P (NACK)K−1

)
,

where the factor in the brackets defines the impact of feedback errors.

13.1.4 Outage rate

It is also worthwhile to investigate system performance in terms of outage rate. Suppose

we define the outage rate by the expression:

Rout(P out) = A · log2 (1 +B · γ(P out)) , (13.16)

where γ(P out) is the SINR needed to achieve a given outage probability P out, and the

parameters A and B are the bandwidth and SNR efficiency factors used to fit the rate of

the system with the set of adaptive modulation and coding curves obtained through system

simulations. For example, it has been shown that values A = 0.83 and B = 1/1.25

provide a good fit with the set of LTE adaptive modulation and coding curves [114]. In

this paper, we shall set the values A = B = 1 in order to provide the upper bound for the

system transmission rate.

The value of γ(P out), can be obtained as the solution to the following equation:

P out = P (log2(1 + γ) < R0)

=

∫ γ̂

0

f(γ)dγ = F (γ̂).
(13.17)

In this case, γ̂ = 2R0 − 1 is the SINR related to the limit rate R0, and the CDF is FTBF,

FMax or Fon-off depending on the applied scheduling strategy. Note that for a given P out,

the solution of Eq. 13.17 can be computed either numerically or analytically by using the
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Figure 13.6: Outage rates for an error free on-off strategy (dashed curves), Max SNR
strategy (solid curve) and Round Robin strategy (dotted line) as a function of the number
of users when P out = 0.1 and the mean received SNR is 3dB. The On-off strategy has
been optimized for 2 (*), 3 (o), 4 (x), 5 (∇) and 6 (+) users. The underlying transmit
beamforming method is the two-antenna Mode 1.
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deduced formulae for CDFs. The analytical solution can be obtained if Round Robin or

Maximum SNR scheduling strategies with antenna selection are assumed.

Figure 13.5 shows an outage rate for the Maximum SNR scheduling strategy, assuming

a 10% outage and a mean received SNR of 3dB. In systems like HSDPA and LTE, the

assumed 10% outage is a feasible criteria for a best effort data service on the cell edge,

where SINR is typically a few decibels. Results show that Mode 1 and 2 clearly perform

better than antenna selection, especially when four transmit antennas are applied.

It is worth of noticing that the maximum outage rate for the On-off strategy is obtained

when the threshold is selected such that γ0 = γ̂ and ξ = γ̂/γ̄. Then, according to

Eq. 13.11 and Eq. 13.12 we have:

γ0 = F−1
TBF

(
(P out)

1

K

)
. (13.18)

Thus, we find that there is an optimal threshold for the On-off scheduling strategy for

a given outage probability and number of users. The number of active users varies in a

practical system and, therefore, it is not possible to fix the threshold. Instead, it is more

feasible to tabulate a finite set of thresholds beforehand and broadcast the indices of new

threshold values when load variations are large.

Outage rates for the On-off scheduling strategy are shown in Figure 13.6 and Figure 13.7,

assuming a 10% outage and a mean received SNR of 3dB. Results are only given for the

two-antenna Mode 1, since it is the most relevant method from the HSDPA perspective

and, on the other hand, because results for antenna selection and Mode 2 provide the same

conclusions regarding the On-off scheduling strategy.

In Figure 13.6 the On-off strategy has been optimized for different numbers of users

according to Eq. 13.18. It is found that outage rate of the On-off strategy increases until

the strategy reaches its optimal performance. Then performance increase saturates and

only a very small gain is obtained, although there is an increase in the number of users in

the system.
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Figure 13.7: Outage rates for the on-off strategy (dashed curves), the Max SNR strategy
(solid curve) and the Round Robin strategy (dotted line) as a function of number of users
when P out = 0.1, q = 0.05 and the mean received SNR is 3dB. The On-off strategy has
been optimized for 2 (*), 3 (o), 4 (x), 5 (∇) and 6 (+) users. The underlying transmit
beamforming method is the two-antenna Mode 1.
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The feedback errors may have a strong negative impact to the performance of the On-

off strategy. According to Figure 13.7 even a 5% error rate in feedback channel clearly

reduces performance, especially when the threshold is optimized for large numbers of

active users.

13.2 Conclusions

Results for the cumulative distribution of received SNR show that the use of transmit

beamforming reduces the difference between upper and lower scheduling performance

limits. Nevertheless, the joint usage of transmit beamforming and scheduling leads to a

remarkable increase in performance. The variation in system performance due to different

transmit beamforming methods was largest with low CDF percentiles, where Mode 1 and

Mode 2 clearly outperformed antenna selection. At high CDF percentiles the differences

were small.

It has been shown that the On-off scheduling strategy reaches its optimal performance

when the received SNR and the decision threshold are equal. Thus, for this particular

SNR value, the one-bit scheduling method is able to provide the same gain as the Max-

imum SNR scheduling strategy, which assumes perfect channel knowledge. In further

work, the decision threshold could be optimized by taking the effect of feedback errors

into account. When focusing on outage rates it was also found that system performance

can be optimized for a certain number users when outage probability is fixed. This is in-

teresting from a wireless systems design perspective since with LTE-A, for example, the

performance requirements on the cell edge are given in terms of outage probabilities and

rates. However, when the decision threshold is optimized for a certain number of users,

additional users do not provide any noticeable increase in gain. Conversely, with the

Maximum SNR scheduling strategy, an increasing number of users leads to a logarithmic

increase in outage rate. Finally, results also show that even a small feedback error rate

may seriously degrade the on-off scheduling performance. The feedback errors decrease
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the outage rate saturation level as a function of the number of users. This can be seen

especially when outage probability is low.
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14 Energy-adaptive scheduling in

infrastructureless 4G networks

In hybrid 4G networking scenarios, the network architecture consists of both infrastructure-

based and infrastructureless parts. Infrastructureless networks can be any type of relay,

adhoc or mesh network. Since MTs are small battery powered devices with limited en-

ergy capacity, energy consumption is one of the most critical technical problems that need

to be solved in this context. This chapter describes relevant energy consumption, en-

ergy models and energy saving mechanisms designed for infrastructureless networks and

presents our novel cross-layer energy-adaptive scheduling and queue management frame-

work EAED (Energy Aware Early Detection) [121] for minimizing energy consumption

in WLAN mesh networks.

14.1 Energy consumption in wireless devices

In wireless devices energy is consumed in a Power Amplifier (PA) on the transmitter side,

as well as in Application-specific Integated Circuit (ASIC), the Host Central Processing

Unit (CPU) and the display etc. ASIC is used to run algorithms and MAC protocols while

the Host CPU is responsible for running applications and other protocols. Figure 14.1

depicts the interfaces between these components.

14.2 Energy saving mechanisms

In energy constraint mesh points, the scheduling and transmission strategies used should

be selected to be as energy efficient as allowed by quality of service constraints. Several

different approaches have been suggested, including Transmission Power Control (TPC),
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energy-efficient routing, Adaptive modulation and coding (AMC), lazy scheduling and

sleeping-based mechanisms. This section reviews the most important mechanisms, along

with our own approach.

14.2.1 Transmission Power Control

TPC, combined with scheduling and the selection of routes, can be utilized to minimize

energy consumption caused by packet transmissions. The basic idea behind transmission

power control is to select the smallest possible transmission power, such that the received

power is just above the receiver sensitivity level. [88] proposes a very simple distributed

scheme where MTs are allocated a minimum transmission power to keep the network con-

nected. However, in [126] the authors argue that a minimum transmission power strategy

might not always result in maximum throughput. Instead, they believe that optimal trans-

mission power should be determined based on network load, the number of stations and

the network area. The authors propose two adaptive power control schemes, Common

Power Control (CPC), where all MTs use the same transmission power, and Independent

Power Control (IPC), where MTs can independently choose the transmission power. IPC
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requires a mechanism for synchronizing the transmission powers between MTs. This kind

of a mechanism is available, for example, in the 802.11h standard. Both CPC and IPC

operate to achieve the lowest possible contention time in the network. Contention time

is observed through periodic measurements during an epoch T and transmission power is

either increased or decreased when a certain contention time threshold is reached. A sig-

nificant amount of other work has been done on the use of transmission power control and

the joint definition of routing and power levels in ad hoc networks, see for example [50].

In multi-hop networks, the amount of tranmission power utilized will have an impact on

network topology, which then affects routing [44], [83], [54]. In [83] it is assumed that

paths between sources and destinations are given, and the problem is how to divide the

data flow among the paths and how to set transmission times, rates and powers of all

the links along the path to maximize network lifetime. This is equivalent to maximizing

the operating time of the worst network node. The authors investigate the relationships

between different metrics and conclude that, if there is no power threshold in the link,

using a low transmission power does not lead to optimal energy consumption due to

increased transmission times and, as a result, increased interference. Overall, it is most

beneficial to use higher transmission power, so that less energy is needed to support the

required average data rates in the network.

It should be noted that routing in adhoc networks is a challenging task due to mobility,

time-dependent wireless channels and interference coming from other nodes. Thus, other

solutions for minimizing energy consumption should be considered, to be used either

independently or alongside routing.

14.2.2 Adaptive modulation and coding

Most transmission power literature assumes that the data rate is fixed. Some methods

have utilized multiple modulation and coding schemes supported, for example, by IEEE
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802.11g, a, h and n air interfaces. [131] proposes a MiSer energy-saving scheme, which

uses an optimal, adaptive rate-power combination table in order to maximize energy ef-

ficiency for each data transmission attempt. Energy efficiency is defined as the ratio

between the expected delivered data payload and the expected total energy consumption.

The rate-power table is computed offline for different data transmission status quadu-

plets, consisting of data payload length, path loss condition and frame retry counts. The

assumption is that simply transmitting at a lower power or using a higher PHY layer rate

does not necessarily decrease energy consumption, since transmission would be more

likely to fail and re-transmissions would eventually lead to a higher overall energy con-

sumption. In addition, transmitting at different power levels could possibly aggravate

the well-known hidden node problem. In MiSer this problem is solved by exchang-

ing RTS/CTS frames to reserve the medium for data transmission. One disadvantage

of MiSer is that it requires a knowledge of network configuration in terms of the num-

ber of contending MTs and the RTS collision probability, as well as a wireless channel

model. In their analysis, the authors assume that the required information is available a

priori. Furthermore, BER is the only QoS criteria considered.

When considering real-time traffic, such as VoIP or video streaming, modulation scaling

[132] or lazy scheduling [59], [148], [91], [158] can be used to select the modulation and

coding method, such that energy consumption is minimized while packet delay bounds

are enforced. Typically, the lower the order modulation used, the less power is needed

to transmit the packet with a given packet error rate. [59] defines the lazy scheduling

problem as follows:

Supposing M packet arrivals at the transmitter at random times ti during the interval

[0, T ] destined for n receivers and given:

1. a vector of packet arrival times {ti, i = 1, ...,M}, where t1 = 0, ti < t{i+1} and

tM < T , and
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2. energy functions wi(τ) which, for each i ∈ {1, ...,M} are non-negative, mono-

tonically decreasing and strictly convex functions of τ ;

find a feasible schedule so as to minimize the total transmission energy:
∑M

i=1wi(τi).

The authors find that there is no explicit solution for this problem and propose a practical

MoveRight Algorithm to solve it iteratively. The idea of the MoveRight algorithm is to

move the starting times of packet transmissions iteratively to the right, packet by packet,

so that each move optimizes the energy function locally. It is shown that iterative local

optimization also eventually leads to a global optimum.

Only theoretical work has been done so far on modulation scaling and lazy schedul-

ing. [130], [148] and [91] propose optimal packet transmission schedules for simplified

channel models, under strict assumptions about traffic arrival process. [132] and [158] do

not make such strict assumptions about incoming traffic, but they also fail to consider the

relevant MAC and physical layer effects of specific radio technology. These effects can

considerably increase the total delay experienced by packets and, therefore, scheduling

decisions should not only be based on expected transmission times.

14.2.3 Sleeping

Besides transmission power control, the best way to save energy is by switching off the

radio. There are several different sleeping options. With MAC layers, a state of the art

energy saving scheme is the X-MAC [33], in which the nodes are set to sleep in a random

fashion. A node wishing to transmit a packet sends multiple RTS type packets until the

receiver wakes up and replies with CTS. Another approach is to control sleeping using the

transmit buffer [51]. [122] provides a theoretical framework for combining both dynamic

modulation scaling and sleeping. [86] and [142] propose simple policies to adaptively
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force a WLAN device into doze mode at selected moments. However, sleeping mecha-

nisms might not be feasible for real-time traffic that requires strict delay bounds, since

they would require a very frequent synchronization procedure to wake up the nodes and

initiate communication.

14.2.4 Queue management

Another method for saving energy is dropping packets early, well before the battery emp-

ties. As far as the authors are aware, the idea of energy-aware early dropping has not been

proposed before. The only related solution can be found in queuing theory: a concept

called “impatient customers” that refers to the case where customers leave the system

after their patience runs out, even if they have not received any service. In a wireless

context, this is equivalent to mesh points dropping out any packet that cannot meet its

deadline. The idea of early dropping does not just involve dropping those packets that

cannot meet their deadline in the given link, but also the dropping of packets to prevent

congestion, as in RED.

14.2.5 Our approach: an Energy Aware Early Detection (EAED) framework

for 802.11s

Our goal was to design a scheduling and queue management framework for a use case

where real-time VoIP and video conferencing applications are used in a 802.11s mesh

network. These applications set maximum packet delay and packet loss limits, while

small, battery-powered MTs set requirements for high energy efficiency. This kind of

use case could become a reality in developing countries or when coping with emergency.

Our approach uses the energy models presented in the following section as a basis for de-

signing a new, distributed energy-adaptive cross-layer scheduling and queue management

framework (EAED) to enable this use case.
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The aim of EAED is to save energy by selecting an appropriate modulation and cod-

ing scheme under the constraints on packet delay. Transmission power is chosen based

on the modulation scheme, code rate and channel conditions. In addition to adapting

the modulation, code rate and transmission power, the EAED framework applies early

packet dropping to ensure availability of energy resources in the future. EAED does not

make any assumptions about traffic arrival processes or channel conditions, contrary to

many previously proposed approaches. Most importantly, EAED realistically considers

the effects of the physical and MAC layers of the 802.11s on total delay, whereas other

schemes have only based scheduling decisions on the expected transmission time. Since

our scheduling scheme is based on real-time estimations it can dynamically adapt to the

effects of radio technology as well as different traffic arrival patterns.

Used energy model

In Section 14.1, energy consumption in a wireless device was shown to depend on dif-

ferent components, such as the Power Amplifier (transmitter side), the radio electronics

(ASIC), the Host CPU and the display. All of these components should be modeled in

order to fully analyze the energy efficiency of protocols and algorithms. However, most

of the existing work concerns the measurement of total energy consumption in wireless

network interfaces [146], [49], without considering the effect of components indepen-

dently. In addition, the effects of different radio parameters such as modulation, coding

and propagation models have not been analyzed sufficiently accurately. Furthermore,

these measurements have been performed with Laptops or PDAs, not with mobile de-

vices or Internet tablets. As no feasible experimental energy model exists, we will use the

theory of dynamic modulation scaling (dms) [132] to model energy consumption.

The scheduler part of our framework aims to save energy by delaying packets so that

transmission power consumption can be decreased correspondingly. Theoretically the op-

eration of our algorithm is based on the principles of dynamic modulation scaling (dms).
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The modulation level (number of bits per symbol) is denoted by b. The average time

to transmit one bit (Tbit) with a selected modulation level and symbol rate RS can be

expressed as:

Tbit =
1

b× RS
. (14.1)

The energy consumed for transmitting one bit (Ebit) is then given by [132]

Ebit = (Ptx + PE)× Tbit, (14.2)

where Ptx denotes the power consumed by the Power Amplifier (PA) for transmission and

PE denotes the power consumed in electronic circuitry.

From Eq. 14.2 it becomes obvious that transmitting at maximum modulation level is an

optimal strategy in terms of energy if a constant power is used. However, if Ptx can be

controlled, delaying packets becomes more beneficial.

Firstly, we will derive expressions for Ptx and PE, assuming for simplicity that the QAM

modulation method is used. BER, signal to noise ratio (SNR) and noise power PN are

given by [132].

BER =
4

b

(
1− 1

2
b
2

)
·Q
(√

3 · SNR
2b − 1

)
(14.3)

SNR =
Ptx
PN

· A (14.4)

PN = N0 · β · RS, (14.5)

where A symbolizes all transmission loss components, N0 denotes the noise power spec-

tral density and β is a factor that takes into account other elements such as filter non-

idealities. Manipulating these equations yields:

Ptx = CS · RS · (2b − 1) (14.6)

CS =
N0 · β
A

· Γ (14.7)

Γ =
1

3

[
Q−1

(
1

4
·
(
1− 1

2b/2

)−1

· b · BER
)]2

. (14.8)
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Assuming a fixed symbol rate, the expression for the power consumed in the electronic

circuitry is given by

PE = (CE + CR) · RS, (14.9)

where factors (CE ,CR) ∝ V 2 (operation voltage). Combining the expressions derived

above, the amount of energy consumed for transmitting one bit is given by

Ebit = CS ×
2b − 1

b
+ (CE + CR)×

1

b
, (14.10)

where the first part describes the energy required to generate electro-magnetic waves that

carry information and the second part describes the rest of the radio’s energy consump-

tion.

The total transmission energy consumption as a function of transmission time is a mono-

tonically decreasing, convex function, as depicted in Figure 14.2 (RS = 250kHz, CS =

100 nJ and CE +CR = 180 nJ, corresponding to the implementation of an adaptive QAM

system). Thus, the more time used for transmitting packets, the more energy can be

saved, assuming that transmission power is adapted according to Eq.14.6. Figure 14.2

also shows total energy consumption (transmitter and receiver) with arbitrarily selected

receiver parameters. Depending on the receiver parameters, total energy consumption

may not decrease monotonically for the smallest values of b. However, this thesis focuses

on energy consumption on the transmitter side when the device is operating in an active

802.11s mode.

14.2.6 EAED packet scheduler

802.11s specification physical and MAC layer features set boundary conditions for the op-

eration of EAED. We have assumed a physical layer that corresponds to 802.11a/802.11g

standards and a MAC layer that corresponds to 802.11e. Supported modulations and

code rates are depicted in Table 14.1. The modulation and code rate must be selected
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Table 14.1: Resulting data rates with different modulation and coding schemes

Modu- Code- Data Coded Coded

lation Rate Rate bits/ data

(Mbps) symbol bits/

symbol

BPSK 1/2 6 48 24

BPSK 3/4 9 48 36

QPSK 1/2 12 96 48

QPSK 3/4 18 96 72

16-QAM 1/2 24 192 96

16-QAM 3/4 36 192 144

64-QAM 2/3 48 288 192

64-QAM 3/4 54 288 216

from these methods and MAC layer effects must be considered when determining how

much extra delay can be allowed by the EAED algorithm for energy saving purposes.

The EAED scheduler aims to find an optimal modulation and coding scheme (MCS) m.

Energy consumption of packet k at hop h is denoted by Ẽk,h and the total packet delay

is denoted by Dk,h. In addition, the delay bound of a packet is denoted by Dmax. The

operation of EAED can be formalized as the following optimization problem:

min
m

E{
H∑

h=1

Ẽk,h} (14.11)

s.t.
H∑

h=1

Dk,h ≤ Dmax. (14.12)

We used a heuristic approach to solve this problem, based on the theory presented in

Section 14.2.5. We assume that whenever the MP is ready to transmit a packet, the optimal

solution in terms of energy is to select the lowest possible modulation and code rate
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combination with respect to the constraint on packet delays.

It should be noted that all packets currently in the node’s buffers must be transmitted

within the delay bound. The estimated waiting time of all data packets in the node’s

buffers due to MAC layer mechanisms is denoted by Dmac,h, and the actual time for

transmitting all the packets with a certain MCS by Tm,h. Additionally, Pdush is used

to denote the total number of data pdus in the node’s buffers at hop h, SIFSh denotes

the short inter-frame space used before sending an ACK, and Dack,h denotes the dura-

tion of ACK. It is assumed that a constant modulation scheme and code rate is used for

acknowledgements. Dh can be calculated as follows:

Dh = Tm,h +Dmac,h + Pdush ∗ (SIFSh +Dack,h). (14.13)

Dmac,h is calculated by weighting the estimated MAC delays Dmac(i),h for each access

category i with the number of data pdus in the access category. The number of access

categories is denoted by AC.

Dmac,h =

i=AC∑

i=0

Pdus(i)h ∗Dmac(i),h. (14.14)

Dmac(i),h is estimated in the MAC layer by the EWMA estimator. α denotes the filtering

coefficient of the estimator, the next inter frame space in access category i is denoted by

IFS(i)h, and the value of the previous backoff timer by B(i)h.

Dmac(i),h = α ∗ (IFS(i)h +B(i)h) + (1− α) ∗Dmac(i),h. (14.15)

Delaying packets without violating the delay bound might not be possible during periods

of heavy congestion. In this case the scheduler has to propose the highest possible MCS,

even though it temporarily maximizes energy consumption. We also use the MP’s own

medium utilization estimateU (fraction of time when the medium senses that the physical

layer is virtually busy or has ongoing transmission) as an indication of a decreased ability

to delay packets. If U > Umax, a fixed MCS (16-QAM and 3 / 4) is used to avoid

unnecessary collisions that might occur due to additional delaying.
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In the physical layer, the MCS m proposed by the MAC layer must be checked against

current channel conditions. The required transmit power for link h, with a path loss of

Lh and using MCS m is Ptx,h,m = δLhPrx,m, where δ > 1 is a power margin needed to

compensate for time varying fading, changes in the noise power, and inaccuracy of the

path loss measurement. The set Mh = {m : Ptx,m ≤ Pmax} defines MCSs that can be

utilized within the power budget Pmax (20dBm).

An open loop transmit power control scheme is utilized by our scheduler. The required

transmission power Ptx,m,h is computed iteratively in set Mh as follows:

Ptx,m,h =

(
1.0

Lh

)
∗ δ, (14.16)

where:

δ = RSh ∗RSCoefficient(m, h) ∗RbFactorh. (14.17)

Modulation and/or code rate are decreased until the power constraint is met or the lowest

m has been reached. The MP estimates the path loss Lh from the received frame. Other

values required for computing δ are directly related to the 802.11 a/g radio: ReceiverSen-

sitivity (RSh) and the shadow facing margin RbFactorh are set when the MP is config-

ured. The value used for RSCoefficient(m, h) is selected by table lookup, based on

the modulation and coding scheme proposed by the scheduler, as indicated in Table 14.2.

The minimum transmission power was set to 2 dBm due to possible inaccuracies in the

power adaptation algorithm.

The energy model used by our scheduler assumed a power adaptation logic corresponding

to Eq. 14.6 in section 2. Our power control strategy is similar, but we only measure the

value of the path loss, use coefficients and factors derived from commercial WLAN cards

for other parameters.

Transmitting at different power levels could possibly aggravate the well-known hidden-

node problem in wireless networks. If our scheme were to be used in large mesh networks,

it should be combined with the mechanism of sending RTS/CTS packets with constant,
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Figure 14.2: Energy versus transmission time

Table 14.2: RSCoefficients for different MCS for 802.11a/g radio

Modulation CodeRate RSCoefficient

BPSK 1/2 10.0

BPSK 3/4 10.0

QPSK 1/2 25.12

QPSK 3/4 100.0

16-QAM 1/2 158.49

16-QAM 3/4 300.0

64-QAM 2/3 795.0

64-QAM 3/4 800.0
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sufficient power as proposed by authors in [131]. The authors thoroughly analyzed this

kind of scheme and verified that adaptive transmission power does not exacerbate the

hidden-node problem if combined with intelligent RTS/CTS transmission.

When analyzing the performance of EAED in the experimental part of the thesis, it was

found that operations without an EAED scheduler were equivalent to the water-filling

approach. With water-filling, energy consumption is minimized by transmitting packets

as fast as possible while keeping a constant transmission power (20dBm). In practice, the

highest possible MCS that can be supported by this power in current channel conditions

is chosen.

EAED packet dropper

Several active queue management mechanisms have been devised for congestion avoid-

ance in wireline networks. RED [56] and Weighted Random Early Detection (WRED)

proactively drop packets based on filtered queue length to prevent congestion in the first

place. Our EAED dropper follows the general RED paradigm but aims to avoid both the

congestion and exhaustion of energy resources. The dropper uses the EWMA filtered

modulation and code rate combination, proposed by the EAED scheduler in the MAC

layer, as a measure of energy consumption: the higher the modulation and code rate, the

higher the energy consumption. The EWMA filtered MCS m is denoted by m̃ s.t. (m, m̃)

∈ (0,7). The m̃ value is updated in the MAC layer as follows:

m̃ = γ ∗m+ (1− γ) ∗ m̃, (14.18)

where γ is a filtering coefficient. The early dropping probability p(i) in access category

i is an increasing function of m̃. It is assumed that there are two access categories, one

for a streaming traffic type and the other for a VoIP traffic type. If m̃ < 2, early packet

dropping is not necessary, since the low modulation and code rate level alone guarantee
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low energy consumption. Otherwise p(i) for streaming type traffic is given by:

p(i) = 1.5 ∗ (m̃− 1), (14.19)

and for VoIP type of traffic by:

p(i) = 0.5 ∗ (m̃− 1). (14.20)

An ACK is sent back in order to prevent MAC layer retransmissions of early dropped

packets, even though the packet has not actually been received.

The EAED dropper has been designed specifically for real-time traffic. It is especially

feasible for streaming type media, since the most advanced audio/video codecs can toler-

ate a packet loss as high as 15-20%, depending on which frame types are dropped. The

dropping process is even more important than the loss rate; randomized packet drops have

a less severe effect on quality than consecutive drops due to deadline violation.
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15 Simulations of EAED framework

In the previous chapters we presented several mechanisms for saving energy in wireless

mesh networks and performed qualitative analyses on these mechanisms. We introduced

our approach, a distributed and measurement-based energy-adaptive cross-layer schedul-

ing and queue management framework (EAED) for supporting low energy consumption

VoIP and Video traffic in 802.11s mesh networks. In this chapter the performance of the

EAED is evaluated using simulations, and the topology, traffic types and other simulation

parameters are described and the results are presented.

15.1 Performance evaluation of the EAED algorithm

15.1.1 Goals of the simulation study

The objective of this simulation analysis was to evaluate the energy saving potential and

application performance of the EAED algorithm. The simulation tool used was WLAN-

Sim, a dedicated WISE library-based WLAN simulator developed at the Nokia Research

Center. Compared with other WLAN simulation tools that are available, such as ns2,

WLANSim provides support for more realistic physical layer models. For the purposes

of this research work, WLANSim was upgraded to include mesh networking capabilities

and EAED functionality.

The energy saving potential of our algorithm was tested in several scenarios to evaluate

the effect of important parameters, such as the distance between nodes, the pathloss ex-

ponent and traffic load, on algorithm operation. The following three alternative packet

handling principles were compared for all scenarios:
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• No EAED, packets sent with maximum power limited water-filling approach

• EAED without Early Dropping (TailDrop)

• EAED with Early Dropping

Due to the lack of other schemes that are sufficiently similar, we did not compare EAED

with other energy saving methods. Other methods are either based on sleeping, which

is not suitable for real-time traffic, or lazy scheduling type approaches, which do not

consider the dynamics of traffic arrival processes or the WLAN MAC and PHY layers.

15.1.2 Simulation topology and parameters

A network consisting of three MPs was used for the simulations. A small number of

nodes can be justified by the fact that packet level scheduling and queue management

mechanisms should be first evaluated in a setup that allows different parameters to be

analyzed in detail. The small number of hops is also motivated by service quality con-

straints. See [139]. It was assumed that all MPs utilize the same frequency (802.11g

radio with 2.4GHz) and compete for the same channel. The modulation and code rate

adaptation logic of the EAED algorithm was used in all MPs, whereas the dropper was

only implemented in the intermediate MP that acted as a router.

Two distance scenarios were defined, as depicted in Figure 15.1.

Propagation was supposed to be line-of-sight in the first distance scenario, whereas it

was assumed that some obstacles were present in the transmission path in the second

scenario. The type of propagation model used took into account the effects of pathloss,

as well as fast and slow fading. Propagation conditions were simply modified by varying

the MaxLOSRange and PathlossExponent parameters. The PathLoss was either 2.0 or

2.4. When the pathLoss was at 2.4, the MaxLOSRange value was set to 15.0 in distance
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scenario 1, and to 40.0 in scenario 2. ReceiverSensitivity was -73dBm and the RbFactor

was set to 2.0 or 4.0 depending on the scenario.

Since EAED is primarily designed for real-time traffic, VoIP and Video were used as

traffic types in the simulations. Random number generators were used to produce traffic

patterns resembling the behavior of these applications. The VoIP packet interarrival time

and packet size were constant, with means of 20 ms and 178 bytes, whereas Video used a

normal distribution with parameters (20 ms, 6.7 ms) and (750, 250) bytes.

The simulation time was 37.5 million OFDM symbols to guarantee the reliability of re-

sults. It was verified that a longer simulation time would not have significantly increased

the accuracy of results. The MAC layer parameters (AIFS, minCW, maxCW) for both

access categories were set to reasonably small values to guarantee delay bounds with-

out EAED. Traffic load was varied by changing the number of connections so that there

were eight VoIP and Video connections in the first load scenario, and eight VoIPs and

ten videos in the second scenario. Half of the VoIP and Videos were transmitted in an

upstream direction and the other half transmitted downstream.

15.2 EAED algorithm simulation results

This section presents the results from the simulation scenarios. Extensive simulations

have been performed to analyze the operation of EAED framework in terms of their

end-to-end application performance and energy consumption. Conventionally, energy

consumption has been modeled in a single node as a function of a selected modulation

scheme, see [132]. We used a more holistic approach and studied energy consumption at

the level of the network and of individual MPs. Our choice is justified by the fact that traf-

fic processes and channel quality are highly variable in time in real networking scenarios.

As a result, modulation, code rate and transmission power are interrelated and have to be

adapted frequently, depending on traffic characteristics and channel conditions.
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Table 15.1: Scenarios

Distance Load Pathloss

Scenario Scenario Exponent

Scen1 1 1 2.0

Scen2 1 2 2.0

Scen3 1 1 2.4

Scen4 2 1 2.0

Table 15.2: Energy saving potential

Energy Saving

EAED EAED EAED EAED

NoDrop Drop NoDrop Drop

AC2 AC2 AC3 AC3

Scen1 50.38 % 52.47 % 59.26 % 57.99 %

Scen2 49.86 % 51.86 % 59.77 % 58.65 %

Scen3 43.72 % 45.87 % 49.80 % 50.37 %

Scen4 3.43 % 2.89 % 1.82 % 3.1 %

15.2.1 EAED algorithm performance

Firstly, we examined the energy saving potential of the EAED algorithm with and without

early dropping. Table 15.2 shows the total energy saving in the whole network for both

access categories (AC2=Video and AC3=VoIP). The scenarios in Table 15.2 are defined

in Table 15.1.

The energy saving percentages in Table 15.2 were obtained by weighting the energy con-

sumptions of individual MPs with the relative amount of traffic transmitted by these MPs.
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Table 15.3: AC2 Energy consumption in Scenario1

NoEAED EAED EAED

NoDrop Drop

Energy, MP 3 0.86 J 0.46 J 0.46 J

Energy, MP 2 2.29 J 1.18 J 1.12 J

Energy, MP 1 1.53 J 0.64 J 0.64 J

Weighted 1.74 J 0.87 J 0.89 J

energy

Energy saving 50.38 % 52.47 %

As an example, Table 15.3 shows detailed energy consumption results for each MP in

scenario1 for Video traffic. It should be noted that the energy consumption of the EAED

algorithm with a dropper only differs from the pure EAED algorithm due to MP2 acting

as a router, since the dropper is not implemented in source and destination MPs.

It can be concluded that considerable energy savings of up to 40-60% can be obtained

when the load level and distance are low or moderate. When the results are extrapolated

it becomes evident that smaller loads and distances would allow even more energy to be

saved. On the other hand, when distance is increased the energy saving potential drops

to just a few percentage points, as can be observed from the results of scenario4. This is

due to the fact that a sufficiently high transmission power must be used to guarantee the

delay bound of real-time applications when attenuation increases. The same effect was

observed when the algorithm was tested with increased load levels.

A small energy saving percentage is obtained by early dropping, compared to operation

with pure EAED scheduling. There is only a slightly less amount of energy saved in

scenario1 and scenario2, for VoIP traffic, when the dropper is used. It should be noted,

however, that if EAED were also implemented in the source and destination MP, it is most
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likely that a greater amount of energy would be saved. Furthermore, in a larger network

topology early dropping could result in more considerable energy savings, since a packet

that might otherwise be dropped after having consumed resources in many hops could

be dropped early by the first router along the path of the connection. Early dropping

is feasible even with higher loads, if the packet loss caused by congestion is below the

maximum packet loss requirement. This is not the case with delaying.

The energy saving depicted in Table 15.2 is possible due to adaptive transmission power,

modulation and coding. Figure 15.2 (a) depicts uplink and downlink transmission power

distributions for the EAED algorithm without early dropping in scenario1 and scenario2.

Power distribution with an early dropper is almost the same as with a pure EAED, whereas

the transmission power distribution without the EAED algorithm is a constant 20 dBm.

The transmission power distribution for the EAED reveals that varying modulation and

code rate levels are used by the algorithm, depending on MAC layer delays and chan-

nel quality. As an example, Figures 15.2 (b), (c) and (d) depict modulation and code

rate distributions in each MP for both access categories, with and without the EAED

(1=BPSK 1/2, 8=64-QAM 3/4), in scenario1. The corresponding transmission rate distri-

bution could be derived from the values given in Table 14.1. It is evident that the EAED

uses a smaller modulation and code rate whenever possible. Lower modulations and code

rates consume more time for the actual transmission, but save energy due to smaller re-

quired transmit power.

Figure 15.3 depicts end-to-end delay distributions for both access categories, with and

without the EAED algorithm, in all scenarios. The EAED algorithm increases end-to-end

delays, but delays remain small enough to guarantee an acceptable QoS for applications

in scenario 1 and scenario 2. Conversely, end-to-end delay becomes almost unacceptable,

especially for VoIP traffic, in scenario 4 with longer distances.

Table 15.4, Table 15.5 and Table 15.6 depict link statistics as well as average packet losses

and goodputs of connections in scenarios 1, 2 and 3. It can be observed that, in all scenar-
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Table 15.4: Physical layer, packet loss and goodput statistics in scenario1

NoEAED EAED EAED

NoDrop Drop

Tidle 54.97 % 33.0 % 33.79 %

Ttransmission 44.3 % 64.74 % 63.92

Tcollision 0.73 % 2.26 % 2.29 %

AC2, LEarlyDrop 4 %

AC2, LDrop 2 % 2 % 7 %

AC3, LEarlyDrop 1.13 %

AC3, LDrop 3 % 3 % 5 %

AC2, goodput 2.36 2.35 2.24

(Mbps)

AC3, goodput 0.55 0.55 0.54

(Mbps)

ios, the EAED algorithm spends more time in a state where there is one ongoing transmis-

sion in the network. Correspondingly, more time is also spent in a collision state. Early

drop probabilities and total packet losses (including early dropped packets) remained at a

reasonable level, especially for Video traffic that could have allowed even more dropping

assuming advanced codecs. Goodput was slightly better without the EAED algorithm.
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Table 15.5: Physical layer, packet loss and goodput statistics in scenario2

NoEAED EAED EAED

NoDrop Drop

Tidle 47.06 % 22.99 % 24.24 %

Ttransmission 52.22 % 74.54 % 73.30

Tcollision 0.73 % 2.47 % 2.46 %

AC2, LEarlyDrop 4.3 %

AC2, LDrop 2 % 3 % 7 %

AC3, LEarlyDrop 1 %

AC3, LDrop 3 % 3 % 5 %

AC2, goodput 2.95 2.93 2.79

(Mbps)

AC3, goodput 0.55 0.55 0.55

(Mbps)
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Figure 15.2: Powers, modulations and coderates
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Figure 15.3: Delay distributions in all scenarios
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Table 15.6: Physical layer, packet loss and goodput statistics in scenario3

NoEAED EAED EAED

NoDrop Drop

Tidle 43.71 % 24.62 % 25.68 %

Ttransmission 55.33 % 73.02 % 71.94

Tcollision 0.95 % 2.37 % 2.38 %

AC2, LEarlyDrop 4 %

AC2, LDrop 3 % 3 % 7 %

AC3, LEarlyDrop 1 %

AC3, LDrop 3 % 3 % 5 %

AC2, goodput 2.35 2.34 2.24

(Mbps)

AC3, goodput 0.55 0.55 0.54

(Mbps)
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16 Conclusions

Networking scenarios in the future will be complex and will include fixed networks

and hybrid Fourth Generation (4G) networks consisting of both infrastructure-based and

infrastructure-less, wireless parts. In such scenarios, adaptive provisioning and manage-

ment of network resources becomes of critical importance. Adaptive mechanisms are de-

sirable since they enable a self-configurable network that is able to adjust itself to varying

traffic and channel conditions. The operation of adaptive mechanisms is heavily based on

measurements: the state of the network is monitored to produce an estimate of a desired

quantity, which may then be used on different network control time scales.

The goal of this thesis was to focus on the packet-level time scale and investigate how

measurement based, adaptive packet scheduling algorithms can be utilized in different

networking environments. Adaptive scheduling algorithms were designed and analyzed

separately for fixed Internet (IP-based backbone infrastructure) and hybrid 4G networks,

consisting of wireless infrastructure-based and infrastructure-less networks. In fixed IP

networks it was assumed that DiffServ architecture is used and that the scheduler either

dynamically adjusts the class resources periodically or on a packet per packet basis, so

that the policy chosen by the operator will be fulfilled regardless of traffic conditions. In

infrastructure-based 4G networks, adaptivity was utilized by choosing the scheduled user

based on regular CQI feedback, therefore guaranteeing temporal fairness between users.

In infrastructure-less WLAN mesh networks, online measurements were used to predict

future delays and to select modulation and coding schemes to preserve the delay bounds

of traffic classes while minimizing energy consumption.

The first part of the thesis began with a review of relevant networking technologies and

the desirable properties of conventional and adaptive scheduling algorithms in fixed and

wireless environments. This was followed by a more detailed presentation of the state of

the art of fixed IP scheduling algorithms, and a new delay-based scheduling algorithm, the
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Delay-Bounded Hybrid Proportional Delay (DBHPD) for adaptive provisioning was in-

troduced. Next, the general theory behind delay estimators was described and a practical

Exponential Weighted Moving Average (EWMA) estimator for the DBHPD algorithm’s

delay estimation problem was presented. Finally, the DBHPD algorithm was thoroughly

evaluated by ns2-simulations and measurements in a prototype router network.

The first part of the evaluation process was to use ns2 simulations to compare the per-

formance of static and adaptive provisioning methods, in order to see what kind of per-

formance advantage can be achieved by adaptivity. For the static provisioning case we

used the capacity-based Deficit Round Robin (DRR) algorithm. Next, we developed the

first working implementation of the DBHPD algorithm in a FreeBSD-based ALTQ proto-

type router and compared it to the Class Based Queueing (CBQ) hierarchical bandwidth

sharing algorithm, with FTP, HTTP, Video Streaming and VoIP traffic in underload, over-

load and heavy overload conditions. Finally, we performed a comparative study of the

simulation and measurement results for both the DBHPD and CBQ algorithms in order

to see how well the real implementations correspond to the theoretical models of these

algorithms.

According to the ns2-simulations performed in a network setup, the DBHPD algorithm

achieved the targeted provisioning goal in a better manner than the static DRR algorithm,

regardless of the load level, application mix or queue management method used. The

most distinctive difference could be observed in the way the algorithms served HTTP-

traffic, as DRR resulted in intolerable packet losses. We examined the adaptability of

both algorithms by testing them with different load levels, application mixes and queue

management methods. We observed that the delay-bounded DBHPD algorithm was con-

siderably more robust in all of the cases. For both algorithms, we also observed that

provisioning was more challenging when the traffic mix was strongly dominated by a sin-

gle traffic type. This implies that load balancing or intelligent routing methods should be

used to avoid large deviations in the loads of different traffic classes.
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The implementation results proved that the DBHPD algorithm operates well and in line

with its differentiation model. It preserves both the desired delay-bound and the delay

ratios between the classes. Comparisons with CBQ showed that DBHPD is able to utilze

links at least as well as CBQ and, in addition, results in more controllable packet losses

and much better and predictable differentiation in terms of delays. Besides the ability to

adapt to the packet delays that it experiences, DBHPD also controls packet losses caused

by buffer overflows (e.g. excessive queuing times). CBQ, on the other hand, is only a

semi-adaptive algorithm and is not able to provide as good tracking ofto track the offered

traffic in contrast to available resources as well as DBHPD does.

We also proposed new delay estimators for the DBHPD algorithm, namely a simple Expo-

nential Weighted Moving Average (EWMA) estimator, an EWMA estimator with restart

(EWMA-r) and an EWMA based on the proportional error of the estimate (EWMA-pe).

We used ns2 simulations to compare these estimators with the original, simple sum esti-

mator. We used three traffic mixes in the simulations: pure CBR-traffic, pure Pareto-ON-

OFF traffic and mixed traffic from several real applications.

According to the evaluation the simple sum and EWMA estimators often lead to false

scheduling decisions. Therefore, they are not appropriate solutions to the delay estimation

problem. On the other hand, both the EWMA-r, and especially the EWMA-pe estimator

proved to be promising alternatives for all traffic mixes. Furthermore, the EWMA-r and

EWMA-pe only require small changes to be made to the original EWMA estimator, which

is extremely simple to implement in practice. However, in order to judge which one of the

EWMA-r and the EWMA-pe estimators is better, network level performance evaluations

with real traffic should be conducted with both estimators.

The comparative study of measurements and simulation results revealed that real imple-

mentations of the algorithms produce results that are reasonably close to the differenti-

ation models in terms of quality. However, clear differences were observed in the exact

shape of the delay distributions. These deviations can be explained partly by the differ-
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ences in the offered load processes between measurements and simulations. However,

most of the differences are likely due to the simplifications used in real implementa-

tions, as well as overhead caused by the estimation procedures. With CBQ, for example,

demanding borrowing operations can cause extra packet delays in a real router. Initial

kernel profiling experiments also confirmed that CBQ is a significantly more complex

and resource-intensive algorithm than DBHPD.

Based on the simulation and implementation results it can be stated that DBHPD satisfies

the requirements for algorithms aiming at relative differentiation. In addition, it is ro-

bust, flexible and simple to implement. Robustness could be increased further with more

advanced delay estimation algorithms. Stability has not been analytically proved but ac-

cording to the simulation and measurement results differentiation was controllable and

predictable even in the presence of TCPtraffic.

The second part of the thesis reviewed the state of the art of wireless scheduling al-

gorithms and discussed specific requirements set by hybrid 4G networking scenarios.

Methods for joint scheduling and transmit beamforming in 3.9G or 4G networks were de-

scribed and quantitatively analyzed using statistical methods. Finally, a novel cross-layer

energy-adaptive scheduling and queue management framework, EAED (Energy Aware

Early Detection), for minimizing energy consumption in WLAN mesh networks, was

proposed and evaluated with simulations.

When studying the performance of joint transmit beamforming and channel-aware schedul-

ing, we considered antenna selection as a reference transmit beamforming method for the

so-called Mode 1 and Mode 2. A two-antenna version of latter methods is currently used

in the UTRA FDD and its HSDPA extension. Out of all the scheduling strategies, the

focus was on the one-bit On-off strategy, where all users send acknowledgement (ACK)

or negative acknowledgement (NACK) messages after each transport time interval (TTI),

based on received relative SNR. If possible, the served user is then selected randomly

from the set of users with positive ACKs. The reference scheduling strategies were the
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Round Robin, where channel state information is not available in the transmitter and, on

the other hand, the Maximum SNR strategy, where the transmitter admits perfect channel

information.

Results for the cumulative distribution of received SNR showed that the use of transmit

beamforming reduces the difference between upper and lower scheduling performance

limits. Nevertheless, the joint usage of transmit beamforming and scheduling leads to a

remarkable increase in performance. The variation in system performance due to differ-

ent transmit beamforming methods was largest with low CDF percentiles, where Mode

1 and Mode 2 clearly outperformed antenna selection. The differences were small with

high CDF percentiles. It was shown that the On-off scheduling strategy reaches its op-

timal performance when the received SNR and decision threshold are equal. Thus, for

this certain SNR value, the one-bit scheduling method is able to provide the same gain as

the Maximum SNR scheduling strategy that assumes perfect channel knowledge. When

focusing on outage rates, it was found that system performance can also be optimized for

a certain number of users when the outage probability is fixed. This is interesting from

a wireless systems design perspective, since in networks like LTE-A, the performance

requirements on the cell edge are given in terms of outage probabilities and rates. How-

ever, when the decision threshold is optimized for a certain number of users, additional

users do not provide any noticeable increase in gain. Conversely, with a Maximum SNR

scheduling strategy, increasing the number of users leads to a logarithmic outage rate in-

crease. Finally, the results also show that even a small feedback error rate may seriously

degrade the on-off scheduling performance. The feedback errors decrease the outage rate

saturation level as a function of the number of users. This can especially be seen when

the outage probability is low.

In the simulation analysis of the EAED algorithm, operation with and without a packet

dropper was compared to the so-called waterfilling approach, where the maximum trans-

mit power allowed by current channel conditions is used for transmitting the packets.

Simulations revealed that our scheme can save considerable amounts of transmission en-
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ergy without violating application level QoS requirements with reasonable traffic loads

and distances. Even with higher loads and larger distances moderate savings can be ob-

tained. Maximal energy saving was achieved by using the joint adaptation of transmission

power, modulation and code rate as well as the early dropping of packets. Since trans-

mission rate is determined through modulation and coding schemes, both of which are

adapted frequently, no absolute throughput guarantees can be provided. This makes our

scheme suboptimal for very bandwidth intensive applications. However, using 802.11 as

a basic radio technology, EAED would be beneficial in any use case where distances are

expected to stay within the limits given by our simulation scenarios and connectivity is

preferred over high bitrate. Public Safety Communications and basic connectivity in en-

ergy scarce locations are the most evident examples of such cases. Delay and disruption

tolerant networks (DTNs) would also appear to be a prominent area of application. An ex-

ample DTN type application is a walkie-talkie like device for providing voice messaging

when hiking outdoors or coping with emergencies.

In summary, this thesis first presented a new adaptive scheduling algorithm, Delay-Bounded

Hybrid Proportional Delay (DBHPD), with a practical implementation in a real FreeBSD

prototype router. The evaluation process that was conducted proved that DBHPD re-

sults in differentiation that is considerably more controllable than that provided by basic

static bandwidth sharing algorithms. The prototype router measurements showed that

the DBHPD algorithm can be easily implemented in practice. DBHPD results in less

processing overheads than a well known Class Based Queueing (CBQ) algorithm and

provides more predictable quality differentiation, even though CBQ is a pseudo-adaptive

algorithm designed for intelligent bandwidth redistribution. The performance of DBHPD

could be further improved with adaptive delay estimation algorithms, such as EWMA-r

and EWMA-pe. Following on from this, the thesis presented and analyzed joint schedul-

ing and transmit beamforming methods for 3.9G and 4G networks. The analysis revealed

that the combined gain of channel aware scheduling and transmit beamforming is substan-

tial, even though the use of transmit beamforming with an increased number of antennas

reduces the scheduling gain. It was shown that an On-off strategy can achieve the perfor-
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mance of an ideal Max SNR strategy if the feedback threshold is optimized. However,

even a low feedback bit error rate causes the performance to degrade. Finally, this thesis

presented a novel cross-layer energy-adaptive scheduling and queue management frame-

work EAED (Energy Aware Early Detection) for preserving delay bounds and minimizing

energy consumption in WLAN mesh networks. The simulations showed that our scheme

can save considerable amounts of transmission energy without violating application level

QoS requirements with reasonable traffic loads and distances. When considering the gen-

eral requirements set for wireless scheduling algorithms, EAED satisfies a subset of them:

It is robust, simple to implement and energy efficient. Other requirements are not relevant

in the context that EAED is primarily designed for.

16.1 Further work

Regarding fixed IP scheduling, one major goal for the future could be to conduct both

performance measurements and larger scale simulations on the DBHPD algorithm with

the new estimators in order to see if the scheduling algorithm can be further improved

with more sophisticated estimation procedures. Load profiles produced by the simulations

and measurements could also be examined more carefully and profiles could be created

to allow a more accurate comparison to be made between simulation and measurement

results. Depending on the estimator results, the DBHPD algorithm itself could also be

developed, for example by using a bandwidth sharing scheduler as a basis and adapting

the class service order in a real congestion situation with the help of measured queuing

delays.

In the joint scheduling and transmit beamforming analysis, MS sent separate feedback

for transmit beamforming and scheduling. In future work, transmit beamforming and

scheduling actions could be determined jointly based on combined feedback and the de-

cision threshold could be optimized by taking the effect of feedback errors into account.

It would also be interesting to analyze the effect of heterogeneous users on performance.
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Heterogeneity could arise, for example, in terms of varying QoS requirements or due to

the primary/secondary use of spectrum resources in cognitive radio.

Regarding the EAED algorithm simulations covered in this thesis, parallel measurements

with real wireless devices are under way. The aim is to accurately model the energy

consumption of a WLAN enabled mobile phone and to optimize the algorithm according

to the model. Another important area of future work is the development and comparison

of different types of power saving schemes, including sleeping based mechanisms, for

identifying optimal strategies for a variety of applications and scenarios. For TCP-like

non-real-time traffic, early dropping could be replaced with Explicit Energy Notification

(EEN) where the endpoints and intermediate routers indicate, by marking packets, that the

source’s congestion window should be decreased due to increasing energy consumption.

In this thesis, the problem of adaptive scheduling was solved separately for different types

of networking environments. An ambitious goal for the future could be to evaluate the

adaptive scheduling approach in a truly heterogeneous environment, in which both the

wireless access networks and the fixed IP core network deploy adaptive scheduling and

traffic handling mechanisms, and performance is evaluated end-to-end.
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