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1. Introduction

The Internet architecture has been a tremendous success. During the

past decades it has grown from a small research network into a global

critical communications infrastructure with billions of users. Its success

has come with rapid changes in the user base and use patterns.

While the original Internet was used by a tightly knit community with

computers too large to move, the current Internet is characterized by large

number of (often mobile) stakeholders with adverse and even hostile in-

terests. These changes have made mobility [78] and denial-of-service at-

tacks [85] some of the most studied problems in the current Internet ar-

chitecture.

in 1977 Kleinrock and Kamoun showed that hierarchical naming was

superior to source routing and flat naming in terms of packet header size

and required routing state [67]. In 1982 Saltzer [118] defined four types

of objects in networks that could be named as destinations of packets:

services and users, network attachment points, nodes, and paths. The

Internet architecture converged to using network attachment points as

the only named destination in the network. This was useful, since net-

work attachment points could be named in a way that enabled them to be

aggregated.

Each network attachment point (e.g. network interface card) was named

with a unique 32-bit IP address1. The address itself was originally com-

posed of two parts. The network identifier was either 8, 16, or 24 bits

long for class A, B, and C network respectively and was used by routers

to route packets to the corresponding network. The host identifier (24,

16, or 8 bits long respectively) was then used at the destination to route

packets to the interface that the IP address pointed to. The possibility for

aggregation and the form of an IP address was crucial, since it made it

1Later on the introduction of NATs made this assumption invalid.
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possible to build routers that could perform route lookups fast for a vast

number of hosts later on.

The original IP addressing was organized as a two layer hierarchy [102].

The first part was either 8, 16, or 24 bits long and denoted the network

address, while the rest was used to denote the host within the network.

When networks grew, subnetting was developed [88, 89]. It brought an-

other layer of hierarchy by allowing networks to divide the host part of

the address into a local subnet part and a host part.

Later, as the Internet grew the division of the two parts was relaxed

with classless inter-domain routing (CIDR) [47], so that the network part

could be of any length. This enabled more efficient use of the IP address

space and made it possible for the Internet to continue its growth.

There was also a need for human readable host names. This need and

the growth of the early network saw the development of the HOSTS.TXT

file [33, 74]. It was centrally maintained and distributed to all hosts

in the Internet. Later on, as the Internet grew, Domain name system

(DNS) [86, 87] was designed to improve the scalability of the naming sys-

tem. However, IP addresses still remained the only routable names in the

Internet architecture. Domain names needed to be resolved into one (or

more) network attachment points (i.e. IP addresses), which could then be

used for sending packets to the host in destination.

The early Internet saw the development of two transport protocols, trans-

mission control protocol TCP [103] and user datagram protocol UDP [101],

and the BSD 4.4 socket API [79] that became a de facto standard. The

port numbers were intended as a way of denoting services and together

with the IP addresses, they became the primary naming mechanism of

destinations for applications.

This application layer binding of connections to IP addresses became

problematic when mobility and multihoming became common. One av-

enue of proposed solutions suggested that hosts should have a name, ei-

ther by reusing the IP address space and giving hosts a stable home ad-

dress as in Mobile IP [99] or using a separate cryptographically based host

identity [91].

10



Introduction

1.1 Information networking and publish/subscribe

While the Internet was designed primarily for accessing computing facili-

ties remotely, the patterns of communications have changed. In 2006 Van

Jacobson gave his talk [60], “A New Way to Look at Networking". The

main claim of the talk was that use of networks was changing from the

idea of interconnecting hosts to interconnecting information - and that

the network architecture should change with it. To back up his claims,

he stated that “the overwhelming use (> 99% by most measurements) of

today’s networks is for a machine to acquire named chunks of data (like

web pages or email messages)". The quantity of services focusing on in-

formation, such as World Wide Web, peer to peer networks, and RSS feeds

shows that there is indeed a shift in the network focus.

However, there is no Internet wide naming system across application

platforms that would enable communication parties to directly communi-

cate about information. Instead, applications are responsible for naming

and locating the information by themselves.

Publish/subscribe has been proposed as a general solution to the prob-

lems of locating, requesting, and receiving information. Publish/subscribe

systems can be divided into topic based, content based, and type based

publish/subscribe. In this thesis our focus is on building a network ar-

chitecture that can better support scalable topic based publish/subscribe.

Traditional publish/subscribe systems implemented as overlays over the

current Internet suffer from scalability problems. [40]

Topic based publish/subscribe is based on the notion of keywords to

which nodes can publish or subscribe to. The publish/subscribe system

then delivers documents published with a certain keyword to all sub-

scribers for that keywork. Multicast can be considered as one way of

providing such publish/subscribe communications. A keyword can be in-

terpreted as a group, subscribe as joining to a group and publishing as

sending a message to a group. Unfortunately, existing multicast archi-

tectures suffer from scalability problems. These scalability problems can

be divided into scalability on the forwarding plane and scalability on the

rendezvous, i.e. locating sources and receivers.

11



Introduction

1.2 Multicast

IP multicast, proposed in the early 90s by Deering et al. [32, 31], was

designed as a new general Internet layer service. In IP multicast, a

new named entity, group address, was introduced to the network layer.

Senders could choose a multicast group address they would send to and re-

ceivers could choose the group address they would listen to. The network

would, thus, match the senders and the receivers in a general many-to-

many architecture. For the many-to-many model, the group address was

topologically independent. Later on, source-specific multicast [18] was

designed, making a group name dependent on the source IP address in

addition to the group address.

However, such multicast architectures placed the group maintenance

at the routers. This requires routers to maintain per group state, which

leads to additional complexity, and scalability and security problems.

Bloom filter based multicast [111, 62] has been proposed as a way to

create scalable multicast by pushing the group management to the source

and thus removing the per group state at the transit routers. In Bloom

filter based multicast, the links belonging to a multicast tree are encoded

as a Bloom filter, which is then placed in the packet header. Each router

checks for the presence of outgoing links and forwards the packet accord-

ingly. Our work builds on this work.

1.2.1 Multicast objectives

We work with the following objectives for the architecture:

Large number of groups: The architecture should support large num-

ber of groups, at least hundreds or thousands of groups per host in the

Internet.

The number of potential uses for a general multicast architecture, source

specific or any-source, is large. Hence, the number of potential multicast

groups is also large. As an example, every chat client, RSS-feed, phone

service, mobile node, etc. would potentially use the multicast architec-

ture. Furthermore, it is likely that such an application would not be built

to switch from unicast mode of communications to multicast when the

number of receivers changes. Instead, it would use the multicast proto-

cols for all communications, including those with only one (or even zero)

12
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recipients.2

A multicast architecture should be designed with the potential for hun-

dreds or thousands of simultaneous multicast sessions per host in the

Internet. As there are billions of hosts in the Internet, the architecture

needs to scale to trillions of simultaneous groups. This also means that

many of the groups will be small most of the time, containing only one, or

two (or even zero) recipients.

Source and receiver control: A source should have control over the set of

receivers. A recipient should have control over groups it receives.

Security: The multicast infrastructure should be resistant to denial-

of-service attacks. It should also prevent traffic injections to multicast

groups by outsiders, or amplification attacks that use infrastructure to

enhance the strength of a denial-of-service attack.

1.3 Rendezvous

Rendezvous is another well known problem in publish/subscribe and any-

source multicast. The task is to match publishers and subscribers (or

sources and receivers in case of multicast). Consider a situation in which

there is a new source or receiver to a particular group. The network has

to locate the corresponding receivers or sources that may reside anywhere

in the network.

A number of solutions to this problem have been proposed. Simple

ideas, such as using a rendezvous point [43] are not scalable to large num-

ber of groups (and large networks). Flooding and network of rendezvous

points [43, 44] are not scalable to large numbers of dynamic groups either.

While distributed hash tables have many useful properties, as proposed

e.g. in i3 [129] and ROFL [22], they suffer from policy incompliant routing,

when used in inter-domain context. Policy routing based on names [50, 70]

is a promising approach, because it piggybacks on the existing policy rout-

ing infrastructure. This means that the name queries and the actual data

transfer will take the same route in the network providing fate sharing

between the name routing and the actual data transfer. Additionally, the

existing infrastructure provides an existence proof that policy routing can

2The thesis is agnostic on the issue whether a separate unicast communication
mode is needed. We merely state that for communications with the potential for
many end points, multicast is the natural choice even when there are only 0 or 1
recipients.
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work with large inter-network with thousands of operators. However, the

state requirement scales linearly to the number of groups (for some nodes

in the network), which may be problematic in the case of incremental de-

ployment.

1.4 PSIRP architecture

This thesis was born from our work on the PSIRP project [104]. PSIRP is

a publish subscribe internet routing paradigm project aiming for a clean

slate internetworking architecture based on publish/subscribe principles.

Its purpose is to design a new information centric internetworking archi-

tecture. The architecture is designed to operate with publish/subscribe

primitives at all networking layers.

The PSIRP architecture is based on the logical separation of rendezvous,

topology management, and forwarding functions. The role of the ren-

dezvous is to match publishers and subscribers, while the topology man-

agement is responsible for the creation of multicast trees from the pub-

lisher to a set of subscribers. Bloom filter based multicast [62] is used to

create a fast multicast based forwarding plane. In this thesis, we use the

IP routing and forwarding as the topology layer for our publish/subscribe

architecture.

1.5 Contributions

In this thesis, we create an instantiation of the PSIRP architecture by

combining BloomCasting, a technique for Bloom filter based inter-domain

multicasting, and the rendezvous system with current IP architecture.

Our work on a incrementally deployable rendezvous architecture is a com-

bination of policy routing on the edges and hierarchical overlay between

islands of deployment. It forms the basis for the PSIRP rendezvous ar-

chitecture. BloomCasting is used as a secure and scalable technique for

multicasting and IP unicast is used for signaling purposes. In our ar-

chitecture, anycast is used in the rendezvous for locating (information)

objects. Unicast is used for signaling and path collection and Bloom filter-

based multicast for all data traffic.

One of our goals is to take the clean slate design from PSIRP and find a
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way to fit it together with the current Internet architecture. During the

course of this work, we show that such a combination can be used to solve

or mitigate a number of architectural issues in the current Internet, in-

cluding mobility, multicast, and resistance to distributed denial-of-service

attacks.

We show that Bloom filter based forwarding suffers from anomalies

that have severe effects on infrastructure reliability and security, namely

packet storms, forwarding loops, and flow duplications. We show that the

problems can be solved by varying the parameters of the Bloom filters lo-

cally in each router and by permuting the Bloom filters at each router. We

also propose a technique for creating Bloom filters that are cryptographi-

cally secure and can be used as capabilities.

1.6 Structure of this thesis

In the next chapter, we present the necessary background for our contri-

butions. We continue by presenting BloomCast, our receiver driven net-

work architecture and conclusions in the subsequent chapters, followed

by the published articles.
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2. Background

In this section, we cover the relevant related work on multicast, Bloom

filters, distributed denial-of-service security, mobility, and rendezvous. In

the end of the Section, we also provide a brief summary of two security

techniques used in this thesis: hash chains and bit permutations.

2.1 Multicast

Multicast [32, 31] was originally designed as a general network layer ser-

vice enabling anyone to send to and receive from any group. A simple

example network using any-source multicast is shown in Figure 2.1. Two

sources S1 and S2 both send data to group G. A set of receivers R receive

traffic from group G. Each router maintains forwarding state for every

group it needs to forward, and as shown in the illustration in some cases

a router needs to maintain group specific state per source. The table on

the left shows that all multicast packets to group G (∗, G) are forwarded

to router 2 and multicast packets (S1, G) are forwarded to routers 3 and 4.

One of the key questions in the any-source multicast (ASM) model is:

How does the network locate all sources and receivers of a given group.

For example, if R3 started sending to group G, how will the routers know

where to forward the packets. Many different multicast protocols and

architectures have been proposed (see e.g. [35] for a survey) There are

two main models: dense mode and sparse mode multicast.

Dense mode multicast, e.g. Protocol Independent Multicast - Dense

Mode PIM-DM [1] floods the network when a new source sends to a group

and relies on the routers to prune unneeded links afterwards. It, however,

creates group specific state to every router in the network and cannot

scale to a large number of groups.
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ASM Multicast (Sx,G)

4

2

3

1

R

R

R

S1

R

R

S2

S2,G

S1,G

S2,G

S1,G

Group #out
*,G 2
S1,G 3, 4

Figure 2.1. (a) Example of any-source multicast with two sources S1 and S2 both sending
to group G.

A sparse mode multicast protocol uses a rendezvous point (or an equiva-

lent) to act as an intermediary between sources and destinations. In Pro-

tocol Independent Multicast - Sparse Mode (PIM-SM) [43, 17, 66, 44, 41]

the designated router of a receiver sends a join to the rendezvous point of

that group. Originally, a source’s packets are tunneled to the rendezvous

point. After this, in two phases the trees can be pruned so that there

is a shortest path tree from the source to the set of receivers. First, the

rendezvous point sends a join toward the source, removing the need for

tunneling and then a router on the receiver network can send a source

specific join to the source, creating a shortest path route between source

and receiver.

Core-Based Trees [14, 94] form a single tree with a core-router as the

root of the tree. Joins are forwarded towards the core until a router with

group specific state is found and each router creates group specific state

on when it passes the join forward. When a packet is sent to a group by a

group member, the packet is forwarded using the tree rooted at the core-

router so that each router forwards the packet to all interfaces that are

marked as receivers for the group excluding the interface were the packet

came from. If the sender is not part of the group, the packet is tunneled

to the core router. This setup saves state compared to PIM-SM, but still

requires state in a router for every group that it belongs to.

The main benefit of ASM is that it provides a general many-to-many
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SSM Multicast
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Figure 2.2. (a) Example of source specific multicast with two sources S1 and S2 sending
to group (S1, G) and (S2, G) respectively. Each has its own set of receivers.

communications architecture. However, the address space is too small

for large scale use and, hence, requires complicated distributed multicast

address space management. It also suffers from many other deployment

problems [34], especially in the case of inter-domain use. These include

the combined requirement for per group state in routers and no control

over the routing state, which causes severe security problems, and insuf-

ficient tools for group management in general.1

As an example of such problems, anyone can send to or join into an

arbitrary group address. Sending to or joining into an empty group has

been noted as a difficult security problem [119] that creates a denial-of-

service vulnerability since the multicast (rendezvous) architecture must

search the entire network for potential receivers or senders.

2.1.1 Source specific multicast

Source specific multicast (e.g. Protocol Independent Multicast - Source

Specific Multicast PIM-SSM [18]) provides a solution to the multicast ad-

dress allocation and rendezvous problem by using the combination of the

1We understand that many of the multicast deployment problems are funda-
mentally economic in their nature, such as the lack of control for costs in transit
(state) or source (transmission). We believe that our architecture does offer a
better design in such terms as well. However, such considerations are beyond
the scope of this thesis.
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IP source address with the multicast address as the group address. Only

the host residing at the source address can send to the group and joins are

routed towards the source using IP forwarding (MBGP [16] forwarding

tables can also be used). When the join packet is forwarded, each router

creates forwarding state for the group and forwards the packet towards

the source until a router with group specific state for that group is found.

Figure 2.2 shows an example network using source-specific multicast.

Source specific multicast is a step toward a deployable multicast archi-

tecture. It resolves the group address management problem, allowing

each host with an IP address to be a source for millions of groups. How-

ever, the security problems related to per group state in routers still re-

main [119].

XCast [20] is a source-specific multicast protocol that uses unicast rout-

ing directly. The set of destination IP addresses is placed in the packet

header and routers route the packet using unicast routing to all desti-

nation IP addresses. This, however, leads to additional forwarding com-

plexity because routers need to parse variable length sets of destination

addresses and, in branching points, re-construct the headers with a sub-

set of these addresses.

Scalable and adaptable multicast [145] improves PIM-SSM scalability

by combining it with XCast. Only a subset of multicast routers are chosen

to maintain state for a given multicast group and packets are routed from

one stateful multicast router to the set of next multicast routers using

XCast. This reduces the state requirement per router, but has the same

problems as described in XCast.

2.1.2 Multicast Security

While the end-to-end security considerations of multicast have received

considerable attention (see e.g. [93, 24, 53, 98, 123, 64, 106, 54]), rela-

tively little has been written about the security of the network multicast

architecture: RFC 4609 [119] lists issues such as join flooding, sending

to empty groups, and disturbing existing groups by sending to them, that

are security problems for multicast architecture.

A few factors complicate multicast security compared to unicast. First,

the number of entities in communications is larger, which creates addi-

tional complexity that manifests itself as security problems in group key

management, source authentication [13, 63], and receiver authentication,
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etc. This also means that there is natural multiplication of traffic, which

can be useful for denial-of-service attacks.

Second, the multicast architectures described above are based on the

stateful multicast model. This model places group management in the

network, making it difficult for the source to control who can or who can-

not receive. This combination forces the network infrastructure to handle

problems that would be better left to the application, such as source and

receiver authentication. Application requirements for authentication may

differ.

Third, while hierarchical routing can help unicast routing to scale with

sub-linear growth [67], multicast group identifiers are topology indepen-

dent, and the number of potential multicast groups grows exponentially

with the number of receiver nodes in the network. There have been at-

tempts at helping multicast forwarding plane scale better by aggregat-

ing multiple multicast groups into smaller number of trees (see e.g. [105,

130]).

There have also been attempts to solve problems related to multicast

using overlay architectures, such as secure-i3 [2]. While distributed hash

tables spread load efficiently across the system, they lack policy-compliant

paths and control over who is responsible for a particular group.

2.2 Bloom filter-based forwarding

Bloom filter-based source routing has been suggested as a solution for

multicast forwarding [111, 62, 131, 149]. Using Bloom filters to encode the

multicast forwarding tree into the packet removes the need for the routers

to maintain state per multicast tree. This solves an important scalability

problem in multicast and can be used to enhance the control receivers

and senders have over multicast communications. By decoupling group

management from multicast routing, it also makes it possible for sources

to deploy different end-to-end group management solutions, depending on

need.

We next introduce Bloom filters and then go through the relevant re-

lated work in using in-packet Bloom filters for packet forwarding.
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(a)

Empty Bloom filter

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Wednesday, September 29, 2010

(b)

Bloom filter - adding

0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0

X

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Wednesday, September 29, 2010(c)

Bloom filter - hash 
collision

0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0

X’

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Wednesday, September 29, 2010

Figure 2.3. (a) Empty Bloom filter (b) X is added to Bloom filter by setting the hash value
array positions to 1, k = 4. (c) shows a hash collision. Two hashes for element
X’ both yield location 8, k = 5.

2.2.1 Bloom filters

A Bloom filter [19] is a probabilistic data structure. It is an m-bit long

array and initially all bits are set to 0 as shown in Figure 2.3 (a). Elements

can be added into a Bloom filter by computing a set of array positions in

the Bloom filter that are set to 1, as shown in Figure 2.3 (b). The presence

of an element is tested by checking if those array positions are set to one.

This means that new elements can always be inserted into a Bloom filter,

but no elements can be deleted. False positives are possible, i.e. a mem-

bership test can return positive even if the element has not been added to

the Bloom filter. However, false negatives are not possible.

Each element e is represented with k positions in the array. For example

k separate hash functions can be used to compute k array positions - each

hash function giving output [0,m − 1]. The element can be encoded as

an m-bit long vector in which the array positions denoted by the k hash

values are set to 1 as shown in Figure 2.3 (b). Two hash values can collide,

as shown in Figure 2.3 (c) bit 8. As the figure shows, k = 5 hash values

are inserted into the Bloom filter, but only 4 array positions are marked

to one.

An element can be added to a Bloom filter by bitwise ORing the ele-

ment’s m bit vector together with the Bloom filter. The presence of an
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(a)

Bloom filter

0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0

X Y

W
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Wednesday, September 29, 2010

(b)

False positive
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Wednesday, September 29, 2010

Figure 2.4. (a) Shows a Bloom filter to which elements X and Y have been added. The
corresponding array positions denoted by the blue and red arrows have been
set to 1. The element W is not in the Bloom filter, since the bit in array
position 10 is 0. (b) Shows the same Bloom filter and element F that has not
been added to the Bloom filter. However, the test for membership indicates
that F has been added, since all the corresponding array positions are set to
1. F is a false positive

element is tested by checking if the k array positions are set to one. This

can be efficiently done with F ∈ B : m∧e = e?, where m is the Bloom filter

and e the tested element in m-bit long form.

Figure 2.4 (a) shows a Bloom filter after elements X and Y have been

added to it. The membership of an element, such as W, is tested by check-

ing if each array position set to 1 in W is also set to 1 in the Bloom filter.

The membership testing for W shows that W is not a member in the filter,

since the bit in array position 10 is set to 0.

When an element has not been added to the Bloom filter, but the array

positions of the element are set to 1, a false positive happens. As an ex-

ample, Figure 2.4 (b) shows a false positive. Only two elements, X and Y,

have been added to the Bloom filter. F is denoted by the array positions

{2, 4, 8, 9}, which have all been set to 1 due to X and Y. Hence, membership

testing will indicate that F is in the Bloom filter, while it has, in fact, not

been added.

False positive probability fpr is the probability that a membership test

for an element will return true for an element not added to the Bloom
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Unicast BF forwarding

Ra Rb RcP S
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XOR 00000000

Friday, October 8, 2010

Figure 2.5. Bloom filter based forwarding. Each link has a directional identifier, e.g.
BFab. BFPS on the left shows the construction of a Bloom filter for path from
P to S. The other columns show how each router tests the presence of a link in
the Bloom filter. Red dotted line shows the path that the packet is forwarded.

filter. The probability of a false positive is fp = ρk, where k is the number

of hashes used. Fill factor ρ is the proportion of array positions set to

1 in the Bloom filter, e.g. the fill factor in the Figures 2.4 (a) and (b) is

ρ = 6/16 = 0.375, since 6 array positions are set to 1 out of 16.

Three variables that affect the fill factor are the number of elements

n, the number of hashes used k, and the length of the Bloom filter m.

Choosing these three variables well, results in a Bloom filter that has a

fill factor of ≈ 0.5. Intuitively, having a filter with approximately 50% of

array positions set to 1 maximizes entropy and minimizes redundancy in

the Bloom filter2.

2.2.2 Multicast forwarding with Bloom filters

To encode a multicast tree as a Bloom filter, each link on the forwarding

tree is locally named as a Bloom filter element. These links are then in-

serted into the Bloom filter, as shown in Figure 2.5. The resulting Bloom

filter is placed into the packet header making the Bloom filter a compact

representation of the source tree from source to the set of receives. The

routers forward the packet by checking which outgoing links are included

in the Bloom filter, i.e. for each outgoing link a router makes a member-

ship test.

Each router names all its links locally with an m-bit long string with k

bits set to one3, with k � m.

2Not every Bloom filter with fill factor 0.5 represents a good choice of values.
3We assume that each of the k bits is in a random position. Collisions are al-
lowed. Hence, it is possible that the resulting string has less than k bits set to
1.
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The length (m) of the Bloom filter is constrained by the available size.

The longer the filter, the larger the packet overhead is from using Bloom

filters, but also more links can be encoded to a single Bloom filter. As an

example, with m = 256,i.e. 32 bytes and k = 5, ≈ (mk
) ≈ 5 · 1012 different

link identifiers.

A Bloom filter for a multicast tree is formed by bitwise ORing the links

together, as shown in Figure 3.3. For practical and security reasons, ex-

plained in detail below, it is useful to enforce a maximum fill factor, e.g.

slightly above 50%. If the number of links is greater than can be inserted

into the Bloom filter without exceeding the fill factor, at least three possi-

ble solutions exist. In this thesisi we use the second, i.e. splitting.

(1) Using a longer Bloom filter. The capacity of Bloom filter, given a

target false positive probability and k grows linearly with the size of the

Bloom filter. Hence, by doubling the size of a Bloom filter, it is possible

to approximately double the number of links the Bloom filter can contain.

(2) Splitting the multicast tree into subtrees that are small enough to

fit [111]. Arbitrarily large multicast trees can be supported by splitting

them into several separately encoded multicast trees, each with its own

Bloom filter. For large groups, this approach may be needed. The source

will have to send a copy of every packet separately for each group. (3)

Using virtual links [62]. It is possible to encode a path or a tree in the

network so that it will be treated as a single link for the Bloom filter. As

an example, an MPLS [115] path or tree could be used as a single virtual

link in a Bloom filter.

The source needs to acquire the information required for encoding the

multicast tree into a Bloom filter. There are at least the following three

approaches and in this thesis we use the third, i.e.collecting the Bloom

filter into the signaling message.

(1) A centralized topology manager (such as PCE [42]). A topology man-

ager collects the link identifiers in addition to the routing and service

related information. When a path or a tree is needed, a router sends

a request to the topology manager which first computes the path or the

tree and then the Bloom filter for it. Off path computation of the route

means less work for the routers, but more for the centralized element. It

also means that path computation doesn’t share fate with the actual path

taken by the packets.

(2) Adding the required functionality to link state (e.g. OSPF [92]) or

path vector routing protocols (such as BGPv4 [113]) enables routers to do
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the Bloom filter computation by themselves without any additional sig-

naling. The link identifiers can either be computed from well known iden-

tifiers, e.g. IP addresses or AS number, or the functionality of signaling

the link identifiers can be added to the routing protocol.

Using link state or path vector routing protocol to compute the Bloom

filter at the source, as is done in FRM [111], requires that the local routing

protocol state truly reflects the current state of the network. With Bloom

filter based forwarding, stale state means that the packets will be lost,

compared to IP hop-by-hop forwarding, in which no router needs to have

a complete and up-to-date view of the whole path. Additionally, the use

of path aggregation (common in path vector protocols) breaks the path

computation, since no exact path information is available. Otherwise, the

source will not have the required information to determine the necessary

path information.

(3) The required information can also be collected hop-by-hop with a sig-

naling message [149]. Collecting the required information forwarding in-

formation on path is relatively fast as it uses the same path as the actual

data traffic and the signaling message can be piggy-bagged in e.g. con-

nection initialization message. However, a separate forwarding protocol

for signaling messages is required. Symmetric paths can be setup with a

single signaling message that collects a bi-directional Bloom filter for the

path. While, in the inter-domain case, this may violate some existing lo-

cal routing policies, it also ensures fate sharing between both directions of

traffic. Creating asymmetric paths based on existing local routing policies

is also possible, but requires additional signaling.

In this thesis, we use a signaling message that collects the required path

information into a Bloom filter. IP forwarding is used for forwarding the

signaling packet. The process of collecting a Bloom filter is explained in

more detail in Section 3.

When Bloom filters are used for packet forwarding, measuring false pos-

itive probability can be misleading. This is because every router that re-

ceives a packet, tests for the presence of all its links (except the incom-

ing link) and the degree of routers varies. Instead, we propose that false

positive rate fpr should be measured. False positive rate is the average

number of false positives per packet in a given router fpr = ρk · (d− b− 1),

where d is the degree of the node, i.e. the number of neighbors the router

has, b is the number of branches in the multicast tree at the router, and

−1 removes the incoming link. If a router received the packet due to false
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positive, the false positive rate is fpr = ρk · (d− 1).

As an example, consider three routers with degree 4, 64, and 1024, a

Bloom filter with m = 256, k = 5, and ρ = 0.5. The false positive prob-

ability is 2−5 ≈ 0.03. The false positive rates are ≈ 0.13, 2, and 32 false

positives per packet, respectively.

2.2.3 Related work on Bloom filters

FRM [111] is an inter-domain any-source multicast architecture that sep-

arates group membership management and forwarding. Each AS encodes

the multicast groups it wants to receive into a Bloom filter that is commu-

nicated to other ASes in BGP advertisements. With this, each AS knows

the AS receivers for all multicast groups. A source AS computes the for-

warding tree from the BGP routing table and encodes it as a Bloom filter,

where the link identifiers are computed directly from the AS numbers.

The approach is problematic, partly because it requires all ASes to have

complete and up-to-date view of the Internet topology, and partly because

the link identifiers are public, which causes security problems discussed

in the next Section.

LIPSIN [62] proposes a Bloom filter based forwarding method for PSIRP,

a publish subscribe based internet, architecture [29, 28, 30]. The archi-

tecture is divided into three parts: rendezvous, topology, and forwarding,

and explained in more detail in Section 3. LIPSIN develops the Bloom

filter based multicast forwarding fabric for the PSIRP architecture.

MPSS [149] is a technique for combining MPLS with Bloom filter based

forwarding. The resulting design enables zero signaling path configura-

tion and removes required per path or tree state in provider routers.

AOM-based Bloom filter forwarding [131] uses the IP forwarding in-

formation base to re-encode the Bloom filter after each forwarding hop.

While it ensures loop freeness, there is a heavy per-packet processing

overhead for routers due to Bloom filter re-encoding, which requires longest

prefix matching for each IP address encoded into the Bloom filter.

A number of extensions to Bloom filters have been proposed over the

years. Variable-length Signatures [81] allows partial signatures, where

only q ≤ k bits need to be set. Popularity Conscious Bloom Filters [150]

varies the number of hash functions as a function of the data item popu-

larity to reduce the average number of false positives. This is similar to

our idea of varying the k locally in each router according to its degree (see

27



Background

Section 3.5. Recently, deletable Bloom filters [116] have been proposed

as a memory efficient add-on to allow probabilistic element deletions, en-

abling for instance to remove already processed outgoing links as the in-

packet Bloom filter traverses the network. They may provide a useful

addition to the techniques described in our work. However, further work

is required to study how they can be combined with the bit permutation

technique we use for loop prevention, see Section 3.5.

2.2.4 Security and reliability issues in Bloom filter based forwarding

In existing solutions [111, 62, 149], link identifiers are static and a Bloom

filter is, hence, defined per multicast tree. Each router that receives a

packet will test the Bloom filter for all its outgoing links. A false positive

causes the packet to be forwarded to a neighbor that was not an intended

recipient, which will then test the Bloom filter for all its outgoing links.

False positives cause forwarding anomalies that affect both network relia-

bility and network availability. We identified three forwarding anomalies,

namely packet storms, forwarding loops, and flow duplication Publication

VII.

Packet storms: In a network with unicast communication and constant

node degree d, i.e. each node has d neighbors, the bandwidth overhead

caused by false positives is (d−2)·fpr
1−(d−1)·fpr , i.e. the percentage of false posi-

tive links traversed per a single actual link in the encoded path. Table

2.1 shows some of these values for a 256-bit Bloom filter. The bandwidth

overheads caused by false positive packets have been calculated for con-

stant node degree d = 10 and d = 20. As can be seen from the column

d = 20, the bandwidth overhead can grow to infinity.

If the false-positive rate of a Bloom filter exceeds one, fpr = (d − 1) ·
ρk ≥ 1, false positives will cause an unlimited traffic explosion in the net-

work. This is because each false positive will, on the average, cause more

than one false positive in the next forwarding node. A malicious node

could utilize this property to attack the network infrastructure, causing

a potentially devastating denial-of-service attack. Theoretically, when we

limit the filter fill factor to ρ ≤ 50%, the network will be stable only if

(d − 1) · 2−k < 1. (Note that, excluding the ingress link, there are d − 1

potential outbound links at each forwarding node.)

Let k = 5 and consider high-degree core nodes in the network. For

example, if a node has 1000 neighbors, a packet routed to it will cause,
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Table 2.1. False positive rate, maximum multicast tree size and bandwidth overhead as
functions of k (Bloom filter length m = 256, fill factor ρ = 50% and network
node degree d = 10 and d = 20).

Max tree Bandwidth overhead

k fpr size d = 10 d = 20

4 6.3 % 44 114.3 % ∞
5 3.1 % 35 34.8 % 138.5 %

6 1.6 % 29 14.5 % 40.0 %

7 0.8 % 25 6.7 % 16.5 %

8 0.4 % 22 3.2 % 7.6 %

9 0.2 % 19 1.6 % 3.7 %

10 0.1 % 17 0.8 % 1.8 %

on the average, over 30 false positives to be sent out. Moreover, every

false positive received by such a high-degree node will cause another over

30 copies of it to be sent. This kind of amplification would cause a packet

storm in the highly connected core part of the network.

While practical network topologies have few very-high-degree nodes,

inter-domain routing in the Internet has enough of them to be vulnera-

ble to such an instability. There are hundreds of ASes with 32 or more

peering relations4.

Forwarding loops: In addition to the bandwidth overhead, the literature

identifies forwarding loops as another potential consequence of the false

positives. A loop can arise from a single false positive that causes a packet

to be sent back to a node which it has already traversed, as shown in

Figure 2.6. Even rare occurrences of such loops can severely disrupt a

network since every packet in the afflicted flow gets stuck in the loop until

its TTL is zero. In addition to the packets congesting the loop, a copy of

each packet will be sent to the intended downstream tree every time it

goes around the loop. A malicious sender may intentionally construct

packets that contain such infinite loops. Assume that the sender has a

Bloom filter to a target host or network. It only needs to add few more

links to the existing Bloom filter to create a loop somewhere on the path

toward the target.

FRM [38] found that false positive rate above 0.2% causes a sharp de-

cline in bandwidth efficiency due to forwarding loops. LIPSIN [62] pro-

poses several solutions: cached state in the routers, a TTL field in the

4See e.g. Caida Data set: as-rel.20091215.a0.01000.txt, http://as-rank.caida.org/
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Figure 2.6. Forwarding loop with Bloom filters causes a copy of each packet to be sent to
the subtree, each time a packet goes through the loop.

packets, and valley-free network topology. These ideas have major limi-

tations. The cached state would make the protocol less scalable with the

number of flows and, thus, also create another denial-of-service vulnera-

bility. The TTL field would end the loop after a finite number of rounds.

That might suffice for loops that occur accidentally with low probability.

In DoS attacks, however, even a small number of rounds in the loop can

create significant traffic amplification to the downstream tree. Valley-

free [49] networks prevent loops in theory5 but are vulnerable to another

routing anomaly that will be presented next.

Flow duplication: Loops are not the only anomaly that can arise be-

cause of the false positives in probabilistic packet forwarding. Figure

2.7(a) shows how a false positive can cause a packet to be forwarded for a

second time to a subtree even though the forwarding topology is loop-free.

Figures 2.7(b)-(c) presents rather artificial constructions in which the

number of packets grows according to the Fibonacci sequence and as pow-

ers of two. The numbers indicate the number of copies of each packet that

traverse the link. These examples are important for two reasons. First,

they shows that exponential growth is possible even when packets have

low TTL values and when the valley-free forwarding rule is observed.6

Second, more importantly, such extremely anomalous cases could be con-

structed by malicious senders. While accidental flow duplication is clearly

not as serious a problem as accidental forwarding loops, the duplication

becomes an important consideration when we consider secure ways of pre-

venting intentional attacks.

Targeted attacks

We evaluated the security of the basic Bloom filter forwarding approach

in Publication V. Bloom filter forwarding suffers from three vulnerabil-

5In practice even valley free networks experience loops e.g. due to misconfigura-
tion and routing dynamics.
6The exponent is limited by the number of tiers in the routing architecture.

30



Background

(a)

Forwarding anomalies: 
Flow duplication

R Su
bt

re
e

P R
R R R R

R R R R Su
bt

re
e

P R
R R R R

R R R R Su
bt

re
e

P R
R R R R

Wednesday, October 6, 2010

(b)

Forwarding anomalies: 
Flow duplication

R Su
bt

re
e

P R
R R R R

R R R R Su
bt

re
e

P R
R R R R

R R R R Su
bt

re
e

P R
R R R R

Wednesday, October 6, 2010

(c)

Forwarding anomalies: 
Flow duplication

R Su
bt

re
e

P R
R R R R

R R R R Su
bt

re
e

P R
R R R R

R R R R Su
bt

re
e

P R
R R R R

Wednesday, October 6, 2010
Figure 2.7. Flow duplication. (a) Shows a single duplicate link, which causes the duplica-

tion of every packet in the packet flow to the whole subtree. (b) and (c) show
how duplication links can cause the number of duplicate packets to grow (b)
in Fibonacci numbers and (c) exponentially to the number of links on the
shortest path.
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Figure 2.8. Flow duplication and loop can be combined for devastating effect on network.
With each loop the number of packets flowing in the network and towards
the subtree grows exponentially.

ities: Bloom filter replay attack, computational attack, and injection at-

tack.

First, while a given Bloom filter works only from its source to its sink(s),

the same Bloom filter can be used also for traffic other than it was meant

for. We call this a Bloom filter replay attack. Second, while the used

encoding helps to hide the link identifiers, correlation between Bloom fil-

ters is still possible, creating a computational attack; see below. Third,

while each Bloom filter is directly usable only by the source and any en-

route nodes, if an attacker can figure out another Bloom filter that passes

through any of the en-route nodes, it can inject traffic to the delivery tree.

In the computational attack, an attacker collects valid, related Bloom
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filters and analyses them. Wherever the bit patterns are similar among a

group of Bloom filters, it is likely that any reoccurring bits represent a par-

tial graph common to those Bloom filters. Hence, knowledge over a large

number of 〈source, sink(s), Bloom filter〉 triples may allow an attacker to

create valid Bloom filters towards a target. By merging correlation pairs

from multiple sites (e.g., using bots), DDoS attacks might well be possible.

While the introduction of the LIT construction makes this attack compu-

tationally more expensive, especially when d is large, the attack appears

to remain practical.

2.3 Distributed denial of service attacks

The aim of a distributed denial-of-service (DDoS) attack is to deny target

service to and from the Internet by creating extreme levels of congestion.

One could compare this to a large group of truckers or tractor drivers con-

gregating in all the highways towards a major city7, thus blocking access

to it. The difference is that a single attacker could hijack the automated

driving computers of all those cars and instruct them to do it from the

other side of the world. The basic methods mitigating DDoS attacks are

(i) traffic classification and filtering, (ii) replication, and (iii) hiding.

2.3.1 Classification and filtering

Packet classification methods strive for a way to order packets in such a

way that good traffic gets service first and bad traffic gets filtered out.

Classification (and hence filtering) can either be proactive or reactive and

can be placed either in (some elements in) the network or in the packet

header.

Capabilities

The capability approach divides the network traffic into packets request-

ing permission to send and packets with a permission (capability). Routers

reserve only a small amount of bandwidth (e.g. 5%) for capability requests

to the server. The capability can be constructed in several ways. The de-

sign choice affects the amount of processing and state required in routers,

and the additional state required in packet headers.

The capability can be originated by the server [5], e.g. a value in a hash

7Such things happen, e.g. french farmers blocked access to Paris by filling the
highways http://abcnews.go.com/Business/wireStory?id=10486291
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chain. This approach requires verification points in the network to store

flow specific state. Another possibility is to collect the capability hop-by-

hop into the capability request packet [144, 147, 146], which removes the

need for flow specific state, but increases the size of the capability. Fast-

pass [139, 140] proposes a system, in which the server can delegate the

right to provide capabilities to third parties enabling massive replication

of request-for-capability service. End user involvement [132] and other

methods of access control can also be used.

Phalanx [36] combines capabilities with an overlay, hiding the recipi-

ents from senders. It utilizes a set of mailboxes through which traffic

must traverse to be delivered to the recipient. The ISP builds a filtering

ring around its perimeter that blocks traffic that does not comply with

this requirement. The mailboxes receive traffic from the client, and the

recipient requests these packets explicitly from the mailboxes. In addi-

tion, Phalanx utilizes multiple paths to reduce effects of an attack on a

single mailbox.

Argyraki et al. argue that capability based systems have a flaw called

denial of capability (DoC) [6]. An attacker can flood the request channel

and thus deny legitimate users the chance of getting a capability. Puzzles

have been shown to mitigate denial of capability attacks [137, 138, 96].

The case for public work [27] proposes a public work function that can be

verified by anyone.

Other proactive classification and filtering methods include creating a

congestion market [21] by using explicit congestion notification [109] re-

feedback. Using symmetry of packet flows, typical in legitimate traf-

fic [72], allows automatic detection of harmful flows and can potentially

be enforced in NICs. An even more radical proposal is to create a net-

work architecture where the default is off [12] and hosts need an explicit

permission to send. A Bloom filter can be used to efficiently encode and

spread lists of who is allowed to send to whom. For scalability, return

traffic is routed using source routing and reverse path. However, the con-

nection setup times tend to be long, as it takes tens of seconds for filters

to propagate in an Internet sized network.

DDoS defense by offense [133, 135] uses the existing fair queueing in

routers to implement filtering by encouraging good clients to send more

traffic (increasing congestion). Puzzle auctions [136] can be used for fil-

tering request and leveling playing field between attackers and legitimate

senders. In a similar approach, decongestion control [107] is a method in
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which hosts always send at full rate and vary the coding of the data in

packets as a response to congestion, instead of varying sending rate.

There are also proactive overlay approaches that attempt to protect the

target host by requiring traffic to travel through an overlay, which fil-

ters out bad traffic [65, 3, 125, 75, 121]. A filtering ring is built around

the server that blocks all traffic except for those coming from authorized

nodes in the overlay. The verification is done using simple non crypto-

graphic methods, such as source address or destination address filtering,

destination port filtering, etc.

Reactive Filtering

Reactive filtering is applied to flows that the receiver indicates are bad

traffic. The receiver can, for example, indicate a source IP address or a

set of source IP addresses together with the destination address(es) of the

recever that it wishes to be blocked. A router then installs a rule that

drops all packets that match that rule.

It would be preferable to do the filtering close to the source. This way

the bad packets would not consume network resources and congestion on

path. Also, filtering may be easier to do close to the source, where the

flows are still relatively small and easily distinguished. Unfortunately,

this is difficult, since it requires deployment both at the source and at

the destination. Source address spoofing also makes it more difficult to

push the filtering to the other edge. The idea of using regions of mu-

tual trust [124, 147, 146] has been proposed as a partial solution to this

dilemma.

Some benefit can also be gained by filtering within the receiver’s op-

erator [76, 82]. Here the focus is on organizing an efficient method for

filtering out the bad traffic within the operator network while enabling

other flows to continue as smoothly as possible. It is, however, limited by

the available network bandwidth the operator has.

Early proposals pushed the filtering towards source hop-by-hop (see e.g.

[58]). While this sidesteps the problem of identifying the source, it pro-

duces an unbearable burden for the routers in the core of the Internet,

since both the traffic rates and the number of flows that need filtering are

highest in these routers.

Alternatively, the filtering can be pushed directly from the receiving

edge to the sending edge [8, 7, 120, 57, 80, 4]. Such an approach requires

that the receiver can correctly identify the source and send a filtering re-

quest. Ingress filtering [45], source address validation [141] have been
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proposed to prevent source address spoofing. However, obtaining full de-

ployment is necessary and difficult.

AITF [8, 7], edge-to-edge filtering architecture [57], and StopIt [80] uti-

lize intermediate trusted routers to add information about the packet’s

origin. Holding the Internet Accountable [4] proposes a new address

structure that is composed of an AS part and a host part, both crypto-

graphically verifiable. This makes it possible to reliably determine the

origin of a packet and use shut-off messages directly to the source NIC.

Leveraging good intentions [120] utilizes the fact that most hosts partic-

ipating in an attack are actually owned by well meaning owners and used

for bad purposes by an outsider, who has gained control of the machine

from afar. Thus, the actual owners are, at least, not opposed to the idea

that an end-to-end protocol stops an outsider from using their machine

for an attack. Hence, it proposes a separate end-to-end control protocol,

which lets a host signal the other end to stop sending for a short period of

time.

2.3.2 Hiding and replication

Hiding and replication are two techniques that have the potential to help

in DDoS resistance and it’s easy to see why. If the attacker cannot find

the target, or if the target has more resources than the attacker, the DDoS

attack will likely fail. As an example, it has been estimated that the repli-

cation and hiding of DNS root servers using anycast increases the robust-

ness of the system. Each root server is replicated to multiple locations

and each server uses the same IP address. This way, the IP routing fabric

itself, hides all but the closest server for each host in the Internet.

Steps toward a DoS resistant Internet [51] proposes hiding clients from

other clients and servers from other servers. This is accomplished with

the separation of client and server addresses and, preventing connections

between clients and clients or servers and servers.

Data can be replicated with relative ease. DONA [69] shows that this

can be done reactively when demand for a certain piece of data increases.

Anycast [97] has been used in some individual cases to replicate and hide

services, e.g. DNS root servers [52]. Recent interest in cloud computing [9]

is a step towards running services on platforms that automatically scale

the system to demand.

(Secure) Internet Indirection Infrastructure (s)i3 [129, 2] proposes an
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overlay which enables communicating hosts to keep their IP addresses

hidden. The overlay utilizes a distributed hash table called Chord. Hi3 [95]

separates control plane from data plane using the Host Identity Proto-

col [90, 91] and utilizing an overlay for connection setup. Firebreak [46]

uses anycast to hide servers behind a set of proxies.

2.4 Mobility

The Internet architecture uses IP addresses for two somewhat conflicting

purposes: as topological address used by the Internet routing to deliver

packets to their destinations and as connection identifiers at transport

and application layers. This dual nature causes problems when nodes

are mobile. There is a large number of proposals that provide mobility

support on the Internet (see e.g. [78] for an overview).

The minimum necessary security requirements for mobility manage-

ment stay the same regardless of where in the stack the mobility man-

agement system is placed. When a mobile node moves, it needs to signal

the correspondent node about the new location. The signaling must be

authenticated to ensure that it is, indeed, the mobile node that originated

it. Additionally, the correspondent node needs to verify that the mobile

node is where it claims to be. The latter requirement is called return

routability testing.

The existing IETF macro-mobility protocols, like Mobile IP (MIP) [99],

Mobile IPv6 (MIPv6) [61] and HIP [91], are designed in a way that only

the peers and rendezvous nodes participate in the mobility signaling. The

protocols aim at disentangling the two purposes of IP addresses. MIP

and MIPv6 uses home addresses as connection identifiers and current-

care-of-address as routing identifier, whereas HIP uses a separate host

identifier, cryptographically generated from a public key, for (transport

layer) connection identification.

The return routability test is used to ensure that the mobile node is

where it claims to be. The corresponding node sends a test message to the

new location, requiring the mobile node to answer to it. This exchange

requires at least 1.5 round trip time, causing a noticeable delay for delay

sensitive protocols. Additionally, micro-mobility protocols like HMIP [26],

FMIP [68], Cellular IP [23] suffer from scalability problems related to lo-

cation update security mechanisms and the intermediate mobility anchor
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points.

To overcome these limitations some overlay approaches, such as i3 [127],

Secure-i3 [2], and Hi3 [95] have coupled the mobility and the packet for-

warding plane with each other, above the IP layer. Due to the use of

Distributed Hash Tables, these systems cannot ensure policy compliant

paths. However, when the mobility management is realized with support

of the overlay routing infrastructure, it results in a more DoS resistant

packet delivery.

We show in Publication VI that with an internetworking architecture

based on source routing and Bloom filters [19], the return routability test

can be bypassed by collecting the return source route into the signaling

packet en route. Coupled with a hash chain based authentication, com-

munication can resume after a single message, in the most common case

when only one end point moves simultaneously.

2.5 Rendezvous

Locating groups, publishers, or subscribers is a key problem for large scale

publish subscribe and multicast systems.

Hierarchical location based names (e.g. IP) improve scalability by en-

abling aggregation within the routing architecture. Routing on DNS based

names has been proposed in Triad [50] and is also used in CCN [59]. While

the former uses policy routing, the latter utilizes DNS and resolves the

names into IP addresses if the data is not found locally. However, hierar-

chical location based naming limits the applicability of the names, since

objects need to conform to location and organizational boundaries.

Self-certifying and flat names are another potential solution for nam-

ing [114, 84, 69]. They make secure name resolution easier and have the

potential for logical separation of data (or objects more generally) from the

location it is found in. This makes it possible for new information struc-

tures to emerge after the data is created. However, flat naming structures

do not allow for simple aggregation of the name based routing. Instead, in

the default free zone, policy routing scales linearly to the number of reg-

istered objects. This is especially problematic, if many nodes (e.g. ASes)

need to participate in the default free zone.

Distributed hash tables (DHT) (see e.g. [112, 128, 117, 83]) have been

proposed as a method for scalable distributed lookup. In a DHT, each
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participating node has one or more (hash-based) identifiers. The nodes

maintain a set of pointers to other nodes in the DHT in such a way to

ensure relatively efficient routing to any DHT node.

However, DHTs suffer from a few key problems, especially in inter-

domain scenarios. First, the owner of an object has little control over

the node that stores it. Second, the requesting node (or his provider) has

little control over the route the request takes. These are problems, since

the lack control over location and routing means lack of control over de-

pendability, privacy, the legal system, and many other concerns.

Each object stored in a DHT also has a hash-based identifier and is

stored in a node that is directly determined by the identifier, e.g. the node

with the smallest node identifier greater than the object identifier (or with

the greatest node identifier smaller than the object identifier). The differ-

ent DHT based service proposals vary on what the stored objects are and

what they are used for.

Oceanstore [73] uses a DHT for storing pointers to the location where

data is stored and combines this with probabilistic Bloom filter [19] based

system for routing to local copies for faster lookups. Internet Indirec-

tion Infrastructure [127, 2] uses a DHT for storing (id,addr) and (id,id)

pointers. These are used for building unicast, multicast, anycast, mo-

bility, and service composition services. CoDoNS [110] uses a DHT with

caching for fast DNS lookups. DHTs have also been proposed for resolv-

ing tags to object-records [134] and services (sid) to end points (eid) to IP

addresses [11]. ROFL [22] uses a hierarchical DHT based on Canon [48]

for routing on flat labels.

We now present Canon [48] and DONA [70] in more detail, since the

techniques are used in our rendezvous design.

2.5.1 Canon

Canon is a hierarchical distributed hash table (DHT) and designed to

maintain the uniformity of load while allowing fault isolation and secu-

rity, effective caching and bandwidth utilization, adaptation to the un-

derlying physical network, hierarchical storage and hierarchical access

control.

In Canon, each domain forms a local DHT. A number of DHTs can be

combined together to form a DHT ring by adding routing pointers be-

tween the domains. The process is shown in Figure 2.9. A number of such
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Figure 2.9. Combining two Canon rings.
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Figure 2.10. DONA routing is based on local AS policies.

rings can, again, be combined to form even larger ring. The outcome of

the process is a hierarchical DHT structure, in which, at each level, the

local ring has full routing state for object pointers stored locally and some

pointers to the ring above in hierarchy for global routing.

It is important to notice that at each hierarchy level, the routing may

pass through any node in any of the sub-domain forming the ring.

2.5.2 DONA: Data-Oriented Naming Architecture

Data oriented (and beyond) network architecture (DONA)[70] proposes a

name resolution service that aims for persistence, availability, and au-

thenticity of data. It is based on the idea of self-certifying names. The

names are of the form P:L, where P is a hash of the publisher’s (princi-

pals) public key and the second part L is a string of bits chosen by the

publisher to represent a particular piece of data. It could be, for example,

a cryptographic hash of the contents.

The name resolution infrastructure is organized using the AS transit/

peering hierarchy, as in TRIAD [50]. Each AS operates a resolution han-
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dler (RH) which hosts use for REGISTER(P:L) and FIND(P:L) operations.

When a client sends a FIND(P:L), the RHs route the query to a nearby

copy. The REGISTER(P:L) message sets the necessary routing state us-

ing policy based routing, i.e. it emulates BGP routing policies. An RH

that receives a register message from a child, forwards it to its peers and

transit providers, if there is no copy with shorter path in its routing table.

An RH that receives a register message from peer can forward the mes-

sage or not, depending on the local routing policies. Figure 2.10 shows an

illustration of the routing process.

The state requirements for a fully deployed DONA are reasonable, ap-

proximately 500 PCs in each tier-1 AS. This is a relatively minor cost

compared to the total costs of running a large AS.

However, the situation is different for partial deployments, especially

deployments in which many of the tier-1 ASes do not participate. In such

scenario, which is likely when a system is incrementally deployed, the

network is essentially partitioned into DONA sub-trees that will need to

interconnect through the (non-deploying) tier-1 ASes.

Such a partial deployment of DONA with tier-1 ASes missing would re-

quire every AS on top of its local tree to hold routing information for all the

data registered in the DONA system. It would also magnify the amount

of register traffic, since each pair of ASes on top of their respective DONA

trees would need to exchange their full routing state. In Publication III we

showed that, in fact, tier-1 ASes may have incentives not to participate in

such a system.

2.6 Techniques

In this section, two techniques used in this thesis are described: bit per-

mutations and hash chains. The bit permutations are used on the Bloom

filters to prevent loops and hash chains are used for authenticating mul-

ticast and mobility signaling between source and receiver.

Hash chains

Hash chains [77, 126] are based on cryptographic message authentica-

tion codes, such as SHA-1 [37]. A hash chain, as shown in Figure 2.11,

is a collection of values Vi, i = 1 . . . N such that each value Vi is a crypto-

graphic hash of the previous value in the chain Vi−1, except for the firsti

value V1. The owner first reveals the last value VN (called a hash anchor)
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Figure 2.11. The hash chain is constructed by repeated hashing of values starting
from V1 and continuing to VN . The values are revealed starting with
VN , VN−1, . . . . Upon receiving value Vi, the receiver can verify that
hash(Vi)=Vi+1.
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Figure 2.12. Example of a bit permutation. The position of each bit is permuted, e.g. the
bit in position 1 is permuted to position 3.

to the recipient(s) and by subsequently revealing the values VN−1, . . . he

can prove that he is the owner of the hash-chain, since only the owner

knows the next values in the chain. Hash chains have been used for au-

thentication in many network protocols, see e.g. [100, 56].

The simplicity of hash chains comes at a price. Once a hash chain value

Vi is revealed, anyone can produce the values Vi+1, Vi+2, . . . . Hence, a

simple protocol in which the owner merely reveals the next hash chain

value as a proof of hash chain ownership is vulnerable to man-in-the-

middle attack unless time synchronization is used, as in TESLA [100].

Bit permutations

Bit permutations are a common building block in block ciphers. A bit

permutation takes an array of bits and rearranges them so that the posi-

tion of each bit changes. Figure 2.12 shows an example of a bit permuta-

tion. Static bit permutations perform the same permutation to all input

arrays. It is relatively simple to make a static permutation in hardware.

Keyed permutations are bit permutations that perform a random per-

mutation based on a key. While there are techniques for performing

keyed permutations in hardware, they require relatively large number

of gates [122, 55].
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3. BloomCasting with PSIRP

Our work has focused on building a variant of the PSIRP architecture that

is designed to utilize the current Internet architecture as the topology

layer of the architecture. We combine the PSIRP rendezvous design with

BloomCasting, a scalable multicast architecture for the Internet. One

part of our contribution is an alternative design of the PSIRP architecture

that works together with the current Internet architecture. In the rest of

this section, we first introduce the PSIRP architecture, followed by the

BloomCasting multicast architecture.

3.1 PSIRP architecture

The PSIRP (Publish-Subscribe Internet Routing Paradigm [104]) archi-

tecture is a clean slate internetworking architecture designed to support

publish/subscribe based communications natively in the network. Infor-

mation is the primary named entity across all layers, and the primary

function of the network is to locate and deliver (named pieces of) informa-

tion.

The basic network primitives in the PSIRP architecture are publish

and subscribe. With publish, an application can offer a piece of infor-

mation and with subscribe an application can request a piece of informa-

tion. To create a network layer based on the publish/subscribe model,

the PSIRP architecture is divided into three main architectural elements:

Rendezvous, Topology, and Forwarding. Figure 3.1 shows the integrating

the PSIRP architecture into the Internet architecture with BloomCasting.

The topology function is used to create and maintain the delivery trees

used to forward the publications. The trees can be created reactively,

when there is a need. Delivery trees, or parts of them (e.g. a virtual link)
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Figure 3.1. Shows the components and their relationship in our BloomCasting based
PSIRP architecture. (1) The publish and subscribe operations happen asyn-
chronously in any order. After there is both a publish and subscribe, the
rendezvous matches these (2) and sends a source-specific multicast group
specifier to the subscriber (3). The subscriber sends a join message to the
publisher (4) which then adds the receiver into the multicast delivery tree
(5).

can also be created proactively where it is likely to be useful. The purpose

of a separate forwarding plane from topology management is to have an

efficient and scalable forwarding plane for delivering packets along the

delivery trees. In the next sections we detail how the existing Internet

can be used as a topology plane for the PSIRP architecture.

The rendezvous is used for matching the publishers and the subscribers,

and is divided into a global rendezvous system and rendezvous points. In

the rendezvous service model, a publisher creates a scope in a rendezvous

point and publishes information in that scope, i.e. announces to the ren-

dezvous point that certain pieces of information are available.

Our design is based on the following key design concepts:

A1: Everything is information: The network is based on a common nam-

ing of information through all layers, as opposed to naming hosts in the

current architecture. While we recognize that there are resources (e.g.

computation, memory, bandwidth) that per se are not information, com-

municating about the availability of such resources, or requesting the use

of such resources is information.

We create a common and global information namespace usable across

layers and applications and define an information item as the simplest

and smallest unit transmitted by the network. Each information item

has a rendezvous identifier (RId) that is statistically and globally unique.

The RId space is a flat cryptographically generated name space.

A2: Information is scoped: Information exists in one or more scopes. A

scope is a collection of information administered by a single entity called

rendezvous point. A scope is information structure by itself and hence

identified with an RId called scope identifier (SId).

A scope provides a method for structuring information into collections.

This increases the scalability of the global rendezvous system by dividing
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the problem of locating information into smaller more manageable parts.

It gives an application a tool to group information together and allows

publishers to tailor access control policies for various groups of informa-

tion.

A3: Equal control: Publishing information is sender-controlled while

retrieval of information is receiver-controlled, provided that access has

been granted. Thus, communication will only take place with agreement

from both parties. With it, the PSIRP architecture provides a balance of

power between publisher and subscriber. It offers a new set of network

services that shifts the network from send/receive between endpoints to a

publish/subscribe model of information [40, 25].

3.1.1 Global Rendezvous

Our goal is a general architecture for locating objects in a network that

can scale to large numbers of objects in an inter-domain environment.

These objects can be hosts, networks, multicast groups, information, ser-

vices or other identifiable objects residing in the Internet and using the

same rendezvous architecture. The solution needs to be efficient and scal-

able so that it can serve the multitude of different objects residing in the

Internet. Additionally, we require incremental and partial deployability.

The rendezvous point publishes the availability of an Rid to the global

rendezvous system. However, we assume that there is a some cost in-

volved in adding and updating Rids to the global rendezvous space. This

provides an incentive for publishers to use the global rendezvous space

for scopes and maintain their own publications within the scope. This

reduces the number of items published and maintained in the global ren-

dezvous. Hence, we believe that the global rendezvous system would be

mainly used for publishing scopes, i.e. Sids, instead of individual Rids.

The publication of an SId to global rendezvous system is only required if

a global reachability of the scope is wanted.

The provided system is flexible, in that it allows a publisher to add an

individual information item to the global rendezvous space, if it deems it

important enough. Neither does it require the publication of a scope in

the global rendezvous space. Virtual private information networks can

be built by maintaining private rendezvous system that hosts the private

scopes and only providing a globally reachable scope to the rendezvous

point that provides access control to the private network.
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Figure 3.2. The figure shows our rendezvous architecture. The rendezvous networks use
local policy based routing and the overlay is organized using Canon, a hier-
archical DHT.

The global rendezvous system, described in Publication IV, is used for

registering and requesting SIds. It implements anycast service by rout-

ing SId requests to one of the rendezvous points servicing that particular

SId. The rendezvous point then identifies a particular source for the re-

quested RId. Our global rendezvous design is based on the assumption

of incremental deployment. We divide the problem into two architectural

components: rendezvous networks and an interconnection overlay. Fig-

ure 3.2 shows the rendezvous system.

First, we assume that each AS runs a rendezvous node that is respon-

sible for rendezvous within its network. Furthermore, ASes can make

direct rendezvous peering or transit agreements (similar to DONA [70]).

We call a group of ASes interconnected via such agreements rendezvous

networks. Within rendezvous networks, each AS advertises the availabil-

ity of scopes to its rendezvous peers and rendezvous providers. Hence,

each AS will maintain state for all the scopes announced by its peers and

by its customer hierarchy.

As a single rendezvous network may not cover the whole Internet, an

overlay is used for interconnecting the rendezvous networks together for

global reachability. The overlay is built with Canonical Chord [48] 1.

A rendezvous request then takes the following path: (1) it is first sent to

a local rendezvous node. It either locates the information or forwards it

to its local rendezvous provider. (2) In the local rendezvous network, each

rendezvous node checks if if has a pointer for the object. If it does, it sends

a reply via the same route the request traversed. Otherwise, it sends the

request to its rendezvous provider. (3) Once the packet reaches the root

1Canonical Chord is also used in ROFL [22]. We apply the design over willing
rendezvous service providers, which ensures that enterprise ASes only appear as
endpoints of any communication path through the rendezvous architecture.
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of the rendezvous network, it is forwarded through the interconnection

overlay and (4) finally to a rendezvous network in which an RP hosting

the SId is registered in.

In the standard operation, the first node that finds a cached entry of the

SId−→ RP location mapping sends a response back to the source the same

route that the request traversed. This makes it possible for intermediate

nodes to cache the information. This return route can, for example, be en-

coded using the Bloom filter based forwarding on the rendezvous overlay

and network.

Some SIds may be multihomed, i.e. either the rendezvous point is mul-

tihomed or the SId is hosted by multiple RPs. In the first case, the RP

registers the SId via multiple providers and in the second case each RP

registers the SId. The overlay locates an RP in anycast fashion.

SIds can also be mobile. As an example, a mobile node can run an RP

locally. It registers a SId that can be used by other nodes to reach it to the

rendezvous system. When it moves, it re-registers the SId.

There are a few choices for ensuring that the rendezvous system does

not provide stale information. First, the rendezvous node responsible for

the SId can set “No caching" bit in the replies, ensuring that other ren-

dezvous nodes do not cache the pointer. Second, if caching of the SIds is

allowed, the responsible rendezvous node collects the Bloom filter based

source routes to those rendezvous nodes that cache the SId.

When the RP makes a location update for the SId, the update is routed

through the rendezvous network and the overlay until it reaches the re-

sponsible rendezvous point. The responsible rendezvous point then sends

an update that deletes the state to its rendezvous peers and providers.

If caching is allowed, the responsible rendezvous point sends a location

update to all nodes caching the state.

3.2 BloomCasting

BloomCasting is designed as a secure source-specific multicast architec-

ture, which transfers the membership control and per group forwarding

state from the multicast routers to the source. The BloomCasting archi-

tecture is divided into multicast group management and multicast for-

warding. Joining a group and maintaining group state is done with end-

to-end signaling, so that intermediate routers collect path information for
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Figure 3.3. The left side shows a multicast Join message using iBFs. The right side
shows a simplified Membership Table MT(S) that contains the Bloom filters
for A, B, C, and D. The separated bottom row shows how to combine the Bloom
filters into an iBF.

multicast source routing. Similar to [111, 62, 149], it uses source routing

and encodes the forwarding tree into an in-packet Bloom filter (iBF).

To join, a host sends a join request (BC_JOIN) towards the source S. In-

termediate routers record forwarding information in the packet, so that

when the packet reaches S, it will contain a collecting iBF for the source-

receiver path. By combining the iBFs for all the receivers, the source will

have an iBF encoding for the whole multicast tree. When a host does not

wish to receive packets for the group anymore, it sends an authenticated

leave message to S. Upon processing this packet, the source will recon-

struct the Bloom filter for the group leaving out the recently pruned path.

The operation is illustrated in Figure 3.3. The process and the techniques

used are explained in more detail below.

Data packets are routed using the forwarding iBF placed in the BC_FW

header. Each intermediate router takes its forwarding decision by query-

ing it with the question: which of my outgoing links are present in the

iBF? It then forwards the packet to the corresponding peers. Eventually,

the packet reaches all the receivers, following the sequence of routers the

BC_JOIN packets traversed, in reverse order.

3.3 Group Membership Management

Group membership management includes the joining, leaving, and main-

tenance of multicast groups, and this is the main task of the control plane.

Along this discussion, we show how BloomCasting encodes a multicast

tree into the iBF.

Joining a group: When a host joins a multicast group, it sends a

BloomCast Join (BC_JOIN) message towards the source. The packet con-
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Algorithm 1: Adding edge-pair labels (E) and permuting collect and

forward iBFs at transit routers.
Collect_iBF (C):

E← ZK(S,G,Rp, Rc, Rn);

C← C ∨ E;

C← PermuteK(C);

Forward_iBF (F):

foreach outgoing link i do
F← PermuteK(F);

E← ZK(S,G,Rn, Rc, Rp);

if E ∧ F = E then
Send F→ i;

end

end

tains the following information: (S,G) specifying the multicast group and

a collecting iBF. The latter is used for collecting the forwarding informa-

tion between the source and the receiver. Finally, it also contains a hash

chain anchor for future signaling security, see Section 3.6 for details.

In each router, the next hop for the BC_JOIN message towards S is found

from the routing information base.2 As the message travels upstream

towards the source, each router records forwarding information into the

packet by inserting the edge pair label E into the collector iBF. After this,

for loop prevention and increased security, it performs a bit permutation

on the collector iBF (see Section 3.5.3). Finally, it selects the next hop

usptream towards S. The operation is shown in Algorithm 1. Unlike tra-

ditional IP multicast approaches where the forwarding information is in-

stalled in routers on the delivery tree, in BloomCast, transit routers do

not keep any group-specific state.

Once the BC_JOIN message reaches the source, it contains sufficient in-

formation so that the source can send source-routing style packets to the

recently joined host. The source stores this information in the Member-

ship Table (MT), as shown in Figure 3.3. The source can now send packets

to the multicast tree by combining iBFs for the group, by bitwise ORing

them together.

2Just like in standardized IP multicast protocols, this forwarding decision can
be taken according to the RIB created by BGP or according to the Multicast RIB
created by MBGP [15].
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Leaving a group: When a receiver wishes to leave the group, he sends

a BC_LEAVE towards S, including the next element from the hash chain it

used when joining the group. On-path routers forward the packet to S. As

no further processing is needed in intermediate routers, unlike pruning

packets in IP multicast, BC_LEAVE packets are always routed to the source.

S verifies the hash and removes (or de-activates) the entry in the Mem-

bership Table. Single message hash authentication, vulnerable to man-

in-the-middle attacks, is sufficient, since the hash is only used to verify

that the host wishes to leave the group. As a final step, it recomputes the

forwarding iBF of the delivery tree. An example of a forwarding iBF is

shown in Figure 3.3 at the separated bottom row of the table.

Refreshing membership state: The iBFs in the MT may become

stale, because of route failures, because the receiver has moved to a new

location, or because a router changes the keys it uses to compute the edge-

pair labels (see 3.5.1). Keys are expected to change periodically (e.g., every

few hours) to increase security by excluding brute force attacks, see Pub-

lication V.

This means that the iBF needs to be recomputed with a new BC_JOIN

packet. When making the forwarding decision, during a transition period

routers need to compute edge-pair labels for both the old and the new key.

If they find that an edge-pair label computed with the old key is present

in the iBF, they set a flag in the BC_FW header indicating that the receiver

should send a BC_JOIN again, as the iBF will soon become invalid. When

a packet is to be forwarded on a failed link, the router sends an error

message back to the source.

3.4 Multicast Forwarding

So far, we have discussed how hosts join and leave multicast groups. We

now show how data packets are forwarded between the source and the

receiver.

As we saw previously, iBFs for each receiver border router are stored

separately in the Membership Table. We also saw the basic concept of

deriving the forwarding iBF from the MT information; now we extend

that with new details.

For each group, the source stores one or more iBFs in its BloomCast

Forwarding Table (BFT). Several iBFs can be stored because the number
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of receivers is too large for a single iBF or because the traffic is split to-

wards several routers alread at the source3. In practice, the capacity of

a packet-size iBF is limited in order to guarantee a certain false positive

performance. In case of large multicast groups, several iBFs are created,

one for each partial multicast tree, and duplicate packets are sent to each

next hop.

The source creates one copy of the packet for each next hop for (S,G) in

the BFT. It creates a BC_FW header, fills it with the corresponding iBF, and

sends it to the next hop router.

Each router makes a forwarding decision based on the iBF. First, it ap-

plies the reverse permutation function to the iBF, replacing the iBF with

the result. Then, it checks for the presence of peer routers by computing

one edge-pair label for each peer Rn, based on the Rp and Rc
4 and on group

identity (S,G) found in the IP header as shown in Algorithm 1. In the final

step, the router checks whether the iBF contains the edge-pair label, by

simple bitwise AND and comparison operations.

3.5 Techniques

We now describe the techniques we use to solve security and reliability

issues in Bloom filter-based forwarding, identified in Section 2.2.4. Cryp-

tographic edge-pair labels are used to make it difficult for an attacker

to guess a Bloom filter for a path or tree. Varying k is used to prevent

packet storms, which could happen either because of malicious users or

by chance. Per-hop bit permutations on the in-packet Bloom filters are

used to prevent loops and flow duplication.

3.5.1 Cryptographic edge-pair labels in Bloom filters

We proposed a technique called Z-formation in Publication V. It combines

two ideas to provide bi-directional in-packet Bloom filters that can simul-

taneously act as capabilities [5] and forwarding identifiers.

Instead of maintaining a fixed forwarding table containing the Link IDs

(or LITs) for each outgoing interface, the edge-pair labels are dynami-

3This improves forwarding performance, as the false positive probability in-
creases with the number of iBF inserted elements.
4The router uses the same inputs as in the BC_JOIN, hence the Rp and Rn switch
places due to direction change
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cally computed for each forwarded packet. A router uses the function Z to

compute the edge-pair label using (i) Flow identifier5 F1F2, e.g. (IPS ,IPG)

from the packet, (ii) a periodically changing local secret K, (iii) the in-

coming and outgoing interface indices (In,Out). Each edge-pair label

O = Z(F1, F2,K(ti), In,Out) is an m-bit long string with k bits set to one.

The Z function is any function capable of producing k cryptographically

secure hashes from the given input, e.g. a fast, spreading, hash function

that yields the bit locations for the edge-pair labels [71, 148]. The method

can be applied independently at each router, having no impact on the pro-

tocol.

Secure iBF forwarding: When a data packet arrives at a forwarding

node, the node extracts F1, F2 from the packet. With F1F2, the incoming

interface index, and the current Ki(t) value, it computes the LIT for each

outgoing link. If the iBF matches the on-the-fly generated edge-pair la-

bel, the packet is forwarded along the interface. Dynamic edge-pair label

computation can be easily done in parallel for each interface. Note that

forwarding nodes are freed from storing any per-flow state or traditional

FIB table lookups. Only the seed of the secret K and the currently ac-

cepted values Ki(t) need to be maintained and these are independent of

the number of sources, groups, receivers, or even peers6. Figure 3.4 shows

Bloom filter collection and in Figure 3.5 packet forwarding with Bloom

filters.

Z
K(t)

E

iBFF1 F2

F1 > F2 ? 

F1F2ASpASn

F2F1ASnASp

iBFF1 F2

OR

Figure 3.4. Collecting function in a single router: The packet contains the iBF and a two
part flow identifier F1F2, where the order of F1F2 depends on the direction
of the traffic (e.g. source and destination IP addresses). Comparing the value
F1 > F2 lets the router order the inputs to the function Z so that the inputs
are in the same order for both directions. Function Z then computes the edge-
pair label, which is bitwise ORed to the iBF before the packet is forwarded to
the next hop router.

5Not to be confused with Flow label field in IPv6 [108]
6However, the router still needs to have a local enumeration of its peers.
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Figure 3.5. Forwarding function in a single router: The router compares F1 and F2 to
determine the order of inputs to the Z-function. It then computes the edge-
pair label and compares it to the iBF by checking if bitwise AND with the
iBF is equal to the edge-pair label.

Bi-directional edge-pair labels: Figure 3.5 shows a two part flow

identifier F1, F2. The flow identifier can be e.g. IPsrc and IPdst and it can

be used to create the bidirectional path with a single Bloom filter. The

Flow Id is ordered in the packet header F1F2 in one direction and F2F1 in

the other7. The router decides the order of inputs based on the relative nu-

merical values of F1 and F2. In other words, if F1 > F2, we define a packet

to be flowing downstream. Therefore E = Z(F1, F2, ASp, ASn,K(ti)); else

the packet flows upstream and therefore E = Z(F2, F1, ASn, ASp,K(ti)),

where E is the edge-pair label.

This enables the iBF routers to determine the relative direction of the

packet as shown in the left upper corner of Figures 3.4 and 3.5. The

method works, because switching the Flow ID labels F1 and F2 enables

the routers to distinguish between the upstream and downstream rele-

vant to edge-pair label computation.

When several Bloom filters are combined to form a multicast tree, the

resulting Bloom filter will match the edges in the multicast tree, when the

packet travels from the source to the set of receivers. A receiver (or inter-

mediate router) can use the same Bloom filter to send control messages to

the source.
7Another possibility is to use a separate bit in the packet header to signal the
direction of the flow
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3.5.2 Varying Bloom filter parameters

False positives occur randomly, hence, packet storms cannot be reliably

detected and stopped reactively. To control them, a stability condition

must be preserved, i.e. d · ρk < α, where α ≤ 1 is a preferred maximum

average number of false positives per node, d is the node degree of the

forwarding node and k is the number of bits set in the link masks.

Given a fill factor ρ, the average number of false positives is independent

of the length of the Bloom filter. This suggests a two-fold solution: firstly,

each node sets k locally based on the node degree and, secondly, the source

sets the lengthm of the Bloom filter so that the fill factor ρ ≈ ρmax. (Either

technique can also be applied separately.) The maximum fill factor ρmax

should be 50% or slightly more to maximize the information content of the

Bloom filter.

Varying k: Each node sets kvar locally based on its degree d:

kvar = dlog2(d− 1)e+ r for some small global integer r.

This local condition guarantees that, at any node, the false positive rate is

fpr < ρrmax/(d − 1). Thus, a false positive arriving at any node will cause,

on the average, fewer than 2−r further false positives to be sent. If we set

ρmax = 50% and r globally to some small value, this limits the bandwidth

overhead caused by the false positives to 1/(2r−1). For example, for r = 3,

the overhead is limited to 14%.

The variable kvar does not only prevent traffic storms in the high-degree

core parts of the network; it also optimizes the usage of Bloom filter capac-

ity so that there is no unnecessary safety margin and the filter capacity

can be used to encode larger multicast trees. This is particularly impor-

tant if the multicast group size exceeds the maximum capacity of a single

filter and the group needs to be split into several trees. The simulations

with Internet topology in Publication VII confirm this by showing about

50% reduction of fpr with variable kvar compared to static k (holding the

Bloom filter size and multicast tree constant).

Varying Bloom filter length m: The number of elements added into

the Bloom filter (together with the Bloom filter length m and the number

of bits used to identify a link kvar) determines the fill factor ρ, which then

determines the false positive probability. The higher the fill factor, the

higher the probability of false positives. In other words, when encoding

bigger multicast trees, we can expect a larger average number of false

positives for a given Bloom filter length m1. However, if we use a longer
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filter lengthm2, we could reduce the false positive probability for the same

multicast tree, thus improving efficiency, with the penalty of larger packet

headers. Vice versa, multicast trees containing only a couple of receivers

would require fewer bits for efficient packet delivery and would save on

per-packet overhead, which is important for applications where average

payload sizes are small.

We propose a scheme to implement the variable-length Bloom filters.

First, a long filter longBF (e.g. M = 8000 bits) is created for the multicast

tree. Then, the fill factor ρ, i.e. the number of 1-bits divided by the filter

length, is computed. This allows us to compute what would have been

theÄ optimal length of the filter: m = d−M log2(1 − ρ)e. A filter of length

m would result in a fill factor 50% for the tree. We then fold the long filter

into one of length m as follows:

iBF [i] =
∨

j=0...bM/mc
longBF [j ·m+ i] for i = 0 . . .m− 1.

(Note that the elements beyond the array boundaries are considered to

have value 0. Also, the fill factor of the resulting vector may, by chance,

be above 50%, in which case m should be decremented by one until the fill

factor is below the limit.) The forwarding algorithm is modified in such

a way that the k hash functions f1...i used to compute the locations of the

1-bits in the link masks are modified to be f ′i(x) = fi(x) mod m.

3.5.3 Bit permutations on in-packet Bloom filters

Routing loop or flow duplication happens, when the same nodes forward

the same packet (or its copy) multiple times. To prevent such anomalies,

we utilize the fact that the packets differ in their history i.e. the path

they have already traversed. Only one occurrence has traversed exactly

the path that was intended by the routing algorithm while the others have

taken some anomalous path and then rejoined the intended route.

The history-dependent forwarding can be achieved by accumulating in-

formation about the traversed path in the packet. For example, loops

could be prevented by adding a hop counter or TTL value in the packet

and including it as an input to the computation of the Bloom filter and

link masks. This does not, however, prevent flow duplication where the

path length is the same for both copies of the flow (e.g. Figure 2.7(a)).

It would also complicate the process of collecting edge-pair labels into a

signaling packet.
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Algorithm 1: packet forwarding

Input: Edge pair label inputs;

Permutations of the node;

iBF in the packet header;

let π = Permutations[ingress link]

set iBF in packet to π(iBF);

foreach outgoing link l do

let mask = LinkMasks[ingress link, l]

if iBF & mask == mask then

Forward packet on the outgoing link l

end

end

Figure 3.6. Pseudocode for packet forwarding

Our solution is to perform a bit permutation of the Bloom filter on each

router. The cumulative permutation of the filter along the forwarding

path, in effect, makes the forwarding decisions dependent on the path

already traversed by the packet. Every router selects a random permu-

tation for its inbound links, and applies this permutation to the filters of

all packets arriving on that link. The forwarding algorithm is shown in

Figure 3.6.

There are a few reasons for choosing bit permutations as the technique

for making forwarding dependent on the history of the packet. First,

(static) bit permutations can be efficiently implemented in hardware. Sec-

ond, performing a transformation on the filter does not consume any ad-

ditional space in the packet header.

Upper bound on infinite loop probability: When a bit permutation

is applied to the filter at every hop, the first false positive is just as likely

to occur but, after that, the packet will usually not match the link masks

of its old route. Every further hop along the looping path requires another

false positive and, intuitively, we would expect a duplicate packet to be

dropped soon. This intuition is slightly misleading as infinite loops are

still possible: the set of bits tested by the routers around the loop fall into

some cycles of the permutations, and the packet will go into an infinite

loop if and only if all bits in these cycles happen to be 1.

Probabilities for some values m and K, where K =
n∑

i=1
kvar are shown in

Table 3.1. Recall that K is the total number of bits set in the link masks

around the loop. We refer to Publication VII for a detailed analysis of a
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Table 3.1. The probability of infinite loops with varying m and K given ρ = 0.5

K m = 64 m = 128 m = 256 m = 800

3 4.1 · 10−4 5.1 · 10−5 6.4 · 10−6 2.1 · 10−7

5 7.8 · 10−6 2.4 · 10−7 7.6 · 10−9 2.6 · 10−11

7 3.1 · 10−7 2.5 · 10−9 1.9 · 10−11 6.6 · 10−15

13 3.5 · 10−10 4.3 · 10−14 5.2 · 10−18 1.9 · 10−24

17 1.9 · 10−11 1.4 · 10−16 1.1 · 10−21 4.3 · 10−30

21 2.4 · 10−12 1.2 · 10−18 5.9 · 10−25 2.4 · 10−35

theoretical upper bound on loop probabilities. Assuming that a minimum

of 3 hops is needed for a loop8, we can say that the probability of an infinite

loop is vanishingly small as long as K is reasonably large (> 10). Hence,

even small (multihomed) networks should use kvar ≥ 3.

As an example, forK = 13 andm = 256, the probabilty of an infinite loop

is ≈ 5 · 10−18. To give some sense to the number, a billion Internet nodes,

would each have to initiate five billion flows for a single such instance to

happen. If each node initiated a single flow every second, on average, it

would take approximately 160 years for a single infinite loop to happen.

Probability of duplicate flows with permutations: A duplicate flow

can happen when a false positive causes a packet to be forwarded to a

router that is part of the forwarding tree. When the random permutations

described above are used, the false positives packet will not be automati-

cally be forwarded down the tree from the node that received it. Because

of the randomizing effect, a false positive must occur at every further hop.

This is just as unlikely as the propagation of any false positive.

3.6 Mobility

The Bloom filter based multicast makes receiver mobility relatively sim-

ple. The receiver only has to send a new subscription message to the

source (and delete the subscription to the old location). In the rest of this

section, we describe an authentication mechanism that a receiver can use

for authenticating itself with a single message. This method can also be

8We are aware that there are also 2 hop loops in the Internet routing [142, 143].
However, we assume that such loops can be detected and corrected relatively
simply, since such loops arise from local erroneously configured routing policies,
instead of from the dynamics of the distributed route computation.
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used as a fast mobility signaling method for unicast traffic. Bicasting can

easily be used for smooth handovers, since the forwarding fabric is based

on multicast. The details and analysis of the BloomCasting mobility are

included in Publication VI9.

The iBF can be tied to a pair of IP addresses, whether they are the mul-

ticast source specific group address (S,G) or IP address pair belonging to

mobile node (MN) and correspondent node (CN). In essence, all communi-

cations can be treated as multicast communications.

MN CN
I1: IPMN IPCN C(iBFi) m0

R1: IPCN IPMN iBFi c0

M1: IP´MN IPCN C(iBFi+1) mi+1 [NM, hmac(mi+2, hdr)]

M2: IPCN IP´MN iBFi+1 ci+1 [NM]
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P: IPMN IPCN iBFi Data
...
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P: IP´MN´ IPCN iBFi+1 [NM, mi+2] Data

RR: IPCN IP´MN NC

Data

...

P: IPCN IPMN iBFi Data

RR: IP´MN´ IPCN NC

Tuesday, October 12, 2010

Figure 3.7. Protocol messages

The protocol is shown in Figure 3.7. MN sends an Initiation packet I

to CN. The packet contains a hash anchor m0 = hn(m) for a later mobil-

ity event authentication and a collecting iBF. As the packet is forwarded

through the internetwork, each iBF router adds an edge-pair label to the

iBF collector in the packet.

Finally, CN receives the packet that now contains the hash anchor and

the collected iBF. It replies to MN with an init-reply (R) packet that con-

tains the iBF, and its own hash chain anchor c0 = hn(c). The packet is

forwarded through the network with the iBF. Receiving the packet, MN

stores the iBF and uses it to send packets to CN.

For scalability reasons, it may preferable to terminate the Bloom filter

based path in a proxy close to the host, but not at the host itself. In

9However, the protocol diagram in Publication VI had some errors that have
been corrected in the Figure 3.7 below
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this case, the Bloom filter collection packet is still sent end-to-end, but

the Bloom filter is collected starting from a proxy close to the MN and

ending close the CN (or vice versa). The proxy will maintain per flow state

in order to map between the IP address pair in the packet header and

the local care-of-address or addresses that the recipient(s) have. When a

packet forwarded with the Bloom filter reaches the proxy, it also verifies

that the destination host is in the part of the network it administers, and

forwards the packet.

3.6.1 Basic mobility

As MN moves to a new location, it sends a location update to CN, as shown

in Figure 3.7. The location update contains an iBF collector C(iBF ), the

next value in the hash chain mi+1 = hn−(i+1)(m), and an optional hash

chain verification against man-in-the-middle attacksNm, hmac(mi+2, hdr).

The anchor values of the hash chains are carried in the first packets be-

tween the nodes. The intermediate iBF routers add the local edge-pair

labels and the packet is delivered to CN.

CN verifies the authenticity of the packet by verifying the revealed hash

value, and uses the collected iBF to send a reply packet to the MN. The

reply packet contains the next value from the CN’s hash chain ci+1 =

hn−(i+1)(c) and the packet is forwarded using the newly collected iBF.

Once MN receives the reply, it stores the new iBF and uses it to send

to CN.

Our security solution prioritizes single message easy to compute authen-

tication at the cost of not preventing man-in-the-middle attacks. However,

such attacks require that the attacker is on the path between MN and CN

and that it is able to capture the signaling packet. The optional hash chain

check in the mi+2 (shown in Figure 3.7) prevents this, leaving only a short

window of opportunity for eavesdropping for an attacker, after which the

attacker will get caught. Once the values in the hash chain start to run

out, it can be renewed by binding the new hash chain to the current one.

Bicasting can be used in the case of make-before-break. To do so, the

mobile node signals the new location with willingness to receive bicast

for a time. The sender bitwise ORs the two iBFs together and sends the

subsequent packet with the resulting iBF. The iBF router at the bicast

branching point automatically duplicates the packet to both destinations
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due to the way the iBF has been constructed10. This ensures that the

connection can be transferred smoothly from the old location to the new

one without packet loss, or state requirements in the transit networks.

This leaves two alternative solutions. Firstly, the destination address in

the packet header may contain the home-address of the MN, and the proxy

stores the care-of-address, home-address pair. The proxy then swaps the

care-of-address (CoA) to the header before forwarding the packet to MN.

This approach requires special care in how the proxy handles the switch,

to prevent an attacker from creating false state in the proxy.

Secondly, it is possible to use the CoA, instead of the home address. In

this case, during mobility signaling two iBFs need to be collected, one for

the old CoA and another for the new CoA. CN can then bicast data to

MN by using the iBF collected using the old CoA. The new CoA has to

be included in the packet header so that the final forwarding between the

proxy and the MN can be done at both destinations.

3.6.2 Dual mobility

If both nodes are capable of moving, the beginning of the signaling after

the MN moves is just as described above. The CN now knows that the MN

can be reached via the collected iBF. It still needs to verify that the MN

can be reached also directly using the MN’s current IP address. To do this,

the CN performs a delayed return routability test as shown in Figure 3.7.

Before CN moves, it needs to verify MN’s current IP address in order to

send the location update. It is important to note that both MN and CN

can start sending payload before the delayed return routability test.

In the case of two mobile nodes, it is assumed that the connection ini-

tiation happens to an IP address that is hosted by the MNs rendezvous

agent (e.g. home-agent in MIPv6). Assuming two mobile nodes MN1 and

MN2 move simultaneously, a rendezvous agent is needed. The rendezvous

system described in Section 3.1.1 can be used for that.

Whenever a mobile node moves, it registers an SId to the global ren-

dezvous system with it’s location. If both mobile nodes move simultane-

ously, they can request the current location of the other mobile node from

the global rendezvous system and then send an iBF collector to its current

location.
10For this to work, the IP address used to compute the edge-pair labels has to be
the same for both paths.
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Table 3.2. Mapping of solutions to attacks

Attack - Technique ρmax kvar z-F P (iBF )

Packet storms + +

Loops + + +

Flow duplication + + +

Injection + +

Correlation + +

Replay +

3.7 Security

In this Section, we analyze the security of Bloom filter based multicast in

the context of infrastructure availability and node mobility.

3.7.1 Multicast

We now analyze how BloomCast mitigates the security threats against

Bloom filter-based multicast forwarding as described in Publication V and

Publication VIII. We focus on malicious host-initiated attacks. Table 3.2

presents an overview of the mapping between the available techniques

and the attacks addressed. As can be seen, BloomCast uses four tech-

niques to prevent the six security threats described in Section 2.2.4.

Packet storms are prevented with the combination of limiting the max-

imum fill factor ρmax and the varying kvar technique. Globally enforced

ρmax values enable each router to compute kvar locally so that every Bloom

filter with a valid fill factor produces, on average, less than 1 false posi-

tive. Since BloomCast collects the Bloom filters on path with the BC_JOIN

packet, it is easy to set kvar locally. Additionally, this optimization of k

reduces the actual false positive rate as shown in Publication VII.

Loops are a serious threat to any network infrastructure. In BloomCast,

the combination of maximum fill factor ρ and z-Formation makes it diffi-

cult for an attacker to construct looping Bloom filters. The first removes

the easy attack of just adding bits into the Bloom filter until every link

matches and the z-Formation ensures that guessing the right Bloom filter

is difficult (see Publication V) for details).

To prevent accidental loops, each router performs a bit permutation on

the Bloom filter before performing the outport matching – when using
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the Bloom filter for forwarding (and after matching – when collecting a

Bloom filter). If a packet does go through a loop, either because of a false

positive or a malicious source, the Bloom filter has been modified with a

random permutation (a product of the permutations performed by the set

of routers participating in the loop).

Using permutations ensures a high probability that the packet will not

continue looping and that it will not be forwarded to the downstream tree

for a second, or nth time. As an example, the chances of an infinite loop in

a three node loop configuration with ρ = 0.5, k = 6, and m = 256 are in the

order of O(10−12). The chances that a packet will be forwarded through

the subtree once are ρK , where K =
∑
ki is the sum of all hash functions

used in the subtree.

Flow duplication: Similarly to loops, the flow duplication can be effec-

tively prevented with the combination of restricting fill factor ρ, edge-pair

labels, and per hop bit permutations. The result gives an attacker ρK

probability of creating a specific subtree by accident.

Packet injection attacks, correlation attacks, and replay attacks can be ef-

ficiently prevented using the z-Formation technique as described in Pub-

lication V. It uses cryptographically secure edge-pair labels. Since the

Bloom filter is constructed using these dynamic edge-pair labels, the re-

sulting Bloom filter becomes additionally bound to the IP source and des-

tination pair, a specific time period, and the path (because the input port

is used for edge-pair label computation and per hop bit permutations on

Bloom filters). This makes it impossible to share iBFs from different

points of network, at different time instants, or to different destinations.

Finally, as Z takes in both the outgoing and incoming interface indices

as inputs, any given Bloom filter is tightly bound to the corresponding

forwarding path or delivery tree. That is, this feature blocks the injec-

tion attack, preventing off-path attackers from sending data towards a

delivery tree even if they know both the Flow ID and the Bloom filter.

Consequently, the best strategy for a successful packet injection attack

is reduced to a brute force attack consisting of generating random labels

and hoping that at least one of them reaches the target(s). An attacker

needs malformed iBFs to cause h consecutive false positives to get packets

forwarded through a valid iBF path of length h. The chances of success

are shown in Figure 3.8. In a single attempt the chance of success is p =

ρmax
h·k, which is very low for typical configurations (e.g., p = 2−36 for h =

4, k = 8, ρ = 0.5, i.e., over 1010 attempts are required for a 0.5 probability
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Figure 3.8. On the left axis, attack success probability for different ρmax. On the right
axis, the line with square points represents the attempts required to success
with probability 1/2.

successful attack). Such brute force attacks can be easily detected, rate

limited and pushed back, for instance after the false positive rate from

a given source exceeds some threshold. Additionally, a forged iBF would

work through the target path attack only as long as the period of validity

for the secret keys the routers use. Also filtering based approaches become

simpler, since the attacker cannot change the IP source and destination

pair in the packet without making the Bloom filter invalid.

Source and receiver control: As the group management in BloomCast

is end-to-end, the source has control over the receivers it accepts. If it

wishes to, it can require receiver authentication before adding a receiver

into the group. Similarly, multicasting to a receiver requires knowing the

iBF that forms the path between source and destination. Since the iBF

is cryptographically bound to (S,G), each router’s secret key, and the path

(via permutations and edge-pair labels), guessing an iBF for a path is

difficult, as shown above.

Resource consumption attacks against the memory and processing ca-

pacity of routers do not become easier than they are in unicast forwarding.

The routers do not need to maintain multicast state and the iBF collec-

tion and forwarding processing can be done at line speed in hardware and

in parallel for each peer. The multicast source needs to maintain state

for receivers. This is a needed feature, since this makes it possible for a

source to exert control over who can and who cannot join the multicast
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group. Simultaneously, it leaves the source vulnerable to an attacker who

creates a storm of multicast join packets. A source can use a receiver au-

thentication protocol, which pushes the authentication protocol state to

the initiator (e.g., the base exchange of Host Identity Protocol [90] could

be used for that purpose) to limit the state requirements to authenticated

receivers.

False positive forwarded packets may compromise the ephemeral secrecy

of the multicast data to non-group-members, i.e., some packets may reach

unintended destinations. The time- and bit-varying iBFs contribute to

spreading falsely forwarded multicast packets across different links over

time, preventing thus a complete reception of a multicast packet flow.11

Anonymity of source is not an option in source specific multicast, since

the group is identified with combination (S,G) where S is the sender ad-

dress and G the group address. However, even though the protocol uses

source routing, the actual paths, or nodes on path are not revealed to the

source and the source can only use the related iBFs in combination with

traffic destined to (S,G).

Receivers do not need to reveal their identifies or addresses to the net-

work, or the source – the receiver (IP) address is not necessary in the

protocol. The authentication, should the source require it, can be done

end-to-end without revealing the identities to the intermediate routers.

As the keys used to compute iBFs are changed periodically, correlation

attacks between two or more Bloom filters used at different times be-

come impossible. Similarly, since the edge-pair labels are tied to group

identifier (S,G), an attacker cannot use a set of iBFs with different group

addresses to determine whether the set contains one or more common re-

ceivers. These techniques effectively prevent traffic analysis and related

vulnerabilities such as clogging attacks (cf. [10]).

3.7.2 Mobility

The core part of the BloomCasting technique is to bind the communication

channel between peers, not only to IP-addresses, but also to the forward-

ing path between them. In this Section, we address the security aspects

most important for mobility: hand-off security, hand-off latency and DoS

vulnerability.

11Data authenticity is out of scope of the iBF forwarding service and can be
provided by orthogonal security policies and group key management techniques
(e.g., following the guidelines of [54]).
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Mobile handoff has two main security requirements. The correspond-

ing node has to know that the handoff message is authentic, i.e. sent

by the mobile node (or someone authorized by the mobile node) and that

the mobile node is indeed reachable from the address it claims to reside

in. Without authentication an attacker can impersonate a mobile node

and divert traffic to itself and without reachability test a mobile node can

divert the traffic to a location it does not reside in, enabling a DoS attack.

In most cases, when CN receives a location update, the collected iBF

and source address suffice and it does not need to make an additional

reachability test. This minimizes latency during hand-offs since CN can

continue sending packets to MN after receiving a single location update

- the M2 message in the location update can be piggybacked in payload

traffic. Existing protocols such as MIPv6 and HIP use 1.5 RTT to achieve

the same.

The iBF determines the path to the destination AS. Earlier work [39]

has shown that creating a valid iBF for a path without access to the secret

keys is difficult. The protocol still allows MN to spoof its IP address, but

only within the local domain it is located in. This provides incentives for

ASes to deploy source address validation in their networks. If the AS level

path changes, either node needs to renew the iBF using a location update.

A return routability test is needed, if CN itself intends to move, because

the security relies on the iBF that describes the path between CN and

MN.

With the current mobility architectures, the mobile nodes must estab-

lish security associations with their peers. For example in MIPv6, MN

needs to establish a security association with its home-agent, while in

HIP, the peers establish a security association between each other. The

iBF-based forwarding only requires a weak security association, based on

hash chains, between the peers. The iBF-based forwarding could be cou-

pled with existing IP-based mobility protocols. The mobility protocols can

be optimized to utilize the security provided by iBF-based forwarding, or

the forwarding fabric can be transparent to these protocols. Further work

is needed to better understand the tradeoffs.

Figure 3.9 compares the bindings used in iBF mobility with MIP and

HIP. The process is at the top, the forwarding identifiers on the bottom. In

the case of MIP and HIP, the forwarding is bound to CoA, which is a single

point in the network. Because of this, each solution needs a separate

mechanism to verify that the node is actually where it claims to be. In
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Figure 3.9. Comparing bindings between iBF, MIP and HIP

MIP, the verification requires return routability testing both directly and

through the home agent, since there is no security association between

MN and CN. In HIP, the verification is done directly using the security

association between MN and CN. In the iBF based mobility, the packet

forwarding is bound to the domain path (and CoA). The network does

the binding to the domain level path and the weak security association

between MN and CN ensures that other nodes cannot spoof the mobility

signaling.

This binding of the flow to a network path has also benefits against

denial-of-service attacks. As the path binding is done by the network,

a faulty implementation in a host (e.g. web server) cannot be used for

reflection attacks. It also makes source address validation more effective,

as it is enough for the AS where the MN is located to validate source

addresses to prevent IP address spoofing.

The binding between Transport Layer Identifier (TLI) and Flow ID can

also enable the mobile node to seamlessly move between heterogenous

networks. If the Flow ID is separated from the end point addresses, then

the connection can be continued even as the node moves between IPv4,

IPv6, and other types of networks.
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4. Conclusions

In this thesis, we have proposed a publish/subscribe based network ar-

chitecture for the Internet. While the PSIRP architecture is a pure clean

slate architecture, our goal has been also to fit the architecture together

with the existing Internet architecture. Our architecture is composed of

rendezvous, Bloom filter based multicast forwarding, and the IP as a sig-

naling mechanism.

The rendezvous system is composed of a hierarchical policy routing like

component and an overlay using a hierarchical distributed hash table.

This division enables incremental deployment, since locally each enter-

prise or ISP can peer with their neighbors and buy transit for rendezvous

from their provider. It also enables those providers at the top of their lo-

cal hierarchy to interconnect without requiring all the state to be shared

between all participants. This is important. With full deployment, the

number of operators that need to hold the full view of the routing table is

relatively small, whereas in a scenario of incremental deployment, it may

be much larger and contain many more small ISPs.

Combining hierarchical policy routing and an overlay using hierarchical

distributed hash table, together with caching, allows the rendezvous sys-

tem to scale and retain efficient route by name, while also ensuring that

queries are routed only through network operators. Our evaluation shows

that for large majority of cases (>95%) the latency from the rendezvous is

less than 250ms and the utilization of rendezvous nodes is kept relatively

low even in the most heavily loaded nodes.

Our work on Bloom filter based forwarding has shown that there are

serious reliability and security problems in the earlier Bloom filter based

multicast architectures and that these problems can be solved. The na-

ture of false positives in Bloom filter based forwarding can cause seri-

ous anomalies in the network that can be used in an attack against the
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network infrastructure or target end points. The anomalies are packet

storms, in which consecutive false positives cause an exponential growth

of traffic; forwarding loops that cause each packet in a flow to loop in-

finitely and an additional copy to the downstream receivers for each loop

the packet takes; and flow duplication, which happens if false positives

causes the path to intersect with some other part of the forwarding tree.

We have shown that these threats can be countered with four techniques

that do not require per packet or per flow state in routers: (1) limiting the

fill factor of a Bloom filter, (2) using cryptographically secure labels to de-

note path elements that are inserted into the Bloom filter, (3) varying the

Bloom filter locally in the router parameters to ensure that the average

number of false positives is low enough to prevent packet storms, and (4)

use bit permutations on every router on the Bloom filter to carry infor-

mation about the path the packet has traversed, and hence prevent the

harmful side effects of loops and flow duplication.

The problem of building networks where information is a first class cit-

izen is of importance for the future, as the amount of information created

and consumed increases. In this work, we have worked on building such

an architecture based on information centric anycast for locating infor-

mation and stateless Bloom filter based multicast for data delivery. Still

many open questions remain for future work. These include a compre-

hensive evaluation of the scalability of Bloom filter based forwarding and

comparison to the stateful multicast techniques, as well as the potential

for scaling up Bloom filter based multicast with the use of some state in

the network. The deployment incentives and security of the rendezvous

and Bloom filter based multicast also requires further study.
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