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Abstract 
Cortical excitability and connectivity describe the state of the cerebral cortex. They reflect 
the ability of neurons to respond to input and the way information flows in the neuronal 
networks. These properties can be assessed with transcranial magnetic stimulation (TMS), 
which enables direct and noninvasive modulation of cortical activity. Electrophysiological or 
hemodynamic recordings of TMS-evoked activity or behavioral measures of the stimulation 
effect characterize the state of the cortex during and as a result of the stimulation. In the 
research reported in this Thesis, the ability of TMS to inform us about the cortical state is 
studied from different points of view. First, we examine the relationships between different 
measures of cortical excitability to better understand the physiology behind them; we show 
how cortical background activity is related to motor cortical excitability and how the evoked 
responses reflect the excitability. Second, this study addresses the questions whether the 
TMS-evoked responses include stimulation-related artifacts, how these artifacts are 
generated, and how they can be avoided or removed. Specifically, we present a method to 
remove the artifacts from TMS-evoked electroencephalographic (EEG) signals arising as a 
result of cranial muscle stimulation. The use of TMS–EEG has been limited to relatively 
medial sites because of these artifacts, but the new method enables studying the cortical state 
even when stimulating areas near the cranial muscles, especially lateral sites. Finally, this 
work provides new information about brain function. The mechanisms how the brain 
processes visually guided timed motor actions are elucidated. Moreover, we show that cortical 
excitability as measured with TMS-evoked EEG increases during the course of wakefulness 
and decreases during sleep, which contributes to our understanding of what happens in the 
brain during wakefulness that makes us feel tired and why the brain needs sleep. The study 
also shows the sensitivity of the TMS–EEG measurement to changes in the state of the cortex. 
Accordingly, we demonstrate the power of TMS in studying the cortical state. 
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Tiivistelmä 
Aivokuoren tilaa voidaan kuvata sen reaktiivisuuden ja konnektiivisuuden avulla. Nämä 
parametrit heijastavat hermosolujen kykyä reagoida ärsykkeisiin ja kytkeytymistä toisiinsa, 
mikä ohjaa informaation kulkua hermoverkoissa. Transkraniaalisen magneettistimulaation 
(TMS) avulla aivokuorta voidaan aktivoida suoraan ja kajoamattomasti, mikä mahdollistaa 
näiden ominaisuuksien tutkimisen. Aivokuoren tilaa stimulaation aikana ja seurauksena 
voidaan mitata sähköfysiologisten tai verenkierrollisten rekisteröintien avulla tai tutkimalla 
TMS:n vaikutusta suoriutumiseen erilaisissa tehtävissä. Tässä tutkimuksessa selvitetään eri 
näkökulmista, miten TMS:ää voidaan hyödyntää aivotutkimuksessa ja mitkä ovat sen haasteet 
ja mahdollisuudet. Ensin tutkimme aivokuoren reaktiivisuuden mittareiden keskinäisiä 
suhteita selvittääksemme niiden taustalla vaikuttavia fysiologisia mekanismeja: näytämme 
miten aivokuoren tausta-aktiivisuus on kytköksissä liikeaivokuoren reaktiivisuuteen ja miten 
reaktiivisuus vaikuttaa TMS:n synnyttämiin vasteisiin. Toiseksi tässä työssä tutkitaan, 
sisältävätkö TMS:n synnyttämät vasteet fysiologisia häiriökomponentteja, jotka heijastavat 
muuta kuin aivotoimintaperäistä aktivaatiota, miten nämä häiriöt syntyvät ja miten ne 
voidaan välttää tai poistaa mitatuista signaaleista. Erityisesti esittelemme uuden 
menetelmän, jonka avulla TMS:n synnyttämistä aivosähkökäyrämittauksista (EEG) voidaan 
poistaa kallon lihasten aktivaation aiheuttamat häiriöt. Lisäksi tämä työ tuottaa uutta tietoa 
aivojen toiminnasta. Selvennämme niitä mekanismeja, joiden avulla aivot käsittelevät 
näköärsykkeen avulla ohjattuja ajastettuja liikesarjoja. Lisäksi näytämme, että TMS–EEG:n 
avulla mitattu aivokuoren reaktiivisuus kasvaa hereilläolon aikana ja pienenee unen 
seurauksena, mikä auttaa ymmärtämään paremmin sitä, miksi uni on aivojen toiminnalle 
välttämätöntä. Samalla tutkimus todistaa TMS–EEG-mittauksen herkkyyden aivojen tilassa 
tapahtuville muutoksille. Näin ollen tämä työ osoittaa, että TMS:ää voidaan käyttää 
menestyksekkäästi aivokuoren tilan tutkimiseen. 
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1 Introduction

The human brain has intrigued philosophers, scientists, and the public

alike for a long time. This amazingly complex system, which controls

our actions and makes us conscious of ourselves and the world around

us, still remains a mystery in many respects. During the past hundred

years, however, we have started to gain understanding of this most intri-

cate organ of ours, thanks to a multitude of methods revealing features

of the anatomy, the connections, and the functioning of the brain. One

of the most recent brain research methods is transcranial magnetic stim-

ulation (TMS), which allows us to stimulate the cerebral cortex safely,

noninvasively, directly, and in a controlled manner [14]. By examining

the stimulation-evoked reactions of the brain with electrophysiological or

hemodynamic recordings or with behavioral measures, we get information

about the properties of the neuronal networks at the time of the stimu-

lation: the TMS-evoked reactions inform us about the excitability and

effective connectivity of the brain. TMS is a very promising method with

potential applications in many areas of clinical and scientific research.

Since TMS and especially its combinations with different neuroimag-

ing techniques such as electroencephalography (EEG) and near-infrared

spectroscopy (NIRS) are relatively new, many aspects of them still need

to be clarified. A thorough understanding of the methods is necessary to

be able to interpret the TMS-evoked responses and behavioral changes —

especially before they can be applied clinically.

The main goal of this work is to contribute to our understanding of

the mechanisms of TMS and the responses evoked by it. With the in-

sight gained, I want to provide answers to the question how powerful a

method TMS is in studying the cortical state. In particular, this Thesis

aims at showing the sensitivity of the combined TMS–EEG measurement

to changes in the state of the brain, pointing out some remaining chal-

lenges, and presenting solutions to them. In addition, it provides new

insights into how the brain functions.
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Introduction

1.1 Aims of the study

To elucidate the mechanisms of and relationships between differ-

ent measures of cortical excitability (Publications I and II)

We aimed at a better understanding of the methods to probe cortical ex-

citability by assessing to what extent spontaneous EEG oscillations, TMS-

evoked peripheral muscle responses and TMS-evoked EEG responses re-

flect the fluctuations of excitability in the same neuronal population. In

addition, our objective was to elucidate the physiology of the TMS-evoked

responses.

To elucidate the role of sleep and the changes occurring in hu-

man neuronal circuits during wakefulness (Publication III)

What happens in the brain during wakefulness that causes the need for

sleep is poorly known. Our objective was to show sleep- and wake-depen-

dent changes in the cortical circuits of awake humans with TMS–EEG. By

this means, we aimed at contributing to our understanding of sleep func-

tion. In addition, our objectives included demonstrating the sensitivity of

TMS–EEG to study the cortical state.

To develop a muscle artifact removal method for TMS-evoked EEG

(Publication IV)

As is shown in this Thesis, stimulation of certain parts of the head acti-

vates the cranial muscles and, consequently, produces very large muscle

artifacts in the evoked EEG signals masking the brain signals. To allow

probing the cortical areas in the vicinity of cranial muscles with TMS–

EEG, we aimed at developing and testing the applicability of a signal pro-

cessing method to remove the muscle artifacts from the signals.

To characterize stimulation-related physiological artifacts in TMS-

evoked NIRS signals (Publication V)

The NIRS method is applied increasingly to study the changes in hemo-

globin concentrations due to TMS. Our objective was to show whether the

TMS-evoked NIRS signals include stimulation-related physiological arti-

facts due to the activation of other types of tissue than cerebral neurons.

In addition, we aimed at characterizing these artifacts and elucidating

their origin.
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Introduction

To understand the role of ventral premotor cortex (vPMC) in vi-

sually paced motor timing tasks (Publication VI)

Timing of motor actions is an essential skill in everyday life. Our objective

was to clarify how motor timing is processed in the brain and to show that

TMS is a suitable tool for studying these processes; specifically, we aimed

at elucidating the involvement of the vPMC, an area thought to play a

role in visuomotor transformation, in a visually paced finger-tapping task

by disturbing its functioning with TMS.
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2 Cerebral cortex

The cerebral cortex is the 2–4-mm-thick outermost layer of the brain con-

taining most of the somas of the cerebral neurons. The two primary types

of cortical neurons are excitatory pyramidal cells and inhibitory interneu-

rons. Pyramidal neurons are oriented, on average, perpendicular to the

cortical surface, while inhibitory interneurons do not have a preferred

orientation. The excitatory and inhibitory cells form complex neuronal

networks in which the information processing takes place. The cerebral

cortex has an important role in higher functions such as perception, move-

ment planning and execution, language, memory, attention, and conscious

thought. Transcranial magnetic stimulation provides us the possibility to

directly interfere with these and other cortical functions.

The cerebral cortex is divided into frontal, temporal, parietal and oc-

cipital lobes that contain functionally distinguished areas such as motor,

somatosensory, and visual areas and a multitude of their subdivisions.

The cortex is folded so that it forms grooves (sulci) and ridges (gyri). Al-

though there are small interindividual variations, each cortical area has

its typical location in terms of the sulci and gyri (see Fig. 2.1); e.g., the

primary motor cortex (M1) is located on the precentral gyrus anterior to

the central sulcus while many visual areas are located in the occipital

lobe. The areas mainly responsible for language production and under-

standing, Broca’s and Wernicke’s areas, are located laterally: Broca’s area

in the inferior frontal gyrus, and Wernicke’s area in the posterior part of

the superior temporal gyrus. In most people, these language areas are

activated more strongly in the left hemisphere.

2.1 Cortical excitability and connectivity

The electrical state of a neuron can be characterized by its instantaneous

membrane potential. It depends on the net input the neuron receives
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Figure 2.1: The human brain from the left: cortical lobes, cerebellum

and brain stem, some sulci, gyri, and sensory, motor, and language areas.

Modified from [64].

from other cells; each neuron receives both excitatory (depolarizing) and

inhibitory (hyperpolarizing) signals from other neurons resulting in ex-

citatory and inhibitory postsynaptic potentials, respectively. The net in-

put determines the output of the neuron: if the membrane potential ex-

ceeds a certain threshold, an action potential is generated. Thus, corti-

cal excitability is related to the membrane potential distribution of the

neuronal population, as also a model for the intensity dependence of the

TMS-evoked neuronal activity presented by Komssi et al. [117] suggests.

Other factors affecting cortical excitability include the geometry of the

stimulated tissue, such as the orientation and density of the neurons, the

availability of neurotransmitters delivering signals between neurons, and

the strength of synapses. The connections in the neuronal networks are

modulated as a result of learning, as the strengths of the synapses are al-

tered and new synapses are formed. In addition, the activity of neurons is

fluctuating, e.g., according to the task being performed and as a function

of vigilance. Excitability and connectivity describe the state of a neuronal

population: excitability reflects the ability of the neurons to respond to

input and connectivity is a measure of the linking between the cells. In

addition to anatomical connectivity, which refers to the hard-wiring be-

tween neurons, the connectivity between two sites needs to be described

in terms of effective connectivity, which reflects the transmission of sig-

nals from one brain area to another. Effective connectivity depends, e.g.,

on the momentary excitability of the neurons and the availability of neu-

rotransmitters. Excitability and effective connectivity are thus closely re-

lated.
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2.2 Sleep function

Many aspects of the functioning of the cerebral cortex are still to be clar-

ified. One puzzling question is: why do we sleep? The role of sleep seems

to be to restore the ability of the brain to function properly: lack of sleep

causes cognitive problems (see [62] for a review) and prolonged sleep de-

privation can have severe consequences such as hallucinations [13] or in-

crease seizure risk [77]. On the other hand, sleep deprivation amelio-

rates depressive symptoms in some depressed patients [79]. It is not well

known what happens in the brain during wakefulness that causes the

need of sleep and makes us feel tired, or what is the mechanism recover-

ing the functional capacity of the brain during sleep.

According to the two-process model [30, 31], sleep is regulated by home-

ostatic and circadian processes, referred to as processes S (synaptic home-

ostasis) and C (circadian factors), respectively. Process C regulates sleep

propensity according to the time of day and is independent of preceding

waking or sleep, whereas process S describes the increase in sleep propen-

sity during wakefulness and decrease during sleep. Process S is related

to EEG slow wave activity (SWA; 1–4.5 Hz spectral power) during non-

rapid-eye-movement (NREM) sleep; SWA increases as a function of prior

wakefulness and decreases during sleep [35, 235, 57, 58, 59]. Thus, SWA

provides an electrophysiological marker of tiredness related to prior sleep

and wakefulness, which can be measured during sleep. During wakeful-

ness, EEG undergoes changes related to both processes S and C; the oscil-

latory activity especially in theta band (4–8 Hz) increases with the time

spent awake and shows circadian modulation as well [222, 4, 5, 38, 39, 69].

These measures do not, however, explain the processes occurring during

wakefulness and sleep that make sleeping necessary.

It has been hypothesized that, during wakefulness, plastic processes

result in synaptic potentiation and a net increase in synaptic strength,

while during sleep, synaptic depression downscales the synaptic strengths

[219, 220]. According to this hypothesis, synaptic downscaling is the

role of sleep, making plasticity possible; a constant increase in synaptic

strength would be energetically unfavorable, require a growing amount of

space, and eventually saturate the ability to learn. The sleep homeosta-

sis hypothesis also states that slow oscillations in the membrane poten-

tials of cortical neurons during sleep, reflected as SWA, are closely related

to the synaptic potentiation: increased synaptic strength increases their
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amplitude, which then decreases during the night along with decreasing

net synaptic strength. Furthermore, the SWA is hypothesized to cause

the synaptic downscaling. After waking up, what has been learned is

still preserved in the relative strengths of the synapses, while the net

strength has been scaled to a lower level for efficiency. Electrophysiologi-

cal and molecular evidence from animal studies supports this hypothesis

[80, 132, 231], but we lack a neuronal correlate of tiredness and evidence

for the role of sleep in the synaptic homeostasis in humans. The changes

in synaptic strengths are related to cortical excitability, which makes it

possible to study them in humans with the combination of TMS and EEG.

We took advantage of TMS–EEG to study the changes in cortical excitabil-

ity as a result of wakefulness, sleep deprivation, and sleep in Publication

III.

26



3 Tools for studying the cortical state

TMS modulates the functioning of selected neuronal populations directly

and the reactions of the brain are measured in different ways, for exam-

ple, with EEG or with methods measuring brain hemodynamics. In this

chapter, TMS and its combinations with other methods to study the corti-

cal state are presented.

3.1 Transcranial magnetic stimulation (TMS)

TMS, introduced in 1985, is a method to modulate brain function [14]. It

is generally considered noninvasive, because the stimulation is mediated

through changing magnetic fields, which penetrate the skull. Initially,

TMS was used to test the integrity of motor pathways from M1 to the

muscles. The muscle responses measured following stimulation of M1

and phosphenes (flashes of light perceived when the visual cortex is stim-

ulated) were the only measured excitatory effects to TMS. Later, TMS

has been combined with different neuroimaging techniques such as EEG

[94], which measures the electrical activity of neurons with a millisecond

time resolution, as well as PET [170], fMRI [22], and NIRS [165], which

measure hemodynamic changes in the brain coupled to neuronal activ-

ity. These multimodal approaches have opened novel avenues in brain re-

search; it is possible to alter brain function in a direct and controlled man-

ner and to study the reactions of the brain to the perturbation both at the

stimulated and at the interconnected sites. As opposed to sensory-evoked

methods, direct stimulation allows probing the brain without peripheral

contribution. The controllability means that the stimulation parameters,

including the location, amplitude, and direction of the induced current

can be accurately determined. With repetitive TMS (rTMS), i.e., by deliv-

ering several TMS pulses in a row to the same site, brain function can be

altered for periods outlasting the stimulation [233, 41, 169]. Depending
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on the stimulation frequency and duration, the effect can be excitatory or

inhibitory and last for several seconds, minutes, or even longer times.

3.1.1 The physics of TMS

The mechanisms of TMS are well understood on the macroscopic level; the

brain is activated through electromagnetic induction. However, although

TMS has been used for more than 25 years, it is still not clear what the

exact activation mechanisms are at the cellular level.

The operating principle of a magnetic stimulator is rather simple: a

large capacitor is discharged through a stimulation coil when a thyristor

is gated into conducting state. The current pulse I(t) in the coil generates

a fast-changing magnetic field B(r,t) around the coil according to the Biot–

Savart law:

B(r, t) =
µ0
4π
I(t)

∮
C

dl(r′)× (r− r′)

|r− r′|3
, (3.1)

where dl is the vector along the coil winding C. The magnetic field pene-

trates the skull unattenuated and induces a primary electric field EA in

the brain according to Faraday’s law:

∇×EA = −∂B
∂t
. (3.2)

The induced electric field can be expressed in terms of the magnetic vector

potential A:

EA = −∂A
∂t

. (3.3)

The electric field puts electric charges into motion. The current induced

inside the brain flows parallel to the head surface and, according to Lenz’s

law, in the opposite direction to the rate of change of the current in the coil.

The distribution of the current depends on the conductivity distribution

(structure) of the brain; the induced current density J is directly propor-

tional to the conductivity σ and the total electric field according to Ohm’s

law J = σE. Because of nonuniform conductivity in the brain, the induced

current produces a nonuniform charge distribution, which produces a sec-

ondary electric field EV according to Gauss’s law:

∇ ·EV =
ρ

ε0
, (3.4)

where ρ is the charge density.
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The total electric field caused by TMS is the sum of the primary and the

secondary electric fields:

E = EA + EV. (3.5)

When charge accumulates at cellular membranes so that the membranes

are depolarized, neurons are activated. Simulations and experimental

evidence suggest that the stimulation is most effective when there are

strong electric field gradients along the longitudinal axis of the neuron

[15, 76]. As a result, a neuron is most easily activated in locations where

it bends or terminates [134, 9, 2]. Also electric fields perpendicular to

the cell axis are able to excite the cell, but stronger stimulation is needed

[196]. More accurate models for the activation of neurons are needed to

better understand the mechanisms of TMS at the cellular level.

Fast changes in charge distribution are most effective in activating neu-

rons because current leaks through cellular membranes [166, 154]. Thus,

for effective stimulation, a current in the stimulation coil of several kilo-

amperes needs to be generated in a very short time (∼100 µs), produc-

ing a changing magnetic field with a peak strength of the order of 1

T. An induced electric field of around 100 V/m about 2 cm beneath the

scalp is needed to activate pyramidal motor neurons to such an extent

that measurable motor responses are evoked in the target hand muscles

[65, 194, 117]. Still, EEG responses to TMS have been recorded at a stim-

ulation intensity of only 40% of the motor threshold [118], showing that

the threshold for activating neurons is much lower. The effective stimu-

lation area depends on the coil shape, which is usually round or figure-

of-8-shaped. Compared to a round coil, a figure-of-8 coil produces a more

focused effective stimulation area, typically a few cm2.

The induced electric field (EA) is always strongest near the surface of the

head and it falls rapidly as a function of the distance from the surface (as

r−4 in case of a figure-of-8 coil and as r−3 in case of a round coil). The to-

tal electric field (E) falls off even more rapidly. Thus, superficial neurons

are most effectively stimulated. Other factors affecting the stimulation

efficacy include the relative orientation of the neurons and the induced

current. It has been shown that neurons are more easily activated when

the electric field is parallel to the cell’s longitudinal axis than perpendicu-

lar to it [197, 50]. As a result, pyramidal neurons are activated most eas-

ily when the stimulus is delivered over a sulcus and the induced current
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is oriented perpendicular to it [74, 34]. Other types of neurons such as

inhibitory interneurons are activated as well, both directly and transsy-

naptically. In the case of M1 stimulation, the most effective stimulation is

achieved when the induced current is perpendicular to the central sulcus

between anterior and medial directions, in about 45◦ angle compared to

the midline.

3.1.2 TMS of the motor cortex

Stimulation of M1 with appropriate parameters results in peripheral mus-

cle activity, which can be measured with electromyography (EMG). The

response seen in the EMG, called motor evoked potential (MEP), reflects

the excitability of the corticospinal tract leading from the cortex to the

motor neurons. Because of this easily measurable response to stimula-

tion, TMS was earlier mostly applied on M1. Therefore, most of what is

known about the neural mechanisms of TMS has been learned from M1

stimulation studies. TMS has been used clinically to study the integrity

of motor pathways since its introduction.

Measurements of TMS-evoked responses after M1 stimulation in the

epidural space of the spinal cord have revealed that TMS activates the

pyramidal cells of the motor tract mainly transsynaptically but also di-

rectly [156, 63, 56]. The direct activation produces shorter-latency re-

sponses called direct (D) waves in the epidural recording, while the longer-

latency responses due to transsynaptical activation are called indirect (I)

waves. The threshold for evoking I waves is more variable than the D-

wave threshold [63] and the variability of MEPs elicited by transcranial

electrical stimulation (TES), which preferably evokes D waves, is smaller

than that of TMS-evoked MEPs [36]. This evidence shows that the effect

of TMS at the stimulation site does indeed depend on cortical excitability,

which would not necessarily be the case if TMS stimulated mainly the

pyramidal cell axons in the white matter.

With paired-pulse stimulation, the connectivity of the local circuitry at

M1 can be probed: a conditioning pulse delivered to the M1 before the

test pulse results in intracortical inhibition or facilitation, depending on

the interstimulus interval and manifested as a decrease or an increase in

MEP amplitude [68, 123, 226]. The MEPs are also modulated after repet-

itive TMS [41, 169, 233]. The effect of a conditioning pulse and preceding

rTMS, both of which can alter cortical excitability transiently, show fur-
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ther evidence that the effect of TMS indeed depends on the cortical state.

Moreover, a conditioning stimulus delivered to the opposite M1 is much

more effective in modulating the amplitude of MEP evoked by TMS, re-

sulting mainly from indirect waves, than that evoked by TES, resulting

mainly from direct waves [68].

TMS-evoked MEPs are also modulated during several actions that alter

motor cortical excitability such as movement preparation [91], observa-

tion [67], and imagery [108], as well as tasks nonspecific in terms of tar-

get muscle control like sticking out the tongue and counting aloud [92],

thinking emotional thoughts [221], and nonmotor linguistic tasks [167].

Studying cortical excitability modulations provides interesting possibili-

ties to assess information processing during different tasks. For exam-

ple, a TMS study [109] showed evidence for the involvement of a right-

hemisphere network in self-awareness; it was demonstrated that MEPs

evoked by right M1 stimulation were facilitated when subjects recognized

their own face in a picture compared to recognizing other faces.

Cortical excitability probing may prove useful in the diagnosis and as-

sessment of progression of neuronal diseases. It has been shown that mo-

tor cortical excitability as measured with TMS-evoked MEPs is altered in

Alzheimer’s disease, correlating with cognitive severity [51, 6, 55, 174], in

multiple sclerosis as a function of the clinical stage [45], and in Hunting-

ton’s disease already in its preclinical stage [202].

The excitatory effect of the stimulus manifested as MEP after M1 stimu-

lation is followed by an inhibitory phase at least in case of M1 stimulation.

This is seen as suppression of voluntary muscle activity lasting about 100

ms after the pulse [147, 1]. This so-called silent period is believed to re-

flect cortical inhibitory processes activated as a consequence of the cortical

excitation.

MEP amplitudes in response to identical consecutive stimuli vary largely.

In addition to cortical excitability fluctuations, also fluctuations in spinal

excitability and varying synchronization between action potentials de-

scending from the brain to the muscle affect the trial-to-trial variability

of MEP amplitudes [136, 193].

The stimulation intensity is commonly related to the motor threshold

(MT), defined as the intensity producing 5 out of 10 MEPs larger than 50

µV in amplitude. MT is usually determined during rest (resting motor

threshold; RMT); when determined during slight voluntary contraction,
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it is called active motor threshold (AMT). Since the contraction increases

the excitability of the motor tract, AMT is lower than RMT.

3.1.3 Repetitive TMS

Delivering TMS in trains of pulses is called repetitive TMS, or rTMS.

rTMS interferes with the functioning of the neurons stimulated directly

and indirectly. Studying the behavioral effects of rTMS provides a way to

assess various brain functions including higher cognitive processes such

as language skills [168, 232], memory retrieval [141], and the sense of

time [164].

rTMS can alter the excitability of the stimulated [224, 223, 81, 135] and

interconnected [234, 78, 151] sites for periods outlasting the stimulation.

The net effect depends on the stimulation parameters. In general, stimu-

lation at 1 Hz leads to decreased cortical excitability [233, 41], whereas

rTMS at frequencies of 5 Hz and higher tends to increase excitability

[169, 135]. The stimulation-parameter-dependent modulation can be ex-

plained by the fact that the effect of each pulse depends on the state of the

stimulated neuronal network, which is modulated by the preceding TMS

pulses. rTMS delivered in an attempt to affect cortical function within

minutes or longer from the stimulation is called offline rTMS, whereas

online rTMS refers to stimulation during task performance.

The possibility of modulating brain function for longer periods suggests

that rTMS could be used for therapeutic purposes. Accordingly, there has

been growing interest in applying rTMS with a large number of pulses

as a treatment for several disorders. High-frequency rTMS over the left

dorsolateral prefrontal cortex (DLPFC) or low-frequency rTMS over the

right DLPFC provides significant benefits for some patients with medi-

cally intractable depression (see, e.g., [203, 204] for a review). Although

rTMS appears to be superior to sham stimulation in the treatment of de-

pression, the response rate is relatively low and more studies are needed

to test whether the treatment provides long-lasting results [125]. rTMS is

also under investigation for the treatment of a number of other conditions

such as auditory hallucinations in schizophrenia (see [7] for a review)

and obsessive-compulsive disorder (e.g., [195]). The long-term effects of

rTMS probably result from plastic synaptic changes due to repeated TMS-

induced synaptic activations.

32



Tools for studying the cortical state

3.2 Electroencephalography (EEG)

In the 1920s, Hans Berger, the inventor of the EEG, recorded changes in

the oscillatory EEG activity of the brain as the subjects opened or closed

their eyes [18]. After these first noninvasive measurements of the func-

tional state of the brain, EEG has become a popular method and is nowa-

days widely used in clinical studies.

3.2.1 Origins of the EEG signal

EEG measures the electrical activity of the brain with a temporal resolu-

tion of the order of milliseconds by electrodes placed on the scalp. Syn-

chronized activity of groups of similarly oriented (i.e., pyramidal) neurons

can be recorded as electric potential difference changes on the head sur-

face. The electric field produced by action potentials, which behave as

current quadrupoles [177], falls off rapidly as a function of distance (r−3),

whereas that produced by postsynaptic potentials behaving as current

dipoles falls off less rapidly (r−2). As a result, action potentials, which are

also very brief (1–2 ms) and lack synchrony, are not easily detected with

EEG. Thus, EEG signals reflect mainly the slower (10–200 ms) postsy-

naptic potentials, both excitatory and inhibitory, generated in pyramidal

neurons when they receive input from other neurons [114, 46, 47]. Be-

cause of this relatively slow synchronous postsynaptic activity of neurons

and the difficulty in detecting the high-frequency action potentials, infor-

mation about neuronal activity in the EEG signal is mainly restricted to

frequencies below 100 Hz.

Activation of neurons produces a primary current Jp(r) mostly inside

and in the vicinity of the neuron, which affects the charge distribution

and produces an electric field E(r). The return current, also called volume

current, Jv(r), flows passively in the conducting medium and is generated

as a result of E(r):

Jv(r) = σE(r). (3.6)

EEG measures the changes in potential V between measurement points

1 and 2 associated with E(r):

V1,2 =

∫ 2

1
E (r) · dl. (3.7)

33



Tools for studying the cortical state

In contrast to the good temporal resolution, the spatial resolution of

EEG is compromised because the volume conductor effects, i.e., the inho-

mogeneous electrical conduction properties of the tissue, blur the poten-

tial distribution seen on the scalp; especially the skull, which has much

lower conductivity than other tissues, makes a significant contribution.

EEG can be used to measure the spontaneous activity of the brain or

evoked potentials. Evoked potentials reflect the activity associated with

and time-locked to stimuli or other events. Spontaneous EEG signals

show oscillations at various frequency ranges including delta (1–4 Hz),

theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–60

Hz), which have a characteristic distribution over the head and reflect

synchronous activity of neuronal networks; in other words, synchronous

fluctuations in the membrane potentials of groups of neurons. Sponta-

neous oscillations are often considered to indicate idling states of brain

areas. In healthy adults, delta oscillations are only seen during slow

wave sleep and theta oscillations are related to drowsiness and lapses in

vigilance [222, 38, 138]. Posterior alpha oscillations are associated with

a resting state of visual areas [3]; they emerge when eyes are closed or

during relaxation. Alpha and beta oscillations measured over the senso-

rimotor cortex (also called Rolandic alpha and beta oscillations accord-

ing to their origin in the Rolandic fissure, i.e., the central sulcus) re-

flect idling states of the somatosensory and motor cortices, respectively

[122, 101, 175, 199, 213, 188]. On the contrary, for example gamma and

frontal beta oscillations are associated with increased activation, as they

can be measured during some cognitive tasks.

An EEG system amplifies the voltage measured between each electrode

and a reference, filters the signals to prevent aliasing, and converts the

analog signal to digital form. Conducting paste is used to create a contact

after scraping the skin in order to reduce its impedance. The electrodes

are often attached to an elastic cap to facilitate their positioning.

3.2.2 TMS-evoked EEG

The introduction of TMS-compatible EEG devices has greatly expanded

the possibilities to probe the cortical state with TMS. Like neuronal activ-

ity evoked by sensory stimulation, also activity elicited by and time-locked

to TMS can be measured with EEG [94]. In addition to enabling cortical

excitability probing in areas other than M1 [48, 71, 107, 106, 142, 191],
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TMS–EEG also provides the chance to study cortical connectivity by ex-

amining the signals arising from areas connected to the stimulated area

[116]. For example, the breakdown of cortical effective connectivity during

sleep was demonstrated with TMS–EEG [142]. With paired-pulse stimu-

lation and EEG, intracortical inhibition and facilitation can be studied at

brain sites other than M1 as well [48, 71]. When the stimulation is tar-

geted with an MRI-guided neuronavigation system, responses averaged

over trials are highly repeatable between similar experiments performed

on the same subject [130, 40]. The repeatability enables reliable studies

of treatment or other effects on TMS-evoked EEG responses.

Combining TMS with simultaneous EEG is challenging because TMS in-

duces currents in the electrode leads. This type of electromagnetic artifact

can be eliminated with an EEG system using gain-control and sample-

and-hold circuits [230] or largely reduced by slew-rate-limited amplifiers

that do not become saturated during the pulse [95]. TMS also sets spe-

cial requirements for the electrodes so that they will not overheat or move

as a result of forces due to induced currents. Even when using a TMS-

compatible EEG system, electromagnetic artifacts can arise: especially

with high stimulation intensities and bad electrical contacts, the electrode–

electrolyte interface may polarize, which produces a baseline shift and an

exponentially decaying artifact lasting tens of milliseconds.

In addition, stimulation of the lateral parts of the head and areas near

the neck or forehead activates the cranial muscles, which produces an

artifact lasting tens of milliseconds and masking the early components

of the evoked EEG signal. Examining brain areas near cranial mus-

cles with TMS–EEG has been restricted, because the early components

of the evoked signals are of greatest interest with respect to cortical ex-

citability and connectivity. Even though there are no muscles over the

motor cortex, temporal scalp muscles of some subjects may still be acti-

vated during M1 stimulation depending on the individual motor thresh-

old and anatomy; if the coil location, orientation and stimulation inten-

sity required to activate the pyramidal cells controlling the target muscle

are also favorable in terms of cranial muscle stimulation, muscle arti-

facts may arise. Nonetheless, EEG signals without or with only moderate

muscle artifacts have been successfully recorded following stimulation of

the M1 [94, 116, 117, 66, 118, 160, 172, 112, 21], the dorsolateral pre-

frontal cortex [107, 106, 105, 130], the primary somatosensory cortex (S1)

[183], premotor areas [142, 191], the parietal cortex [191], and the asso-
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ciative visual area [191]. To enable studying brain areas near the cranial

muscles, a method to reduce the large muscle artifacts was developed in

Publication IV.

The stimulus is accompanied by a loud click as a result of electromag-

netic forces in the coil, which produces an auditory response in the EEG

signal [158, 218]. Part of the sound is conducted through air and part

through the skull [158]. The auditory response can be reduced with hear-

ing protection, although it is usually not sufficient to completely block

the sound. A more efficient way to prevent the perception of the click is

to play masking noise from headphones [172, 142, 75]. In addition, a thin

piece of foam plastic can be placed between the coil and the head to reduce

the conduction of coil vibrations to the head and thus the bone-conducted

sound [142].

TMS–EEG is a tool with great potential, since cortical excitability and

connectivity are altered in a range of circumstances. For example, TMS-

evoked EEG responses are modulated by a conditioning TMS pulse [48,

71], rTMS [66], movement preparation and execution [29, 160, 112], cu-

taneous stimulation [21], the sleep or waking state [142], and the intake

of alcohol [104]. Thus, TMS–EEG might have a wide variety of clinical

and scientific applications, e.g., monitoring the effect of pharmaceuticals,

diagnosing different neuronal diseases, and studying the involvement of

different brain areas in cognitive tasks.

TMS-evoked EEG responses vary between subjects, stimulation and elec-

trode sites, and experimental conditions. Fig. 3.1 shows a typical averaged

EEG response following M1 stimulation measured between an electrode

near the stimulation site and a reference electrode behind the contralat-

eral ear. The deflections are named according to their polarity (negative =

N, positive = P) and typical latency in milliseconds. N15 possibly reflects

activation of the premotor cortex on the stimulated (ipsilateral) hemi-

sphere [66, 131]. The estimated origin of P30 is inconsistent between

different studies, as it has been suggested to reflect activity around ipsi-

lateral sensorimotor/premotor cortex border [66], in the superior wall of

the ipsilateral cingulate gyrus or in the supplementary motor area [131],

and in the nonstimulated (contralateral) cortex [116]. The N45 compo-

nent is believed to reflect activity in the ipsilateral sensorimotor cortex

[172, 66]. Unless proper hearing protection and auditory masking are

used, part of the N100–P180 complex is a result of the auditory stim-

ulation [158, 218], but N100 is also believed to reflect inhibitory mech-
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Figure 3.1: A typical TMS-evoked EEG response after M1 stimulation

measured with one channel near the stimulation site referenced to an

electrode behind the contralateral ear. The deflections are named accord-

ing to their polarity and typical latency.

anisms in the cortex as it is attenuated during movement preparation

[160, 17]. This interpretation is supported by the coincidence of N100 in

time with the long intracortical inhibition [226], the silent period [147, 1],

and long-lasting inhibitory postsynaptic potentials [121, 192]. As the con-

duction time between the cortex and small hand muscles is about 20 ms,

in case of M1 hand area stimulation with intensities at or above the mo-

tor threshold, components peaking approximately 40 ms after the stim-

ulus and later may be affected by the somatosensory responses arising

from S1 and higher somatosensory areas as a result of the target muscle

activation. Moreover, signals around 30–40 ms after the stimulus may

be slightly affected by somatosensory components (P9 and P14) originat-

ing in subcortical structures, although these components are spatially too

widespread to be easily detected when the reference electrode is placed on

the head [126].

TMS–EEG studies suggest that also subthreshold stimulation can evoke

activation spreading to distant cortical areas: stimulation of the premotor

cortex at 90% of MT [142] and subthreshold stimulation of the M1 and the

visual cortex [94] produced activation spreading to the contralateral hemi-

sphere, and intensities as low as 60 or even 40% of MT produced measur-

able responses to TMS of the M1 [117, 118], including deflections believed

to originate elsewhere than in M1. There is evidence that auditory stim-

ulation alone does not explain the responses to subthreshold TMS of the
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M1: responses to stimuli at different intensities recorded with and with-

out auditory masking did not differ markedly [117]. In addition, when

hearing protection suppressed the air conduction of the sound, stimula-

tion with the coil against the head and raised above the head with inten-

sities producing an electric field of similar strength in the brain produced

similar responses [118]. In this context, it has to be taken into account

that the motor threshold may not describe the excitability of other brain

areas sufficiently, because the distance between the head surface and the

cortex, cortical folding, and neuronal level structure vary between areas.

Thus, the stimulation of other brain areas with intensities below the mo-

tor threshold may have a different effect than the stimulation of the M1

with the same intensities.

3.3 Relationships between measures of cortical excitability

As spontaneous EEG oscillations, TMS-evoked MEPs, and TMS-evoked

EEG responses all reflect cortical excitability, they might correlate. The

relationships between different measures of cortical excitability have been

assessed in a few studies with controversial results.

Even though spontaneous alpha-frequency oscillations measured over

the sensorimotor cortex are expected to reflect somatosensory rather than

motor cortical state [199, 213, 188], in some studies, prestimulus Rolandic

alpha power measured with EEG, but not beta power, has been found to

correlate negatively with TMS-evoked MEP amplitudes measured from a

resting small hand muscle [240, 200]; larger-amplitude alpha oscillations

are associated with smaller-amplitude MEPs and vice versa. Considering

the numerous anatomical connections and functional relevance of inter-

play between sensory and motor areas, the correlation is not surprising.

On the contrary, in another study, negative but nonsignificant correlation

coefficients were reported between Rolandic alpha power and MEP ampli-

tudes with the target muscle in rest, as well as during movement observa-

tion, imagery and execution, while an exploratory analysis (not corrected

for multiple comparisons) suggested a relationship between Rolandic low-

to-midrange beta (12–18 Hz) oscillations and MEP amplitudes in the rest

and execution conditions [128]. During a precision grip task known to

promote Rolandic beta oscillations, no significant correlation was found

between beta oscillations and MEPs [148].
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A similar approach has been taken to study the relationship between

posterior prestimulus alpha oscillations and phosphene perception follow-

ing TMS delivered to visual areas. During periods of low-amplitude alpha

EEG oscillations, the probability for perceiving a phosphene was higher

than during periods of high-amplitude alpha oscillations [189]. In addi-

tion, the individual threshold for evoking phosphenes correlated with the

individual posterior alpha oscillation power [190].

The relationship between MEP amplitudes and spontaneous EEG oscil-

lations at different frequencies measured above different brain areas was

studied in Publication II. Although the relationship between MEP and

spontaneous oscillation amplitudes has been studied before, the previous

controversial results require further clarification. In addition, consider-

ing that spontaneous oscillations reflect alterations in the membrane po-

tentials and thus the excitability of groups of neurons, also the phase of

oscillations might be related to evoked responses [115]. To our knowledge,

Publication II is the first study addressing the relationship between MEP

amplitudes and spontaneous oscillation phase. In addition, analogously to

[190], the relationship between individual motor threshold and individual

average oscillation amplitude was studied in Publication II.

TMS-evoked MEP and EEG responses can be assumed to correlate when

stimulus strength is altered between stimuli, for example, by changing

the stimulation intensity or moving the coil so that the neurons experi-

ence a different electric field. However, even if the stimulation parameters

stay virtually the same, a correlation can still be expected; during periods

of high excitability of the target neurons, both MEP and EEG responses

are likely to be larger than during periods of low excitability. In one study,

a significant correlation was shown between MEP and N100 amplitudes

[172], whereas in another study no such relationship was found [160].

N100, like any other component measured more than 40 ms after M1

hand area stimulation, may include a somatosensory component resulting

from target muscle contraction. Thus, the early deflections including N15

and P30 (see Fig. 3.1) in the evoked EEG serve as more direct measures

for studying the excitability of the stimulated area. Nonsignificant corre-

lation coefficients r = 0.13 and r = 0.46 were reported between the average

amplitude of MEPs and the average amplitude of N15 and P30 deflections,

respectively, using the average values of five series of responses of all the

six subjects averaged over 100 trials and all the 19 channels [28]. To our

knowledge, the correlation between MEPs and the early deflections of the
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TMS-evoked EEG response has not been studied before at the single-trial

level within subjects. This relationship was assessed in Publication I.

The relationship of EEG oscillations with evoked responses or with per-

ception has also been studied with sensory stimulation modalities. In

most studies, as expected, a negative correlation has been found between

oscillation amplitudes and evoked responses including visual evoked po-

tentials (VEP) [32, 180], somatosensory evoked potentials (SEP) [176],

and auditory evoked potentials [181] or between oscillation amplitudes

and visual perception [217, 88, 227]. In some studies, oscillation ampli-

tudes have been reported to correlate positively with VEP [33] and SEP

[159]. In addition, a positive correlation was found between optical signals

reflecting the prestimulus membrane potentials of a neuronal population

and visually evoked local field potentials [11]. This positive correlation

is not, however, comparable to the aforementioned findings in studies of

spontaneous oscillations and evoked responses; rather than reflecting the

oscillations in the background activity, these optical signals reflect the in-

stantaneous membrane potentials of neurons and are thus more closely

related to oscillation phase. With this type of optical imaging, a positive

correlation is actually expected as higher membrane potentials indicate

higher excitability.

Also the relationship between spontaneous oscillation phase and evoked

responses has been studied with sensory stimulation. The traditional ap-

proach is to average the evoked responses over trials with the prestimu-

lus oscillation in a certain phase and compare the evoked responses be-

tween phase groups. The problem with this kind of analysis is that the

background oscillations will not average to zero, but instead affect the

evoked responses. A similar problem occurs when prestimulus oscillation

phase is estimated using Fourier or wavelet transform with the poststim-

ulus data included: the poststimulus data affects the estimated phase and

misleading correlations may be detected [139]. No relationship was found

between prestimulus alpha phase and VEP when these problems were

avoided with methods to subtract the ongoing activity from the evoked re-

sponses [113, 187], but visual perception was shown to depend on occipital

alpha phase [37, 143].

The correlations between different measures of cortical excitability are

only likely to apply within some limits; for example, the expected negative

correlation between oscillation and evoked response amplitudes does not
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extend to a situation where both are (close to) zero, such as in case of a

severe brain injury.

3.4 Hemodynamics-based neuroimaging

Neuronal activity increases the need for oxygen and nutrients in the ac-

tive cells and, consequently, blood flow is increased at the activated ar-

eas through a mechanism called neurovascular coupling, which is not

understood in all the details. The increased consumption of oxygen is

overcompensated by the increased blood flow so that the concentration

of oxygenated hemoglobin (HbO2) and total hemoglobin (HbT) increases

and the concentration of deoxygenated hemoglobin (HbR) decreases at the

site of activation. This so-called hemodynamic response is slow compared

to neuronal activity, reaching its peak about 5 s after the onset of the

activation and returning even more slowly back to baseline, typically in

less than half a minute. The hemodynamic response reflects postsynaptic

activity rather than action potentials [144, 133]. Hemodynamics-based

neuroimaging methods reflect the neuronal activity indirectly by measur-

ing the changes in blood flow or hemoglobin concentrations. For example,

fMRI is based on a blood oxygen level-dependent (BOLD) signal, related

to the decreased HbR concentration, while PET measures changes in re-

gional cerebral blood flow (rCBF).

The BOLD response is in many cases positive, reflecting a typical hemo-

dynamic response during which the HbR concentration decreases. In

many studies, however, negative BOLD responses (increasing HbR con-

centration) and decreased rCBF have been reported [54, 85, 207]. This

kind of responses have been suggested to result from inhibition of neu-

ronal activity at the brain areas in question [182]. A competing hypothe-

sis proposes that the negative responses are of vascular and not neuronal

origin, resulting from the increased need of blood flow in other parts of the

brain [89]. One reason why this subject is still under debate is that inhi-

bition mediated through synaptic activity demands blood flow increase

[102]. However, even though inhibition requires activation of inhibitory

neurons, the net synaptic activity within a brain area may decrease. In-

deed, growing evidence suggests that inhibited neuronal activity can pro-

duce negative hemodynamic responses (e.g., [210, 206]).
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3.4.1 TMS-evoked fMRI and PET

TMS combined with hemodynamics-based neuroimaging techniques en-

ables the study of the vascular response of the brain to the stimulation.

These combinations of methods can, e.g., shed light on neurovascular cou-

pling and its malfunctions in some diseases [93]. Because the evoked

hemodynamic responses to single TMS pulses are relatively weak, rTMS

trains have been used in most studies, although BOLD responses to single

pulses have been reported as well [27, 86].

TMS–fMRI and TMS–PET studies have shown modulation of blood flow

and oxygenation at the stimulated and interconnected sites, elucidating

the local hemodynamic effects of TMS and connectivity patterns between

brain areas. Generally, TMS–fMRI studies have shown BOLD signal in-

creases at the stimulated motor cortex with suprathreshold intensities

[27, 26, 25, 23, 16, 19, 20, 53, 111, 86], while responses to subthresh-

old stimulation have not been detected at the site of stimulation [24, 16,

19, 20]. The increases as a response to suprathreshold stimulation of

M1 may at least partly result from the somatosensory feedback due to

the contracting target muscle [16, 19]. Following M1 stimulation, on the

contralateral M1, both BOLD signal decreases [19, 20, 53, 111] and in-

creases [155, 23, 27] have been reported. TMS–PET studies have mostly

shown increased rCBF at the site of the stimulation with both sub- and

suprathreshold intensities [72, 170, 208, 211, 212, 73], while decreased

rCBF has been reported as well [171]. On the contralateral hemisphere,

rCBF has been found to decrease [72, 212, 73].

In the TMS–fMRI literature, it has been proposed that subthreshold

stimulation would not be able to evoke activity at remote sites, but the

response seen at interconnected sites evoked by subthreshold TMS would

result from altered pattern in the ongoing activity due to the changed ex-

citability of the stimulated area [20]. One evidence suggested to indicate

this is the reported higher threshold for inducing transcallosal inhibition

compared to the motor threshold: in one study, half (3) of the subjects had

a transcallosal inhibition threshold comparable to MT, and half (3) needed

a conditioning pulse at around 120% of MT to induce inhibition [68]. This

evidence is not sufficient, however, to draw conclusions about the relative

thresholds for exciting different neuronal populations: the optimal stimu-

lation parameters between transcallosal and other types of cortico-cortical

or cortico-subcortical neurons may vary and the stimulation parameters
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Source

Detector

Figure 3.2: Propagation of near-infrared light in the tissue.

in [68] may not be optimal for inducing inhibition. In addition, evidence

from TMS–EEG studies shows spread of activation to interconnected sites

following subthreshold TMS (Chapter 3.2.2). The distant hemodynamic

changes recorded following TMS may thus reflect the TMS-evoked activ-

ity mediated by cortico-cortical neurons between the stimulated and the

interconnected sites.

3.4.2 Near-infrared spectroscopy (NIRS)

NIRS utilizes near-infrared light to measure hemodynamic changes in the

brain. The light, transmitted to the tissue via an optical fiber placed on

the scalp, is absorbed and scattered in the tissue. Because of the strong

scattering, light that has traversed the tissue can be measured with a

detection fiber placed a few centimeters apart from the source (Fig. 3.2). If

NIRS signals are recorded with several source–detector pairs, topographic

information of brain activity can be extracted.

HbO2 and HbR have different absorption spectra, so when light at two

different wavelengths is used, the hemoglobin concentration changes can

be derived from the modified Beer–Lambert law

AI = log10
I0
Im

= (αHbO2 · cHbO2 + αHbR · cHbR) · dSD ·DPF +G (3.8)

written separately for both wavelengths, where AI is the attenuation of

the measured light intensity Im compared to the reference intensity I0,

ci and αi are the concentration and the specific extinction coefficient of

hemoglobin type i, dSD is the distance between the source and the de-

tector, DPF is the differential pathlength factor, i.e., dSD· DPF gives the

mean pathlength traveled by photons in the tissue, and G describes the

background absorption and scattering.
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All the light travels through the surface tissue (Fig. 3.2), which makes

NIRS susceptible to interference due to changes in superficial circulation.

These changes are typically systemic and may be related to the brain acti-

vation triggering event. Common methods to separate the surface compo-

nent utilize the fact that NIRS channels with different source-to-detector

distances measure the contribution of superficial and brain signals in dif-

ferent proportions [70, 198, 241] or that systemic changes are seen in all

the measurement channels [242, 229].

3.4.3 TMS-evoked NIRS

The combination of TMS and NIRS is advantageous compared to TMS–

fMRI and TMS–PET in some regards: With TMS–NIRS it is possible to

calculate both HbO2 and HbR concentrations, NIRS measurement is not

disturbed by TMS electromagnetically, the time resolution is good enough

to obtain the shape of the hemodynamic response, and the subjects are not

exposed to ionizing radiation. In addition, NIRS can be used for long-term

monitoring of TMS effects.

TMS-evoked hemodynamic changes have been measured with NIRS fol-

lowing stimulation of M1 [165, 149, 150, 163, 161, 97, 83, 120, 216], DLPFC

[10, 120, 87], dPMC [149], as well as the anterior frontal region [165]. The

signals have been measured above the stimulated (ipsilateral) [165, 150,

163, 83, 216] or contralateral [149, 161, 97, 87, 10] hemisphere, or bilater-

ally [120]. On the stimulated hemisphere, both increases [165, 150, 163]

and decreases of HbO2 [83, 120] as well as decreases of HbT and HbR con-

centrations [149] have been reported. The differences cannot be clearly

attributed to the stimulation parameters, since single-pulse stimulation

[150, 163, 150] and relatively low-frequency (0.25–2 Hz) rTMS [165, 83,

120] have induced both ipsilateral signal increases and decreases. Nei-

ther the stimulation intensities show a consistent effect on the NIRS re-

sponses. Thus, based on the TMS–NIRS studies, it is unclear how TMS

affects brain hemodynamics. In contrast, mostly HbO2 decreases have

been measured on the contralateral hemisphere [149, 97, 87, 120, 10],

while in one study, increased absorption, plausibly reflecting increased

HbT concentration, was detected [161].

NIRS signals may contain artifacts due to altered surface circulation,

and TMS-evoked NIRS is no exception. Quite the contrary, TMS induces

currents in all the excitable tissues under the coil and the induced electric
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field on the surface is stronger than further away from the coil: TMS may

induce local circulatory changes unrelated to cerebral neuronal activity

near the stimulation site, which can be reflected in the NIRS signals. The

excitable surface tissues include cranial and arterial muscles as well as

the nerves innervating them. In addition to surface effects, TMS might

also activate vascular smooth muscles and sympathetic nerve fibers in the

brain. The role of stimulation-related artifacts in TMS–NIRS signals has

not been studied before; it is possible that some of the reported hemody-

namic changes do not reflect the hemodynamics related to cerebral neu-

ronal activity but rather the local direct effects of TMS on circulation.

These artifacts were studied in Publication V.

3.5 Finger-tapping tasks and TMS in motor timing studies

Temporal information is crucial in sensory processing such as speech recog-

nition and motor coordination. How the human brain processes time in

the 10–1000-ms range required in these tasks is not well known. Ear-

lier work suggested the existence of a centralized clock (see, e.g., [8]), but

a lot of experimental data support the view that temporal processing is

distributed across different neuronal structures (see [145] for a review)

depending on the context [100]. It has also been suggested that, rather

than engaging specialized mechanisms, timing is an inherent property of

neuronal function, bound to the processing of neuronal signals [145].

Timing is an essential component of motor function, which requires fine-

tuned sequential contractions of different muscles and adaptation to sen-

sory information. The mechanisms of motor timing at a subsecond time

scale have been studied with finger-tapping tasks in which subjects either

have to synchronize their tapping rate to an external pacer or to perform

the tapping in the absence of a pacer. Neuroimaging and lesion studies

have shown the involvement of a network of areas including the cere-

bellum [96, 173] and parietal, premotor, and supplementary motor areas

[236, 98] in these tasks.

TMS, being able to temporarily distract brain function, is a potential tool

for studying the functioning of this network. Single TMS pulses admin-

istered to M1 during the tapping was shown to increase intertap-interval

variability [228] and to alter movement kinematics without the subjects

noticing [129]. In addition, offline rTMS to M1 distracted the synchrony
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between the taps and the external pacer [61] and decreased the maximal

tapping speed [99]. The intertap-interval variability was increased also

after rTMS to the cerebellum [52, 215] and to the left dPMC [52], and

offline rTMS to dPMC [179] and superior temporal–parietal area [140] af-

fected the synchronization accuracy, supporting the view that these areas

are involved in the networks processing timed motor actions.

Whether the ventral and dorsal aspects of the premotor cortex have dif-

ferent roles in motor timing tasks has not been studied extensively and

the few results are partly contradictory. Especially, the role of vPMC

has not been elucidated. Based on an MEG study, it has been suggested

that vPMC is mainly activated when the subjects synchronize their tap-

ping to a visual pacer, while dPMC is more involved with tasks includ-

ing an auditory pacer [178]. Supporting this finding, one study with of-

fline rTMS on vPMC failed to show a significant effect on performance

in an auditory-cued tapping task [140]. On the contrary, other evidence

based on fMRI measurements during finger tapping proposes that vPMC

is more strongly engaged during auditory than visual cueing while there

is no difference in dPMC activation between the modalities [98]. In gen-

eral, dPMC is thought to receive a combination of sensory information of

different modalities to guide motor actions, while vPMC is considered to

be more involved in utilizing visual information required for hand move-

ments and in observation–execution matching (see [42] for a review). In

Publication VI, the roles of vPMC and dPMC were studied by perturb-

ing these areas during a visually guided finger-tapping task with online

rTMS.
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The EEG (Publications I–IV), EMG (Publications I–II), and NIRS (Pub-

lication V) signals were recorded continuously. The measurement was

controlled with a computer sending triggers to each device allowing anal-

ysis of synchronous events in each signal. The subjects were instructed to

keep their eyes open and hands relaxed (Publications I–V) or to perform a

task (Publication VI) during the stimulation. In studies I, II, and IV–VI,

the subjects participated in a single stimulation session, whereas in study

III, the subjects participated in stimulation sessions during a baseline day

after normal sleep, after one night of sleep deprivation, and after a night

of subsequent recovery sleep.

4.1 TMS

In Studies I–II, TMS was targeted at left M1 hand area in order to evoke

MEPs in the target muscle. The left M1 hand area was also stimulated

in Study V to evoke NIRS responses comparable to most published TMS–

NIRS studies. In addition, in Study V, TMS was delivered to the left

shoulder to elucidate the role of stimulation-related hemodynamic changes

not related to cerebral neuronal activation. As stimulation of Broca’s area

is known to evoke large muscle artifacts in the EEG signals, TMS was

targeted there in Study IV, where a method to remove those artifacts was

studied. In Study III, TMS was applied to a frontal (superior frontal cor-

tex/supplementary motor area, Brodmann area 6/8) site to measure the

changes in the evoked EEG responses as a function of previous wake-

fulness and sleep; since the frontal cortex has a significant role in sleep

physiology [69], it was chosen as a target to emphasize the sleep-induced

changes. In Study VI, the vPMC, the dPMC as a functionally related con-

trol, and another control site (above the interhemispheric sulcus where
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Figure 4.1: Trackers and visualization of the tracking in the NBS soft-

ware.

the central sulci end) were stimulated with the aim of elucidating the role

of the vPMC in finger-tapping tasks requiring visuomotor transformation.

TMS was delivered with a Nexstim eXimia stimulator (Nexstim Ltd.,

Helsinki, Finland) and its figure-of-8 coil, which produces a relatively fo-

cused effective stimulation area of a few cm2. Stimulation targets were

chosen from the individual magnetic resonance images (MRI) according

to anatomical landmarks. The stimulation was targeted above and per-

pendicular to a sulcus to optimally activate the pyramidal neurons in all

the experiments, except when the control site in Study VI was stimulated

(current directed anteriorly). In Studies I, II, and V, the coil position was

further adjusted to maximize the MEP amplitudes measured from the tar-

geted small hand muscle. MRI-based targeting was done with Nexstim

eXimia navigated brain stimulation (NBS) system. Trackers equipped

with reflecting markers attached to the coil and the head reflect infrared

light emitted from and measured with a tracking unit. After registering

the position of the head with respect to the head tracker, it was possible

to track the relative position of the head (brain) and the coil in real time.

Coregistration of the head and MRI was done by pointing at sites on the

head surface chosen from the MRI with a tracker pen also seen by the

tracking unit. Fig. 4.1 shows parts of the tracking system.

The NBS software calculates the induced electric field in the brain with

the spherical head model, allowing the investigator to see in advance

which brain areas are stimulated. As the spherical head model assumes

homogeneous conductivity inside the brain, inhomogeneities in brain con-

ductivity result in small inaccuracies in the estimate of the stimulation
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site. The position of each reflecting marker is tracked with an accuracy

of about 0.5 mm, but the precision of the targeting is also affected by er-

rors in coregistration of the head and the MRI and possible movements

of the head tracker with respect to the head. Provided that head tracker

movements are carefully avoided, the accuracy within an experimental

session is probably better than between sessions when a new coregistra-

tion is needed. The software records the position of the coil with respect

to the head at the time of each stimulus. The coil position was tracked

with the NBS system during the experiments and stimuli were only de-

livered when the coil location deviated less than 2 mm from the initially

defined site. Accurate and reproducible positioning of the coil was impor-

tant in all the experiments, but especially in Studies I–III; keeping the

coil position as constant as possible reduced variations in brain reactions

due to stimulus-related factors, which might mask the effect of changes

in cortical excitability on the evoked responses.

Several single TMS pulses were delivered in Studies I–IV to obtain the

TMS-evoked EEG response as an average over the trials, while in Studies

V and VI, online rTMS was applied. Since NIRS responses to single pulses

may be very hard to detect, 8-s trains of pulses at 0.5, 1, and 2 Hz were

delivered to evoke measurable hemodynamic changes. In Study VI, three

pulses at 5 Hz were delivered every fourth finger tap interval to disrupt

cortical processing related to the tapping task.

The stimulation intensity was chosen based on the individual motor

threshold of each subject (Publications I–II: 100% MT, V: 75% MT, VI: 90%

MT) or on the induced electric field on the cortical surface (120–130 V/m

in Publication III). In Publication IV, where Broca’s area was stimulated,

the intensity was adjusted to produce an electric field on the cortical sur-

face of the same magnitude as was produced on the surface of M1 when

100% MT intensity was used. This way, the stimulation effect at these

two sites can be assumed to be approximately the same even though the

distance between the coil and the cortex varies.

The subjects listened to masking noise to attenuate the perception of the

coil click. The noise also prevented the subjects from hearing the sound of

the finger tapping (Publication VI). In addition, a piece of foam plastic was

added between the coil and the head to reduce the vibrations of the coil

mediated to the head and thus the bone-conducted sound (Publications

I–II). These procedures aimed at reducing the auditory component in the

evoked responses and the interference of the coil click with the task.
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The origins of TMS-induced artifacts in the EEG signals were studied

in separate experiments (unpublished data), in which TMS was delivered

to 16 different sites around the left hemisphere of 3 subjects, 30 pulses

to each site (above electrodes AF1, CZ, C3, CP1, FZ, F5, FC1, FC5, FPZ,

FT9, OZ, PZ, P3, P9, PO3, and TP7) at 100% of MT with the induced

current oriented anteriorly.

4.2 EEG

A 60-channel TMS-compatible Nexstim eXimia EEG device recorded the

reactions of the brain to the stimuli (Publications I–IV), prestimulus os-

cillatory activity (Publication II), and spontaneous EEG before each stim-

ulation session and during sleep (Publication III). The reference electrode

was placed behind the right ear, which is relatively far away from the

stimulation coil as the left hemisphere was stimulated in all the experi-

ments. The ground electrode was placed on the right cheek bone. Since

eye movements produce a large component in the EEG signal, the elec-

trooculogram (EOG) was measured with electrodes placed above the left

eye and on the right side of the right eye to detect eye movements.

TMS-compatibility of the Nexstim EEG device is based on sample-and-

hold and gain-control electronics, which limit the amplifier gain and keep

the signal input constant during the stimulus pulse, and on small Ag/AgCl

pellet electrodes, which are not heated excessively and do not move, which

may happen with conventional electrodes because of currents induced in

the electrodes. With this system it is possible to measure EEG signals

free of artifacts induced in the electrode leads even a couple of millisec-

onds after the pulse. To reduce other electromagnetic artifacts including

the electrode polarization artifact, the electrode contact was carefully pre-

pared to obtain an impedance smaller than 5 kΩ.

4.3 EMG

A Medtronic Keypoint EMG device (Medtronic, Inc., Minneapolis, Min-

nesota, USA) recorded the MEPs evoked by TMS (Publications I–II). One

electrode was placed on the target muscle and the other one on a distal

tendon next to the muscle (muscle-belly–tendon montage). The ground
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electrode was placed on the back of the hand. Hand relaxation was moni-

tored by visually inspecting the EMG signal during the measurement.

4.4 NIRS and circulatory parameters

A frequency-domain instrument with two laser diodes of different wave-

lengths recorded the NIRS signals [162] (Publication V). The source fiber

and detector fiber bundles were attached to a probe comprising two sources

and seven detectors (brain experiments) or one source and three detec-

tors (shoulder experiments). The fibers were arranged in three differ-

ent source-to-detector distances (short: 1.3 cm, intermediate: 2.8 cm, and

long: 3.8 cm) to measure the signals originating in different depths in dif-

ferent proportions. The probes were positioned above the M1 hand areas

of both hemispheres with the help of the NBS system in the brain experi-

ments. In the shoulder experiments, the probes were positioned above the

proximal end of the left humerus according to anatomical landmarks. A

movement sensor was attached to the head or to the shoulder to measure

subject movements.

Signals reflecting changes in blood circulation were measured as well to

elucidate the changes caused by TMS that might be reflected in the NIRS

signals. A pulse oximeter was attached to the left index finger to measure

the heart rate and the photoplethysmographic (PPG) signal amplitude,

which reflects the amount of blood that is pulsating in the blood vessels of

the finger. In addition, the electrocardiogram (ECG) was measured in the

shoulder experiments.

4.5 Measures of vigilance

In Study III, subjects’ vigilance was monitored with a visuomotor track-

ing task [137] during an additional stimulation session. The subjects had

to keep a tracker ball close to a target while the tracker position was con-

stantly deviated in different directions. Task performance was character-

ized by the distance of the tracker from the target. This way it was pos-

sible to study whether momentary lapses in vigilance affected the evoked

responses. In addition, the subjects performed a psychomotor vigilance

task (PVT) in which they had to respond to a flash of light with a button
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press [60], a commonly used measure of sleepiness, before each stimula-

tion session.

4.6 Finger tapping and visual pacers

In the finger-tapping experiments (Publication VI), the subjects tried to

synchronize their right index finger tapping rate to a periodic continuous

visual pacer, either a movie of a tapping finger or a hinged bar (Fig. 1 in

Publication VI), with a period of 800 ms and a contact time of 40 ms with

the ground. The times when the subject pressed the key and lifted their

finger from the key were recorded. The tapping hand was covered so that

the subjects did not see it. The three TMS pulses at 5 Hz were given every

fourth tapping interval, 100, 300, and 500 ms after the pacing stimulus.

4.7 Data analysis

Offline analysis was performed with MATLAB (The Mathworks, Inc., Nat-

ick, Massachusetts, USA). First, the data were visually inspected; tri-

als containing eye blinks as revealed by the EOG, artifacts, increased

EMG baseline activity showing contraction of the target muscle, or subject

movement as revealed by the movement sensor data were omitted.

4.7.1 Comparison of measures of cortical excitability

TMS-evoked MEPs were compared with brain activity measured with

EEG before (Publication II) and after (Publication I) the TMS pulse. As

a measure of TMS-evoked peripheral activity, the peak-to-peak MEP am-

plitudes were determined for the accepted trials.

The EEG data were bandpass filtered to obtain the frequency compo-

nents of interest. In Study I, the data were filtered with a passband of 2–

80 Hz to reduce high-frequency noise and slow drifts, resulting in a time

resolution of about 6 ms in the filtered signal defined as the full-width

at half maximum of the filter in the time domain. In Study II, only pre-

stimulus EEG traces were filtered; filtering reduces the time resolution of

the signal, and therefore the poststimulus data would affect the filtered

prestimulus data if included. Since prestimulus oscillations were of in-

52



Methods

terest in Study II, the data were filtered separately at different frequency

ranges including alpha (8–12.5 Hz), low-beta (12–15 Hz), midrange-beta

(15–18 Hz), and high-beta (18–30 Hz). The beta range was divided into

subranges, because Rolandic oscillations at beta frequencies are known to

originate in the motor cortex and are thus of special interest when study-

ing motor cortical excitability.

The TMS-evoked filtered EEG data were divided into trials from −100

to +500 ms with respect to the stimuli (Publication I). The peak-to-peak

amplitude of the N15–P30 complex was chosen for further analysis since,

based on visual inspection, these deflections seemed free of stimulus-

related artifacts and at their latencies the somatosensory feedback from

the target muscle has not had time to reach the cortex. The N15–P30 am-

plitudes were averaged over channels showing largest amplitudes at the

average latencies of N15 and P30.

The temporal spectral evolution method (TSE) [199] was used to find the

time course of the prestimulus oscillation amplitude (Publication II); the

prestimulus traces filtered to a desired frequency range were rectified and

smoothed. To compare oscillations originating in different brain areas,

the TSE waveforms were averaged separately over four channel groups:

left Rolandic (above the stimulated motor cortex), right Rolandic (above

the contralateral motor cortex), occipital (above the visual cortex), and

frontal. The oscillation phase (Publication II) at the time of the stimulus

was estimated by fitting a sinusoid at the individual dominant frequency

at each frequency range to the filtered prestimulus signals and correcting

for the known phase shift introduced by the filter.

The relationship between MEP amplitudes and EEG oscillations (Publi-

cation II) as well as evoked EEG responses (Publication I) was studied at

the single-trial level and between groups of trials divided according to the

MEP amplitude, i.e., trials corresponding to 1/3 of the smallest and 1/3 of

the largest MEPs. In Study II, correlation coefficients were calculated be-

tween the individual average oscillation amplitudes at different frequency

ranges and motor thresholds. The statistical analysis between MEP size

groups in Study II was done with Bonferroni-corrected paired t-tests sep-

arately for each channel-group–frequency-range pair and, to study the

specificity of the t-test results and time dependency, with ANOVAs.

Even though the trials with increased prestimulus EMG activity clearly

indicating contraction of the target muscle were omitted, in Study I, we

assessed if more subtle changes in background EMG had an effect on the
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evoked responses (MEP and N15–P30 amplitudes). The correlation co-

efficients between prestimulus root-mean-square EMG activity and the

evoked responses were calculated.

Although the position of the coil was controlled, very small changes in

the distance of the coil from the head might affect the evoked responses

a lot. To check whether the distance changed markedly and affected the

evoked responses in Study I, the coil coordinates projected to the axis of

the coil normal were determined. Spearman’s correlation coefficient was

calculated between the distance of the coil from the head along the coil

normal axis and the evoked response (N15–P30 and MEP) amplitudes.

4.7.2 Analysis of the effects of sleep and wakefulness

The effect of sleep and sleep deprivation on the TMS-evoked EEG re-

sponses was evaluated in Study III. The data were filtered (2–80 Hz)

and averaged over trials (−80. . . +300 ms). The slope between the ear-

liest deflections peaking at 10±1 and 20±2 ms (mean ± s.d. over sub-

jects), defined as the peak-to-peak amplitude divided by the difference in

latencies, was chosen for further analysis. The evoked EEG responses

were averaged over those channels in which the response showed a clear

negative-to-positive deflection and over trials. The slope was determined

from the averaged response and the single-trial values of the slope were

determined automatically from responses averaged over the region of in-

terest channels but not over trials. To see whether the slope differed be-

tween sessions, Bonferroni-corrected t-tests were used.

The effect of momentary fluctuations in vigilance on the evoked EEG

was evaluated by determining task performance during the stimuli (tracker

ball distance from target at −1. . . 2 s around the TMS pulses). Pearson’s

correlation coefficients were calculated between the slope and task per-

formance values. In addition, a few parameters known to correlate with

tiredness were evaluated: the power of theta-band activity during each

session as well as the SWA during the first NREM sleep episode dur-

ing baseline and recovery sleep were determined from the spontaneous

EEG recordings. The average of the 10th percentile of the longest reac-

tion times in the PVT was determined.
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4.7.3 Analysis and removal of the muscle artifact

The EEG responses evoked by stimulating 16 different sites around the

left hemisphere in a separate set of experiments (unpublished) were ana-

lyzed to evaluate the origins of TMS-evoked artifacts. The responses were

averaged over trials and the global mean field amplitude (GMFA) [127],

i.e., the root-mean-square sum over average-referenced signals, reflecting

the overall evoked EEG-response over time, was calculated. The overall

artifact size associated with each stimulation site was calculated as the

maximum value of the GMFA between 0 and 30 ms after the stimulus. To

analyze the frequency content of the muscle artifact and the brain signal,

the TMS-evoked averaged EEG data recorded after Broca’s area stimula-

tion (the data of subject S3 reported in Publication IV) were short-time

Fourier transformed using a 128-sample Hamming window with an over-

lap of 120 samples between adjacent windows.

Brain and muscle signals have generally different frequency contents,

which can be made use of to separate their contributions. While the brain

signal is mainly restricted to frequencies below 100 Hz, the surface EMG

signal, which reflects the summed motor unit action potentials, is mani-

fested at frequencies up to 400–500 Hz [43, 146]. Since muscle activity is

also present at lower frequencies, simple lowpass-filtering is not adequate

to separate the signals, whereas signals highpass-filtered with an appro-

priate cutoff frequency resulting in data containing only muscle activity

and no brain signal can be utilized. Given that the low-frequency mus-

cle activity is produced in the same muscles as the high-frequency muscle

activity, they originate in similar current distributions and thus produce

topographically similar signals in multichannel EEG. Thus, projecting out

the topographies of the high-frequency data should also remove the con-

tribution of the low-frequency muscle activity, as was reasoned in Publi-

cation IV.

The method can be described mathematically as follows: The TMS-

evoked d-dimensional EEG signal is a weighted sum of signals originating

from the brain and from the muscles and noise. Both brain and muscle

signals can be divided into high- and low-frequency components accord-

ing to a frequency threshold fth. Let xi and yi represent the d-dimensional

time-independent topographies (vectors in the signal space) of muscle and

brain source activity, respectively, describing the relative signal ampli-

tudes measured with each electrode as a result of respective source acti-
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vation. ai(t) and bi(t) are the time-varying amplitudes of the muscle arti-

fact and brain sources, respectively. Thus, a signal m(t) can be described

as a sum of NL low-frequency and NH high-frequency muscle components

as well as ML low-frequency and MH high-frequency brain components

and noise n(t):

m(t) =
NL∑
i=1

aLi (t)xL
i +

NH∑
i=1

aHi (t)xH
i +

ML∑
i=1

bLi (t)yL
i +

MH∑
i=1

bHi (t)yH
i + n(t), (4.1)

where superscripts L and H refer to low- and high-frequency components.

If fth is chosen so that the high-frequency EEG signal originating from

the brain is negligible (
∑MH

i=1 b
H
i (t)yH

i ≈ 0), highpass-filtering the signal

with a cutoff frequency fth results in a signal that consists mainly of the

high-frequency components of the muscle activity and noise:

H(m(t)) ≈
NH∑
i=1

aHi (t)xH
i + H(n(t)), (4.2)

where H represents the highpass-filter operator. If the low-frequency

muscle components belong to the signal subspace spanned by the high-

frequency muscle components ({xL
1 ,. . . ,xL

NL
} ∈ span(xH

1 ,. . . ,xH
NH

)), project-

ing out the topographies of the highpass-filtered data also removes the

low-frequency muscle components.

Principal component analysis (PCA) transforms the highpass-filtered

data to a new coordinate system of orthogonal components

µj = [µj,1 µj,2 . . . µj,d]T, (4.3)

each being a linear combination of the original variables, with respective

eigenvalues si and time-varying amplitudes αj(t):

H(m(t)) =
d∑

j=1

αj(t)µj . (4.4)

Each principal component (PC) µj is the signal-space vector orthogonal

to PCs µk (k < j) explaining the largest amount of remaining variance

in the data. Since noise is present in all the signal-space directions, the

highpass-filtered data consists of d orthogonal components. Therefore,

projecting out all the topographies of the highpass-filtered data from the

original signal would remove all the data. Since the PCs with the largest

eigenvalues reflect the largest amount of variance in the data, they pre-

sumably reflect the muscle artifacts at least in cases where the artifacts
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are much larger than the noise. Accordingly, projecting out N PCs (N < d)

with the largest eigenvalues using signal-space projection (SSP) [225] re-

duces the muscle artifact:

mcorr(t) = m(t)−
N∑
j=1

µjµ
T
j m(t), (4.5)

where mcorr(t) is the corrected signal and T stands for transpose.

The muscle artifact reduction method was applied on the data recorded

following the stimulation of Broca’s area (Publication IV). The effect of the

projections was evaluated after projecting out 1–30 PCs. The GMFAs of

the original unfiltered data as well as of the data obtained after the pro-

jections were calculated and the amplitudes and latencies of the GMFA

peaks were determined. The signal-to-artifact ratio was defined as the

amplitude of each GMFA peak appearing later than 50 ms divided by the

amplitude of the first artifact peak in the GMFA. The signal-to-artifact

improvement factor was calculated to describe the increase in the ratio

as a result of the projections. The 95% confidence intervals Bonferroni-

corrected with factor 5 (number of peaks after 50 ms in the original sig-

nals) of the GMFAs were calculated. A GMFA peak was considered sta-

tistically significant if its confidence interval did not overlap with that of

the baseline.

4.7.4 Analysis of NIRS and circulatory data

The NIRS amplitude signals were filtered (0.015–0.5 Hz) and converted

to HbO2, HbR, and HbT concentrations with the modified Beer–Lambert

law (Eq. 3.8). The heart rate and the PPG peak-to-peak amplitude were

determined from the pulse oximeter signal. The pulse transit time (PTT),

i.e., the time it takes for the pulse pressure wave to travel from the heart

to the finger, thus reflecting arterial stiffness [157], was calculated as

the time difference between the R peak in the ECG and the correspond-

ing PPG pulse wave peak. The inverse of PTT, which correlates with

blood pressure [157], was then calculated. The hemoglobin concentra-

tions, heart rate, PPG amplitude, and 1/PTT were averaged over trials

(−2...25 s). The hemoglobin concentrations recorded in the brain experi-

ments were also averaged over channels with same source-to-detector dis-

tances within both hemispheres. The PPG amplitudes were normalized
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with the average value of each subject. Each of the signals was averaged

over subjects.

To test whether the responses were statistically significant, the ampli-

tudes of the average responses at the end of the TMS pulse train (6. . . 8

s) were compared with the corresponding baseline amplitudes (−2. . . 0 s)

with t-tests corrected for multiple comparisons with the false discovery

rate method for positively correlated tests. To test for similarity between

different responses (brain vs. shoulder responses, NIRS vs. circulatory

responses), Pearson’s correlation coefficients were calculated between the

waveforms of the responses at 0. . . 25 s.

4.7.5 Analysis of finger-tapping data

The synchronization error (the time when the key was pressed with re-

spect to the pacer onset) and the contact time (the time the key was held

down) were determined for each tap. The taps, named t0–t3 according to

their proximity to the previous TMS pulse (TMS, t0, t1, t2, t3, TMS, etc.),

were divided in two groups, early (t0, t1) and late (t2, t3). The mean and

standard deviation of the synchronization error and contact time were

calculated for each stimulation site (vPMC, dPMC, control), pacer (finger,

bar), and tap latency (early, late). The differences between these groups

were studied with three-way repeated-measures ANOVAs.
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5 Results and Discussion

The results revealed aspects of the ability of TMS to inform us about the

cortical state. On one hand, the sensitivity of the measures to changes

in cortical excitability was elucidated. On the other hand, to assess the

reliability of TMS-evoked responses in determining the excitability and

connectivity, the nature of the stimulation-related artifacts was clarified

and the feasibility of the TMS–EEG muscle artifact removal method was

shown. In addition, we learned about the sleep- and wakefulness-related

excitability changes in cortical circuits and about motor-timing processing

in the brain.

5.1 TMS-evoked responses

We measured electrophysiological and hemodynamic reactions to TMS to

better understand the mechanisms of the stimulation and the physiology

of the evoked responses.

5.1.1 TMS-evoked MEPs

Since cortical excitability fluctuates, MEPs can be expected to vary in am-

plitude also with unchanging stimulation parameters. The amplitudes

were indeed highly variable even though the stimulation intensity was

kept constant and the coil position with respect to the head was strictly

controlled to avoid changes in the electric field experienced by the target

neurons (Publications I and II). Fig. 5.1 shows the distribution of typical

MEP amplitudes evoked by stimulation at 100% of MT.
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Figure 5.1: The stimulus effect varied between trials although the condi-

tions were kept constant. MEP amplitudes evoked with M1 stimulation

at the intensity of 100% of MT. The trials are sorted according to the am-

plitudes. The grey areas indicate 1/3 of the smallest and 1/3 of the largest

MEPs.

5.1.2 TMS-evoked EEG responses

The evoked EEG responses following M1 stimulation in Study I were con-

sistent with those reported in previous studies [28, 66, 116, 117, 142, 158,

172]; deflections identified as P5, N15, P30, N45, P60, and N100 were

present. Stimulation of the premotor cortex (Publication III) evoked re-

sponses in accordance with those reported by Rosanova et al. [191]: the

response oscillated in the high-beta frequency range producing deflections

at 3±1, 10±3, 19±2, 41±3, 59±3, and 77±3 ms (mean±std latencies of the

vertex responses over subjects on the baseline day).

The stimulation of Broca’s area (Publication IV) produced a two-phasic

fast muscle artifact (Fig. 5.2) peaking at around 5 and 10 ms in the un-

filtered data. The second peak decayed slowly to the baseline level at

around 60 ms after the stimulus. The amplitude of the artifact in the fil-

tered (2–80 Hz) signal was at least 100 µV in most channels and up to

1000–1500 µV in the channels near the stimulation site, i.e., 1–3 orders

of magnitude larger than typical brain responses (Fig. 5.2). In the filtered

data, the latency of the second peak was shifted to 13±1 (mean±std over

channels), because the fast initial component was affected by the filtering

more than the slow decay. The time–frequency analysis (Fig. 5.3) of the

unfiltered data revealed that the signal just after the stimulus consisted
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of both high- and low-frequency components, whereas after some tens of

milliseconds the signal was mainly restricted to frequencies below 50 Hz.

The dependency of the artifact on the stimulation site as revealed by

the additional experiments strongly supports the view that the artifact

originates at least partly in the muscles: the artifact was clearly largest

when areas close to cranial muscles were stimulated (Fig. 5.4). Especially,

stimulation of the lateral parts of the head produced large artifacts. In ad-

dition, stimulation of areas close to but not directly under cranial muscles

produced largest artifact peaks in channels above the nearby muscles and

not above the stimulation site (Fig. 5.5). However, a similar two-phasic

artifact with an amplitude and duration comparable to those measured

in our experiments, evoked and measured by similar equipment as used

here, was deduced to originate in the skin as the stimulus-induced charge

decayed over it; mini-puncturing the skin under the electrodes decreased

the artifact amplitude to about half [103]. It is possible that, in addition

to muscle-activity-related electric fields, muscle movements contribute to

the artifact: when the muscles move, they produce a movement artifact on

the signal, which may result from both electrode movement and changes

in skin potential when the skin stretches. The combination of electri-

cal activity and movement of muscles explains both the involvement of

the muscles and the skin in the artifact generation; the mini-puncturing,

with the effect of short-circuiting the epithelium, reduces the movement-

related changes in skin potential which have been shown as a major cause

of movement artifacts [214]. When the stimulation evokes a large artifact,

it is seen in all the channels and not just in those under the muscle, which

indicates that the artifact is not solely a result of the movement, but also

the electrical activity of the muscles plays a role.

Because of the nonspherical shape of the head, the electrode cap sits

more firmly on the top of the head than above the lateral and posterior

parts, which may result in worse electrode contacts and in larger elec-

trode polarization in the lateral and posterior channels. This factor alone

cannot, however, explain the stimulation-site dependency of the artifact:

if this was the case, the artifact would only be present in the channels

with worse electrical contacts. In contrast, in cases where the stimulation

evokes a very large artifact, it is seen in all the channels, also in those

on the other side of the head. If the coil is moved to more central sites,

the stimulation produces seemingly high-fidelity data. Nonetheless, the

polarization of the electrode contact may contribute to the artifact.
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Figure 5.2: Filtered (2–80 Hz) data of all the channels after the stimula-

tion of Broca’s area. The artifact is 1–3 orders of magnitude larger than

typical brain responses.

Figure 5.3: The power spectral density of the EEG data of channel FC1

evoked by stimulation of Broca’s area as calculated with the short-time

Fourier transform.
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Figure 5.4: The maximum amplitude of the GMFA as a function of the

stimulation site in three subjects. The values have been mirrored to the

right hemisphere, as only the left hemisphere up to the midline was stim-

ulated. The stimulation sites and the corresponding locations at the right

hemisphere have been marked with dots. Modified from [153].
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Figure 5.5: The largest artifact peaks appeared above the nearest cranial

muscles instead of above the stimulation site (marked with the circle).
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5.1.3 TMS-evoked NIRS responses

In Publication V, we showed that stimulation of the brain and the shoulder

produced similar decreases in HbT concentrations measured with NIRS

above the stimulated site (Fig. 5.6), suggesting that the TMS-evoked NIRS

signal does indeed include a component that does not directly reflect cere-

bral neuronal activity. On the contralateral hemisphere, HbT decreases

were measured as well, but on the contralateral shoulder, HbT increases

appeared. The difference in the responses measured from different shoul-

ders implies that the shoulder responses are not solely caused by global

changes in blood circulation but the stimulation-related artifact in the

NIRS signal includes local effects of TMS. In addition, the PPG amplitude

(reflecting local vascular compliance) and the heart rate increased as a re-

sult of both brain and shoulder stimulations and 1/PTT (reflecting blood

pressure) increased as a result of shoulder stimulation indicating that

also global changes in the circulation occur. The local artifact might result

from a direct effect of TMS on the vascular smooth muscles or activation

of sympathetic vasoconstrictor nerve fibers, either directly or indirectly

through systemic sympathetic outflow.

When TMS is combined with NIRS to probe the cortical state, these

physiological artifact components may mask the hemodynamic response

to TMS-evoked neuronal activity. Therefore, careful control measure-

ments of the artifacts are needed.

5.2 Relationships between the measures of cortical excitability

Spontaneous EEG is an established clinical tool. To understand what

TMS-evoked responses tell us about the cortical state, it is useful to re-

late them to the information spontaneous EEG gives us. Furthermore,

as TMS-evoked MEPs have been measured since the introduction of mag-

netic stimulation, while TMS-evoked EEG responses are relatively new

and not as well known, it is essential to understand how these two are

related. The mechanisms of these measures of cortical excitability were

studied by assessing their mutual relationships.
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Figure 5.6: The HbT concentration measured above the stimulation site

decreased both after M1 (green) and shoulder (blue) stimulation. HbT

concentration decreased also on the contralateral hemisphere, whereas

it increased on the nonstimulated shoulder. The vertical lines indicate

the TMS pulses. The asterisks (* p < 0.05) indicate significant response

amplitudes at the end of the TMS pulse train as compared to baseline

(t-tests).

5.2.1 TMS-evoked EEG responses and MEPs

In Publication I, we demonstrated that MEP amplitudes and the peak-to-

peak amplitudes of the N15–P30 complex of the evoked EEG responses

correlated significantly at the single-trial level (Fig. 5.7). The result sup-

ports the view that fluctuations in both MEP and evoked EEG responses

reflect cortical excitability; the state of the cortex at the time of the stim-

ulus affects the level of initial activation at the stimulation site. The

amount of initial activation affects both subsequent cortical activation at

the stimulated and interconnected sites and peripheral muscle activation.

The result also gives further evidence that these deflections reflect mag-

netically evoked cortical activation.

Because the amplitudes of the evoked EEG responses were determined

within 40 ms after the stimulus, at the time period when the somatosen-

sory signal resulting from target muscle contraction has not had time to

reach the cortex, the correlation was not likely to be caused by an MEP-

amplitude-dependent somatosensory evoked potential. Contraction of the

target muscle would result in increased spinal and cortical excitability
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Figure 5.7: The rank correlation plot between MEP and N15–P30 ampli-

tudes (left) and the evoked EEG responses (±s.e.m.) averaged separately

over small- and large-amplitude-MEP trials (right) of each subject (S1–

S5). The MEP and N15–P30 amplitudes were ordered from smallest to

largest and the correlation coefficient was calculated between the ranks.

The correlation coefficients (r) and the respective p-values of each sub-

ject are shown on the left side of the correlation plots. The MEPsmall and

MEPlarge values on top of the correlation plots show the average MEP am-

plitude of 1/3 of the smallest and 1/3 of the largest MEPs.
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and fluctuations in contraction level could thus explain the observed cor-

relation. This is not likely, however, since there was no correlation be-

tween the prestimulus EMG activity and the evoked responses.

Movements of the stimulation coil with respect to the head might af-

fect the evoked responses and thereby the observed correlation. If the

coil moved away from the initially defined stimulus site so that the elec-

tric field experienced by the target neurons was reduced, both MEP and

EEG amplitudes would be reduced and the coil movement would result

in increased correlation. On the contrary, if the coil moved away from

the representation area of the target muscle towards the representation

area of another muscle, EEG responses would not necessarily decrease,

whereas MEPs would, and the observed correlation would decrease. Nei-

ther case is likely in this study, because the coil movements were small

(1–2 mm) compared to the stimulated area, which is of the order of a few

cm2. On the contrary, even small changes in the distance between the

coil and the head could change the evoked responses a lot. However, coil

movements in the direction of the normal of the coil (approximately nor-

mal to the head surface) were less than 0.5 mm in 4/5 subjects, and the

evoked responses did not correlate with the distance in these subjects. In

one subject (S5), coil movement normal to the head was 1.9 mm and cor-

related with both N15–P30 (r = −0.23, p = 0.034) and MEP amplitudes

(r = −0.41, p = 0.0001). In this subject, coil movements can explain the ob-

served correlation between the MEP and N15–P30 amplitudes, whereas

in the others it is not likely.

5.2.2 EEG oscillation amplitudes and MEPs

In Study II, we showed that, between groups of small and large MEPs,

there was a difference in oscillation amplitudes at midrange-beta frequen-

cies measured above the stimulated (left) motor cortex (Fig. 5.8); smaller

oscillation amplitudes were associated with larger MEP amplitudes and

vice versa. However, at the single-trial level, there were no correlations

between MEP and EEG oscillation amplitudes measured above any area

at any frequency range tested. Temporal analysis showed that the differ-

ence in left Rolandic midrange-beta oscillation amplitudes between the

size groups of MEPs was the larger the closer in time to the stimulus it

was evaluated; significant differences were only observed during a few
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hundred milliseconds before the stimulus indicating that the fluctuations

in excitability occur on a subsecond timescale.

The result supports the view that Rolandic beta oscillations reflect the

state of the motor cortex. However, the lack of a single-trial correlation

indicates that either one or both measures are affected by other factors

than the excitability of the cortical target neurons to the extent that the

underlying correlation is masked. Indeed, MEP amplitudes are affected

by spinal excitability changes and fluctuations in the synchrony of action

potentials. EEG, for its part, reflects the activity of a large neuronal pop-

ulation, the neurons controlling the target muscle being only part of it.

Since a large part of variation in MEPs reflects the excitability of the tar-

get neurons (Publication I), the lack of a strong correlation between EEG

oscillations and MEPs seems to result from the fact that EEG oscillations

reflect the excitability of a neuronal population which is much larger than

the overlapping population.

Based on the ANOVA, we could not show that the relationship between

MEP amplitudes and midrange-beta oscillations would be specific to left

Rolandic sites. Indeed, Fig. 5.8 shows a similar time course in midrange-

beta amplitudes measured above the nonstimulated (right) motor cortex

and above the frontal areas as above the stimulated motor cortex. How-

ever, because a significant relationship was not found between MEP and

midrange-beta amplitudes measured above these sites, further studies

are needed to clarify whether such relationships exist. In fact, a recent

study showed a link between MEP amplitudes and rolandic beta oscil-

lations both above stimulated and nonstimulated motor cortices during

voluntary target muscle contraction [205], extending our finding to the

contralateral hemisphere and to the muscle preactivation state.

We found no correlation between the resting motor threshold and the

average amplitudes of spontaneous oscillations at any frequency range.

Previously, a correlation has been found between the individual threshold

for evoking phosphenes and occipital alpha power [190]. As was noted in

[190], other factors such as skull thickness and cortical folding affect the

excitability as probed with TMS, and these factors may mask the possible

relationship between individual oscillations and excitability.
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Figure 5.8: Grand averages of the TSE curves normalized by the aver-

age value of the subject in question in the shown time range before av-

eraging. TSE indicates the temporal evolution of spontaneous oscillation

amplitudes at each frequency range before the stimuli. The curves are

averages over two groups of trials: those with small- and those with large-

amplitude MEPs. The shaded areas indicate the s.e.m. over subjects. The

grey area shows the time period over which the TSE value was averaged

for statistical analysis. * = significant (p < 0.05) difference between the

small- and large-MEP groups.
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5.2.3 EEG oscillation phase and MEPs

In Publication II, the relationship between spontaneous oscillation phase

and MEP amplitude was studied. While the oscillation phase measured

above the stimulation site was not found to be associated with MEP ampli-

tudes, midrange-beta oscillations measured above the occipital area were

weakly related to MEPs; the oscillation slope was negative rather than

positive during the time of the stimuli producing large-amplitude MEPs.

The relationship was found when comparing groups of trials with small-

and large-amplitude MEPs, whereas there were no single-trial correla-

tions.

Occipital beta oscillations have been associated with visual attention

[238] and visuomotor processing: in visuomotor tasks, decrease in lower

beta range (<20 Hz) amplitudes has been related to decreased response

times [243] and increased preparatory attention [82]. In addition, during

visuomotor tasks the coherence between visual and motor cortex in the

lower beta range (13–21 Hz) has been found to increase [44]. Since visual

attention is mainly associated with occipital alpha oscillations [237, 201,

110, 185, 186, 209, 239, 217], processes related to visuomotor integration

are more likely to explain the result in Study II. As in these experiments

the subjects were at rest, the result suggests that the mechanisms respon-

sible for visuomotor processes are active to some extent also during rest

and activity at visual areas is weakly related to motor cortical excitability;

visual areas may modulate motor areas or they may have a common mod-

ulator. This coupling during rest is rather surprising, but as visuomotor

integration is extremely important in controlling action, the connections

between visual and motor areas are likely to be strong.

According to ANOVA, the effect is not necessarily specific to occipital

sites. In fact, if there was a phase coupling between occipital and motor

oscillations, the oscillation phase measured above the motor sites would

also be expected to be related to MEP amplitudes. We could not, however,

show such a relationship, and it remains to be clarified whether it exists.

It is possible that the phase of oscillations is altered in such a small neu-

ronal population in the motor cortex that the relationship between the

Rolandic oscillation phase and MEP amplitudes is masked by oscillations

originating elsewhere.
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5.3 The effects of sleep and wakefulness on TMS-evoked EEG

In Publication III, we were able to clarify the cortical processes occur-

ring during wakefulness that cause the need for sleep. We showed sleep-

and wakefulness-related changes in cortical excitability in a frontal area:

slope of the early TMS-evoked EEG response increases during sleep de-

privation and decreases during subsequent recovery sleep (Fig. 5.9). A

similar excitability modulation was seen from morning to evening on the

baseline day after normal sleep; only one out of six subjects did not show

an increase in slope. In addition, in line with previous studies, the sub-

jects showed changes in the behavioral and electrophysiological measures

of tiredness during the course of the experiment: the error rate in the

visuomotor task, the reaction time in the PVT, the theta power, and the

SWA increased after sleep deprivation compared to the baseline period.

Although the subjects experienced lapses in vigilance after sleep depri-

vation as shown by the worsened and strongly fluctuating task perfor-

mance, the performance in the task during the stimuli did not correlate

with the slope. Thus, the observed modulation of the slope is not likely

to reflect the momentary lapses in vigilance, but rather a more stable ef-

fect on cortical excitability. One possible explanation for the increased

excitability comes from the synaptic homeostasis hypothesis; the wake-

and sleep-related changes in synaptic strengths might be reflected as the

observed changes in excitability.

The electrophysiologically measured effects of sleep deprivation, i.e., the

increase in TMS-evoked EEG slope, theta power, and SWA, may be inter-

linked; presumably, they all reflect the same increase in cortical excitabil-

ity, which may result from the synaptic homeostasis phenomenon. How-

ever, as opposed to theta and SWA, the slope is the only direct marker

of the excitability; it provides a neuronal correlate of tiredness related to

preceding time awake in awake humans. In addition, the other negative

effects of sleep deprivation may be linked to the increased excitability: for

example, the increased risk for seizures is probably a direct consequence

of it.
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Figure 5.9: The slope (peak-to-peak amplitude divided by difference in

latencies) of the early TMS-evoked EEG response (10±1...20±2 ms) in-

creased as a result of sleep deprivation and returned back to the baseline

level after recovery sleep in all subjects (one subject did not participate

in the session after recovery sleep). The shaded areas indicate the s.e.m.

over trials. * p < 0.05, *** p < 0.001.

5.4 Muscle artifact reduction with the projection method

In Publication IV, we presented a method to remove muscle artifacts from

TMS-evoked EEG signals. Thanks to the new method, the large artifacts

no longer prevent applying TMS–EEG when cortical areas under or near

cranial muscles are stimulated.

Projecting the topographies derived from the high-frequency data out of

the EEG signals recorded after the stimulation of Broca’s area reduced the

large muscle artifact remarkably. The increase in the signal-to-artifact

ratio was of the order of 10–100 depending on the number of projections.

The original data and the data after projecting out 30 high-frequency to-

pographies are shown in Fig. 5.10.

As can be expected, the data in the channels near the stimulation site

were attenuated the most. Several peaks appearing in the GMFA were

statistically significant after the projections. Whether the data remaining

after the projections still contains useful information and where the re-
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−10...80 ms

500 μV

−80...400 ms

2 μV

Figure 5.10: The filtered (2–80 Hz) data recorded following the stimula-

tion of Broca’s area before (left) and after (right) projecting out 30 high-

frequency topographies. The cross marks the stimulation site.

maining data originates in needs to be confirmed in future studies. This

can be done with source localization techniques, e.g., the minimum norm

estimate [84]; the SSP method is advantageous in comparison to some

other artifact removal methods in that it allows source localization despite

the distortion of the original data if the projections applied are taken into

account when solving the forward problem [225]. Brain activity sources

near the muscle probably produce topographies nearly parallel to those

produced by the muscles and are likely to be attenuated as well, whereas

brain sources further away are better preserved. The more projections are

applied, the more brain data dimensions are lost as well. Therefore, the

optimal number of projections, which depends on the paradigm, needs to

be evaluated individually in each study.

The method is based on the assumption that the artifact results from

the electrical activity of the muscles. As was discussed in chapter 5.1.2,

this assumption holds at least partially, although part of the artifact may

also result from muscle movement or polarization of the electrode con-

tact. It can be expected that these phenomena affect mostly the channels

close to the muscle and the stimulation site, respectively. As the method

attenuates the signal in these channels — especially if a large number

of topographies is projected out — it seems to remove also these types of

artifact components if they are present in the original data, even if they

appeared only at low frequencies. The new method presented in Publica-

tion IV combined with some other method designed to remove these other

types of artifacts might be even more effective.
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5.5 Ventral premotor cortex in finger-tapping tasks

In Publication VI, we clarified the role of vPMC in motor timing tasks

requiring visuomotor transformation.

In all the finger-tapping experiments, the subjects tapped their finger

in somewhat earlier phase than the pacer. This phenomenon called neg-

ative asynchrony has been reported in most finger-tapping studies (see

[12, 184] for reviews). Stimulation of the vPMC disturbed the negative

asynchrony of the taps just after the TMS pulse (tap latency ’early’) when

the bar pacer was used: the subjects tapped their finger closer to the pacer

onset and the synchronization error was reduced consequently. To our

knowledge, this is the first evidence from a TMS study suggesting the

involvement of the vPMC in a visually guided finger-tapping task. No

such significant effect was found when the more natural finger pacer was

used or when the dPMC was stimulated. The contact time did not change

between conditions.

The observed difference between vPMC and dPMC can be understood in

terms of the specific role of vPMC in visually guided hand motor control:

it has been suggested to be involved in visually cued finger-tapping tasks

[178] and in the control of distal movements [49], especially in match-

ing visual information to hand movements [152]. dPMC, being involved

in motor preparation [124] and implementation of associations between

arbitrary sensory information and motor responses [90], could also be as-

sumed to be involved in the task. Indeed, the synchronization error values

following dPMC stimulation were intermediate between those measured

after vPMC and control site stimulation, but they did not differ signifi-

cantly from the control. Thus, the role of dPMC in visually guided finger

tapping still needs clarification. It is possible that the stimulation was not

sufficient to disturb the function of dPMC significantly or that stimulation

of a slightly different site could have been more effective.

The result emphasizing the different role of vPMC during bar and finger

pacer cued tapping is somewhat surprising: the vPMC, known to have a

role in the execution–observation of hand movements, could be assumed

to be more involved in the condition where the finger pacer was used. It

is, however, possible that the finger pacer activates a more distributed

network of areas than the bar pacer and the task performance is thus less

affected during the finger condition.
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Even though the TMS click sound was masked with the noise, the sen-

sory effect resulting from scalp sensory nerve and muscle activation might

disturb the task performance. The standard deviation of the synchroniza-

tion error did indeed increase in the early taps compared to the late taps

regardless the stimulation site and pacer. As the vPMC stimulation acti-

vates the cranial muscles the most, it might have the largest disturbing

effect. However, the difference between the bar and finger conditions can-

not be explained by sensory disturbance, and the result is thus likely to

reflect the effects of TMS on brain function.
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6 Overall discussion and conclusions

In the research reported in this Thesis, we evaluated TMS as a method to

study the cortical state, in particular cortical excitability. Based on the re-

sults, when the stimulation site is chosen to avoid muscle artifacts, TMS–

EEG tracks changes in the excitability reliably, both short-term fluctua-

tions within seconds and natural changes occurring at the time scale of a

day. We also show that spontaneous EEG combined with TMS-evoked re-

sponses can reveal aspects of cortical excitability and connectivity. Here,

we showed the feasibility of spontaneous EEG with MEP measurement,

but in the future, the combination of spontaneous and TMS-evoked EEG

recordings may prove useful in studying the cortical state. The reliability

of TMS-evoked responses is compromised by different types of artifacts:

the evoked muscle activity produces a large component in the EEG sig-

nals when areas near cranial muscles are stimulated and TMS-evoked

NIRS signals are contaminated with physiological circulatory artifacts.

These artifacts need to be carefully controlled to measure cortical ex-

citability and connectivity reliably. Although the muscle artifacts are bet-

ter avoided, they can be reduced with signal processing methods. In ad-

dition, methods to remove the physiological artifacts from NIRS signals

are needed in the future. Altogether, we demonstrate the ability of TMS

to reveal new characteristics of brain function. Particularly, we show that

TMS can interfere with the complex visuomotor integration and demon-

strate the effect of sleep and wakefulness on cortical excitability.

Studies I and II improve our understanding of different measures of cor-

tical excitability, which helps in planning and interpreting scientific and

clinical studies related to cortical excitability. We were able to elucidate

how the activity of stimulated and interconnected brain regions affect the

excitability of the stimulated site and how the activation induced at the

stimulation site is mediated to the interconnected sites. On one hand,

we show how the background oscillatory activity is related to motor cor-

tical excitability. On the other hand, we elucidate how the excitability of
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the stimulated motor cortex affects the resulting evoked responses. Since

changes in cortical structure and function are in many cases reflected as

changes in cortical excitability, the methods studied here have great po-

tential. Especially, TMS-evoked EEG provides an accurate and flexible

tool for cortical probing. The results of Publication I inform us about the

physiology of TMS-evoked EEG responses, showing that they reflect cor-

tical excitability reliably. The finding provides a basis for future investi-

gation of the early TMS-evoked EEG deflections, e.g., to study the effect

of drugs or progression of neurological diseases.

The otherwise flexible TMS–EEG tool suffers from the large muscle ar-

tifacts evoked by stimulation of some parts of the head, which mask the

early brain signal. We showed that stimulation of the lateral parts of

the head produces especially large artifacts and somewhat smaller arti-

facts arise from the posterior and frontal regions, whereas stimulation of

more central parts provides seemingly high-fidelity data. We also present

evidence that at least part of this artifact indeed reflects the electrical

activity of the cranial muscles, although part of it seems to result from

muscle movement and the electrode contact polarization may contribute

as well. To overcome these problems, in Study IV, we developed an ar-

tifact removal method based on the different frequency contents of brain

and muscle signals. The method seems to work reasonably well, judged

by the relative amplitudes of the artifact and later responses believed to

originate in the brain. It remains to be clarified whether the corrected

signals can be utilized, for example, to analyze TMS-evoked signals orig-

inating from the sites neuronally connected to the stimulation site and

how large artifacts it can eliminate without suppressing the brain signals

excessively. The method is, in any case, likely to extend the area of use of

TMS–EEG to those brain areas whose stimulation produces small muscle

artifacts. The novel method presented here might need to be combined

with other methods (e.g., [119]) to obtain optimal results.

In Publication V, we show that also TMS-evoked NIRS responses con-

tain physiological artifact components, which challenges the assumption

that the previously reported NIRS responses to TMS reflect merely the

cerebral hemodynamic response. The results suggest that the signals re-

flect both local and global effects of TMS on blood circulation. Therefore,

the traditional methods to remove artifacts from NIRS signals are prob-

ably not sufficient to remove them from TMS-evoked NIRS responses, as

these methods are designed to remove systemic signal components which
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are not localized to the stimulation site. Consequently, new efficient meth-

ods to remove the artifacts are needed. For example, a denser measure-

ment grid might help in separating the brain signal from the artifacts,

for example, by enabling independent component analysis. Nonetheless,

TMS–NIRS studies need to be carefully controlled for artifacts and the

results have to be interpreted with caution.

Despite the challenges, we were able to provide new insights into brain

function and therefore also to demonstrate the power of TMS in studying

the cortical state. In Publication VI, we show that TMS can interfere with

visuomotor synchronization. By means of this interference, we provide

new information about the processing of timed motor actions: the vPMC

seems to play a role in the visual transformation related to visually cued

motor timing. In addition, we show that biological and non-biological vi-

sual cues are processed in a different way.

Publication III sheds light on the questions 1) what happens in the brain

during wakefulness that causes the need for sleep? and 2) why do we

sleep? We show that cortical excitability increases during wakefulness.

The increase may be related to the cognitive and other negative effects of

sleep deprivation; higher excitability does not imply higher functional ca-

pacity of the cortex, but may rather increase noise in cortical processing.

Restoring the excitability to normal level may be one of the functions of

sleep. The observed effect of wakefulness and sleep on cortical excitability

may result from altered synaptic strengths, as the synaptic homeostasis

hypothesis states. In addition, as sleep deprivation alleviates the symp-

toms in some depressed patients [79], the result suggests that synaptic

strengths may be decreased in these patients and that sleep deprivation

may restore them to normal levels. The TMS-evoked EEG responses show

incredible sensitivity to the altered cortical state due to sleeping history

on the single-subject level. Also the repeatability of the responses between

experiments made in comparable conditions, which has also been shown

in previous studies [130, 40], is evident when comparing the responses

recorded after normal sleep and after recovery sleep.

All in all, this Thesis shows that TMS can be used successfully to probe

the cortex, bringing us closer to understanding how our minds work. TMS

enables interference with complex functions such as the visuomotor inte-

gration, which helps better understanding these processes. In addition,

TMS combined with EEG is a repeatable and sensitive method to mea-

sure changes in the cortical state, both spontaneous and those related to
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prior sleep and wakefulness. Although the region that can be stimulated

without artifacts in the evoked EEG is restricted by stimulation-related

activation of cranial muscles, it can be extended with signal processing

methods that reduce the muscle artifacts. Thereby, it is also possible to

probe the effective connectivity from brain areas near cranial muscles to

other sites. The TMS-induced circulatory changes not related to the hemo-

dynamic response cause a challenge in TMS-evoked hemodynamic mea-

surements, particularly in the TMS–NIRS measurement, which is impor-

tant to take into account in future studies. In conclusion, when certain

limitations related to the artifacts are taken into account, TMS is a pow-

erful tool for studying the cortical state.
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