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1. Introduction

The understanding of the physics of light has evolved a lot in the course

of history. Through the work of Max Planck, Albert Einstein, Louis de

Broglie, Arthur Compton, Niels Bohr, and many others, we have learned

that all particles have a wave nature and all waves have a particle na-

ture. We have understood that light and other electromagnetic waves

take the form of photons, which are quantized, self-propagating oscilla-

tory electromagnetic field perturbations. Both the terms optics and pho-

tonics are used when referring to the physics of light, usually emphasizing

classical applications (lenses, telescopes, cameras, etc.) with the term op-

tics and modern applications (semiconductors, optical fibers, waveguides,

gratings, etc.) with photonics.

Silicon has become the material of microelectronics, and the fabrication

techniques have evolved greatly over recent decades. Silicon has many

useful features which have enabled its wide adoption: suitable electronic

properties, stable and electrically insulating natural oxide, and nearly un-

limited supply. Because of the wide adoption and mature fabrication pro-

cesses of the silicon platform, it is highly promising to exploit the same

technology also for photonics [9]. Silicon is transparent at wavelengths

above ∼1.2 µm, which is convenient as the optical fibers used in telecom-

munications typically operate at wavelengths near 1.55 µm. Silicon pho-

tonics could also provide a chip-scale platform for monolithic integration

of optics and microelectronics in the same chip [10, 11].

The silicon photonic devices are based on similar silicon-on-insulator

(SOI) substrates that were originally developed for microelectronics. A

typical SOI wafer for photonic applications has a 220 nm thick single crys-

talline silicon device layer on top of a 2 µm thick buried oxide (BOX) on

a 500 µm thick silicon base wafer. Laterally confining waveguide struc-

tures can be easily etched on the device layer as the BOX can be used as

1



Introduction

a natural etch stopper. In this thesis, I have studied the silicon strip and

slot waveguides and the modification of their properties by atomic layer

deposition (ALD).

As well as silicon, also silicon nitride (Si3N4) has been used to fabri-

cate waveguides working at wavelengths ranging from visible to infrared

wavelengths. Si3N4 is often grown in high temperatures using various

chemical vapor deposition (CVD) methods, but also lower temperature

plasma enhanced chemical vapor deposition (PECVD) method.

ALD is a thin film deposition technique, which was invented indepen-

dently by different researchers in the Soviet Union and in Finland. Tuomo

Suntola invented it especially for making thin film electroluminescent

(TFEL) displays in 1974. The technology was first named atomic layer

epitaxy (ALE) and molecular layering (ML), but the name ALD has been

commonly adopted as it describes the technology more accurately. Other

names used for the technique include atomic layer chemical vapour depo-

sition (ALCVD), and molecular layer epitaxy (MLE). A longer overview of

the history can be found in Puurunen’s review [12].

ALD has recently gained a lot of interest in many different applications.

In 1990s it was adopted by the semiconductor industry for depositing thin

dielectric films and since 2000, it has also been applied to photovoltaics

and barrier applications. In this thesis, the focus is on the photonics appli-

cations of ALD, and especially its use in different waveguide and grating

applications.

Diffraction gratings are periodic structures that consist of nano- or micro-

meter-sized features. In a resonance waveguide grating (RWG), light is

coupled between the guided and diffracted modes forming sharp spectral

resonance peaks, where light is either completely transmitted or reflected.

A waveguide grating coupler is an important element of the silicon pho-

tonic platform, as it enables coupling of light between an optical fiber and

the photonic chip with a simple coupling scheme. As well as on silicon,

gratings are routinely fabricated on different kinds of glasses, polymers,

and other substrates.

In this thesis the use of ALD-TiO2 in waveguiding applications is stud-

ied. In the publications included, we have proposed narrowing of slot

waveguides with ALD-TiO2 [Publication I], estimated the effects of com-

pletely filling angled silicon slot waveguide structures [Publication II],

measured the waveguiding properties of amorphous TiO2 [Publication

IV], and demonstrated reduction of losses in strip and slot waveguides

2



Introduction

by the same TiO2 material [Publication III]. We have also demonstrated

ALD-TiO2 in various grating structures [Publications IV,V,VI].

In Chapter 2, a literature study on optical properties of ALD materials

and different optical applications of ALD is given. Also, some industrial

aspects of ALD are discussed in Section 2.4. Chapter 3 gives an overview

of the theoretical basis used in the thesis starting from Maxwell’s equa-

tions and then explaining various different methods for analyzing thin

films, waveguides, and gratings theoretically.

The experimental methods are explained in Chapter 4. The patterning

of nanostructures, ALD processing of TiO2 and various characterization

methods are described. The results from the publications, and addition-

ally a completely TiO2-filled slot waveguide and a novel azobenzene reso-

nant waveguide grating structure are presented in Chapter 5, and finally

the summary and outlook are given in Chapter 6.

3



2. Atomic layer deposition in optical
applications

2.1 Optical properties of ALD materials

The history of optical ALD films goes back all the way to its invention

in Finland. Thin film electroluminescent (TFEL) displays needed better

phosphors and dielectric film stacks, and ALD came in to help in making

pin-hole free and high quality films. Since then, its usage in different op-

tical applications has widened to optical filters, and many different kinds

of optical nanostructures.

Although ALD was invented for making TFEL displays, the late mate-

rial research has focused much more on the electrical rather than optical

properties of ALD materials. Thus, it is often quite difficult to find optical

parameters of ALD materials and good processes for different optical or

photonics applications.

The optical properties of crystalline materials are strongly dependent

on the crystal structure of the material. ALD grown TiO2 can be amor-

phous or crystalline depending on the growth temperature and their op-

tical properties are quite different. The refractive index can vary from

about 2.2 of amorphous TiO2 to 2.65 of preferentially oriented anatase (at

a wavelength of 633 nm) [13]. Crystalline materials tend to have high

scattering losses, if the crystal size is more than a few nanometers. This

can be prevented by applying thin intermediate layers. Adding intermedi-

ate Al2O3 layers to crystalline TiO2 increases the specular transmittance

and the material appears optically amorphous [14]. This thesis focuses on

low temperature titanium tetrachloride (TiCl4) + water process that gives

high quality amorphous TiO2 films. The process is explained in Section

4.3.

ALD offers an ability to create artificial materials with custom refractive

index between the high and low index materials. This ability has been

5



Atomic layer deposition in optical applications

used in making an optical retarder [15]. However, finding suitable pro-

cesses for nanolaminates can be difficult as intermediate materials with

unwanted properties might be formed at the interfaces. For example, we

have found that nanolaminate films done by mixing trimethylaluminium

(TMA) + water and TiCl4 + water processes are absorbing. This is due to

some other interfacial effects, as the amount of absorption increases quite

linearly with the number of interfaces.

In telecommunication applications, the most important wavelengths are

in 1.3–1.6 µm range. Unfortunately, not much information about the op-

tical properties of ALD materials at these wavelengths is readily avail-

able. In waveguide applications, light is usually propagating centimeters

instead of hundreds of nanometers or a few micrometers as in optical coat-

ings, so the quality requirements are more demanding.

A list of ALD processes with refractive indices, precursor chemicals, pro-

cess temperatures and growth rates is shown in tables 2.1 and 2.2.

Table 2.1. Optical properties of ALD materials and the used precursor chemicals. The
processes marked with * are not good ALD processes and have high nonuni-
formities.

Material Refractive index Precursor chem-

icals

Process Temperature Growth rate (ÃĚ/cycle) Ref.

La2S3 2.7-2.8 La(thd)3 + H2S 300-500 0.1-0.2 [16]

TiO2 2.2-2.8 TiCl4 + H2O 100-600 0.3-1.5 [13, 17, 18]

[19],[IV]

Ti(OCH(CH3)2)4
+ H2O

150-350 0.1-0.6 [20]

Ti(OCH2CH3)4
+ H2O

250-400 0.3-1.2 [21] *

TiI4 + H2O2 250-490 0.3-1.2 [22]

In2S3 2.5-2.7 InCl3 + H2S 300-400 1.4 [23]

In(acac)3 + H2S 140-280 0.2-0.7 [24]

Cr2O3 2.4-2.7 CrO2Cl2 +

CH3OH

330-465 0.5-1.0 [25]

ZnS1−xSex 2.3-2.5 ZnCl2 + H2S +

Se

400, 500 0.8-1.3 [26, 27]

NiO 2.4 Ni(C5H5)2 +

O3

300 not stated [28]

Nb2O5 2.2-2.4 Nb(OC2H5)5 +

H2O

150-350 0.1-0.3 [29] *

ZnS 2.3 ZnCl2 + H2S 500 0.8-1.0 [30, 31]

ZnOAc + H2S 320 1.7-1.8 [32]

ZrO2 1.8-2.3 ZrCl4 + H2O 500 0.1-0.5 [33]

Zr[OC(CH3)3]4
+ H2O

150-300 0.1-1.9 [34]

ZrI4 + H2O-

H2O2

250-500 0.3-1.3 [35, 36]

[Zr(OtBu)2(dmae)2]2
+ H2O

190-340 0.6-1.3 [37]

SrS1−xSex 2.1-2.2 Sr(thd)2 + H2S

+ Se

380 not stated [27]

Ta2O5 1.9-2.2 TaCl5 + H2O 80-500 0.4-1.6 [38] *

CaS 2.1 Ca(thd)2 + H2S 325-400 0.1-0.5 [39]
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Table 2.2. Optical properties of ALD materials and the used precursor chemicals. The
processes marked with * are not good ALD processes and have high nonuni-
formities. (Table 2.1 continued.)

Material Refractive index Precursor chemicals Process Temperature Growth rate (ÃĚ/cycle) Ref.

BaS 2.1 Ba(thd)2 + H2S 275-400 0.6-0.9 [40]

(C5Me5)2Ba(THF)x +

H2S

180-400 1.2-1.9 [41]

In2O3 2.1 InCl3 + H2O 400, 500 0.1-0.3 [42]

InCl3 + H2O2 300, 500 0.2-0.4 [43]

SrS 2.0-2.1 Sr(thd)2 + H2S 350-450 0.3-1.2 [44]

(Ci
5Pr3H2)2Sr(THF) +

H2S

120-460 0.6-3.0 [41] *

(C5Me5)2Sr(THF)x +

H2S

155-400 0.8-1.6 [41]

Si3N4 2.0-2.1 SiCl4 + NH3 227-627 1.4-2.5 [45] *

SrTa2O6 1.9-2.1 SrTa2(OEt)10(dmae)2
+ H2O

200-350 0.2-0.3 [46]

HfO2 1.8-2.1 HfCl4 + H2O 300, 500 0.4-0.6 [47, 48]

HfI4 + H2O 300 0.4-0.6 [48]

Hf(OCMe2CH2OMe)4
+ H2O

275-425 0.1-1.0 [49]

TEMAHf + O3 160-370 0.7-1.1 [50]

ZnO 2.0 DEZ + H2O 177 2.0 [51]

AlN 2.0 AlCl3 + NH3 500 1.0 [52]

Sc2O3 2.0 Sc(thd)3 + O3/H2O-

H2O2

275-500 0.1-0.2 [53]

(C5H5)3Sc + H2O 175-500 0.7-0.8 [53]

Gd2O3 1.9-2.0 Gd[OC(CH3)2CH(CH3)2]3
+ H2O

300-400 0.3-0.5 [54]

LaGaO3 1.9-2.0 La(thd)3/Ga(acac)3 +

O3

325-425 0.4 [55]

SnO2 1.6-2.0 SnCl4 + H2O 300-600 0.1-0.3 [56]

TDMASn +

O3 /H2O2 /H2O

50-325 0.6-1.6 [57]

Y2O3 1.8-1.9 Y(thd)3 + O3 200-600 0.2-0.8 [58, 59]

Ga2O3 1.8-1.9 Ga(acac)3 +O3/H2O 370 0.2-0.3 [60]

ITO 1.8-1.9 InCl3/SnCl4 + H2O 500 0.2 [61]

InCl3/SnCl4 + H2O2 300,500 0.3 [43]

PrSiOx 1.8-1.9 Pr[N(SiMe3)2]3 + H2O 200-400 0.2-1.1 [62] *

Lu2O3 1.8-1.9 Lu(iPrO)3 + H2O 330 not stated [63]

LaAlO3 1.7-1.9 La(thd)3/Al(acac)3 +

O3

325-400 0.3-0.5 [64]

La2O3 1.6-1.9 La[N(SiMe3)2]3 +

H2O

150-250 0.2-1.0 [65] *

CaO 1.7-1.8 Ca(Cp3i)2 + H2O 205-300 0.4-1.2 [66] *

MgO 1.7 Mg2(thd)4 + H2O2 325-525 0.4-2.0 [67] *

Al2O3 1.6-1.7 AlCl3 + H2O 500 0.4 [31]

Al(CH3)3 + H2O 100-500 1.1-1.3 [51, 68]

Al(CH3)2Cl + H2O 200-500 0.4-0.8 [69]

LaF3 1.6 La(thd)3 + TiF4 225-350 1.8-5.2 [70] *

YF3 1.5-1.6 Y(thd)3 + TiF4 175-325 1.1-1.7

ZnF2 1.5 Zn(O2CCH3)2 + HF 260-320 0.7-0.8 [32]

SiO2 1.4 Si2(NHC2H5)6 + O3 150-300 0.8-1.1 [71]

SrF2 1.4 Sr(thd)2 + HF 260-320 0.4-0.7 [32]

CaF2 1.4 Ca(thd)2 + HF 300-400 0.2-0.4 [32]

Ca(thd)2 + TiF4 300-450 0.5-1.6 [72]

MgF2 1.3-1.4 Mg(thd)2 + TiF4 250-400 0.7-1.6 [73]

Mg(thd)2 + TaF5 225-400 0.4-1.1 [74]
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2.2 Optical coatings

Thin film interference filters have been used in many different applica-

tions in optics for a long time and their theory is very well known. The

designing of filters has been done with computers already for more than

twenty years and the optimization algorithms are quite mature. As com-

puting power has increased rapidly during recent years, filters can now

be designed using computer programs with little prior knowledge about

thin films.

ALD was first introduced for optical coatings in 1996 by Riihelä et al.

[31]. Since then, a few commercial optical coating applications have been

introduced. ALD offers some unique properties, which make the technol-

ogy viable for many special optical coating applications. ALD is still not

seen as a general competitor for traditional optical coatings made by phys-

ical vapor deposition (PVD), as the PVD technology is very mature and

less expensive in most optical coating applications for planar substrates.

The low growth rate of ALD can be compensated to some extent with

large batches and optimized flows. Recent developments in spatial ALD

methods might also find use in manufacturing of economical optical thin

film filters.

2.3 Optical nanostructures and photonics

Photonic crystal structures can be fabricated by infiltrating colloidal ma-

terials by ALD and then etching the templating particles away. The first

reported inverse opal structure was made by infiltrating colloidal silica

particles using tungsten nitride (WN) ALD process by Rugge et al. in

2003 [75]. Fabrication and tuning of photonic crystals has since become

the most examined application of ALD in photonics [75–97].

ALD is also a very promising technology for making and tuning photonic

waveguides. ALD has been used to fabricate an active Er-doped Al2O3

waveguides, although net gain was not achieved [98]. ALD has also been

applied in Erbium-doping of fiber soot [99]. The tunability can also be

achieved by mixing thin layers of different materials, as Fig. 2.1 shows.

In this thesis, we propose narrowing of slot waveguides with ALD-TiO2

[Publication I], estimate the effects of completely filling angled silicon slot

waveguide structures [Publication II], measure the waveguiding proper-
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Figure 2.1. Scanning electron microscope (SEM) image of a slot structure fabricated on
silicon and coated by an ALD nanolaminate. The used ALD processes were
Al2O3 from TMA and water and TiO2 from TiCl4 and water at 120 ◦C. The
target film structure was 10 x (5 nm x Al2O3 + 5 nm x TiO2).

ties of amorphous TiO2 [Publication IV], and demonstrate reduction of

losses in strip and slot waveguides by the same TiO2 material [Publica-

tion III]. We also demonstrate ALD-TiO2 in various grating structures

[Publications IV,V,VI].

2.4 Industrial aspects

When ALD thin films are used in mass manufacturing, many more things

than just the optical or electrical properties need to be taken into account.

The physical and chemical durability of coatings has to be verified with

careful testing. Also, the speed of processes and the cost of precursor ma-

terials become critical and the processes have to be optimized for the max-

imum speed and minimum material usage. Researchers often use chemi-

cals that are not very viable in production environment. Ideal chemicals

should be inexpensive, safe, easy to handle and have a relatively high

vapor pressure at room temperature.

In research papers, the used processes are often run with long pulses

to make sure that they are in the fully saturated regime. In industrial

applications the length of pulses have to be optimized so that the process

is the fastest possible with an acceptable yield. This sometimes results in

processes that are not running in a fully saturated ALD-mode, but which
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still provide good enough results.

One of the precursors is often non-volatile and thus does not form safety

problems. For example, DI-water can be used in nearly all metal oxide

processes and it is ultimately safe and almost free of cost. The volatile

precursor chemicals tend to be more difficult to handle and more expen-

sive. Some organic precursors also have relatively short shelf-time and

tend to deteriorate. Trimethylaluminium (TMA, Al2(CH3)6) and TiCl4 are

examples of good volatile precursor materials for industrial use. Although

they are hazardous, the risks can be maintained with careful handling

and the availability and the cost of the materials is very low. TMA, di-

ethyl zinc (DEZ) and chlorides in general are quite preferable precursor

materials for large area manufacturing because of their good availability

and low cost.

Beta-diketonates are often used as ALD precursors in research papers,

but they are often not very suitable to be used when a large amount of

substrates is coated. Beta-diketonates are often only provided in small

amounts for research use and the large scale production of the precursor

material has to be organized for larger scale applications. Also, the growth

rates of processes using complex organic ligands tend to be smaller than

when using simpler ligands.

ALD also provides some benefits in the design and usability of deposi-

tion tools. As the repeatability is very good, ALD tools can be run in an

open-loop without expensive in-situ monitoring and active controlling of

the processes. If the machines are designed well, they can be run for years

with little maintenance.
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3. Photonic waveguides and gratings

This chapter gives an introduction to the theoretical background of waveg-

uides and gratings, which is mostly based on the electromagnetic theory.

The principles of the basic optics and optical devices have been discussed

and explained in many good books and publications. Two such books are

Born’s and Wolf ’s ‘Principles of optics: electromagnetic theory of propaga-

tion, interference and diffraction of light’ [100], and Yariv’s and Yeh’s more

device oriented ‘Photonics : optical electronics in modern communications’

[101], which have been used as the main sources in this chapter.

3.1 Electromagnetic theory and principles of waveguiding

3.1.1 Maxwell’s equations

Everything in electromagnetic theory starts from Maxwell’s equations:

∇×E +
∂

∂t
(µH) = 0 (3.1)

∇×H− ∂

∂t
(εE) = J (3.2)

∇ · (εE) = ρ (3.3)

∇ · (µH) = 0 (3.4)

These laws were formulated by Scottish physicist James Clerk Maxwell,

who published the finding in his work ‘Treatise of Electricity and Mag-

netism’ in 1873. His theory states that all electric, magnetic, electromag-

netic and optical phenomena are governed by the same fundamental laws

of electromagnetism, which are written in above equations. In these equa-

tions, E is the electric field vector, and H is the magnetic field vector,

which are often used to describe electromagnetic fields or optical waves.
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The permittivity ε(r), permeability µ(r), and the charge density ρ(r) of

the medium are scalars, when the medium is isotropic. J is the current

density vector.

3.1.2 Polarization

The electric field of a plane wave can be represented by two orthogonal

components, and the polarization state describes the relationship between

amplitudes and phases of these two components. If the components have

a phase difference of π/2 + mπ, where m is an integer, the field is said

to be circularly polarized (or elliptically polarized if the amplitudes are

different). When the phase difference is a multiple of π, the field is lin-

early polarized. With the presence of a plane surface, the component that

has the electric field perpendicular to the plane of incidence spanned by

the wave vector and normal of the surface is called the transverse electric

(TE) component, and the component which has the electric field parallel

to the plane of incidence is the transverse magnetic (TM) component.

3.1.3 Refractive index

The refractive index is related to permittivity and permeability constants

with relation:

n2 =
εµ

ε0µ0
= εrµr, (3.5)

where εr and µr are the relative permittivity and permeability, ε0 is the

permittivity of vacuum, and µ0 is the permeability of vacuum. For most

materials, µr ≈ 1 and thus n2 ≈ εr.
In lossy materials, the refractive index is a complex number. The com-

plex part of the refractive index is often separated from the real part and

called the extinction coefficient k.

Instead of scalar, permittivity can be represented by a tensor so that the

refractive index is dependent on the direction of the electric field. In that

case, the material is said to be birefringent.

For nonlinear optical materials, the refractive index is also dependent

on the magnitude of the electric field. In this work, the most relevant

nonlinear phenomenon is the Kerr effect, in which the refractive index

depends on intensity according to

n = n0 +
3χ(3)

8n0
|E|2 = n0 + n2I, (3.6)

where I is the intensity (the optical power per cross-sectional area), n0 is
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n1

n2

θ1

θ2

θ3

Figure 3.1. Light refraction at a dielectric interface when n1 > n2.

the refractive index of the material with low intensities, χ(3) is the third

order electric susceptibility of the medium, and n2 the second-order non-

linear refractive index or Kerr index of the material.

3.1.4 Boundary conditions

Maxwell’s equations have to be solved in parts for noncontinuous media.

The wave equation is then solved separately for each part of the structure

using a suitable set of boundary conditions. The boundary conditions can

be deduced from Maxwell’s equations using the Gauss and Stokes theo-

rems [100].

3.1.5 Geometric optics treatment

Geometric optics may be used as well as electromagnetic theory to study

wave propagation in homogenous dielectric materials. Using the bound-

ary condition that the tangential components of E and H are continuous

across any boundary, the Snell’s law can be deduced:

n1 sin θ1 = n2 sin θ2, (3.7)

where n1 and n2 are the refractive indices of the two media, and θ1 and θ2

are the angles to surface normal. If light is coming from the higher index

medium and the angle is larger than the critical angle:

θc = arcsin(
n2

n1
), (3.8)
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total internal reflection occurs. Figure 3.1 shows a dielectric interface of

materials having refractive indices n1 and n2. The angle for the red ray

θ3 is greater than θc and total internal reflection occurs. A part of light is

reflected in the case of θ < θc (blue ray in Fig. 3.1), and the rest of it is

refracted to a larger angle.

3.1.6 Reflection at a boundary

The reflectance and transmittance of light at a boundary can be calculated

with Fresnel’s coefficients, which can also be derived from the boundary

conditions of Maxwell’s functions. The Fresnel’s coefficients imply that

the amplitude reflection at the interface is:

r =
η1 − η2

η1 + η2
, (3.9)

where ηi (i = 1, 2) equals ni cos θi for TE-waves (s-polarisation) and ni/ cos θi

for TM waves (p-polarisation). The intensity reflectance is then

R = rr∗ =

∣∣∣∣
η1 − η2

η1 + η2

∣∣∣∣
2

. (3.10)

If there is no absorption in the materials (n is real), the transmittance

through the boundary is:

T = 1−R. (3.11)

R and T in these equations are considered specular (i.e. measuring the

direct rays as pictured in Fig. 3.1). Also total transmittance and total

reflectance are sometimes considered, and those include also the scattered

parts of light.

3.1.7 Reflection from a thin film stack

When light propagates a distance d from the surface, the phase change δ

is:

δ =
2πn

λ
d cos θ, (3.12)

where n is the refractive index of the media and θ is the angle from the

surface normal. This phase difference has to be taken into account, when

reflections from different boundaries are calculated together.

A matrix notation can be deduced to help calculations when a stack of

thin films is added between the cover boundary c and substrate s. A more

rigorous deduction can be found in [102]. We denote the angle of incidence
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by θ, and ψ and the effective index neff are the direction cosines in the

positive quadrant multiplied by the refractive index:

ψ = n cos θ =
√
n2 − n2

eff, (3.13)

neff = n sin θ. (3.14)

We define the parameter γ as

γ =





n cos θ/z0 for TE

z0 cos θ/n for TM
, (3.15)

where z0 =
√
µ0/ε0 is the impedance of free space. According to Maxwell’s

equations, the polarization-dependent field amplitudes U , V , and W are

related by [102]

U =
1

ikγψ

dV
dx

, (3.16)

V =
γ

ikψ

dU
dx

, (3.17)

W =
neffγ

ψ
U, (3.18)

where k = k0n is the wavenumber, k0 = 2π/λ is the vacuum wavenumber,

and λ the (vacuum) wavelength of light.

We define a field-transfer Matrix Mj for transferring the field ampli-

tudes Uj and Vj from point xj to a second point xj−1


Uj−1

Vj−1


 = Mj


Uj
Vj


 . (3.19)

We use the definition for the phase thickness δj (Eq. 3.12), with d =

xj − xj−1 and the field-transfer matrix becomes [102]

Mj =


 cos δj

−i
γj

sin δj

−iγj sin δj cos δj


 . (3.20)

The reflected rcs and transmitted tcs amplitudes can be obtained from

the matrix equation:

 1 + rcs

γc(1− rcs)


 = M


 1

γs


 tcs, (3.21)

where M is the field-transfer matrix for all layers M = M1M2 ... MJ . By

solving the equations and denoting the elements of the 2 × 2 matrix M

with mij (where i is the row, and j the column), we obtain:

rcs =
γcm11 + γcγsm12 −m21 − γsm22

γcm11 + γcγsm12 +m21 + γsm22
, (3.22)
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Figure 3.2. Naming conventions for R and T.

tcs =
2γc

γcm11 + γcγsm12 +m21 + γsm22
. (3.23)

The intensity reflectance and transmittance are

R = |rcs|2, (3.24)

T =
<(γs)

<(γc)
|tcs|2. (3.25)

3.1.8 Incoherent reflection at two surfaces

The depth of the substrate is usually much greater than the coherence

length of the light source. In that case, the incoherent reflection model

is used and the intensities will be added instead of amplitudes. The total

reflectance for light bouncing back and forth between the surfaces is given

by:
R = R+

a + T+
a R

+
b T
−
a

[
1 +R−a R

+
b +

(
R−a R

+
b

)2
+ ...

]

= R+
a +

[
T+
a R

+
b T
−
a

(
1−R−a R+

b

)]
,

(3.26)

for which the naming conventions are depicted in Fig. 3.2. T+ and T−

are always identical and thus T+
a = T−a = Ta. Furthermore, if there is no

absorption R+
a = R−a = Ra and Ra + Ta = 1. Using these equations, R can

be written as

R =
Ra +Rb − 2RaRB

1−RaRb
. (3.27)

Similarly, the transmittance without absorption is

T =
TaTb

1−RaRb
. (3.28)
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Figure 3.3. Dielectric slab waveguide, with the guiding layer of refractive index n1 and
the cladding of refractive index n2.

3.2 Waveguides

3.2.1 Guided modes in slab waveguides

When the propagation happens in free space, diffraction will spread a

beam of light with a finite cross section. In that case, lenses can be used

at appropriate locations to focus and confine the propagation of beams.

Optical fibers or dielectric slabs with higher refractive index core support

confined electromagnetic propagation. These and other structures that

support guided waves are called waveguides.

The simplest optical waveguide is a dielectric slab as shown in Fig. 3.3.

It consists of a dielectric layer (with a refractive index n1), called the core,

sandwiched between two semi-infinite bounding media (with refractive

indices n2) called the cladding. To support guided modes, n1 has to be

greater than n2.

If we consider the propagation of monochromatic radiation along the z

axis in this case, we can write Maxwell’s equations in the form [101]

∇×H = iωεE, ∇×E = −iωµH, (3.29)

where ω is the angular frequency of the wave.

Since the structure is homogeneous along the z axis, the solutions can

be taken as:

E(x, t) = Em(x)exp [i(ωt− βmz)] ,
H(x, t) = Hm(x)exp [i(ωt− βmz)] ,

(3.30)

where βm is the propagation constant (the z component of the wavevec-
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tors), Em(x) and Hm(x) are wavefunctions of the guided modes, with

subscript m being the mode number (an integer). If there is only a sin-

gle bound mode solution to the equation, the waveguide is called single-

moded. If we assume a layered dielectric structure of homogeneous and

isotropic materials, the wave equation for the transverse electric (TE) field

can be obtained by eliminating H from Eq. 3.29:

∂2

∂x2
Em(x) +

[
k2

0n
2(r)− β2

]
Em(x) = 0, (3.31)

where k0 = ω/c is the wavenumber in vacuum. The effective index neff of

the mode is β/k0. For the TM waves, the electric field is not continuous at

the dielectric interfaces and we have to use a similar equation solved be

eliminating the E instead of H. The propagating mode for each polariza-

tion has then to be solved separately in each segment of the structure and

then the tangential components of the field vectors need to be matched at

each interface.

The same matrix formalism we used in Section 3.1.7 may be used to

solve the modes of slab waveguides. Using the previous definitions, the

fields at the stack boundaries have to satisfy a condition

Uc
Vc


 = M


Us
Vs


 , (3.32)

where the c subscript denotes the cover and s the substrate, and M is the

field-transfer matrix for all layers M = M1M2 ... MJ .

The radiation condition requires negative-going waves in the cover and

positive-going waves in the substrate so for the bound modes the equation

becomes [102] 
 1

−γc


Uc = M


 1

γs


Us. (3.33)

By solving these equations, we can define a modal-dispersion function χM

χM (neff) ≡ γcm11 + γcγsm12 +m21 + γsm22 = 0, (3.34)

from which the effective indices of the modes can be solved. For bound

modes the modal function χM is imaginary and there exists only a discrete

set of roots that satisfy the modal condition.

The propagation can also be studied with geometrical optical treatment

by looking at the total internal reflection and the phase changes. Even

though total internal reflection is a necessary condition, not all rays trap-

ped by the total internal reflection constitute a mode. The totally reflect-

ing ray will only become a mode when the extra transverse phase shift
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Figure 3.4. Scanning electron microscope (SEM) image of a cross-section of a silicon strip
waveguide that is ALD-coated with a 50 nm thick layer of TiO2.

between the reflections is an integral multiple of 2π so that there is a

constructive interference.

3.2.2 Strip waveguides

Strip waveguides are rectangular waveguides of high-index material sur-

rounded by lower index materials. An example of a silicon strip waveg-

uide ALD-coated with approximately 50 nm of titanium dioxide (TiO2) is

shown in Fig. 3.4. This geometry offers good confinement in both vertical

and horizontal directions.

The propagation modes for strip waveguide geometries are solved from

Maxwell’s equations numerically. The dimensions can be adjusted to get

suitable dispersion and other properties. For a high-index contrast strip

waveguide with nanoscale dimensions, the evanescent field (which ex-

tends from the waveguide core boundary into the surrounding cladding

with an exponential decay) can be relatively strong at the waveguide sur-

faces. The strong field can be used with nonlinear cladding material in

nonlinear optical applications [103] or in waveguide sensors [104].

Strip waveguides made on silicon-on-insulator (SOI) platform are widely

used in many kinds of silicon photonics applications.

3.2.3 Slot waveguides

Slot waveguides were proposed in 2004 by Almeida et al. to create a

waveguide that confines light in low refractive index material, but that
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Figure 3.5. Calculated transverse electric field (Ex) mode profile of a silicon slot waveg-
uide ALD-coated with a 50 nm thick layer of TiO2.

is still based on total internal reflection [105]. The device was also exper-

imentally demonstrated later the same year [106]. With slot waveguides,

more electrical field can be confined into the slot region. As the slot can

be filled with suitable low refractive index materials, this makes silicon

photonics platform even more interesting for nonlinear optical [103] and

sensing [107–109] applications.

As the slot waveguide devices on silicon require very small dimensions,

the fabrication is quite problematic. In Publication I we proposed to use

ALD-TiO2 to narrow down silicon slot waveguide structures to better con-

trol the slot width. We also simulated how ALD materials would work

to completely fill the slot waveguides in Publication II. We demonstrated

that the surface smoothening feature of ALD can be used to reduce losses

in silicon strip and slot waveguides in Publication IV. Figure 3.5 shows

a mode profile of a silicon slot waveguide ALD-coated with TiO2, which

demonstrates the guiding of light in the low refractive index air slot.

3.2.4 Computational methods for solving waveguide modes

The waveguide modes for geometries more complex than slab waveguides

can be solved from Maxwell’s equations using approximative or numeri-

cal methods such as the effective index method, the finite-element method

(FEM) [110], the finite difference method (FDM) [111] or as in this the-

sis film-mode matching method (FMM) [112]. Each technique has its

strengths and different methods are used for different problems. For ex-
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ample, the FEM method is often used for complex waveguide geometries,

as in FEM the field region is divided into an irregular grid of elements

of various shapes like triangles or rectangles. In many cases it may be

useful to first try fast approximate methods to build intuition and narrow

the parameter range, and then refine calculations using more advanced

and accurate numerical approaches.

In this thesis, the FMM solver of the FIMMWAVE software was used

[113]. In FMM, the waveguide is divided into vertical slices, which are

uniform laterally, but composed of a number of vertical layers [113]. A

2-dimensional mode is built up from the 1-dimensional TE and TM modes

for each slice. The method is theoretically exact for an infinite number of

1-dimensional modes. The modeled area may have either perfect metallic

or magnetic walls, or periodic boundary conditions. FMM works well for

solving modes of rectangular waveguides.

3.2.5 Surface roughness and loss in waveguides

In the case of silicon-on-insulator (SOI) platform, the waveguide losses

are mainly due to sidewall surface roughness, and also due to leakage

through the buried oxide into the silicon substrate if the optical field is

not sufficiently guided. Furthermore, the surface states at the uncovered

waveguide boundaries can lead to excess absorption.

Surface roughness leads to scattering losses, and a detailed theoretical

description backed up with experiments has been published for the case

of high index-contrast three-dimensional strip waveguides by Poulton et

al. [114], where intuitively understandable guidelines were given for fab-

ricating low-loss waveguides.

For the simple case of two-dimensional slab waveguides as depicted in

Fig. 3.3, a coupled-mode formalism was developed [115]. The theory is

also instructive for other waveguide geometries to see the tendency from

the closed-form relation for the loss coefficient α (unit dB/cm) [115],

α = 4.34 ϕ2(d)
(
n2

1 − n2
2

)2 k3
0

4πn1

∫ π

0
Ř(β − n2k0 cos θ) dθ. (3.35)

Here, ϕ(d) is the normalized modal field (
∫ +∞
−∞ ϕ2(x) dx = 1) at the core-

cladding boundary x = ±d/2 of the symmetric slab waveguide having a

width d. Core and cladding refractive indices are denoted as n1 and n2,

respectively, k0 = ω/c is the free-space wavenumber for an angular fre-

quency ω and the vacuum speed of light c, the so-called spatial power

spectrum Ř(θ) is the Fourier transform of the surface roughness autocor-
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relation function R(u), and β is the modal propagation constant. This

formula has been used in many publications assuming an exponential au-

tocorrelation function R(u) = σ2e−|u|/Lc and thereby explaining measured

losses in Si waveguides [116–118].

3.3 Gratings

Gratings are periodic optical structures with the periodicity in the wave-

length scale. Generally, a grating is an optical structure whose dielectric

and permeability constants (tensors) are periodic functions of position:

ε(x) = ε(x + a) = ε0n
2(x + a),

µ(x) = µ(x + a),
(3.36)

where a = idx + jdy is any arbitrary lattice vector. The Eqs. 3.29 must

remain the same if we substitute x for x+ a. The translational symmetry

requires that the normal modes of propagation are:

E = EK(x) exp (−iK · x) ,

H = HK(x) exp (−iK · x) ,
(3.37)

where both EK and HK are periodic functions of x:

EK(x) = EK(x + a),

HK(x) = HK(x + a).
(3.38)

This is known as Floquet-Bloch theorem and it states that the fields are

periodic within x and x+a, apart from the phase factor exp (−iK · x). The

functions EK and HK depend on the Bloch wavevector K.

Let us consider the case of a 2-dimensional crossed grating as illustrated

in Fig. 3.6, with refractive indices nI in the region I and nIII in region III.

When the grating is illuminated with an incident plane wave E0(x, y, z;ω),

a discrete set of reflected and transmitted plane waves are generated as

the field in regions I and III is pseudo-periodic and follows the Floquet-

Bloch theorem (Eq. 3.37).

Let us define the kx0, ky0, and kz00 as the x, y, and z components of

the wave vector of the incident light. From the Floquet-Bloch condition it

follows that the wave vector components of the reflected and transmitted

plane waves can only have discrete values:

kxm = kx0 +
2πm

dx
, (3.39)
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Figure 3.6. Geometry of a 2-dimensional grating.

kyn = ky0 +
2πn

dy
, (3.40)

kzmn =
√

(k0ni)2 + k2
xm − k2

yn, (3.41)

where m and n are integers corresponding to the respective diffraction

orders, kx0 = k0ni sin θ cosϕ, ky0 = k0ni sin θ sinϕ, kz00 = nik0 cos θ, k0 =

2π/λ is the vacuum wave number, and ni is either nI or nIII depending on

the region.

The discrete set of reflected fields (region I) and transmitted fields (re-

gion III) can be formulated using so-called Rayleigh expansions:

EI(x, y, z;ω) =

∞∑

m=−∞

∞∑

n=−∞
rmn exp

[
i(kxm + kyn + k−zmnz)

]
, (3.42)

EIII(x, y, z;ω) =

∞∑

m=−∞

∞∑

n=−∞
tmn exp

[
i(kxm + kyn + k+

zmn(z − h))
]
. (3.43)

If we denote the angles of diffracted plane waves by θmn and take into

account that the plane waves must fulfill a condition kzmn = k0ni cos θmn,

we can write the grating equation for transmitted diffraction orders as

k2
0n

2
III sin2 θmn = (k0nI sin θ cosϕ+ 2πm/dx)2 + (k0nI sin θ sinϕ+ 2πn/dy)

2,

(3.44)

and for the reflected diffraction orders as

k2
0n

2
I sin2 θmn = (k0nI sin θ cosϕ+ 2πm/dx)2 + (k0nI sin θ sinϕ+ 2πn/dy)

2.

(3.45)
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The grating equations for one-dimensional grating are obtained, when

ϕ = 0, dx = d, and dy →∞.

The diffraction efficiencies for the transmitted and reflected diffraction

orders are obtained from

ηtmn = <
{
k+
zmn/k

+
z00

}
|tmn|2, (3.46)

ηrmn = <
{
k−zmn/k

−
z00

}
|rmn|2, (3.47)

where <
{
k+
zmn/k

+
z00

}
and <

{
k−zmn/k

−
z00

}
are scaling factors that arise from

the energy conservation as the cross-section of the incident and diffracted

beams change when their propagation angles change.

3.3.1 Fourier modal method

The complex amplitudes of the reflected and transmitted diffraction or-

ders (Eqs. 3.42 and 3.43) can be solved using various numerical methods,

such as Rayleigh, Integral [119], and Coordinate transform [120] meth-

ods. The principle of the Fourier modal method [121–123] is to slice the

permittivity profile of the grating (region II in Fig. 3.6) and to express

the field inside the modulated region and the sliced permittivity profile

as a Fourier series. The slices do not have to be equally spaced and to-

gether they form a periodic, piece-wise-constant medium. The Fourier

coefficients as well as the wave vector z-components of the modes are

solved numerically from eigenvalue equations, and the fields are matched

at each boundary separately.

The accuracy of the Fourier modal method depends on the number of

diffraction orders taken into calculations. For a converged result, all the

propagation modes and a sufficient number of evanescent modes must be

included. In the case of metallic gratings, a larger number of modes have

to be taken into account.

3.3.2 Resonant waveguide gratings

Resonant waveguide gratings (RWG), also called guided mode resonance

filters (GMRF), are a special case of gratings where the diffracted modes

are coupled to the waveguiding modes of the grating and back [124, 125].

In RWGs, 100% switching of optical energy between reflected and trans-

mitted waves occurs over small parameter ranges. Potential uses for these

elements include filters, sensors, pulse-shapers, second-harmonic genera-
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Figure 3.7. Schematic of an RWG grating where hc is the thickness of the TiO2 coat-
ing, hg is the height of the grating, and d is the period of the grating. The
substrate material is SiO2. [From Publication VI]

tion, and field enhancement of fluorescence [125–128]. RWG biosensors

have also been used in living cell sensing [129].

The guided-mode resonance may also yield an almost total absorption

of one polarization component and greatly enhance the absorption in lo-

calized surface plasmon resonance [Publication V]. In Publication VI we

have shown that by using high quality ALD-TiO2 as the waveguiding ma-

terial in the RWG, a wider bandwidth in visible wavelengths for one of the

polarizations is also possible. The schematic of one period of such RWG is

shown in Fig. 3.7.
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4. Methods

4.1 Patterning of optical nanostructures

Depending on the application and its requirements, different nanofab-

rication methods are preferred. Typical technologies include different

lithography methods, including photolithography, electron beam lithog-

raphy (EBL), and nano-imprint lithography, for inorganic structures and

injection molding and UV replication for polymers. Other methods include

direct holographic patterning of sinusoidal surface relief gratings, which

is covered in the next section. A more complete overview of different fab-

rication methods can be found in [130].

Lithographic patterning is done in a few consequent steps. First a resist

is applied on a clean substrate by spin coating. A liquid solution of the

desired resist is dispensed on the wafer, and the wafer is spun rapidly to

produce a uniform, typically 500–2500 nm thick, layer. In electron beam

lithography, the used resist is typically polymethyl methacrylate (PMMA).

The resist is then exposed to either a scanning beam of electrons (in EBL)

or photons through a photomask (in photolithography).

The resolution of the lithography is dependent on the wavelength of the

radiation, and thus shorter wavelengths are preferred. The wavelength

of electrons is in the picometer range, and the accuracy is limited more

by the accuracy of the beam steering. Commonly used state-of-the-art

photolithography uses deep ultraviolet (DUV) excimer lasers with 193 nm

or 248 nm wavelengths, which provide a resolution of down to 50 nm. The

photomasks for DUV lithography are usually done by EBL.

After the exposure, the resist is developed with suitable chemicals and

heating procedures to remove either the exposed (positive resist) or unex-

posed (negative resist) areas. The development phase may include multi-

ple chemicals and baking steps, and after them we have a durable solidi-
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fied resist that can be used in etching.

The etching may be done in a liquid etchant (wet etching) or with plasma

gases (dry etching). Dry etching usually provides better accuracy and low-

defectivity processes have been developed to transfer even the smallest

features of the photoresist to the underlying substrate.

Silicon waveguides are usually made on the silicon-on-insulator (SOI)

platform. SOI wafers are special silicon wafers, which have a thin (typi-

cally 200–300 nm) single crystalline silicon device layer on top of a thicker

buried oxide (BOX) layer of silicon dioxide (typically 2–3 µm thick). The

waveguides used in Publication III were fabricated on SOI wafers with a

220 nm device layer and a 2 µm BOX layer using 193 nm DUV lithogra-

phy.

4.2 Direct holographic patterning of azobenzene polymers

The light-induced motions of the azobenzene molecules can be used to

inscribe surface-relief structures into the material system. The surface

relief gratings are fabricated by first spin coating the substrate with the

azobenzene polymer complex, e.g. that consists of 4-dimethylamino-4’-

hydroxyazobenzene (OH-DMA) azo dye and poly(4-vinyl pyridine) (P4VP)

polymer (i.e. P4VP(OH-DMA)x), and then exposing it to an interference

pattern made using an extended laser beam of a suitable wavelength

[131]. A detailed study of the azobenzene polymer complexes can be found

in [132].

To write the surface-relief grating, an argon-ion laser with an output

wavelength of 488 nm was used. The beam was expanded with a tele-

scope and cropped with an adjustable pinhole to have a 0.5 cm diameter

and ∼60 mW of output power (∼300 mW/cm2). A λ/4–plate was used be-

fore the cropping to translate the linearly polarized beam to a circularly

polarized one. The interference pattern was formed using a Lloyd’s mir-

ror setup, so that the left half-circle of the beam interfered with the right

half-circle. An exposure time of 20 minutes was used to ensure that the

writing process was completely saturated.

28



Methods

Figure 4.1. The steps of an ALD cycle. The final thin film is a combination of parts of the
precursor materials and other reaction products are purged away. (Picture
courtesy of Beneq Oy)

4.3 ALD processing

In this section, the chemistry of ALD processes is explained only briefly,

as there are many general reviews on ALD (e.g. [133–139]), which explain

the details more completely. There are also reviews about ALD for syn-

thesis and surface engineering of nanostructures by Knez et al. [140] and

about applications of ALD to nanofabrication by Kim et al. [141]. The

overview of optical applications of ALD was covered in Chapter 2.

ALD is a gas phase vapor process that typically operates in vacuum.

Substrates are placed in a reaction chamber where temperature, pressure,

and other parameters are adjusted according to the process chemistry and

wanted film properties. Two chemicals are then supplied sequentially

to a deposition zone and they form a thin film of material as they react

with each other on the surface. ALD is thus based on sequential self-

terminating gas–solid reactions.

The ALD process cycle can be divided into four steps:

1. The substrate is exposed to the first precursor, which forms a saturated

layer by reacting with the surface groups.

2. The excess precursor and reaction by-products are purged out.

3. The surface groups formed by the first precursor are exposed to the

second precursor, which also forms a saturated layer.

4. The excess precursor and reaction by-products are purged out.

The steps of an ALD cycle are also shown in Figure 4.1. As precursors

are pulsed to the reaction chamber separately, the reaction happens only

on the surface. First, a dose of a precursor material is pulsed to the reac-
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tion chamber and it reacts with the surface. The excess vapor is purged

with a nitrogen pulse, before the second precursor is pulsed to the cham-

ber. The second precursor vapor then reacts with the first precursor on the

surface and a partial layer of the desired film is formed. Finally, the ex-

cess precursor vapor and by-products are purged with nitrogen before the

cycle begins again with the first precursor. As a result, there is a binary-

type growth of films and the thickness can be controlled very accurately

by varying the amount of cycles.

The speed of growth is usually counted in growth rate per cycle. Self-

limited growth rates vary from less than 0.1 nm/cycle of some nitrides to

1-12 nm/cycle of SiO2:Al [142]. Usually, only a fraction of a monolayer is

formed with a single cycle, because the precursor ligands take larger space

on the surface than the reaction product. Also, the length of the used

precursor and purge pulses often affect the actual growth rate a little, as

the saturation happens asymptotically.

A large range of materials can be grown by ALD. The periodic table

including the possible materials can be found from Puurunen’s review

[12]. The principle of ALD is simple but in reality the ALD growth is

a complex mixture of interaction of chemicals, temperature, time, flow

and coating tool technical construction details. Results achieved with one

deposition platform are not always transferrable to other deposition tools.

4.3.1 Effect of temperature on ALD process

ALD processes usually work well and the growth rate is constant in a

limited temperature range, which is called the "ALD window". Below

the ALD window, the growth rate can be either higher because of pre-

cursor condensation or lower due to insufficient reactivity. And above the

ALD temperature window, the growth rate can be higher due to precursor

decomposition or lower because of precursor desorption. Sometimes the

growth rate is dependent on the number of available reactive sites or on

the film density.

4.3.2 Variants of ALD

In addition to the usual thermal ALD method, there are many other vari-

ants of ALD. In plasma-enhanced ALD (PEALD), plasma radicals are

used instead of normal gases to get additional energy to the process. Typ-

ically oxygen (for oxides), nitrogen or ammonia (for nitrides), or hydrogen
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plasma (for metals) is used. Plasma can be either direct or remote, and

either capacitively or inductively coupled. In radical-enhanced ALD (RE-

ALD), a remote plasma source is placed far from the substrate so that

the electrons and ions from the plasma are not surviving to the substrate

region.

A spatial ALD has also gained lot of interest recently. In the spatial

ALD, the precursors are delivered to the surfaces by moving the substrate

through different gas zones or by moving an ALD head (with the separate

precursor gas zones) above the substrate. Special attention has to be paid

to keep the different precursor gases from reacting in the gas phase by

carefully designed inert gas barriers.

4.3.3 Titanium tetrachloride / water process

This thesis focuses on titanium dioxide (TiO2) films made by titanium

tetrachloride (TiCl4) / water (H2O) ALD process. To achieve good optical

properties, we have chosen 120 ◦C temperature for most of our TiO2 stud-

ies. The chemistry of the process and the effect of different deposition

parameters has been studied before [19].

The basic reaction between TiCl4 and H2O is:

TiCl4 + 2 H2O −→ TiO2 + 4 HCl. (4.1)

The actual surface reactions are a complicated mixture of different reac-

tions between TiCl4 and the OH-surface groups, which form –O–TiCln or

other Cl-containing groups, and for the second part H2O reacting with the

Cl-containing groups and forming OH-groups [17, 143]. The films grown

in a cross-flow type reactor tend to have some thickness profile along the

flow direction. This has been suggested to be due to the HCl by-product

reacting again either with the OH-groups, Cl-groups or both on the sur-

face and thus hindering the growth downstream [17]. In our experiments

at the 120 ◦C, we typically see a thicker stripe of film on the input side

of the reaction chamber, but further downstream the non-uniformity is

below ± 1%. The used ALD tool was a Beneq TFS 500 with a reactor

chamber designed for 200 mm wafers.

4.3.4 Conformal growth mode of ALD

Because of the surface reactions, ALD has a constant-rate contour growth

mode, i.e., the films grow along the surface normal at a constant rate.
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This has been used to grow nano- and microlens arrays [144] and to fill

and planarize optical gratings [15]. We have shown in Publications I and

III that the growth mode can be used to narrow silicon slot waveguides.

The growth mode can also be used to reduce surface roughness and thus

waveguide losses as demonstrated in Publication III. The ALD growth

on a rough surface can be simulated using a model, based on solving a

partial-differential equation. The conformal change of an initial surface

height geometry h(x, 0) due to the cyclic growth of ALD monolayers is

described as a function of position x and cycle number τ . Because of the

large number of ALD monolayers per the final layer, the cycle number τ

can be regarded as a continuous “time” variable. We write

∂h(x, τ)

∂τ
= v

√
1 +

(
∂h(x, τ)

∂x

)2

, (4.2)

where the quantity v is the ALD growth rate, and v τ is the thickness

of the final layer. The model is based on having the growth rate directly

proportional to the surface area. To visualize the ALD growth of materials

like amorphous Al2O3 or TiO2, a typical growth rate of v = 0.1 nm/cycle

was chosen.

The Eq. (4.2) solved with a finite difference scheme gives

hi,j+1 = hi,j + ∆h
2

[√
1 +

(
hi,j−hi−1,j

∆x

)2
+

√
1 +

(
hi+1,j−hi,j

∆x

)2
]

+ ∆h2

2∆x2
[hi+1,j − 2hi,j + hi−1,j ] ,

(4.3)

where ∆h = 0.1 nm is the growth rate/cycle, ∆x is the fixed position step

(0.1 nm was used as well), j is the cycle number, and i is the position.

For the surface to be covered, we assumed an exponentially distributed

initial height profile h(x, 0) with an autocorrelation length Lc = 50 nm and

a root-mean-square (RMS) roughness of σ = 5 nm. A 20 µm wide calcu-

lation window with periodical boundary conditions (i.e. h0,x = hN+1,x and

h−1,x = hN,x, where N is the furthest position) was used. The smoothen-

ing of a surface roughness profile as a function of thickness solved using

Eq. 4.3 is shown in Fig. 4.2. The previously mentioned parameters were

used, but only 300 nm wide part of the profile is shown.
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Figure 4.2. Simulation of the ALD growth on a rough surface. The initial surface rough-
ness is exponentially distributed having a correlation length of Lc = 15nm

and a root-mean-square (RMS) roughness of σ = 5nm. The height pro-
files h(x) and the RMS roughnesses σ are shown for various thicknesses
(0, 10, . . . , 50) nm of the deposited layer in steps of 10 nm.

4.4 Characterization methods

4.4.1 Spectrophotometry

In spectrophotometry, the light transmittance through a sample or the

reflectance from a sample are measured as a function of wavelength. A

spectrophotometer usually consists of a light source, a monochromator,

and a photodetector. The monochromator is usually of scanning type, but

can be fixed as well if the photodetector is movable. Also, an array of

photodetectors (such as charge coupled devices (CCD) or photodiodes) are

sometimes used with a fixed monochromator. The sample can be placed

either before or after the monochromator. The commercially available

spectrophotometers cover partly or fully the wavelength range 200. . . 2500

nm.

Dual beam spectrophotometers compare light propagating through two

different paths, and the sample is placed in the other path. Dual beams

provide more stability against variations in the light source spectrum,

which can vary over time. In single beam measurements, the spectrum of

the light source is assumed to be the same when the reference spectrum

is taken and after the sample is inserted.

Spectrophotometry can be used to accurately determine the thickness

of thin films, if the film is thick enough to result in an interference peak

within the measured wavelength range. We use the equations in Sections

3.1.7 and 3.1.8 to determine the transmittance of a given substrate-film

system. The refractive index profile is chosen with a suitable refractive

index model like Cauchy model:
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n(λ) = A+
B

λ2
+
C

λ4
, (4.4)

where A, B, and C are the Cauchy constants and λ is the wavelength. The

Cauchy model is only valid above the bandgap of a dielectric material and

in the visible range. Sellmeier’s equation can also be used to get a more

accurate fit at ultraviolet and infrared wavelengths:

n(λ) =

√
1 +

A1λ2

λ2 −B1
+

A2λ2

λ2 −B2
+

A3λ2

λ2 −B3
, (4.5)

where A1,2,3, and B1,2,3 are the Sellmeier coefficients. Usually, it is enough

to have just the first A1 and B1 parameters to get good accuracy.

The parameters affecting the calculated transmittance are varied using

a suitable algorithm (e.g. Levenberg-Marquardt algorithm [145]) to min-

imize the difference between the calculated and measured transmittance

spectra. A reasonably good starting guess has to be given to the algo-

rithm, otherwise it may converge to a local minimum far away from the

real parameters. In reflectometry, the reflectance is determined instead

of transmittance and corresponding equations are then used.

4.4.2 Ellipsometry

Ellipsometry is also a powerful technique to determine the complex re-

fractive index of a thin film. As its name suggests, an ellipsometer mea-

sures the ellipticity of the polarization state of light reflected from a sur-

face. The ellipsometer parameters are the amplitude ratio tan(Ψ) and the

phase shift ∆, which are defined by the complex reflectance ratio ρ:

ρ =
rTM
rTE

= tan(Ψ)ei∆, (4.6)

where rTM and rTE are the complex Fresnel coefficients (see Eq. 3.9). As

the difference between different polarizations is used instead of the actual

reflectance, there is no need for a good reflectance reference as in the case

of reflectometry.

The refractive index has to be solved again in a similar way than in

the spectrophotometer case using a suitable refractive index model and

choosing the best fit of thickness and model parameters. This time we just

have to solve the tan(Ψ) and ∆ parameters as a function of wavelength,

and not the transmittance and reflectance.
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Figure 4.3. Schematic of the prism coupling setup.

4.4.3 Prism coupling method

The prism coupling method can be used to measure the thickness, and

the refractive index properties of slab waveguides [146, 147]. Figure 4.3

shows the schematic of a prism coupling setup. In prism coupling, the

propagating modes of the slab waveguide are measured by monitoring

the coupling of a monochromatic beam of light from a laser source to a

thin film on a substrate. The actual measured parameter is the incident

angle ζ, from which the effective index can be solved using [147]

neff = cos ε sin ζ + sin ε
√
n2
p − sin2 ζ, (4.7)

where ε is the prism angle and np is the refractive index of the prism. Fig-

ure 4.4 shows a prism coupling measurement result for an ALD-TiO2 film,

which is studied in Publication II. Using the matrix method as described

in Section 3.2.1 and numerical optimization to find effective indices that

match the three modes, a refractive index of 2.386 at 633 nm wavelength

and a thickness of 452 nm can be found.

Loss measurements can also be done with a prism coupler by measuring

the intensity of scattering from the waveguide as a function of distance

with a multimode optical fiber. If we assume the waveguide to be uni-

form over the measured area, the losses can be determined by fitting an

exponential function

f(D) = Ae−αD/4.34, (4.8)

where D is the distance from a chosen zero-point, A the intensity at the

zero-point, and α is the loss in dB/cm to the measured loss curve. Figure

4.5 shows the scattering intensity as a function of distance for an amor-

phous ALD-TiO2 layer at 1.53 µm wavelength and a fitting curve with
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Figure 4.4. Prism coupling measurements from a TiO2 film on a glass substrate at a
wavelength of 633 nm. The effective indices of the modes are shown next to
the corresponding dips.
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Figure 4.5. Scattering intensity as a function of distance D, with a fitted exponential
function having α = 0.9 dB/cm and A = 82.

α = 0.9 dB/cm and A = 82.

4.4.4 Waveguide characterization

Light can be coupled from fibers to waveguides with various different

schemes. Prism coupling, as explained in the previous section, can be

used to couple light to slab waveguides but also to strip waveguides if a

wide strip is used. The two most common coupling schemes for strip and

slot waveguides are butt-coupling and grating-coupling.

In butt-coupling, the waveguides are cleaved and the end facet polished

(depending on the material). In the case of nanowaveguides, the fibers are

usually tapered and have a sharp tip to enable smaller mode area and bet-

ter coupling efficiency. The waveguides can also be tapered or inverse ta-

pered. The fibers are aligned with micropositioners to optimize the trans-

mittance through the waveguides and minimize the coupling losses.

Grating couplers are waveguide gratings that are designed to couple

light from a free-space beam or an optical fiber in a grazing incidence
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Figure 4.6. SEM image of a grating coupler etched onto an SOI wafer. The light gray
areas are of SiO2 and the dark gray areas are of Si. The gratings are etched
only 70 nm from the surface, whereas the thickness of the Si layer is 220 nm.

angle to a waveguide mode or out from a waveguide mode [148]. Grating

couplers do not require accurate cleaving or polishing of the chip and the

chip can be designed to have multiple waveguide areas and the inputs

and outputs do not have to be on the same line. Figure 4.6 shows an SEM

image of the grating coupler design used on the chips in Publication III.

The intensity as a function of wavelength is usually the measured pa-

rameter and it is measured with different kinds of input sources and se-

tups. The parameters that are usually of interest include the propagation

losses and the transmittance as a function of wavelength.

4.4.5 Four-wave mixing

Four-wave mixing (FWM) is a well known nonlinear optical effect arising

from the third-order χ(3) coefficient [149, 150]. It is a mixing process that

occurs if at least two waves interact in a nonlinear medium. Assuming

just two input frequency components ω1 and ω2 (with ω2 > ω1), a refractive

index modulation at the difference frequency occurs, which creates two

additional frequency components: ω3 = ω1− (ω2−ω1) and ω4 = ω2 + (ω2−
ω1).

FWM is used to study the third-order (χ(3)) nonlinear properties of waveg-

uides, and also as a spectroscopic tool. It can also be utilized in optical sig-

nal processing and it has to be taken into account when designing optical

communication systems as it disturbs the signals.
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5. Results

5.1 Optical properties of ALD-TiO2

The properties of ALD grown materials depend on the deposition temper-

ature and sometimes also slightly on the used pressure, flows, pulse and

purge lengths. TiO2 from TiCl4 and H2O is amorphous when it is grown

below about 165 ◦C, anatase dominated at 165–350 ◦C, and rutile domi-

nated at over 350 ◦C [18].

Polycrystalline films have usually rough surfaces and have grain bound-

aries that cause scattering losses. Birefringence can also cause scattering

in waveguides, if the crystallites are not completely random. If we use a

higher temperature of e.g. 350 ◦C for the TiO2 process, the film will be-

come crystalline as seen in Fig. 5.1a. However, the crystallinity can be

controlled with intermediate amorphous films of e.g. Al2O3, which will

limit the crystal size and the film will resemble the amorphous one as

seen by comparing Fig. 5.1b and c. The films with intermediate Al2O3

layers made by trimethylaluminium/water process were absorbing and a

different intermediate film chemistry has to be used if low loss films are

wanted.

a) b) c)

Figure 5.1. SEM pictures of TiO2 films ALD deposited at 350 ◦C a) as is and b) with
thin (∼ 1 nm) intermediate Al2O3 layers, and at c) 120 ◦C into slot structures
fabricated on silicon wafers.
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Figure 5.2. The refractive index and the extinction coefficient of ALD-TiO2 deposited at
120 ◦C temperature as determined by spectroscopic ellipsometry.

Optical parameters of the ALD-TiO2 films were determined using spec-

troscopic ellipsometry (SE) and prism coupling measurements. The TiO2

sample used for SE measurement was from a different deposition run and

the film thickness was much smaller. The films were deposited at 120 ◦C

temperature.

A J. A. Woollam spectroscopic ellipsometer was used to measure the re-

fractive index of the TiO2 layer as a function of wavelength at a wave-

length range of 300–2000 nm. Figure 5.2 shows the results.

A Metricon 2010 prism coupler was used to determine the propagation

modes inside the films and to roughly estimate propagation losses of the

films. The measurements were done at 633 nm and 1.53 µm wavelengths.

The used prism coupler measures the dips in the intensity, corresponding

the propagating modes, as a function of the incidence angle. The mea-

sured angles are then converted to corresponding effective indices. The

refractive index and the thickness of the film can be determined using a

1-dimensional mode solver (e.g. the matrix method in Section 3.2.1).

Figure 5.3 shows the results from prism coupling measurements of TiO2

films. The sharp peaks at both wavelengths indicate good optical proper-

ties. Using the matrix method as described in Section 3.2.1 and numer-

ical optimization to find effective indices that match the three modes, a

refractive index of 2.386 at 633 nm wavelength and a thickness of 452 nm

is found. The refractive index for the 1.53 µm wavelength is 2.27, when

the same thickness of 452 nm is used.
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Figure 5.3. Prism coupling measurements from a TiO2 film a) at 633 nm and b) at
1.53 µm wavelength on a glass substrate. The effective indices of the modes
are shown next to the corresponding dips.
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Figure 5.4. Intensity as a function of distance as measured by the Metricon fiber loss
measurement add-on from the TiO2 films at 633 nm and 1.53 µm wave-
lengths.

The propagation losses for TiO2 were measured using the loss measure-

ment option of the prism coupler. The results are shown in Fig. 5.4. For

the TiO2 film the Metricon bundled software gave values between 2–3.5

dB/cm at 633 nm and 0.8–0.9 dB/cm at 1.53 µm wavelength.

The prism coupling and SE measurements show a good agreement, al-

though some variation could be expected due to slightly different sub-

strate and deposition conditions.

The properties of low temperature TiO2 are strongly dependent on the

deposition temperature and the pulsing times, and are not completely sat-

urating [19]. Figure 5.5 shows the refractive index and growth rate of

TiO2 as a function of temperature. The growth rate is higher at lower

temperatures, and the chlorine content increases as well [19].
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Figure 5.5. Growth rate and refractive index of TiO2 as a function of temperature as mea-
sured by a Plasmos single wavelength ellipsometer at 633 nm wavelength.

5.2 Narrowing silicon slot waveguides with ALD-TiO2

We proposed ALD as a method to narrow slot waveguide geometries in

Publication I. If we start with 180 nm wide rails, 200 nm wide slot, and

220 nm thick Si device layer, we do not have any propagating modes in the

Si waveguide. Figure 5.6 shows a schematic of a slot waveguide, for which

the effective indices as a function of the TiO2 layer thickness d are calcu-

lated in Fig. 5.7. The effective indices of the modes below d = 30 nm are

below the refractive index of buried oxide, which means that the modes

are leaky. Figure 5.8 shows the propagation losses for waveguides with

similar dimensions as measured in Publication III. Two slot waveguides

with similar starting geometries coated with 30 nm and 50 nm thick lay-

ers of TiO2 are shown in Fig. 5.9.

Figure 5.6. Schematic of a cross-section of a silicon slot waveguide coated with an ALD-
TiO2 layer of thickness d.
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Figure 5.7. Effective index of the slot waveguide as a function of the TiO2 layer thickness
d.
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Figure 5.8. Propagation loss as a function of TiO2 layer thickness d.

a) b)

Figure 5.9. Scanning electron microscope (SEM) cross-section images of a silicon slot
waveguides with similar starting geometries ALD-coated with a) 30 nm, and
b) 50 nm thick layers of TiO2. The left rail in image (b) has a slanted cleaving
profile, which distorts the actual geometry.
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5.3 Loss reduction by ALD-TiO2 in silicon waveguides

In the previous section I showed that a weakly guiding or nonguiding

silicon slot waveguide can be turned to a well-guiding one by adding a

conformal layer of ALD-TiO2. In Publication III we show experimentally

that a larger TiO2 cover thickness reduces the loss also when two well-

guiding slot waveguides are compared.

In Section 3.2.5, we showed that the loss coefficient is proportional to

the square of the modal field at the core-cladding boundary ϕ2(d) and also

to the surface roughness σ2 (the constant factor can be taken out of the

Fourier transform of the autocorrelation function and its integral in Eq.

3.35). Figure 5.10 shows the measured propagation losses as a function

of the air slot width and Fig. 5.11 shows the lateral electric field Ex for

the same slot waveguide parameters. The mode field ϕ(d) is proportional

to Ex which is proportional to the air slot width. Ex is slightly stronger

for the case with d = 30 nm if the rail widths wr and slot widths ws after

the coating are kept the same. However, the losses are lower also for the

d = 50 nm and the air slot width ws ≈ 85 nm cases, which have stronger

ϕ(d) than the cases with d = 30 nm and ws ≈ 105 nm, which would suggest

that also the surface roughness is reduced.
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Figure 5.10. Measured propagation loss of well-guiding (neff > 1.55) slot waveguides as
a function of the air slot width remaining after ALD-coating. The legend
specifies the rail widths wr after coating and the coating thicknesses d. The
slot waveguide with thicker coating has lower losses, especially with the
narrow air gaps.
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Figure 5.11. Calculated Ex at the TiO2-air interface in the middle of the slot waveguide
for the same slot waveguide parameters as in Fig. 5.10. The legend specifies
the rail widths wr after coating and the coating thicknesses d.

5.4 Angled sidewalls and filling of slot waveguides with ALD-TiO2

The effect of angled sidewalls on the properties of silicon slot waveguides

was discussed in Publication II. An enhanced vertical confinement was

obtained with certain waveguide parameters. The reduced effective mode

area was shown to enhance nonlinear effects in the waveguide and the

use of ALD in realization of filled slot waveguides optimized for all-optical

functionalities was discussed.

Figure 5.12 shows a completely filled slot waveguide. We were able to

Figure 5.12. SEM image of a cross section of a completely TiO2 filled slot waveguide. The
same chips as in Publication III were used.
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a) b)

Figure 5.13. Four-wave mixing (FWM) measurements from a) a 500 nm wide silicon
strip waveguide and b) a silicon slot waveguide with 230 nm wide rails and
a 160 nm wide slot, both ALD-coated with a 120 nm thick layer of TiO2. The
two peaks at ∼1560 nm and ∼1563 nm are the input wavelengths and the
side-peaks at ∼1557 nm and ∼1565 nm are generated by the FWM effect.
The side-peaks are stronger for higher nonlinearities.

generate and measure four-wave mixing (FWM) in the filled TiO2 waveg-

uides, but as expected the best TiO2 filled silicon slot waveguides showed

less nonlinearity than the best strip waveguides as shown in Fig. 5.13.

This is because χ(3) of TiO2 is smaller than that of silicon, though high for

an oxide (about 50 times higher than of silica [151]).

Nevertheless, because of the relatively high χ(3) and the vanishing non-

linear loss (α2) of TiO2, the slot waveguide is expected to improve the

χ(3)/α2 figure of merit (FOM) for nonlinear applications [152, 153, Publi-

cation II], although it is still smaller than for the best nonlinear organic

materials. Unfortunately, the limitations in the grating coupler design

did not allow us to carry out loss measurements for the completely TiO2

filled slot waveguides, and we were not able to experimentally measure

the χ(3)/α2 figure of merit for these waveguides. A higher FOM might

be realized by combining the narrowing and loss reduction effects of an

ALD-TiO2 layer with a highly nonlinear organic filling material.

5.5 Absorbing and wide-band resonant waveguide gratings

In Publication IV, it was shown that ALD-TiO2 is a suitable material for

fabricating high-quality resonant waveguide gratings. We introduced res-

onant absorbing metal-dielectric gratings, where metallic wires are em-

bedded inside a titanium oxide grating in Publication V. The structure,

as shown in Fig. 5.14, was made by two separate ALD coating steps, with
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fabricate. The substrate is fused silica SiO2 and the dielectric part of the grating is titanium
dioxide TiO2. The metal wires are either gold or aluminum depending on the design.

Fig. 1. Absorbing grating geometry. Metal inside TiO2 is either gold or aluminum. The
period of the grating is d, the line width is l, the width and the height of the metal wire
are D1, and D2, respectively, the height of the bottom TiO2 layer is h1, the height of the
TiO2 line is h2, and the distance between metal wire from the top of the grating is h3. The
parallel (‖) polarization indicates light with the electric field in the direction of the y-axis.
The perpendicular (⊥) polarization indicates light with the electric field in the direction of
the x-axis.

The objective in the design was to obtain LSP resonance at the same wavelength with guided-
mode resonance because it is assumable that combined resonances would lead to highest ab-
sorption. The resonance condition for LSP was approximated from [11]

ℜ{εmetal}
εdielectric

= −1, (1)

which represents the LSP resonance condition for infinitely long cylinder. The parameter
ℜ{εmetal} indicates the real part of the permittivity of the cylinder and εdielectric the permit-
tivity of the surrounding medium. The spectral position of the resonance, however, shifts to-
wards the longer wavelengths with increasing particle size [12]. This red-shift occurs also if
there are several cylinders close to each other which enables the coupling between the localized
modes [13–15].
Three structures for two different wavelengths were optimized. The first structure was opti-

mized for HeNe laser operating at the wavelength of 632.8 nm. The other two structures were
designed for the wavelength of 532 nm that corresponds to the wavelength of diode-pumped
solid state (DPSS) laser and frequency-doubled Nd:YAG laser.
In the case of the structure that was designed for 632.8 nm, we chose gold as a material for the

metal wires because the condition in Eq. (1) is fulfilled at 560 nm which is expected to redshift
due to the coupling of the modes. For the other two structures designed for the wavelength
532 nm, we obtained highest absorption for aluminum as a metal.
The optimization was performed by searching the grating parameters that resulted in highest

absorbtion for the parallel or the perpendicular component. The parameters obtained in the
optimization of the gold grating are d = 419.3 nm, D1 = D2 = 94 nm, h1 = 188.7 nm, h2 =
94 nm, h3 = 50.4 nm, and l = 194.8 nm. The two designs containing aluminum are denoted by
A and B. The optimized grating parameters for the design A are d = 244 nm, D1 = 125 nm,
D2 = 86 nm, h1 = 84 nm, h2 = D2 = 86 nm, h3 = 49 nm, and l = 223 nm. The corresponding

#136219 - $15.00 USD Received 7 Oct 2010; revised 10 Nov 2010; accepted 12 Nov 2010; published 10 Dec 2010
(C) 2010 OSA 20 December 2010 / Vol. 18, No. 26 / OPTICS EXPRESS 27272

Figure 5.14. Schematic of the grating geometry. The structure is fabricated by first ALD-
depositing the bottom TiO2 layer, then depositing and patterning the metal,
and finally depositin the second ALD-TiO2 layer. [From Publication V]

the metal deposition and patterning step in between. The guided-mode

resonance was shown to yield an almost total absorption of one polariza-

tion component in a thin structure, as the structure greatly enhances the

absorption in localized surface plasma resonance. The structures have

potential to function as filters or polarizing beamsplitters.

Semi-wideband resonant waveguide gratings for visible wavelengths we-

re realized using the high refractive index and low absorption of the amor-

phous ALD-TiO2 films in Publication VI. A very good agreement with the

theoretical predictions and the experimental results was shown. The res-

onance grating provides approximately 20–30 nm bandwidth with over

90% reflectance at the visible wavelengths. These kind of reflectors may

be useful in applications that make use of wider bandwidth light sources

like LEDs.

5.6 Resonant waveguide gratings from an azobenzene polymer

We fabricated resonant waveguide gratings (RWG) by ALD-coating pho-

toinduced surface-relief gratings on P4VP(OH-DMA)0.33 azobenzene poly-

mer complex [1, 8]. The grating fabrication process is explained in Section

4.2. An example of such a grating on a Si substrate is shown in Fig. 5.15.

The waveguiding TiO2 layer was deposited at 80 ◦C on the surface-relief

grating using ALD. At higher temperatures, the surface-relief grating

47



Results

Figure 5.15. SEM image of a cross-section of a sinusoidal resonant-waveguide grating
made by coating a photoinduced surface-relief grating with ALD-TiO2.

would have been erased through thermal effects as shown in Fig. 5.16.

The TiO2 layer improved the thermal performance, and after the coat-

ing the diffraction efficiency was stable up to 200 ◦C compared to 90 ◦C

before the ALD. Some cracks were formed onto the TiO2-coated grating

upon heating over 90 ◦C, but they didn’t affect the diffraction efficiency.

Instead, the efficiency improved probably because the refractive index of

the TiO2 layer rises upon heating.

Figure 5.17 shows the transmittance of an azobenzene RWG with a pe-

riod of approximately 970 nm, a depth of 450 nm, and a 340 nm thick

ALD-TiO2 layer, on a glass substrate. The sharpest resonance peak is

for the TE polarization at 1650 nm wavelength, where the transmittance

reaches a value of only 0.4 %. No clear absorption is seen in the trans-

mittance curve through the as-spinned polymer film above the absorbing

edge at ∼550 nm wavelength, so the non-transmitted light is expected to

be almost completely reflected from the grating.
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Figure 5.16. Normalized diffraction efficiency as a function of temperature for a photoin-
duced grating made on P4VP(OH-DMA)0.33, with and without ALD-TiO2

overlayer.
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Figure 5.17. Transmittance for the TE and TM polarizations in a direct incidence
through an azobenzene RWG with approximately 970 nm period, 450 nm
depth, and a 340 nm thick ALD-TiO2 layer on a glass substrate.
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6. Summary and outlook

This study focused on the optical properties of atomic layer deposited

(ALD) amorphous titanium dioxide (TiO2) and its application in photonic

devices, namely waveguides and diffraction gratings. The optical and

waveguiding properties of amorphous TiO2, deposited at a relatively low

temperature of 120 ◦C, were studied and it was found to be a suitable

material to narrow silicon slot waveguides and also to reduce the prop-

agation losses. The optical quality of amorphous TiO2 was proved to be

good enough to fabricate high-quality resonant waveguide gratings.

The refractive index of amorphous ALD-TiO2, which was deposited at

120 ◦C temperature, was 2.27 at a ∼1.55 µm wavelength and the losses

of TiO2 slab waveguides on glass at the same wavelength were below

1 dB/cm [Publication IV]. Using ALD-TiO2 for narrowing down slot waveg-

uides was introduced in Publication I. The idea proved to be useful as the

silicon slot waveguides fabricated in Publication III did not work with-

out a coating. Furthermore, a reduction of losses in silicon strip and slot

waveguides by the ALD-TiO2 coating was shown. The effects of angled

sidewalls, a result of the etching, were studied and the complete filling of

slot waveguides with TiO2 was proposed in Publication II. A four-wave

mixing signal was measured for completely TiO2-filled slot waveguides

and TiO2-coated strip waveguides. An even higher nonlinear performance

is expected if a silicon slot waveguide narrowed with ALD-TiO2 is filled

with a highly nonlinear organic material.

ALD-TiO2 was also used to successfully fabricate novel absorbing polar-

ization selective resonant gratings [Publication V], and semi-wide band-

width resonant waveguide reflectors [Publication VI]. A novel way of fab-

ricating a resonant waveguide grating by applying an ALD-TiO2 layer on

a holographically written surface relief grating on an azobenzene polymer

complex was introduced and the initial results are promising.
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Low temperature ALD-TiO2 can be used as an alternative to more com-

monly used chemical vapor deposited (CVD) silicon nitride (Si3N4) in many

optical applications and the growth mode of ALD can also enable smart

fabrication strategies and completely new kind of structures. The TiO2

ALD-grown in 120◦ has a higher refractive index of ∼2.4 than ∼2.0 of

Si3N4 at visible wavelengths, and can thus provide higher refractive in-

dex contrast than the more commonly used Si3N4 in waveguides working

at visible wavelengths.

This study has only touched the surface of what ALD-grown materi-

als might provide in waveguiding applications. The studied amorphous

ALD-TiO2 material showed an excellent performance in all the studied

applications, and will very probably see use in various photonic devices

in the future. I am expecting many more interesting publications on ap-

plication of ALD-TiO2 in fabricating waveguides, gratings, and other pho-

tonic devices on various substrates in the future. Interesting results are

also expected when ALD-films are used in tuning silicon waveguides and

in combination with the silicon-organic-hybrid platform. The low growth

temperature of ALD-TiO2 allows the growth of waveguides on top of pro-

cessed silicon microchips, and it might be a suitable material for building

the optically interconnected microchips of the future.
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