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1.  Introduction 

Nowadays, electronic products have become a necessity in our everyday life due to their 

extensive use in various applications. Among all the reliability concerns associated with 

the electronic products, solder interconnections that provide both mechanical and 

electronic connections are one of the key reliability concerns [1-5]. In this work, the 

solder interconnections of ball grid array (BGA) packages are studied since BGA 

packages have high interconnection density and small outlines, and are extremely 

popular in the electronics industry at the moment. 

Almost all electronic products are subjected to temperature changes due to the internal 

heat dissipation of components or ambient temperature fluctuations. The coefficient of 

thermal expansion (CTE) mismatch between adjoining dissimilar materials results in the 

thermomechanical fatigue of solder interconnections, leading to the cracking of the 

interconnections and failures of the electronic products. Furthermore, electronic 

products, especially portable devices, are prone to accidental drop impacts during field 

use [6]. As the connection between surface mount components and printed wiring board 

(PWB), solder interconnections often experience extremely high strain rates and 

stresses, which probably lead to the failure of the interconnections as well as the devices 

[7-11]. 

Nowadays SnAgCu solder is the most used solder material in the electronics industry 

[12-15]. The microstructure of Sn-rich lead-free solder is significantly different from the 

traditional SnPb solder. The microstructure typically contains cells, dendrites, colonies 

of Sn and intermetallic (IMC) particles such as Cu6Sn5 and Ag3Sn [16-20]. The complex 

microstructure affects the behavior and physical properties of the material, and 

eventually influences the reliability of the solder interconnections. It has been found that 

the as-solidified microstructure of SnAgCu solder can transform locally into a more or 

less equiaxed grain structure through recrystallization [16, 17]. Hence, there is a strong 

need for quantitative models which can explicitly predict microstructural changes in 
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solder interconnections during thermal cycling (TC) in order to establish a physically 

meaningful lifetime estimate. 

Moreover, to improve the reliability of electronic products and at the same time to 

shorten the time for designing and testing, efficient test methods as well as accurate 

numerical simulations have become ever more important. In the industry, the finite 

element method (FEM) is a powerful numerical technique used in the design and 

development of products. FEM allows the visualization of structure deformation and 

indicates the distribution of stresses, displacements, temperatures and other physical 

fields [21, 22]. With the help of FEM, engineers can construct, refine and optimize their 

designs before the designs are manufactured. The FEM software, such as ABAQUS, 

ANSYS, MARC, and NASTRAN, provides a wide range of simulation options for both 

modeling and analysis of a system.  

In the current work, finite element analyses were carried out to assess the reliability of 

lead-free solder interconnections in BGA packages subjected to various reliability tests 

including thermal cycling, power cycling (PC), and drop tests. Lifetime predictions of 

the BGA packages based on the simulation results were conducted. The simulation 

results offered explanations to the experimentally observed failure modes of the 

reliability tests. Moreover, a new algorithm combining the Potts model based Monte 

Carlo (MC) method and the finite element method was developed for microstructural 

simulation. Compared to the in situ experimental observations, a correlation between 

real time and MC simulation time was established. In addition, the intermetallic 

particles (Cu6Sn5 and Ag3Sn) were explicitly modeled and the effects of the particles on 

recrystallization in solder matrix were included in the simulation. It is the first time that 

dynamic recrystallization and grain growth in solder interconnections have been 

simulated, and the effects of intermetallic particles on recrystallization in solder matrix 

were studied. 

The thesis is organized as follows. A brief introduction of the major reliability tests and 

the associated failure modes are given in Section 2. Current understanding of the 
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microstructural changes in SnAgCu solder interconnections is addressed in Section 3. 

The numerical methods including FEM, MC method, and the hybrid algorithm are 

reported in Section 4. Section 5 presents stress-strain analyses. Section 6 deals with the 

lifetime predictions of solder interconnections. Finally, Section 7 gives the summary of 

the thesis including the main results and conclusions of the listed publications. 
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2. Reliability Tests and Failure Modes 

The state-of-the-art of the component board reliability tests is briefly addressed here. 

Although thermomechanical and mechanical shock tests are traditional reliability tests 

of component boards, they still deserve a close look due to the concern that the 

numerous existing experiences associated with lead-containing solders may not be 

applicable to lead-free solders. Tests with combined loadings are the most realistic ones 

that represent the complex multiple loading conditions experienced by the electronic 

devices during their service life. Furthermore, the reliability concerns and observed 

failure modes of each loading condition are also presented in this section. 

2.1  Thermomechanical Loading 

Most thermomechanical reliability tests can be categorized into two broad groups, (i) 

thermal cycling and (ii) power cycling tests.  

Thermal cycling tests subject the components and solder interconnects to alternating 

temperatures. The tests are conducted to determine the ability of the parts to resist a 

specified number of temperature cycles from a specified high temperature to a specified 

low temperature with a certain ramp rate and dwell time [23]. A traditional TC test 

cabinet usually includes a single chamber that is heated or cooled by introducing hot or 

cold air into the chamber with a temperature ramp rate normally less than 15 ºC/min. A 

number of investigations have been carried out in order to study the influence of the 

temperature profile on the solder interconnection reliability (e.g. [24-29]).  

Another branch of TC testing is called thermal shock (TS) testing named after the high 

temperature ramp rate (15 ºC/min or higher). In general, TS tests are more efficient than 

the traditional TC tests. A TS test cabinet usually has a dual chamber (e.g. WEISS 

TS130). This type of tester is made of two stationary chambers. One is maintained at a 

fixed high temperature and the other one is maintained at a fixed low temperature. The 
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thermal loading is exerted by a moving platform that shuttles between the two stationary 

chambers. It is noteworthy that a temperature profile can be input into a thermal cycling 

tester for controlling the temperature during a cycle, however, only the temperatures and 

time spent at each chamber are controllable parameters in a thermal shock tester. This 

difference is significant for optimizing the testing parameters in order to accelerate the 

reliability tests. During thermal cycling and thermal shock tests, the package, solder 

interconnections, and PWB are nearly at the same temperature all the time while only 

negligible thermal gradients exist within the mounted package. The uniform distribution 

of temperature makes these tests rather different from power cycling tests. 

Power cycling tests offer a more realistic representation of the actual operational 

conditions of electronic devices by increasing the temperature of the component when 

the power is on and allowing the temperature to decrease when the power is off [30-35]. 

Due to the nature of the PC test, there are large thermal gradients existing in the 

package, and sometimes the temperature difference between the hot and cold spots of 

the package can reach 60 ºC (see Publication I). Compared to thermal cycling tests, 

power cycling tests are less accelerated but more realistic. 

The main source of most thermally induced reliability failures in electronic packages is 

the CTE mismatch between adjacent dissimilar materials. There are two types of CTE 

mismatch: (i) a ―global‖ CTE mismatch between the component and PWB, and (ii) a 

―local‖ CTE mismatch between the adjacent materials (e.g. solder, solder mask, and 

copper pad). During either the thermal cycling or power cycling, solder interconnections 

are subjected to the thermally induced low cycle fatigue, in a way similar to cyclic 

bending. Fatigue is one of the primary reasons for the failure of solder interconnections 

under thermomechanical loadings. Fatigue is the progressive structural damage that 

occurs when a material is subjected to cyclic loading with stresses below its ultimate 

tensile stress. Fatigue crack initiation, as well as propagation, strongly depends on 

microstructure, temperature, stress ratio, and loading frequency, making the failure 

analysis of the solder interconnections a significant challenge. According to the 

experimental observations, the fractures initiating at the surfaces of solder 
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interconnections usually are located on the component side or PWB side of the critical 

solder interconnections that experience the highest levels of stresses and strains. The 

critical solder interconnections are often the die edge interconnections (beneath the 

silicon die corner) or the outermost interconnections (beneath the package corner). For 

instance, two typical cracked critical solder interconnections are shown in Figs. 1 and 2. 

The micrographs are from the thermomechanical reliability study of a BGA package 

(see Publication I). The crack in Fig. 1 is wide, relatively straight, and propagates along 

the interface just below the intermetallic region. The cross-polarized light image shows 

that the fracture mode is a mixed intergranular (the fracture follows the grain 

boundaries) and transgranular (the fracture travels through the grains) fracture.  This 

type of fracture is the primary failure mode in both TC and PC tests. The secondary 

critical solder interconnections are the outermost interconnections (see Fig. 2). The 

crack is composed of multiple fronts and propagates through the interconnection along 

the grain boundary in an intergranular manner. This type of fracture is mainly observed 

in TC tests. 

 

 

 

 

 

 

 

 

 

Fig.1. Crack path and the location of the primary critical solder 

interconnection (TC 5500 cycles). (reprinted with permission from 

IEEE) 
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2.2  Mechanical Shock Loading 

Drop impact reliability is crucial to all electronic products, especially portable devices 

since these products are more prone to being dropped during their service life. The drop 

tests usually follow the JEDEC standard [7]: 1500 G deceleration and 0.5 ms half-sine 

pulse shape. The test is designed to evaluate and compare the drop performance of 

surface mount electronic components for handheld electronic product applications in an 

accelerated way while duplicating the failure modes normally observed after a product 

level test. A typical drop tester is shown in Fig. 3. 

 

 

Fig.2. Crack path and the location of the secondary critical solder 

interconnection (TC 5500 cycles). (reprinted with permission 

from IEEE) 
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During the drop events, the electrical failures may originate from various failure modes 

such as cracking of the PWB, copper trace cracking, cracking of solder 

interconnections, as well as component cracking. Among the different types of failure 

modes, the crackings of solder interconnections and copper trace are the most frequently 

observed ones [8-11]. The critical solder interconnections are typically the outermost 

ones. The cracking of solder interconnections usually takes place in the intermetallic 

layers at the interface between the solder and copper pad, and thereby, this failure mode 

is also called intermetallic layer cracking. Three micrographs are given in Fig. 4 to show 

the observed cracking of the intermetallic layer and copper trace in drop tests. 

 

Fig. 3. Drop test setup and input shock pulse: (a) board level drop tester; (b) 

enlarge view of the tester (PWB, supporting rods, and base plate); (c) Input shock 

pulse (1500 G deceleration, 0.5 ms duration, half-sine pulse). (reprinted with 

permission from Elsevier) 
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2.3  Combined Loading 

It is likely that the temperatures inside the products are well above their ambient when 

they experience mechanical shocks, meaning that thermomechanical loading as well as 

mechanical shock loading is simultaneously applied to the devices. Combined loading 

tests are thus necessary in order to better assess the reliability of component boards. In 

the combined loading test, the component boards are heated up locally by the integrated 

heating elements, and then drop tested at designed elevated temperatures. Details of the 

combined loading tests are presented in Publications II and III. 

Since most of the material properties in the assembly are temperature dependent, the 

influences of temperature change on the drop impact reliability are highly complicated. 

Neglecting other trivial factors, the influences of increasing temperature can be 

analyzed by three major factors: (i) the change of PWB stiffness, (ii) the change of yield 

strength and elastic modulus of solder, and (iii) the effect of thermomechanical residual 

 
 

Fig. 4. Two typical failure modes of drop tests (a) intermetallic layer cracking (b) copper 

trace cracking (c) copper trace cracking (top view). (reprinted with permission from Elsevier) 
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stress. The temperature dependent material properties of the PWB and SnAgCu solder 

are listed in Table 1. With increasing temperature, the PWB becomes softer, resulting in 

a larger value of deflection during the drop impact and eventually leading to more 

significant plastic deformations in the solder interconnections. However, the yield 

strength and elastic modulus of solder decrease with increasing temperature, leading to 

the lower stresses and more plastic deformations. Furthermore, the component size and 

PWB structure have been found to have a significant influence on the reliability of the 

component boards under combined loading conditions (see Publications II and III). 

Table 1 

Temperature dependent material properties 

Materials Temperature (ºC) Strain rate (%/s) Young‘s modulus(MPa) Yield strength (MPa) 

PWB 
0 

— 
18.0 E+3 

— 
140 12.7 E+3 

SnAgCu 
0 

100 
52.4 E+3 34 

140 40.6 E+3 20 

 

Several different packages have been studied and the observed failure modes associated 

with the combined loadings are more complex than those of the single loading tests. 

Besides the intermetallic layer cracking and copper trace cracking as shown in Fig. 4, a 

new failure mode, combined intermetallic layer and bulk solder cracking, has been 

observed. An example is shown in Fig. 5, where the failure mode of the wafer level chip 

scale packages (WL-CSP) gradually changes from the intermetallic layer cracking to the 

bulk solder cracking with increasing test temperature. In addition, the failure mode of 

one type of BGA package was found to be the component side intermetallic layer 

cracking at the room temperature and the PWB side copper trace cracking at the high 

temperature (70 ºC or higher). The failure mode of another type of BGA package was 

found to be always the intermetallic layer cracking. 
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Fig. 5. Failure modes of WL-CSP gradually change from the intermetallic layer 

cracking to the bulk solder cracking: (a) failure mode at RT; (b) failure mode at 100 

°C. (reprinted with permission from Elsevier) 
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3. Microstructural Changes in SnAgCu Solder 

Interconnections 

Two micrographs of the same solder interconnection but from different stages of the 

thermal cycling test are presented in Fig. 6 in order to show the microstructural changes 

of solder interconnections. The as-solidified microstructure of SnAgCu solder 

interconnections are usually composed of several large Sn-based colonies (typically less 

than five) separated by high angle boundaries [16, 17]. During cyclic thermomechanical 

loading, a fraction of the energy associated with the plastic deformation of solder 

interconnections is stored in the metal, mainly in the form of point defects and 

dislocations. The stored energy is subsequently released during restoration, which can 

be divided into three main processes: recovery, primary recrystallization and grain 

growth. Recovery and recrystallization are two competing processes, which are driven 

by the increased internal energy of the deformed material. Recovery decreases the 

driving force for recrystallization and thus hinders the initiation of recrystallization. In 

high stacking fault energy metals such as Sn, the release of stored energy takes place so 

effectively by recovery that recrystallization will not practically take place [20, 36, 37]. 

Studies have shown that after a single deformation static recrystallization rarely occurs 

in Sn-rich solders [37]. However, under dynamic loading conditions such as in thermal 

cycling tests, recrystallization often occurs in the high stress concentration regions of 

solder interconnections. In the recrystallized region a continuous network of high angle 

grain boundaries provides favorable sites for cracks to nucleate and to propagate 

intergranularly, which can lead to failures in the solder interconnections [20]. 

Besides the microstructural changes in Sn matrix, the interfacial IMC layer growth and 

morphology changes have been found to have a significant influence on the solder 

interconnection reliability (e.g. [38]). Cu6Sn5 is the first detectable phase to form at the 

Cu/Sn interface during soldering and Cu3Sn is usually observable after the annealing or 

thermal cycling. Based on the annealing studies, it has been concluded that from room 

temperature up to 50-60 ºC only the Cu6Sn5 layer growth is detectable and it is 
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controlled by the release of Cu atoms from the Cu lattice. Above 60 ºC the Cu3Sn layer 

starts to grow at the expense of the Cu6Sn5 layer, and meanwhile, both Cu and Sn are 

mobile (see [39] for more information). Compared to the annealing, the IMC layer 

growth rate is accelerated during thermal cycling as a result of the thermomechanical 

stress generated by the CTE mismatch.  Furthermore, under high current density the 

electromigration plays a significant role in the growth of the IMC layer. Due to the 

―electron wind‖, the atoms are transported in the directions of the electron-flow, 

resulting in the microvoid formation near the cathode and the ―hillocks‖ formation near 

the anode. As discussed in Section 2, cracks usually propagate along the IMC/solder 

interface under thermomechanical loading or within the IMC layer under mechanical 

shock loading.  Hence, the IMC layer growth is a significant reliability concern in 

electronics devices.  

 

 

 

 

 

 

A thorough understanding of the microstructural changes in solder interconnections is 

of great importance to the reliability studies of electronic products. The motivation for 

the microstructural simulation work presented in this thesis is to offer better 

understanding and to provide a quantitative description of the restoration processes, i.e. 

recrystallization and recovery, in solder interconnections.  

 
 

Fig. 6. (a) as-solidified microstructure of a SnAgCu solder interconnection observed with cross-polarized 

light, (b) the same interconnection after 1000 thermal cycles. 
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4. Numerical Methods for Simulations 

The finite element method has been employed for the macroscale structural simulation 

and the Monte Carlo method for the mesoscale microstructural simulation. The brief 

introductions to the FE method and the MC method, their main features, and the specific 

techniques used in the current work are addressed in this section. In addition, the newly 

developed hybrid algorithm for microstructural simulations of solder interconnections 

during thermal cycling is also presented. 

4.1  Finite Element Method 

The finite element method originated from the discretization of continuous problems. In 

the 1940s it was successfully used to solve complex elastic continuous problems in civil 

engineering [40, 41]. From the middle 1950s to the late 1960s, a lot of progress was 

made by mathematicians and engineers. The key FEM concepts, such as the stiffness 

matrix and element assembly, were developed in the late 1950s. The finite element 

software NASTRAN was developed for NASA in the late 1960s. In 1974, the finite 

element method was provided with a rigorous mathematical foundation by Strang and 

Fix [42]. Nowadays, the method is applied to a wide variety of engineering fields, such 

as structural mechanics, fluid dynamics, and electromagnetics. 

The finite element method is a numerical approach for finding approximate solutions to 

partial differential equations. The continuum is divided into a finite number of elements 

and the elements are assumed to be interconnected at a discrete number of nodal points 

situated on their boundaries and occasionally in their interior. In structural analysis, the 

displacements of these nodal points will be the basic unknown parameters of a problem.  

4.1.1 Finite Element Analysis Process 

A typical finite element analysis (FEA) process includes the following seven steps. 
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(1) Model creation: The model is drawn in a pre-processor or other CAD software. 

(2) Mesh generation: The finer mesh usually leads to better results but requires 

longer analysis time, and thereby, there is a trade-off between accuracy and 

solution speed. 

(3) Assigning material properties: The material properties are defined and the 

suitable material models are chosen.  

(4) Applying loads: For instance, displacement in a stress analysis or heat generation 

in a thermal analysis. 

(5) Applying boundary conditions: A boundary condition may be applied to all 

directions (x, y, z) or to certain directions only. Zero displacements are usually 

used in stress analysis, and specified temperatures in thermal analysis. 

(6) Solution: The analysis types (e.g. static, transient, implicit, and explicit) are 

defined. The time increment procedure and error control are specified. 

(7) Post-processor: the results are read and interpreted. They are usually visualized 

in the form of a contour plot or presented in a table.  

 

The following points are crucial to a successful finite element analysis. In addition, they 

are also useful checkpoints for improving the quality of an FEA.  

(1) To establish a simplified and approximately accurate geometry representation.  

(2) To choose appropriate element types, mesh, material properties, and material 

models. 

(3) To apply accurate loads and boundary conditions. 

(4) To use appropriate analysis type and error control. 

 

4.1.2 Finite Element Techniques 

In the current work, two specific finite element techniques, the ―submodeling‖ and 

―global-local‖ techniques, are employed in different simulations. Both techniques are 

addressed in detail in the following text.  
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The submodeling technique is used in order to obtain accurate results of a local part of a 

model with a refined mesh. It is based on interpolation of the solution from an initial, 

relatively coarse global model. For instance, in a structural analysis the calculated 

displacements of the global model are stored and used as the boundary conditions in the 

submodel. The details included in the submodel have no effect on the global behavior. 

The submodeling technique is most useful when the detailed solution in a local region is 

required and the detailed modeling of that local region has a negligible effect on the 

overall solution. Besides, according to the element type of the global model and 

submodel the submodeling can be solid-to-solid, shell-to-shell, or shell-to-solid.  

The global-local technique is useful when the accurate results of a local part are 

necessary. A fine mesh is applied to the local part while a relatively coarse mesh is 

applied to the global model. The constraint equations are used to tie together the 

dissimilar meshes. The variables are transferred along the boundary between the global 

and local models. Different from the submodeling technique, the details of the local 

model have influence on the global behavior when the global-local technique is used. 

4.1.3 Material Models 

In mechanics, material models are the quantitative descriptions of material behaviors 

(e.g. elastic, plastic, or creep). A material model usually composes of a set of 

constitutive equations relating stresses and strains, e.g. Hooke‘s law for the constitutive 

relation of linear materials. Choosing suitable material models during FEA is crucial to 

the accuracy of stress-strain analyses.  

In general, deformations of materials are categorized into elastic, rate-independent 

plastic, and creep (also called rate-dependent plastic or viscoplastic) deformations. Rate-

independent plastic deformations are irreversible and take place almost instantaneously 

as the applied stress is beyond the yield stress. Creep deformations usually occur over a 

long period of time when the materials are exposed to a relatively high temperature and 

a mild loading. In order to avoid misunderstanding, in the following text the term 
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―plastic‖ is used to denote ―rate-independent plastic‖ and ―creep‖ for the ―rate-

dependent plastic‖.  

The Anand model is the most popular viscoplastic model to describe solder deformation 

as SnAgCu solder shows viscoplastic deformation characteristics when subjected to 

temperature cycle loadings. The model is often used for modeling metal behaviors 

under elevated temperature when the behaviors become very sensitive to strain rate, 

temperature, and the history of the strain rate and temperature [43]. The model is 

composed of a flow equation and three evolution equations that describes strain 

hardening or softening during the primary stage of creep and the secondary creep stage 

(see [43] for more information). Different from other models, the Anand model needs 

no explicit yield condition and involves one state variable, i.e. the scalar non-zero 

variable called deformation resistance, in order to describe strain hardening or 

softening. In addition, the Anand model is available in the FEA software ANSYS and 

users can easily employ the model for FE modeling without extra coding work. This 

fact is another reason for the popularity of the model. 

Besides the Anand model, a lot of researchers have treated solder alloys as ―elastic + 

plastic + creep‖. The plastic deformation is normally described by a power law 

relationship (e.g. [44]). 

 = C
pl

 pl 
n 

                                                                                  (1) 

where  and pl are the shear stress and the rate independent shear strain, respectively. 

C
pl

 and n are both temperature-dependent material constants. The steady-state creep of 

SnAgCu can be well described by a hyperbolic sine stress function (see Eq. 2). One of 

the popular creep models was developed by Schubert et al. [45, 46].  
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where s is the steady-state strain, k is the Boltzmann‘s constant, T is the absolute 

temperature,  is the applied stress, Qa is the apparent activation energy, and C, , and 

n are constants.  

It is noteworthy that many life prediction models for solder interconnections are 

associated with certain material models. For instance, the Darveaux‘s prediction model 

[47] employs the Anand constitutive model during FE modeling and the Schubert‘s 

approach uses the materials models, ―elastic + plastic + creep‖, as previously 

discussed. Using unsuitable material models may lead to significant errors in the 

lifetime predictions. 

4.2  Monte Carlo Method 

The Monte Carlo method is named after the Monte Carlo Casino in Monaco. The 

systematic development of the method dates back to 1944 [48, 49]. After the first 

electronic computer appeared, the Monte Carlo methods began to be studied in depth. In 

the 1950s they were used in the work related to the development of the hydrogen bomb. 

Later, the method became popular in computational physics, computational material 

science, physical chemistry, and related applied fields. 

The Monte Carlo methods are a class of stochastic techniques that rely on repeated 

random sampling to investigate problems. Since the methods rely on repeated 

computation of random numbers (trial and error), they are especially suitable to be 

carried out on computers. Monte Carlo methods are useful in studying systems with a 

large number of coupled degrees of freedom and for modeling phenomena with 

significant uncertainty in inputs. 

The expression ―Monte Carlo method‖ is very general, meaning that the term describes 

a large and widely-used class of approaches. These approaches tend to follow a specific 

pattern as follows. 
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(1) Define a domain of possible inputs. 

(2) Generate inputs randomly with a certain specified probability distribution. 

(3) Conduct a deterministic computation using the inputs. 

(4) Aggregate the results of all the individual computations into the final result. 

In the current work, a Potts model based Monte Carlo method is used to simulate the 

microstructural changes of solder. In the Potts model, the material is divided into a 

number of discrete points and sites, which form a regular lattice (see Fig. 7). The model 

does not simulate the behavior of single atoms, and thereby, each MC lattice site 

represents a large cluster of atoms with the typical size being in the order of 

micrometers. Within each site the microstructure is assumed to be homogeneous. Each 

site is given a number corresponding to a grain orientation and two adjacent sites with 

different grain orientation numbers are regarded as being separated by a grain boundary. 

A group of sites having the same orientation number and surrounded by grain 

boundaries are considered as a grain.  

 

 

 

 

 

 

The grain boundary energy and the volume stored energy are taken into consideration in 

the energy minimization calculations to simulate the recrystallization and grain growth 

processes. Each site contributes an amount of stored energy, H(Si), to the system, and 

 
 

Fig. 7. Schematic show of the MC lattice 
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each pair of unlike neighboring sites contributes a unit of grain boundary energy, J, to 

the system. When using the square lattice as shown in Fig. 7, the first and second 

nearest neighbors are included in the energy calculation, and thereby, each site has eight 

nearest neighbors. For example, the site with the number ―9‖ inside the circle has eight 

nearest neighbors, and four of which are unlike neighboring sites. The nucleation of 

recrystallization is modeled by introducing nuclei (small embryos with zero stored 

energy) into the lattice. 

In the reorientation process, if the randomly selected site is unrecrystallized, it will be 

recrystallized under the condition that the total energy of the system is reduced. If the 

selected site is recrystallized, the reorientation process is a simulation of the nucleus 

growth process. The total energy of the system, E, is calculated by summing the volume 

stored energy and the grain boundary energy contributions throughout all the sites. 

(1 ) ( )
i jS S i

ij i

E J H S
 

                                                              (3) 

where the sum of i is over all NMC sites in the system, the sum of j is over all the 

nearest-neighbor sites of the site i, and δij is the Kronecker delta. 

4.3  Hybrid Algorithm 

The Monte Carlo simulation approach provides a convenient way to simulate the 

changes in the microstructure of materials, however, the treatment of heterogeneous 

nucleation and inhomogeneously deformed material still remains a challenge for the 

simulation. Hence, hybrid methods are needed to perform the task. As steps in this 

direction, Rollett and Raabe [50] developed a hybrid model for mesoscopic simulation 

of recrystallization by combining the MC and Cellular Automaton methods. Song and 

Rettenmayr [51] presented a hybrid MC model for studying recovery and 

recrystallization of titanium at various annealing temperatures after inhomogeneous 

deformation. Furthermore, hybrid models, combining FEM and recrystallization 

models, have been developed in earlier work. For instance, Yu and Esche [52] 
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combined the MC method with the finite element method in order to simulate the 

microstructure of structural materials under forging and rolling; Zambaldi et al. [53] 

modeled the indentation deformation and recrystallization of a single crystal nickel-

based superalloy; and Raabe and Becker [54] combined a plasticity finite element model 

with a probabilistic cellular automaton for simulating primary static recrystallization of 

aluminum. Nevertheless, most of the previous studies are limited to static 

recrystallization or relatively simply loading conditions such as annealing.  

In this study, a new hybrid algorithm, combining the Potts model based Monte Carlo 

and finite element methods, has been developed in order to predict the dynamic 

recrystallization of Sn in Sn-rich lead-free solder interconnections during thermal 

cycling. The approach is based on the principle that the stored energy of solder is 

gradually increased during each thermal cycle. When a critical value of the energy is 

reached, recrystallization is initiated. The stored energy is released through the 

nucleation and growth of new grains, which gradually consume the strain-hardened 

matrix of high dislocation density. 

In order to schematically describe the simulation process, a flow chart is shown in Fig. 

8. There are three major steps in the process and all the key inputs for the simulation are 

listed in the boxes, which are on the left side of each step. In Step I, the finite element 

method is employed to calculate the inelastic strain energy density of the solder 

interconnections under thermal cycling loads. As discussed above, it is assumed that the 

net increase of the stored energy takes place after every thermal cycle. In Step II 

(scaling processes), the stored energy, as the driving force for recrystallization, is 

mapped onto the lattice of the MC model, and  moreover, a correlation is established to 

convert real time to MC simulation time with the help of the in situ test results. In Step 

III, the grain boundary energy and the volume stored energy are taken into consideration 

in the energy minimization calculations to simulate the recrystallization and grain 

growth processes. Furthermore, intermetallic particles are treated as inert particles and 

their influence on the distribution of stored energy is included. Details of the three steps 

are presented in Publications IV and V. 
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Fig. 8. Flow chart for the simulation of microstructural changes in solder 

interconnections. (reprinted with permission from Elsevier) 
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5. Stress-Strain Analyses 

Stress-strain analyses based on the FE simulations can help researchers understand 

behavior, limits, and interactions of complex processes, explain observed failure 

mechanisms, and improve designs. The following subsections present the major 

contributions of the stress-strain analyses to the reliability assessment of solder 

interconnections in BGA component boards. 

5.1  Mechanical Responses of Component Boards 

The analysis of the PWB deformation during either thermomechanical or drop impact 

tests provides an insight into the stress-strain state of solder interconnections. During 

the thermal cycling or power cycling tests, solder interconnections are subjected to 

thermally induced fatigue. The cyclic loading makes solder interconnections under a 

complicated triaxial stress state as a result of the CTE mismatches. The bending of the 

component board in both TC and PC cases are schematically shown in Fig. 9. Due to 

symmetry, only half of the component board is presented in the figure. In the TC test, 

the temperature distribution is relatively uniform. The PWB expands more than the 

BGA component when the temperature is increased and shrinks more than the BGA 

component when the temperature is decreased. As a result, during thermal cycling the 

component board bends upwards at high temperature and downwards at low 

temperature. On the contrary, during power cycling the component board bends 

downwards when the power is on and upwards when the power is off. In the PC test, the 

heat generation is inside of the component and the high temperature distribution is 

localized in the center of the PWB where the component is located. The component 

expands more than the PWB when the power is on, leading to the downward bending of 

the component board. The upward bending of the component board during PC can be 

explained in the same manner. 
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On the other hand, during the mechanical shock tests the component boards tend to 

bend downwards due to the impact and the inertial force. Fig. 10 gives a typical 

displacement contour of a PWB during a drop test. The PWB deflection is defined by 

the relative 3-direction displacement between the center of the PWB, point ―A‖, and the 

supporting point, point ―P‖. If the applied loading condition follows the JEDEC 

standard, the deflection value is usually about 5 mm. Larger values of the PWB 

deflection result in larger strains and stresses inside the assembly, and finally lead to the 

 
 

     Fig. 9. Side view of the displacement vectors of the component board. (reprinted with permission from 

Emerald) 

 

 
 

Fig. 10. 3-direction displacement contour of a PWB during a drop test, where points A and 

P are the center of the PWB and the supporting point, respectively. (reprinted with 

permission from Elsevier) 
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earlier failure of the component boards. Furthermore, the strain rate during a mechanical 

shock test is notably high (about 100 %/s), and therefore, modeling the materials as 

―elastic + plastic‖ is sufficiently accurate. 

5.2  Crack Initiation and Propagation 

Since one failed solder interconnection will result in the failure of the component as 

well as the electronic device, to understand the crack initiation and propagation of the 

critical solder interconnections becomes one of the primary objectives of the FEA. 

During the result post-process, the solder interconnections with the highest stresses or 

strains are regarded as the critical ones. The analyses indicate that under 

thermomechanical loadings the critical solder interconnections are normally in the 

vicinity of the die edges and under drop impact tests the critical solder interconnections 

are the outermost ones, which are in good agreement with the experimental findings 

presented in Section 2. 

 

 

 

 

 

 

 

 

 
Fig. 11. (a) Micrograph of the critical solder interconnection from TS14; (b) von Mises stress contour of 

the same cross-section at the low-temperature stage (units: MPa). (reprinted with permission from 

Emerald) 
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The stress-strain analyses add insights into the crack initiation and propagation of the 

critical solder interconnection. For example, a cross-section micrograph of a cracked 

critical solder interconnection from the thermal shock test with 14 min cycle time 

(TS14) is shown in Fig.11. Besides the micrograph, a von Mises stress contour mapped 

on the same cross-section of the interconnection is also given. Comparing Fig. 11(a) 

with Fig. 11(b), it is found that the crack initiates from the corner of the solder 

interconnection where the high stress concentration is located. Throughout the whole 

interconnection, the region with the relatively high stresses is adjacent to the component 

side interface, providing a clue to the observed crack propagation path. 

In some cases, the locations of the critical solder interconnections may change due to 

the different designs of the package and loading conditions.  As an example the main 

processing unit of the cell phone studied in the reference [55] is shown in Fig. 12. The 

application engine component is a stacked-die BGA package-on-package design and 

was subjected to operational power cycling (OPC).  

 

 

 

 

 

According to the simulation results, the critical solder interconnection of the OPC test 

has been found to be located in the middle of the third rows (see the red dot in Fig. 12). 

Again, the micrograph and the calculated stress contour figure of the critical solder 

interconnection are given in Fig. 13. No obvious cracks are found in the micrograph, 

which is understandable since no failures were detected during the two-year OPC. All 

 
 Fig.12. Predicted location of the critical solder interconnection of a stacked package-on-package 

component under operational power cycling. 
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the solder interconnections in the BGA have been carefully checked and no other 

interconnections show such significant microstructural changes as the solder 

interconnection shown in Fig. 13(a) [55]. The recrystallized microstructure at the 

interfacial regions of the interconnection suggests that plastic deformation induced 

microstructural evolution has taken place and eventually cracks will occur in these 

regions.  

 

 

 

 

 

5.3  Optimization of Temperature Profiles 

Choosing optimized temperature profiles for the thermal cycling or thermal shock tests 

of component boards by means of stress-strain analyses has received a lot of attention 

over the last ten years. For instance, Zhai et al. [24] studied the lifetimes of the SnPb 

BGA assemblies under different ramp rates and dwell time, and Clech [27] studied the 

effects of thermal cycling ramp rate and dwell time on different CSP assemblies. The 

objective of the optimization is to find the shortest test time as well as to duplicate the 

same failure modes observed in the product level tests. Generally speaking, an 

optimized temperature profile for all types of components or PWBs does not exist due 

to different package designs and materials. However, the conclusions obtained from an 

FEA of a certain component board are applicable to other similar component boards. 

Before starting a time-consuming thermomechanical test of a new type of component 

 
 

Fig. 13. Left: Polarized light cross-sectional image of the critical interconnection in OPC. Right: 

Calculated stress contour map of the critical interconnection. 
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board, it is highly recommended to carry out an FEA in order to optimize the 

temperature profiles. 

Stress-strain hysteresis loops are often employed to compare different temperature 

profiles. For example, three hysteresis loops for three thermal shock profiles (TS14, 

TS34, and TS44) are shown in Fig. 14. The three temperature profiles have different 

cycle times (14, 34, and 44 min). In the figure, the turning points of the TS14 loop are 

labelled as A, B, C, and D so that the loop is divided into four segments (each segment 

is associated with a certain temperature stage). Surrounding the hysteresis loops, four 

red dashed lines with arrows are used to schematically depict the process of the 

temperature change during one cycle. With the help of the hysteresis loops and the red 

dashed lines, the evolution of the stress during each temperature stage can be easily 

distinguished. For instance, the stress is relaxed from A (7.9 MPa) to B (3.7 MPa) 

during the high temperature dwell. Furthermore, the accumulated strain energy density 

within one cycle has been calculated (the area in the centre of a hysteresis loop is the 

accumulated strain energy density). The total accumulated strain energy density of the 

TS14 loop is 8.04 MPa and the contributions from the dwell and the ramp portions are 2 

% and 98 %, respectively. The shapes of the three hysteresis loops in Fig. 14 are similar 

since all the cases share the same extreme temperatures and ramp rate. Increasing the 

dwell time increases the area of the hysteresis loops. Nevertheless, TS14 has the largest 

ratio (0.57 MPa/min) between the accumulated strain energy density and the cycle time, 

making TS14 a candidate for the most accelerated test. Regardless of the effect of dwell 

time on the microstructural changes, e.g. recrystallization of Sn, it can be concluded that 

a shorter cycle time in terms of less dwell time leads to a more efficient thermal shock 

test. 
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5.4   Influences of Multiple Factors 

In complex processes, there are multiple factors affecting the final failure modes. The 

interactions of these factors prevent researchers from individually studying these factors 

by experiments. In such cases, numerical experiments based on FEA are most helpful to 

elucidate the influences of multiple factors and offer explanations to the observed 

failure modes.  

As an example, the numerical experiments have been designed to study the failure 

modes of the combined loading tests discussed in Section 2.3. Table 2 gives the details 

of the three comparison cases and the factors under study. In the table, the 1
st
 step is a 

thermomechanical analysis, which simulates the response of the component boards due 

to the temperature change, from room temperature to the elevated temperature. The 2
nd

 

step is to quantify the effect of the pure mechanical shock load while the assigned 

temperature distribution of the component board remains unchanged. The reference case 

uses the room temperature values for the material parameters. Case I uses the 100 ºC 

 
Fig. 14. Hysteresis loops for the critical solder interconnections of TS14, TS34, and TS44. (reprinted with 

permission from Emerald) 

 

 



 

 

42 

values and includes all the three factors studied. Unlike Case I, Case II is constructed by 

excluding the first step, i.e. the effect of thermomechanical residual stress from the 

calculations while utilizing the 100 ºC as the reference temperature for the material 

properties. Case III is similar to Case II but uses material properties at room temperature 

for the solder. The motivation behind Case III is to focus on the effect of PWB stiffness 

while excluding the other factors. With the help of the comparison cases, a series of 

stress-strain analyses have been carried out and the observed failure modes have been 

well explained (see Publications II and III). 

Table 2 

Three comparison cases designed for studying the effects of temperature change 

 Reference Case I Case II Case III 

The 1
st
 step — Included — — 

The 2
nd

 step: 

values for the 

material 

parameters 

23 ºC 
PWB,  

solder 
— — solder 

100 ºC  — 
PWB, 

solder 

PWB, 

solder 
PWB 

Factors taken into account  — a, b, c a, b a 

a) the change of PWB stiffness; b) the change of yield strength and elastic modulus of solder; c) the effect 

of thermomechanical residual stress. 
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6. Lifetime predictions 

Lifetime prediction models for solder interconnections under thermomechanical tests 

are usually classified into two major categories: strain based and energy based. Most 

models follow the Coffin-Manson type relation.  

Strain based model:                
                                                         (4) 

Energy based model:                
                                                       (5) 

where Nf is the characteristic life(time at which 63.2 % of the units will fail), εacr is the 

accumulated creep strain per cycle, Wacr is the accumulated inelastic strain energy 

density per cycle. c1, c2, c3, and c4 are model constants. 

Another popular lifetime prediction model is the Darveaux‘s model [47], which is based 

on the crack growth correlation and the Anand constitutive model. 

Crack initiation:                               
                                                          (6) 

Crack growth:                         
  

  
       

                                                          (7) 

Characteristic life:                         
 

     
                                                     (8) 

where    is the number of cycles to crack initiation and  
  

  
 is the crack growth rate. 

  ,   ,   , and   are the correlation constants. a is the interconnection diameter at the 

interface (ultimate crack length). 

According to the nature of the lifetime predictions, all the predictions are either relative 

or absolute. When one set of the measured lifetime for a specific package assembly is 

available, the relative predictions can be conducted in order to study the effects of 

various minor changes on the design, such as die size, mold compound thickness, and 
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PWB thickness. The accuracy of relative predictions is usually within the range of ±25 

% or better. The accuracy of absolute lifetime predictions is somewhat less since 

absolute lifetime predictions cover a wide range of package designs, materials, and test 

conditions. In case the accuracy of the absolute lifetime prediction is not satisfactory, 

the following assumptions should be carefully checked: FE model, lifetime prediction 

model, material model, and material properties.  
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7.  Summary of the Thesis 

In this work, computer-aided numerical simulations were carried out in order to assess 

the reliability of solder interconnections in BGA packages. The finite element method 

was employed for the macroscale simulation while the Potts model based Monte Carlo 

method was adopted for the mesoscale microstructural simulation.  

The major reliability tests for electronic component boards, i.e. thermal cycling, power 

cycling and drop impact tests, were simulated by employing the FEM. The work 

utilized stress-strain analyses to offer better understanding of the observed failure 

modes in the reliability tests.  The lifetime predictions depending on the simulation 

results were greatly helpful for the lifetime estimations of the BGA packages.  

A new algorithm was developed in order to predict dynamic recrystallization in solder 

interconnections during thermal cycling. The approach was realized by combining the 

Potts model based Monte Carlo method and the finite element method. The correlation 

between real time and MC simulation time was established with the help of the in situ 

test results. Recrystallization with the presence of the intermetallic particles in the 

solder matrix was simulated for the first time by introducing the energy amplification 

factors in the particle-affected deformation regions. The work provided insights into the 

recrystallization phenomenon in solder interconnections. 

The thesis consists of six publications, of which the main results and conclusions are 

summarized as follows. 

Publication I, entitled ―Reliability of Lead-Free solder interconnections in Thermal 

and Power cycling tests‖, presented the thermomechanical reliability study of lead-free 

solder interconnections in thin fine pitch BGA packages. Finite element analyses were 

carried out to study the three reliability tests, i.e. thermal shock, local thermal cycling 

and power cycling tests. The calculated stresses, strains, and PWB expansions have 
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been compared among the three tests. The diagonal solder interconnections beneath the 

die edge were the most critical ones of all the tests studied. Darveaux‘s approach was 

used to predict the lifetime of the solder interconnections. The results showed that the 

thermal shock test would lead to the shortest fatigue life. With a similar temperature 

range, the power cycling test would have an absolute fatigue life 2.3 times longer than 

that of the thermal shock test, which makes the thermal cycling test a relatively 

conservative criterion for assessing package reliability. 

Publication II, entitled ―Computational Assessment of the Effects of Temperature on 

Wafer-Level Component Boards in Drop Tests‖, described the drop reliability of 

WL-CSP component boards used in portable devices. It has been found that the number 

of drops-to-failure increased significantly with increasing test temperature. At room 

temperature the cracks propagated solely along the intermetallic layers but the increase 

of test temperature progressively changed their propagation paths from the intermetallic 

layers into the bulk solder. The finite element method was employed to evaluate the 

complex temperature effects, which include the decrease of the strength and elastic 

modulus of solders, the decrease of the stiffness of printed wiring boards, and the 

introduction of the thermomechanical residual stress. The calculations showed that due 

to the increases in test temperature the peeling stress was reduced markedly, while the 

equivalent plastic strain was only slightly increased at the interfacial regions of the 

solder interconnections. The reduction of the stresses increased the proportion of the 

bulk solder cracking relative to the cracking of the intermetallic layers, and therefore the 

number of drops-to-failure increased as a function of increasing test temperature. 

Publication III, entitled ―FEM simulations for reliability assessment of component 

boards drop tested at various temperatures‖ presented the reliability study of four 

different component boards subjected to drop tests at different temperatures. The FEM 

based numerical experiments were designed to elucidate the temperature effects on the 

reliability. It has been found that the change of the component type from WL-CSP to 

other CSP-BGAs would result in a considerable increase in stresses and strains due to 
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the enlarged size of the components. The simulation results provided convincing 

explanations for the three failure modes distinguished by the fracture analyses. 

Publication IV, entitled ―Multiscale Simulation of Microstructural Changes in 

Solder Interconnections during Thermal Cycling‖ reported a new multiscale 

algorithm developed to predict the onset and progress of recrystallization in solder 

interconnections under thermal cycling tests. The algorithm consisted of a macroscale 

finite element method and a mesoscale Monte Carlo method. The theory was based on 

the accumulation of stored energy in solder interconnections during each thermal cycle 

and the competition between the recovery and recrystallization in consuming this 

energy. It was for the first time that dynamic recrystallization in solder interconnections 

was simulated. Verified by the experimental results, the presented algorithm predicted 

well the incubation period and the growth rate of the recrystallization. 

Publication V, entitled ―Simulation of Dynamic Recrystallization in Solder 

Interconnections during Thermal Cycling‖, presented a new algorithm, combining 

the Potts model based Monte Carlo and finite element methods, for predicting dynamic 

recrystallization of solder interconnections during in situ thermal cycling tests. A 

correlation between real time and MC simulation time was established for the time 

scaling process of the algorithm. Recrystallization with the presence of intermetallic 

particles was simulated by introducing the energy amplification factors in the particle-

affected deformation regions. It was demonstrated that the algorithm predicted the 

dynamic recrystallization of solder interconnections, in a way consist with the 

experimental findings. 

Publication VI, entitled ―Finite element analyses and lifetime predictions for 

SnAgCu solder interconnections in thermal shock tests‖ reported the reliability study 

of SnAgCu solder interconnections under different thermal shock loading conditions. 

The stress-strain analysis was carried out to study the differences between different 

loading conditions. New crack growth data and correlation constants for the lifetime 

prediction model were reported. The simulation and experimental results indicate that 
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among all the loading conditions studied the thermal shock test with 14 min cycle time 

leads to the earliest failure of the BGA components.  

In future work, the combined loading tests (e.g. thermal cycling & vibration, power 

cycling & shock impact) should be the focus of the reliability study of solder 

interconnections. It is a challenge to use simulation tools to assess the damage 

contribution from each single loading condition and the complex interactions between 

various loadings. Furthermore, the microstructural simulation approach can be utilized 

to develop an advanced crack simulation algorithm and finally lead to a novel lifetime 

prediction model with microstructural evolution considered. 
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