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Abstract 
The term “Smart Grid” generally refers to a power grid equipped with the advanced 
technologies dedicated for purposes such as reliability improvement, ease of control and 
management, integrating of distributed energy resources and electricity market operations. 
Improving the reliability of electric power delivered to the end users is one of the main targets 
of employing smart grid technologies. The smart grid investments targeted for reliability 
improvement can be directed toward the generation, transmission or distribution system 
level. However, radial operating status, aging infrastructures, poor design and operation 
practices and high exposure to environmental conditions have caused the electric power 
distribution systems to be addressed as the main contributor to the customer reliability 
problems. Therefore, developing a smart distribution grid can be an attractive reliability 
enhancement solution for the electric utilities. 

Whenever the targeted reliability enhancement solutions are limited to the simple 
conventional solutions, the available reliability assessment techniques can be easily used for 
purposes of the value-based reliability planning. However, the electric utilities face a 
challenge when the reliability enhancement solutions include sophisticated measures such as 
those of the smart grid technologies. Generally, the available reliability assessment 
approaches cannot be employed directly for such purposes. In this situation, it is necessary to 
develop a reliability evaluation approach for predicting the reliability performance of the 
electric power distribution systems when employing such sophisticated solutions. 

A novel approach is proposed and demonstrated in this thesis for reliability assessment of 
an electric power distribution system when employing the advanced reliability enhancement 
technologies. In the proposed reliability evaluation approach, the overall impacts of the 
targeted reliability enhancement solutions on the sustained interruptions, momentary 
interruptions and voltage sags experienced by the customers are taken into account. 

The results of various reliability case studies directed in this thesis show that employing a 
suitable set of the smart grid technologies in the functional zone of an electric power 
distribution system can virtually mitigate all the reliability indices. It is also possible to reduce 
the range of variation of the reliability indices among different customers. In addition, there is 
a possibility to reduce the burden on the utility repair crews. 
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1 INTRODUCTION  

1.1 Research Problem 

Electric power distribution systems are responsible for delivering the electrical energy from the 

bulk power systems to the end users. Issues such as radial operating status, aging infrastructures, 

poor design and operation practices and high exposure to environmental conditions have caused the 

electric power distribution systems to be addressed as the main contributor to the customer 

reliability problems. Generally, about 80 to 90 percents of the customer reliability problems are 

originated from the electric power distribution systems [1-3]. Such statistics always reinforce the 

electric utilities to look after solutions that can be used for reliability enhancement of the electric 

power distribution systems. There are a large numbers of solutions available to electric utilities for 

distribution system reliability improvements. Electric utilities have traditionally improved the 

distribution system reliability through simple measures such as tree trimming on a regular basis, 

construction design modification, installation of lightning arresters, use of animal guards, replacing 

overhead bare conductors by covered conductors or underground cables, protection scheme 

modification, and so on [4-6]. In addition to these conventional solutions, there are some other 

advanced reliability improvement measures that nowadays are categorized as smart grid 

technologies. Major smart grid technologies applicable for distribution system reliability 

improvements are fault passage indicators, fault locator schemes, substation automation, feeder 

automation, distribution automation, fault current limiters and dynamic voltage restorers.  

Availability of the various reliability enhancement solutions is both an opportunity and a 

challenge for electric utilities. They have an opportunity to find the right solutions for their own 

reliability problems. But, each electric utility is different from another one and has its own set of 

failure causes for distribution system problems. In addition, the design history and the network 

configuration have large impacts on the specific solutions to be selected [7]. Therefore, the 

challenge for electric utilities, especially in the competitive electricity market, is to identify and 

evaluate potential reliability reinforcement schemes and then determine and prioritize those 

appropriate for implementation. This procedure is usually referred to as the value-based distribution 

system reliability planning [8-10]. In order to perform the value-based distribution system reliability 

planning, it is necessary to use a suitable reliability assessment tool. This tool should quantitatively 

predict the various impacts that the targeted solutions may have on the reliability of electric power 

delivered to the customers.  
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Reliability assessment of the electric power distribution systems has received a great attention 

over the past decades [11-18]. Nowadays, several commercial softwares are available to electric 

utilities that can be used for reliability assessment of the electric power distribution systems. These 

softwares usually work based on one or a combination of well-developed reliability assessment 

techniques such as the analytical simulation approach and the Monte-Carlo simulation approach [3]. 

Whenever the targeted reliability enhancement solutions are limited to the simple conventional 

solutions, the available reliability assessment techniques can be easily used for purposes of the 

value-based reliability planning. The simple conventional solutions are reliability enhancement 

measures that mainly affect the failure rates of the components of an electric power distribution 

system. As an example, consider an electric utility which aims to assess the reliability impacts of a 

tree trimming on a specific area of its distribution network. In this situation, the reliability impacts 

of the tree trimming can be evaluated by available reliability assessment approaches. The effects of 

the tree trimming is modeled by appropriate manipulations of the failure rates of the components 

located in the targeted areas for the tree trimming. However, the electric utilities face a challenge 

when the reliability enhancement solutions include sophisticated measures such as those of the 

smart grid technologies. As an example, an electric utility may aim at comparing the impacts of 

various available feeder automation schemes on the reliability performance of its distribution 

system. The reliability impacts of the automation solutions normally depend on their operational 

procedures. In addition, when an automation scheme encounters with an operational failure 

condition, its reliability impacts deteriorate compared to the situation when it is fully available. 

Therefore, it is necessary to model both the operational procedure of the targeted automation 

solutions and their possible operational failures when conducting the related reliability assessment 

studies. However, the available reliability assessment approaches cannot be employed directly for 

such purposes. In a circumstance like this, it is necessary to develop a reliability evaluation 

approach for predicting the reliability performance of the electric power distribution systems when 

employing such sophisticated solutions.  

This research aims to develop and demonstrate a comprehensive approach for reliability 

assessment of the electric power distribution systems equipped with the advanced reliability 

enhancement solutions. The majority of the advanced solutions for distribution system reliability 

improvement are nowadays categorized as the smart grid technologies. Therefore, hereafter in this 

thesis, the term “smart distribution grids” is used to refer to the electric power distribution systems 

equipped with the smart grid technologies for purpose of improving the reliability of electric power 

delivered to the customers.  
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1.2 Thesis Organization 

After this introductory chapter, Chapter 2 provides a brief description on how the smart grid 

technologies can affect the reliability performance of an electric power distribution system. Chapter 

3 introduces the major smart grid technologies that can be used for reliability improvement of the 

electric power distribution systems. Chapter 4 deals with the previous works related to the 

reliability assessment of distribution systems equipped with advanced technologies and the 

contribution of this thesis. The proposed reliability evaluation approach is described in Chapter 5. 

The application of the proposed reliability evaluation approach is presented in Chapter 6. Finally, 

Chapter 7 provides the concluding remarks. 
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2 APPLICATION OF SMART GRID TECHNOLOGIES FOR DISTRIBUTION 
SYSTEM RELIABILITY IMPROVEMENT 

Sustained interruptions, momentary interruptions and voltage sags are three major attributes of 

the reliability of electric power delivered to the customers. A sustained interruption is referred to the 

situation where the electric service is interrupted for a long period of time, normally for a time 

greater than 1 minute [19]. A momentary interruption is a brief disruption in the electric service, 

usually lasting no longer than a few minutes. The maximum duration of a momentary interruption 

varies from utility to utility, but is typically between one and five minutes [3]. In the past, the 

momentary interruptions were not as noticeable to customers as they are today. In addition, today 

customers use sensitive equipments that can even be sensitive to the slightest variations in the 

power supply. Voltage sag is a significant power quality issue that can affect the majority of 

sensitive equipments like personal computers, adjustable speed drives, programmable logic 

controllers, semiconductor devices and contactors. A voltage sag is defined as the decrease in the 

RMS voltage between 10 to 90 percents of the nominal voltage for durations from 0.5 cycles to 1 

minute [19]. Voltage sags that can cause problem for sensitive equipments are usually originated 

from faults within transmission and distribution systems [20]. Motor starting and transformer 

energizing can also cause voltage sags but their characteristics are usually not severe enough to 

cause equipment malfunction. The occurrence of voltage sags is far more than the number of 

interruptions. Hence, for specific customers, the financial losses caused by the voltage sags may 

even be greater than the cost associated with the power interruptions.  

In the context of reliability, generation, transmission, and distribution systems are referred to as 

functional zones. Each functional zone is made up of several subsystems. Generation system 

consists of generation plants and generation substations. Transmission system consists of 

transmission lines, transmission switching stations, transmission substations, and sub-transmission 

systems. Distribution systems consist of HV/MV substations, primary (MV) distribution systems, 

MV/LV substations, and secondary (LV) distribution systems [3]. 

A core mission of an electric power distribution system is to deliver electrical energy from the 

supplying points to the end users. Reliability of the electric service provided to the end users can be 

altered by the faults originated either inside or outside of the functional zone of an electric power 

distribution system. Hereafter in this thesis, these faults are referred to as “internal faults” and 

“external faults”, respectively. Regardless of a fault occurrence location, its impact is appeared to 

the end users as a voltage variation event such as an interruption, a voltage sag or a slight change in 
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the supply voltage. The effect of an external fault mainly appears to the end users as a voltage sag 

rather than as an interruption. This is mainly because of the mesh configuration of the transmission 

and sub-transmission networks which feed the supply points of an electric power distribution 

system. As a result, the share of external faults in the total power interruptions experienced by the 

end users is considerably lower than that of the internal faults. In contrast, an internal fault usually 

results in either an interruption or a voltage sag for the end users. The share of internal faults in the 

total interruptions and voltage sags experienced by the end users can be higher than that of the 

external faults.   

The reliability improvement activities can aim at reducing the rate of external and internal faults 

and also mitigating their impacts on the end users. In the functional zone of an electric power 

distribution system, it is possible to mitigate the impacts of both external and internal faults by 

means of various smart grid technologies. Feeder automation is one of the major smart grid 

technologies that can be used for distribution system reliability improvement. Therefore, for an 

illustration purpose, the following section aims to show how the feeder automation schemes may 

affect the reliability performance of an electric power distribution system. 

Without the network automation facilities, the electric utilities have to perform the fault 

management activities based on the customers’ outage calls. Upon receiving the trouble calls from 

the customers, the operators look at the network configuration map and the protection design 

manual to determine the outage area. Then a repair crew has to be sent to patrol the outage area. 

When faced with a tripped circuit breaker and no indication as to where the fault lies, a repair crew 

has a range of options by which the faulted section is identified. In a manually operated distribution 

system either “feeder splitting and fault re-ignition method” or “feeder splitting and insulation test 

method” can be used for locating the faulted section [21]. The diagnosis of the fault in these 

manners can be an unsafe, rigorous and time-consuming task, which finally result in the poor 

service reliability. In this situation, it may take a long time to restore power to those parts of a 

distribution network which are undamaged but have lost power because of problems elsewhere in 

the distribution network (say 50 to 80 minutes) and also to restore power to customers that can only 

be restored after repair or replacement of the damaged component (say 1 to 5 hours). However, a 

suitable feeder automation scheme can be used to perform fault management activities in much 

more efficient manners. Hence, depending on the characteristics of the implemented feeder 

automation scheme, the above processes can be completed more efficiently by less people in much 

less time, which increase the distribution system reliability and efficiency. Moreover, the 

implemented automation scheme may also mitigate the voltage sags experienced by customers and 
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the damage to the distribution network infrastructure by reducing the number of inrush current 

caused by the fault re-ignition activities required to locate the fault. Figure 1, as an example, shows 

how the fault management activities might proceed with and without employing an advanced feeder 

automation scheme [22]. The times shown will be extended even further during storm conditions 

when control center operators are managing a multiple outage scenario. 

 

 
 

Figure 1.  Fault management activities in response to a fault condition without and with employing an 
advanced feeder automation scheme [22]. 
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3 SMART GRID TECHNOLOGIES  

In a broad sense, the term “smart grid” is referred to a conventional electric power system that 

has been equipped with advanced technologies for purposes such as reliability improvement, ease of 

control and management, integrating of distributed energy resources and electricity market 

operations. The smart grid technologies can be categorized in the following five key areas [23]:   

Integrated Communications – High-speed, fully integrated, two-way communication technologies 

will make the smart grid a dynamic, interactive “mega-infrastructure” for real-time information and 

power exchange. Open architecture will create a plug-and-play environment that securely networks 

grid components to talk, listen and interact. 

Sensing and Measurement – These technologies will enhance power system measurements and 

enable the transformation of data into information. They evaluate the health of equipment and the 

integrity of the grid and support advanced protective relaying. 

Advanced Components – Advanced components play an active role in determining the grid’s 

behavior. The next generation of these power system devices will apply the latest research in 

materials, superconductivity, energy storage, power electronics, and microelectronics. This will 

produce higher power densities, greater reliability and power quality, enhanced electrical efficiency 

producing major environmental gains and improved real-time diagnostics.  

Improved Interfaces and Decision Support– In many situations, the time available for operators 

to make decisions has shortened to seconds. Thus, the smart grid will require wide, seamless, real-

time use of applications and tools that enable grid operators and managers to make decisions 

quickly. Decision support with improved interfaces will amplify human decision making at all 

levels of the grid. 

Advanced Control Methods – Advanced control methods are the devices and algorithms that will 

analyze, diagnose, and predict conditions in the smart grid and determine and take appropriate 

corrective actions to eliminate, mitigate, and prevent outages and power quality disturbances. To a 

large degree, these technologies rely on and contribute to each of the other four key technology 

areas. For instance, they will monitor essential components (Sensing and Measurements), provide 

timely and appropriate response (Integrated Communications; Advanced Components), and enable 

rapid diagnosis (Improved Interfaces and Decision Support) of any event.  
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Smart grid technologies are used for accomplishing a specific set of applications or functions in 

the electric power systems. For each application, there are numbers of smart grid technologies 

available that can be classified in the above described five key areas. The scope of this thesis is 

limited to the smart grid technologies that can be used in the functional zone of an electric power 

distribution system for improving the reliability of electric power delivered to the customers. At the 

moment, there are numbers of the smart grid technologies already available in the market and some 

others are still in the research and development stage. The main emphasis in this thesis is on the 

technologies which have already been implemented in the field either as a commercially available 

product or as a prototype project. The various products of the following well-known companies 

have also been examined in order to find the potential smart grid technologies applicable for 

purposes of this thesis: 

- ABB (http://www.abb.com/) 

- Advanced Control Systems (http://www.acsatlanta.com/) 

- AREVA (http://www.areva.com/) 

- Cooper Power Systems (http://www.cooperpower.com/) 

- Deltatronic (http://www.deltatronic.com/) 

- GE Energy (http://www.gepower.com/) 

- G&W Electric (http://www.gwelec.com/) 

- Hubbell Power Systems (http://www.hubbellpowersystems.com/) 

- Motorola (http://www.motorola.com/) 

- NovaTech (http://www.novatechweb.com/) 

- OSI (http://www.osii.com/) 

- Power Delivery Products (http://www.powerdeliveryproducts.com/) 

- SEL (http://www.selinc.com/) 

- Siemens (http://www.siemens.com/) 

- S&C Electric Company (http://www.sandc.com/) 

- SNC-Lavalin (http://www.snclavalin.com/) 

- Survalent Technology (http://www.survalent.com/) 

- Telvent (http://www.telvent.com/) 

- Thomas & Betts (http://www-public.tnb.com/) 
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3.1 Distance to Fault Estimator 

Distance to fault estimator is an optional module of the modern distribution protection 

equipment that can be used for estimating the fault location. When a fault occurs, this module 

calculates the fault location as a distance from the substation to the fault. It can also notify this 

information to the control center or the utility repair crews through a suitable communication 

equipment. By using the distance to fault estimators, a much smaller zone of an electricity 

distribution network is required to be inspected by the repair crews in search for location and 

isolation of the fault and restore service to the affected customers. However, when a feeder has 

multiple taps, there might be several probable fault locations for the fault distance indicated by this 

module. In this situation, the repair crews are unable to determine which tap to follow to find the 

fault location. However, applying fault passage indicators together with distance to fault estimators 

can overcome this issue. 

3.2 Fault Passage Indicator 

Fault passage indicator is a device that can be located at some convenient point on an electricity 

distribution network to give an indication as to whether the fault current has passed the point where 

it is located or not. It is able to distinguish between the fault current and the load current associated 

with the healthy feeder, and has some means of displaying its operation to a repair crew. The status 

of a fault passage indicator can be recognized remotely or by visiting its physical location. Usually, 

the status of an indicator used with overhead line networks is illustrated in the form of flashing 

indication. In the case of underground cable networks, it is also possible to use a kind of fault 

passage indicators equipped with short range wireless communication equipment. The status of 

such an indicator can be retrieved remotely from a short distance (a few meters) without the need to 

access the distribution substation to recognize its status. By using the fault passage indicators, the 

repair crews waste less time to travel around the network in search for location of the fault. In the 

past, the majority of fault passage indicators available in the market were mainly applicable for 

radial distribution networks with directly earthed neutral [21, 24]. However, nowadays, there are 

new generations of fault passage indicators available in the market that can be used in the other 

electricity distribution networks. 
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3.3 Fault Locator Schemes  

Fault locator schemes are devices and algorithms that are used to identify the location of a fault. 

Developed schemes for automatic fault location in the electricity distribution networks are generally 

operate based on a special fault locating technique. Various fault location techniques have been 

proposed in the literatures. The principles, merits and demerits of each fault location technique in 

the transmission and distribution systems have been discussed in [24-26]. Most of the proposed 

fault location techniques have been developed for power transmission systems. Few methods have 

been proposed for the electric power distribution networks due to the following reasons [26]: 

Variety of Conductors and Structures: Along a typical distribution feeder there are different 

cables, lines and configurations (cross-arm, twisted, spacer, underground, etc.); therefore, there is 

no linear relation between the line impedance and the distance between the fault location and the 

substation. 

Lateral Branches: Unlike transmission lines, typical distribution feeders have several lateral 

branches. Thus, short circuits in different geographical locations can produce the same currents and 

voltages measured at the substation. Consequently, the fault location procedure may result in 

several different points as possible locations.  

Load Distributed along the Feeder: The current measured at the substation during a fault includes 

a contribution given by the sum of the load currents at each node and, in contrast to transmission 

systems, it is impossible to estimate these currents accurately. 

Modifications in the Feeder Configuration: Distribution networks are subject to constant 

modifications in their topology. As a result, any fault location algorithm must have access to a 

database, periodically updated, in order to give a better estimate of the fault point. 

Over the last few decades, several fault locator schemes have been developed for employing in 

the electric power distribution systems. Some of these schemes mainly work based on the 

measurements of voltage and current signals provided by devices such as the fault passage 

indicators installed along the distribution feeders. Traditional fault indicators are useful tools for 

fault management activities. However, they require local inspection by a repair crew. Repair crews 

typically patrol the entire faulted circuit and spending valuable time patrolling a significant portion 

of a feeder without any additional information that could be provided by fault indicators located 

along the feeder. However, repair crews could be dispatched directly to the section of the 

distribution network where the fault occurred and quickly restore power to the affected customers 
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utilizing fault location information obtained from remote indicating fault passage indicators. The 

status of fault passage indicators with remote indicating capability can be recognized by a remote 

master station located at a main substation and/or a distribution control centre. Their information 

might be used directly for detecting and locating of faults or indirectly to get a high level of 

confidence about the fault type and/or the location. More information about the fault locator 

schemes which mainly work based on the remote data retrieval of fault passage indicators can be 

found in [27-30]. There is another group of fault locator schemes. These schemes normally operate 

based on algorithms that use measurements of voltage and current signals provided by intelligent 

electronic devices located at a main substation. The intelligent electronic device could be a digital 

transient recorder or a digital protection equipment. These schemes often rely on additional 

information such as the configuration of the electricity distribution network, load profiles, 

characteristics of protective devices and their locations. This information can be gathered from 

databases available at a main substation and/or from distribution control centre databases. One of 

the benefits of such schemes is that they may also be useful to identify the location of transient 

faults and thus serve as a tool for fault prevention. More information about the fault locator schemes 

which normally operate based on the measurements at the substation level can be found in [31-40]. 

3.4 Substation Automation  

Substation automation is a system which enables an electric utility to locally and remotely 

monitor, control and coordinate the components installed at a substation. The substation automation 

related functions include monitoring and data acquisition from various substation equipment, bus 

voltage control, circulating current control, bus load balancing, overload control, and fault 

management for substation related faults. In the functional zone of an electric power distribution 

system, substation automation systems can be implemented in both sub-transmission (HV/MV) 

substations and distribution (MV/LV) substations. Compared to other components of an electricity 

distribution network, the failure rates of components of a sub-transmission substation are very low, 

but their consequences can be much serious as they may result in extended outages. The substation 

automation system with suitable automation functions can be used to automatically isolate the failed 

component and restore supply to the affected feeders through proper switching actions. In addition, 

when encountering with a failure condition in the electricity distribution network and facing with a 

feeder circuit breaker operation, an alarm can be automatically issued to the distribution control 

centre to notify the fault condition. The data recorded by various intelligent electronic devices 

installed at the substation are also available to the operators. This data can be used for conducting 
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various fault management activities. In the other hand, the substation automation system can also be 

implemented at distribution substations for remote data acquisition from various equipments 

installed at the substation and also to control the available actuators. The retrieved data can be used 

for approximate fault location purpose. In addition, the operators can operate the remote controlled 

switching devices available at the substations to isolate the fault and restore the service for as many 

as possible of the affected customers. More information about the substation automation systems 

can be found in [41-54]. 

3.5 Feeder Automation  

Feeder automation is an automatic control scheme that is used for automatic fault detection, 

isolation and service restoration in an electricity distribution network. When an electricity 

distribution network encounters with a permanent failure condition, there are basically two groups 

of affected customers. First group involves the customers that have to be waiting till the end of 

repair process of the faulted section before power restoration. In contrast, the second group includes 

the customers whose power supply can be restored through main or alternative supplies by means of 

proper switching actions. Usually, the number of customers in the second group is much larger than 

that of the first group. For power restoration of the second group of customers, healthy sections of 

the distribution network should be isolated from the one that contains the fault. After that they can 

be restored from main or alternative supplies by means of appropriated switching actions. In the 

case of a manually operated distribution system, fault isolation and service restoration activities can 

just be accomplished after the fault is located by utility repair crews. However, by employing a 

feeder automation scheme, the interruption duration experienced by the affected customers can be 

reduced. Feeder automation schemes can automatically perform the necessary switching operations 

to isolate the faulted section from the healthy ones and restore power to as many as possible of the 

affected customers. However, the impact of a special feeder automation scheme on the frequency 

and duration of interruptions experienced by the customers are dependent on various parameters. 

Among the rest, the operational procedure of the implemented automation scheme, number, 

location and characteristics of switching devices, and also configuration and operational criteria of 

the targeted distribution network are considerable.  

Over the last few decades, several feeder automation schemes have been developed for 

employing in the electricity distribution networks. Some of these feeder automation schemes 

perform whole fault detection, isolation and restoration process locally without any involvement of 

operators located at a master substation and/or a distribution control centre. These feeder 
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automation schemes are stand alone schemes and mainly dependent on the automatic switching 

devices installed along the distribution feeders. Actually, the necessary intelligence for performing 

dedicated automatic functions is provided by appropriate equipment of such automatic switching 

devices. More information about this kind of feeder automation schemes can be found in [55-69]. In 

addition, there is another group of feeder automation schemes which perform whole or some part of 

the fault detection, isolation and service restoration process based on a centralized intelligence 

which may be located at a main substation and/or a distribution control centre. These automation 

schemes are actually subsets of a full distribution automation system. This approach requires a full 

knowledge of the distribution network, including the network topology and operation parameters. 

The feeder automation functions are centrally implemented and automatic switching commands are 

almost issued from the control centre. More information about this kind of feeder automation 

schemes can be found in [70-87].  

3.6 Distribution Automation  

Distribution automation is a complete system that enables a utility to monitor, coordinate and 

operate the distribution network components in a real-time mode from remote locations. 

Distribution automation allows utilities to implement a flexible monitoring and control of an 

electric power distribution system, which can be used to enhance efficiency, reliability, and quality 

of the electric service. Flexible monitoring and control also results in a more effective utilization 

and life-extension of the existing distribution system infrastructure. An advanced distribution 

automation system has all the necessary components required for efficient fault management 

activities in the feeder and the substation levels. It can automatically perform the fault detection, 

isolation and service restoration activities without an intervention of distribution system operators. 

It can also identify the fault location and assist the control center operators and the repair crews 

during the fault management activities. More information about various aspects of distribution 

automation systems can be found in [88-105]. 

3.7 Fault Current Limiter 

Future power system will experience an increase of dense urban distribution networks and an 

increased penetration of distributed energy recourses which both contribute to increasingly fault 

current levels. In this situation, managing fault currents is crucial in order to avoid malfunctioning 

and damage of equipment as well as to increase system reliability. There are number of 

conventional solutions available for managing fault currents, such as construction of new 
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substations, introducing a higher voltage level, bus splitting, upgrading circuit breakers, current 

limiting reactors and high impedance transformers, impedance grounding, and sequential breaker 

tripping. Normally, the application of these conventional methods leads to some technical and/or 

economical problems. This issue has been the main driver for developing the fault current limiters. 

Fault current limiter is a device which limits the amount of fault current during short circuit 

conditions. It has negligible impedance at a normal operating condition but high impedance when 

the fault current is passing through it. Currently, two broad categories of a fault current limiter 

technologies exist, namely high-temperature superconducting and solid-state. High-temperature 

superconducting types use superconducting-based material and reduce fault currents by introducing 

a larger-than-normal impedance into the path of the fault current. Solid-state types use high-speed 

solid-state switching devices to rapidly insert an energy absorbing impedance into the circuit to 

limit the fault current. Emerging technologies have made it feasible to develop and test the fault 

current limiters applicable in the sub-transmission voltages (up to 138 kV). Application aspects of 

various fault current limiters have been reported in [106-117]. 

3.8 Dynamic Voltage Restorer 

Dynamic voltage restorer is a waveform synthesis device based on power electronics that is 

series-connected directly into the network by means of a set of single-phase insertion transformers. 

This device can be installed in strategic locations of an electricity distribution network to mitigate 

the effect of voltage sags on the customers. The dynamic voltage restorer cannot protect a load 

against an interruption. When the voltage of one or more phases of incoming supply drops below a 

preset threshold, this device injects a controlled amount of voltage into the affected phase or phases 

to boost the voltage of outgoing side back to a more suitable level. The commercial brands of 

dynamic voltage restorer are nowadays available in the market with ratings up to 50 MVA, voltage 

injection transformers ratings up to 46 kV, response time of around a half cycle and capability to 

correct the three-phase voltage sags with remaining voltage up to 50 percents of the nominal 

voltage. Further information about dynamic voltage restorers can be found in [118-120]. 
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4 RELATED WORKS AND THESIS CONTRIBUTION  

Two main literature surveys have been conducted for the purposes of this doctoral thesis. The 

first literature survey aimed at finding the major smart grid technologies applicable for reliability 

enhancement of distribution systems that outlined in Chapter 3. The second literature survey was 

concerned with the previous research activities related to the application of probabilistic methods 

for reliability evaluating of smart distribution grids. In the following, the results of this literature 

survey and also the contribution of this thesis are described. 

In [121-123], the impacts of different controlling strategies of dynamic voltage restorers for 

mitigation of voltage sags have been simulated for specific case studies. The work by Tosato et al. 

[124] deals with the application of fault current limiters for mitigation of voltage sags. In [125, 

126], the impacts of fault current limiters on the reliability performance of various substation 

configurations have been studied. The work by Lawler et al. [127] discusses the reliability effects of 

distribution automation on the Athens Utilities Board. Several scenarios have been conducted in this 

paper by providing the remote controlling facilities for targeted manually operated switching 

devices. The reliability impacts of the automation solution concerned in this paper has been 

modeled by modifying the switching times of the retrofitted switching devices. In [128, 129], the 

optimal allocation of the specific automatic sectionalizing switching devices have been studied. 

These switching devices are able to diagnose the fault and eventually to reschedule the 

configuration of the network for restoring the power to the affected customers. The reliability 

impact of the targeted automation scheme has been modeled by ignoring the effects of faults on the 

customers that have been affected by the fault but are restored automatically through automatic 

switching devices. The work by Rigler et al. [130] presents the potential benefits that may be 

achieved by automation solutions for distribution system reliability improvement. The effects of the 

number and location of reclosers on the frequency and duration of sustained interruptions imposed 

on the customer have been examined in this paper. The works by He et al. [131, 132] describe an 

approach based on the event tree method for assessing the reliability impacts of the operational 

failures of the communication system and the protection system in the centralized feeder 

automation schemes. The reliability indices concerned in these papers are limited to those which 

only count the sustained interruptions. Brown et al. [133] models the effects of two-stage service 

restoration through remote controlled switching devices on the duration of sustained interruptions 

imposed on the customers. In [134-137], several optimization techniques have been used for the 

allocation of the remote controlled switching devices. The reliability impacts of adding remote 



  
Page 16  

  

controlling facility to the retrofitted switching devices have been modeled as the reduction in time 

required to operate these switching devices. 

The reliability evaluation approaches proposed in the above described works have the following 

shortfalls: 

1- Virtually all of the reliability assessment studies have been concentrated on the sustained 

interruptions, which is only one attribute of the reliability of electric power delivered to the 

customer. However, nowadays, customers are also sensitive to momentary interruptions and even 

voltage sags. Some of the available reliability enhancement solutions, such as the feeder automation 

schemes, improve the reliability indices corresponding to the sustained interruptions in cost of 

increasing the frequency of momentary interruptions and voltage sags. Therefore, the possible 

impacts of the implemented solutions on all three major attributes of the service reliability should 

be taken into account simultaneously.  

2- The impacts of operational failures of the implemented reliability enhancement solutions have 

not been considered in the majority of previous studies. However, the implemented reliability 

enhancement solutions are not fully reliable [138, 139]. The operational failure modes of the 

implemented solution are required to be taken into account as the reliability impacts of the 

implemented solution may be affected due to this issue. It should be noted that the operational 

failure is referred to the situation where a device fails to function when it is required to operate. 

3- The reliability enhancement solutions have almost been limited to only one possible solution. In 

other words, the integrated effects of several reliability enhancement solutions with different 

technologies have not been taken into account. However, when employing a specific reliability 

enhancement solution for improving a given set of reliability indices, there might be some negative 

impacts on the other reliability indices. In this situation, it is normally possible to use other 

reliability enhancement solutions, almost with different technologies, to mitigate the negative 

impacts of the primary solution.  

4- The practical aspects of the realistic distribution systems have not been considered in the 

analyses. The majority of the previous works are concerned with the application of remote 

controlled or automatic sectionalizing switching devices for speeding up the fault isolation and 

service restoration activates. The reliability impacts of these solutions have almost been analyzed 

using simple reliability modeling approaches. In the most cases only manual switching times have 

been replaced by automatic or remote switching times. However, there are some other practical 
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issues that should be taken into account. Among the rest, the impacts on the procedures that are 

followed by the electric utilities for fault detection and location, the operating criterion of an electric 

power distribution system in the normal and emergency conditions and also the switching 

sequences that are followed for isolating the fault and restoring the power service for the affected 

customers have not been considered in the analyses.  

5- The proposed reliability evaluation approaches are case dependent. They have almost been 

designed for a specific reliability enhancement solution and/or a given type of an electricity 

distribution network. The application of these methods even for other similar solutions but with 

different operating logics is questionable.  

This research aimed at overcoming the above described shortfalls. The research activities were 

organized to develop and demonstrate a comprehensive reliability evaluation approach that can be 

used for the reliability evaluation of smart distribution grids. The proposed methodology is capable 

of predicting the possible impacts of the implemented solutions on all three major attributes of the 

service reliability, namely sustained interruptions, momentary interruptions and voltage sags. The 

proposed approach has been such designed and developed that the impacts of various operational 

failure modes of the implemented technologies can also be considered when conducting a reliability 

case study. It is also possible to evaluate the reliability impacts of various technologies that are 

implemented at the same time. In addition, the practical issues related to normal and emergency 

operations of an electric power distribution system have been taken into account when developing 

the proposed approach.  
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5 PROPOSED RELIABILITY EVALUATION APPROACH 

The results of research activities conducted during this doctoral research project indicated that 

the impacts of reliability enhancement solutions are revealed through various processes involved in 

the fault management activities [140-147]. When the fault effects are appeared in an electric power 

distribution system, specific processes designated as fault management activities are required to be 

carried out. The fault effects are normally appeared in the form of abnormal voltages and currents. 

Typical fault management activities involve the following processes: 

- Autonomous System Reaction Process: The autonomous system designated for protection, 

control and monitoring purposes reacts against the fault effects and operates according to its 

operational logics. The control center operators have no involvement in this process. In what 

manner this process is carried out depends on the several factors such as the fault effects, settings 

and operational logics of associated devices, and operational policies of the electric utility. The time 

required to accomplish this process is almost very short; however, the outcome of this process has 

vital impacts on the extent of the affected customers and the type of voltage variation events that 

they may be encountered. The voltage variation events may range from a slight change in the RMS 

voltage for a few cycles to more severe situations such as complete disappearing of the supply 

voltage for a long period of time. 

- Fault Notification Process: The control center operators should be notified about a forced outage 

in order to initiate the necessary remedial actions. The time required for the control center operators 

to be notified about a forced outage is a function of various parameters. Among the rest, the 

available facilities to the operators for detecting and notifying the abnormal conditions are crucial.   

- Approximate Fault Location Process: When the control center operators are notified about an 

abnormal condition, the necessary data are collected and analyzed in order to find the approximate 

fault location. The time required for accomplishing this task depends on the parameters such as the 

fault effects and the available facilities for recording, retrieving and analyzing the related data.   

- Decision Making Process: After the approximate fault location activity, the control center 

operators should make a decision about the overall procedure for mitigating the reliability impacts 

of the fault. This procedure is determined based on the factors such as the approximate fault 

location, type of affected customers, number, location and type of switching devices involved and 

also available repair crews. The time required for accomplishing this task mainly depends on the 

decision making facilities available to the control center operators. 
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- Remote Fault Isolation and Service Restoration Process: In order to mitigate the reliability 

impacts of a permanent fault on the customers, the electricity network should be properly 

reconfigured to isolate the fault and restore the power to as many as possible of the affected 

customers. In a situation where the electricity network is equipped with suitable remote controlled 

switching devices, the network reconfiguration can be initiated from the control center. The 

applicability and effectiveness of the remote network reconfiguration process depend on the 

number, type and location of the available remote controlled switching devices, the outcome of the 

approximate fault location process and also the operational policies of the electric utility. 

- Repair Crew Dispatching and Traveling Process: Once the approximate fault location and the 

overall procedure for fault isolation and service restoration activities are known, the control center 

operators dispatch the repair crews around the damaged area. The location, date and time of fault 

occurrence and also availability of the facilities designated for notifying and navigation of the repair 

crews affects the time required to get around the damaged area.  

- Faulted Zone Location Process: In some situations, the outcome of the approximate fault 

location process may just identify the faulted feeder or several zones as the probable locations of the 

damaged component. A zone is referred to a set of the electricity network components rather than 

switching devices that are permanently interconnected to each other and surrounded by switching 

devices. In a situation where the faulted zone is unknown, the repair crews look for a zone that 

contains the damaged component. The time required to accomplish this process depends on the 

factors such as daylight, accessibility to the suspected feeder and its components, available 

resources and facilities to the repair crews and also the operational policies of the electric utility.   

- Local Fault Isolation and Service Restoration Process: After repair crews reached the damaged 

area and found the faulted zone, there might be possible to reconfigure the electricity network in 

order to further mitigate the reliability impacts of a permanent fault on the customers. This is 

usually done by manually and/or remotely operating the available switching devices. This process is 

normally coordinated between the repair crews and the control center operators in order to perform 

this task properly. The local network reconfiguration process may involve several switching actions. 

The time required to accomplish this process depends on the number, type and location of the 

switching devices involved, the operational policies of the electric utility, the available repair crews 

and their facilities and resources to access these switching devices. 
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- Precise Fault Location Process: The damaged component should be identified for possible repair 

or replacement activities. The damaged component is located in the faulted zone. As normally the 

faulted zone contains several components, the repair crews may need further investigation to find 

the failed component. Additional efforts are also required to find the damaged part of the failed 

component. The time required to accomplish this process depends on the factors such as the type of 

components involved in the faulted zone, the outcome of the approximate fault location process and 

also facilities and resources available to the repair crews. 

- Repair or Replacement Process: The damaged component should be repaired or replaced in 

order to return the network configuration to the normal operating condition and to restore power to 

the customers that can only be restored after repair or replacement of the damaged component. The 

time required to accomplish this process depends on factors such as the resources available to the 

electric utility, operational policies of the electric utility and the damage severity. 

- Return to Normal Operation Process: Usually fault isolation and service restoration activities 

necessitate changing the normal configuration of a faulted electricity network. As the normal 

configuration of an electricity network is the basis for day-to-day operating and also setting of the 

devices involved in the autonomous system, it is necessary to return the electricity network to its 

normal operating configuration. This process is initiated after completing the repair or replacement 

of the damaged component. It usually needs special switching sequences which may cause other 

interruptions for some group of the customers. The duration of this process and its effects on the 

customers depend on the factors such as the type, location and number of available switching 

devices, type and location of the customers that may be affected, operating policies of the electric 

utility, the available repair crews and their facilities and resources to access these switching devices. 

When employing a given set of the smart grid technologies, some of the above described fault 

management activities are affected which finally alter the reliability of electric power delivered to 

the customers. Thereby, the reliability impacts of the targeted smart grid technologies can be 

evaluated from their effects on the fault management activities. The reliability evaluation procedure 

starts by enumerating a suitable contingency. Then, the impacts of the implemented smart grid 

technologies on the various stages of the fault management activities are identified for each 

contingency. This procedure is repeated for all the possible contingencies and finally, by summing 

up the reliability impacts of the evaluated contingencies, the load points and system oriented 

reliability indices are calculated. The flowchart of the procedure proposed for reliability evaluation 

of smart distribution grids is shown in Figure 2. A modular approach has been used for developing 
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the reliability evaluation procedure. Each module has its own functions for performing the targeted 

tasks assigned to it. Following are overall explanations of each module involved in the proposed 

evaluation procedure: 

 

- Module 1: This module is responsible for gathering the data related to the electric power 

distribution system under study. The details of data required are depending on the study purposes 

and characteristics of the distribution system under study. The input data may include the following 

information: 

- Type of components (e.g. overhead line, underground cable, transformer and switching device) 

- Electrical characteristics of components (e.g. rated voltage, normal capacity, emergency capacity, 

positive, negative and zero sequence impedances, making and breaking capability of switching 

devices, voltage ratio, winding connection and phase shift of transformers) 

- Interconnections of components and their geographical information 

- Fault rates of components (e.g. permanent failure rate and transient failure rate) 

- Actual repair or replacement times for permanent faults 

- Number of reclosing sequences required for clearing of multi-shot transient faults 

- Operational procedures of the autonomous system designated for protection, control and 

monitoring purposes. The operational procedures of the implemented smart grid technologies 

should be clearly identified for various abnormal conditions that may occur in the distribution 

system under study.  

- Operating characteristics for devices involved in the autonomous system (e.g. time current 

characteristics of protection relays and correction capabilities of dynamic voltage restorers)  

- Operational failure data for the components that involve in the fault management activities. The 

operational failure of each component can be represented through various operating states for the 

component and assigning a state residing probability to each operating state. In each operating state, 

specific operating logics may work successively and others remain inactive or malfunction.  

- Load points data (e.g. average and maximum powers, power factor, number of customers, 

interruption costs and their susceptibility against voltage sags)  

 

- Module 2:  This module is responsible for clarifying the details that should be considered when 

analyzing the reliability performance of the distribution system under study. In addition, the data 

related to various fault management activities are also collected in this stage. The input data may 

include the following information: 
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- Power flow operation data (e.g. base power, maximum number of iterations, maximum allowable 

error, voltage constraints and overload constraints)  

- Short circuit operation data (e.g. fault resistance, number of fault positions in the case of overhead 

lines and underground cables) 

- Definition of reliability attributes (e.g. voltage threshold for distinguishing interruptions from 

voltage sags, time threshold for distinguishing sustained interruptions from momentary 

interruptions and aggregation methods for evaluating the complex events) 

- Availability of suitable facilities in the control center for purposes of the fault management 

activities (e.g. fault notification facilities, approximate fault location facilities, decision making 

supporting facilities and also the facilities targeted for dispatching and assisting the repair crews)  

-  Average times required for the control center operators to accomplish specific fault management 

activities with and without the aid of employed smart grid technologies (e.g. the average time 

required for the operators to be notified about a permanent fault, the average time required for the 

operators to find the damaged area, the average time required for the operators to make a decision 

about the fault management activities and also the average time required for the operators to 

dispatch the repair crews around the damaged area) 

-  Travelling speed of the repair crews to get around the damaged area with and without the aid of 

employed smart grid technologies 

- Average patrolling speed of the repair crews for the precise fault location on the overhead lines 

- Average time required for the precise fault location on the underground cables, including both pre-

location and pinpointing activities  

- Average time required for reading a set of indicators with a local indication  

- Average time required for performing an insulation test on the underground cables 

- Average time required for the remote operation of the remote controlled switching devices  

- Average time required for the manual operation of the switching devices 

- Available repair crews and the geophysical information of the trouble call centers 

- Requirement for considering the effects of voltage sags originated from external faults 

- Maximum number of simultaneous operational failures that should be considered in the reliability 

case study 

- Policy of the electric utility for zonal fault location activities (e.g. feeder splitting and fault re-

ignition or feeder splitting and insulation test)  

- Policy of the electric utility for returning the electricity distribution network to its normal 

operating configuration. There are two common policies, namely the close transition and the open 
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transition. In the close transition, the network can be such configured to temporary operate in a loop 

configuration. This can avoid or reduce the number of additional interruptions imposed on the 

customers during the network reconfiguration activities. Contrary, in the open transition, the 

network is not allowed to operate in a loop configuration. Therefore, additional interruptions may 

be imposed on the customers during the network reconfiguration activities. 

- Policy of the electric utility for managing the earth fault in the cases where the sustained operation 

with the earth faults is permitted  

 

- Module 3: When requested by the analysis assumption, this module provides data related to 

voltage sags arising from the faults outside of the functional zone of the electricity distribution 

system under study. The voltage sags are assigned to specific supplying points (propagation points) 

of the targeted distribution network. In the case of sustained and momentary interruptions, the 

frequency and duration of interruptions are properly assigned to the power supplying components.  

 

- Module 4: This module is responsible for generating a primary contingency to be analyzed in the 

next modules. The generated contingency can be a voltage sag arising from an external fault or a 

short circuit fault on a component within the functional zone of the distribution network under 

study. For an external fault, the generated contingency contains the necessary information related to 

the voltage sags such as the voltage magnitudes and phase angles of all three phases, propagation 

points, occurrence rates and durations of the events. For an internal fault, the generated contingency 

may contain the fault type (permanent: major, minor or transient: single-shot or multi-shot), the 

fault location along the faulted component, fault rate, actual repair or replacement time, fault 

resistance and also short circuit type (single-phase to ground, two-phase, two-phase to ground and 

three-phase).  

 

- Module 5: When requested by the analysis assumption, the attributes of the primary contingency 

is further modified in this module for the situation where devices involve in the fault management 

activities encounter with the operational failure conditions. Possible combinations of the operational 

failures of these devices are considered as subsets of the primary contingency. Hence, in this 

module, various operating states are generated for evaluating the primary contingency. Under any 

circumstances, the state corresponding to no operational failure always exists in the generated 

operating states. 
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- Module 6: This module is responsible for evaluating the reaction of the autonomous system 

against the contingency under study. In this module, depending on the analysis assumption, the 

initial effects of the fault involved in the contingency under study are simulated based on the power 

flow study, short circuit study or simple energy flow check. Then, the detailed reactions of various 

devices designated for the protection, control and monitoring purpose are evaluated against the 

initial fault effects. The events identified in this process are used in the next modules. 

 

- Module 7: The average time required for the control center operators to be notified about a forced 

outage arising from the contingency under study is estimated in this module. The effects of the 

employed smart grid technologies and their possible operational failures are taken into account 

when estimating this time period. 

 

- Module 8: The average time required for the control center operators to find the approximate 

location of the fault involved in the contingency under study is estimated in this module. The effects 

of the employed smart grid technologies and their possible operational failures are also taken into 

account when estimating this time period. 

 

- Module 9: The average time required for the control center operators to make decision about the 

activities required for managing the fault involved in the contingency under study is estimated in 

this module. The effects of the employed smart grid technologies and their possible operational 

failures are also taken into account when estimating this time period. 

 

- Module 10: Depending on the analysis assumptions, the ratings of the available switching devices 

and also the fault involved in the contingency under study, a suitable set of the remote controlled 

switching devices are identified in this module for remote fault isolation and service restoration 

activities. 

 

- Module 11: Based on the identified maneuvering switching devices, all the possible network 

configurations are generated in this module. Then, each configuration is further investigated against 

criterion such as fault isolation condition, radial operating status, voltage and overload constraints 

and also number of customers that are restored before and after the network reconfiguration. 

Finally, a set of the network configurations that can meet the criterion are selected as the feasible 

network configurations for fault isolation and service restoration purposes.  
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- Module 12: In this module, a feasible network configuration with the maximum fault mitigation 

impacts is selected as the final network configuration when the fault isolation and service 

restoration activities are accomplished. Then, the optimal switching sequences for transferring the 

present configuration to the final configuration are identified. The switching sequences are 

organized in a way that all the configurations in this process just involve the identified feasible 

network configurations. 

 

- Module 13: In this module, the status of the electricity distribution network under study is 

reconfigured when the targeted switching device is operated. The switching device is either 

operated from the control center or by repair crews engaged in the field. The time of switching is 

also estimated in this module. After operating the targeted switching device, there might be some 

reactions from the autonomous system. Therefore, the possible reaction of autonomous system after 

operating the targeted switching device should be evaluated in this module as well. 

 

- Module 14: In this module, the process involved with the notification of repair crews and their 

dispatching is evaluated. The outcomes of this module are the number, location, travelling speed 

and dispatching time of repair crews that participate in the field activities for the contingency under 

study. 

 

- Module 15: In some situations, the outcome of the approximate fault location process may not be 

able to identify the faulted zone. In this situation, the control center operators aid the repair crews to 

identify the faulted zone. This module is responsible for evaluating the activities involved with the 

faulted zone location process. Based on the analysis assumptions, the fault involved in the 

contingency under study, the reaction of autonomous system, the available facilities to the repair 

crews for fault location purposes and also the number, location and ratings of the available 

switching devices, the faulted zone is identified. When the process involves any switching 

operation, there might be some reactions from the autonomous system. Therefore, the possible 

reaction of autonomous system after operating the targeted switching devices should be evaluated in 

this module as well. 
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- Module 16: Depending on the analysis assumptions, the ratings of the available switching devices 

and also the fault involved in the contingency under study, a suitable set of the switching devices 

are identified in this module for local fault isolation and service restoration activities. 

 

- Module 17: In this module the activities involved with the precise fault location process are 

evaluated. This module estimates the time at which the damaged part of the failed component is 

identified. The activities involved in the precise fault location process depend on the analysis 

assumptions, type of the fault involved in the contingency under study, type of the components 

involved in the faulted zone, the reaction of autonomous system, the available facilities to the repair 

crews for fault location purposes and also the outcome of approximate fault location process.  

 

- Module 18: In this module the activities involved with the repair or replacement process are 

evaluated. This module estimates the time at which the repair or replacement activities of the 

damaged component are accomplished and it gets ready to return to its normal operating status.  

 

- Module 19: Depending on the analysis assumptions and also the type, number and location of 

switching devices whose normal operating statues have been changed due to the fault isolation and 

service restoration activities, a suitable set of the switching devices are identified in this module for 

returning the status of the electricity distribution network to its normal operating configuration. 

 

- Module 20: Based on the identified maneuvering switching devices, all the possible network 

configurations are generated in this module. Then, each configuration is further investigated against 

criterion such as radial operating status, voltage and overload constraints and also number of 

customers that are affected before and after the network reconfiguration. Finally, a set of the 

network configurations that can meet the criterion are selected as the feasible network 

configurations for return to normal operating status.  

 

- Module 21: In this module, the normal operating status of the electricity distribution network is 

selected as the final network configuration. Then, the optimal switching sequences for transferring 

the present configuration to the final configuration are identified. The switching sequences are such 

organized that all the configurations in this process just involve the identified feasible network 

configurations. 
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- Module 22: In this module, all the voltage variation events observed from the initiation of the 

contingency under study till accomplishing the targeted fault management activities are evaluated 

and compared against the thresholds defined for sustained interruptions, momentary interruptions 

and voltage sags. Finally, by applying the aggregation methods, the equivalent voltage variation 

events imposed on the customers are estimated for the contingency under study. 
 

- Module 23: In this module, the impacts of various operating states generated for the primary 

contingency are accumulated using the concepts of expectations. The following equations are used 

to estimate the impacts of the primary contingency on the customers: 

 

 (1) 

Where: 
 

 Contribution to the annual expected frequency of sustained interruptions 
affecting the load point Lj due to the contingency Ci  
 

 Total number of operating states generated for the contingency Ci  
 

Ci Contingency number i 
 

 Annual occurrence rate of the contingency Ci  
 

 Probability of residing in the operating state k of the contingency Ci  
 

 Total number of voltage variation events imposed on the load point Lj due to 
the contingency Ci and the operating state k 
 

Lj Load point number j  
 

 A fitness function which is equal to one if the characteristics of the voltage 
variation event under examination (i.e. VVE) fit to the thresholds defined for 
sustained interruptions. Otherwise, its value is equal to zero for the voltage 
variation event under examination.  
 

 Voltage variation event number m that imposed on the load point Lj due to the 
operating state k of the contingency Ci. Generally, the overall effects of the 
generated contingency are appeared to each load points as several voltage 
variation events. Each one of these voltage variation events can be 
corresponding to a power interruption, a voltage sag or just a slight deviation 
from the nominal voltage. The magnitude and duration of each voltage 
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variation event are examined in order to identify the type of events.  
 

 

 (2) 

Where: 

 Contribution to the annual expected frequency of momentary interruptions 
affecting the load point Lj due to the contingency Ci  
 

 A fitness function which is equal to one if the characteristics of the voltage 
variation event under examination (i.e. VVE) fit to the thresholds defined for 
momentary interruptions. Otherwise, its value is equal to zero for the voltage 
variation event under examination.  
 

 

 (3) 

Where: 
 

 

 Contribution to the annual expected frequency of voltage sags affecting the 
load point Lj due to the contingency Ci  
 

 The value of this function shows the overall impacts on the customers 
connected to the load point Lj when the characteristics of the voltage variation 
event imposed on this load point (i.e. VVE) fit to the thresholds defined for 
voltage sags. Its value lies between zero and one. The value of this function is 
equal to zero when the characteristics of the imposed voltage variation event 
do not fit to the thresholds defined for voltage sags. Generally, the magnitude 
and duration of the voltage sag are compared with the voltage tolerance 
characteristics of sensitive equipments of the customers connected to the load 
point Lj to find its possible impacts. The impacts on the customers connected 
to the load point Lj of the voltage sag are sum up and divided by the total 
number of customers to estimate the value of this function. 
 

 

 (4) 
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Where: 
 

 Contribution to the annual expected frequency of voltage variation events 
imposed on the load point Lj due to the contingency Ci. The magnitude and 
duration of the voltage variation events lie in the ranges specified by 
parameters V and D.  
 

V A range of magnitude of voltage variation events, e.g. 0.2 ≤ V ≤ 0.3 per unit 
 

D A range of duration of voltage variation events, e.g. 0.01 ≤ D ≤ 0.1 seconds 
 

 A fitness function which is equal to one if the characteristics of the voltage 
variation event under examination (i.e. VVE) fit to the magnitude and 
duration range specified by parameters V and D. Otherwise, its value is equal 
to zero for the voltage variation event under examination. As an example, 
consider a range such as 0.2 ≤ V ≤ 0.3 per unit and 0.01 ≤ D ≤ 0.1 seconds. 
The value of this function for a voltage variation event with the remaining 
voltage 0.27 per unit and duration 0.09 seconds is equal to one. However, for 
a voltage variation event with the remaining voltage 0.27 per unit and 
duration 0.15 seconds, the value of this function is equal to zero. 
 

 

 (5) 

Where: 
 

 Contribution to the annual expected duration of sustained interruptions 
affecting the load point Lj due to the contingency Ci  
 

 Duration of the voltage variation event under examination (i.e. VVE) 
 

 

 (6) 

Where: 
 

 Contribution to the annual expected energy not supplied of the load point Lj 
due to the contingency Ci 
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 Average load connected to the load point Lj   
 

 

 (7) 

Where: 
 

 Contribution to annual expected cost arising from sustained interruptions 
affecting the load point Lj due to the contingency Ci 
 

 The value of this function shows the financial impacts of the voltage variation 
event (i.e. VVE) imposed on the load point Lj. For a voltage variation event 
which its characteristics fit to the thresholds of power interruptions, the 
duration of voltage variation event under examination is used to estimate the 
cost. However, in the case of a voltage variation event which its 
characteristics fit to the thresholds defined for the voltage sags, both 
magnitude and duration of the voltage variation event are normally required 
to estimate the cost. The technique described in [148] can be used to estimate 

. This technique has been developed by collaboration of the author. 
 

 

 (8) 

Where  is the contribution to annual expected cost arising from momentary interruptions 
affecting the load point Lj due to the contingency Ci. 
 
 

 (9) 

Where  

is Contribution to annual expected cost arising from voltage sags affecting the 
load point Lj due to the contingency Ci. 
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 A fitness function which is equal to one if the characteristics of the voltage 
variation event under examination (i.e. VVE) fit to the thresholds defined for 
voltage sags. Otherwise, its value is equal to zero for the voltage variation 
event under examination.  
 

 

- Module 24: In this module, the contributions of all the primary contingencies are summed up to 

deduce the load points and system oriented reliability indices. The following equations are used to 

estimate the reliability indices: 

 (10) 

Where: 
 

 Annual expected frequency of sustained interruptions affecting the load point Lj 
 

NCT Total number of primary contingencies 
 

 (11) 

Where  is annual expected frequency of momentary interruptions affecting the load point Lj. 
 

 (12) 

Where  is the annual expected frequency of voltage sags affecting the load point Lj.  
 

 (13) 

Where is the annual expected frequency of voltage variation events imposed on the load 
point Lj. The magnitude and duration of the voltage variation events lie in the ranges specified by 
parameters V and D. 
 

 (14) 

Where  is the annual expected duration of sustained interruptions affecting the load point Lj. 
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 (15) 

Where  is the average outage time of the load point Lj. 
 

 (16) 

Where is the annual expected energy not supplied of the load point Lj. 
 

 (17) 

Where is annual expected cost arising from sustained interruptions affecting the load point Lj. 
 

 (18) 

Where  is the annual expected cost arising from momentary interruptions affecting the load 
point Lj.  
 

 (19) 

Where is the annual expected cost arising from voltage sags affecting the load point Lj.  
 

 (20) 

Where: 
 
SAIFI System Average Interruption Frequency Index [1, 3, 152] 

 

NLP Number of load points of the distribution system under study 
 

 Number of customers connected to the load point Lj 
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 (21) 

Where MAIFI is the Momentary Average Interruption Frequency Index [1, 3,152]. 
 

 (22) 

Where AVSSI is the Average Voltage Sag Severity Index. This index shows the average occurrence 
rate of the voltage sags that can cause problem for the customers. 
 

 (23) 

Where AVVFI(V,D) is the Average Voltage Variation Frequency Index. This index shows the 
average occurrence rate of the voltage variation events that their magnitude and duration lie in a 
range specified by the parameters V and D. 
 

 (24) 

Where SAIDI is the System Average Interruption Duration Index [1, 3, 152]. 
 

 (25) 

Where ASAI is the Average System Availability Index [1, 3, 152]. 
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 (26) 

Where ASUI is the Average System Unavailability Index [1, 3,152]. 
 

 (27) 

Where EENS is the overall Expected Energy Not Supplied [1, 3, 152]. 
 

 (28) 

Where ECOSTSI is the total expected cost resulted from sustained interruptions. 
 

 (29) 

Where ECOSTMI is the total expected cost resulted from momentary interruptions. 
 

 (30) 

Where ECOSTVS is the total expected cost resulted from voltage sags. 
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Figure 2.  Flowchart of the procedure proposed for reliability  

evaluation of smart distribution grids (part 1 of 4). 
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Figure 2.  Flowchart of the procedure proposed for reliability  

evaluation of smart distribution grids (part 2 of 4). 
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Figure 2.  Flowchart of the procedure proposed for reliability  

evaluation of smart distribution grids (part 3 of 4). 
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Figure 2.  Flowchart of the procedure proposed for reliability  

evaluation of smart distribution grids (part 4 of 4). 
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6 STUDY RESULTS 

A powerful software package designated as “Smart Grid Simulator” was developed for realizing 

the reliability evaluation procedure proposed in this thesis. In this chapter, the results of various 

reliability case studies that have been conducted by the developed software are presented and 

discussed. Various failure modes of each component of the electricity distribution network under 

study are simulated in this software. For each failure mode, the detailed reactions of implemented 

smart grid technologies and their impacts on the different stages of the fault management activities 

are evaluated. As a result, the time periods required for accomplishing each step of the fault 

management activities and manners in which different load points have been affected are 

determined. Based on these outcomes, the software calculates the load points and system oriented 

reliability indices. The software can also predict the reliability impacts of voltage sags generated at 

higher voltage levels (sub-transmission and transmission networks) but propagated into the 

distribution system under study. 

6.1 Test Systems Data and Analysis Assumptions 

A typical Finnish 20 kV urban distribution network is used as a distribution test network for 

quantitative reliability case studies concerned in this thesis. The basic data related to the distribution 

test network can be found in Appendixes I, II and III. The single-line diagram of this distribution 

test network and its overall data are shown in Figure 3 and Table 1, respectively. There are 144 

distribution substations (20/0.4 kV) in the distribution test network, which are supplied through 6 

underground cable feeders originated from one sub-transmission substation. The average load factor 

and the average power factor for distribution substations are assumed to be 73% and 95%, 

respectively. Two 110/20 kV transformers each with rating 16 MVA and short circuit impedance of 

10% supply this network through two incoming 110 kV feeders. The substation configuration at 

110 kV level is H-connection and at 20 kV level is single-busbar. To limit the short circuit level in 

20 kV level, the 20 kV switchgears are arranged to split the 20 kV busbar such that feeders 1, 2 and 

3 are supplied by the first transformer and feeders 4, 5 and 6 are supplied by the second transformer.  

A typical Finnish 110 kV sub-transmission network is also used in this thesis as a sub-

transmission test network for simulating the voltage sags which propagate through sub-transmission 

network into the distribution test network. The single line diagram of this sub-transmission test 

network is shown in Figure 4. The sub-transmission test network consists of 24 substations, 19 
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underground cable circuits and 23 overhead line sections. The basic data of the overhead lines and 

the underground cables of the sub-transmission test network can be found in Appendixes IV and V. 

It should be mentioned that the above described test networks have been taken from different 

areas of Finland. The components reliability data for the distribution test network and the sub-

transmission test network are assumed according to Table 2.  

 

 
 

Figure 3. Single-line diagram of a typical Finnish 20 kV urban distribution network  
which is used as a distribution test network. 

 



  
Page 41  

  

TABLE 1 
BASIC DATA FOR THE DISTRIBUTION TEST NETWORK  

 

Attribute 
Number of 

Distribution 
Substations 

Number of 
Switching 

Devices 

Exposure 
(meters) 

Peak Load 
(MW) 

Average Load 
(MW) 

Feeder 1 23 44 22606 1.41 1.03 

Feeder 2 18 33 18474 1.55 1.13 

Feeder 3 32 58 39595 1.57 1.15 

Feeder 4 27 50 24871 2.19 1.60 

Feeder 5 15 28 19878 1.43 1.06 

Feeder 6 29 49 31587 1.25 0.91 

Overall 144 262 157011 9.40 6.88 

 

 
 

Figure 4. Single-line diagram of a typical Finnish 110 kV sub-transmission network  
which is used as a sub-transmission test network. 
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TABLE 2 
COMPONENT RELIABILITY DATA FOR THE DISTRIBUTION TEST NETWORK  

AND THE SUB-TRANSMISSION TEST NETWORK 
 

Component Total Failure Rate Actual Repair or 
Replacement Time (hours) 

110 kV Overhead Lines 0.0218 occ/km-a 48  

110 kV Underground Cables 0.001 occ/km-a 336 

110/20 kV Transformers 0.023 occ/a 300 

110 kV Circuit Breakers 0.00336 occ/a 100 

110 kV Busbars 0.0068 occ/a 200 

20 kV Underground Cables 0.006 occ/km-a 6 

20/0.4 kV Transformers 0.001 occ/a 10 

 

The following basic assumptions are also considered when evaluating the impact of voltage sags 

on the customers: 

- The share of different fault types at 110 kV and 20 kV levels are taken from [149, 150] as shown 

in Table 3. 

- The conventional distance relays are used for the protection of the 110 kV overhead lines. The 

zone 1 covers 80% of the line length and zone 2 covers the whole length of the line length. The 

fault clearing times for faults located in the zone 1 and zone 2 are assumed to be 4 and 20 cycles, 

respectively.  

- The pilot protection scheme is used for the 110kV underground cable circuits. In this situation, the 

fault clearing time for all the faults along an underground cable circuit is assumed to be 4 cycles. 

- The fault clearing time for a fault within the 110/20 kV substation (e.g. busbar and circuit 

breakers) is assumed to be 5 cycles.  

- The fault clearing times for faults on the components of the distribution test network are 

determined by the fault type, fault location and also the characteristics of protection devices 

implemented in the test network. The feeder circuit breakers are equipped with an over-current 

relay with an extremely inverse time-current characteristic for short circuit faults and sensitive earth 

fault relay for phase to ground faults. The distribution transformers are protected against the short 

circuit faults by means of switch fuses equipped with K-speed fuse links rated according to the size 

of the transformers. The feeder circuit breaker operates for the single-phase to ground faults.  

- The winding connections of the 110/20 kV transformers and the 20/0.4 kV distribution service 

transformers are assumed to be Yy0 and Dyn11, respectively.  
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- The neutral grounding at the110 kV level is impedance earthed, at the 20 kV level is resonance 

(compensated) earthed and at the 0.4 kV level is solidly earthed, respectively. 

- The positive, negative and zero sequence impedances seen from substation number 1 are 

0.152+j2.024 ohm, 0.152+j2.027 ohm and 2.902+j54.506 ohm, respectively. 

- The positive, negative and zero sequence impedances seen from substation number 2 are 

0.145+j1.693 ohm, 0.145+j1.695 ohm and 2.713+j53.349 ohm, respectively. 

- The positive, negative and zero sequence impedances seen from substation number 3 are 

0.180+j1.708 ohm, 0.180+j1.710 ohm and 2.777+j53.455 ohm, respectively. 

- The positive, negative and zero sequence impedances seen from substation number 4 are 

0.286+j1.834 ohm, 0.286+j1.836 ohm and 2.785+j52.791 ohm, respectively. 

- The positive, negative and zero sequence impedances seen from substation number 5 are 

0.323+j1.926 ohm, 0.323+j1.928 ohm and 2.994+j52.978 ohm, respectively. 

- The distribution test network is assumed to be supplied through the substation number 14 of the 

sub-transmission test network. The short circuit levels at this substation for three-phase, phase to 

phase, double-phase to ground and single-phase to ground faults are 27kA, 23.4kA, 23.5kA and 

3.2kA, respectively. The positive, negative and zero sequence impedances seen from this substation 

are 0.333+j2.306 ohm, 0.333+j2.306 ohm and 3.182+j54.3 ohm, respectively. 

- The voltage sags are evaluated at the low voltage side of distribution transformers. 

- The fault impedance is assumed to be zero. 

- Three fault positions are considered for each 110 kV transmission line, respectively at 16.67, 50 

and 83.33 percents of the line length. In the case of 20 kV cables, the faults are positioned at every 

one kilometer of the cable length. For the other components, one fault position is considered.   

- The overall susceptibility of the customer operations against a voltage sag is represented by the 

ITIC (CBEMA) voltage tolerance curve, as shown in Figure 5 [151].  

- The financial impacts on a customer due to an interruption resulted from a voltage sag is assumed 

equal to that of a momentary interruption cost. 

- The definitions described in IEEE Standard 1159 [19] and IEEE Standard 1366 [152] are 

combined for describing the sustained interruptions, momentary interruptions and voltage sags 

concerned in the following case studies. The sustained interruption is defined as decline of the RMS 

voltage to less than 10 percents of the nominal voltage on one or more phase conductors for a time 

greater than 1 min. The momentary interruption is defined as decline of the RMS voltage to less 

than 10 percents of the nominal voltage on one or more phase conductors for a time period between 
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0.5 cycles and 1 minute. The voltage sag is defined as the decrease in the RMS voltage between 10 

to 90 percents of the nominal voltage for durations from 0.5 cycles to 1 minute.    

- The common phase aggregation method described in IEEE Standard 493 [153] is used for 

evaluating the three-phase voltage sags. In this method, a three-phase voltage sag is represented by 

a single individual event. The lowest voltage among the three phases is considered as the voltage 

sag magnitude and the sag duration is reported as the time until all three phase voltages have 

recovered above 90 percents of the nominal voltage.  

- A five-minute aggregation window is used for evaluating the multiple voltage sags. In this 

condition, starting from the event initiation time, only one voltage sag is reported during this five-

minute period which is corresponding to the most severe voltage sag among multiple events. The 

same aggregation window is used for evaluating the momentary interruption. 

 
TABLE 3 

SHARE OF DIFFERENT FAULT TYPES AT 110 KV AND 20 KV LEVELS [149, 150], IN PERCENTS 
 

Voltage Level Phase to Ground 
Faults 

Phase to 
Phase Faults 

Double-Phase to 
Ground Faults  

Three-Phase 
Faults 

110 kV 81 3 14 2 

20 kV 50 9 24 17 

 

 

 
 

Figure 5. ITIC (CBEMA) voltage tolerance curve [151] 
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6.2 Comparative Case Studies 

In order to compare the impacts of the identified smart grid technologies on the reliability 

performance of the distribution test network various case studies have been conducted. Obviously, 

any feasible set of the identified technologies can be evaluated as a specific case study. However, to 

limit the number of case studies, based on the engineering judgments, only some potential 

combinations of these technologies are selected for presenting in this thesis. An integrating 

approach is used for dealing with these technologies. The ultimate goal in this approach is to 

provide a premium electricity service for the customers of the distribution test network. The studies 

are started from a benchmark case study. Then, in the next case studies, a suitable smart grid 

technology is integrated to the last upgraded case study. This sequential approach is ended up when 

all the targeted smart grid technologies have been involved in the base case study.  

6.2.1 Case Study 1: Base Case  

The base case study aims to show the reliability performance of the distribution test network 

when it is manually operated. In this situation, the operation of protective devices for a fault within 

the 110/20 kV substation (e.g. transformer or circuit breaker failures) results in the power 

interruptions for half or all of the distribution feeders. After notifying the outage condition by the 

control center operators, the local operators of the 110/20 kV substation are committed to isolate the 

failed component and restore the power service for as many as possible of the feeders through 

appropriate switching actions. Otherwise, the failed component should be repaired or replaced 

before the power could be restored. For a failure condition on a component of distribution feeders 

(e.g. an underground cable section or a distribution transformer), either a feeder circuit breaker or a 

distribution transformer protection operates. This usually leads to a power interruption for a group 

of customers and a voltage sag for others. Then, the power interruptions are notified by the control 

center operators through outage calls received from the customers or the local operators of the 

110/20 kV substation. Next, the repair crews are sent to the outage area. When a feeder circuit 

breaker operates due to a component failure, usually there is no information which section of the 

feeder might be failed. In circumstances like this, the repair crews halve the downstream sections of 

the operated circuit breaker by opening a suitable switching device. Then the feeder circuit breaker 

is committed to be reclosed to determine whether the fault is located upstream of the opened 

switching device or vice-versa. This trial-and-error process is repeated until the faulted section is 

found. Then, the faulted section is isolated and the power service is restored for other healthy 



  
Page 46  

  

sections of the network through the proper manual switching operations. By the time these tasks are 

accomplished, the precise fault location and the repair or replacement activities are carried out. 

Finally, the network is returned to its normal operating status.  

The basic data related to the fault management activities for the above described case study are 

assumed according to Table 4. Typical data provided in this table, and similar tables that come later 

for other case studies, are based on the engineering judgments, the characteristics of the 

implemented smart grid technologies and also consulting with some experts in this area. 

The system oriented reliability indices for the base case study are represented in Table 5. The 

load point reliability indices are shown in Figures 6-13. The distributions of expected momentary 

interruptions and voltage sags imposed on the customers of the distribution test network are also 

shown in Figures 14-17.  

The study results for the base case study indicate a large variation in the reliability indices 

associated with sustained interruptions and moderate variation in the reliability indices associated 

with momentary interruptions and voltage sags. When conducting trial and error switching activities 

for faulted zone location, some of the customers are affected several times for the same fault. As the 

switching operations are carried out manually and in time periods much longer than the aggregation 

window for recording the momentary events (5 minutes); several sustained interruptions are 

experienced by the customers. Therefore, parameters such as the network configuration, location of 

switching devices, fault location and also trial and error switching strategy of the electric utility 

result in more frequent sustained interruptions for some of the customers. However, examining the 

distributions of momentary interruptions and voltage sags indicate the majority of momentary 

interruptions and severe voltage sags (remaining voltage less than 70 percents of the nominal 

voltage) are arising from faults within the high voltage network rather than the local medium 

voltage network. The momentary interruptions and voltage sags which propagated through the high 

voltage network affect all the customers of the distribution test network. Therefore, the reliability 

indices associated with the momentary interruptions and voltage sags have much less variation 

among different customers compared to those of sustained interruptions.  

The short circuit faults close to the main substation result in the remaining voltage less than the 

threshold of momentary interruptions (10 percent of the nominal voltage) and appear as momentary 

interruptions to the customers. As the frequency of such faults is very low, the momentary 

interruptions experienced by the customers are low as well.  

The study results also indicate that the frequency of severe voltage sags is about 1.44 times of 

that of sustained interruptions. However, the cost associated with severe voltage sags is about 15 
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percents of the cost associated with sustained interruptions. This is because, for majority of 

customers available in the distribution test network, the cost associated with a severe voltage sag 

event is far less than that of a sustained interruption. 

The term “repair crew burden” in Table 5 shows the sum of hours that the utility repair crews 

spend annually for conducting various fault management activities. 

 
TABLE 4 

BASIC DATA RELATED TO THE FAULT MANAGEMENT ACTIVITIES IN CASE STUDY 1 
 

Average time required for fault notification (s) 300 

Average time required for approximate fault location (s) 600 

Average time required for decision making about fault management activities (s) 600 

Average time required for dispatching the repair crews (s) 300 

Average speed of the repair crews for traveling to the faulted area (km/h) 40 

Average time required for precise fault location on an underground cable section 
including both pre-location and pinpointing activities (s) 1800 

Average time required for manual operation of switching devices involved in fault 
management activities (s) 180 

Available teams of repair crews for performing fault management activities 2 
 

TABLE 5 
SYSTEM ORIENTED RELIABILITY INDICES FOR CASE STUDY 1 

 
SAIFI (int/sub-a) 0.8444 

SAIDI (h/sub-a) 0.8030 

MAIFI (eve/sub-a) 0.0746 

AVSSI (eve/sub-a) 1.2155 

ASUI (%) 0.009169 

EENS (kWh/a) 5120 

 ECOSTSI (€/a) 139926 

ECOSTMI (€/a) 1291 

ECOSTVS (€/a) 21079 

Total Cost (€/a) 162296 

Repair Crew Burden (h/a) 80.40 
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Figure 6. Annual expected frequency of sustained interruptions for distribution substations 
of the distribution test network,  (Case Study 1) 

 

 

 

 

 
 

Figure 7. Annual expected duration of sustained interruptions for distribution substations 
of the distribution test network,  (Case Study 1) 
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Figure 8. Annual expected frequency of momentary interruptions for distribution substations 
of the distribution test network,  (Case Study 1) 

 

 

 

 

 
 

Figure 9. Annual expected frequency of voltage sags affecting distribution substations 
of the distribution test network,  (Case Study 1) 
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Figure 10. Annual expected energy not supplied for distribution substations 
of the distribution test network,  (Case Study 1) 

 

 

 

 

 
 

Figure 11. Annual expected cost arising from sustained interruptions for distribution substations 
 of the distribution test network,  (Case Study 1) 
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Figure 12. Annual expected cost arising from momentary interruptions for distribution substations  
of the distribution test network,  (Case Study 1) 

 

 

 

 

 
 

Figure 13. Annual expected cost arising from voltage sags for distribution substations  
of the distribution test network,  (Case Study 1) 
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Figure 14. Density distribution of the expected voltage variation events,  due to the faults 

originated from the distribution test network (Case Study 1) 
 

 
Figure 15. Density distribution of the expected voltage variation events,  due to the faults 

originated from the sub-transmission test network (Case Study 1) 
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Figure 16. Density distribution of overall expected voltage variation events,  (Case Study 1) 
 

 
Figure 17. Cumulative distribution of overall expected voltage variation events,  (Case Study 1) 
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6.2.2 Case Study 2: Integrating Distance to Fault Estimators 

This case study aims to show the reliability performance of the distribution test network when 

distance to fault estimators are employed at the 110/20 kV substation for estimating the fault 

location as a distance from the substation to the fault. In this case study, it is assumed that the data 

retrieving from these devices requires the intervention of the local operators of the 110/20 kV 

substation. The basic data related to the fault management activities for this case study are assumed 

similar to the Case Study 1 (Table 4).  

The system oriented reliability indices for this case study are represented in Table 6. The load 

point reliability indices are shown in Figures 18-25. The distributions of expected momentary 

interruptions and voltage sags imposed on the customers of the distribution test network are shown 

in Figures 26 and 27.  

The study results show virtually all the reliability indices have been improved compared to the 

base case study. The degree of improvements ranges from 16 to 39 percents. Actually, by using the 

distance to fault estimators, a much smaller zone of the electricity distribution test network is 

required to be inspected by the repair crews in search for location and isolation of the fault and 

restore service to the affected customers. Hence, much less trial and error switching actions are 

required to find the faulted section. Therefore, both the frequency and duration of sustained 

interruptions imposed on the customers are reduced in this condition.  

The study results also show that the reliability indices associated with the momentary 

interruptions and voltage sags have been improvement when employing the distance to fault 

estimators. The implemented smart grid technologies have no impact on the momentary 

interruptions and voltage sags arising from the faults within the high voltage network. Therefore, 

the improvements appeared in the reliability indices associated with the momentary interruptions 

and voltage sags are solely due to decrease in the trial and error switching activities required for 

fault location purposes.    

The study results also indicate that the variation of reliability indices among different customers 

has been much reduced compared to those of the base case study (Case Study 1). 

The results presented in Table 6 show that the burden on the utility crews are also reduced when 

employing the distance to the fault estimators. This is because much less field activities are required 

to find the faulted section compared to the base case study. 
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TABLE 6 
SYSTEM ORIENTED RELIABILITY INDICES FOR CASE STUDY 2 

 

Reliability Index Expected Value Relative Change to 
the Base Case (%) 

SAIFI (int/sub-a) 0.5160 -38.89 

SAIDI (h/sub-a) 0.5244 -34.69 

MAIFI (eve/sub-a) 0.0531 -28.82 

AVSSI (eve/sub-a) 1.0218 -15.94 

ASUI (%) 0.005986 -34.71 

EENS (kWh/a) 3278 -35.98 

ECOSTSI (€/a) 88706 -36.61 

ECOSTMI (€/a) 913 -29.28 

ECOSTVS (€/a) 17624 -16.39 

Total Cost (€/a) 107242 -33.92 

Repair Crew Burden (h/a) 75.97 -5.50 
 

 

 

 

 
 

Figure 18. Annual expected frequency of sustained interruptions for distribution substations  
of the distribution test network,  (Case Studies 1&2) 
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Figure 19. Annual expected duration of sustained interruptions for distribution substations  
of the distribution test network,  (Case Studies 1&2) 

 

 

 

 

 
 

Figure 20. Annual expected frequency of momentary interruptions for distribution substations 
of the distribution test network,  (Case Studies 1&2) 
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Figure 21. Annual expected frequency of voltage sags affecting distribution substations 
of the distribution test network,  (Case Studies 1&2) 

 

 

 

 

 
 

Figure 22. Annual expected energy not supplied for distribution substations  
of the distribution test network,  (Case Studies 1&2) 
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Figure 23. Annual expected cost arising from sustained interruptions for distribution substations 
 of the distribution test network,  (Case Studies 1 &2) 

 

 

 

 

 
 

Figure 24. Annual expected cost arising from momentary interruptions for distribution substations  
of the distribution test network,  (Case Studies 1 &2) 
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Figure 25. Annual expected cost arising from voltage sags for distribution substations  
of the distribution test network,  (Case Studies 1 &2) 

 

 

 
Figure 26. Density distribution of overall expected voltage variation events,  (Case Study 2) 
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Figure 27. Cumulative distribution of overall expected voltage variation events,  (Case Study 2) 
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distributions of expected momentary interruptions and voltage sags imposed on the customers of the 

distribution test network are shown in Figures 34 and 35.  

The study results show that virtually all the reliability indices have been improved compared to 

the base case study. The results presented in Table 7 also show that the rates of sustained 

interruptions and severe voltage sags have been decreased when the fault passage indicators are 

used with the distance to fault estimators. However, the average duration of sustained interruptions 

are slightly increased as the repair crews may have to visit more distribution substations to read the 

status of the fault passage indicators. Instead, the less trial and error switching actions are required 

to find the faulted section compared to the Case Studies 1 and 2. As a result, the frequency and 

financial impacts on the customers due to voltage sags are decreased in this case study compared to 

those of the Case Studies 1 and 2.  

The study results also show that the reliability indices associated with the momentary 

interruptions have not been improvement compared to those of the Case Study 2. Actually, the 

origin of momentary interruptions is the short circuit faults close to the 110/20 kV substation. The 

implemented smart grid technologies in the Case Studies 2 and 3 have no mitigation on the 

momentary interruptions arising from the faults within the high voltage network. In addition, the 

first few kilometers of the feeders outgoing from the 110/20 kV substation have no or few taps. The 

short circuit faults within these short distances almost cause momentary interruptions for the 

customers connected to the neighboring feeders. However, when employing the distance to fault 

estimators, the faulted zone can be identified for these short distances. Therefore, applying the fault 

passage indicators do not provide further information for locating the faults close to the 110/20 kV 

substation. Hence, as the study results show, there is no improvement in the reliability indices 

associated with the momentary interruptions compared to those of the Case Study 2.   

The study results also indicate that the variation of reliability indices among different customers 

has been much reduced compared to those of the Case Studies 1 and 2. 

The results presented in Table 7 also show that the burden on the utility crews is the same as that 

of the Case Study 2. This is because, when employing the fault passage indicators, the repair crews 

have to visit more distribution substations to read the status of the fault passage indicators. The 

overall time required for accomplishing the activities involved in this process is virtually about the 

same of that of previous trial and error switching activities involved in the Case Study 2. Therefore, 

the burden on the utility crews is almost the same for Case Studies 2 and 3. 
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TABLE 7 
SYSTEM ORIENTED RELIABILITY INDICES FOR CASE STUDY 3 

 

Reliability Index Expected Value 
Relative 

Change to Case 
Study 2 (%) 

Relative 
Change to the 
Base Case (%) 

SAIFI (int/sub-a) 0.3285 -36.34 -61.10 

SAIDI (h/sub-a) 0.5401 +2.99 -32.74 

MAIFI (eve/sub-a) 0.0531 0.00 -28.82 

AVSSI (eve/sub-a) 0.9777 -4.32 -19.56 

ASUI (%) 0.006166 +3.01 -32.75 

EENS (kWh/a) 3400 +3.72 -33.59 

ECOSTSI (€/a) 88965 +0.29 -36.42 

ECOSTMI (€/a) 913 0.00 -29.28 

ECOSTVS (€/a) 16850 -4.39 -20.06 

Total Cost (€/a) 106728 -0.48 -34.24 

Repair Crew Burden (h/a) 75.97 0.00 -5.50 
 

 

 

 

 
 

Figure 28. Annual expected frequency of sustained interruptions for distribution substations  
of the distribution test network,  (Case Studies 1, 2&3) 
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Figure 29. Annual expected duration of sustained interruptions for distribution substations  
of the distribution test network,  (Case Studies 1, 2&3) 

 

 

 

 

 
 

Figure 30. Annual expected frequency of voltage sags affecting distribution substations 
of the distribution test network,  (Case Studies 1, 2&3) 
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Figure 31. Annual expected energy not supplied for distribution substations  
of the distribution test network,  (Studies 1, 2&3) 

 

 

 

 

 
 

Figure 32. Annual expected cost arising from sustained interruptions for distribution substations  
of the distribution test network,  (Studies 1, 2&3) 
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Figure 33. Annual expected cost arising from voltage sags for distribution substations  
of the distribution test network,  (Case Studies 1, 2&3) 

 

 

 
Figure 34. Density distribution of overall expected voltage variation events,  (Case Study 3) 
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Figure 35. Cumulative distribution of overall expected voltage variation events,  (Case Study 3) 

 

6.2.4 Case Study 4: Integrating Fault Locator Scheme  

The smart grid technologies implemented through the Case Studies 2 and 3 can be replaced or 

retrofitted to develop a fault locator scheme. These facilities can be arranged such that the fault 

notification and location activities accomplish automatically. As an example, the status of fault 

passage indicators installed along the distribution feeders can be retrieved over a communication 

link. This data together with the outcome of the distance to fault estimators are then automatically 

analyzed to find the fault location. Then, the control center operators and the utility repair crews are 

automatically notified about the outage condition and the probable fault location.  

This case study aims to evaluate the impact of the above described fault locator scheme on the 

reliability performance of the distribution test network. In this situation, the basic data related to the 

fault management activities are assumed according to Table 8. 

The system oriented reliability indices for this case study are represented in Table 9. The load 

point reliability indices that differ from those of the Case Study 3 are shown in Figures 36-38. The 

distributions of expected momentary interruptions and voltage sags imposed on the customers of the 

distribution test network are similar to those of the Case Study 3.  
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The study results show that the durations of the sustained interruptions have been reduced 

compared to the Case Study 3. As a result, the energy not supplied, service unavailability and also 

the financial impacts of the sustained interruptions have also been reduced compared to those of the 

Case Study 3.  

The reliability indices corresponding to the momentary interruptions and voltage sags remain the 

same as those of the Case Study 3. Actually, the fault locator scheme implemented in this case 

study cannot further decrease the impact of voltage sags. This is because, in both Case Studies 3 

and 4, all the faults can be located without the need for any trial and error switching activities. The 

remaining voltage sags are either due to the impacts of the faults originated from the sub-

transmission network or the faults within the distribution test networks.    

The study results also indicate that the variation of reliability indices among different customers 

has been reduced again compared to those of the Case Studies 1, 2 and 3. 

The results presented in Table 9 also show that the burdens on the utility crews are reduced 

when employing the fault locator scheme. This is because much less field activities are required to 

find the faulted section compared to the other case studies.  

 

 

 
TABLE 8 

BASIC DATA RELATED TO THE FAULT MANAGEMENT ACTIVITIES IN CASE STUDY 4 
 

Average time required for fault notification (s) 60 

Average time required for approximate fault location (s) 60 

Average time required for decision making about fault management activities (s) 600 

Average time required for dispatching the repair crews (s) 120 

Average speed of the repair crews for traveling to the faulted area (km/h) 40 

Average time required for precise fault location on an underground cable section including 
both pre-location and pinpointing activities (s) 1800 

Average time required for manual operation of switching devices involved in fault 
management activities (s) 180 

Available teams of repair crews for performing fault management activities 2 
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TABLE 9 
SYSTEM ORIENTED RELIABILITY INDICES FOR CASE STUDY 4 

 

Reliability Index Expected Value 
Relative 

Change to Case 
Study 3 (%) 

Relative 
Change to the 
Base Case (%) 

SAIFI (int/sub-a) 0.3285 0.00 -61.10 
SAIDI (h/sub-a) 0.3027 -43.95 -62.30 
MAIFI (eve/sub-a) 0.0531 0.00 -28.82 
AVSSI (eve/sub-a) 0.9777 0.00 -19.56 
ASUI (%) 0.003455 -43.97 -62.32 
EENS (kWh/a) 1897 -44.21 -62.95 
ECOSTSI (€/a) 51815 -41.76 -62.97 
ECOSTMI (€/a) 913 0.00 -29.28 
ECOSTVS (€/a) 16850 0.00 -20.06 
Total Cost (€/a) 69578 -34.81 -57.13 
Repair Crew Burden (h/a) 72.81 -4.16 -9.43 
 

 

 

 

 

 
 

Figure 36. Annual expected duration of sustained interruptions for distribution substations 
of the distribution test network,  (Case Studies 1, 3&4) 
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Figure 37. Annual expected energy not supplied for distribution substations 
of the distribution test network,  (Studies 1, 3&4) 

 

 

 

 

 
 

Figure 38. Annual expected cost arising from sustained interruptions for distribution substations  
of the distribution test network,  (Studies 1, 3&4) 
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6.2.5 Case Study 5: Integrating Sub-Transmission Substation Automation  

Employing a suitable set of the substation automation functions at the 110/20 kV substation can 

help to further improve the reliability level achieved in the Case Study 4. The substation automation 

scheme, which is responsible for performing the targeted functions, can be deployed by means of 

various smart grid technologies. For an illustration purpose, it is assumed that a substation 

automation scheme is implemented at the 110/20 kV substation to automatically perform the fault 

detection, isolation and service restoration activities for faults within this substation. The basic data 

related to the fault management activities are assumed similar to that of the Case Study 4 (Table 8).  

The system oriented reliability indices for this case study are represented in Table 10. The load 

point reliability indices that differ from those of the Case Study 4 are also shown in Figures 39-44. 

The distributions of expected momentary interruptions and voltage sags imposed on the customers 

of the distribution test network are also shown in Figures 45 and 46.  

By comparing the study results presented for the Case Studies 4 and 5, it can be found that the 

reliability indices associated with the sustained interruptions have been improved. However, the 

situation is different for the reliability indices associated with the momentary interruptions. 

Actually, employing the automatic fault detection, isolation and service restoration function at the 

110/20 kV sub-transmission substation only result in the shorter interruptions for the substation 

originated faults. In other word, the lengthy interruptions originated from the substation faults are 

now becoming momentary interruptions due to the automatic switching operations. However, as the 

failure rate of the substation components are much lower than that of the components of the 

distribution test network, the levels of reliability improvements in this case study are not much 

higher than that of the Case Study 4.  

The automated switching scheme implemented in the Case Study 5 has no impacts on the 

voltage sags experienced by the customers. Therefore, the reliability indices associated with the 

voltage sags remains similar to those of the Case Study 4.  

As the switching operation activities within the 110/20 kV substation are conducted by its local 

operators rather than the utility repair crews, the burdens on the utility crews remain similar to those 

of the Case Study 4. 
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TABLE 10 
SYSTEM ORIENTED RELIABILITY INDICES FOR CASE STUDY 5 

 

Reliability Index Expected Value 
Relative 

Change to Case 
Study 4 (%) 

Relative 
Change to the 
Base Case (%) 

SAIFI (int/sub-a) 0.2987 -9.07 -64.63 
SAIDI (h/sub-a) 0.2967 -1.98 -63.05 
MAIFI (eve/sub-a) 0.0828 +55.93 +10.99 
AVSSI (eve/sub-a) 0.9777 0.00 -19.56 
ASUI (%) 0.003387 -1.97 -63.06 
EENS (kWh/a) 1856 -2.16 -63.75 
ECOSTSI (€/a) 50271 -2.98 -64.07 
ECOSTMI (€/a) 1424 +55.97 +10.30 
ECOSTVS (€/a) 16850 0.00 -20.06 
Total Cost (€/a) 68546 -1.48 -57.76 
Repair Crew Burden (h/a) 72.81 0.00 -9.43 
 

 

 

 

 
 

Figure 39. Annual expected frequency of sustained interruptions for distribution substations  
of the distribution test network,  (Case Studies 1, 4&5) 
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Figure 40. Annual expected duration of sustained interruptions for distribution substations  
of the distribution test network,  (Case Studies 1, 4&5) 

 

 

 

 

 
 

Figure 41. Annual expected frequency of momentary interruptions for distribution substations 
of the distribution test network,  (Case Studies 1, 4&5) 
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Figure 42. Annual expected energy not supplied for distribution substations  
of the distribution test network,  (Studies 1, 4&5) 

 

 

 

 

 
 

Figure 43. Annual expected cost arising from sustained interruptions for distribution substations 
 of the distribution test network,  (Studies 1, 4&5) 
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Figure 44. Annual expected cost arising from momentary interruptions for distribution substations  
of the distribution test network,  (Case Studies 1, 4&5) 

 

 

 
Figure 45. Density distribution of overall expected voltage variation events,  (Case Study 5) 
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Figure 46. Cumulative distribution of overall expected voltage variation events,  (Case Study 5) 

 

6.2.6 Case Study 6: Integrating Distribution Substation Automation  

The substation automation scheme implemented in the 110/20 kV substation was only 

responsible for control and monitoring the equipment installed within this substation. However, it is 

possible to increase the scope of this substation automation scheme such that the distribution 

substations fed by its feeders can also be remotely monitored and controlled. The number and 

location of distribution substations that are going to be modernized can affect the level of reliability 

improvement. Optimal allocation of these distribution substations requires a course of cost-benefit 

studies. However, for sake of simplicity, the shared distribution substations between each pair of 

feeders (containing normally open tie switch) and midpoint substations of each feeder are selected 

for upgrading. The selected distribution substations are 7, 9, 12, 17, 26, 42, 90, 117 and 134. It is 

also assumed that all the switching devices of the targeted distribution substations are retrofitted 

with suitable actuators for remote control and monitoring purpose.  

The basic data related to the fault management activities are assumed similar to that of the Case 

Studies 4 and 5 (Table 8). In addition, it is assumed that the uncoordinated and coordinated remote 

switching operation can be accomplished within 5 and 120 seconds, respectively. Uncoordinated 

remote switching operation is conducted whenever the repair crews have not been engaged with the 
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fault management activities yet. However, the coordinated remote switching operation is carried out 

whenever the repair crews are engaging with the fault management activities and due to the safety 

issues they should be aware of any ongoing remote switching operation. 

The system oriented reliability indices for this case study are represented in Table 11. The load 

point reliability indices that differ from those of the Case Study 5 are also shown in Figures 47-49. 

The distributions of expected momentary interruptions and voltage sags imposed on the customers 

of the distribution test network are similar to those of the Case Study 5.  

The study results show the durations of the sustained interruptions have been reduced compared 

to those of the Case Study 5. As a result, the energy not supplied, service unavailability and also the 

financial impacts of the sustained interruptions have also been reduced compared to those of the 

Case Study 5. However, the reliability indices associated with the momentary interruptions and 

voltage sags are similar to those of the Case Study 5. Actually, the remote controlled switching 

devices available in the upgraded distribution substations can aid the repair crews and the control 

center operators to perform the necessary switching activities in a much shorter period of time. It is 

also possible to perform both remote and local fault isolation and service restoration activities. In 

this method, first using the available remote controlled switching devices, the faulted feeder is 

broken to the several zones. Then the power service is restored to as many as possible of these 

zones by means of remote controlled switching devices. Afterwards, when the repair crews reach to 

the faulted area, they can conduct the local fault isolation and service restoration activities. They 

normally first isolate the faulted section from the other healthy parts of the feeder by means of the 

manually operated switching devices. Then, the power service is restored to as many as possible of 

the customer through proper switching operations. The remote fault isolation and service restoration 

activities in this method require the intervention of the distribution system operators. Usually the 

time required for restoring the power supply for the affected customers in this method is much 

above the aggregation window for recording the momentary events (5 minutes). As a result, only 

the durations of sustained interruptions are reduced and their frequencies remain the same to those 

of the Case Study 5.  
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TABLE 11 
SYSTEM ORIENTED RELIABILITY INDICES FOR CASE STUDY 6 

 

Reliability Index Expected Value 
Relative 

Change to Case 
Study 5 (%) 

Relative 
Change to the 
Base Case (%) 

SAIFI (int/sub-a) 0.2987 0.00 -64.63 
SAIDI (h/sub-a) 0.2734 -7.85 -65.95 
MAIFI (eve/sub-a) 0.0828 0.00 +10.99 
AVSSI (eve/sub-a) 0.9777 0.00 -19.56 
ASUI (%) 0.003121 -7.85 -65.96 
EENS (kWh/a) 1703 -8.24 -66.74 
ECOSTSI (€/a) 46429 -7.64 -66.82 
ECOSTMI (€/a) 1424 0.00 +10.30 
ECOSTVS (€/a) 16850 0.00 -20.06 
Total Cost (€/a) 64704 -5.60 -60.13 
Repair Crew Burden (h/a) 72.66 -0.21 -9.62 
 

 

 

 

 
 

Figure 47. Annual expected duration of sustained interruptions for distribution substations  
of the distribution test network,  (Case Studies 1, 5&6) 
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Figure 48. Annual expected energy not supplied for distribution substations  
of the distribution test network,  (Studies 1, 5&6) 

 

 

 

 

 
 

Figure 49. Annual expected cost arising from sustained interruptions for distribution substations  
of the distribution test network,  (Studies 1, 5&6) 
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6.2.7 Case Study 7: Integrating Feeder Automation  

In the Case Study 6, several distribution substations were equipped with suitable facilities for 

remote control and monitoring purposes. It is possible to develop a feeder automation scheme in 

order to perform automatic fault detection, isolation and service restoration activities in the 

distribution feeder level. The operational procedure of the targeted feeder automation scheme 

depends on several factors such as the type of automated switching devices, network structure, the 

neutral grounding method, type of customers, utility safety regulations and so on. For an illustration 

purpose, an advanced feeder automation scheme that can be implemented in the distribution test 

network is described here as follows.  

The neutral grounding at the 20 kV level of the distribution test network is resonance 

(compensated) earthed. In this situation, normally the fault currents for phase to ground faults in 20 

kV level can be interrupted by the load breaking switching devices available in the automated 

distribution substations. In addition, this kind of fault does not cause any voltage sag for the 

customers supplied by the faulted feeder. Therefore, it is possible to develop an advanced feeder 

automation scheme capable of distinguish between phase to ground faults and the other over-current 

short circuit faults. The main benefit of such an automation scheme is its ability in decreasing the 

extent of outages for phase to ground faults. In this condition, for a phase to ground fault located 

between feeder circuit breaker and the automated distribution substation, the supply of customers 

located downstream of the automated distribution substation are rerouted to the neighboring healthy 

feeder through automatic closed-transition switching actions without any power interruption for the 

customers. For a phase to ground fault located downstream of the automated distribution substation, 

instead of the feeder circuit breaker, a switching device located at the automated distribution 

substation operates and isolates the fault. For a fault which results in an over-current condition, the 

feeder circuit breaker is operated. Then, the proper switching operations are automatically carried 

out in order to isolate the faulted zone and restore as many as possible of the customers. 

The basic data related to the fault management activities are assumed similar to that of the Case 

Study 6. The system oriented reliability indices for this case study are represented in Table 12. The 

load point reliability indices that differ from those of the Case Study 6 are shown in Figures 50-55. 

The distributions of expected momentary interruptions and voltage sags imposed on the customers 

of the distribution test network are also shown in Figures 56 and 57.  

The study results show that all the reliability indices associated with the sustained interruptions 

have been improved compared to those of the Case Study 6. Actually, the automated switching 
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devices available in the upgraded distribution substations can perform the necessary switching 

activities in a much shorter period of time. As the automatic fault isolation and service restoration 

activities in this method do not require the intervention of the control center operators, the 

restoration time for the affected customers is much below the aggregation window for recording the 

momentary events (5 minutes). Therefore, both the frequencies and durations of the sustained 

interruptions have been reduced compared to those of the Case Study 6. Instead, the number of 

momentary interruptions imposed on the customers is increased. The voltage sags experienced by 

the customers remain the same to those of the Case Study 6.  

The study results also indicate that the variation of reliability indices associated with momentary 

interruptions has been increased compared to those of the Case Study 6. 

 

 
TABLE 12 

SYSTEM ORIENTED RELIABILITY INDICES FOR CASE STUDY 7 
 

Reliability Index Expected Value 
Relative 

Change to Case 
Study 6 (%) 

Relative 
Change to the 
Base Case (%) 

SAIFI (int/sub-a) 0.1212 -59.42 -85.65 
SAIDI (h/sub-a) 0.2373 -13.20 -70.45 
MAIFI (eve/sub-a) 0.1325 +60.02 +77.61 
AVSSI (eve/sub-a) 0.9777 0.00 -19.56 
ASUI (%) 0.002709 -13.20 -70.45 
EENS (kWh/a) 1470 -13.68 -71.29 
ECOSTSI (€/a) 37701 -18.80 -73.06 
ECOSTMI (€/a) 2221 +55.97 +72.04 
ECOSTVS (€/a) 16850 0.00 -20.06 
Total Cost (€/a) 56773 -12.26 -65.02 
Repair Crew Burden (h/a) 72.66 0.00 -9.63 
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Figure 50. Annual expected frequency of sustained interruptions for distribution substations 
of the distribution test network,  (Case Studies 1, 6&7) 

 

 

 

 

 
 

Figure 51. Annual expected duration of sustained interruptions for distribution substations 
of the distribution test network,  (Case Studies 1, 6&7) 
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Figure 52. Annual expected frequency of momentary interruptions for distribution substations 
of the distribution test network,  (Case Studies 1, 6&7) 

 
 

 

 

 
 

Figure 53. Annual expected energy not supplied for distribution substations 
of the distribution test network,  (Studies 1, 6&7) 
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Figure 54. Annual expected cost arising from sustained interruptions for distribution substations  
of the distribution test network,  (Studies 1, 6&7) 

 

 

 

 

 
 

Figure 55. Annual expected cost arising from momentary interruptions for distribution substations  
of the distribution test network,  (Case Studies 1, 6&7) 
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Figure 56. Density distribution of overall expected voltage variation events,  (Case Study 7) 
 

 

 
Figure 57. Cumulative distribution of overall expected voltage variation events,  (Case Study 7) 
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6.2.8 Case Study 8: Integrating Distribution Automation System  

The Case Study 7 contains the majority of infrastructures required to develop a distribution 

automation system. Therefore, it is possible to develop an advanced distribution automation system 

by integrating the implemented smart grid technologies with some new or modified technologies 

such as high speed communication systems and improved interfacing and decision supports. In this 

situation, the fault management activities can be accomplished more efficiently. For an illustration 

purpose, when employing this distribution automation system, it is assumed that the fault 

management activities in the distribution test network are now accomplished according to Table 13.  

The system oriented reliability indices for this case study are represented in Table 14. The load 

point reliability indices that differ from those of the Case Study 7 are also shown in Figures 58-63. 

The distributions of expected momentary interruptions and voltage sags imposed on the customers 

of the distribution test network are also shown in Figures 64 and 65.  

The study results show that the reliability indices associated with the sustained interruptions 

have been improved compared to those of the Case Study 7. However, the reliability indices 

associated with the momentary interruptions have been deteriorated compared to those of the Case 

Study 7. As some of the fault condition cannot be managed completely by the available feeder 

automation scheme, the remote fault detection, isolation and service restoration activities are 

required to restore the power to as many as possible of the customers. In the Case Study 7, the time 

required for accomplishing this task was much above the aggregation window for recording the 

momentary events (5 minutes). Therefore, the customers whose power services were restored by 

remote switching operation faced sustained interruptions instead of momentary interruptions. 

However, when employing the advanced distribution automation system, the remote fault detection, 

isolation and service restoration activities can be accomplished in a period of time well below the 

threshold of a momentary interruption. As a result, the number and duration of sustained 

interruptions are decreased and the frequency of momentary interruptions is increased. This can also 

be found by comparison of the results provided in Figures 56 and 64. As it can be seen in these 

figures, the number of events corresponding to momentary interruptions (remaining voltage less 

than 10 percents of the nominal voltage) has been increased in the range 1-60 seconds for the Case 

Study 8 compared to that of the Case Study 7.  

The smart grid technologies implemented in this case study do not have any impacts on the 

voltage sags experienced by the customers compared to those of the Case Study 7. 
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The results presented in Table 14 show that the burden on the utility crews is also reduced when 

employing the advanced distribution automation system. This is because much less time is required 

to dispatch the repair crews and also they spend less time for travelling around the network in order 

to perform field activities. 

 
TABLE 13 

BASIC DATA RELATED TO THE FAULT MANAGEMENT ACTIVITIES IN CASE STUDY 8 
 

Average time required for fault notification (s) 5 

Average time required for approximate fault location (s) 10 

Average time required for decision making about fault management activities (s) 25 

Average time required for dispatching the repair crews (s) 20 

Average speed of the repair crews for traveling to the faulted area (km/h) 60 

Average time required for precise fault location on an underground cable section including 
both pre-location and pinpointing activities (s) 1800 

Average time required for manual operation of switching devices involved in fault 
management activities (s) 180 

Average time required for uncoordinated remote switching operation (s) 5 

Average time required for coordinated remote switching operation (s) 120 

Available teams of repair crews for performing fault management activities 2 
 

TABLE 14 
SYSTEM ORIENTED RELIABILITY INDICES FOR CASE STUDY 8 

 

Reliability Index Expected Value 
Relative 

Change to Case 
Study 7 (%) 

Relative 
Change to the 
Base Case (%) 

SAIFI (int/sub-a) 0.1050 -13.37 -87.57 
SAIDI (h/sub-a) 0.2195 -7.50 -72.67 
MAIFI (eve/sub-a) 0.1487 +12.23 +99.33 
AVSSI (eve/sub-a) 0.9777 0.00 -19.56 
ASUI (%) 0.002505 -7.53 -72.68 
EENS (kWh/a) 1353 -7.96 -73.57 
ECOSTSI (€/a) 34547 -8.37 -75.31 
ECOSTMI (€/a) 2538 +14.27 +96.59 
ECOSTVS (€/a) 16850 0.00 -20.06 
Total Cost (€/a) 53935 -5.00 -66.77 
Repair Crew Burden (h/a) 71.67 -1.36 -10.85 
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Figure 58. Annual expected frequency of sustained interruptions for distribution substations 
of the distribution test network,  (Case Studies 1, 7&8) 

 

 

 

 

 
 

Figure 59. Annual expected duration of sustained interruptions for distribution substations 
of the distribution test network,  (Case Studies 1, 7&8) 
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Figure 60. Annual expected frequency of momentary interruptions for distribution substations 
of the distribution test network,  (Case Studies 1, 7&8) 

 

 

 

 

 
 

Figure 61. Annual expected energy not supplied for distribution substations 
of the distribution test network,  (Studies 1, 7&8) 
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Figure 62. Annual expected cost arising from sustained interruptions for distribution substations 
 of the distribution test network,  (Studies 1, 7&8) 

 

 

 

 

 
 

Figure 63. Annual expected cost arising from momentary interruptions for distribution substations  
of the distribution test network,  (Case Studies 1, 7&8) 
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Figure 64. Density distribution of overall expected voltage variation events,  (Case Study 8) 
 

 

 
Figure 65. Cumulative distribution of overall expected voltage variation events,  (Case Study 8) 
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6.2.9 Case Study 9: Integrating Fault Current Limiters  

The smart grid technologies implemented in the Case Studies 2 and 3 could alleviate the voltage 

sags experiencing by the customers. Hence, the frequency of severe voltage sags was reduced for 

these case studies. However, employing the smart grid technologies targeted in the Case Studies 4-8 

could not result in any further mitigation in the voltage sags experiencing by the customers. 

Actually, these technologies are mainly used for reducing the number and duration of sustained 

interruptions imposed on the customers. However, there are some other smart grid technologies 

available that can be used in the functional zone of the electricity distribution networks to further 

mitigate the voltage sags experienced by the customers.  

Fault current limiters are one of the attractive smart grid technologies that are mainly used for 

managing the fault currents in the electric power systems. Appropriate allocation of the fault current 

limiters may also alleviate the voltage sags arising from the over-current faulty conditions. 

Installing the fault current limiters immediately downstream of the feeder circuit breaker is one of 

the most potential locations for such purpose. In this method, it might be possible to close the 

normally-open tie switching device between medium voltage buses which results in a better voltage 

regulation and enhanced substation reliability. In the case of an over-current fault condition, the 

voltage drop across the fault current limiter keeps the busbar voltage high enough for majority of 

downstream faults. This will lead to the less severe voltage sags on the other feeders originated 

from the common busbar. For an illustration purpose, it is assumed that the fault current limiters are 

installed at immediately downstream of each feeder circuit breaker of the distribution test network. 

It is also assumed that the technology of the fault current limiters is based on the high-temperature 

superconducting materials. In this situation, the reaction time of the fault current limiters is around 

5 milliseconds. The activated impedance of the fault current limiters is chosen to be 4 ohms in order 

to keep the voltage of 20 kV busbar above 75 percents of the nominal voltage for downstream 

three-phase faults close to the 110/20 kV substation. The basic data related to the fault management 

activities are assumed similar to that of the Case Study 8.  

The system oriented reliability indices for this case study are represented in Table 15. The load 

point reliability indices associated with the momentary interruptions and voltage sags are also 

shown in Figures 66-69. The other reliability indices are similar to those of the Case Study 8. The 

distributions of expected momentary interruptions and voltage sags imposed on the customers of the 

distribution test network are also shown in Figures 70 and 71. 
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In the previous case studies, the short circuit faults close to the main substation result in the 

remaining voltage less than the threshold of the momentary interruptions (10 percent of the nominal 

voltage) and appear as the momentary interruptions to the customers. However, after installing the 

fault current limiters, the voltage drop across the fault current limiter keeps the busbar voltage high 

enough for majority of downstream faults and hence the frequency of the momentary interruptions 

is reduced compared to those of the Case Study 8. But, the frequency of the momentary 

interruptions is still much higher than that of the base case study. 

The study results also show that the number and hence the financial impacts of the severe 

voltage sags have been alleviated when employing the fault current limiters. By comparing the 

results presented in Figures 64 and 70, it can be found that after installing the fault current limiters 

the density of severe voltage sags which cause malfunction for majority of the customers (e.g. 

events with remaining voltage less than 70 percents of the nominal voltage) has been decreased and 

instead the density of shallow voltage sags has been increased.  

 

 
TABLE 15 

SYSTEM ORIENTED RELIABILITY INDICES FOR CASE STUDY 9 
 

Reliability Index Expected Value 
Relative 

Change to Case 
Study 8 (%) 

Relative 
Change to the 
Base Case (%) 

SAIFI (int/sub-a) 0.1050 0.00 -87.57 
SAIDI (h/sub-a) 0.2195 0.00 -72.67 
MAIFI (eve/sub-a) 0.1219 -18.02 +63.40 
AVSSI (eve/sub-a) 0.8913 -8.84 -26.67 
ASUI (%) 0.002505 0.00 -72.68 
EENS (kWh/a) 1353 0.00 -73.57 
ECOSTSI (€/a) 34547 0.00 -75.31 
ECOSTMI (€/a) 2075 -18.24 +60.73 
ECOSTVS (€/a) 15363 -8.82 -27.12 
Total Cost (€/a) 51984 -3.62 -67.97 
Repair Crew Burden (h/a) 71.67 0.00 -10.85 
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Figure 66. Annual expected frequency of momentary interruptions for distribution substations 
of the distribution test network,  (Case Studies 1, 8&9) 

 

 

 

 

 
 

Figure 67. Annual expected frequency of voltage sags affecting distribution substations 
of the distribution test network,  (Case Studies 1, 8&9) 
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Figure 68. Annual expected cost arising from momentary interruptions for distribution substations  
of the distribution test network,  (Case Studies 1, 8&9) 

 

 

 

 
 

 
 

Figure 69. Annual expected cost arising from voltage sags for distribution substations  
of the distribution test network,  (Case Studies 1, 8&9) 

0

20

40

60

80

100

120

140

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

13
7

14
1

A
nn

ua
l C

os
t (

€/
a)

Distribution Substation Number

Case Study 1 Case Study 8 Case Study 9

0

200

400

600

800

1000

1200

1400

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

13
7

14
1

A
nn

ua
l C

os
t (

€/
a)

Distribution Substation Number

Case Study 1 Case Study 8 Case Study 9



  
Page 95  

  

 

 
Figure 70. Density distribution of overall expected voltage variation events,  (Case Study 9) 
 

 

 
Figure 71. Cumulative distribution of overall expected voltage variation events,  (Case Study 9) 
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6.2.10 Case Study 10: Integrating Dynamic Voltage Restorers  

The fault current limiters implemented in the Case Study 9 could just mitigate the voltage sags 

originated from the faults within the distribution test network. They cannot alleviate the voltage 

sags that propagated from the sub-transmission network into the distribution test network. The 

frequency and severity of the voltage sags arising from external faults can be alleviated at the 

transmission and sub-transmission levels by means of fault prevention schemes, network 

configuration modification, advanced protection schemes and so on. However, within the functional 

zone of an electricity distribution system, it is possible to use the dynamic voltage restorers to 

mitigate the voltage sags regardless of their origins. Optimal allocation of the dynamic voltage 

restorers for voltage sag mitigation purpose requires a course of cost-benefit analyses. However, for 

the sake of simplicity, it is assumed that the distribution substations 4, 9, 10, 17, 55, 82, 94, 107, 

119 and 125 are equipped with dynamic voltage restorers. These distribution substations have high 

contribution to the overall costs associated with the voltage sags. It is also assumed that all the 

dynamic voltage restorers have the same correction capability. The correction capability of the 

dynamic voltage restorers is modeled according to the characteristics of a commercially available 

device in the market (ABB-PCS 100AVC). Activation time less than half a cycle, full correction for 

three-phase sags down to 70 percents of the nominal voltage and also full correction for single-

phase sags down to 55 percents of the nominal voltage are the main characteristic of the employed 

dynamic voltage restorers. It is assumed that for the voltage sags with the remaining voltage less 

than 50 percents of the nominal voltage, the dynamic voltage restorers stay in the bypass mode. In 

this situation, there is no boosting in the sagged phases.  

The basic data related to the fault management activities are assumed similar to that of the Case 

Study 8. The system oriented reliability indices for this case study are represented in Table 16. The 

load point reliability indices associated with the voltage sags are shown in Figures 72 and 73. The 

other reliability indices are similar to those of the Case Study 9. As an example, the distributions of 

expected momentary interruptions and voltage sags imposed on the customers of the distribution 

substation number 4 before and after employing the dynamic voltage restorers are also shown in 

Figures 74 and 75. 

The study results show that the number and hence the financial impacts of the voltage sags for 

the distribution substations equipped with dynamic voltage restorers have been considerably 

alleviated. As dynamic voltage restorers are capable of correcting the voltage sags regardless of 

their origin, much better improvements are achieved when employing these devices compared to the 
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situation where fault current limiters are used for voltage sag mitigation purposes. Actually, 

application of the fault current limiters is an effective solution for mitigation of voltage sags 

originated from faults within the distribution network. However, in a situation where the 

contribution of externally generated voltage sags in the overall cost is dominated, other solutions 

such as employing the dynamic voltage restorers at strategic locations can be a potential option.  

The dynamic voltage restorers alleviate the voltage sags experienced by the customers connected 

downstream of their locations. Instead, the fault current limiters have the reverse behavior. The fault 

current limiters alleviate the voltage sag experienced by the upstream customers and aggravate 

those experienced by downstream customers. 

 

 
TABLE 16 

SYSTEM ORIENTED RELIABILITY INDICES FOR CASE STUDY 10 
 

Reliability Index Expected Value 
Relative 

Change to Case 
Study 9 (%) 

Relative 
Change to the 
Base Case (%) 

SAIFI (int/sub-a) 0.1050 0.00 -87.57 
SAIDI (h/sub-a) 0.2195 0.00 -72.67 
MAIFI (eve/sub-a) 0.1214 -0.41 +62.73 
AVSSI (eve/sub-a) 0.8484 -4.81 -30.20 
ASUI (%) 0.002506 0.00 -72.67 
EENS (kWh/a) 1353 0.00 -73.57 
ECOSTSI (€/a) 34548 0.00 -75.31 
ECOSTMI (€/a) 2064 -0.53 +59.88 
ECOSTVS (€/a) 12542 -18.36 -40.50 
Total Cost (€/a) 49155 -5.44 -69.71 
Repair Crew Burden (h/a) 71.67 0.00 -10.85 
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Figure 72. Annual expected frequency of voltage sags affecting distribution substations 
of the distribution test network,  (Case Studies 1, 9&10) 

 

 

 

 

 
 

Figure 73. Annual expected cost arising from voltage sags for distribution substations  
of the distribution test network,  (Case Studies 1, 9&10) 
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Figure 74. Density distribution of overall expected voltage variation events,  imposed on the 

distribution substation number 4 (before employing dynamic voltage restorers) 
 
 
 
 

 
Figure 75. Density distribution of overall expected voltage variation events,  imposed on the 

distribution substation number 4 (after employing dynamic voltage restorers) 
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6.3 Comparison of Implemented Smart Grid Technologies 

Various smart grid technologies were examined in the previous sections to estimate their impacts 

on the reliability of electric power delivered to the customers of the distribution test network. The 

study results show that various smart grid technologies have different reliability impacts. The 

impacts of the examined smart grid technologies on the various system oriented reliability indices 

of the distribution test network have been compared against each other in Figures 76-80.  

Figure 76 shows that after integrating the distance to fault estimators (Case Study 2), the fault 

passage indicators (Case Study 3) and also the feeder automation scheme (Case Study 7), the 

average frequency of the sustained interruptions has been considerably reduced. Integrating other 

smart grid technologies has no or only little impact on SAIFI. 

As it can be seen from Figure 77, after integrating the distance to fault estimators (Case Study 2) 

and the fault locator scheme (Case Study 4), the average duration of sustained interruptions has 

been considerably decreased. Integrating the automation solutions toward the complete distribution 

automation system (Case Studies 5 to 8) could also result in some additional improvements in 

SAIDI. Integrating the fault passage indicators (Case Study 3) has negative impact on SAIDI. The 

fault current limiters (Case Study 9) and the dynamic voltage restorers (Case Study 10) have no 

impacts on SAIDI. 

Figure 78 shows that after integrating the distance to fault estimators (Case Study 2), the 

frequency of the momentary interruptions has been considerably reduced. The value of MAIFI 

remains the same after integrating the fault passage indicators (Case Study 3) and the fault locator 

scheme (Case Study 4). However, integrating the sub-transmission substation automation (Case 

Study 5), the feeder automation scheme (Case Study 7) and the distribution automation system 

(Case Study 8) have negative impacts on MAIFI. Although employing the fault current limiters 

(Case Study 9) cause a little bit improvement in MAIFI, but the value of MAIFI is still much above 

of that of the base case study. 

As it can be seen from Figure 79, integrating the distance to fault estimators (Case Study 2) 

could significantly alleviate the impacts of the voltage sags on the customers. After integrating the 

fault passage indicators (Case Study 3), the fault current limiters (Case Study 9) and the dynamic 

voltage restorers (Case Study 10) additional improvements have also been achieved in AVSSI. 

Integrating other smart grid technologies has no impact on AVSSI. 

Figure 80 shows the overall cost of the service reliability issues on the customers of the 

distribution test network. This figure shows the accumulated impacts of the sustained interruptions, 



  
Page 101  

  

momentary interruptions and voltage sags on the customers. Therefore, the overall effects of the 

examined smart grid technologies can be well understood from this figure. As it can be seen from 

Figure 80, after integrating each smart grid technology, an improvement is appeared in the overall 

expected cost. However, the levels of improvements are dominated when integrating the distance to 

fault estimators (Case Study 2) and the fault locator scheme (Case Study 4). Actually, when a 

customer encounters with an abnormal situation due to a severe voltage sag, a momentary 

interruption or a sustained interruption; the imposed costs on the customer are almost the same at 

the beginning of the event. However, the sustained interruptions last for longer time periods; hence, 

the costs associated with the sustained interruptions are increased proportional with the duration of 

interruptions. Therefore, normally, the costs associated with the momentary interruptions and 

voltage sags can only be reduced by mitigating the occurrence frequency of such events. Instead, 

the costs of sustained interruptions can be mitigated through reducing both frequency and duration 

of interruptions. Therefore, as it can be seen from the results presented in Figure 80, the impacts of 

the smart grid technologies which reduce the annual duration of sustained interruptions (SAIDI) are 

more dominated. 

Figure 81 shows the impact of the examined smart grid technologies on the burdens on the utility 

crews. The results presented in this figure indicate that integrating technologies toward a complete 

distribution automation system can considerably reduce the burdens on the utility repair crews.  

When dealing with the results presented in Figures 76-81, it should be noted that the 

technologies have been added to a set of previously implemented technologies. As an example, 

when integrating the sub-transmission substation automation it has been assumed that the distance 

to fault estimators, fault passage estimators and fault locator scheme have already been 

implemented in the distribution test network. The integrating sequence which has been used in this 

thesis follows the practical chronology of developing smart distribution grids. Therefore, if this 

sequence changes from that used in this thesis, different reliability impacts might be obtained for 

each implemented technology. However, the overall improvement remains the same regardless of 

the sequence that these technologies are integrated. 

 

 



  
Page 102  

  

 
Figure 76. Impacts of the examined smart grid technologies on SAIFI of the distribution test network 

 

 

 

 

 
Figure 77. Impacts of the examined smart grid technologies on SAIDI of the distribution test network 
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Figure 78. Impacts of the examined smart grid technologies on MAIFI of the distribution test network 

 

 

 

 

 
Figure 79. Impacts of the examined smart grid technologies on AVSSI of the distribution test network 
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Figure 80. Impacts of the examined smart grid technologies on the annual cost of the service reliability issues 

imposed on the customers of the distribution test network 
 

 

 

 

 
Figure 81. Impacts of the examined smart grid technologies on the burdens on the utility repair crews 
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6.4 Impacts of Operational Failure of Smart Grid Technologies 

In the previous sections, the reliability impacts of major smart grid technologies were evaluated 

and compared against each other. When conducting the related reliability studies, it was assumed 

that the implemented smart grid technologies are fully reliable. This assumption may not be correct. 

Similarly to other components of an electricity distribution network, the implemented smart grid 

technologies may have some failure modes. However, the advanced smart grid technologies are 

normally equipped with sophisticated fault diagnosis algorithms that automatically monitor the 

status of devices and initiate a suitable alarm if required. Therefore, some of the failure modes of 

the implemented smart grid technologies are detected and mitigated during normal operating status 

of an electric power distribution network. But, there is always a chance to face a situation where a 

device is required to do specific tasks in response to an abnormal condition but fails to function 

properly. This failure condition, which is referred to as operational failure mode, may cause serious 

reliability impacts.  

In order to evaluate the reliability impacts of operational failure modes of a smart grid 

technology, it is necessary to use a specific reliability model. This reliability model normally 

represents the possible statuses that a smart grid technology may reside when it fully functions and 

also when it encounters with various operational failure modes. The targeted functions of a smart 

grid technology may be altered due to its operational failure modes. Therefore, for each status of the 

reliability model, specific functions of a smart grid technology are available and the others are 

unavailable. Although, it is possible to deduce a suitable reliability model for representing the 

operational failure modes of a smart grid technology, but there is a common problem: the data. A 

smart grid technology should remain in service for a quite long time in order to gather the data that 

are of interest for modeling its operational failure modes.  

In this section, for illustrative purposes, the reliability impacts of operational failure modes are 

evaluated for two of the examined smart grid technologies. They are distance to fault estimators and 

fault current limiters. For sake of simplicity and also due to lack of the relevant data, it is assumed 

that the targeted smart grid technology operates successfully in 95 percents of times and encounters 

with an operational failure 5 percents of times. However, in [140] - [145], the operational failure 

modes have been analyzed in more details for several feeder automation schemes. 
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6.4.1 Case Study 11: Impacts of Operational Failure of Distance to Fault Estimators  

This case study aims to evaluate and compare the effects of the operational failure of distance to 

fault estimators on the reliability indices of the distribution test network. The basic data related to 

the fault management activities are assumed similar to that of the Case Study 2.  

The system oriented reliability indices for this case study are represented in Table 17. The study 

results show that virtually all the reliability indices have been deteriorated compared to those of the 

Case Study 2. The degree of deteriorations ranges from 1 to 3 percents. Actually, when employing 

the distance to fault estimators, a much smaller zone of the electricity distribution network is 

required to be inspected by the repair crews. Therefore, much less trial and error switching actions 

are required to find the faulted section. However, in a situation that the distance to fault estimators 

encounter with the operational failure condition, the repair crews have to use the trial and error 

switching method to find the faulted zone. This process is time consuming as the repair crews have 

to travel around the network and perform the necessary switching activities. As a result, both the 

frequency and duration of sustained interruptions are increased.  

The trial and error switching operations for fault location purposes normally cause the re-

ignition of a fault. The effects of the fault re-ignition appear to the customers supplied by the other 

healthy feeders either as a momentary interruption or a voltage sag. Therefore, as the study results 

indicate, the reliability indices associated with the momentary interruptions and voltage sags have 

also been deteriorate compared to the Case Study 2.  

The results presented in Table 17 also show that the burden on the utility crews is increased 

compared to the Case Study 2. This is because more field activities are required to find the faulted 

section when the distance to fault estimators encounter with the operational failure conditions. 
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TABLE 17 
SYSTEM ORIENTED RELIABILITY INDICES FOR CASE STUDY 11 

 

Reliability Index Expected Value Relative Change to 
Case Study 2 (%) 

SAIFI (int/sub-a) 0.5324 +3.19 
SAIDI (h/sub-a) 0.5383 +2.66 
MAIFI (eve/sub-a) 0.0541 +1.96 
AVSSI (eve/sub-a) 1.0315 +0.95 
ASUI (%) 0.006145 +2.66 
EENS (kWh/a) 3370 +2.81 
ECOSTSI (€/a) 91267 +2.89 
ECOSTMI (€/a) 932 +2.03 
ECOSTVS (€/a) 17797 +0.98 
Total Cost (€/a) 109995 +2.57 
Repair Crew Burden (h/a) 76.19 +0.29 

 

6.4.2 Case Study 12: Impacts of Operational Failure of Fault Current Limiters  

This case study aims to evaluate and compare the effects of the operational failure of the fault 

current limiters on the reliability indices of the distribution test network. The basic data related to 

the fault management activities are assumed similar to that of the Case Study 9. When conducting 

this case study, it is assumed that each feeder circuit breaker can interrupt short circuit currents up 

to 4500 amperes.  

The system oriented reliability indices for this case study are represented in Table 18. The study 

results show that the reliability indices associated with the momentary interruptions and voltage 

sags have been a little bit deteriorated compared to the Case Study 9. The degree of deteriorations is 

less than 1.5 percents. Actually, when a fault current limiter fails to operate successfully, a much 

higher fault current is expected compared to the situation when it operates successfully. This 

condition can cause a momentary interruption or a voltage sag for the customers supplied by the 

other healthy feeders. In a situation where a fault current limiter fails to operate successfully and the 

fault current is above the interrupting capability of the feeder circuit breaker, the backup circuit 

breakers have to operate for interrupting the fault current. This will result in an interruption for 

several feeders. However, the substation automation scheme can detect this abnormal condition and 

automatically perform the necessary switching operations to restore the power of the affected 

healthy feeders. As a result, the duration of such an interruption is limited well below the threshold 
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of the momentary interruptions. There are also conditions where a fault current limiter fails to 

operate successfully but the fault current is below the interrupting capability of the feeder circuit 

breaker. In this situation, the circuit breaker of the faulted feeder operates to interrupt the fault 

current. Situation like this normally causes a voltage sag for the customers supplied by the other 

healthy feeders.  

It should be noted that factors such as existing of the substation automation scheme, small value 

of operational failure probability for the fault current limiters, feasibility of the feeder circuit 

breakers for interrupting the fault currents within their ratings, no contribution from single-phase to 

ground faults in the over-current fault conditions, decreasing the fault current and its effects on the 

customers for faults far from the main substation have caused the impact of the operational failure 

of the fault current limiters to be as small as that observed in this case study. 

 

 

 
TABLE 18 

SYSTEM ORIENTED RELIABILITY INDICES FOR CASE STUDY 12 
 

Reliability Index Expected Value Relative Change to 
Case Study 9 (%) 

SAIFI (int/sub-a) 0.1050 0.00 
SAIDI (h/sub-a) 0.2195 0.00 
MAIFI (eve/sub-a) 0.1237 +1.48 
AVSSI (eve/sub-a) 0.8949 +0.40 
ASUI (%) 0.002505 0.00 
EENS (kWh/a) 1353 0.00 
ECOSTSI (€/a) 34547 0.00 
ECOSTMI (€/a) 2106 +1.49 
ECOSTVS (€/a) 15424 +0.40 
Total Cost (€/a) 52077 +0.18 
Repair Crew Burden (h/a) 71.67 0.00 
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7 CONCLUSIONS 

This doctoral research project was aimed at developing an approach for predicting the reliability 

impacts of advanced reliability enhancement solutions within the functional zone of an electric 

power distribution system. The results indicate that the impacts of the reliability enhancement 

solutions are revealed through the various processes involved in the fault management activities. 

When employing a given set of the smart grid technologies, some of the fault management activities 

are affected which finally alter the reliability of electric power delivered to the customers. Thereby, 

the proposed reliability evaluation approach was such designed that the impacts of the targeted 

smart grid technologies can be evaluated from their effects on the fault management activities. This 

reliability assessment technique is capable of predicting the impacts of targeted reliability 

enhancement solutions on the sustained interruptions, momentary interruptions and voltage sags 

experienced by the end-users. 

 Various smart grid technologies, applicable in the functional zone of an electricity distribution 

system, were identified during this doctoral research project. The fault passage indicators, fault 

locator schemes, substation automation, feeder automation, distribution automation, fault current 

limiters and dynamic voltage restorers were recognized as the major smart grid technologies 

applicable for distribution system reliability improvements. Therefore, in order to demonstrate the 

capabilities of the proposed reliability evaluation approach and also to have some ideas about the 

possible effects of the identified smart grid technologies, it was necessary to conduct a course of 

reliability case studies on a realistic power distribution system. Hence, considerable effort was put 

forth to develop a computer software that can be used for reliability evaluation of smart distribution 

grids. This software is now available and can be used for estimating the impacts of various 

distribution system reliability enhancement solutions.  

Two groups of the reliability case studies were directed in this doctoral thesis. The first group 

included ten comparative case studies which aimed at comparing the reliability impacts of the 

identified smart grid technologies. An integrating approach was used for dealing with these case 

studies. The ultimate goal was to provide a premium electricity service for the customers of the 

distribution test network. The studies were started from a benchmark case study. Then, in the next 

case studies, a suitable smart grid technology was integrated to the last upgraded case study. The 

study results showed that employing a suitable set of the smart grid technologies in the distribution 

test network can mitigate all the reliability indices within a range of 30 to 88 percents. The study 

results also indicated that, using a suitable set of the smart grid technologies, it is possible to reduce 
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the range of variation of reliability indices among different customers. In addition, more than 10 

percents reduction on the burden on the utility repair crews were observed when employing 

appropriate set of the smart grid technologies. The second group of the reliability case studies aimed 

at evaluating the effects of operational failure of the implemented smart grid technologies. The 

distance to fault estimators and the fault current limiters were selected for purposes of this study. 

The study results indicated that the operational failure of the targeted smart grid technologies can 

deteriorate the service reliability. However, whenever there are some facilities for supporting fault 

management activities while the targeted smart grid technology fails to operate successfully, it is 

possible to mitigate the overall impacts of such failures. The first case study in this group was 

concerned with the operational failure of the distance to fault estimators. In this case study, when 

the distance to fault estimators encounter with the operational failure condition, there was no other 

facilities for approximate location of the fault. Therefore, the repair crews had to use the trial and 

error switching method to find the faulted zone. This process is time consuming and normally 

causes the re-ignition of the fault. Hence, all the reliability indices associated with the sustained 

interruptions, momentary interruptions and voltage sags were deteriorated in this case study. 

However, the second case study which was concerned with the operational failure of the fault 

current limiters showed different results. In this case study, the substation automation scheme 

available in the main substation was able to automatically detect and mitigate the abnormal 

condition arising from the operational failure of the fault current limiters. As a result, the overall 

impact of the operational failure of the fault current limiters on the service reliability was 

insignificant. 

The smart grid technologies examined in this doctoral thesis are already available in the market. 

However, there are some other technologies still in the research and development stage. The 

reliability evaluation procedure proposed in this doctoral thesis can be used for evaluating the 

impacts of emerging distribution system reliability enhancement technologies as well. The main 

requirement is to know how the targeted technologies may affect the process involved with the fault 

management activities.  
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Appendix I: Basic Data of Distribution Substations of the Distribution Test Network 
 

Substation 
Number 

X and Y 
Coordinates with Respect 
to the HV/MV Substation 

(meters) 

Peak Demand 
(kVA) 

Transformer 
Rating (kVA) 

Transformer 
Impedance (%) 

Interruption Cost * 

€/kW €/kWh 

1 3497 6925 154.00 315 4 2.39 27.60 
2 2965 6574 118.00 200 4 0.64 7.41 
3 2515 6812 117.00 200 4 3.52 24.50 
4 1956 7249 167.00 315 4 3.52 24.50 
5 1142 7013 25.90 100 4 2.65 29.90 
6 3155 6870 63.60 100 4 2.65 29.90 
7 2691 5509 91.40 200 4 2.65 29.90 
8 4919 5411 176.00 315 4 2.65 29.90 
9 4227 7015 256.00 500 4 2.65 29.90 

10 5575 6598 195.00 315 4 2.65 29.90 
11 5031 3604 29.80 100 4 2.65 29.90 
12 3983 3649 96.10 200 4 3.52 24.50 
13 4221 1870 73.20 200 4 2.65 29.90 
14 1821 1696 35.70 100 4 2.65 29.90 
15 514 787 94.00 200 4 2.65 29.90 
16 -211 1145 119.00 200 4 3.52 24.50 
17 -685 1596 211.00 315 4 2.65 29.90 
18 -1198 -575 27.40 100 4 2.65 29.90 
19 -2669 683 58.10 100 4 2.65 29.90 
20 -3591 1158 39.60 100 4 2.00 22.60 
21 -2710 3137 198.00 315 4 1.86 18.00 
22 -3969 4898 34.00 100 4 1.75 17.10 
23 -3561 6535 83.90 200 4 2.05 20.60 
24 2260 776 53.00 100 4 2.46 24.10 
25 834 -573 86.30 200 4 2.07 23.30 
26 2617 -1856 95.10 200 4 1.86 16.10 
27 4636 -719 30.90 100 4 2.65 29.90 
28 6433 -2175 27.60 100 4 3.52 24.50 
29 7073 -1002 31.50 100 4 2.43 27.90 
30 4529 -4177 68.60 100 4 2.27 24.80 
31 1083 -1995 40.00 100 4 2.26 25.10 
32 277 -4041 99.10 200 4 2.50 28.30 
33 -332 -5689 22.30 100 4 2.33 26.30 
34 -637 -8328 49.90 100 4 2.65 29.90 

 
* These values represent the overall per-unit interruption costs for all the customers supplied by the dedicated substations. In this thesis, 
the financial impacts of the sustained interruptions and momentary interruptions are estimated by the following equations:  
 
Cost of a Sustained Interruption = [(Peak Demand of the Substation — in kW) × (Load Factor of the Substation — in per unit)] × 

[(Value   Corresponding to €/kW) + ((Length of the Interruption — in h) × (Value Corresponding to €/kWh)] 
 
Cost of a Momentary Interruption = (Peak Demand of the Substation — in kW) × (Load Factor of the Substation — in per unit) ×  

(Value Corresponding to €/kW) 
 
In this thesis, the financial impacts on a customer due to an interruption resulted from a voltage sag is assumed equal to that of a 
momentary interruption. However, on availability of the required data, the technique described in [148] can be used to gain more accurate 
results.   
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Appendix I: Basic Data of Distribution Substations of the Distribution Test Network (Continued) 
 

Substation 
Number 

X and Y 
Coordinates with Respect 
to the HV/MV Substation 

(meters) 

Peak Demand 
(kVA) 

Transformer 
Rating (kVA) 

Transformer 
Impedance (%) 

Interruption Cost 

€/kW €/kWh 

35 -699 -3995 34.40 100 4 2.65 29.90 
36 -991 -2799 99.40 200 4 3.52 24.50 
37 -1178 -5462 53.70 100 4 1.89 15.10 
38 -2179 -3547 38.00 100 4 2.65 29.90 
39 -3449 -373 31.10 100 4 2.65 29.90 
40 -2382 -6045 50.30 100 4 2.65 29.90 
41 -2609 -2035 11.80 100 4 2.65 29.90 
42 -4086 235 24.70 100 4 3.52 24.50 
43 -5072 195 30.90 100 4 2.78 26.60 
44 -6077 338 28.20 100 4 2.62 29.60 
45 -6803 1097 151.00 315 4 2.11 23.90 
46 1476 -1400 102.00 200 4 3.52 24.50 
47 2162 -792 38.60 100 4 3.00 60.00 
48 1691 666 63.50 100 4 2.65 29.90 
49 2485 1714 40.20 100 4 2.83 25.10 
50 1528 2564 29.20 100 4 2.48 23.80 
51 -3022 -918 53.80 100 4 2.94 26.00 
52 -1783 -3346 71.40 200 4 2.40 26.70 
53 -849 2267 105.00 200 4 2.65 29.90 
54 -597 7161 21.10 100 4 3.52 24.50 
55 4296 4256 162.00 315 4 3.52 24.50 
56 2788 376 37.90 100 4 3.52 24.50 
57 4170 5660 45.00 100 4 2.53 24.00 
58 -380 -6169 50.20 100 4 2.52 24.10 
59 -895 -5188 63.60 100 4 2.57 27.80 
60 3039 951 77.60 200 4 3.52 24.50 
61 -3351 3816 96.60 200 4 2.65 29.90 
62 1576 1658 101.00 200 4 3.52 24.50 
63 -216 829 33.80 100 4 3.52 24.50 
64 -1557 791 140.00 315 4 3.00 60.00 
65 2449 -1204 0.73 100 4 3.52 24.50 
66 2177 -3005 32.10 100 4 1.64 14.00 
67 3587 -3873 3.31 100 4 2.48 28.50 
68 5484 -3893 24.00 100 4 2.13 33.10 
69 5134 -5553 83.00 200 4 1.12 12.80 
70 3266 4013 87.20 200 4 1.22 13.40 
71 3545 3047 40.10 100 4 1.26 14.30 
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Appendix I: Basic Data of Distribution Substations of the Distribution Test Network (Continued) 
 

Substation 
Number 

X and Y 
Coordinates with Respect 
to the HV/MV Substation 

(meters) 

Peak Demand 
(kVA) 

Transformer 
Rating (kVA) 

Transformer 
Impedance (%) 

Interruption Cost 

€/kW €/kWh 

72 -455 -7338 24.40 100 4 1.36 15.80 
73 -3881 5996 91.60 200 4 1.75 21.60 
74 2645 221 18.00 100 4 2.65 29.90 
75 5451 -1372 49.90 100 4 3.52 24.50 
76 -4134 1266 56.50 100 4 2.65 29.90 
77 194 -7762 37.30 100 4 3.52 24.50 
78 583 -3037 7.10 100 4 2.65 29.90 
79 675 -5038 85.80 200 4 2.65 29.90 
80 -480 -6658 15.40 100 4 3.52 24.50 
81 -6863 3145 23.60 100 4 3.52 24.50 
82 1802 1177 170.00 315 4 3.52 24.50 
83 2206 5249 11.40 100 4 3.52 24.50 
84 -2914 -5439 124.00 200 4 0.78 10.20 
85 1811 -316 10.20 100 4 2.29 19.20 
86 2120 -6673 58.60 100 4 1.41 17.90 
87 3213 -1499 56.40 100 4 2.30 33.80 
88 2934 -2601 55.60 100 4 1.64 19.20 
89 -1557 -1671 24.20 100 4 0.87 10.40 
90 -2159 790 29.20 100 4 1.40 15.90 
91 -3384 -6466 55.40 100 4 2.65 29.90 
92 -3142 -6779 39.30 100 4 2.65 29.90 
93 -4108 3609 65.10 100 4 2.65 29.90 
94 -3792 4282 192.00 315 4 2.65 29.90 
95 -3259 -7597 87.80 200 4 3.52 24.50 
96 -1043 1164 20.60 100 4 1.86 22.30 
97 -3993 5299 25.50 100 4 1.67 15.30 
98 873 6592 49.40 100 4 0.73 7.86 
99 932 666 14.00 100 4 1.50 16.00 
100 2837 906 54.40 100 4 2.35 18.10 
101 853 3136 42.70 100 4 2.62 33.20 
102 1497 4561 36.30 100 4 2.49 31.10 
103 -1507 -4020 58.50 100 4 3.52 24.50 
104 5816 6778 99.90 200 4 2.65 29.90 
105 2967 4330 64.70 100 4 3.52 24.50 
106 2802 3950 177.00 315 4 2.65 29.90 
107 4393 5093 158.00 315 4 3.52 24.50 
108 4607 5788 85.50 200 4 1.26 14.30 
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Appendix I: Basic Data of Distribution Substations of the Distribution Test Network (Continued) 
 

Substation 
Number 

X and Y 
Coordinates with Respect 
to the HV/MV Substation 

(meters) 

Peak Demand 
(kVA) 

Transformer 
Rating (kVA) 

Transformer 
Impedance (%) 

Interruption Cost 

€/kW €/kWh 

109 3933 7208 2.43 100 4 1.36 15.80 
110 1181 752 22.30 100 4 1.75 21.60 
111 -4626 175 21.70 100 4 2.65 29.90 
112 -2593 -2543 11.40 100 4 3.52 24.50 
113 -3135 957 13.60 100 4 2.65 29.90 
114 -2358 3880 101.00 200 4 3.52 24.50 
115 3002 5620 23.60 100 4 2.65 29.90 
116 -3036 6922 32.80 100 4 2.65 29.90 
117 -1516 -5281 7.36 100 4 3.52 24.50 
118 -3357 -3882 6.07 100 4 3.52 24.50 
119 6707 -4831 143.00 315 4 3.52 24.50 
120 1708 -853 89.00 200 4 3.52 24.50 
121 1392 7198 45.20 100 4 0.78 10.20 
122 4638 5043 16.20 100 4 2.29 19.20 
123 2014 -2118 32.00 100 4 1.41 17.90 
124 5338 -310 22.70 100 4 2.30 33.80 
125 -1664 -1079 889.00 1250 6 1.64 19.20 
126 5667 -809 6.11 100 4 0.87 10.40 
127 1932 -1026 81.40 200 4 1.40 15.90 
128 1462 -2557 78.20 200 4 2.65 29.90 
129 4788 1618 103.00 200 4 2.65 29.90 
130 4497 4737 49.90 100 4 2.65 29.90 
131 5198 5085 54.60 100 4 2.65 29.90 
132 974 -1950 38.50 100 4 3.52 24.50 
133 -252 1785 53.40 100 4 1.86 22.30 
134 -112 -4489 43.50 100 4 1.67 15.30 
135 -1284 -8806 23.70 100 4 0.73 7.86 
136 -935 -7814 120.00 200 4 1.50 16.00 
137 -2310 -6382 29.70 100 4 2.35 18.10 
138 2814 5268 32.90 100 4 2.62 33.20 
139 -909 -3515 31.80 100 4 2.49 31.10 
140 -7667 3212 57.30 100 4 3.52 24.50 
141 5818 -1917 35.30 100 4 2.65 29.90 
142 178 407 14.30 100 4 3.52 24.50 
143 -588 -4359 42.20 100 4 2.65 29.90 
144 -1773 -4714 34.90 100 4 3.52 24.50 
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Appendix II: Basic Data of Underground Cables used in the Distribution Test Network 
 

Cable Size Rated 
Voltage (kV) 

Positive (Negative) 
Sequence Impedance (ohms/m) 

Zero Sequence  
Impedance (ohms/m) Rated 

Current (A) Resistance Inductance Resistance Inductance 

1 24 0.000451 0.000132 0.001804 0.000528 155 
2 24 0.000262 0.000123 0.001048 0.000492 210 
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Appendix III: Basic Data of Sections of the Distribution Test Network 
 

Leaving 
Substation 

Switching 
Device 

Entering 
Substation 

Switching 
Device 

Exposure 
(meters) 

Cable 
Size 

Emergency 
Rating (%) 

Main Yes 142 No 628 2 120 
Main Yes 18 No 1879 2 120 
Main Yes 25 Yes 1431 2 120 
Main Yes 63 No 1212 2 120 
Main Yes 89 No 3230 2 120 
Main Yes 99 No 1620 2 120 

1 Yes 109 No 735 2 120 
2 No 3 No 720 1 120 
2 Yes 6 No 497 2 120 
3 Yes 4 No 1003 1 120 
4 Yes 121 No 801 1 120 
5 Yes 98 No 707 1 120 
6 No 1 Yes 490 2 120 
7 Yes 83 No 778 2 120 
7 Yes 115 No 467 2 120 
8 Yes 108 No 692 2 120 
8 Yes 131 No 607 1 120 
9 Yes 10 Yes 1995 1 120 

10 Yes 104 No 425 1 120 
12 Yes 55 Yes 966 2 120 
12 Yes 70 No 1137 1 120 
13 Yes 71 No 1920 2 120 
13 No 129 No 877 1 120 
14 Yes 49 No 939 1 120 
14 No 62 No 351 2 120 
15 Yes 82 Yes 1903 2 120 
16 Yes 17 Yes 925 2 120 
17 Yes 53 No 977 1 120 
17 Yes 96 No 793 1 120 
17 Yes 133 No 668 1 120 
18 No 125 Yes 971 2 120 
19 Yes 113 No 765 1 120 
20 No 76 No 783 1 120 
21 Yes 61 No 1321 1 120 
21 Yes 114 No 1163 1 120 
22 No 97 No 568 1 120 
23 No 116 No 922 1 120 
24 No 100 Yes 836 2 120 
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Appendix III: Basic Data of Sections of the Distribution Test Network (Continued) 
 

Leaving 
Substation 

Switching 
Device 

Entering 
Substation 

Switching 
Device 

Exposure 
(meters) 

Cable 
Size 

Emergency 
Rating (%) 

25 Yes 120 Yes 1298 2 120 
26 Yes 87 No 983 1 120 
26 Yes 88 No 1145 1 120 
26 Yes 123 No 930 1 120 
27 No 124 No 1149 1 120 
28 Yes 29 No 1890 1 120 
30 Yes 68 No 1409 1 120 
30 Yes 69 No 2126 1 120 
31 No 128 Yes 959 1 120 
31 No 132 No 167 1 120 
32 Yes 78 No 1484 1 120 
33 No 58 No 682 1 120 
34 No 135 No 1138 1 120 
35 No 143 No 538 1 120 
37 No 59 Yes 557 2 120 
38 No 52 No 628 2 120 
38 Yes 118 No 1732 1 120 
39 No 51 Yes 979 2 120 
40 Yes 84 No 1140 1 120 
40 Yes 137 No 487 1 120 
41 No 112 No 719 2 120 
42 Yes 39 No 1245 2 120 
42 No 111 No 768 1 120 
43 Yes 44 No 1436 1 120 
44 No 45 No 1485 1 120 
45 Yes 81 No 2898 1 120 
46 No 127 No 834 1 120 
47 Yes 65 No 710 2 120 
48 Yes 24 No 820 2 120 
50 No 101 Yes 1251 2 120 
51 Yes 125 Yes 1934 2 120 
52 Yes 103 No 1030 2 120 
53 Yes 21 No 2905 1 120 
55 Yes 11 No 1389 1 120 
55 Yes 130 No 737 2 120 
56 No 74 No 298 1 120 
58 Yes 80 No 706 1 120 
59 Yes 33 No 1066 1 120 
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Appendix III: Basic Data of Sections of the Distribution Test Network (Continued) 
 

Leaving 
Substation 

Switching 
Device 

Entering 
Substation 

Switching 
Device 

Exposure 
(meters) 

Cable 
Size 

Emergency 
Rating (%) 

59 Yes 143 Yes 1250 1 120 
60 Yes 13 Yes 2117 2 120 
61 Yes 94 No 907 1 120 
62 Yes 50 No 1283 2 120 
63 No 16 Yes 447 2 120 
64 Yes 90 No 851 1 120 
65 No 26 Yes 952 2 120 
67 No 30 No 1400 1 120 
68 No 119 No 2180 1 120 
70 No 105 No 616 1 120 
71 No 12 Yes 1053 2 120 
72 Yes 77 No 1096 1 120 
72 No 136 No 956 1 120 
73 Yes 23 No 886 1 120 
75 Yes 141 No 929 1 120 
76 Yes 42 Yes 1460 1 120 
79 Yes 86 No 3086 1 120 
80 No 72 No 962 1 120 
81 No 140 No 1141 1 120 
82 Yes 14 Yes 734 2 120 
83 No 102 Yes 1397 2 120 
87 Yes 27 No 2295 1 120 
88 Yes 67 No 2022 1 120 
89 No 41 Yes 1574 2 120 
90 Yes 19 Yes 737 1 120 
92 Yes 91 No 560 1 120 
92 Yes 95 No 1169 1 120 
94 Yes 22 No 906 1 120 
94 Yes 93 No 1051 1 120 
96 No 64 Yes 898 1 120 
97 No 73 No 998 1 120 
98 No 54 No 2229 1 120 
99 No 110 No 373 2 120 
100 Yes 56 No 753 1 120 
100 No 60 No 293 2 120 
101 Yes 102 Yes 2211 2 120 
103 Yes 144 No 1051 2 120 
105 No 106 No 586 1 120 
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Appendix III: Basic Data of Sections of the Distribution Test Network (Continued) 
 

Leaving 
Substation 

Switching 
Device 

Entering 
Substation 

Switching 
Device 

Exposure 
(meters) 

Cable 
Size 

Emergency 
Rating (%) 

108 Yes 10 Yes 1785 2 120 
108 No 57 No 644 1 120 
109 Yes 9 No 497 2 120 
110 No 48 Yes 731 2 120 
111 No 43 No 631 1 120 
112 No 38 Yes 1536 2 120 
113 No 20 Yes 705 1 120 
115 No 2 Yes 1350 2 120 
117 Yes 37 No 542 2 120 
117 No 40 No 1633 1 120 
120 No 85 No 773 1 120 
120 No 127 Yes 400 2 120 
121 No 5 No 440 1 120 
122 Yes 8 Yes 655 2 120 
122 No 107 No 354 1 120 
123 No 128 Yes 997 1 120 
124 Yes 126 No 845 1 120 
126 No 75 No 853 1 120 
127 Yes 47 No 464 2 120 
128 Yes 66 No 1193 1 120 
128 Yes 78 No 1416 1 120 
130 No 122 Yes 476 2 120 
134 Yes 32 Yes 839 1 120 
134 No 79 No 1357 1 120 
136 Yes 34 No 840 1 120 
137 No 92 No 1304 1 120 
138 No 7 No 383 1 120 
139 No 35 Yes 741 1 120 
139 No 36 No 1019 1 120 
141 No 28 No 943 1 120 
142 No 15 Yes 717 2 120 
143 Yes 134 Yes 698 1 120 
144 No 117 Yes 880 2 120 
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Appendix IV: Basic Data of Overhead Lines of the Sub-Transmission Test Network 
 

Sending 
Bus 

Receiving 
Bus 

Circuit 
Number Conductor Type Length 

(km) 
Resistance 

(Ω/km) 
Reactance 

(Ω/km) 
Rating 
(MVA) 

6 12 1 2 Finch 3.018 0.027 0.260 410 

4 6 1 2 Duck 5.902 0.049 0.282 281 

4 6 2 2 Duck 5.810 0.049 0.282 281 

6 7 1 2 Duck & 3*2000Cu 4.660 0.058 0.252 225 

6 7 2 2 Duck & 3*2000Cu 4.700 0.058 0.252 225 

2 6 1 2 Finch 8.600 0.027 0.266 410 

8 15 1 2 Duck 3.708 0.049 0.279 281 

8 15 2 2 Duck 3.722 0.049 0.279 281 

3 15 1 2 Duck 8.368 0.049 0.291 281 

3 15 2 2 Duck 8.368 0.049 0.291 281 

2 9 1 2 Finch 3.927 0.027 0.262 410 

8 19 1 2 Duck 3.611 0.049 0.285 281 

5 19 1 2 Duck 3.373 0.049 0.297 281 

9 12 1 2 Finch 1.761 0.027 0.256 410 

5 8 1 2 Duck 6.991 0.049 0.296 281 

7 8 1 Ibis 6.164 0.142 0.390 110 

7 8 2 Ibis 6.197 0.142 0.390 110 

3 7 1 2 Duck 7.717 0.049 0.287 281 

7 14 1 2 Duck 3.637 0.049 0.287 281 

3 13 1 2 Duck 4.820 0.049 0.285 281 

3 11 1 2 Duck 8.243 0.049 0.324 281 

9 11 1 2 Duck 7.552 0.049 0.294 281 

1 2 1 2 Finch 5.496 0.027 0.265 410 

1 2 2 2 Finch 5.496 0.027 0.265 410 

13 14 1 2 Duck 3.637 0.049 0.287 281 
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Appendix V: Basic Data of Underground Cables of the Sub-Transmission Test Network 
 

Sending 
Bus 

Receiving 
Bus 

Circuit 
Number Conductor Type Length 

(km) 
Resistance 

(Ω/km) 
Reactance 

(Ω/km) 

Nominal 
Rating 
(MVA) 

6 10 1 3x300Al 4.100 0.125 0.141 82 

6 10 2 3x300Al 4.040 0.125 0.141 82 

21 21 1 3x800Al 0.985 0.053 0.116 134 

4 22 1 3x300Cu & 3x800Al 3.896 0.069 0.119 104 

4 22 2 3x800Al 4.542 0.054 0.128 134 

23 24 1 3x300Cu & 3x800Al 1.38 0.074 0.142 104 

4 24 1 3x300Cu & 3x800Al 2.083 0.076 0.133 104 

4 24 2 3x800Al 2.593 0.054 0.126 134 

5 23 1 3x300Cu & 3x800Al 3.147 0.082 0.129 104 

17 18 1 3x400Cu & 3x800Al 1.64 0.054 0.120 120 

7 17 1 3x400Cu & 3x800Al 4.50 0.066 0.114 120 

16 17 1 3x800Al 0.45 0.145 0.195 134 

5 21 1 3x300Cu & 3x800Al 2.259 0.079 0.136 104 

5 20 1 3x800Al 3.093 0.053 0.116 134 

4 20 1 3x800Al 3.603 0.051 0.123 134 

4 18 1 3x400Cu & 3x800Al 1.95 0.058 0.118 120 

4 18 2 3x800Al 2.241 0.053 0.128 134 

 






