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Abstract. In medical near-infrared spectroscopy (NIRS), movements of the subject often cause large step changes
in the baselines of the measured light attenuation signals. This prevents comparison of hemoglobin concentration
levels before and after movement. We present an accelerometer-based motion artifact removal (ABAMAR) algo-
rithm for correcting such baseline motion artifacts (BMAs). ABAMAR can be easily adapted to various long-term
monitoring applications of NIRS. We applied ABAMAR to NIRS data collected in 23 all-night sleep measurements
and containing BMAs from involuntary movements during sleep. For reference, three NIRS researchers indepen-
dently identified BMAs from the data. To determine whether the use of an accelerometer improves BMA detection
accuracy, we compared ABAMAR to motion detection based on peaks in the moving standard deviation (SD) of
NIRS data. The number of BMAs identified by ABAMAR was similar to the number detected by the humans, and
79% of the artifacts identified by ABAMAR were confirmed by at least two humans. While the moving SD of NIRS
data could also be used for motion detection, on average 2 out of the 10 largest SD peaks in NIRS data each night
occurred without the presence of movement. Thus, using an accelerometer improves BMA detection accuracy in
NIRS. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3606576]
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1 Introduction
Medical near-infrared spectroscopy (NIRS) is a noninvasive
technique for estimating hemodynamic variables from atten-
uation changes of 650 to 950-nm light in tissue, including con-
centration changes of oxygenated (�[HbO2]) and deoxygenated
(�[HbR]) hemoglobin.1, 2 Whereas positron emission tomogra-
phy exposes tissue to ionising radiation, and functional magnetic
resonance imaging requires the subject to maintain the same po-
sition throughout the study, NIRS has no risks involved with
long-term use, and tolerates small movements of the subject.
Combined with high temporal resolution, portability, and rel-
atively low cost of equipment, these features make NIRS the
only functional imaging modality currently suitable for long-
term monitoring of cerebral oxygenation and hemodynamics.3

Although not directly disturbed by movement, the NIRS mea-
surement is sensitive to the quality of the tissue–optode contact.4

Large or sudden movements often disturb the contact, so that
either the position of the optode relative to skin changes or hair
enters/exits the space between optode and tissue. This may result
in either transient noise in the NIRS signal, such as spiking, or if
the new optode position persists, a signal baseline change. Tran-
sient noise mainly causes problems in studying stimulus-evoked
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responses, whereas baseline discontinuities typically prevent
tracking �[HbO2] and �[HbR] over time periods of tens of
minutes or longer.

Human detection of motion artifacts in NIRS data is time con-
suming and does not allow for correcting the errors. Moreover,
discarding artifact-affected data is wasteful, and may even be un-
feasible if the study itself requires the subject to move. Analysis
of NIRS data would therefore greatly benefit from an automated
method for identifying and correcting motion artifacts in the data
while leaving artifact-free data untouched. Such methods have
been introduced before for removing transient motion artifacts
from cerebral activation measurements,5 continuous sinusoidal
motion artifacts resulting from breathing or nodding,6, 7 and any
physiological signal changes and artifacts that affect all mea-
surement channels.8, 9 One novel approach, the motion artifact
reduction algorithm (MARA) by Scholkmann et al., uses the
moving standard deviation (SD) of NIRS signals to detect vari-
ous types of motion artifacts.10 However, most of these methods
are founded on identifying motion artifacts solely based on their
influence on NIRS data, and concentrate on transient artifacts
instead of baseline changes.

In this study, we describe a motion artifact identification and
correction method that is based on directly measuring the move-
ment of the subject. Our algorithm for baseline motion artifact
removal (ABAMAR) uses combined NIRS and accelerometer
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data to identify motion artifacts that change the baseline of the
NIRS amplitude signal. We apply the method to all-night NIRS
measurements of sleeping subjects, and demonstrate that it al-
lows tracking hemodynamic changes over sleep stage transitions
that are often associated with movement.

Although no gold standard exists for motion artifact iden-
tification and removal from NIRS signals, visual interpretation
is a fundamental, if laborious, approach to data classification.
Therefore, in order to validate ABAMAR’s performance, we
compare its results to motion artifacts detected independently
in the same data by three NIRS researchers. This is, to our
knowledge, the first NIRS study comparing extensively the re-
sults of manual and automatic classification of motion artifacts
in long-term monitoring.

2 Materials and Methods
2.1 Measurements
The data in this study were collected in a series of 30 all-night
NIRS measurements on 13 healthy volunteers (9 males, 4 fe-
males, mean age 26 years, range 21 to 32). The study plan was
approved by the ethical committee of the Helsinki University
Central Hospital. The subjects were asked to sleep the whole
night (approximately from 11 p.m. to 6:30 a.m.) as normally as
possible until they were awoken by the researcher monitoring
the measurement. Each subject was measured on at least two
nights to reduce the influence of the unfamiliar surroundings on
sleep quality; however, no such influence was observed when
comparing sleep time to total measurement time on the first and
second measurement night.

The measurement setup included NIRS, an accelerometer
attached to the NIRS probe, polysomnography consisting of
electroencephalography (EEG), electrooculography, and elec-
tromyography, and a fingertip pulse oximeter for recording
arterial oxygen saturation and pulse (Fig. 1). Based on the
polysomnography recording, a neurophysiologist scored the

Fig. 1 Positioning of the NIRS probe and accelerometer on the fore-
head, and the accelerometer measurement axes. Placements of the
polysomnography electrodes and pulse oximeter are also illustrated.

sleep into stages according to the rules by Rechtschaffen and
Kales, so that the recording was divided into 30 s epochs desig-
nated as S1, S2, S3, S4, rapid eye movement (REM), wake, or
movement time (MT).11 The MT designation is used when mo-
tion artifacts in the polysomnography signals prevent sleep stage
scoring. Since movements of the subjects were not restricted,
also the NIRS data were expected to contain motion artifacts
from movements during sleep.

Seven out of the 30 measurements were discarded due to
problems in NIRS or EEG data acquisition, leaving 172 h of
NIRS data in the remaining 23 measurements for analysis. The
measurement duration was 7.5 ± 0.9 h (mean ± SD) per night.

2.2 NIRS Instrumentation
A frequency domain NIRS device was used for the
measurements.12, 13 The NIRS probe had one light source fiber
and three detector fiber bundles at source-detector distances of 1,
4, and 5 cm, and was placed on the right side of the forehead just
below the hairline (Fig. 1). During measurement, light pulses at
685 and 830 nm were time-multiplexed through the source fiber
so that the effective sampling rate of �[HbO2] and �[HbR] at
the three detector locations was approximately 10 Hz.

The NIRS probe was secured to the head with an elastic strap.
The end of each fiber was coupled to a reflecting prism terminal,
so that the fibers could be placed parallel to the surface of the
head and rest on the pillow (Fig. 2). Each fiber was attached to
the scalp with adhesive tape to further reduce the sensitivity of
the skin–optode contact to motion.

�[HbO2] and �[HbR] were estimated using the modified
Beer–Lambert law:14

(
�[HbO2]

�[HbR]

)
= (αTα)−1αT

d

(
�A685nm/DPF685nm

�A830nm/DPF830nm

)
, (1)

where the 2×2 matrix α contains the specific extinction coeffi-
cients of HbO2 and HbR at 685 and 830 nm, d is the geometrical
distance between light source and detector, �Ai is the logarith-
mic light attenuation change at wavelength i , and DPFi is the
differential pathlength factor characterizing the average path-
length of photons in tissue. Attenuation changes due to light
scattering and other chromophores than HbO2 and HbR are typ-
ically considered negligible in medical NIRS.14

Although the frequency domain technique allows estimating
the photon pathlength individually for each subject, technical
difficulties in obtaining the necessary phase data prevented this
in 10 measurements. Thus, we estimated average DPF values
(6.16 for 685 nm and 5.84 for 830 nm) from the available phase

Fig. 2 Design of the prism terminal at the end of each optical fiber and
fibre bundle.
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data and used these values for all subjects for consistency. Values
for α were obtained from the literature.15

2.3 Accelerometer
The accelerometer was manufactured by casting two SCA600-
C28H1G MEMS acceleration sensors (VTI Technologies,
Finland) inside a 20×30×8 mm resin block. The sensors were
oriented to measure acceleration in two orthogonal directions,
x and y, parallel to the head surface (Fig. 1). The accelerome-
ter was designed to interface with the invasive blood pressure
port of an E-PRESTN module of the S/5 patient monitor (GE
Healthcare, Finland). The blood pressure waveform can be col-
lected from the patient monitor at a 100-Hz sampling frequency
and 0.01-mmHg resolution. The accelerometer receives a 5-V
supply voltage from the module, and the output voltage from
each sensor is scaled so that the measured acceleration is given
by

ai = Pi − 150 mmHg

150 mmHg
· g (2)

where ai is the acceleration along axis i = x, y, Pi is the
recorded blood pressure value, and g is 9.81 m/s2.

Instrumental noise of the sensor component at the measure-
ment band is 0.4 mVrms at output sensitivity of 1.2 V/g. This
corresponds to 3.3 × 10−4 g in acceleration. Typical physiolog-
ical noise from breathing movements and pulse was measured
to correspond to 1.6 × 10−3 g.

The accelerometer signals were recorded with a laptop
computer connected to the S/5 monitor. A separate computer
recorded the NIRS data. The two computers were synchronized
manually, with an error margin of approximately 0.2 to 0.3 s.
Since there was no practical advantage from having a much
higher sampling frequency for the accelerometer than for NIRS
data, the accelerometer signals were downsampled by a factor
of 10 to reduce the computational load of processing several
nights of data.

2.4 ABAMAR
2.4.1 Detecting motion

When the subject is at rest, ax and ay consist of a baseline de-
termined by the alignment of the sensor in Earth’s gravitational
field, signal fluctuation primarily from breathing, and random
noise [Figs. 3(a) and 3(b)]. If the signal change between two con-
secutive samples exceeds a level equivalent to 1.3 g/s on either
accelerometer channel, ABAMAR flags the corresponding time
interval Tm as a motion event [Figs. 3(c) and 3(d)]. Motion de-
tected within 20 s of a preceding motion event is considered part
of the preceding event, extending Tm accordingly. If the duration
of Tm is less than 1 s, the event is not counted as motion. The
minimum thresholds for signal change and event duration were
chosen based on visual inspection of the accelerometer signals
so that breathing and very small movements are eliminated.

2.4.2 Identifying baseline shifts

For each motion event and NIRS channel, the NIRS amplitude
baseline A is examined before and after Tm . The baseline is
defined as the mean amplitude over 15 s, so that Abefore and

Fig. 3 (a) A typical 100-s segment of ay during sleep, showing move-
ment at approximately 40 to 50 s; (b) close-up of the first 25 s of
ay, demonstrating noise and respiratory fluctuation; (c) the signal after
noise thresholding; and (d) difference of consecutive samples of the
thresholded signal, indicating movement.

Aafter are calculated for the time periods Tbefore (20 to 5 s before
Tm) and Tafter (5 to 20 s after Tm), respectively. The 5 s margin is
left around Tm to ensure that the baseline is not affected by the
motion. If |Abefore − Aafter| > 2.6×sbefore, where sbefore denotes
the SD of amplitude during Tbefore, a baseline shift is identified.
The empirically chosen threshold of 2.6×sbefore corresponds to
the 99th percentile around the mean for normally distributed
data.

2.4.3 Removing baseline shifts

If a baseline shift is identified during the motion event on at least
two NIRS detector channels, or at both light wavelengths on any
one channel, it is considered to result from a motion artifact.
To correct the artifact, the amplitude baseline preceding the
event is imposed on all channels and wavelengths by multiplying
amplitude values after Tm by Abefore/Aafter. Amplitude values
between Tbefore and Tafter are set to Abefore to remove any transient
motion artifact.

2.5 Validation of ABAMAR
2.5.1 Validation against human classifiers

To validate motion artifact identification with ABAMAR, three
NIRS researchers independently viewed the amplitude and ac-
celerometer data in 15 min blocks, and marked the beginning and
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end of what they considered to be motion-artifact-related base-
line changes. Each researcher had a background in biomedical
engineering and signal processing, and at least 5 yr of experi-
ence in collecting and analyzing NIRS data in monitoring and
evoked response studies. Due to the lack of a gold standard in
NIRS motion artifact detection, no strict criteria for motion ar-
tifacts were defined to avoid biasing the classification toward
the criteria used by ABAMAR. The final interpretation of what
constitutes as a baseline change by motion artifact (as opposed
to transient artifacts and physiological changes) was left to the
intuition of each human classifier (HC).

Student’s paired t-test was used for comparing the average
number of artifacts per night identified by different classifiers,
and student’s unpaired t-test was used for comparing the av-
erage duration of all artifacts identified. The level of statistical
significance was chosen as p < 0.01. If an artifact identified
by ABAMAR overlapped in time with artifacts identified by
at least two HCs, they were registered as true positives. Any
other artifacts identified by ABAMAR were registered as false
positives.

2.5.2 Validation against MARA

To determine whether directly measuring movement of the
subject improves motion artifact identification, accelerometer-
based motion detection with ABAMAR was compared to NIRS-
data–based motion detection with MARA.10 The motion detec-
tion algorithm for MARA was implemented with a window size
of 51 samples, or approximately 5 s for calculating the mov-
ing SD of the 4-cm �[HbO2] signal. This corresponds to the
approach Scholkmann et al. used for baseline shift artifacts.10

In MARA, a user-determined threshold for the moving SD
of NIRS data is required for identifying motion artifacts. Par-
ticularly in long measurements, the baseline level of the SD of
�[HbO2] changes over time due to physiological variation and
changes in the signal-to-noise ratio during the measurement.
Since manually adjusting the threshold for SD baseline changes
is impractical for large datasets and may introduce observer
bias, the 10 highest SD peaks from each night were analyzed
to determine whether they coincided with motion detected by
ABAMAR, regardless of whether the peaks were associated with
NIRS amplitude baseline change. This approach was based on
the assumption that NIRS data would be affected by motion at
least 10 times per each night, since people regularly change their
position while asleep. SD peaks within 5 s of each other were
counted as a single peak.

2.5.3 Stationarity of the physiological baseline
during motion

ABAMAR is based on the assumption that any physiologi-
cal changes in the signal baseline between Tbefore and Tafter

are negligible. To quantify the possible error resulting from
this assumption, we determined for each incident of move-
ment identified by ABAMAR the change in amplitude rel-
ative to the SD of amplitude before movement, |�Arel|
= |Aafter − Abefore|/sbefore. The median value of |�Arel| over
both measurement wavelengths at the 4-cm channel was com-
pared between situations where ABAMAR detected a mo-
tion artifact and where movement was detected but no motion
artifact.

Table 1 Frequency and duration of motion artifacts. Data in the sec-
ond and third rows are given as mean ± SD.

HC1 ABAMAR HC2 HC3

Detected artifacts 324 384 456 736

Artifacts per night 14 ± 7 17 ± 9 20 ± 9 32 ± 17

Duration of artifact 20 ± 13 s 17 ± 20 s 46 ± 23 s 26 ± 14 s

3 Results
3.1 Identifying Motion Artifacts
The frequency and duration of motion artifacts as detected by
ABAMAR and the HCs are given in Table 1. The number of
motion artifacts per night detected by ABAMAR did not signifi-
cantly differ from HC1 or HC2 (p < 0.01). However, differences
between HC1, HC2, and HC3 were statistically significant, as
well as the difference between ABAMAR and HC3. The average
duration of artifacts was different between all classifiers except
ABAMAR and HC1 (p < 0.01).

Of the 384 artifacts detected by ABAMAR, 304 (79%) were
registered as true positive and 80 (21%) as false positive. For
comparison, 78% of artifacts identified by HC1 were identified
by both other HCs. This proportion naturally declined as the
total number of detected artifacts increased, being 53% for HC2
and 34% for HC3. On the other hand, the proportion of artifacts
not verified by at least one HC was 8% for ABAMAR, and 6, 11,
and 39% for the three humans. Figure 4 shows motion artifact
identification agreement between all four classifiers.

In addition to the data in Table 1, ABAMAR also detected
on average 14 ± 16 instances of motion per night that were not
associated with amplitude baseline change. The total number
of ABAMAR-detected artifacts and nonartifact motion ranged
from 2 to 70 per night, and exceeded 10 on all but one night.
However, of the 10 highest SD peaks for each night detected by
MARA, 47% did not coincide with motion detected by ABA-
MAR. When allowing for a margin for coincidence so that SD
peaks within 5, 10, and 15 s of ABAMAR-detected motion were

Fig. 4 The number and proportions of each classifier’s artifacts that
were verified by other classifiers.
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Fig. 5 (a) NIRS amplitude signals during a typical night; (b) the same
signals after removing motion artifacts with ABAMAR; (c) after remov-
ing both motion artifacts and baseline drift; and (d) ax and ay. The
amplitude signals have been scaled so that they do not overlap.

attributed to movement, the percentage was 24, 21, and 20%,
respectively.

3.2 Removing Baseline Change Artifacts
with ABAMAR

Figure 5 shows typical results from applying ABAMAR to NIRS
amplitude data. These data, as well as all NIRS data in subse-
quent figures, were acquired using the 4-cm detector. Prominent
step discontinuities in amplitude signals at both wavelengths
[Fig. 5(a)] that coincide with large changes in the accelerometer
signals [Fig. 5(d)] are corrected by ABAMAR [Fig. 5(b)]. The
downward slope of the remaining amplitude baseline is most
likely caused by instrumental drift. In Fig. 5(c), an elliptic low-
pass filter with passband at 0.2 mHz and stopband at 0.4 mHz is
used for removing this drift.

Figure 6 shows how a baseline shift caused by movement
during sleep stage transition affects �[HbO2] and �[HbR]. The
subject is initially in REM sleep, but awakens for a short pe-
riod before entering S2 sleep. The short awakening is accompa-
nied by movement, causing a step discontinuity in �[HbO2] and
�[HbR]. The original data thus imply that the sleep stage transi-
tion leads to a large decrease in �[HbO2] and �[HbR], whereas
data corrected with ABAMAR suggest that both �[HbO2] and
�[HbR] stay relatively constant after the termination of REM
sleep.

In some cases, relatively rapid changes in �[HbO2] and
�[HbR] baseline during movement may be attributed to phys-
iological changes. Figure 7 shows a case where step increases
in �[HbO2] coincide with motion during short arousals. The

Fig. 6 Hemoglobin concentration changes (a) without and (b) with
ABAMAR; (c) ax and ay from the same period; and (d) hypnogram
showing transition from REM to S2 sleep. The zero levels of �[HbO2]
and �[HbR] have been chosen to avoid overlapping of the two curves,
and �[HbR] has been multiplied by two for graphical clarity. Time is
relative to midnight. ABAMAR produces constant values for �[HbO2]
and �[HbR] for approximately 30 s around the motion artifact.

increases are comparable in magnitude to physiological fluc-
tuation and are followed by a gradual return to the preceding
baseline within approximately 5 min. However, they can also
represent motion artifacts where the optode–tissue coupling is
temporarily disturbed but returns to the previous state over time.

Both ABAMAR and the HCs typically counted as artifacts
those events where the step discontinuity was large and rapid
compared to surrounding physiological changes, and the new
concentration level was sustained for at least several minutes.
Such changes were sometimes followed by another motion arti-
fact that returned the concentration baseline to the original level.
Figure 8(a) shows such a case where the new concentration base-
line after motion artifact persists for a period of approximately
20 min, and then returns to the preceding level following an-
other instant of movement. The accelerometer signal baselines
[Fig. 8(c)] show that the artifacts in question most likely result
from the subject first changing his head position and later re-
turning to the original position. ABAMAR successfully removes
both motion artifacts [Fig. 8(b)].

3.3 Stationarity of the Physiological Baseline
During Motion

ABAMAR detected, in total, 1274 incidents of movement, 384
of which were labeled as artifacts. The median value of |�Arel|
for the 4-cm channel was 5.5 for motion artifacts, 0.74 for
nonartifact movement, and 1.4 when both types of incidents
were counted. For comparison, the median values of |�[HbO2]|
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Fig. 7 An example illustrating the difficulty of determining whether
step changes in hemoglobin concentration are caused by motion arti-
facts or physiological changes. Within the time window shown, ABA-
MAR identified no motion artifacts, while HC1, HC2, and HC3 identi-
fied 1, 3, and 6 artifacts, respectively.

and |�[HbR]| for nonartifact movement were 0.50 μM and
0.15 μM, respectively.

4 Discussion
4.1 Motion Artifact Correction in Literature
Motion-related amplitude baseline changes are present in al-
most all NIRS measurements, and they complicate monitoring
hemoglobin concentration changes over long time periods. The
primary method for NIRS motion artifact reduction is careful
experiment design, e.g., minimizing movement of the subject
and ensuring that the optodes are attached firmly to the skin.16, 17

However, motion artifacts cannot be completely eliminated from
sleep, critical care, operation room, or several other long-term
physiological measurements because of the involuntary nature of
movement in these situations. Although our sleep measurement
probe was designed to be as rigid as possible without producing
excessive discomfort, small movements of the optodes could not
be prevented, and sometimes the whole probe came off during
the night.

Most approaches to automatic motion artifact identifica-
tion and/or correction in NIRS have concentrated on remov-
ing transient motion artifacts from brain activation measure-

Fig. 8 A typical example of the correlation between head position and
concentration baseline. Note that the first motion artifact is followed
by a physiological increase in �[HbO2], which returns to the previous
level within the 20 min period. This physiological change is most likely
related to a sleep stage transition as demonstrated by the hypnogram.

ments. For example, Cui et al. observed that while �[HbO2]
and �[HbR] are strongly negatively correlated during neuronal
activation, motion artifacts tend to cause a strong positive corre-
lation between the two.5 Under this condition, they developed a
correlation-based signal improvement method for NIRS motion
artifact reduction. However, the assumption of strong negative
correlation appears to be primarily valid in neuronal activation
studies and for short time periods, where background cerebral
hemodynamic activity can be considered constant. For exam-
ple, an increase in total cerebral blood volume could increase
�[HbO2] without decreasing �[HbR].

Several studies have used adaptive filtering to remove both
motion artifacts and physiological interference from NIRS
data.18–20 These are typically evoked response studies, where
a short-distance source–detector channel is used for modeling
the interference in a long-distance channel, and the performance
of the filtering method is quantified by, e.g., comparing contrast-
to-noise ratios of the cerebral activation signal before and after
filtering. Again, while this approach is appropriate for cerebral
activation studies where the hemodynamic response is short
and independent from systemic hemodynamics, there are many
monitoring applications where cerebral and systemic hemody-
namics changes are tracked over long time periods and may
exhibit parallel behavior. For example, hypercapnia often leads
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to an increase in �[HbO2] in both scalp and the brain, and sleep
stage transitions are associated with changes in both systemic
and cerebral hemodynamics.21–23 In these cases, adaptive filter-
ing may lose valuable data on cerebral hemodynamics. Also,
if the tissue–optode contact is disturbed only in a single long-
distance detector, adaptive filtering may miss the artifact.

While adaptive filtering methods are intended for removing
physiological interference as well as both transient and baseline
motion artifacts over the whole time period recorded, ABAMAR
identifies and removes only baseline motion artifacts and leaves
the signal otherwise untouched. The different domains of appli-
cation and the lack of a known, quantifiable cerebral response in
sleep data make comparison of ABAMAR with adaptive filter-
ing methods in motion artifact reduction impossible. However,
ABAMAR can conceivably be used as a preprocessing stage be-
fore adaptive filtering, or for tomographic reconstruction meth-
ods that assume that the signal baseline is continuous. Assessing
the potential benefit of ABAMAR to separating systemic and
cerebral hemodynamics with other methods warrants a separate
study.

Unlike adaptive filtering algorithms, the MARA algorithm
is explicitly intended for identifying motion artifacts based
on the moving SDs of �[HbO2] and �[HbR].10 MARA also
corrects baseline change artifacts somewhat similarly to ABA-
MAR. These features make it the most appropriate NIRS-data–
based motion artifact correction algorithm for comparison with
ABAMAR.

MARA can also be used for removing transient motion ar-
tifacts while preserving any physiological changes. This is in
practice accomplished by making a priori assumptions about
the frequency content of the motion artifact and approximating
it with a spline function. However, this method is not capable of
separating artifacts from physiological changes that occur on the
same time scale, so the concentration estimates may be, to some
extent, unreliable even after the correction. Another practical
issue is that the use of several signal- and artifact-dependent
parameters make algorithms such as MARA cumbersome for
processing large amounts of data. This is particularly true when
the algorithm and end result are not controlled by a NIRS signal
processing expert. In monitoring applications, artifact identifica-
tion similar to ABAMAR, i.e., by a single data-based threshold
for the SD of the amplitude or concentration signals would be a
more suitable approach.

4.2 Benefit from Using an Accelerometer
to Detect Motion

Since nearly all existing methods for motion artifact removal
rely solely on NIRS data, it is important to determine whether
the accuracy of artifact detection could be improved by directly
measuring motion. We compared motion artifacts detected with
MARA’s moving SD criterion against motion detected by the
accelerometer. The results in Table 1 show that NIRS data can be
expected to be affected by movement at least 10 times per night,
so if motion causes peaks in the moving SD that are much larger
than those from physiological changes, the 10 highest SD peaks
should be associated with movement. However, comparison of
the SD peaks against accelerometer data indicates that, on aver-
age, 2 of the 10 highest peaks for each night were most likely
not associated with motion. Thus, if motion artifact detection

relies solely on the properties of NIRS signals, distinguishing
motion artifacts from other signal changes is prone to error. Of
course, NIRS-data–based methods may be able to also detect
artifacts caused by disturbances in the tissue–optode coupling
that are not registered by the accelerometer. However, determin-
ing the frequency of such incidents in the data and thus their
significance to data interpretation is difficult.

4.3 Accuracy of Artifact Detection
We compared artifact identification by ABAMAR to the per-
formance of three humans to provide an independent measure
of detection accuracy. Manual inspection has been regarded su-
perior to automated algorithms in distinguishing between phys-
iological signals and artifacts in NIRS.3 Moreover, since any
automated algorithm inevitably reflects the programmer’s in-
terpretation of data, we believe that human verification is the
best available measure for motion artifact detection accuracy.
Although there was considerable variance in the number of ar-
tifacts detected by the three humans, it appears that this can be
largely attributed to sensitivity to the size of the artifact. In other
words, the results can be interpreted so that HC1 marked only
large or otherwise unambiguous artifacts, while HC3 marked
even relatively ambiguous ones. Differences in artifact duration
may be explained by a tendency to classify successive baseline
changes as a single artifact, or to leave a large margin between
the artifact and unaffected data.

The agreement between the HCs can be compared to inter-
and intraclassifier reliability in sleep scoring, where visual in-
spection of electrophysiological signals is used for assigning
sleep into stages based on formal criteria. A meta-analysis has
shown that both the inter- and intraclassifier agreement can range
approximately from 20 to 90% depending on the sleep stage and
study, with approximately 70 to 90% being the norm.24 Although
there are differences between motion artifact identification and
sleep stage scoring, it can be concluded that even visual inspec-
tion should not be expected to lead to near-perfect agreement
between classifiers. Therefore, we used a majority vote crite-
rion, so that artifacts detected by ABAMAR were accepted only
if at least two of the three HCs identified the event as artifact.
Under this criterion, ABAMAR agreed with the humans on a
core set of approximately 300 artifacts, representing 79% of all
artifacts detected by ABAMAR and comparable to interclassi-
fier agreement between the HCs. Thus, ABAMAR appears to be
generally capable of similar accuracy in baseline motion artifact
detection as a human classifier.

We also investigated the effects of adjusting the amplitude
threshold and the required number of channel–wavelength com-
binations on motion artifact identification with ABAMAR (data
not shown). Increasing either of these parameters decreased the
number of artifacts detected, but also slightly increased the ratio
of true positives to false positives. The combination of parame-
ters presented in this study should be applicable in most long-
term monitoring applications independent of the measurement
setup.

4.4 Features of the Algorithm
The amplitude baseline change caused by a motion artifact re-
sults from a change in light attenuation at the tissue–optode
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coupling. As long as the amplitude level stays well above the
noise level of the instrumentation, the artifact mathematically
corresponds to multiplicative scaling of the amplitude signal.
Therefore, the baseline correction made by ABAMAR (scal-
ing the amplitude back to the level preceding the artifact) does
not affect the magnitude or contrast of physiological changes.
Both the artifact and the correction correspond to addition of a
negative or positive constant term to �[HbO2] and �[HbR].

ABAMAR uses a 15-s time window to estimate the ampli-
tude baseline before and after movement. This time window
should, in our opinion, be sufficient to minimize the effect of
pulse and respiratory oscillations on the baseline, while using
a longer time window would have increased the risk of slower
hemodynamic changes affecting the baseline. In addition, a 5-s
margin was set around movement detected by the accelerom-
eter to ensure that the estimated amplitude baseline is free of
motion artifacts. The baseline correction itself is based on the
assumption that any physiological changes that may occur in the
signal baseline during the movement are negligible. Our anal-
ysis of periods containing nonartifact movement supports this
assumption, showing that such physiological baseline changes
are typically smaller than the SD of the signal, and ABAMAR
considerably reduces baseline tracking errors caused by motion
artifacts.

ABAMAR ignores any motion artifacts when there is no
amplitude baseline change, and does not recover any physio-
logical concentration changes that may occur during the move-
ment. These limitations can be addressed by adding a filter-
ing algorithm (e.g., wavelet or spline interpolation based8, 10)
to ABAMAR to preserve physiological signal changes during
movement. Our main reasons for not using such filtering are
the uncertainty in distinguishing motion-related changes from
physiological changes discussed earlier, and our primary inter-
est in hemodynamic changes that occur over several minutes,
e.g., in connection with sleep stage transitions.

Even after applying ABAMAR, signal drift originating from
the measurement equipment or setup may prevent analysis of
hemoglobin concentration changes over time periods of several
hours. This baseline drift can be removed, e.g., by scaling the
amplitude signal by a low-pass filtered version of itself, but such
filtering also loses any physiological changes that have a time
scale of approximately 1 h or more. Tracking such long-term
changes requires improving the measurement setup or quanti-
fying the drift, e.g., by simultaneously measuring a reference
channel.

5 Conclusions
We have presented a novel accelerometer-based method for auto-
matic identification and removal of motion artifacts that change
the amplitude baseline of NIRS signals. Our results show that
the use of accelerometer data improves motion artifact detec-
tion compared to purely NIRS-data–based methods, and the
ABAMAR algorithm identifies baseline motion artifacts with
similar accuracy to a human operator. The algorithm is based
on simple rules, requiring only the addition of an inexpensive
accelerometer to the measurement setup. It can be applied in
nearly real time, with only a 20-s delay, or in post-processing.
The algorithm allows tracking slow hemodynamic changes in

NIRS monitoring applications over periods of tens of minutes
or even hours.
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