
Publication I 

Jirka Poropudas and Kai Virtanen. 2011. Simulation metamodeling with 
dynamic Bayesian networks. European Journal of Operational Research, 
volume 214, number 3, pages 644-655. 

© 2011 Elsevier 

Reprinted with permission from Elsevier. 



Stochastics and Statistics

Simulation metamodeling with dynamic Bayesian networks

Jirka Poropudas ⇑, Kai Virtanen
Systems Analysis Laboratory, Aalto University, School of Science, P.O. Box 11100, FI-00076 Aalto, Finland

a r t i c l e i n f o

Article history:
Received 5 May 2010
Accepted 3 May 2011
Available online 11 May 2011

Keywords:
Simulation
Dynamic Bayesian networks
Discrete event simulation
Simulation metamodeling

a b s t r a c t

This paper presents a novel approach to simulation metamodeling using dynamic Bayesian networks
(DBNs) in the context of discrete event simulation. A DBN is a probabilistic model that represents the
joint distribution of a sequence of random variables and enables the efficient calculation of their marginal
and conditional distributions. In this paper, the construction of a DBN based on simulation data and its
utilization in simulation analyses are presented. The DBN metamodel allows the study of the time evo-
lution of simulation by tracking the probability distribution of the simulation state over the duration of
the simulation. This feature is unprecedented among existing simulation metamodels. The DBN meta-
model also enables effective what-if analysis which reveals the conditional evolution of the simulation.
In such an analysis, the simulation state at a given time is fixed and the probability distributions repre-
senting the state at other time instants are updated. Simulation parameters can be included in the DBN
metamodel as external random variables. Then, the DBN offers a way to study the effects of parameter
values and their uncertainty on the evolution of the simulation. The accuracy of the analyses allowed
by DBNs is studied by constructing appropriate confidence intervals. These analyses could be conducted
based on raw simulation data but the use of DBNs reduces the duration of repetitive analyses and is expe-
dited by available Bayesian network software. The construction and analysis capabilities of DBN meta-
models are illustrated with two example simulation studies.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many real world systems are complex, include convoluted sto-
chastic phenomena, and have intricate internal dynamics evolving
in time. The analysis of such systems is often conducted using dis-
crete event simulation (DES, e.g. [1]). In a DES model, the state of
simulation is defined using state variables whose values change
at discrete time instants. The state changes, i.e., simulation events,
imitate the behavior of the actual system. The changes are dictated
by the simulation input including values of simulation parameters
used to define alternative system configurations and operational
environments as well as by the internal logic and random factors
of the model. Simulation analysis is based on simulation data that
consist of the values of the simulation input and output. The data
are produced by replicating the simulation several times with
different realizations of the random factors determined by non-
overlapping pseudorandom number streams. The performance of
the system with the given values of the simulation parameters is
studied by calculating descriptive statistics or empirical distribu-
tions from the simulation data. For a more detailed presentation
of simulation analysis, see, e.g. [1,2].

The repetition of simulations may be time consuming and the
sheer size of simulation data sets can make them unwieldy. By
using simulation metamodels [2–4] to represent the dependence
between the simulation input and output, the simulation data
can be concentrated and refined into a more manageable form
while retaining its significant features and properties. Thus, simu-
lation metamodels provide compact representations for the same
system as the simulation model under consideration. They include,
e.g. regression models [5,6], spline models [3], neural networks [7],
radial basis functions [8], Kriging or spatial correlation models
[2,9], frequency domain models [10], response surfaces [3,11],
and game theoretic models [12]. All these models are input–output
mappings that project the values of the simulation input to the val-
ues of the simulation output. They are used for simplifying and
interpreting simulation models [4], conducting sensitivity and
what-if analyses [4] as well as optimizing the simulation output
[13].

The existing simulation metamodels measure system perfor-
mance using the average value of the simulation state during the
simulation or the final state of the simulation. For many purposes,
this is sufficient but one should note that such models do not
explicitly present the time evolution of the simulation. Thus, they
give no information about the simulation state at specific time in-
stants. Furthermore, these models do not depict the dependence
between the simulation state variables at different time instants,

0377-2217/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2011.05.007

⇑ Corresponding author. Tel.: +358 9 470 23064.
E-mail addresses: jirka.poropudas@tkk.fi (J. Poropudas), kai.virtanen@tkk.fi (K.

Virtanen).

European Journal of Operational Research 214 (2011) 644–655

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

Reprinted from European Journal of Operational Research, Vol. 214 No. 3, J. Poropudas and K. Virtanen,
Simulation Metamodeling with Dynamic Bayesian Networks, pp. 644-655, Copyright 2011, with permission from Elsevier.



i.e., how the fixed simulation state affects the following simulation.
Overall, the existing simulation metamodels do not capitalize all
the available information produced by a DES model which can be
of interest in the analysis of time dependent systems such as
queues [14], maintenance of aircraft [15], and air combat [12].

In this paper, this deficiency is tackled by using dynamic Bayes-
ian networks (DBNs) [16] as simulation metamodels. The DBNs
have been previously used in the analysis of simulation data [17]
but now they are presented as a new type of simulation metamod-
el. The DBNs are a particular kind of Bayesian networks (BNs)
[18–20] that describe the joint probability distribution of a collec-
tion of random variables using a network whose nodes represent
the random variables and their interconnecting arcs indicate
dependencies between them. Each node is associated with a condi-
tional probability table containing the probability distribution of
the corresponding random variable. In DBNs, the set of variables
is partitioned into time slices so that each slice consists of variables
representing a single time instant.

In a DES model, the time dependent simulation state corre-
sponds to a stochastic process, i.e., a sequence of random variables.
Each simulation replication produces a realization of this process,
i.e., a time series. The time series are used to construct a DBNmeta-
model for the joint probability distribution of the sequence of ran-
dom variables describing the simulation state at discrete times.
The resulting DBN captures also the dependencies between the
simulation states at different time instants revealing the time evo-
lution of the simulation.

This paper presents a construction process for optimally struc-
tured DBNmetamodels. In general, the construction of a metamod-
el consists of several stages [4]: estimation of the model, analysis of
modeling assumptions, and validation of the model. In the case of a
DBN, the estimation includes both the definition of the structure of
the network and the estimation of its parameters, i.e., the probabil-
ity tables, see, e.g. [20]. The definition of the structure involves also
the selection of time instants of the time slices, i.e., the time in-
stants at which the DBN represents the simulation state [17]. This
selection is now formulated as an optimization problem that is
solved using a genetic algorithm [21]. When constructing DBNs,
no assumptions about underlying probability distributions are
made and therefore the analysis of modeling assumptions is omit-
ted. In the validation stage, probability distributions given by the
DBN are compared with corresponding distributions estimated
from an independent validation data set using appropriate confi-
dence intervals for the probabilities or v2-test for goodness of fit.
In this way, it is confirmed that the DBN metamodel is an accurate
representation of the simulation model.

Overall, the construction of a DBN metamodel is an iterative
process where some of the stages may be repeated before a satis-
fying model is found. Nevertheless, the construction process is
straightforward due to existing software tools for building and
estimating BNs (e.g. [22]). The construction is furthermore aided
by prior knowledge of the simulated system as DBNs seamlessly
combine expert knowledge with data produced by simulation.

A DBN metamodel enables various novel simulation analyses
that are easy to carry out using the available BN software. The
DBN is used to calculate marginal and conditional probability dis-
tributions of the simulation state variables as a function of time
which reveals the time evolution of the simulation. In what-if anal-
ysis, the value of the simulation state at a given time instant is
fixed and the probability distributions of the state variables at
other time instants are updated. The updating of conditional prob-
ability distributions with the DBN is faster than filtering of the ori-
ginal simulation data for cases that fulfill the conditions imposed
on the simulation state. Therefore, the use of the DBN reduces
the duration and computational requirements of repetitive analy-
ses where many cases are to be considered. The accuracy of analy-

ses is studied by calculating confidence intervals for the estimates
of probabilities and expected values related to the simulation state.

Simulation parameters can also be included in a DBNmetamod-
el as external random variables. Such a DBN describes the depen-
dence between the values of the parameters and the evolution of
the simulation. Furthermore, the parameter values can be treated
as uncertain factors and the effect of this uncertainty on the simu-
lation can be studied. The DBN containing the simulation parame-
ters can also be applied for probabilistic reasoning where the
simulation state is fixed at a given time and the DBN is used to up-
date the conditional probability distributions of the external ran-
dom variables representing the simulation parameters.

The paper is structured as follows. A short introduction to BNs
and DBNs as required in simulation metamodeling is given in Sec-
tion 2. The process for constructing a DBN metamodel based on
simulation data is presented in Section 3. Section 4 introduces
the utilization of such a metamodel in simulation analyses. The
analysis capabilities are further explored and illustrated in Section
5 where two example simulation analyses are presented. Finally,
the paper is summarized and conclusions are given in Section 6.

2. Dynamic Bayesian networks

A BN [18–20] is a probabilistic model that presents the joint dis-
tribution of a set of discrete random variables on three levels: rela-
tional, functional, and numerical [23]. On the relational level, the
BN is a graphical representation of dependencies between the
random variables using nodes and arcs. Conditional probability
distributions and a chain rule [18] are used for the functional pre-
sentation of the joint distribution of the variables. Finally, efficient
algorithms, e.g. [19,20], are used to calculate marginal and condi-
tional distributions of individual variables on the numerical level.

In a BN representing the domain of discrete random variables
U = {x1, . . . ,xn}, the nodes of the network correspond to the vari-
ables x1, . . . ,xn, see Fig. 1(a). Each variable xi has a set of possible
values denoted by k 2 Ki. When the value of variable xi is known,
i.e., xi = kwhere k 2 Ki, it is said to be instantiated. The instantiation
of a random variable can be interpreted as observing its value. An
instantiation kX for a set of variables X # U is defined as X = kX
where each xi 2 X is instantiated as xi = k 2 Ki, i.e., the values of vari-
ables xi 2 X are fixed.

Arcs of the network denote dependencies between variables so
that connected variables depend on each other, see Fig. 1(a). To-
gether, the nodes and the arcs constitute a directed acyclical graph
that presents the dependence structure between the variables U.
The set of parents of xi, i.e., the nodes with an arc pointing to node
xi, is denoted by Pi. The root nodes of the network have no parents
and thenPi = ;. The variables associated with the root nodes do not
depend directly on the other variables.

Variable xi follows a discrete probability distribution P(xi) that
consists of probabilities P(xi = k) for all k 2 Ki. The probability of

Fig. 1. Example BN and DBN.

J. Poropudas, K. Virtanen / European Journal of Operational Research 214 (2011) 644–655 645



instantiation kX for a set of variables X, i.e., the probability of vari-
ables xi 2 X having values kX, is denoted by P(X = kX). The probabil-
ity distribution P(X) for these variables includes the probabilities of
all possible values kX. The conditional probability of instantiation
X = kX when Y = kY is denoted by P(X = kXjY = kY). The conditional
probability distribution P(XjY) consists of the probabilities of all
possible values kX for all possible values kY.

In a BN, for each variable xi 2 U, the conditional probability dis-
tribution P(xijPi) is presented using a probability table associated
with the respective node. For root nodes, the probability table con-
tains the marginal distribution of the variable, i.e., P(xij;) = P(xi).
The joint probability distribution of U is calculated by using the
chain rule: PðUÞ ¼ Pðx1; . . . ; xnÞ ¼

Qn
i¼1PðxijPiÞ [18]. The chain rule

is also applied for calculating the marginal distributions of individ-
ual variables as well as for inference where the values of some vari-
ables are instantiated and then the conditional probability
distributions of other variables are updated.

DBNs [16] are BNs with a special structure that describes a se-
quence of random variables. Let P(U(t)) be the probability distribu-
tion for a set of random variables U(t) = {x1(t), . . . ,xn(t)} at time
instant t. The variables associated with the same time instant are
said to form a single time slice. A DBN with time slices at time in-
stants t 2 T = {t0, t1, . . . , tf} is used to present a sequence of random
variables at discrete times T. The structure within a time slice rep-
resents dependence between the simultaneous variables while the
arcs between the time slices represent the dependence in time. In
Fig. 1(b), the BN presented in Fig. 1(a) is extended to a DBN consist-
ing of three time slices. In practice, DBNs are constructed in a sim-
ilar manner to BNs. For a more detailed presentation of the
construction of BNs, see, e.g. [20,24].

3. Construction of DBN metamodels

In the following, the construction of a DBNmetamodel based on
data produced by a DES model is introduced. The construction pro-
cess begins with the selection of variables, the acquisition of sim-
ulation data, and the optimal selection of time instants. The data
are then used in the determination of the network structure as well
as in the estimation of probability tables. Then, the construction is
finalized by possible inclusion of simulation parameters as well as
the validation of a DBNmetamodel. The construction is an iterative
process and some of the abovementioned steps may have to be
performed several times before an acceptable model is found.

3.1. Selection of variables

To construct a DBN metamodel, a set of simulation state vari-
ables is selected to represent the simulated system. Suppose that
there are n state variables, denoted by x1(t), . . . ,xn(t), needed to de-
fine the simulation state at a given time t 2 [t0, tf] where t0 and tf
are the beginning and end of the simulation. For terminating sim-
ulations, the end time tf is determined when a terminating condi-
tion is fulfilled [25]. In the case of a non-terminating simulation, a
suitable value is selected for tf. Then, the state of the simulation
model at time t, denoted by S(t) = {x1(t), . . . ,xn(t)}, is given by the
values of the state variables, i.e., x1(t) = k1, . . . ,xn(t) = kn where
ki 2 Ki. In a DES model, the simulation state S(t) is a random vari-
able whose probability distribution P(S(t)) changes continuously
in time according to the internal logic and random factors of the
model. In general, this probability distribution is unknown.

In the DBN metamodel, the simulation state variables are con-
sidered at discrete time instants t 2 T = {t0, t1, . . . , tf}, i.e., the simu-
lation state S(t) at time instant t 2 T is described by the time slice
U(t) = {x1(t), . . . ,xn(t)}, t 2 T. Note that the time index in S(t) is con-
tinuous, t 2 [t0, tf], while the time slices U(t) included in the DBN

metamodel are associated with discrete time instants, t 2 T. Then,
a DBN is constructed to represent the joint probability distribution
of random variables U =

S
t2TU(t). The joint probability distribution

P(U) is used to determine the time evolution of the simulation
state, i.e., to estimate the probability distribution of the simulation
state P(S(t)) as a function of discrete time. For the intermittent time
instants, the probability distribution P(S(t)) can be approximated
by using the probability estimates given by the DBN and, e.g. a
piecewise linear interpolation.

3.2. Simulation data

In a DES model, time progresses continuously as simulation
events can take place at any time instant t 2 [t0, tf]. When simula-
tions are performed, each replication yields a realization of the
evolution of the simulation state, i.e., a time series representing
the simulation state is observed for time interval t 2 [t0, tf]. Several
simulation replications are run and the simulation events as well
as their times are recorded into a simulation data set. The data
set is used in the construction of a DBN in two ways. First, it can
be used to estimate P(S(t)) = P(x1(t), . . . ,xn(t)) at any given time in-
stant t by screening the data for the state of the simulation at that
time. To approximate the continuous time evolution of the simula-
tion, the probabilities of the values of the simulation state variables
as a function of time, i.e., the probability curves, are calculated
from the data for a suitably fine grid of time instants. The probabil-
ity curves are used in selecting the number of time slices and their
optimal positioning as discussed in Section 3.3. Second, after the
structure of the DBN is defined, the data set is used to estimate
the probability tables of the DBN as discussed in Section 3.5.

The proper selection of the number of simulation replications,
denoted by N, is essential in order to achieve a sufficient data set
while avoiding unnecessary simulation. For a DBN metamodel, as
is the case with most simulation metamodels, the appropriate va-
lue of N is unknown before any simulations have been performed.
However, when constructing a DBN, the sufficient value of N can be
approximated by considering the asymptotically normal distribu-
tion of the maximum likelihood estimator used in estimating the
probability tables P(xi(t)jPi). This estimation is discussed in more
detail in Section 3.5. First, the desired accuracy of the probability
estimates provided by the DBN is determined. The accuracy is mea-
sured as the half-length of the (1 � a)% confidence interval, de-
noted by d. Then, a lower limit is imposed to the probability of
the least likely combination of the values of the parent nodes that
is to be studied in what-if analysis, denoted by p :¼ P(Pi = kP). The
number of observations needed to achieve the accuracy d is
Nnec � z21�a=2=ð4d2Þ where z1�a/2 is the 100(1 � a/2)th percentile
of the standard normal distribution [26]. When the conditional
probability P(xi(t) = kjPi = kP) is estimated from N simulation repli-
cations, approximately N � p replications are actually of use. Thus,
the lower limit for the number of replications is

N P Nnec=p � z21�a=2=ð4d2pÞ: ð1Þ
In practice, the value of N can be rounded up. Additionally, more
simulations can be performed if this is found necessary in the vali-
dation of the DBN metamodel.

3.3. Optimal selection of time instants

The time slices of a DBN metamodel represent the probability
distribution of the simulation state P(S(t)) at discrete time instants
t 2 T although this distribution changes in continuous time. Be-
cause of this discrepancy, the representation for the time evolution
of P(S(t)) given by a DBN is approximative. The number of time
slices, denoted by jTj, and their positioning T are determined based

646 J. Poropudas, K. Virtanen / European Journal of Operational Research 214 (2011) 644–655



on the probability curves discussed in Section 3.2 to find the best
approximation for the evolution of the simulation.

The number of time slices jTj is a compromise between the size
of the model and the quality of the approximation. A greater num-
ber of time slices decreases the approximation error but, on the
other hand, excess time slices unnecessarily increase the size of
the model. Therefore, the value of jTj is determined as the smallest
number of time slices needed to produce an approximation where
the probability curves appear almost linear between time slices.
For example, Fig. 2(a) and (b) illustrate a case in which the proba-
bility curves can be approximated with six time slices provided
that they are positioned optimally. The required number of time
slices depends also on the intended utilization of the DBN meta-
model. If the DBN is to be analyzed, e.g. within the time scale of
seconds, the separation between successive time instants should
be in a similar scale which can be used to assess the number of
time slices.

When the value of jTj is determined, the time instants of the
time slices must be selected deliberately. Now, the time instants
are selected such that they minimize an approximation error
which results in an optimization problem. The objective function
of the optimization problem, i.e., the approximation error, may
be formulated in many ways. The objective function used in this
paper is based on the probabilities P(xi(t) = k) that are estimated
from the simulation data for all values k 2 Ki of all simulation state
variables xi(t) 2 S(t) at times t 2 T = {t0, t1, . . . , tf}. The probabilities
for other time instants t 2 [t0, tf] are approximated using a piece-
wise linear interpolation, denoted by bPðxiðtÞ ¼ kÞ, that is

bPðxiðtÞ ¼ kÞ :¼ Pðxiðt�Þ ¼ kÞ þ t � t�
tþ � t�

½PðxiðtþÞ ¼ kÞ � Pðxiðt�Þ ¼ kÞ�;
ð2Þ

where t� :¼max{u 6 tju 2 T} and t+ :¼min{u > tju 2 T}.
To motivate the optimal selection of time instants, an example

of probability curves and their piecewise linear interpolations is gi-
ven in Fig. 2(a). The time instants are set equidistantly which
results in a considerable approximation error. For example, be-
tween time instants t0 and t1, the interpolations do not expose
the fact that the probability distribution of the simulation state re-
mains unchanged at the beginning of the simulation. On the other
hand, between times t2 and t4 there exists fluctuation in the distri-
bution which is ignored by the interpolations. Overall, the piece-
wise linear interpolations presented in Fig. 2(a) do not give an
acceptable representation for the probability curves.

Now, the objective for the optimal selection of time instants is
to minimize the maximal absolute error of the piecewise linear
interpolations which is denoted by M(T). The maximal absolute er-
ror M(T) is calculated with respect to the entire duration of the

simulation t 2 [t0, tf], all state variables, and all their values. Thus,
the optimization problem is of the form

min
T

MðTÞ;
where MðTÞ :¼ maxt2½t0 ;tf �;xiðtÞ2SðtÞ;k2Ki

jei;kðtÞj;
and ei;kðtÞ :¼ PðxiðtÞ ¼ kÞ � bPðxiðtÞ ¼ kÞ;

ð3Þ

where the time instants T = {t0, t1, . . . , tf} are the decision variables.
The solution of the problem (3) yields the optimal time instants
providing the best approximation for the probability distribution
of the simulation state when the number of time slices jTj is fixed.

The optimization problem (3) is non-linear and non-convex.
Therefore, it is impossible to solve with gradient-based optimiza-
tion methods. Fortunately, the solution of the problem need not
be the global optimum as the purpose of the optimization is to
avoid completely inappropriate selection of the time instants. For
example, situations where several time slices present the same un-
changed distribution should be avoided. Similarly, the probability
distribution may have sharp momentary peaks that have to be in-
cluded in the DBN. For such purposes, a suboptimal solution for the
problem (3) can be obtained with a genetic algorithm, e.g. [21].

In this paper, the population of solution candidates used in the
genetic algorithm consists of a number of real-valued vectors T.
Whenever the algorithm requires the evaluation of the objective
function (3), the maximal approximation error in interval [t0, tf] is
calculated based on the probability curves, i.e., the optimization
is done based on the existing simulation data. The algorithm cre-
ates a new generation of potential candidates by selecting the best
candidates as well as by crossing them over or mutating them.

The adequacy of the optimal solution is verified by comparing
the probability curves and the piecewise linear interpolations.
The interpolations should follow the probability curves in a satis-
factory manner. For example, the comparison of Fig. 2(a) and (b)
implies that the interpolations based on the optimized time in-
stants give a remarkably better approximation.

If the optimization results in an inaccurate approximation, the
genetic algorithm may have converged at an unacceptable local
minimum and needs to be rerun. If satisfactory time instants are
not found despite numerous trials, more time slices can be added,
i.e., the value of jTj is increased. On the other hand, the number of
time instants can be decreased and the optimization problem re-
solved, if the optimal solution includes time instants that are close
together and present nearly identical probability distributions.

3.4. Determination of structure

After the variables and the time instants have been selected, the
structure of a DBN, i.e., dependencies between the variables, is

Fig. 2. Grey lines present the probability curves P(x(t) = k) for the values k 2 {0,1,2} of the simulation state variable. The piecewise linear interpolations bPðxðtÞ ¼ kÞ are
calculated using the probabilities presented by the markers at time instants t 2 T = {t0, t1, . . . , tf}.

J. Poropudas, K. Virtanen / European Journal of Operational Research 214 (2011) 644–655 647



determined using the same principles as for BNs [24,27–29]. The
effective determination of the network structure combines expert
knowledge and background information about the system at hand
with the simulation data. In practice, the initial structure of the
DBN is defined in two phases. First, the internal structure of indi-
vidual time slices is determined and then dependencies between
the time slices are assessed.

If expert knowledge is available, the initial structure of the DBN
is obtained by first including the apparent dependencies into the
network, i.e., by connecting the interdependent nodes with arcs.
The initial structure can then be refined with additional arcs if
the simulation data exhibit other dependencies. The structure of
the DBN can also be estimated entirely from the simulation data
without accessing any prior knowledge of the network structure.
However, well-grounded estimation of the structure based only
on the simulation data necessitates a large data set and this issue
is exacerbated in the case of DBNs as the size of the network is
multiplied by the number of time slices. The determination of
the structure of DBNs is assisted by available software such as HU-
GIN [30] or GeNIe [31] that include graphical user interfaces for
inclusion of expert knowledge as well as readily implemented
algorithms for analysis of data.

3.5. Estimation of probability tables

In a DBN, each variable xi(t) is associated with a conditional
probability table including conditional probability distribution
P(xi(t)jPi = kP) for each combination of values kP of its parents
Pi. The conditional probabilities are estimated using maximum
likelihood estimators (see, e.g. [32]) that maximize the likelihood
of the simulation data for a given network structure [29]. For dis-
crete random variables used in DBN metamodels, maximum likeli-
hood estimators are given by the relative frequencies of the
observed values of the simulation state variables [24].

Denote the true value of a conditional probability by hk :¼
P(xi(t) = kjPi = kP). The estimate ĥk is based on a sample of observa-
tions N = (N1, . . . ,NjKj) from multinomial distribution Multino-
mial(NP,h) where NP is the number of simulation replications in
whichPi = kP, Nk is the number of simulation replications in which
xi(t) = k and Pi = kP, and h = (h1, . . . ,hjKj). Here, jKj denotes the num-
ber of possible values for the random variable xi(t). Note that for the
multinomial distribution, Cov(Nk,Nk) = NPhk(1 � hk) and Cov
(Nk,Nm) = �NPhkhm, if k–m.

Using the above-mentioned sample, the maximum likelihood
estimator for probability hk is given by ĥk ¼ Nk=NP. The condi-
tional probabilities of the root nodes are estimated based on all
the simulation data and, thus, for them NP = N. In practice, the
estimation of probability tables of the DBNs is carried out with
the same software as the determination of the network structure.
The asymptotic distribution of the maximum likelihood estimator
[26] is

ĥk � N hk;
hkð1� hkÞ

NP

� �
: ð4Þ

This distribution is used to calculate confidence intervals for prob-
ability estimates as discussed in Section 4.3. Recall also that these
confidence intervals are used in Section 3.2 to determine the neces-
sary number of simulation replications.

3.6. Inclusion of simulation parameters

In a DES model, alternative operating environments and system
configurations are defined using parameters z1, . . . ,zm each with a
set of possible values ‘ 2 Zj. The simulation parameters can be in-
cluded in a DBN metamodel as external random variables. This

approach enables also the treatment of deterministic parameters
by setting the probability of a given set of parameter values equal
to one. The dependence between the simulation parameters and
the time evolution of the simulation is studied by running simula-
tions with given values of z1, . . . ,zm and constructing the DBN
metamodel for the distribution P(U(t0), . . . ,U(tf)jz1, . . . ,zm) based
on the simulation data.

The simulation parameters can also represent uncertain factors
that affect the simulated system. The effect of this uncertainty can
be studied using a DBN metamodel containing variables corre-
sponding to the parameters. The probabilities of the parameter val-
ues cannot be estimated from the simulation data because they are
fixed for each simulation replication. Nevertheless, the probability
of a given combination of simulation parameter values can be eval-
uated, e.g. using expert knowledge or historical data. This prior
probability distribution is then included in the DBN representing
the joint probability distribution P(U) = P(U(t0), . . . ,U(tf),z1, . . . ,zm).

3.7. Validation

Once constructed, a simulation metamodel is validated by com-
paring it to simulation data [4,11,33,34]. Whenever possible, the
validation is performed using a second independent data set to
ascertain that the metamodel produces results that are generaliz-
able [33]. In the case of DBNs, marginal and conditional probability
distributions as well as probabilities given by the DBN are com-
pared to distributions and probabilities estimated directly from
the simulation data. The analysis of joint probability distribution
P(U) is inconvenient due to its high dimensionality. Therefore,
the joint probability distribution is decomposed using the chain
rule into conditional probability distributions of lower dimension,
e.g. P(U) = P(xi(t)jU�i)P(U�i) where U�i denotes the variables other
than xi(t) that are included in the DBN. Alas, the exhaustive analy-
sis is in general unattainable due to the computational complexity
of estimating all possible conditional distributions from the simu-
lation data and their possibly high number. Thus, the validation
concentrates on the most relevant probabilities and probability
distributions.

When probabilities are considered, the DBN is used to calculate
marginal or conditional probability estimates and their confidence
intervals for values of state variables. The resulting confidence
intervals are compared with probabilities estimated from the inde-
pendent simulation data. Now, the confidence intervals given by a
proper DBN metamodel should cover the independent probability
estimates.

Probability distributions produced by the DBN for given time in-
stants are studied by estimating the same distributions from the
independent simulation data. The goodness of fit between the
two distributions is tested using v2-test (see, e.g. [26]). Now, the
null hypothesis is that the DBN reproduces the distribution given
by the simulation data and the alternative hypothesis is that the
distributions are not the same. If significant differences are not
found by testing the most relevant distributions, it is concluded
that the DBN is a good representation for the joint probability
distribution.

Overall, if notable discrepancy between the DBN metamodel
and the independent simulation data is observed, it may be nec-
essary to re-assess the structure of the network, include
additional time slices, or increase the size of the simulation data
set.

One should also note that if an independent simulation data set
is unavailable, cross-validation techniques (see, e.g. [11]) can be
used. That is, some of the observations are excluded from the data
used in the construction of the DBN metamodel. Then, the validity
of the DBN is measured by comparing it with these data.

648 J. Poropudas, K. Virtanen / European Journal of Operational Research 214 (2011) 644–655



4. Utilization of DBN metamodels

Next, the utilization of a constructed and validated DBN in simu-
lation analysis is presented. The time slices of the DBN
U(t) = {x1(t), . . . ,xn(t)} correspond to the simulation state at time in-
stants t 2 T = {t0, . . . , tf} and the simulation parameters are included
as external variables zj 2 {z1, . . . ,zm}. The constructed DBN presents
the joint probability distribution P(U(t0), . . . ,U(tf),z1, . . . ,zm) that al-
lows the calculation of marginal and conditional distributions such
as P(U(t)), P(xi(t)), P(U(t)jU(t0)), and P(xi(t)j xi(t0)) where t, t0 2 T. These
calculations are easy to conduct by using available BN software. For
intermittent time instantsnot included in T, the probability distribu-
tions are approximated by using the probabilities given by the DBN
and a linear interpolation similar to Eq. (2).

4.1. Time evolution of simulation

In a DBN metamodel, the time evolution of the probability dis-
tribution P(U(t)), t 2 T, describes the progress of the simulation, i.e.,
how the simulation state changes during the simulation. Thus, the
DBN is used to assess the probability that the simulation is in state
kU at time t 2 T, i.e., P(U(t) = kU). A single simulation state variable
xi(t) is studied by tracking the evolution of the distribution
P(xi(t)). Furthermore, the probability of a particular value of the
state variable P(xi(t) = k), where k 2 Ki, may also be tracked over
time instants t 2 T. Additionally, in the case of terminating simula-
tions, the DBN is used to calculate the distribution of the final sim-
ulation state represented by P(U(tf)) or P(xi(tf)).

If a state variable has meaningful expected value, i.e., k 2 Ki is
measured on interval or ratio scale, the average value of the state
variable is studied using its expected value EðxiðtÞÞ ¼

P
k2Ki

k�
PðxiðtÞ ¼ kÞ. The average evolution of the simulation state is then
presented by the expected values E(xi(t)) where xi(t) 2 U(t) and
t 2 T.

4.2. What-if analysis

A DBN metamodel is applied for what-if analysis where the va-
lue of one or more simulation state variables xi(t0) 2 U(t0) at time
t0 2 T is fixed, i.e., the corresponding node in the DBN is instanti-
ated. When conducting what-if analysis, the DBN can be used to
calculate the probability of the presented conditions, e.g.
P(U(t0) = kU) or P(xi(t0) = k), which yields information about the like-
lihood of such an occurrence and the accuracy of the following
analysis. For example, if N simulation replications are used to con-
struct a DBN and the probability of the fixed value is p, the what-if
analysis is based on approximately N � p simulation replications. If
the analysis is conducted based on highly unlikely observations,
i.e., the value of N � p is small, the conditional probability estimates
resulting from the what-if analysis may have wide confidence
intervals.

The consequences of the fixed values of the simulation state
variables are analyzed by calculating the conditional probability
distributions of the state variables at other time instants. The con-
ditional distributions are updated using the DBN resulting in, e.g.
P(U(t)jU(t0) = kU), P(U(t)jxi(t0) = k), P(xi(t)jU(t0) = kU), or P(xi(t)jxi(t0) =
k). By comparing alternative values of the state variables at time
t0 2 T, one can see how they affect the overall evolution of the sim-
ulation. The final simulation state can also be included in the anal-
ysis by calculating probability distributions such as P(xi(tf)jxi(t0) = k)
or P(xi(t)jxi(tf) = k).

The external random variables representing the simulation
parameters are studied similarly by instantiating the value of one
or more external variables zj = ‘ and updating the distributions of
the state variables accordingly which gives, e.g. P(U(t)jzj = ‘) or

P(xi(t)jzj = ‘). These conditional distributions are examined to see
how the simulation is affected by the values of the simulation
parameters. Such an analysis provides information about the evo-
lution of the simulation state in different operating environments
or with alternative system configurations.

The above what-if analyses can be combined by fixing both the
values of the simulation state variables at a given time and the val-
ues of the external variables. The respective conditional probability
distribution, e.g. P(U(t)jxi(t0) = k,zj = ‘) where t 2 T, is then calcu-
lated using the DBN. This type of analysis reveals how the simula-
tion is affected by the observed simulation state in the case of the
given values of the simulation parameters.

It is also possible to conduct what-if analysis where some state
variables are fixed and the prior distributions of the external vari-
ables are updated by calculating the respective conditional proba-
bilities, e.g. P(z1, . . . ,zmjxi(t) = k) or P(zjjxi(t) = k). Such an analysis
enables the inference over the possible values of the simulation
parameters when observations of the simulation state are made.

Conditional distributions can also be used to study how the final
simulation state depends on the observed simulation state at some
time instant or the values of the simulation parameters. For exam-
ple, one can determine the conditional distributions P(U(tf)jU(t0) =
kU), P(U(tf)jxi(t0) = k), or P(U(tf)jzj = ‘).

When applicable, conditional probability distributions obtained
in what-if analysis can be used to calculate the conditional
expected value of the simulation state at time t 2 T, e.g.
EðxiðtÞjxiðt0Þ ¼ kÞ ¼Pm2Ki

m � PðxiðtÞ ¼ mjxiðt0Þ ¼ kÞ or EðxiðtÞjzj ¼
‘Þ ¼Pm2Ki

m � PðxiðtÞ ¼ mjzj ¼ ‘Þ. On the other hand, one can also
study the conditional expected value of an external variable such
as Eðzjjxiðt0Þ ¼ kÞ ¼P‘2Zj ‘ � Pðzj ¼ ‘jxiðt0Þ ¼ kÞ.

4.3. Accuracy of estimates of probabilities and expected values

Let hk denote the true value of any conditional or marginal prob-
ability discussed in Sections 4.1 and 4.2. The accuracy of the prob-
ability estimate ĥk is studied by calculating its confidence interval

based on Eq. (4). The confidence interval is ĥk � za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðĥkÞ

q
where

za/2 is the (1 � a/2)th percentile of the standard normal distribu-
tion and VarðĥkÞ ¼ ĥkð1� ĥkÞ=NP. It should be noted that confi-
dence intervals constructed in this way may not be entirely
accurate (see, e.g. [35]).

Next, let l denote an expected value or a conditional expected
value discussed in Sections 4.1 and 4.2. The probability estimates
ĥk given by a DBN are used for calculating an estimate for the ex-
pected value as l̂ ¼Pk2Kk � ĥk where K is the set of values of a sim-
ulation state variable under consideration. The confidence interval
for the expected value is l̂� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðl̂Þ

p
. Here, the variance is

Var l̂ð Þ ¼ Var
X
k2K

k � ĥk
 !

¼
X
k2K

X
m2K

Cov k � ĥk;m � ĥm
� �

¼
X
k2K

X
m2K

k �m � Cov ĥk; ĥm
� �

;

where Cov ĥk; ĥk
� �

¼ CovðNk;NkÞ=N2
P ¼ ĥk 1� ĥk

� �
=NP and Cov

ĥk; ĥm
� �

¼ CovðNk;NmÞ=N2
P ¼ �ĥkĥm=NP, if k–m. Recall that

Cov(Nk,Nk) and Cov(Nk,Nm) were discussed in Section 3.5.

4.4. Required computational effort

The computational effort needed in the utilization of a DBN
metamodel, i.e., in the calculation of conditional probability distri-
butions of simulation state variables, is next discussed. These dis-
tributions could also be determined directly based on simulation
data. Nevertheless, it takes less computational effort to update

J. Poropudas, K. Virtanen / European Journal of Operational Research 214 (2011) 644–655 649



conditional probability distributions with the DBN than to search
the original data set for appropriate cases, i.e., those simulation
replications where the simulation is in a given state at a given time
instant. The difference in computational cost is outlined by consid-
ering the sizes of the DBN and the simulation data set.

In a DBN containing n variables, the probability of a given com-
bination of values of the variables is computed as a product of n
conditional probabilities [36]. If the simulation data are used for
this computation, a data set of size N is first screened for the appro-
priate cases whose number is Nk. Then, the probability of the given
combination is estimated as Nk/N. For all reasonable situations
N� n. Thus, the screening of the data set requires more computa-
tional effort which makes the utilization of the DBN preferable –
especially if similar analyses are performed repeatedly.

5. Example DBN metamodels

Next, the construction and use of DBN metamodels are illus-
trated with two examples that consider a queueing model [1,14]
and an air combat simulation model [37]. In both cases, simulation
data are collected and a DBN metamodel is constructed and ana-
lyzed following the principles presented in Sections 3 and 4 using
the GeNIe software [31].

5.1. Queueing model

The first example illustrates the construction and validation of a
DBN metamodel and the analysis possibilities provided by the
DBN. These include the study of the time evolution of simulation
and the effects of simulation parameters as well as the uncertainty
associated with them. The simulation model under consideration
represents a single server queueing system with Poisson arrivals
and exponential service times with service intensity l = 2.50
[14]. The arrival intensity of the system is a random variable whose
value is determined at the beginning of day to be either k = 1.50 or
k = 5.00. These cases are referred to as quiet and busy days. The ar-
rival intensity is a parameter of the simulation model that is in-
cluded in the DBN metamodel as an external random variable.

The simulation state S(t) is determined by a single state variable
x(t) that represents the number of customers in the system at time
t. At the beginning of the simulation, the system is empty, i.e.,
x(0) = 0. The maximum length of the queue is limited so that the
set of possible values of the simulation state is K = {0,1, . . . ,10}.
The number of simulation replications N is determined using Eq.
(1) with values a = 0.05, d = 0.05, and p = 0.05. This gives a lower
bound NP 7683 and it is rounded up to N = 10000. The duration
of the simulation replications is set as 10 time units, i.e., tf = 10,
and the system is simulated N times for both values of the arrival
intensity.

The simulation data are used to estimate the probability curves,
i.e., the probabilities for the values of the simulation state variable
as a function of time. Based on these curves, the number of time
slices jTj is determined and the optimization problem (3) is solved
providing the optimal time instants. The number of time slices is
set as jTj = 10 and the optimal time instants are found to be

T = {0,0.10,0.31,0.75,1.76,3.50,4.50,7.36,8.94,10.00} by running
the genetic algorithm for 5000 generations.

When constructing the initial structure of the DBN, it is as-
sumed that the simulation state at a given time instant depends
on the previous state as well as on the value of the external vari-
able representing the arrival intensity. Then, additional dependen-
cies are identified based on the simulation data and it is found that
no additional arcs are needed which is expected due to the Mar-
kovian nature of the queueing system [14]. The final structure of
the DBN is presented in Fig. 3. The data are also used in the estima-
tion of the conditional probability tables for all the variables of the
DBN. Finally, the prior distribution of the external variable k is
determined using expert knowledge. Now, it is assumed that the
opinion of the expert is that there is a 80% chance that a randomly
chosen day is quiet. Thus, the prior probability distribution of the
external variable is P(k = 1.50) = 0.80 and P(k = 5.00) = 0.20.

The DBNmetamodel is validated by comparing the probabilities
given by it with the probability curves estimated from an indepen-
dent simulation data set. In the validation, several representative
conditional probabilities and their confidence intervals are studied.
Examples of such probabilities are presented in Figs. 4 and 6. In
Figs. 5 and 7, similar comparison is conducted using the expected
and conditional expected value of the queue length with their con-
fidence intervals. For all the cases studied, the DBN provides results
that concur with the independent data. Thus, it is concluded that
the DBN offers a good representation of the simulated queueing
system.

Once validated, the DBN metamodel is used to study the pro-
gress of the simulation in time by tracking the probability distribu-
tion of the state variable x(t) during the simulation. For example,
Fig. 4 presents the probability of the system being full at time t,
i.e., P(x(t) = 10) and its confidence interval as given by the DBN.
At the beginning of the simulation, P(x(0.00) = 10) = 0.00 as the
queue starts empty. If the type of the day is unknown, the proba-
bility of the queue being full increases steadily and reaches its
highest value at the end of the simulation that is P(x(10.00) =
10) = 0.10. The conditional probabilities for quiet and busy days,
i.e., P(x(t) = 10jk = 1.50) and P(x(t) = 10jk = 5.00), and their confi-
dence intervals are also presented in Fig. 4. On a quiet day, it is un-
likely that the length of the queue reaches its upper limit. On the
other hand, on a busy day, the probability of the system being full
increases during the simulation and reaches 0.49 at the end of the
simulation. Thus, one can conclude that the type of the day deter-
mines whether the queue will reach its maximal length and on
approximately 50% of busy days the simulation terminates in state
x(10) = 10.

Similarwhat-if analysis can be repeated for all other values of the
simulation state variable. Due to the number of these values, the
overall evolution of the simulation is presented using the expected
value of the queue length EðxðtÞÞ ¼Pk2Kk � PðxðtÞ ¼ kÞ that is calcu-
lated using the prior probability distribution for the external vari-
able k. To study the effect of the arrival intensity on the
simulation, the value of k can also be fixed in order to calculate con-
ditional expected values EðxðtÞjkÞ ¼Pk2Kk � PðxðtÞ ¼ kjkÞ where
k = 1.50 or k = 5.00. The expected values presented in Fig. 5 imply

Fig. 3. DBN metamodel for the single server queueing system. The DBN has jTj = 10 time slices representing the simulation state S(t) = x(t) at time instants
T = {0,0.10,0.31,0.75,1.76,3.50,4.50,7.36,8.94,10.00}. The external variable k represents the arrival intensity of the customers.

650 J. Poropudas, K. Virtanen / European Journal of Operational Research 214 (2011) 644–655



that the expected queue length starts at zero and increases during
the simulation towards the value 2.92. In the case of a quiet day,
the expected queue length at the end of the day is E(x(10.00)jk =
1.50) = 1.41 and for a busy day E(x(10.00)jk = 5.00) = 8.98. Thus, on
a busy day, after ten time units the queue is almost full on average.

To conduct what-if analysis concerning the dependence be-
tween the simulation state at different time instants, the value of
the simulation state variable is fixed at some time instant and
the probability distributions of the variable at other time instants
are updated. The conditional probability distributions reveal the
effect of the observed simulation state on the evolution of the sim-
ulation. For example, in Fig. 6, the value of the state is set as

x(3.50) = 5 and the probability of the system being full, P(x(t) =
10jx(3.50) = 5), is updated accordingly. To compare a quiet and
busy day, the respective conditional probability distributions,
P(x(t)jk = 1.50,x(3.50) = 5) and P(x(t)jk = 5.00,x(3.50) = 5), are also
presented.

Fig. 6 indicates that probability P(x(t) = 10jx(3.50) = 5) remains
at almost nil before time 3.50. Thus, regardless of the type of
day, before t = 3.50 there is no time for the system to first fill up
and then return to the state x(3.50) = 5. After t = 3.50, the condi-
tional probabilities P(x(t) = 5jk = 1.50,x(3.50) = 5) and P(x(t) = 5jk =
5.00,x(3.50) = 5) approach values similar to the unconditioned val-
ues presented in Fig. 4.

To explore the dependence between the external variable repre-
senting the simulation parameter and the simulation state, what-if
analysis may also be conducted in opposite direction. For example,
it is assumed that the simulation state is observed to be x(3.50) = 5
and the distribution of the external variable is updated. The result-
ing conditional probabilities are P(k = 1.50jx(3.50) = 5) = 0.60 and
P(k = 5.00jx(3.50) = 5) = 0.40. Recall that the prior probabilities are
P(k = 1.50) = 0.80 and P(k = 5.00) = 0.20. Thus, the observation in-
creases the likelihood of a busy day. This is also reflected in the
conditional evolution of the simulation in Fig. 6 where the proba-
bility P(x(t) = 10jx(3.50) = 5) approaches the value 0.20 which is
twice the respective value 0.10 in Fig. 4.

The conditional overall evolution of the simulation is further
studied by calculating the conditional expected values
E(x(t)jx(3.50) = 5), E(x(t)jk = 1.50,x(3.50) = 5), and E(x(t)jk = 5.00,
x(3.50) = 5) which are presented in Fig. 7. After t = 3.50, the ex-
pected values corresponding to quiet and busy days diverge and
approach similar values as in Fig. 5. Thus, on a quiet day, the sys-
tem empties after the observation x(3.50) = 5 and on a busy day
it fills up. Conditional on the observation, these courses are almost
equally probable as P(k = 1.50jx(3.50) = 5) = 0.60 and P(k = 5.00jx
(3.50) = 5) = 0.40. Therefore, the conditional expected queue length
for unknown k hovers just below 5 during the rest of the simula-
tion which is seen in Fig. 7.

In the above what-if analysis, the probability distribution of the
external variable is updated conditional on the observed simula-
tion state x(3.50) = 5. Similar inference about the type of day can
be performed for all possible values of the simulation state

Fig. 4. Probability of the system being full, i.e., P(x(t) = 10), as well as the
conditional probabilities P(x(t) = 10jk = 1.50) and P(x(t) = 10jk = 5.00) for quiet and
busy days as a function of time. The grey continuous lines present the probability
curves estimated from the independent simulation data. The markers and the error
bars denote the probabilities given by the DBNmetamodel and their 95% confidence
intervals.

Fig. 5. Expected value of the queue length E(x(t)) as well as the conditional
expected values E(x(t)jk = 1.50) and E(x(t)jk = 5.00) for quiet and busy days as a
function of time. The grey continuous lines present the expected values estimated
from the independent simulation data. The markers denote the expected values
given by the DBN metamodel. Note that the maximum of the half-lengths of the
confidence intervals is 0.034, i.e., they are so narrow that their illustration is
omitted.

Fig. 6. Probability of the system being full when x(3.50) = 5, i.e.,
P(x(t) = 10jx(3.50) = 5), as well as the conditional probabilities P(x(t) = 10jk =
1.50,x(3.50) = 5) and P(x(t) = 10jk = 5.00,x(3.50) = 5) for quiet and busy days as a
function of time. The grey continuous lines present the probability curves estimated
from the independent simulation data. The markers and the error bars denote the
probabilities given by the DBN metamodel and their 95% confidence intervals.

J. Poropudas, K. Virtanen / European Journal of Operational Research 214 (2011) 644–655 651



variable. For example, the probabilities P(x(3.50) = k), the condi-
tional probability distributions P(kjx(3.50) = k), k 2 K = {0,1, . . . ,10},
and the corresponding 95% confidence intervals are presented in
Table 1. The conditional probability distributions given by the
DBN are also compared with the conditional probability distribu-
tions estimated from the independent validation data set using
the v2-test for the goodness of fit. The P-values reported in Table
1 convey that no statistically significant differences between the
distributions are found which supports the previously made con-
clusion about the validity of the model.

In Table 1, at time 3.50 the most likely state is 0 and the prob-
abilities decrease with the queue length. The conditional probabil-
ity distributions P(kjx(3.50) = k) indicate that longer queue lengths
imply a higher likelihood of a busy day. If the queue length at time
3.50 is less than four, the day is almost certainly quiet. Similarly,
the queue lengths of eight or more indicate a busy day. Thus, the
observed simulation state at a given time can be used to update
the prior probability distribution of the external variable which af-
fects also the evolution of simulation.

5.2. Simulated air combat

The second example demonstrates the construction and valida-
tion of a DBN metamodel in the analysis of simulated air combat.
The DBN is used to study the time evolution of the simulation
and interdependencies between the simulation state at different
time instants. As the air combat simulation is an example of termi-
nating simulation, attention is paid to conducting what-if analyses
where the effects of fixed values of the simulation state at different
times on the final state of the simulation are studied. In the exam-
ple, simulation data are produced with a discrete event air combat
simulation model called X-Brawler [17,37,38] in order to construct
and validate the DBN metamodel.

The air combat under consideration involves two aircraft, called
blue and red. In the analysis, generic models for aircraft as well as
for missiles, radars, and other hardware are used [37]. The initial
geometry of the combat is advantageous for blue because blue is
approaching red and preparing to launch a missile towards it. On
the other hand, if the blue missile misses red, blue is at a consider-
able disadvantage as it has only one missile at its disposal while
red carries two similar missiles.

The state of the simulated air combat at time t is described by
two state variables S(t) = {x1(t),x2(t)}. The variable x1(t) is a indica-
tor variable for ‘‘blue is alive at time t’’ and x2(t) for ‘‘red is alive at
time t’’. As the state variables are binary, the sets of their values are
K1 = K2 = {0,1}. Together, the variables define the state of the air
combat at time t as

	 neutral, i.e., both sides are alive, x1(t) = 1 and x2(t) = 1
	 blue advantage, i.e., blue is alive and red has been killed, x1(t) = 1
and x2(t) = 0

	 red advantage, i.e., blue has been killed and red is alive, x1(t) = 0
and x2(t) = 1

	 mutual disadvantage, i.e., both sides have been killed, x1(t) = 0
and x2(t) = 0

To determine the necessary number of simulation replications,
values a = 0.05, d = 0.05, and p = 0.05 are used in Eq. (1) resulting
in a lower limit NP 7683. Similarly to the first example, the num-
ber is rounded up to N = 10000. Each replication is terminated if
both sides are killed. Otherwise, the simulation is terminated at
tf = 500 (seconds) which is also taken as the final time instant of
the DBN metamodel.

In the construction of the DBN metamodel, the simulation data
are first used to estimate the probability curves for the simulation
state variables. Then, the optimization problem (3) is solved by
running the genetic algorithm for 5000 generations in order to ob-
tain the optimal time instants for the time slices of the DBN. The
number of time instants is now set as jTj = 8 and the optimal time
instants are T = {0,132,148,162,201,220,339,500}. The initial
structure of the DBN is defined so that the state variables depend
on both state variables at the previous time instant. The simulation
data reveals also additional dependencies within the time slices as
variables x1(t) and x2(t) are found to be dependent at t = 148,
t = 201, and t = 500. There exists also dependencies across the time
slices such that the state variables depend on the variables corre-
sponding to time instants before the previous time slice. Thus,
the simulated air combat appears to be non-Markovian and the
simulation events may have long lasting and delayed effects on
the evolution of the simulation. These dependencies are taken into
account by adding arcs to the initial structure of the DBN. The final
structure is presented in Fig. 8. The DBN metamodel is finalized by
estimating conditional probability tables for all the nodes based on
the simulation data.

The constructed DBN is validated by comparing the probabili-
ties and their confidence intervals given by the DBN to the

Fig. 7. Conditional expected value of the queue length E(x(t)jx(3.50) = 5) as well as
the conditional expected values E(x(t)jk = 1.50,x(3.50) = 5) and E(x(t)jk = 5.00,
x(3.50) = 5) for quiet and busy days as a function of time. The grey continuous
lines present the expected values estimated from the independent simulation data.
The markers and the error bars denote the expected values given by the DBN
metamodel and their 95% confidence intervals.

Table 1
Probabilities P(x(3.50) = k) and the conditional probability distributions
P(kjx(3.50) = k) where k 2 K = {0,1, . . . ,10} as well as the corresponding 95% confi-
dence intervals. The final row presents the unconditional probability distribution P(k)
for comparison. The P-values refer to the v2-test in which the conditional probability
distributions are compared with the independent data set.

P(x(3.50) = k) P(kjx(3.50) = k) v2-test

k Prob. 1.50 5.00 P-value

0 0.353 (±0.009) 0.994 (±0.003) 0.006 (± 0.003) 0.975
1 0.209 (±0.008) 0.984 (±0.005) 0.016 (± 0.005) 0.999
2 0.121(±0.006) 0.958 (±0.011) 0.042 (± 0.011) 0.941
3 0.068 (±0.005) 0.913 (±0.021) 0.087 (± 0.021) 0.563
4 0.044 (±0.004) 0.797 (±0.038) 0.203 (± 0.038) 0.707
5 0.029 (±0.003) 0.598 (±0.056) 0.402 (± 0.056) 0.353
6 0.021 (±0.003) 0.348 (±0.064) 0.652 (± 0.064) 0.888
7 0.022 (±0.003) 0.155 (±0.048) 0.845 (± 0.048) 0.802
8 0.026 (±0.003) 0.036 (±0.023) 0.964 (± 0.023) 0.173
9 0.039 (±0.004) 0.019 (±0.014) 0.981(± 0.014) 0.520
10 0.067 (±0.005) 0.004 (±0.005) 0.996 (± 0.005) 0.263
– – 0.800 0.200 –

652 J. Poropudas, K. Virtanen / European Journal of Operational Research 214 (2011) 644–655



probability curves estimated from an independent data set. Over-
all, the DBN provides probabilities that reflect the independent
data, see Fig. 9. As in the previous example, conditional probability
distributions are also studied and it is concluded that the DBN is an
appropriate representation of the simulation model.

The DBN is next applied for the study of the evolution of the
simulation state. To understand the progress of the simulated air
combat, the probabilities produced by the DBNmetamodel are pre-
sented in Fig. 9. These probabilities imply that no prominent
changes occur in the probability distribution of the simulation
state before t = 132 or after t = 340. Thus, the most significant
events take place in the time interval [132,340]. The air combat
starts in the neutral state where both sides are alive and remains

in this state for the initial 132 seconds. At t = 132, the state of the
simulation changes as the probability of blue shooting down red
at this time is 0.36. The probability of blue advantage remains al-
most constant from this point on. If blue is to win the engagement,
red is shot down at this juncture.

The probability of red advantage increases in the time interval
[162,201] by 0.41. After this time interval, the probability of red
advantage increases only slightly. Red is unlikely to score a kill dur-
ing the remainder of the simulation. Nevertheless, red is at a slight
overall advantage in the combat as it is more likely to end in red
advantage than in blue advantage. The probability distribution of
the simulation state also reveals that the probability of mutual dis-
advantage is small, i.e., it is unlikely that the combat results in the
destruction of both aircraft.

To demonstrate the analysis capabilities of the DBN metamodel
related to the final simulation state, what-if analysis is conducted
with respect to the final state of the air combat, i.e., x1(500) and
x2(500). For example, the values of the simulation state variables
x1(t0) and x2(t0) can be fixed at time instant t0 2 T. Then, the proba-
bility distribution of the final state is updated using the DBN. Now,
it is assumed that blue is still alive at time t0 and the conditional
probability distribution of the final simulation state is calculated.
The probabilities P(x1(t0) = 1) and the conditional probability distri-
butions P(x1(500), x2(500)jx1(t0) = 1) for all t0 2 T as well as the cor-
responding confidence intervals are presented in Table 2. The
conditional probability distributions are also compared to the
independent validation data set using the v2-test for the goodness
of fit. The P-values related to this test are also reported in Table 2.
The P-values show that no statistically significant differences be-
tween the distributions are observed at 0.05 significance level
which supports the validity of the metamodel.

According to Table 2, blue is likely to survive until t0 = 162 and
observing x1(t0) = 1 before this time does not affect the outcome of
the air combat. If blue survives the time interval [162,201], the
combat is likely to end in blue advantage whose probability in-
creases during this time interval and continues to rise as long as
blue stays alive. Similarly, the probability that the final simulation
state is neutral increases during the simulation as long as blue is

Fig. 8. DBN metamodel for the simulated air combat. The black arcs represent the initial structure of the DBN and the arcs with the white arrowheads are added for
presenting further dependencies discovered in the simulation data.

Fig. 9. Probability distribution of the state of the air combat simulation as a
function of time. The grey continuous lines present the probability curves estimated
from the independent simulation data. The error bars denote the 95% confidence
intervals of the probabilities given by the DBN.

Table 2
Probability distribution of the final simulation state P(x1(500),x2(500)jx1(t0) = 1) conditional on blue being alive at time instants t0 2 T as well as the corresponding 95% confidence
intervals. The values (i, j) of the simulation state variables at t = 500, where x1(500) = i and x2(500) = j, correspond to the state of the air combat as follows: (1,1) neutral, (1,0) blue
advantage, (0,1) red advantage, and (0,0) mutual disadvantage. The final row presents the unconditional probability distribution P(x1(500),x2(500)) for comparison. The P-values
refer to the v2-test in which the conditional probability distributions are compared with the independent data set.

P(x1(t0) = 1) P(x1(500),x2(500)jx1(t0) = 1) v2-test

t0 Prob. (1,0) (0,1) (0,0) (1,1) P-value

0 1.000 (±0.000) 0.444 (±0.010) 0.475 (±0.010) 0.008 (±0.002) 0.073 (±0.005) 0.081
131 1.000 (±0.000) 0.444 (±0.010) 0.475 (± 0.010) 0.008 (±0.002) 0.073 (±0.005) 0.081
148 0.992 (±0.002) 0.447 (±0.010) 0.471 (± 0.010) 0.008 (±0.002) 0.074 (±0.005) 0.062
162 0.987 (±0.002) 0.449 (±0.010) 0.469 (± 0.010) 0.008 (±0.002) 0.074 (±0.005) 0.064
201 0.579 (±0.010) 0.766 (±0.011) 0.098 (± 0.008) 0.010 (±0.003) 0.126 (±0.009) 0.087
220 0.559 (±0.010) 0.794 (±0.011) 0.070 (± 0.007) 0.006 (±0.002) 0.130 (±0.009) 0.786
339 0.532 (±0.010) 0.833 (±0.010) 0.030 (± 0.005) 0.000 (±0.000) 0.137 (±0.009) 0.437
500 0.516 (±0.010) 0.859 (±0.010) 0.000 (± 0.000) 0.000 (±0.000) 0.141 (±0.010) 0.399
– – 0.444 (±0.010) 0.475 (±0.010) 0.008 (± 0.002) 0.073 (±0.005) –

J. Poropudas, K. Virtanen / European Journal of Operational Research 214 (2011) 644–655 653



not shot down. On the other hand, the longer blue is observed to
have survived, the smaller is the conditional probability for the
simulation ending in the red advantage state. Note that other anal-
yses similar to ones carried out in the first example could also be
conducted but their presentation is now omitted as it would pro-
vide no additional insight to the utilization of DBN metamodels.

6. Conclusions

This paper presented the construction of DBN metamodels
based on simulation data and their utilization in simulation analy-
ses. In this new metamodeling concept, the output of simulation is
considered as a time series representing the evolution of the sim-
ulation instead of a single output variable. The DBN metamodels
allow the study of the time evolution of the simulation. They can
also be used for analyzing the effects of fixed values of the simula-
tion state as well as the simulation parameters on the evolution of
the simulation. Such studies cannot be performed with existing
simulation metamodels but they could be carried out using the
simulation data. Nevertheless, the use of the DBNs requires less
computational effort and is thus less time consuming compared
to the repeated re-screening of the data or performing additional
simulations.

Two example simulation studies were presented to illustrate
the application of DBN metamodels. The validation results imply
that the probabilities and the expected values of the simulation
state variables obtained with the DBNs are consistent with the val-
ues estimated from independent simulation data. In both exam-
ples, the time evolution of the simulation is studied and several
what-if analyses are conducted. In the first example, a simulation
parameter is included in the DBN metamodel. This enables statis-
tical inference about the dependence between the evolution of
the simulated system and its settings as well as about the value
of the simulation parameter when the simulation state is fixed at
a given time. The second example focuses on describing the depen-
dence between the simulation state at a given time and the final
state of the simulation. It should be noted that the presented
examples are only illustrative demonstrations related to DBN
metamodels and further what-if analyses could be performed with
little computational effort.

The metamodeling concept presented in this paper can be ex-
tended into many directions. First, in this paper, the validation of
DBN metamodels is carried out using independent data sets. If
independent data is unavailable, bootstrapping might be employed
in validation [39]. Second, the DBN metamodels can be used as a
part of a BN that is constructed by using, e.g. expert knowledge,
to represent a larger system or a system of systems. Third, in this
paper, the values of simulation state variables are modeled at com-
mon time instants, i.e., all the time slices include all the state vari-
ables. One could also associate each of simulation state variables
with their own time instants and time slices in the DBN. In this
way, state changes taking place with different rates could be trea-
ted more effectively. Fourth, in this paper, the number of time
slices is determined based on visual inspection. A more explicit for-
mulation of this selection problem and the automatization of this
step in the construction process would make the determination
of the number of time slices more justifiable.

The depiction of external variables representing simulation
parameters could also be further explored. In this paper, probabil-
ity distributions of external variables are constant but these distri-
butions could also depend on time to describe time dependent
phenomena. Furthermore, external variables can also be taken as
decision variables involved in a simulation based optimization or
decision making problem. This leads to the use of influence dia-
grams [40] which are decision theoretical extensions of BNs. They

can be constructed based on simulation data following the princi-
ples presented in this paper and used as simulation metamodels to
solve the optimal values of the decision variables with respect to a
given criterion [38] or even multiple criteria [23]. Simulation mod-
els representing settings with multiple decision makers could be
analyzed by using influence diagram games [41] as game theoretic
simulation metamodels [12].

Overall, DBN metamodels offer a compact and efficient repre-
sentation for the evolution of simulation that expedites simula-
tion studies as there is no need for repetitive re-screening of
data. The computational advantages of the DBN metamodels
proved to be instrumental in conducting several alternative
what-if analyses that would be time consuming and arduous
based only on simulation data. These metamodels provide signif-
icant additional insight to simulation analyses compared to the
use of existing simulation metamodels and reveal dependencies
within simulations that are not evident in the dissection of raw
simulation data.

References

[1] A. Law, Simulation Modeling and Analysis, fourth ed., McGraw-Hill Science/
Engineering/Math, New York, NY, 2006.

[2] J.P.C. Kleijnen, Design and Analysis of Simulation Experiments, first ed.,
Springer Science + Business Media, New York, NY, 2008.

[3] R.R. Barton, Simulation metamodels, in: Proceedings of the 1998 Winter
Simulation Conference, Washington, DC, 1998, pp. 167–174.

[4] L.W. Friedman, The Simulation Metamodel, Kluwer Academic Publishers,
Norwell, MA, 1996.

[5] R.W. Blanning, The sources and uses of sensitivity information, Interfaces 4 (4)
(1974) 32–38.

[6] J.P.C. Kleijnen, Regression metamodels for generalizing simulation results, IEEE
Transactions on Systems, Man, and Cybernetics 9 (2) (1979) 93–96.

[7] D.J. Fonseca, D.O. Navaresse, G.P. Moynihan, Simulation metamodeling
through artificial neural networks, Engineering Applications of Artificial
Intelligence 16 (3) (2003) 177–183.

[8] M. Hussain, R. Barton, S. Joshi, Metamodeling: Radial basis functions, versus
polynomials, European Journal of Operational Research 138 (1) (2002) 142–
154.

[9] B. Ankenman, B.L. Nelson, J. Staum, Stochastic kriging for simulation
metamodeling, Operations Research 58 (2) (2010) 371–382.

[10] L.W. Schruben, V.J. Cogliano, An experimental procedure for simulation
response surface model identification, Communication of the Association for
Computing Machinery 30 (8) (1987) 716–730.

[11] J.P.C. Kleijnen, R.G. Sargent, A methodology for fitting and validating
metamodels in simulation, European Journal of Operational Research 120 (1)
(2000) 14–29.

[12] J. Poropudas, K. Virtanen, Game theoretic validation and analysis of air combat
simulation models, IEEE Transactions on Systems, Man, and Cybernetics – Part
A: Systems and Humans 40 (5) (2010) 1057–1070.

[13] R.C. Cheng, S.S. Currie, Optimization by simulation metamodelling methods,
in: Proceedings of the 2004 Winter Simulation Conference, Washington, DC,
2004, pp. 473–478.

[14] H.M. Taylor, S. Karlin, An Introduction to Stochastic Modeling, third ed.,
Academic Press, San Diego, CA, 1998.

[15] V.A. Mattila, K. Virtanen, T. Raivio, Improving maintenance decision making in
the Finnish air force through simulation, Interfaces 38 (3) (2008) 187–
201.

[16] T. Dean, K. Kanazawa, A model for reasoning about persistence and causation,
Computational Intelligence 5 (3) (1990) 142–150.

[17] J. Poropudas, K. Virtanen, Analyzing air combat simulation results with
dynamic Bayesian networks, in: Proceedings of the 2007 Winter Simulation
Conference, Washington, DC, 2007, pp. 1370–1377.

[18] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufman, San Mateo, CA, 1991.

[19] F.V. Jensen, Bayesian Networks and Decision Graphs (Information Science and
Statistics), Springer-Verlag, New York, NY, 2001.

[20] R.E. Neapolitan, Learning Bayesian Networks, Prentice Hall, Upper Saddle
River, NJ, 2004.

[21] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley Professional, Upper Saddle River, NJ, 1989.

[22] K.B. Korb, A.E. Nicholson, Bayesian Artificial Intelligence, Chapman & Hall, CRC,
Boca Raton, FL, 2004.

[23] M. Diehl, Y.Y. Haimes, Influence diagrams with multiple objectives and
tradeoff analysis, IEEE Transactions on Systems, Man, and Cybernetics, Part A:
Systems and Humans 34 (3) (2004) 293–304.

[24] D. Heckerman, Learning in Graphical Models, MIT Press, Cambridge, MA, 1999.
pp. 301–354 (Chapter A tutorial on learning with Bayesian networks).

[25] A.M. Law, W.D. Kelton, Simulation Modeling and Analysis, third ed., McGraw-
Hill, New York, NY, 2000.

654 J. Poropudas, K. Virtanen / European Journal of Operational Research 214 (2011) 644–655



[26] J.S. Milton, J.C. Arnold, Probability and Statistics in the Engineering and
Computing Sciences, McGraw-Hill, New York, NY, 1986.

[27] N. Friedman, I. Nachman, D. Peér, Learning Bayesian network structure from
massive datasets: The sparse candidate algorithm, in: Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm,
Sweden, 1999, pp. 206–215.

[28] D. Heckerman, Bayesian networks for data mining, Data Mining and
Knowledge Discovery 1 (1) (1997) 79–119.

[29] W. Buntine, A guide to the literature on learning probabilistic networks from
data, IEEE Transactions on Knowledge and Data Engineering 8 (2) (1996) 195–
210.

[30] S.K. Andersen, K.G. Olesen, F.V. Jensen, HUGIN – A Shell for Building Bayesian
Belief Universes for Expert Systems, Morgan Kaufman, San Francisco, CA, 1990.

[31] Decision Systems Laboratory, GeNIe (graphical network interface). Available
from: <http://genie.sis.pitt.edu/>, 2010 (accessed 17.02.10).

[32] R. Davidson, J.G. MacKinnon, Estimation and Inference in Econometrics, Oxford
University Press, New York, NY, 1993.

[33] M.I.R. dos Santos, A.M. Porta Nova, Statistical fitting and validation of non-
linear simulation metamodels: A case study, European Journal of Operational
Research 171 (1) (2006) 53–63.

[34] H. Hamad, S. Al-Hamdan, Discovering metamodels’ quality-of-fit for
simulation via graphical techniques, European Journal of Operational
Research 178 (2) (2007) 543–559.

[35] L.D. Brown, T.T. Cai, A. DasGupta, Interval estimation for a binomial proportion,
Statistical Science 16 (2) (2001) 101–133.

[36] G.F. Cooper, The computational complexity of probabilistic inference using
Bayesian belief networks (research note), Artificial Intelligence 42 (2–3)
(1990) 393–405.

[37] L-3 Communications Analytics Corporation, Vienna, VA, The X-Brawler Air
Combat Simulator Management Summary, 2002.

[38] J. Poropudas, K. Virtanen, Influence diagrams in analysis of discrete event
simulation data, in: Proceedings of the 2009 Winter Simulation Conference,
Austin, TX, 2009, pp. 696–708.

[39] J.P. Kleijnen, D. Deflandre, Validation of regression metamodels in simulation:
Bootstrap approach, European Journal of Operational Research 170 (1) (2006)
120–131.

[40] R.A. Howard, J.E. Matheson, Influence diagrams, Decision Analysis 2 (3) (2005)
127–143.

[41] D. Koller, B. Milch, Multi-agent influence diagrams for representing and
solving games, Games and Economic Behavior 45 (1) (2003) 181–221.

J. Poropudas, K. Virtanen / European Journal of Operational Research 214 (2011) 644–655 655




